
0

WELCOME

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 0 Domain Science & Engineering

1

Domain Science & Engineering
A Precursor for Requirements Engineering

FM 2012 Tutorial, CNAM, 28 August 2012

Dines Bjørner

DTU Informatics

August 10, 2012: 09:44

A Precursor for Requirements Engineering 1 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

2

Begin of Lecture 1: First Session — Introduction

Domains, TripTych, Issues

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 2 Domain Science & Engineering

3

Tutorial Schedule
• Lectures 1–2 9:00–9:40 + 9:50–10:30

√
1 Introduction Slides 1–35

2 Endurant Entities: Parts Slides 36–114

• Lectures 3–5 11:00–11:15 + 11:20–11:45 + 11:50–12:30

3 Endurant Entities: Materials, States Slides 115–146

4 Perdurant Entities: Actions and Events Slides 147–178

5 Perdurant Entities: Behaviours Slides 179–284

Lunch 12:30–14:00

• Lectures 6–7 14:00–14:40 + 14:50–15:30

6 A Calculus: Analysers, Parts and Materials Slides 285–338

7 A Calculus: Function Signatures and Laws Slides 339–376

• Lecturs 8–9 16:00–16:40 + 16:50–17:30

8 Domain and Interface Requirements Slides 377–423

9 Conclusion: Comparison to Other Work Slides 427–459

Conclusion: What Have We Achieved Slides 424–426 + 460–471

A Precursor for Requirements Engineering 3 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

4

Summary

• This tutorial covers

⋄⋄ a new science & engineering of domains as well as

⋄⋄ a new foundation for software development.

We treat the latter first.

• Instead of commencing with requirements engineering,

⋄⋄ whose pursuit may involve repeated,

⋄⋄ but unstructured forms of domain analysis,

⋄⋄ we propose a predecessor phase of domain engineering.

• That is, we single out domain analysis as an activity to be pursued
prior to requirements engineering.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 4 Domain Science & Engineering

5

• In emphasising domain engineering as a predecessor phase

⋄⋄ we, at the same time, introduce a number of facets

⋄⋄ that are not present, we think,

⋄⋄ in current software engineering studies and practices.

• One facet is the construction of separate domain
descriptions.

⋄⋄ Domain descriptions are void of any reference to requirements

⋄⋄ and encompass the modelling of domain phenomena

⋄⋄ without regard to their being computable.

A Precursor for Requirements Engineering 5 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

6

• Another facet is the pursuit of domain descriptions as a
free-standing activity.

⋄⋄ In this tutorial we emphasize domain description development
need not lead to software development.

⋄⋄ This gives a new meaning to business process engineering,
and should lead to

◦◦ a deeper understanding of a domain

◦◦ and to possible non-IT related business process re-engineering
of areas of that domain.

• In this tutorial we shall investigate

⋄⋄ a method for analysing domains,

⋄⋄ for constructing domain descriptions

⋄⋄ and some emerging scientific bases.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 6 Domain Science & Engineering

7

• Our contribution to domain analysis is that we view domains
as having the following ontology.

⋄⋄ There are the entities that we can describe and then there is
“the rest” which we leave un-described.

⋄⋄ We analyse entities into

◦◦ endurant entities (Slides 52–146) and

◦◦ perdurant entities (Slides 148–279),

that is,

◦◦ parts and materials as endurant entities (Slides 52–136) and

◦◦ discrete actions, discrete events and behaviours as perdurant
entities (Slides 150–279), respectively.

• Another way of looking at entities is as

⋄⋄ discrete entities (Slides 52–114 and 148–244), or as

⋄⋄ continuous entities (Slides 116–136 and Slides 245–279).

A Precursor for Requirements Engineering 7 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

8

• We also contribute to the analysis of discrete endurants in terms of
the following notions:

⋄⋄ part types and material types (Slides 55–73 and Slides 116–136),

⋄⋄ part unique identifiers (Slides 79–81),

⋄⋄ part mereology (Slides 82–97) and

⋄⋄ part attributes and material attributes (Slides 98–109,
Slides 125–129) and

⋄⋄ material laws (Slides 130–135).

• Of the above we point to the introduction, into computing science
and software engineering of the notions of

⋄⋄ materials (Slides 116–136) and

⋄⋄ continuous behaviours (Slides 245–279)

as novel.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 8 Domain Science & Engineering

9
1.

1. Introduction

• I remind You of the abstract,

⋄⋄ Slide 7,

⋄⋄ as for the contributions of this tutorial.

• This is primarily a methodology paper.

• By a method we shall understand

⋄⋄ a set of principles

⋄⋄ for selecting and applying

⋄⋄ a number of techniques and tools

⋄⋄ in order to analyse a problem

⋄⋄ and construct an artefact.

• By methodology we shall understand

⋄⋄ the study and knowledge about methods.

A Precursor for Requirements Engineering 9 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

10 1. Introduction

• This tutorial contributes to

⋄⋄ the study and knowledge

⋄⋄ of software engineering development methods.

• Its contributions are those of suggesting and exploring

⋄⋄ domain engineering and

⋄⋄ domain engineering as a basis for requirements engineering.

• We are not saying

⋄⋄ “thou must develop software this way”,

• but we do suggest

⋄⋄ that since it is possible

⋄⋄ and makes sense to do so

⋄⋄ it may also be wise to do so.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 10 Domain Science & Engineering

111. Introduction 1.1. Domains: Some Definitions

1.1. Domains: Some Definitions

• By a domain we shall here understand

⋄⋄ an area of human activity

⋄⋄ characterised by observable phenomena:

◦◦ entities

∗ whether endurants (manifest parts and materials)

∗ or perdurants (actions, events or behaviours),

◦◦ whether

∗ discrete or

∗ continuous;

◦◦ and of their properties.

A Precursor for Requirements Engineering 11 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

12 1. Introduction 1.1. Domains: Some Definitions

Example: 1 Some Domains. Some examples are:

air traffic,
airport,
banking,
consumer market,
container lines,
fish industry,
health care,

logistics,
manufacturing,
pipelines,
securities trading,
transportation
etcetera.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 12 Domain Science & Engineering

13
1. Introduction 1.1. Domains: Some Definitions1.1.1. Domain Analysis

1.1.1. Domain Analysis

• By domain analysis we shall understand

⋄⋄ an inquiry into the domain,

⋄⋄ its entities

⋄⋄ and their properties.

A Precursor for Requirements Engineering 13 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

14 1. Introduction 1.1. Domains: Some Definitions1.1.1. Domain Analysis

Example: 2 A Container Line Analysis.

We omit enumerating entity properties.

• parts:

⋄⋄ container,

⋄⋄ vessel,

⋄⋄ terminal port, etc.;

• actions:

⋄⋄ container loading,

⋄⋄ container unloading,

⋄⋄ vessel arrival in port, etc.;

• events:

⋄⋄ container falling overboard;

⋄⋄ container afire;

⋄⋄ etc.;

• behaviour:

⋄⋄ vessel voyage,

⋄⋄ across the seas,

⋄⋄ visiting ports, etc.

