15. On A Theory of Container Stowage

e This section is under development.

& The 1dea of this section is

@ not so much to present a container domain description.

o but rather to present fragments, “bits and pieces”, ot a theory
of such a domain.

e The purpose of having a theory

& 1s to “draw” upon the ‘bits and pieces’
® when expressing

o properties of endurants and
o definitions of

+ actions, x events and + behaviours.

e Again: this section is very much in embryo.

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 506 Domain Science & Engineering

507

15. On A Theory of Container Stowage 15.1. Some Pictures

15.1. Some Pictures

M M & W = 54 i & &g M N W M 1 W & 0 W N
T B e T e ® i e] T DT T o T T i T P T T e L T i i s s el Tl e P Y s
T™Th T &% &7 65 &1 8] =9ET | RS MM 4dTE 434 MIATHEX JEIF ITEE IS LL 19 1T 1310 114 O7 08 O A

e Has : S—1F e o e T T S S e

. - | - — - P N | - —] -] | e e e] - - - .

]] ' : el L - 0
A container vessel with ‘bay’ numbering

e Container vessels ply the seven seas and in-numerous other waters.
e They carry containers from port to port.

e The history of containers goes back to the late 1930s.

e The first container vessels made their first transports in 1956.

e Malcolm P. McLean is credited to have invented the container.

e To prove the concept of container transport he founded the container line
Sea-Land Inc. which was sold to Maersk Lines at the end of the 1990s.

A Precursor for Requirements Engineerin 507 Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02
q g g

208

15. On A Theory of Container Stowage 15.1. Some Pictures

View from bow View from stern
L]

Bay numbers. Ship stowage cross section

e Down along the vessel, horisontally,

& from front to aft,

¢ containers are grouped, in numbered bays.

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 508

Domain Science & Engineering

509

15. On A Theory of Container Stowage 15.1. Some Pictures

16 1400 08 06 04 0200 010305 07 09 11 13 15 =

Row and tier numbers

e Bays are composed from rows, horisontally, across the vessel.
e Rows are composed from stacks, horisontally, along the vessel.

e And stacks are composed, vertically, from [tiers of| containers

A Precursor for Requirements Engineerin 509 Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02
q g g

510 15. on A Theory of Container Stowage 15.2. Parts

15.2. Parts
15.2.1. A Basis

174. From a container vessel (cv:CV) and from a container terminal port
(ctp:CTP) one can observe their bays (bays:BAYS).

type
174. CV, CTP, BAYS

value

174. obs BAYS: (CV|CTP) — BAYS

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 510

Domain Science & Engineering

15. on A Theory of Container Stowage 15.2. Parts15.2.1. A Basis 511

175. The bays, bs:BS, (of a container vessel or a container terminal
port) are mereologically structured as an (Bld) indexed set of

individual bays (b:B).

type

175. BId, B

175. BS=BId - B
value

175. obs_BS: BAYS — BS (i.e., Bld 7 B)

511 © Dines Bjgrner 2012, DTU Informati Techn.Univ.of Denmark I

512 15. on A Theory of Container Stowage 15.2. Parts15.2.1. A Basis

176. From a bay, b:B, one can observe its rows, rs:ROWS.

177. The rows, rs:RS, (of a bay) are mereologically structured as an

(RId) indexed set of individual rows (r:R).

type

176. ROWS, RId, R

177. RS =RId m R

value

176. obs_.ROWS: B — ROWS

177. obs.RS: ROWS — RS (i.e., RId 7 R)

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 512

15. on A Theory of Container Stowage 15.2. Parts15.2.1. A Basis 513

178. From a row, r:R, one can observe its stacks, STACKS.

179. The stacks, ss:SS (of a row) are mereologically structured as an

(SId) indexed set of individual stacks (s:S).

type

178. STACKS, SId, S

179. 5SS =9SId 7 S

value

178. obs STACKS: R — STACKS

179. obs SS: STACKS — SS (i.e., SId 7 S)

513 © Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark I

514 15. on A Theory of Container Stowage 15.2. Parts15.2.1. A Basis

180. A stack (s:S) is mereologically structured as a linear sequence of
containers (c:C).

type
180. C
180. S =C*

e The containers of the same stack index across stacks are called the
tier at that index, cf. photo on Page 509..

