14. On A Theory of Transport Nets

14.

- This section is under development.
 - \otimes The idea of this section is
 - $\ensuremath{\scriptstyle \varpi}$ not so much to present a transport domain description,
 - but rather to present fragments, "bits and pieces", of a theory of such a domain.
- The purpose of having a theory
 - \otimes is to "draw" upon the 'bits and pieces'
 - \otimes when expressing
 - ∞ properties of endurants and
 - © definitions of
 - * actions, * events and * behaviours.
- Again: this section is very much in embryo.

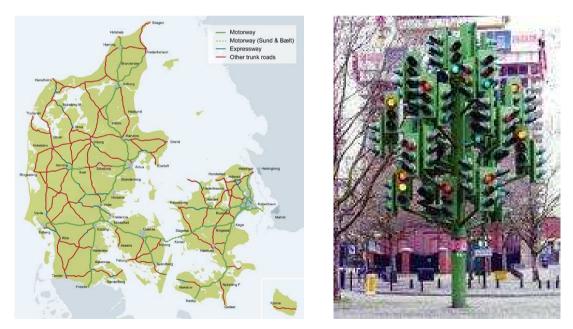
A Precursor for Requirements Engineering

14.1. Some Pictures

- Nets can either be
 - \otimes rail nets,
 - \otimes road nets,

∞ shipping lanes, or∞ air traffic nets.

• The following pictures illustrate some of these nets.



A rail net; a traffic light

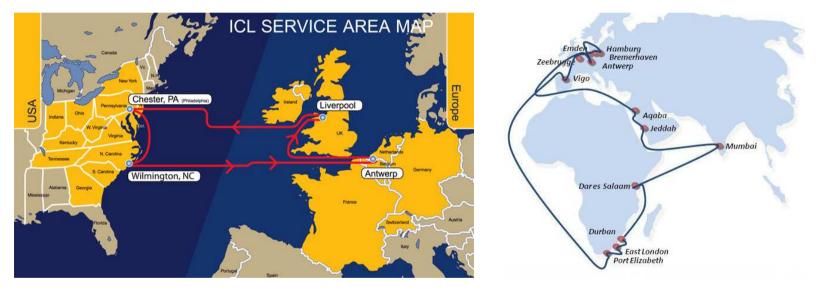
A freeway hub

Another freeway hub

- The left side of the road roundabout below is rather special.
 - \otimes Its traffic lights are also located in the inner circle of the roundabout.
 - \otimes One drives in,
 - ∞ at green light,
 - and may be guided by striping,
 - ∞ depending on where one is driving,
 - ∞ either directly to an outgoing link,
 - ∞ or is queued up against a red light
 - ∞ awaiting permission to continue.

A roundabout

- The map below left is for a container line serving one route between Liverpool (UK), Chester (PA, USA), Wilmington (NC, USA) and Antwerp (Belgium), an so forth, circularly.
- The map below right is an "around Africa" Mitsui O.S.K. Line.



Two shipping line nets

14.2. Parts 14.2.1. Nets, Hubs and Links

149. From a transport net one can observe sets of hubs and links.

```
type

149. N, H, L

value

149. obs_Hs: N \rightarrow H\text{-set}, obs_Ls: N \rightarrow L\text{-set}
```

14.2.2. **Mereology**

- 150. From hubs and links one can observe their unique hub, respectively link identifiers and their respective mereologies.
- 151. The mereology of a link identifies exactly two distinct hubs.
- 152. The mereologies of hubs and links must identify actual links and hubs of the net.

type

150. HI, LI

value

```
150. uid_H: H \rightarrow HI, uid_L: L \rightarrow LI
```

```
150. mereo_H: H \rightarrow LI-set, mereo_L: L \rightarrow HI-set
```

axiom

- 151. \forall l:L·card mereo_L(l)=2
- 152. \forall n:N,l:L·l \in obs_Ls(n) \Rightarrow
- 152. $\land \forall$ hi:HI·hi \in mereo_L(l)
- 152. $\Rightarrow \exists h:h\cdot h \in obs_Hs(n) \land uid_H(h) = hi$
- 152. $\land \forall h: H \cdot h \in obs_Hs(n) \Rightarrow$
- 152. \forall li:LI·li \in mereo_H(h)
- 152. $\Rightarrow \exists l:L \cdot l \in obs_Ls(n) \land uid_L(l)=li$

14.2.3. An Auxiliary Function

153. For every net we can define functions which

- (a) extracts all its link identifiers,
- (b) and all its hub identifiers.