Length of a container is a container property.
Name of a vessel is a vessel property.
Location of a container terminal port is a port property.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 14 Domain Science & Engineering

151. Introduction 1.1. Domains: Some Definitions1.1.2. Domain Descriptions

1.1.2. Domain Descriptions

• By a domain description we shall understand

⋄⋄ a narrative description

⋄⋄ tightly coupled (say line-number-by-line-number)

⋄⋄ to a formal description.

• To develop a domain description
requires a thorough amount of domain analysis.

A Precursor for Requirements Engineering 15 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

16 1. Introduction 1.1. Domains: Some Definitions1.1.2. Domain Descriptions

Example: 3 A Transport Domain Description.

• Narrative:

⋄⋄ a transport net, n:N,
consists of an aggregation of hubs, hs:HS,
which we “concretise” as a set of hubs, H-set, and
an aggregation of links, ls:LS, that is, a set L-set,

• Formalisation:

type N, HS, LS, Hs = H-set, Ls = L-set, H, L
value

obs HS: N→HS,
obs LS: N→LS.
obs Hs: HS→H-set,
obs Ls: LS→L-set.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 16 Domain Science & Engineering

17
1. Introduction 1.1. Domains: Some Definitions1.1.3. Domain Engineering

1.1.3. Domain Engineering

• By domain engineering we shall understand

⋄⋄ the engineering of a domain description,

⋄⋄ that is,

◦◦ the rigorous construction of domain descriptions, and

◦◦ the further analysis of these, creating theories of domains1, etc.

1Examples of such theories, albeit in rather rough forms, are given in
Appendices B–C.

A Precursor for Requirements Engineering 17 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

18 1. Introduction 1.1. Domains: Some Definitions1.1.3. Domain Engineering

• The size2, structure3 and complexity4 of interesting domain
descriptions is usually such as to put a special emphasis on
engineering:

⋄⋄ the management and organisation of several, typically 5–6
collaborating domain describers,

⋄⋄ the ongoing check of description quality, completeness and
consistency, etcetera.

2usually, say a hundred pages
3usually a finely sectioned document of may subsub· · · subsections
4having many cross-references between subsub· · · subsections

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 18 Domain Science & Engineering

191. Introduction 1.1. Domains: Some Definitions1.1.4. Domain Science

1.1.4. Domain Science

• By domain science we shall understand

⋄⋄ two things:

◦◦ the general study and knowledge of

∗ how to create and handle domain descriptions

∗ (a general theory of domain descriptions)

and

◦◦ the specific study and knowledge of a particular domain.

⋄⋄ The two studies intertwine.

A Precursor for Requirements Engineering 19 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

20
1. Introduction 1.2. The Triptych of Software Development

1.2. The Triptych of Software Development

• We suggest a “dogma”:

⋄⋄ before software can be designed
one must understand5 the requirements; and

⋄⋄ before requirements can be expressed
one must understand6 the domain.

• We can therefore view software development as
ideally proceeding in three (i.e., TripTych) phases:

⋄⋄ an initial phase of domain engineering, followed by

⋄⋄ a phase of requirements engineering, ended by

⋄⋄ a phase of software design.

5Or maybe just: have a reasonably firm grasp of
6See previous footnote!

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 20 Domain Science & Engineering

211. Introduction 1.2. The Triptych of Software Development

• In the domain engineering phase (D)

⋄⋄ a domain is analysed, described and “theorised”,

⋄⋄ that is, the beginnings of a specific domain theory is established.

• In the requirements engineering phase (R)

⋄⋄ a requirements prescription is constructed —

⋄⋄ significant fragments of which are “derived”,

⋄⋄ systematically, from the domain description.

• In the software design phase (S)

⋄⋄ a software design

⋄⋄ is derived, systematically, rigorously or formally,

⋄⋄ from the requirements prescription.

• Finally the Software is proven correct with respect to the
Requirements under assumption of the Domain: D,S |= R.

A Precursor for Requirements Engineering 21 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

22 1. Introduction 1.2. The Triptych of Software Development

• By a machine we shall understand the hardware and software of a
target, i.e., a required IT system.

• In [dines:ugo65:2008,psi2009,Kiev:2010ptI] we indicate how one
can “derive” significant parts of requirements from a suitably
comprehensive domain description – basically as follows.

⋄⋄ Domain projection: from a domain description one projects those
areas that are to be somehow manifested in the software.

⋄⋄ Domain initialisation: for that resulting projected requirements
prescription one initialises a number of part types as well as
action and behaviour definitions, from less abstract to more
concrete, specific types, respectively definitions.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 22 Domain Science & Engineering

231. Introduction 1.2. The Triptych of Software Development

⋄⋄ Domain determination: hand-in-hand with domain initialisation
a[n interleaved] stage of making values of types less
non-deterministic, i.e., more deterministic, can take place.

⋄⋄ Domain extension: Requirements often arise in the context of
new business processes or technologies either placing old or
replacing human processes in the domain. Domain extension is
now the ‘enrichment’ of the domain requirements, so far
developed, with the description of these new business processes
or technologies.

⋄⋄ Etcetera.

• The result of this part of “requirements derivation” is the domain
requirements.

A Precursor for Requirements Engineering 23 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

24 1. Introduction 1.2. The Triptych of Software Development

• A set of domain-to-requirements operators similarly exists for
constructing interface requirements

⋄⋄ from the domain description and,

⋄⋄ independently, also from knowledge of the machine

⋄⋄ for which the required IT system is to be developed.

• We illustrate the techniques of domain requirements and interface
requirements in Sect. 4.

• Finally machine requirements are “derived”

⋄⋄ from just the knowledge of the machine,

⋄⋄ that is,

◦◦ the target hardware and

◦◦ the software system tools for that hardware.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 24 Domain Science & Engineering

251. Introduction 1.2. The Triptych of Software Development

• When you review this section
(‘A Triptych of Software Development’)

⋄⋄ then you will observe how ‘the domain’

⋄⋄ predicates both the requirements

⋄⋄ and the software design.

• For a specific domain one may develop

⋄⋄ many (thus related) requirements

⋄⋄ and from each such (set of) requirements

⋄⋄ one may develop many software designs.

• We may characterise this multitude of domain-predicated
requirements and designs as a product line [dines-maurer].

• You may also characterise domain-specific developments as
representing another ‘definition’ of domain engineering.

A Precursor for Requirements Engineering 25 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

26 1. Introduction 1.3. Issues of Domain Science & Engineering

1.3. Issues of Domain Science & Engineering

• We specifically focus on the following issues of domain science &7

engineering:

⋄⋄ (i) which are the “things” to be described8,

⋄⋄ (ii) how to analyse these “things” into description structures9,

⋄⋄ (iii) how to describe these “things” informally and formally,

⋄⋄ (iv) how to further structure descriptions10, and a further study
of

⋄⋄ (v) mereology11.

