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15.

15. On A Theory of Container Stowage

• This section is under development.

⋄⋄ The idea of this section is

◦◦ not so much to present a container domain description,

◦◦ but rather to present fragments, “bits and pieces”, of a theory
of such a domain.

• The purpose of having a theory

⋄⋄ is to “draw” upon the ‘bits and pieces’

⋄⋄ when expressing

◦◦ properties of endurants and

◦◦ definitions of

∗ actions, ∗ events and ∗ behaviours.

• Again: this section is very much in embryo.
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15.1. Some Pictures

A container vessel with ‘bay’ numbering

• Container vessels ply the seven seas and in-numerous other waters.

• They carry containers from port to port.

• The history of containers goes back to the late 1930s.

• The first container vessels made their first transports in 1956.

• Malcolm P. McLean is credited to have invented the container.

• To prove the concept of container transport he founded the container line
Sea-Land Inc. which was sold to Maersk Lines at the end of the 1990s.
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15. On A Theory of Container Stowage 15.1. Some Pictures

Bay numbers. Ship stowage cross section

• Down along the vessel, horisontally,

⋄⋄ from front to aft,

⋄⋄ containers are grouped, in numbered bays.
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Row and tier numbers

• Bays are composed from rows, horisontally, across the vessel.

• Rows are composed from stacks, horisontally, along the vessel.

• And stacks are composed, vertically, from [tiers of] containers
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15.2. Parts

15.2.1. A Basis

174. From a container vessel (cv:CV) and from a container terminal port
(ctp:CTP) one can observe their bays (bays:BAYS).

type

174. CV, CTP, BAYS
value

174. obs BAYS: (CV|CTP) → BAYS
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175. The bays, bs:BS, (of a container vessel or a container terminal
port) are mereologically structured as an (BId) indexed set of
individual bays (b:B).

type

175. BId, B
175. BS = BId →m B
value

175. obs BS: BAYS → BS (i.e., BId →m B)
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176. From a bay, b:B, one can observe its rows, rs:ROWS.

177. The rows, rs:RS, (of a bay) are mereologically structured as an
(RId) indexed set of individual rows (r:R).

type

176. ROWS, RId, R
177. RS = RId →m R
value

176. obs ROWS: B → ROWS
177. obs RS: ROWS → RS (i.e., RId →m R)
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178. From a row, r:R, one can observe its stacks, STACKS.

179. The stacks, ss:SS (of a row) are mereologically structured as an
(SId) indexed set of individual stacks (s:S).

type

178. STACKS, SId, S
179. SS = SId →m S
value

178. obs STACKS: R → STACKS
179. obs SS: STACKS → SS (i.e., SId →m S)
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180. A stack (s:S) is mereologically structured as a linear sequence of
containers (c:C).

type

180. C
180. S = C∗

• The containers of the same stack index across stacks are called the
tier at that index, cf. photo on Page 509..
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181. A container is here considered a composite part

(a) of the container box, k:K

(b) and freight, f:F.

182. Freight is considered composite

(a) and consists of zero, one or more colli (package, indivisible unit
of freight),

(b) each having a unique colli identifier (over all colli of the entire
world !).

(c) Container boxes likewise have unique container identifiers.
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type

181. C, K, F, P
value

181(a). obs K: C → K
181(b). obs F: C → F
182(a). obs Ps: F → P-set

type

182(b). PI
182(c). CI
value

182(b). uid P: P → PI
182(c). uid C: C → CI
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15.2.2. Mereological Constraints

183. For any bay of a vessel the index sets of its rows are identical.

184. For a bay of a vessel the index sets of its stacks are identical.

axiom

183. ∀ cv:CV •

183. ∀ b:B•b ∈ rng obs BS(obs BAYS(cv))⇒
183. let rws=obs ROWS(b) in

183. ∀ r,r′:R•{r,r′}⊆rng obs RS(b)⇒dom r=dom r′

184. ∧ dom obs SS(r) = dom obs SS(r′) end
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15.2.3. Stack Indexes