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 514 Domain Science & Engineering

15. on A Theory of Container Stowage 15.2. Parts15.2.1. A Basis 515

181. A container is here considered a composite part
(a) of the container box, k:K
(b) and freight, f:F.

182. Freight is considered composite

(a) and consists of zero, one or more colli (package, indivisible unit
of freight),

(b) each having a unique colli identifier (over all colli of the entire
world !).

(¢) Container boxes likewise have unique container identifiers.

A Precursor for Requirements Engineering 515 © Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02

516 15. on A Theory of Container Stowage 15.2. Parts15.2.1. A Basis

type

181. C. K. F,P
value

181(a). obs K: C — K
181(b). obs F: C — F
182(a). obs Ps: ' — P-set
type

182(h). PI

182(c). CI

value

182(b). uid P: P — PI
182(c). uid C: C — CI

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 516

15. 0n A Theory of Container Stowage 15.2. parts15.2.2. Mereological Constraints 517

15.2.2. Mereological Constraints

183. For any bay of a vessel the index sets of its rows are identical.

184. For a bay of a vessel the index sets of its stacks are identical.

axiom

183. V cv:CV -

183. V b:Bb € rng obs BS(obs BAYS(cv))=

183. let rws=0bs ROWS(b) in

183. V rr:R{rr'}Crng obs RS(b)=dom r=dom 1

184. A dom obs SS(r) = dom obs SS(r') end

517 © Dines Bjgrner 2012, DTU Informati Techn.Univ.of Denmark I

518 15. onA Theory of Container Stowage 15.2. Parts15.2.3. Stack Indexes

15.2.3. Stack Indexes

185. A container stack (and a container) is designated by an index
triple: a bay index, a row index and a stack index.

186. A container index triple is valid, for a vessel, if its indices are valid
indices.

type

185. Stackld = BldxRIdxSId

value

186. wvalid address: BS — Stackld — Bool

186. wvalid address(bs)(bid,rid,sid) =

186. bid € dom bs

186. A rid € dom (obs RS(bs))(bid)

186. A sid € dom (obs SS((obs RS(bs))(bid)))(rid)

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 518 Domain Science & Eng ineering

15. onA Theory of Container Stowage 15.2. Parts15.2.3. Stack Indexes 519

e The above can be defined in terms of the below.

type
Bayld = BId
Rowld = BIdxRId
value

186. wvalid_Bayld: V — Bayld — Bool
186. valid Bayld(v)(bid) = bid € dom obs BS(obs BAYS(v))

186. get B: V — Bayld = B
186. get B(v)(bid) = (get B(bs))(bid) pre: valid Bld(v)(bid)

186. get B: BS — Bayld — B
186. get B(bs)(bid) = (obs BS(obs BAYS(v)))(bid) pre: bid € dom bs

519 © Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark I

520 15. onA Theory of Container Stowage 15.2. Parts15.2.3. Stack Indexes

186. wvalid Rowld: V. — Rowld — Bool
186. valid Rowld(v)(bid,rid) = rid € dom obs RS(get B(v)(bid))
186. pre: valid Bayld(v)(bid)

186. get R: V — Rowld — R
186. get R(v)(bid,rid) = get R(obs BS(v))(bid,rid) pre: valid Rowld(v)(bic

186. get R: BS — Rowld — R
186. get R(bs)(bid,rid) = (obs RS(get RS(bs(bid))))(rid)
186. pre: valid Rowld(v)(bid,rid)

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 520

15. onA Theory of Container Stowage 15.2. Parts15.2.3. Stack Indexes 521

186. get S: V — Stackld — S
186. get S(v)(bid,rid,sid) = (obs SS(get R(get B(v)(bid,rid))))(sid)
186. pre: valid address(v)(bid,rid,sid)

521 © Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark I

522

15. onA Theory of Container Stowage 15.2. Parts15.2.3. Stack Indexes

186.
186.