7When we put ‘&’ between two terms that the compound term forms a whole concept.
8endurants [manifest entities henceforth called parts and materials] and perdurants

[actions, events, behaviours]
9atomic and composite, unique identifiers, mereology, attributes

10intrinsics, support technology, rules & regulations, organisation & manage-
ment, human behaviour etc.

11the study and knowledge of parts and relations of parts to other parts and a “whole”.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 26 Domain Science & Engineering

271. Introduction 1.4. Structure of Paper

1.4. Structure of Paper

• It is always a good idea to consult and study the table of contents
listing of the colloquium one is listening to. Therefore one is
brought here:

Introduction 9

Domains: Some Definitions . 11

Domain Analysis . 13

Domain Descriptions . 15

Domain Engineering . 17

Domain Science . 19

The Triptych of Software Development . 20

Issues of Domain Science & Engineering . 26

Structure of Paper . 27

A Precursor for Requirements Engineering 27 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

271. Introduction 1.4. Structure of Paper

Domain Entities 37

From Observations to Abstractions 39
Algebras . 40
Phenomena . 41
Entities . 42

A Description Bias . 43
An ‘Upper Ontology’ . 45

A Precursor for Requirements Engineering 27 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

271. Introduction 1.4. Structure of Paper

Endurants 48

General . 49
Discrete and Continuous Endurants 49

Discrete Endurants: Parts 51

Atomic and Composite Parts . 51
Atomic Parts . 54
Composite Parts . 63
Abstract Types, Sorts, and Concrete Types 65

Properties . 70
Unique Identification . 75
Mereology . 78
Attributes . 93

Shared Attributes and Properties . 100
Attribute Naming . 100
Attribute Sharing . 103

Shared Properties . 104
Summary of Discrete Endurants . 105

A Precursor for Requirements Engineering 27 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

271. Introduction 1.4. Structure of Paper

Continuous Endurants: Materials 111

“Somehow Related” Parts and Materials 113
Material Observers . 115
Material Properties . 120
Material Laws of Flows and Leaks . 125

A Final Note on Endurant Properties 132

States 134

General . 134
State Invariants . 137

A Precursor for Requirements Engineering 27 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

271. Introduction 1.4. Structure of Paper

Discrete Perdurants 143

General . 143
Discrete Actions . 145

An Aside on Actions . 147
Action Signatures . 149
Action Definitions . 150

Discrete Events . 161
An Aside on Events . 163
Event Signatures . 164
Event Definitions . 165

A Precursor for Requirements Engineering 27 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

271. Introduction 1.4. Structure of Paper

Discrete Behaviours . 175
What is Meant by ‘Behaviour’ ? 177
Behaviour Narratives . 180
An Aside on Agents, Behaviours and Processes 184
On Behaviour Description Components 186
A Model of Parts and Behaviours 206
Sharing Properties ≡ Mutual Mereologies 215
Behaviour Signatures . 217
Behaviour Definitions . 220

A Precursor for Requirements Engineering 27 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

271. Introduction 1.4. Structure of Paper

Continuous Perdurants 236

Some Examples . 237
Motivation for Consolidated Models 242
Generation of Consolidated Models 246

The Pairing Process . 247
Matching . 249

An Aside on Time . 250
A Research Agenda . 251
Discussion . 252

Discussion of Entities 253

A Precursor for Requirements Engineering 27 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

271. Introduction 1.4. Structure of Paper

Towards a Calculus of Domain Discoverers 258

Introductory Notions . 261
Discovery . 261
Analysis . 264
Domain Indexes . 265
The ℜepository . 271

Domain Analysers . 274
IS MATERIALS BASED . 275
IS ATOM, IS COMPOSITE . 277
HAS A CONCRETE TYPE . 281

A Precursor for Requirements Engineering 27 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

271. Introduction 1.4. Structure of Paper

Domain Discoverers . 283
MATERIAL SORTS . 284
PART SORTS . 286
PART TYPES . 290
UNIQUE ID . 293
MEREOLOGY . 294
ATTRIBUTES . 298
ACTION SIGNATURES . 306
EVENT SIGNATURES . 310
BEHAVIOUR SIGNATURES . 313

Order of Analysis and “Discovery” . 320
Analysis and “Discovery” of “Leftovers” 321

A Precursor for Requirements Engineering 27 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

271. Introduction 1.4. Structure of Paper

Laws of Domain Descriptions . 323
1st Law of Commutativity . 325
2nd Law of Commutativity . 327
3rd Law of Commutativity . 329
1st Law of Stability . 331
2nd Law of Stability . 332
Law of Non-interference . 333

Discussion . 336

A Precursor for Requirements Engineering 27 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

271. Introduction 1.4. Structure of Paper

Requirements Engineering 342

The Transport Domain — a Resumé 343
Nets, Hubs and Links . 343
Mereology . 344

A Requirements “Derivation” . 346
Definition of Requirements . 346
The Machine = Hardware + Software 347
Requirements Prescription . 348
Some Requirements Principles 349
A Decomposition of Requirements Prescription 350
An Aside on Our Example . 351

A Precursor for Requirements Engineering 27 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

271. Introduction 1.4. Structure of Paper

Domain Requirements . 353
Projection . 357
Instantiation . 358
Determination . 363
Extension . 367

Interface Requirements Prescription 372
Shared Parts . 374
Shared Actions . 380
Shared Events . 381
Shared Behaviours . 382

Machine Requirements . 383
Discussion of Requirements “Derivation” 384

A Precursor for Requirements Engineering 27 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

271. Introduction 1.4. Structure of Paper

Conclusion 388

Comparison to Other Work . 390
Ontological Engineering: . 391
Knowledge and Knowledge Engineering: 394
Domain Analysis: . 398
Software Product Line Engineering: 400
Problem Frames: . 402
Domain Specific Software Architectures (DSSA): 405
Domain Driven Design (DDD) . 410
Feature-oriented Domain Analysis (FODA): 412
Unified Modelling Language (UML) 414
Requirements Engineering: . 417
Summary of Comparisons . 420

What Have We Achieved and Future Work 421
General Remarks . 424
Acknowledgements . 431

A Precursor for Requirements Engineering 27 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

271. Introduction 1.4. Structure of Paper

On A Theory of Transport Nets 433

Some Pictures . 434
Parts . 440

Nets, Hubs and Links . 440
Mereology . 441
An Auxiliary Function . 442
Retrieving Hubs and Links . 443
Invariants over Link and Hub States and State Spaces 444
Maps . 448
Routes . 452
Special Routes . 455
Special Maps . 457

Actions . 459
Insert Hub . 459
Insert Link . 461
Remove Hub . 464
Remove Link . 465

A Precursor for Requirements Engineering 27 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

271. Introduction 1.4. Structure of Paper

On A Theory of Container Stowage 466

Some Pictures . 467
Parts . 470

A Basis . 470
Mereological Constraints . 477
Stack Indexes . 478
Stowage Schemas . 487

