15. On A Theory of Container Stowage

- This section is under development.
\otimes The idea of this section is
\oplus not so much to present a container domain description,
\oplus but rather to present fragments, "bits and pieces", of a theory of such a domain.
- The purpose of having a theory
\otimes is to "draw" upon the 'bits and pieces'
\star when expressing
\oplus properties of endurants and
\propto definitions of
*actions, $\quad *$ events and $\quad *$ behaviours.
- Again: this section is very much in embryo.

15.1. Some Pictures

A container vessel with 'bay' numbering

- Container vessels ply the seven seas and in-numerous other waters.
- They carry containers from port to port.
- The history of containers goes back to the late 1930s.
- The first container vessels made their first transports in 1956.
- Malcolm P. McLean is credited to have invented the container.
- To prove the concept of container transport he founded the container line Sea-Land Inc. which was sold to Maersk Lines at the end of the 1990s.

Bay numbers. Ship stowage cross section

- Down along the vessel, horisontally,
\otimes from front to aft,
\otimes containers are grouped, in numbered bays.

Row and tier numbers

- Bays are composed from rows, horisontally, across the vessel.
- Rows are composed from stacks, horisontally, along the vessel.
- And stacks are composed, vertically, from [tiers of] containers

15.2. Parts
 15.2.1. A Basis

174. From a container vessel (cv:CV) and from a container terminal port (ctp:CTP) one can observe their bays (bays:BAYS).

type

174. CV, CTP, BAYS

value

174. obs_BAYS: (CV|CTP) \rightarrow BAYS
175. The bays, bs:BS, (of a container vessel or a container terminal port) are mereologically structured as an (BId) indexed set of individual bays (b:B).

type

175. BId, B
176. $\mathrm{BS}=\mathrm{BId} \rightarrow \mathrm{B}$
value
177. obs_BS: BAYS \rightarrow BS (i.e., BId $\underset{m}{ }$ B)
178. From a bay, b:B, one can observe its rows, rs:ROWS.
179. The rows, rs:RS, (of a bay) are mereologically structured as an (RId) indexed set of individual rows ($\mathrm{r}: \mathrm{R}$).

type

176. ROWS, RId, R
177. $\mathrm{RS}=\mathrm{RId} \pi \mathrm{R}$

value

176. obs_ROWS: $\mathrm{B} \rightarrow$ ROWS
177. obs_RS: ROWS \rightarrow RS (i.e., RId $\underset{m}{ }$ R)
178. From a row, r:R, one can observe its stacks, STACKS.
179. The stacks, ss:SS (of a row) are mereologically structured as an (SId) indexed set of individual stacks (s:S).

type

178. STACKS, SId, S
179. $\mathrm{SS}=$ SId $\pi \mathrm{S}$

value

178. obs_STACKS: R \rightarrow STACKS
179. obs_SS: STACKS \rightarrow SS (i.e., SId $\underset{m}{ }$ S)
180. A stack ($\mathrm{s}: \mathrm{S}$) is mereologically structured as a linear sequence of containers ($\mathrm{c}: \mathrm{C}$).

type

180. C
181. $\mathrm{S}=\mathrm{C}^{*}$

- The containers of the same stack index across stacks are called the tier at that index, cf. photo on Page 509..

181. A container is here considered a composite part
(a) of the container box, $\mathrm{k}: \mathrm{K}$
(b) and freight, f:F.
182. Freight is considered composite
(a) and consists of zero, one or more colli (package, indivisible unit of freight),
(b) each having a unique colli identifier (over all colli of the entire world!).
(c) Container boxes likewise have unique container identifiers.

type
 181. C, K, F, P

value

181(a). obs_K: C $\rightarrow \mathrm{K}$
181(b). obs_F: $\mathrm{C} \rightarrow \mathrm{F}$
182(a). obs_Ps: F \rightarrow P-set

type

182(b). PI
182(c). CI

value

182(b). uid_P: $\mathrm{P} \rightarrow \mathrm{PI}$
182(c). uid_C: C \rightarrow CI