186.
186.
186.

186.
186.

get C: V — Stackld = C
get C(v)(stid) = get_ C(obs BS(v))(stid) pre: get S(v)(bid,rid,sid) # ()

get C: BS — Stackld — C
get_C(bs)(bid,rid,sid) = hd(obs SS(get R((bs(bid))(rid))))(sid)
pre: get S(bs)(bid,rid,sid) # ()

valid addresses: V — Stackld-set
valid addresses(v) = {adr|adr:Stackld-valid address(adr)(v)}

522

15. onA Theory of Container Stowage 15.2. Parts15.2.3. Stack Indexes 523

187. The predicate non_empty_designated_stack checks whether the
designated stack is non-empty.

187. non_empty_designated_ stack: V — Stackld — Bool
187. non_empty designated stack(v)(bid,rid,sid) = get S(v)(bid,rid,sid) # ()

523 © Dines Bjgrner 2012, DTU Informati Techn.Univ.of Denmark I

524 15. onA Theory of Container Stowage 15.2. Parts15.2.3. Stack Indexes

188. T'wo vessels have the same mereology if they have the same set of
valid-addresses.

value
188. unchanged_mereology: BS x BS — Bool
188. unchanged mereology(bs,bs’) = valid_addresses(bs) = valid_addresses(k

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 524 Domain Science & Engineering

15. onA Theory of Container Stowage 15.2. Parts15.2.3. Stack Indexes 525

189. The designated stack, s’, of a vessel, v/ is popped with respect the
“same designated” stack, s, of a vessel, v

(a) if the ordered sequence of the containers of s’ are identical to the
ordered sequence of containers of all but the first container of s.

189. popped_designated_stack: BS x BS — Stackld — Bool
189. popped_designated_stack(bs,bs’)(stid) =
189(a). tl get_S(v)(stid) = get_S(bs)(stid)

525 © Dines Bjgrner 2012, DTU Informati Techn.Univ.of Denmark I

526 15. onA Theory of Container Stowage 15.2. Parts15.2.3. Stack Indexes

190. For a given stack index, valid for two bays (bs, bs) of two vessels or
two container terminal ports, and say stid, these two bays enjoy the
unchanged_non_designated_stacks(bs,bs’)(stid) property

(a) if the stacks (of the two bays) not identified by stid are identical.

190. unchanged non_designated_stacks: BS x BS — Stackld — Bool
190. unchanged non_designated_stacks(bs,bs’)(stid) =

190(a). ¥V adr:Stackld-adr € valid addresses(v)\{stid }=

190(a). get_S(bs)(adr) = get_S(bs’)(adr)

190. pre: unchanged mereology(bs,bs’)

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 526

15. On A Theory of Container Stowage 15.2. Parts15.2.4. Stowage Schemas 527

15.2.4. Stowage Schemas

191. By a stowage schema of a vessel we understand a “table”

(a) which for every bay identifier of that vessel records a bay schema

(b) which for every row identifier of an identified bay records a row
schema

(¢c) which for every stack identifier of an identified row records a
stack schema

(d) which for every identified stack records its tier schema.

(e) A stack schema records for every tier index (which is a natural
number) the type of container (contents) that may be stowed at
that position.

(f) The tier indexes of a stack schema form a set of natural numbers
from one to the maximum number in the index set.