Actions . 492
Remove Container from Vessel 492
Remove Container from CTP . 495
Stack Container on Vessel . 496
Stack Container in CTP . 497
Transfer Container from Vessel to CTP 498
Transfer Container from CTP to Vessel 499

A Precursor for Requirements Engineering 27 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

271. Introduction 1.4. Structure of Paper

RSL: The Raise Specification Language 500

Type Expressions . 500
Atomic Types . 500
Composite Types . 502

Type Definitions . 505
Concrete Types . 505
Subtypes . 507
Sorts — Abstract Types . 508

The RSL Predicate Calculus . 509
Propositional Expressions . 509
Simple Predicate Expressions . 510
Quantified Expressions . 511

A Precursor for Requirements Engineering 27 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

271. Introduction 1.4. Structure of Paper

Concrete RSL Types: Values and Operations 512
Arithmetic . 512
Set Expressions . 513
Cartesian Expressions . 515
List Expressions . 516
Map Expressions . 518
Set Operations . 520
Cartesian Operations . 525
List Operations . 526
Map Operations . 532

λ-Calculus + Functions . 537
The λ-Calculus Syntax . 537
Free and Bound Variables . 538
Substitution . 539
α-Renaming and β-Reduction . 540
Function Signatures . 541
Function Definitions . 542

A Precursor for Requirements Engineering 27 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

271. Introduction 1.4. Structure of Paper

Other Applicative Expressions . 544
Simple let Expressions . 544
Recursive let Expressions . 545
Predicative let Expressions . 546
Pattern and “Wild Card” let Expressions 547
Conditionals . 548
Operator/Operand Expressions 549

Imperative Constructs . 550
Statements and State Changes 550
Variables and Assignment . 551
Statement Sequences and skip 552
Imperative Conditionals . 553
Iterative Conditionals . 554
Iterative Sequencing . 555

A Precursor for Requirements Engineering 27 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

271. Introduction 1.4. Structure of Paper

Process Constructs . 556
Process Channels . 556
Process Composition . 557
Input/Output Events . 558
Process Definitions . 559

Simple RSL Specifications . 560

• First (Sect. 1) we introduce the problem. And that was done above.

A Precursor for Requirements Engineering 27 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

28 1. Introduction 1.4. Structure of Paper

• Then, in (Sects. 2–10)

⋄⋄ we bring a rather careful analysis of

⋄⋄ the concept of the observable, manifest phenomena

⋄⋄ that we shall refer to as entities.

• We strongly think that these sections of this tutorial

⋄⋄ brings, to our taste, a simple and elegant

⋄⋄ reformulation of what is usually called “data modelling”,

⋄⋄ in this case for domains —

⋄⋄ but with major aspects applicable as well to

⋄⋄ requirements development and software design.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 28 Domain Science & Engineering

291. Introduction 1.4. Structure of Paper

• That analysis focuses on

⋄⋄ endurant entities, also called parts and materials,

◦◦ those that can be observed at no matter what time,

◦◦ i.e., entities of substance or continuant, and

⋄⋄ perdurant entities: action, event and behaviour entities, those

◦◦ that occur,

◦◦ that happen,

◦◦ that, in a sense, are accidents.

A Precursor for Requirements Engineering 29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

30 1. Introduction 1.4. Structure of Paper

• We think that this “decomposition” of the “data analysis”
problem into

⋄⋄ discrete parts and continuous materials,

⋄⋄ atomic and composite parts,

⋄⋄ their unique identifiers and mereology, and

⋄⋄ their attributes

⋄⋄ is novel,

⋄⋄ and differs from past practices in domain analysis.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 30 Domain Science & Engineering

311. Introduction 1.4. Structure of Paper

• In Sect. 11 we suggest

⋄⋄ for each of the entity categories

◦◦ parts,

◦◦ materials,

◦◦ actions,

◦◦ events and

◦◦ behaviours,

⋄⋄ a calculus of meta-functions:

◦◦ analytic functions,

∗ that guide the domain description developer

∗ in the process of selection,

and

◦◦ so-called discovery functions,

∗ that guide that person

∗ in “generating” appropriate domain description texts,
informal and formal.

A Precursor for Requirements Engineering 31 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

32
1. Introduction 1.4. Structure of Paper

• The domain description calculus is to be thought of

⋄⋄ as directives to the domain engineer,

⋄⋄ mental aids that help a team of domain engineers

⋄⋄ to steer it simply through the otherwise daunting task

⋄⋄ of constructing a usually large domain description.

• Think of the calculus

⋄⋄ as directing

⋄⋄ a human calculation

⋄⋄ of domain descriptions.

• Finally the domain description calculus section

⋄⋄ suggests a number of laws that the

⋄⋄ domain description process ought satisfy.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 32 Domain Science & Engineering

331. Introduction 1.4. Structure of Paper

• Finally (Sect. 12) we bring a brief survey of the kind of
requirements engineering

⋄⋄ that one can now pursue based on a reasonably comprehensive
domain description.

⋄⋄ We show how one can systematically, but not automatically

⋄⋄ “derive” significant fragments

◦◦ of requirements prescriptions

◦◦ from domain descriptions.

A Precursor for Requirements Engineering 33 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

34 1. Introduction 1.4. Structure of Paper

• The formal descriptions will here be expressed in the RAISE
[RaiseMethod] Specification Language, RSL.

• We otherwise refer to [TheSEBook1wo].

• Appendix brings a short primer,
mostly on the syntactic aspects of RSL.

• But other model-oriented formal specification languages can be used
with equal success; for example:

⋄⋄ Alloy [alloy],

⋄⋄ Event B [JRAbrial:TheBBooks],

⋄⋄ VDM [e:db:Bj78bwo,e:db:Bj82b,jf-pgl-97] and

⋄⋄ Z [m:z:jd+jcppw96].

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 34 Domain Science & Engineering

35

End of Lecture 1: First Session — Introduction

Domains, TripTych, Issues

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

A Precursor for Requirements Engineering 35 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

35

SHORT BREAK

A Precursor for Requirements Engineering 35 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

35

NICE TO SEE YOU BACK

A Precursor for Requirements Engineering 35 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

36

Begin of Lecture 2: Last Session — Discrete Endurant Entities

Parts

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 36 Domain Science & Engineering

36

Tutorial Schedule
• Lectures 1–2 9:00–9:40 + 9:50–10:30

1 Introduction Slides 1–35
√

2 Endurant Entities: Parts Slides 36–114

• Lectures 3–5 11:00–11:15 + 11:20–11:45 + 11:50–12:30

3 Endurant Entities: Materials, States Slides 115–146

4 Perdurant Entities: Actions and Events Slides 147–178

5 Perdurant Entities: Behaviours Slides 179–284

Lunch 12:30–14:00

• Lectures 6–7 14:00–14:40 + 14:50–15:30

6 A Calculus: Analysers, Parts and Materials Slides 285–338

7 A Calculus: Function Signatures and Laws Slides 339–376

• Lecture 8–9 16:00–16:40 + 16:50–17:30

8 Domain and Interface Requirements Slides 377–423

9 Conclusion: Comparison to Other Work Slides 427–459

Conclusion: What Have We Achieved Slides 424–426 + 460–471

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 36 Domain Science & Engineering

372. Introduction

2. Domain Entities

• The world is divisible into two kinds of people:

⋄⋄ those who divide the population into two kinds of people

⋄⋄ and the others.