- 153(a). xtr_HIs: $N \rightarrow HI$ -set
- 153(a). $xtr_HIs(n) \equiv {uid_H(h)|h:H \in obs_Hs(n)}$
- 153(b). xtr_LIs: $N \rightarrow LI$ -set
- 153(b). $xtr_LIs(n) \equiv {uid_L(l)|l:L·l \in obs_Ls(n)}$

14.2.4. Retrieving Hubs and Links

154. We can also define functions which

- (a) given a net and a hub identifier obtains the designated hub, respectively
- (b) given a net and a link identifier obtains the designated link.

value

154(a).	get_H: N \rightarrow HI $\xrightarrow{\sim}$ H
154(a).	$get_H(n)(hi)$ as h
154(a).	$\mathbf{pre} hi \in xtr_HIs(n)$
154(a).	$\mathbf{post} \ h \in obs_Hs(n) \land hi = uid_H(h)$
154(b).	get_L: N \rightarrow LI $\xrightarrow{\sim}$ L
154(b).	$\mathbf{pre} \ li \in xtr_LIs(n)$
154(b).	$\textbf{post} \ l \in obs_Ls(n) \land li=uid_L(l)$

A Precursor for Requirements Engineering

14.2.5. Invariants over Link and Hub States and State Spaces

155. Links include two attributes:

- (a) Link states. These are sets of pairs of the identifiers of the hubs to which the links are connected.
- (b) Link state spaces. These are the sets of link states that a link may attain.
- 156. The link states must mention only those hub identifiers of the two hubs to which the link is connected.
- 157. The link state spaces must likewise mention only such link states as are defined in Items 155(a) and 156.

[©] Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

type

155(a). $L\Sigma = (HI \times HI)$ -set axiom $\forall \ l\sigma: L\Sigma \cdot card \ l\sigma \leq 2$ 155(b). $L\Omega = L\Sigma$ -set

value

```
155(a). attr_L\Sigma: L \rightarrow L\Sigma
155(b). attr_L\Omega: L \rightarrow L\Omega
axiom
156. \forall l:L, l\sigma':L\Sigma \cdot l\sigma' \in attr_L\Omega(l)
156. \Rightarrow l\sigma' \subseteq \{(hi, hi') | hi, hi': HI \cdot \{hi, hi'\} \subseteq mereo_L(l)\}
```

156. $\wedge \operatorname{attr}_{L}\Sigma(l) \in \operatorname{attr}_{L}\Omega(l)$

158. Hubs include two attributes:

- (a) Hub states. These are sets of pairs of identifiers of the links to which the hubs are connected.
- (b) Hub state spaces. These are the sets of hub states that a hub may attain.
- 159. The hub states must mention only those link identifiers of the links to which the hub is connected.
- 160. The hub state spaces must likewise mention only such hub states as are defined in Items 158(a) and 159.

type 158(a). $H\Sigma = (LI \times LI)$ -set 158(b). $H\Omega = H\Sigma$ -set value 158(a). $attr_H\Sigma: H \to H\Sigma$ 158(b). $attr_H\Omega: H \to H\Omega$ axiom 159. \forall h:H, $h\sigma':H\Sigma \cdot h\sigma' \in attr_H\Omega(h)$

- 159. $\Rightarrow h\sigma' \subseteq \{(li, li') | li, li': LI \cdot \{li, li'\} \subseteq mereo_H(h)\}$
- 159. $\wedge \operatorname{attr}_{H\Sigma}(h) \in \operatorname{attr}_{H\Omega}(h)$

14.2.6. Maps

• A map is an abstraction of a net.

The map just shows the hub and link identifiers of the net, and hence its mereology.

type

```
Map' = HI \xrightarrow{m} (LI \xrightarrow{m} HI)Map = \{|m:Map' \cdot wf_Map(m)|\}
```

```
wf_Map: Map' \rightarrow Bool
wf_Map(m) \equiv dom m = \cup { rng lhm | lhm:(LI \overrightarrow{m} HI) \cdot lhm \in rng m }
```

- \bullet Let m be a map.
- The *definition set* of the map is **domm**.
- \bullet Let hi be in the definition set of map m.
- Then m(hi) is the *image* of hi in m.
- Let li be in the image of m(hi), that is, lilSlNdom(m(hi)), then hi'=(m(hi))(li) is the *target* of li in m(hi).