15.2.2. Mereological Constraints

183. For any bay of a vessel the index sets of its rows are identical.
184. For a bay of a vessel the index sets of its stacks are identical.
axiom
185. $\forall \mathrm{cv}: \mathrm{CV}$.
186. \forall b:B•b \in rng obs_BS(obs_BAYS(cv)) \Rightarrow
187. let rws=obs_ROWS(b) in
188. \forall r, $\mathrm{r}^{\prime}: \mathrm{R} \cdot\left\{\mathrm{r}, \mathrm{r}^{\prime}\right\} \subseteq$ rng obs_RS(b) \Rightarrow dom $\mathrm{r}=$ dom r^{\prime}
189. \wedge dom obs_SS(r) $=$ dom obs_SS(r') end

15.2.3. Stack Indexes

185. A container stack (and a container) is designated by an index triple: a bay index, a row index and a stack index.
186. A container index triple is valid, for a vessel, if its indices are valid indices.

type

185. StackId $=\operatorname{BId} \times \operatorname{RId} \times$ SId

value

186. valid_address: BS \rightarrow StackId \rightarrow Bool
187. valid_address(bs)(bid,rid,sid) \equiv
188. bid \in dom bs
189. \wedge rid \in dom (obs_RS(bs))(bid)
190. \wedge sid \in dom (obs_SS((obs_RS(bs))(bid)))(rid)

- The above can be defined in terms of the below.

type

BayId = BId
RowId $=$ BId \times RId
value
186. valid_BayId: V \rightarrow BayId \rightarrow Bool
186. valid_BayId(v)(bid) \equiv bid \in dom obs_BS(obs_BAYS(v))
186. get_B: $\mathrm{V} \rightarrow$ BayId $\xrightarrow{\sim} \mathrm{B}$
186. get_B $(\mathrm{v})($ bid $) \equiv($ get_ $\mathrm{B}(\mathrm{bs}))($ bid $)$ pre: valid_BId $(\mathrm{v})(\mathrm{bid})$
186. get_B: $\mathrm{BS} \rightarrow$ BayId $\xrightarrow{\sim} \mathrm{B}$
186. get_B(bs)(bid) \equiv (obs_BS(obs_BAYS(v)) (bid) pre: bid \in dom bs
186. valid_RowId: V \rightarrow RowId \rightarrow Bool
186. valid_RowId(v)(bid,rid) \equiv rid \in dom obs_RS(get_B(v)(bid))
186. pre: valid_BayId(v)(bid)
186. get_R: V \rightarrow RowId $\xrightarrow{\sim} R$
186. get_R(v)(bid,rid) \equiv get_R(obs_BS(v))(bid,rid) pre: valid_RowId(v)(bid
186. get_R: BS \rightarrow RowId $\xrightarrow{\sim} \mathrm{R}$
186. get_R(bs)(bid,rid) $\equiv($ obs_RS(get_RS(bs(bid) $))$)(rid)
186. pre: valid_RowId(v)(bid,rid)
186. get_S: V \rightarrow StackId $\xrightarrow{\sim} S$
186. get_S $(\mathrm{v})($ bid,rid,sid $) \equiv($ obs_SS $($ get_R $($ get_B(v)(bid,rid $))))($ sid $)$ 186. pre: valid_address(v)(bid,rid,sid)
186. get_C: $V \rightarrow$ StackId $\xrightarrow{\sim} C$
186. get_C(v)(stid) \equiv get_C(obs_BS(v))(stid) pre: get_S(v)(bid,rid,sid) $\neq\langle \rangle$
186. get_C: $\mathrm{BS} \rightarrow$ StackId $\xrightarrow{\sim} \mathrm{C}$
186. get_C(bs)(bid,rid,sid) $\equiv \mathbf{h d}($ obs_SS(get_R $(($ bs (bid $))($ rid $))))($ sid $)$
186. pre: get_S(bs)(bid,rid,sid) $\neq\langle \rangle$
186. valid_addresses: V \rightarrow StackId-set
186. valid_addresses(v) $\equiv\{$ adr|adr:StackId•valid_address(adr)(v) $\}$
187. The predicate non_empty_designated_stack checks whether the designated stack is non-empty.
187. non_empty_designated_stack: $\mathrm{V} \rightarrow$ StackId \rightarrow Bool
187. non_empty_designated_stack(v)(bid,rid,sid) \equiv get_S(v)(bid,rid,sid) $\neq\langle \rangle$
188. Two vessels have the same mereology if they have the same set of valid-addresses.