• In this tutorial we shall divide the phenomena we can observe and
whose properties we can ascertain into two kinds:

⋄⋄ the endurant entities and

⋄⋄ the perdurant entities.

• Another “division” is of the phenomena and their properties into

⋄⋄ the discrete entities and

⋄⋄ the continuous entities.

• You can have it, i.e., the the analysis and the presentation, either
way.

A Precursor for Requirements Engineering 37 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

38 2. Domain Entities

• By a domain we shall understand a suitably delineated set of
observable entities and abstractions of these, that is, of

⋄⋄ discrete parts and

⋄⋄ continuous materials and,

⋄⋄ discrete actions
(operation applications causing state changes),

⋄⋄ discrete events
(“spurious” state changes not [intentionally] caused by actions),

⋄⋄ discrete discrete behaviours
(seen as sets of sequences of actions, events and behaviours) and

⋄⋄ continuous behaviours
(abstracted as continuous functions in space and/or time).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 38 Domain Science & Engineering

392. Domain Entities 2.1. From Observations to Abstractions

2.1. From Observations to Abstractions

• When we observe a domain we observe instances of entities;

• but when we describe those instances

⋄⋄ (which we shall call values)

⋄⋄ we describe, not the values,

⋄⋄ but their type and properties.

◦◦ Parts and materials have types and values;

◦◦ actions, events and behaviours, all, have types and values,
namely as expressed by their signatures; and

◦◦ actions, events and behaviours have properties,
namely as expressed by their function definitions.

A Precursor for Requirements Engineering 39 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

40 2. Domain Entities 2.2. Algebras

2.2. Algebras

• Algebra: Taking a clue from mathematics, an algebra is considered

⋄⋄ a set of endurants:

◦◦ a set of parts and

◦◦ a set of materials

and

⋄⋄ a set of perdurants: operations on entities.

These operations yield parts or materials.

• With that in mind we shall try view a domain
as an algebra, of some kind, of

⋄⋄ parts and

⋄⋄ actions, events and behaviours.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 40 Domain Science & Engineering

412. Domain Entities 2.3. Domain Phenomena

2.3. Domain Phenomena

• By a domain phenomenon we shall understand

⋄⋄ something that can be observed by the human senses

⋄⋄ or by equipment based on laws of physics and chemistry.

• Those phenomena that can be observed by

⋄⋄ the human eye or

⋄⋄ touched, for example, by human hands,

⋄⋄ we call parts and materials.

• Those phenomena that can be observed of parts and materials

⋄⋄ can usually be measured

⋄⋄ and we call them properties of these parts and those materials.

A Precursor for Requirements Engineering 41 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

42 2. Domain Entities 2.4. Entities

2.4. Entities

• By a domain entity we shall understand

⋄⋄ a manifest domain phenomenon or

⋄⋄ a concept, i.e., an abstraction,

⋄⋄ derived from a domain entity.

• The distinction between

⋄⋄ a manifest domain phenomenon and

⋄⋄ a concept thereof, i.e., a domain concept,

is important.

• Really, what we describe are the domain concepts derived

⋄⋄ from domain phenomena or

⋄⋄ from other domain concepts.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 42 Domain Science & Engineering

432. Domain Entities 2.4. Entities

• Ontologically we distinguish between two kinds of domain entities:

⋄⋄ endurant entities and

⋄⋄ perdurant entities.

• We shall characterise these two terms:

⋄⋄ endurants on Slide 50 and

⋄⋄ perdurants on Slide 148.

• This distinction is supported by current literature on ontology
[BarrySmith1993].

• In this section of this lecture we shall not enter a discourse on

⋄⋄ “things”,

⋄⋄ entities,

⋄⋄ objects,

⋄⋄ etcetera.

A Precursor for Requirements Engineering 43 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

44
2. Domain Entities 2.4. Entities2.4.1. A Description Bias

2.4.1. A Description Bias

• One of several “twists”

⋄⋄ that make the TripTych form of domain engineering

⋄⋄ distinct from that of ontological engineering

⋄⋄ is that we use a model-oriented formal specification approach12

⋄⋄ where usual ontology formalisation languages are variants of
Lisp’s [Lisp1] S-expressions.

⋄⋄ KIF: Knowledge Interchange Format,
http://www.ksl.stanford.edu/knowledge-sharing/kif/

is a leading example.

12RAISE [RaiseMethod]. Our remarks in this section apply equally well had we
instead chosen either of the Alloy [alloy], Event B [JRAbrial:TheBBooks], VDM
[e:db:Bj78bwo,e:db:Bj82b,jf-pgl-97] or Z [m:z:jd+jcppw96] formal specification lan-
guages.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 44 Domain Science & Engineering

452. Domain Entities 2.4. Entities2.4.1. A Description Bias

• The bias is now this:

⋄⋄ The model-oriented languages mentioned in this section all share
the following:

◦◦ (a) a type concept and facilities for defining types, that is:
endurants (parts), and

◦◦ (b) a function concept and facilities for defining functions
(notably including predicates), that is: perdurants (actions
and events).

◦◦ (c) RSL further has constructs for defining processes, which we
shall use to model behaviours.

A Precursor for Requirements Engineering 45 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

46
2. Domain Entities 2.4. Entities2.4.2. An ‘Upper Ontology’

2.4.2. An ‘Upper Ontology’

• By an upper ontology we shall understand

⋄⋄ a relatively small, ground set of ontology expressions

⋄⋄ which form a basis for a usually very much larger set of ontology
expressions.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 46 Domain Science & Engineering

472. Domain Entities 2.4. Entities2.4.2. An ‘Upper Ontology’

• The need for introducing the notion of an upper ontology arose, in
the late 1980s to early 1990s as follows:

⋄⋄ usually an ontology was (is) expressed in some very basic
language, viz., Lisp-like S-expressions13.

⋄⋄ This was necessitated by the desire to be able to share ontologies
between many computing applications worldwide.

⋄⋄ Then it was found that several ontologies shared initial bases in
terms of which the rest of their ontologies were formulated.

⋄⋄ These shared bases were then referred to as upper ontologies —
and a need to “standardise” these arose
[ontology:guarino97a,StaabStuder2004].