527 © Dines Bjgrner 2012, DTU Informati Techn.Univ.of Denmark I

528
15. onaA Theory of Container Stowage 15.2. Parts15.2.4. Stowage Schemas

value

191. obs_StoSchema: V — StoSchema
type

191(a). StoSchema = Bld m» BaySchema

191(b). BaySchema = RId m» RowSchema

191(c). RowSchema = SId s StaSchema

191(d). StaSchema = Nat » C Type

191(e). C Type

axiom

191(f). V stsc:StaSchema - dom stsc = {1..max dom stsc}

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 528

15. On A Theory of Container Stowage 15.2. Parts15.2.4. Stowage Schemas 529

192. One can define a function which from an actual vessel “derives”’ its
“current stowage schema’.

192. cur_sto_schema: V — StoSchema

192. cur sto schema(v) =
192. let bs = obs BS(obs BAYS(v)) in
192. | bid + let rws = obs RS(obs ROWS(bs(bid))) in

192. rid — let ss = obs SS(obs STACKS(rws)(rid)) in

192. |sid — (analyse container(ss(i))[i:INati € inds ss)
192. | sid:SIdsid € ss | end

192. | rid:RId-rid € dom rws | end

192. | bid:Bldbid € dom ds | end

192. analyse_container: C — C_Type

529 © Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark I

530 15. onA Theory of Container Stowage 15.2. Parts15.2.4. Stowage Schemas

193. Given a stowage schema and a current stowage schema one can
check the latter for conformance wrt. the former.

193. conformance: StoSchema x StoSchema — Bool
193. conformance(stosch,cur stosch) =

193. dom cur_stosch = dom stosch
193. AV bid:BId - bid € dom stosch =

193. dom cur stosch(bid) = dom stosch(bid)

193. AV rid:RId - rid € dom(stosch(bid))(rid) =

193. dom(cur stosch(bid))(rid) = dom(stosch(bid))(rid)
193. AV sid:SId - sid € dom(cur stosch(bid))(rid)

193. V i:Nat - i € inds((cur_stosch(bid))(rid))(sid) =
193. conform((((cur_stosch(bid))(rid))(sid))(i),

193. (((stosch(bid))(rid))(sid))(i))

193. conform: C_Type x C_Type — Bool

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 530

15. On A Theory of Container Stowage 15.2. Parts15.2.4. Stowage Schemas 531

194. From a vessel one can observe its mandated stowage schema.

195. The current stowage schema of a vessel must always conform to its
mandated stowage schema.

value
194.

195.
195.
195.
195.
195.

obs_StoSchema: V — StoSchema

stowage_conformance: V — Bool
stowage conformance(v) =
let mandated = obs_StoSchema(v),
current = cur sto_schema(v) in
conformance(mandated,current) end

A Precursor for Requirements Engineering 531

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02

532 15. onA Theory of Container Stowage 15.3. Actions

15.3. Actions
15.3.1. Remove Container from Vessel

20. The remove_Container_from_Vessel action applies to a vessel and a stack address
and conditionally yields an updated vessel and a container.

20(a). We express the ‘remove from vessel” function primarily by means of an
auxiliary function remove_C_from BS, remove C from BS(obs BS(v))(stid),
and some further post-condition on the before and after vessel states (cf.

[tem 20(d)).

20(b). The remove_C_from BS function yields a pair: an updated set of bays and a
container.

20(c). When obs_erving the BayS from the updated vessel, v/, and pairing that with
what is assumed to be a vessel, then one shall obtain the result of

remove_C_from BS(obs BS(v))(stid).

20(d). Updating, by means of remove C from BS(obs BS(v))(stid), the bays of a
vessel must leave all other properties of the vessel unchanged.

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 532 Domain Science & Engineering

15. on A Theory of Container Stowage 15.3. Actions15.3.1. Remove Container from Vessel 533

21. The pre-condition for remove C from BS(bs)(stid) is

21(a). that stid is a valid address in bs, and
21(b). that the stack in bs designated by stid is non_empty.

22. The post-condition for remove C from BS(bs)(stid) wrt. the
updated bays, bs', is
22(a). that the yielded container, i.e., c, is obtained, get C(bs)(stid),
from the top of the non-empty, designated stack,

22(b). that the mereology of bs’ is unchanged,
unchanged_mereology(bs,bs’). wrt. bs. |

22(c). that the stack designated by stid in the “input” state, bs, is
popped, popped_designated_stack(bs,bs’)(stid), and

22(d). that all other stacks are unchanged in bs’ wrt. bs,
unchanged_non_designated_stacks(bs,bs’)(stid).