185. A container stack (and a container) is designated by an index
triple: a bay index, a row index and a stack index.

186. A container index triple is valid, for a vessel, if its indices are valid
indices.

type

185. StackId = BId×RId×SId
value

186. valid address: BS → StackId → Bool

186. valid address(bs)(bid,rid,sid) ≡
186. bid ∈ dom bs
186. ∧ rid ∈ dom (obs RS(bs))(bid)
186. ∧ sid ∈ dom (obs SS((obs RS(bs))(bid)))(rid)
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• The above can be defined in terms of the below.

type

BayId = BId
RowId = BId×RId

value

186. valid BayId: V → BayId → Bool

186. valid BayId(v)(bid) ≡ bid ∈ dom obs BS(obs BAYS(v))

186. get B: V → BayId
∼
→ B

186. get B(v)(bid) ≡ (get B(bs))(bid) pre: valid BId(v)(bid)

186. get B: BS → BayId
∼
→ B

186. get B(bs)(bid) ≡ (obs BS(obs BAYS(v)))(bid) pre: bid ∈ dom bs
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186. valid RowId: V → RowId → Bool

186. valid RowId(v)(bid,rid) ≡ rid ∈ dom obs RS(get B(v)(bid))
186. pre: valid BayId(v)(bid)

186. get R: V → RowId
∼
→ R

186. get R(v)(bid,rid) ≡ get R(obs BS(v))(bid,rid) pre: valid RowId(v)(bid,rid)

186. get R: BS → RowId
∼
→ R

186. get R(bs)(bid,rid) ≡ (obs RS(get RS(bs(bid))))(rid)
186. pre: valid RowId(v)(bid,rid)
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186. get S: V → StackId
∼
→ S

186. get S(v)(bid,rid,sid) ≡ (obs SS(get R(get B(v)(bid,rid))))(sid)
186. pre: valid address(v)(bid,rid,sid)

A Precursor for Requirements Engineering 521 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



522 15. On A Theory of Container Stowage 15.2. Parts15.2.3. Stack Indexes

186. get C: V → StackId
∼
→ C

186. get C(v)(stid) ≡ get C(obs BS(v))(stid) pre: get S(v)(bid,rid,sid) 6= 〈〉

186. get C: BS → StackId
∼
→ C

186. get C(bs)(bid,rid,sid) ≡ hd(obs SS(get R((bs(bid))(rid))))(sid)
186. pre: get S(bs)(bid,rid,sid) 6= 〈〉

186. valid addresses: V → StackId-set
186. valid addresses(v) ≡ {adr|adr:StackId•valid address(adr)(v)}
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187. The predicate non empty designated stack checks whether the
designated stack is non-empty.

187. non empty designated stack: V → StackId → Bool

187. non empty designated stack(v)(bid,rid,sid) ≡ get S(v)(bid,rid,sid) 6= 〈〉
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188. Two vessels have the same mereology if they have the same set of
valid-addresses.

value

188. unchanged mereology: BS × BS → Bool

188. unchanged mereology(bs,bs′) ≡ valid addresses(bs) = valid addresses(bs
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189. The designated stack, s′, of a vessel, v′ is popped with respect the
“same designated” stack, s, of a vessel, v

(a) if the ordered sequence of the containers of s′ are identical to the
ordered sequence of containers of all but the first container of s.

189. popped designated stack: BS × BS → StackId → Bool

189. popped designated stack(bs,bs′)(stid) ≡
189(a). tl get S(v)(stid) = get S(bs′)(stid)
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190. For a given stack index, valid for two bays (bs, bs′) of two vessels or
two container terminal ports, and say stid, these two bays enjoy the
unchanged non designated stacks(bs,bs′)(stid) property

(a) if the stacks (of the two bays) not identified by stid are identical.