13Ontology languages: KIF http://www.ksl.stanford.edu/knowledge-sharing/kif/-
#manual, OWL [Ontology Web Language] [OWL:2009], ISO Common Logic
[ISO:CL:2007]

A Precursor for Requirements Engineering 47 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

48 2. Domain Entities 2.4. Entities2.4.2. An ‘Upper Ontology’

• We therefore consider the following model-oriented specification
language constructs as forming an upper ontology:

⋄⋄ types, ground types, type expressions and type definitions;

⋄⋄ functions, function signatures and function definitions;

⋄⋄ processes, process signatures and process definitions,

as constituting an upper level ontology for TripTych domain
descriptions.

• That is, every domain description is structured with respect to:

⋄⋄ parts and materials using types,

⋄⋄ actions using functions,

⋄⋄ events using predicates,

⋄⋄ discretebehaviours using processes and

⋄⋄ continuous behaviours using partial differentialequations.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 48 Domain Science & Engineering

493. Domain Entities

3. Endurants

• There is sort of a dichotomy buried in our treating endurants
before perdurants. The dichotomy is this:

⋄⋄ one could claim that the perdurants,
i.e., the actions, events and behaviours
is “what it, the domain, is all about”;

• To describe these, however, we need refer to endurants !

A Precursor for Requirements Engineering 49 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

50 3. Endurants 3.1. General

3.1. General
Wikipedia:

• By an endurant (also known as a continuant or a substance) we shall
understand an entity

⋄⋄ that can be observed, i.e., perceived or conceived,

⋄⋄ as a complete concept,

⋄⋄ at no matter which given snapshot of time.

• Were we to freeze time

⋄⋄ we would still be able to observe the entire endurant.

3.2. Discrete and Continuous Endurants

• We distinguish between

⋄⋄ discrete endurants, which we shall call parts, and

⋄⋄ continuous endurants, which we shall call materials.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 50 Domain Science & Engineering

513. Endurants 3.2. Discrete and Continuous Endurants

We motivate and characterise this distinction.

• By a discrete endurant, that is, a part, we shall understand
something which is

⋄⋄ separate or distinct in form or concept,

⋄⋄ consisting of distinct or separate parts.

• By a continuous endurant, that is, a material, we shall understand
something which is

⋄⋄ prolonged without interruption,

⋄⋄ in an unbroken series or pattern.

• We shall

⋄⋄ first treat the idea of discrete endurant, that is, a part
(Slides 52–114),

⋄⋄ then the idea of continuous endurant, that is, a material
(Slides 116–136).

A Precursor for Requirements Engineering 51 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

52 4. Endurants

4. Discrete Endurants: Parts
4.1. What is a Part?̇

• By a part we mean an observable manifest endurant.

4.1.1. Classes of “Same Kind” Parts

• We repeat:

⋄⋄ the domain describer does not describe instances of parts,

⋄⋄ but seeks to describe classes of parts of the same kind.

• Instead of the term ‘same kind’ we shall use either the terms

⋄⋄ part sort or

⋄⋄ part type.

• By a same kind class of parts, that is a part sort or part type we shall mean

⋄⋄ a class all of whose members, i.e., parts,

⋄⋄ enjoy “exactly” the same properties

⋄⋄ where a property is expressed as a proposition.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 52 Domain Science & Engineering

534. Discrete Endurants: Parts 4.1. What is a Part?̇4.1.1. Classes of “Same Kind” Parts

Example: 4 Part Properties.

• Examples of part properties are:

⋄⋄ has unique identity ,

⋄⋄ has mereology ,

⋄⋄ has length,

⋄⋄ has location,

⋄⋄ has traffic movement restriction,

⋄⋄ has position,

⋄⋄ has velocity and

⋄⋄ has acceleration.

A Precursor for Requirements Engineering 53 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

54
4. Discrete Endurants: Parts 4.1. What is a Part?̇4.1.2. Concept Analysis as a Basis for Part Typing

4.1.2. Concept Analysis as a Basis for Part Typing

• The domain analyser examines collections of parts.

⋄⋄ In doing so the domain analyser discovers and thus identifies and lists a
number of properties.

⋄⋄ Each of the parts examined usually satisfies only a subset of these properties.

⋄⋄ The domain analyser now groups parts into collections

◦◦ such that each collection have its parts satisfy the same set of properties,

◦◦ such that no two distinct collections are indexed, as it were, by the same
set of properties, and

◦◦ such that all parts are put in some collection.

⋄⋄ The domain analyser now

◦◦ assigns distinct type names (same as sort names)

◦◦ to distinct collections.

• That is how we assign types to parts.

• We shall return later to a proper treatment of formal concept analysis
[Wille:ConceptualAnalysis1999].

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 54 Domain Science & Engineering

554. Discrete Endurants: Parts 4.2. Atomic and Composite Parts

4.2. Atomic and Composite Parts

• Parts may be analysed into disjoint sets of

⋄⋄ atomic parts and ⋄⋄ composite parts.

• Atomic parts are those which,

⋄⋄ in a given context,

⋄⋄ are deemed not to consist of
meaningful, separately observable proper sub-parts.

• Composite parts are those which,

⋄⋄ in a given context,

⋄⋄ are deemed to indeed consist of
meaningful, separately observable proper sub-parts.

• A sub-part is a part.

A Precursor for Requirements Engineering 55 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

56 4. Discrete Endurants: Parts 4.2. Atomic and Composite Parts

Example: 5 Atomic and/or Composite Parts. To one person a
part may be atomic; to another person the same part may be
composite.

• It is the domain describer who decides the outcome of this aspect
of domain analysis.

⋄⋄ In some domain analysis a ‘person’ may be considered an atomic
part.

◦◦ For the domain of ferrying cars with passengers

◦◦ persons are considered parts.

⋄⋄ In some other domain analysis a ‘person’ may be considered a
composite part.

◦◦ For the domain of medical surgery

◦◦ persons may be considered composite parts.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 56 Domain Science & Engineering

574. Discrete Endurants: Parts 4.2. Atomic and Composite Parts

Example: 6 Container Lines.

• We shall presently consider containers (as used in container line
shipping) to be atomic parts.

• And we shall consider a container vessel to be a composite part
consisting of

⋄⋄ an indexed set of container bays

⋄⋄ where each container bay consists of indexed set of container rows

⋄⋄ where each container row consists of indexed set of container
stacks

⋄⋄ where each container stack consists of a linearly indexed sequence
of containers.

• Thus container vessels, container bays, container rows and
container stacks are composite parts.

A Precursor for Requirements Engineering 57 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

58 4. Discrete Endurants: Parts 4.2. Atomic and Composite Parts4.2.1. Atomic Parts

4.2.1. Atomic Parts

• When we observe

⋄⋄ what we have decided, i.e., analysed, to be an endurant,

⋄⋄ more specifically an atomic part, of a domain,

⋄⋄ we are observing an instance of an atomic part.

• When we describe those instances

⋄⋄ we describe, not their values, i.e., the instances,

⋄⋄ but their

◦◦ type and

◦◦ properties.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 58 Domain Science & Engineering

594. Discrete Endurants: Parts 4.2. Atomic and Composite Parts4.2.1. Atomic Parts

• In this section on endurant entities
we shall unfold what these properties might be.