- Given a net which satisfies the axiom concerning mereology
- one can extract from that net a corresponding map.

$$\begin{aligned} xtr_Map: & N \to Map \\ xtr_Map(n) \equiv \\ & \left[\begin{array}{c} hi \mapsto \left[\begin{array}{c} li \mapsto uid_H(retr_H(n)(hi)(li)) \\ & \left[\begin{array}{c} li:LI \cdot li \in mere_H(get_H(n)(hi)) \end{array} \right] \\ & \left[\begin{array}{c} h:H,hi:HI \cdot h \in obs_Hs(n) \land hi = uid_H(h) \end{array} \right] \end{aligned} \end{aligned}$$

• The retrieve hub function

∞ retrieve the "second" hub, i.e., "at the other end", of∞ a link wrt. a "first" hub.

```
retr_H: N \rightarrow HI \rightarrow LI \rightarrow H

retr_H(n)(hi)(li) \equiv

let h = get_H(n)(hi) in

let l = get_L(n)(li) in

let \{hi'''\} = mereo_L(l) \setminus \{hi\} in

get_H(n)(hi''') end end end

pre: hi \in mereo_L(get_L(n)(li))
```

```
xtr_LIs: Map \rightarrow LI-set
xtr_LIs(m) = \cup {dom(m(hi))|hi:HI · hi \in dom m}
```

14.2.7. **Routes**

161. A route is an alternating sequence of hub and link identifiers.

161.
$$\mathbf{R}' = (\mathbf{HI}|\mathbf{LI})^{\omega}, \mathbf{R} = \{|\mathbf{r}:\mathbf{R}'\cdot\mathbf{wf}_{\mathbf{R}}(\mathbf{r})|\}$$

value

- 161. wf_R: $R' \rightarrow Bool$
- 161. wf_R(r) \equiv

161.
$$\forall i: \mathbf{Nat} \cdot \{i, i+1\} \subseteq \mathbf{inds} r \Rightarrow$$

161.
$$is_HI(r(i)) \land is_LI(r(i+1)) \lor is_LI(r(i)) \land is_HI(r(i+1))$$

162. A route of a map, m, is a route as follows:

- (a) An empty sequence is a route.
- (b) A sequence of just a single hub identifier or of hubs of the map is a route.
- (c) A sequence of just a single link identifier of links of the map is a route.
- (d) If $r^{(hi)}$ and $\langle li \rangle^{r'}$ are routes of the map and li is in the definition set of m(hi) then $r^{(hi)}r'$ is a route of the map.
- (e) If $r^{(i)}$ and $\langle hi \rangle \hat{r}'$ are routes of the map and hi is the target of (m(hi'))(i) then $r^{(i,hi)} \hat{r}'$ is a route of the map.
- (f) Only such routes are routes of a net if they result from a finite [possibly infinite] set of uses of Items 162(a)-162(e).

type type

162. MR' = R, MR = {r:MR' \exists m:Map \cdot r \in routes(m)|}

value

```
162. routes: N \rightarrow MR-infset

162. routes(n) \equiv routes(xtr_Map(n))

162. routes: Map \rightarrow MR-infset

162. routes(m) \equiv

162(a). let rs = \{\langle \rangle \}

162(b). \cup \cup \{\langle hi \rangle | hi: HI \cdot hi \in dom m\}

162(c). \cup \cup \{\langle hi \rangle | hi: HI \cdot hi \in xtr_LIs(m)\}

162(d). \cup \cup \{\langle i \rangle | hi: HI \cdot hi: fr'|r, r': MR, hi: HI, hi: LI \cdot \{r, r'\} \subseteq rs \land hi \in dom m(hi)\}

162(e). \cup \cup \{r^{\land} \langle hi, hi \rangle^{\frown} r'|r, r': MR, hi: HI, hi: LI \cdot \{r, r'\} \subseteq rs \land hi \in dom m(hi)\}

162(f). in rs end
```

```
162(e). is_target: Map \rightarrow HI \times LI
```

```
162(e). is_target(m)(hi)(li) \equiv
```