value

188. unchanged_mereology: $\mathrm{BS} \times \mathrm{BS} \rightarrow$ Bool
189. unchanged_mereology(bs,bs') \equiv valid_addresses(bs) $=$ valid_addresses(b
190. The designated stack, \mathbf{s}^{\prime}, of a vessel, \mathbf{v}^{\prime} is popped with respect the "same designated" stack, s, of a vessel, v
(a) if the ordered sequence of the containers of s^{\prime} are identical to the ordered sequence of containers of all but the first container of s.
191. popped_designated_stack: $\mathrm{BS} \times \mathrm{BS} \rightarrow$ StackId \rightarrow Bool 189. popped_designated_stack $\left(\mathrm{bs}, \mathrm{bs}{ }^{\prime}\right)($ stid $) \equiv$ 189(a). tl get_S(v)(stid) $=$ get_S(bs')(stid)
192. For a given stack index, valid for two bays (bs, bs') of two vessels or two container terminal ports, and say stid, these two bays enjoy the unchanged_non_designated_stacks(bs,bs')(stid) property
(a) if the stacks (of the two bays) not identified by stid are identical.
193. unchanged_non_designated_stacks: $\mathrm{BS} \times \mathrm{BS} \rightarrow$ StackId \rightarrow Bool 190. unchanged_non_designated_stacks(bs,bs') (stid) \equiv 190(a). $\quad \forall$ adr:StackId•adr \in valid_addresses(v) $\backslash\{$ stid $\} \Rightarrow$ 190(a). get_S(bs)(adr) $=$ get_S(bs') (adr) 190. pre: unchanged_mereology(bs,bs')

15.2.4. Stowage Schemas

191. By a stowage schema of a vessel we understand a "table"
(a) which for every bay identifier of that vessel records a bay schema
(b) which for every row identifier of an identified bay records a row schema
(c) which for every stack identifier of an identified row records a stack schema
(d) which for every identified stack records its tier schema.
(e) A stack schema records for every tier index (which is a natural number) the type of container (contents) that may be stowed at that position.
(f) The tier indexes of a stack schema form a set of natural numbers from one to the maximum number in the index set.