• But, for now, we focus on the type of the observed atomic part.

• So the situation is that we are observing a number of atomic parts

⋄⋄ and we have furthermore decided that

⋄⋄ they are all of “the same kind”.

A Precursor for Requirements Engineering 59 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

60 4. Discrete Endurants: Parts 4.2. Atomic and Composite Parts4.2.1. Atomic Parts

• What does it mean for a number of atomic parts to be of “the
same kind” ?

⋄⋄ It means

◦◦ that we have decided,

◦◦ for any pair of parts considered of the same kind,

◦◦ that the kinds of properties,

∗ for such two parts,

◦◦ are “the same”,

∗ that is, of the same type, but possibly of different values,

◦◦ and that a number of different, other “facets”,

◦◦ are not taken into consideration.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 60 Domain Science & Engineering

61
4. Discrete Endurants: Parts 4.2. Atomic and Composite Parts4.2.1. Atomic Parts

• That is,

⋄⋄ we abstract a collection of atomic parts

⋄⋄ to be of the same kind,

⋄⋄ thereby “dividing the domain of endurants” into possibly two
distinct sets

◦◦ those that are of the analysed kind, and

◦◦ those that are not.

A Precursor for Requirements Engineering 61 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

62
4. Discrete Endurants: Parts 4.2. Atomic and Composite Parts4.2.1. Atomic Parts

• It is now our description choice to associate with a set of atomic
parts of “the same kind”

⋄⋄ a part type (by suggesting a name for that type, for example, T)

and

⋄⋄ a set of properties (of its values):

◦◦ unique identifier,

◦◦ mereology and

◦◦ attributes.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 62 Domain Science & Engineering

63
4. Discrete Endurants: Parts 4.2. Atomic and Composite Parts4.2.1. Atomic Parts

• Later we shall introduce discrete perdurants
(actions, events and behaviours)
whose signatures involves (possibly amongst others) type T.

• Now we can characterise “of the same kind” atomic part facets14

⋄⋄ being of the same, named part type,

⋄⋄ having the same unique identifier type,

⋄⋄ having the same mereology
(but not necessarily the same mereology values), and

⋄⋄ having the same set of attributes
(but not necessarily of the same attribute values),

• The “same kind” criteria apply equally well to composite part
facets.

14as well as “of the same kind” composite part facets.

A Precursor for Requirements Engineering 63 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

64
4. Discrete Endurants: Parts 4.2. Atomic and Composite Parts4.2.1. Atomic Parts

Example: 7 Transport Nets: Atomic Parts (I).

• The types of atomic transportation net parts are:

⋄⋄ hubs, say of type H, and

⋄⋄ links, say of type L.

• The chosen mereology associates with every hub and link a

⋄⋄ distinct unique identifiers

⋄⋄ (of types HI and LI respectively), and, vice versa,

⋄⋄ how hubs and links are connected:

◦◦ hubs to any number of links and

◦◦ links to exactly two distinct hubs.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 64 Domain Science & Engineering

654. Discrete Endurants: Parts 4.2. Atomic and Composite Parts4.2.1. Atomic Parts

• The chosen attributes of

⋄⋄ hubs include

◦◦ hub location,

◦◦ hub design15,

◦◦ hub traffic state16,

◦◦ hub traffic state space17, etc.;

⋄⋄ and of links include

◦◦ link location,

◦◦ link length,

◦◦ link traffic state18,

◦◦ link traffic state space19, etc.

• With these mereologies and attributes we see that we can consider hubs and
links as different kinds of atomic parts.

15Design: simple crossing, freeway “cloverleaf” interchange, etc.
16A hub traffic state is (for example) a set of pairs of link identifiers where each such pair designates

that traffic can move from the first designated link to the second.
17A hub state space is (for example) the set of all hub traffic states that a hub may range over.
18A link traffic state is (for example) a set of zero to two distinct pairs of the hub identifiers of the

link mereology.
19A link traffic state space is (for example) the set of all link traffic states that a link may range over.

A Precursor for Requirements Engineering 65 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

66
4. Discrete Endurants: Parts 4.2. Atomic and Composite Parts4.2.1. Atomic Parts

Observers for Atomic Parts

• Let the domain describer decide

⋄⋄ that a type, A (or ∆), is atomic,

⋄⋄ hence that it does not consists of sub-parts.

• Hence there are no observer to be associated with A (or ∆).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 66 Domain Science & Engineering

67
4. Discrete Endurants: Parts 4.2. Atomic and Composite Parts4.2.2. Composite Parts

4.2.2. Composite Parts

• The domain describer has chosen to consider

⋄⋄ a part (i.e., a part type)

⋄⋄ to be a composite part (i.e., a composite part type).

• Now the domain describer has to analyse the types of the sub-parts
of the composite part.

⋄⋄ There may be just one “kind of” sub-part of a composite part20,

⋄⋄ or there may be more than one “kind of”21.

• For each such sub-part type

⋄⋄ the domain describer decides on

⋄⋄ an appropriate, distinct type name and

⋄⋄ a sub-part observer (i.e., a function signature).

20that is, only one sub-part type
21that is, more than one sub-part type

A Precursor for Requirements Engineering 67 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

68 4. Discrete Endurants: Parts 4.2. Atomic and Composite Parts4.2.2. Composite Parts

Example: 8 Container Vessels: Composite Parts. We bring
pairs of informal, narrative description texts and formalisations.

• For a container vessel, say of type V, we have

⋄⋄ Narrative:

◦◦ A container vessel, v:V, consists of container bays, bs:BS.

◦◦ A container bay, b:B, consists of container rows, rs:RS.

◦◦ A container row, r:R, consists of container stacks, ss:SS.

◦◦ A container stack, s:S, consists of a linearly indexed sequence of containers.

⋄⋄ Formalisation:

type V,BS, value obs BS: V→BS,
type B,RS, value obs RS: B→RS,
type R,SS, value obs CS: R→SS,
type SS,S, value obs S: SS→S,
type S = C∗.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 68 Domain Science & Engineering

69
4. Discrete Endurants: Parts 4.2. Atomic and Composite Parts4.2.3. Abstract Types, Sorts, and Concrete Types

4.2.3. Abstract Types, Sorts, and Concrete Types

• By an abstract type, or a sort, we shall understand a type

⋄⋄ which has been given a name

⋄⋄ but is otherwise undefined, that is,

◦◦ is a space of undefined mathematical quantities,

∗ where these are given properties

∗ which we may express in terms of axioms over
sort (including property) values.

A Precursor for Requirements Engineering 69 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

70 4. Discrete Endurants: Parts 4.2. Atomic and Composite Parts4.2.3. Abstract Types, Sorts, and Concrete Types

• By a concrete type we shall understand a type, T,

⋄⋄ which has been given both a name
⋄⋄ and a defining type expression of, for example the form

◦◦ T = A-set,

◦◦ T = A-infset,

◦◦ T = A×B×· · ·×C,

◦◦ T = A∗,
◦◦ T = Aω,

◦◦ T = A →m B,

◦◦ T = A→B,

◦◦ T = A
∼→B, or

◦◦ T = A|B|· · · |C.