190. unchanged non designated stacks: BS × BS → StackId → Bool

190. unchanged non designated stacks(bs,bs′)(stid) ≡
190(a). ∀ adr:StackId•adr ∈ valid addresses(v)\{stid}⇒
190(a). get S(bs)(adr) = get S(bs′)(adr)
190. pre: unchanged mereology(bs,bs′)
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15.2.4. Stowage Schemas

191. By a stowage schema of a vessel we understand a “table”

(a) which for every bay identifier of that vessel records a bay schema

(b) which for every row identifier of an identified bay records a row
schema

(c) which for every stack identifier of an identified row records a
stack schema

(d) which for every identified stack records its tier schema.

(e) A stack schema records for every tier index (which is a natural
number) the type of container (contents) that may be stowed at
that position.

(f) The tier indexes of a stack schema form a set of natural numbers
from one to the maximum number in the index set.
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value

191. obs StoSchema: V → StoSchema
type

191(a). StoSchema = BId →m BaySchema
191(b). BaySchema = RId →m RowSchema
191(c). RowSchema = SId →m StaSchema
191(d). StaSchema = Nat →m C Type
191(e). C Type
axiom

191(f). ∀ stsc:StaSchema • dom stsc = {1..maxdom stsc}

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 528 Domain Science & Engineering



52915. On A Theory of Container Stowage 15.2. Parts15.2.4. Stowage Schemas

192. One can define a function which from an actual vessel “derives” its
“current stowage schema”.

192. cur sto schema: V → StoSchema
192. cur sto schema(v) ≡
192. let bs = obs BS(obs BAYS(v)) in

192. [ bid 7→ let rws = obs RS(obs ROWS(bs(bid))) in

192. [ rid 7→ let ss = obs SS(obs STACKS(rws)(rid)) in

192. [ sid 7→ 〈 analyse container(ss(i))|i:Nat•i ∈ inds ss 〉
192. | sid:SId•sid ∈ ss ] end

192. | rid:RId•rid ∈ dom rws ] end

192. | bid:BId•bid ∈ dom ds ] end

192. analyse container: C → C Type
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193. Given a stowage schema and a current stowage schema one can
check the latter for conformance wrt. the former.

193. conformance: StoSchema × StoSchema → Bool

193. conformance(stosch,cur stosch) ≡
193. dom cur stosch = dom stosch
193. ∧ ∀ bid:BId • bid ∈ dom stosch ⇒
193. dom cur stosch(bid) = dom stosch(bid)
193. ∧ ∀ rid:RId • rid ∈ dom(stosch(bid))(rid) ⇒
193. dom(cur stosch(bid))(rid) = dom(stosch(bid))(rid)
193. ∧ ∀ sid:SId • sid ∈ dom(cur stosch(bid))(rid)
193. ∀ i:Nat • i ∈ inds((cur stosch(bid))(rid))(sid) ⇒
193. conform((((cur stosch(bid))(rid))(sid))(i),
193. (((stosch(bid))(rid))(sid))(i))

193. conform: C Type × C Type → Bool
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194. From a vessel one can observe its mandated stowage schema.

195. The current stowage schema of a vessel must always conform to its
mandated stowage schema.

value

194. obs StoSchema: V → StoSchema

195. stowage conformance: V → Bool

195. stowage conformance(v) ≡
195. let mandated = obs StoSchema(v),
195. current = cur sto schema(v) in

195. conformance(mandated,current) end
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15.3. Actions

15.3.1. Remove Container from Vessel

20. The remove Container from Vessel action applies to a vessel and a stack address
and conditionally yields an updated vessel and a container.

20(a). We express the ‘remove from vessel’ function primarily by means of an
auxiliary function remove C from BS, remove C from BS(obs BS(v))(stid),
and some further post-condition on the before and after vessel states (cf.
Item 20(d)).

20(b). The remove C from BS function yields a pair: an updated set of bays and a
container.