162(e). $\exists h'':HI \cdot h'' \in \mathbf{dom} \ m \land li \in \mathbf{dom} \ m(hi'') \land hi = (m(hi''))(li)$

© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

14.2.8. Special Routes 14.2.8.1 Acyclic Routes

163. A route of a map is acyclic if no hub identifier appears twice or more.

value

- 163. is_Acyclic: MR \rightarrow Map $\xrightarrow{\sim}$ **Bool**
- 163. $is_Acyclic(mr)(m) \equiv \sim \exists hi: HI, i, j: Nat \{ i, j \} \subseteq inds mr \land i \neq j \Rightarrow mr(i) = hi = mr(j)$
- 163. **pre** $mr \in routes(m)$

14.2.8.2 Direct Routes

- 164. A route, **r**, of a map (from hub **hi** or linkli to hub **hi'** or linkli') is a direct route if **r** is acyclic.
 - 164. direct_route: MR \rightarrow Map $\xrightarrow{\sim}$ **Bool**
 - 164. direct_route(mr) \equiv is_Acyclic(mr)
 - 164. **pre** $mr \in routes(m)$

14.2.8.3 Routes Between Hubs

165. Let there be given two distinct hub identifiers of a route map. Find the set of acyclic routes between them, including zero if no routes.

- 165. find_MR: Map \rightarrow (HI \times HI) $\xrightarrow{\sim}$ MR-set
- 165. find_MR(m)(hi,hi') \equiv
- 165. **let** rs = routes(m) in
- 165. {mr | mr,mr':MR \cdot mr \in rs
- 165. $\wedge mr \in mr = \langle hi \rangle mr' \langle hi' \rangle \wedge is_Acyclic(mr)(m) \}$
- 165. **end**
- 165. **pre**: $\{hi, hi'\} \subseteq dom m$

[©] Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

14.2.9. Special Maps 14.2.9.1 Isolated Hubs

166. A net, $\boldsymbol{\mathsf{n}},$ consists of two or more isolated hubs

(a) if there exists two hub identifiers, hi_1, hi_2 , of the map of the net

(b) such that there is no route from hi_1 to hi_2 .

value

166. are_isolated_hubs: Map \rightarrow **Bool** 166. are_isolated_hubs(m) \equiv 166(a). $\exists hi_1, hi_2: HI \cdot {hi_1, hi_2} \subseteq \text{dom } m \Rightarrow$ 166(b). $\sim \exists mr, mr_i: MR \cdot mr \in routes(m) \Rightarrow mr = \langle hi_1 \rangle \widehat{mr_i} \langle hi_2 \rangle$

14.2.9.2 Isolated Maps

167. If there are isolated hubs in a net then the net can be seen as two or more isolated nets.

value

- 167. are_isolated_nets: Map \rightarrow **Bool**
- 167. are_isolated_nets(m) \equiv are_isolated_hubs(m)

A Precursor for Requirements Engineering

$14.2.9.3 \,\, \text{Sub}_{-}\text{Maps}$

- 168. Given a map one can identify the set of all sub_maps which which contains a given hub identifier.
- 169. Given a map one can identify the sub_map which contains a given hub identifier.

value

- 168. sub_maps: Map \rightarrow Map-set
- 168. $sub_maps(m)$ as ms
- 168. { $xtr_Map(m)(hi) | hi:HI \cdot hi \in dom m$ }

169. sub_Map: Map
$$\rightarrow$$
 HI $\xrightarrow{\sim}$ Map
169. sub_Map(m)(hi) \equiv
169. let his = { hi' | hi':HI \land hi' \in dom m \land find_MRs(m)(hi,hi') \neq {} } in
169. [hi'' \mapsto m(hi'') | hi'' \in his] end

theorem: are_isolated_nets(m) \Rightarrow sub_maps(m) \neq { m }

© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

14.3. Actions 14.3.1. Insert Hub

170. The insert action

- (a) applies to a net and a hub and conditionally yields an updated net.
- (b) The condition is that there must not be a hub in the initial net with the same unique hub identifier as that of the hub to be inserted and
- (c) the hub to be inserted does not initially designate links with which it is to be connected.
- (d) The updated net contains all the hubs of the initial net "plus" the new hub.