533 © Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012 2

534

15. onA Theory of Container Stowage 15.3. Actions15.3.1. Remove Container from Vessel

value

20. remove_C_from V: V — Stackld — (VxC)
20. remove_C_from_V(v)(stid) as (v/c)

20(c).

(obs_BS(v),c) = remove_C_from_BS(obs_BS(v))(stid)
A props(v)=props(v")

. remove_C_from_BS: BS — Stackld — (BSxC)

remove_C_from_BS(bs)(stid) as (bs’,c)
pre: valid address(bs)(stid)
A non_empty designated stack(bs)(stid)
post: ¢ = get_C(bs)(stid)
A unchanged_mereology(bs,bs’)
A popped_designated stack(bs,bs’)(stid)
A unchanged non_designated _stacks(bs,bs’)(stid)

534

935

15. onaA Theory of Container Stowage 15.3. Actions15.3.2. Remove Container from CTP

15.3.2. Remove Container from CTP

e We define a remove action similar to that of the previous section.

196. Instead of vessel bays we are now dealing with the bays of
container terminal ports.

We omit the narrative — which is very much like that of narrative
[tems 20(c) and 20(d).

value
196. remove_C_from CTP: CTP — Stackld — (CTPxC)
196. remove_C_from CTP(ctp)(stid) as (ctp’.c)

20(c). (obs_BS(ctp’),c) = remove_C_from_BS(obs_BS(ctp))(stid)
20(d). A props(ctp)=props(ctp”)

535 © Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark I

536 15. onA Theory of Container Stowage 15.3. Actions15.3.3. Stack Container on Vessel

15.3.3. Stack Container on Vessel

197. Stacking a container at a vessel bay stack location
(a)
(b)
(c)
value

197. stack C_on vessel: BS — Stackld = C = BS
197(a). stack C on vessel(bs)(stid)(c) as bs'

(
197(a). comment: bs is bays of a v:V, i.e., bs = obs BS(v)
197(b). pre:
197(c). post:

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 536

Domain Science & Engineering

15. onA Theory of Container Stowage 15.3. Actions15.3.4. Stack Container in CTP

o937

15.3.4. Stack Container in CTP

198.
199.
200.
201.

value

198. stack C_in CTP: CTP — Stackld — C — CTP
199. stack C.in CTP(ctp)(stid)(c) as ctp

200. pre:

201. post:

537 © Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark I

938 15. onA Theory of Container Stowage 15.3. Actions15.3.5. Transfer Container from Vessel to CTP

15.3.5. Transfer Container from Vessel to CTP

202.
203.
204.
205.

value

202. transfer_C_from_V_to_CTP: V—Stackld—CTP—Stackld—(VxCTP)
203. transfer C from V _to CTP(v)(v stid)(ctp)(ctp stid) =

204. let (c,v') = remove_C_from_V(v)(v_stid) in

204. (v stack C_in CTP(ctp)(ctp_stid)(c)) end

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 538 Domain Science & Eng ineering

15. onA Theory of Container Stowage 15.3. Actions15.3.6. Transfer Container from CTP to Vessel 539

15.3.6. Transfer Container from CTP to Vessel

200.
207.
208.

value

206. transfer C_from CTP_to_V: CTP—Stackld—V—Stackld—(CTPxV)
207. transfer C from CTP to V(ctp)(ctp_stid)(v)(v_stid) =

208. let (c,ctp’) = remove_C_from_CTP(ctp)(ctp_stid) in

208. (ctp’ stack_C_in CTP(ctp)(ctp_stid)(c)) end

539 © Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02

939

Software Software

Software

Engineering 1 Engineering 2 Engineering 3

Any Questions ?

539 © Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02