value

191. obs_StoSchema: V \rightarrow StoSchema

type

191(a). StoSchema $=$ BId m BaySchema
191(b). BaySchema $=$ RId π RowSchema
191(c). RowSchema $=$ SId m StaSchema
191(d). StaSchema $=$ Nat \vec{m} C_Type
191(e). C_Type
axiom
191(f). \forall stsc:StaSchema \cdot dom stsc $=\{1 . . \max$ dom stsc$\}$
192. One can define a function which from an actual vessel "derives" its "current stowage schema".
192. cur_sto_schema: $\mathrm{V} \rightarrow$ StoSchema
192. cur_sto_schema(v) \equiv
192. let bs = obs_BS(obs_BAYS(v)) in
192. [bid \mapsto let rws = obs_RS(obs_ROWS(bs(bid))) in
192. $\quad[$ rid \mapsto let ss $=$ obs_SS(obs_STACKS(rws)(rid)) in
192.
192.
192. \mid rid:RId.rid \in dom rws] end
192. | bid:BId•bid \in dom ds] end
192. analyse_container: $\mathrm{C} \rightarrow$ C_Type
193. Given a stowage schema and a current stowage schema one can check the latter for conformance wrt. the former.
193. conformance: StoSchema \times StoSchema \rightarrow Bool
193. conformance(stosch,cur_stosch) \equiv
193. dom cur_stosch $=$ dom stosch
193. $\wedge \forall$ bid:BId \cdot bid \in dom stosch \Rightarrow
193. dom cur_stosch(bid) $=$ dom stosch (bid)
193. $\wedge \forall$ rid:RId \cdot rid $\in \operatorname{dom}($ stosch $(\mathrm{bid}))($ rid $) \Rightarrow$
193. dom(cur_stosch(bid))(rid) $=$ dom(stosch(bid))(rid)
193. $\wedge \forall$ sid:SId \cdot sid $\in \operatorname{dom}($ cur_stosch(bid))(rid)
193. $\quad \forall$ i:Nat $\cdot \mathrm{i} \in \operatorname{inds}(($ cur_stosch(bid) $)($ rid $))($ sid $) \Rightarrow$
193. conform $(((($ cur_stosch $($ bid $))($ rid $))($ sid $))($ i $)$,
193. $((($ stosch $($ bid $))($ rid $))($ (sid $))($ (i) $)$
193. conform: C_Type \times C_Type \rightarrow Bool
194. From a vessel one can observe its mandated stowage schema.
195. The current stowage schema of a vessel must always conform to its mandated stowage schema.

value

194. obs_StoSchema: V \rightarrow StoSchema
195. stowage_conformance: $\mathrm{V} \rightarrow$ Bool
196. stowage_conformance(v) \equiv
197. let mandated $=$ obs_StoSchema (v),
198. current $=$ cur_sto_schema(v) in
199. conformance(mandated,current) end

15.3. Actions

15.3.1. Remove Container from Vessel

20. The remove_Container_from_Vessel action applies to a vessel and a stack address and conditionally yields an updated vessel and a container.

20(a). We express the 'remove from vessel' function primarily by means of an auxiliary function remove_C_from_BS, remove_C_from_BS(obs_BS(v))(stid), and some further post-condition on the before and after vessel states (cf. Item 20(d)).
20(b). The remove_C_from_BS function yields a pair: an updated set of bays and a container.
20(c). When obs_erving the BayS from the updated vessel, \mathbf{v}^{\prime}, and pairing that with what is assumed to be a vessel, then one shall obtain the result of remove_C_from_BS(obs_BS(v))(stid).
20(d). Updating, by means of remove_C_from_BS(obs_BS(v))(stid), the bays of a vessel must leave all other properties of the vessel unchanged.
21. The pre-condition for remove_C_from_BS(bs)(stid) is

21(a). that stid is a valid_address in bs, and
21(b). that the stack in bs designated by stid is non empty.
22. The post-condition for remove_C_from_BS(bs)(stid) wrt. the updated bays, bs', is

22(a). that the yielded container, i.e., c, is obtained, get_C(bs)(stid), from the top of the non-empty, designated stack,
$22(\mathrm{~b})$. that the mereology of $b s^{\prime}$ is unchanged, unchanged_mereology(bs,bs'). wrt. bs.,
$22(\mathrm{c})$. that the stack designated by stid in the "input" state, bs, is popped, popped_designated_stack(bs,bs')(stid), and
22(d). that all other stacks are unchanged in bs' wrt. bs, unchanged_non_designated_stacks(bs,bs')(stid).

value

20. remove_C_from_V: V \rightarrow StackId $\xrightarrow{\sim}(\mathrm{V} \times \mathrm{C})$
21. remove_C_from_V(v)(stid) as $\left(\mathrm{v}^{\prime}, \mathrm{c}\right)$