(e) and the same links.

- 170. insert_H: $N \to H \xrightarrow{\sim} N$
- 170(a). insert_H(n)(h) as n'
- 170(a). **pre**: $pre_insert_H(n)(h)$
- 170(a). **post**: post_insert_H(n)(h)(n')

170(b). pre_insert_H(n)(h)
$$\equiv$$

170(b). $\sim \exists h': H \cdot h' \in obs_Hs(n) \land uid_H(h) = uid_H(h')$
170(c). $\land mereo_H(h) = \{\}$

170(d). post_insert_H(n)(h)(n')
$$\equiv$$

170(d). obs_Hs(n) \cup {h} = obs_Hs(n')
170(e). \wedge obs_Ls(n) = obs_Ls(n')

14.3.2. Insert Link

171. The insert link action

- (a) is given a "fresh" link,that is, one not in the **net** (before the action)
- (b) but where the two distinct hub identifiers of the mereology of the inserted link are of hubs in the net.
- (c) The **link** is inserted.
- (d) These two hubs
- (e) have their mereologies updated to reflect the new link
- (f) and nothing else;

all other links and hubs of the net are unchanged.

- 171. insert_L: $N \to L \xrightarrow{\sim} N$
- 171. insert_L(n)(l) as n'
- 171. $\exists l:L \cdot pre_insert_L(n)(l) \Rightarrow pre_insert_L(n)(l) \land post_insert_L(n,n')(l)$

171. pre_insert_L: $N \rightarrow L \rightarrow Bool$ 171. pre_insert_L(n)(l) \equiv 171(a). uid_L(l) $\not\in xtr_LIs(n)$ 171(b). $\wedge mereo_L(l) \subseteq xtr_HIs(n)$

```
171. post_insert_L: N \times N \rightarrow L \rightarrow Bool
171. post_insert_L(n,n')(l) \equiv
171(c). obs_Ls(n) \cup \{l\} = obs_Ls(n')
171(d). \wedge let {hi1,hi2} = mereo_L(l) in
171(d). let (h1,h2) = (get_H(n)(hi1),get_H(n)(hi2)),
                (h1',h2') = (get_H(n')(hi1),get_H(n')(hi2)) in
171(d).
171(e). mereo_H(h)\cup{uid_L(l)}=mereo_H(h')
171(f). \land obs_Hs(n) \setminus \{h1, h2\} = obs_Hs(n') \setminus \{h1', h2'\}
171(f). \land [ all other properties of h1 and h2 unchanged ]
171(f). [ that is, same as h1' and h2'
         end end
171.
```

- The insert link post-condition has too many lines.
- For these action function definitions
 such "small" predicates
 amount to building a nicer theory.

14.3.3. **Remove Hub**

172. remove hub

- (a) where a hub, known by its hub identifier, is given,
- (b) where the [to be] **removed hub** is indeed in the net (before the action),
- (c) where the **removed hub**'s **mereology** is empty (that is, the [to be] removed hub) is not connected to any links in the **net** (before the action)).
- (d) All other links and hubs of the net are unchanged.

value

```
172. remove_H: N \rightarrow HI \xrightarrow{\sim} N

172(a). remove_H(n)(hi) as n'

172(b). \exists h:H · uid_H(h)=hi \land h \in obs_Hs(n) \Rightarrow

172(c). pre_remove_H(n)(hi) \land post_remove_H(n,n')(hi)
```

• We leave the definitions of the pre/post conditions of this and the next action function to the listener.

14.3.4. Remove Link

 $173. \ {\rm remove} \ {\rm link}$

- (a) where a link, known by its link identifier, is given,
- (b) where that link is indeed in the net (before the action),
- (c) where hubs to which the link is connected after the action has the only change to their mereologies changed be that they do not list the [to be] removed link.
- (d) All other links and hubs of the net are unchanged.

```
173. remove_L: N \to LI \xrightarrow{\sim} N

173(a). remove_L(n)(li) as n'

173(b). \exists l:L \cdot uid_L(l) = li \land l \in obs\_Ls(n) \Rightarrow

173(c). pre_remove_L(n)(li) \land post_remove_L(n,n')(li)
```