20(c). When obs erving the BayS from the updated vessel, v′, and pairing that with
what is assumed to be a vessel, then one shall obtain the result of
remove C from BS(obs BS(v))(stid).

20(d). Updating, by means of remove C from BS(obs BS(v))(stid), the bays of a
vessel must leave all other properties of the vessel unchanged.
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21. The pre-condition for remove C from BS(bs)(stid) is

21(a). that stid is a valid address in bs, and

21(b). that the stack in bs designated by stid is non empty.

22. The post-condition for remove C from BS(bs)(stid) wrt. the
updated bays, bs′, is

22(a). that the yielded container, i.e., c, is obtained, get C(bs)(stid),
from the top of the non-empty, designated stack,

22(b). that the mereology of bs′ is unchanged,
unchanged mereology(bs,bs′). wrt. bs. ,

22(c). that the stack designated by stid in the “input” state, bs, is
popped, popped designated stack(bs,bs′)(stid), and

22(d). that all other stacks are unchanged in bs′ wrt. bs,
unchanged non designated stacks(bs,bs′)(stid).
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value

20. remove C from V: V → StackId
∼
→ (V×C)

20. remove C from V(v)(stid) as (v′,c)
20(c). (obs BS(v′),c) = remove C from BS(obs BS(v))(stid)
20(d). ∧ props(v)=props(v′′)

20(b). remove C from BS: BS → StackId → (BS×C)
20(a). remove C from BS(bs)(stid) as (bs′,c)
21(a). pre: valid address(bs)(stid)
21(b). ∧ non empty designated stack(bs)(stid)
22(a). post: c = get C(bs)(stid)
22(b). ∧ unchanged mereology(bs,bs′)
22(c). ∧ popped designated stack(bs,bs′)(stid)
22(d). ∧ unchanged non designated stacks(bs,bs′)(stid)
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15.3.2. Remove Container from CTP

• We define a remove action similar to that of the previous section.

196. Instead of vessel bays we are now dealing with the bays of
container terminal ports.

We omit the narrative — which is very much like that of narrative
Items 20(c) and 20(d).

value

196. remove C from CTP: CTP → StackId
∼
→ (CTP×C)

196. remove C from CTP(ctp)(stid) as (ctp′,c)
20(c). (obs BS(ctp′),c) = remove C from BS(obs BS(ctp))(stid)
20(d). ∧ props(ctp)=props(ctp′′)
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15.3.3. Stack Container on Vessel

197. Stacking a container at a vessel bay stack location

(a)

(b)

(c)

value

197. stack C on vessel: BS → StackId
∼
→ C

∼
→ BS

197(a). stack C on vessel(bs)(stid)(c) as bs′

197(a). comment: bs is bays of a v:V, i.e., bs = obs BS(v)
197(b). pre:
197(c). post:
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15.3.4. Stack Container in CTP

198.

199.

200.

201.

value

198. stack C in CTP: CTP → StackId → C
∼
→ CTP

199. stack C in CTP(ctp)(stid)(c) as ctp′

200. pre:
201. post:
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15.3.5. Transfer Container from Vessel to CTP

202.

203.

204.

205.

value

202. transfer C from V to CTP: V→StackId
∼
→CTP→StackId

∼
→(V×CTP)

203. transfer C from V to CTP(v)(v stid)(ctp)(ctp stid) ≡
204. let (c,v′) = remove C from V(v)(v stid) in

204. (v′,stack C in CTP(ctp)(ctp stid)(c)) end
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15.3.6. Transfer Container from CTP to Vessel

206.

207.

208.

value

206. transfer C from CTP to V: CTP→StackId
∼
→V→StackId

∼
→(CTP×V)

207. transfer C from CTP to V(ctp)(ctp stid)(v)(v stid) ≡
208. let (c,ctp′) = remove C from CTP(ctp)(ctp stid) in

208. (ctp′,stack C in CTP(ctp)(ctp stid)(c)) end
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Any Questions ?
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