20(c). (obs_BS $\left.\left(\mathrm{v}^{\prime}\right), \mathrm{c}\right)=$ remove_C_from_BS(obs_BS(v))(stid)
$20(\mathrm{~d}) . \wedge \operatorname{props}(\mathrm{v})=\operatorname{props}\left(\mathrm{v}^{\prime \prime}\right)$
20(b). remove_C_from_BS: BS \rightarrow StackId $\rightarrow(\mathrm{BS} \times \mathrm{C})$
20(a). remove_C_from_BS(bs)(stid) as (bs', c)
21(a). pre: valid_address(bs)(stid)
21(b). \wedge non_empty_designated_stack(bs)(stid)
22(a). post: $\mathrm{c}=$ get_C(bs)(stid)
22(b). $\quad \wedge$ unchanged_mereology(bs,bs ${ }^{\prime}$)
22(c). $\quad \wedge$ popped_designated_stack(bs,bs')(stid)
22(d). \wedge unchanged_non_designated_stacks(bs,bs')(stid)

15.3.2. Remove Container from CTP

- We define a remove action similar to that of the previous section.

196. Instead of vessel bays we are now dealing with the bays of container terminal ports.

We omit the narrative - which is very much like that of narrative Items 20(c) and 20(d).

value

196. remove_C_from_CTP: CTP \rightarrow StackId $\xrightarrow{\sim}(\mathrm{CTP} \times \mathrm{C})$ 196. remove_C_from_CTP(ctp)(stid) as ($\left.\operatorname{ctp}^{\prime}, \mathrm{c}\right)$

20(c). (obs_BS(ctp $\left.\left.{ }^{\prime}\right), \mathrm{c}\right)=$ remove_C_from_BS(obs_BS(ctp))(stid)
20(d). $\wedge \operatorname{props}(c t p)=\operatorname{props}\left(\right.$ ctp $\left.^{\prime \prime}\right)$

15.3.3. Stack Container on Vessel

197. Stacking a container at a vessel bay stack location
(a)
(b)
(c)

value

197. stack_C_on_vessel: $\mathrm{BS} \rightarrow$ StackId $\xrightarrow{\sim} \mathrm{C} \xrightarrow{\sim} \mathrm{BS}$

197(a). stack_C_on_vessel(bs)(stid)(c) as bs'
197(a). comment: bs is bays of a v:V, i.e., bs = obs_BS(v)
197(b). pre:
197(c). post:

15.3.4. Stack Container in CTP

198.
199.
200.
201.

value

198. stack_C_in_CTP: CTP \rightarrow StackId $\rightarrow \mathrm{C} \xrightarrow{\sim}$ CTP
199. stack_Cin_CTP(ctp)(stid)(c) as ctp'
200. pre:
201. post:

15.3.5. Transfer Container from Vessel to CTP

202.
203.
204.
205.

value

202. transfer_C_from_V_to_CTP: V \rightarrow StackId $\xrightarrow{\sim} \mathrm{CTP} \rightarrow$ StackId $\xrightarrow{\sim}(\mathrm{V} \times \mathrm{CTP})$
203. transfer_C_from_V_to_CTP $(\mathrm{v})\left(\mathrm{v}\right.$ _stid) $($ ctp $)\left(c t p _s t i d\right) \equiv$
204. let $\left(\mathrm{c}, \mathrm{v}^{\prime}\right)=$ remove_C_from_V(v)(v_stid) in
205. (v^{\prime},stack_C_in_CTP(ctp)(ctp_stid)(c)) end

15.3.6. Transfer Container from CTP to Vessel

206.
207.
208.

value

206. transfer_C_from_CTP_to_V: CTP \rightarrow StackId $\xrightarrow{\sim} \mathrm{V} \rightarrow$ StackId $\xrightarrow{\sim}(\mathrm{CTP} \times \mathrm{V})$
207. transfer_C_from_CTP_to_V(ctp)(ctp_stid)(v)(v_stid) \equiv
208. let $\left(\mathrm{c}, \mathrm{ctp}^{\prime}\right)=$ remove_C_from_CTP(ctp)(ctp_stid) in
209. (ctp ${ }^{\prime}$,stack_C_in_CTP(ctp)(ctp_stid)(c)) end

Any Questions?