⋄⋄ where A, B, . . . , C are type names or type expressions.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 70 Domain Science & Engineering

714. Discrete Endurants: Parts 4.2. Atomic and Composite Parts4.2.3. Abstract Types, Sorts, and Concrete Types

Example: 9 Container Bays. We continue Example 8 on page 68.

type Bs = BId →m B,
value obs Bs: BS→Bs,

type Rs = RId →m R,
value obs Rs: B→Rs,

type Ss = SId →m S,
value obs Ss: R→Ss,

type S = C∗.

A Precursor for Requirements Engineering 71 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

72 4. Discrete Endurants: Parts 4.2. Atomic and Composite Parts4.2.3. Abstract Types, Sorts, and Concrete Types

Observers for Composite Parts I/II

• Let the domain describer decide

⋄⋄ that a type, A (or ∆), is composite

⋄⋄ and that it consists of sub-parts of types B, C, . . . , D.

• We can initially consider these types B, C, . . . , D, as abstract types,
or sorts, as we shall mostly call them.

• That means that there are the following formalisations:

⋄⋄ type A, B, C, ..., D;

⋄⋄ value obs B: A→B, obs C: A→C, . . . , obs D: A→D.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 72 Domain Science & Engineering

73
4. Discrete Endurants: Parts 4.2. Atomic and Composite Parts4.2.3. Abstract Types, Sorts, and Concrete Types

Observers for Composite Parts II/II

• We can also consider the types B, C, . . . , D, as concrete types,

⋄⋄ type Bc = TypBex, Cc = TypCex, ..., Dc = TypDex;

⋄⋄ value obs Bc: B→Bc, obs Cc: C→Cc, . . . , obs Dc: D→Dc,

⋄⋄ where TypBex, TypCex, . . . , TypDex are type expressions as, for
example, hinted at above.

• The prefix obs distinguishes part observers

⋄⋄ from mereology observers (uid , mereo) and

⋄⋄ attribute observers (attr).

A Precursor for Requirements Engineering 73 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

74
4. Discrete Endurants: Parts 4.3. Properties

4.3. Properties

• Endurants have properties.

⋄⋄ Properties are

◦◦ what makes up a parts (and materials) and,

◦◦ with property values distinguishes
one part from another part and
one material from another material.

⋄⋄ We name properties.

◦◦ Properties of parts and materials can be given distinct names.

◦◦ We let these names also be the property type name.

◦◦ Hence two parts (materials) of the same part type (material
type)
have the same set of property type names.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 74 Domain Science & Engineering

754. Discrete Endurants: Parts 4.3. Properties

• Properties are all that distinguishes parts (and materials).

⋄⋄ The part types (material types)
in themselves do not express properties.

⋄⋄ They express a class of parts (respectively materials).

⋄⋄ All parts (materials) of the same type

⋄⋄ have the same property types.

⋄⋄ Parts (materials) of the different types
have different sets of property types,

A Precursor for Requirements Engineering 75 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

76 4. Discrete Endurants: Parts 4.3. Properties

• For pragmatic reasons we distinguish between three kinds of
properties:

⋄⋄ unique identifiers, ⋄⋄ mereology, and ⋄⋄ attributes.

• If you “remove” a property from a part

⋄⋄ it “looses” its (former) part type,

⋄⋄ to, in a sense, attain another part type:

◦◦ perhaps of another, existing one,

◦◦ or a new “created” one.

• But we do not know how to model
removal of a property from an endurant value !22

22And we see no need for describing such type-changes. Crude oil does not “morph”
into fuel oil, diesel oil, kerosene and petroleum. Crude oil is consumed and the fractions
result from distillation, for example, in an oil refinery.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 76 Domain Science & Engineering

774. Discrete Endurants: Parts 4.3. Properties

Example: 10 Atomic Part Property Kinds.

• We distinguish between two kinds of persons:

⋄⋄ ‘living persons’ and ‘deceased persons’;

⋄⋄ they could be modelled by two different part types:

◦◦ LP: living person, with a set of properties,

◦◦ DP: deceased person, with a, most likely, different set of
properties.

• All persons have been born, hence have a birth date (static
attributes).

• Only deceased persons have a (well-defined) death date.

A Precursor for Requirements Engineering 77 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

78 4. Discrete Endurants: Parts 4.3. Properties

• All persons also have height and weight profiles
(i.e., with dated values, i.e., dynamic attributes).

• One can always associate a unique identifier with each person.

• Persons are related, family-wise:

⋄⋄ have parents (living or deceased),

⋄⋄ (up to four known) grandparents, etc.,

⋄⋄ may have brothers and sisters (zero or more),

⋄⋄ may have children (zero or more), etc.

⋄⋄ These family-relations can be considered the mereology for living
persons.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 78 Domain Science & Engineering

794. Discrete Endurants: Parts 4.3. Properties4.3.1. Unique Identification

4.3.1. Unique Identification

• We can assume that all parts

⋄⋄ of the same part type

⋄⋄ can be uniquely distinguished,

⋄⋄ hence can be given unique identifications.

A Precursor for Requirements Engineering 79 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

80 4. Discrete Endurants: Parts 4.3. Properties4.3.1. Unique Identification

Unique Identification

• With every part, whether atomic or composite we shall associate a
unique part identifier, of just unique identifier.

• Thus we shall associate with part type T

⋄⋄ the unique part type identifier type TI,

⋄⋄ and a unique part identifier observer function, uid TI: T→TI.

• These associations (TI and uid TI) are, however,

⋄⋄ usually expressed explicitly,

⋄⋄ whether they are (“subsequently”) needed !

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 80 Domain Science & Engineering

81
4. Discrete Endurants: Parts 4.3. Properties4.3.1. Unique Identification

• The unique identifier of a part

⋄⋄ can not be changed;

⋄⋄ hence we can say that

◦◦ no matter what a given part’s property values may take on,

◦◦ that part cannot be confused with any other part.

• Since we can talk about this concept of unique identification,

⋄⋄ we can abstractly describe it —

◦◦ and do not have to bother about any representation,

◦◦ that is, whether we can humanly observe unique identifiers.

A Precursor for Requirements Engineering 81 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

82 4. Discrete Endurants: Parts 4.3. Properties4.3.2. Mereology

4.3.2. Mereology

• Mereology [CasatiVarzi1999]23 (from the Greek µǫρoς ‘part’) is

⋄⋄ the theory of part-hood relations:

⋄⋄ of the relations of part to whole and

⋄⋄ the relations of part to part within a whole.

23Achille Varzi: Mereology, http://plato.stanford.edu/entries/mereology/

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 82 Domain Science & Engineering

834. Discrete Endurants: Parts 4.3. Properties4.3.2. Mereology

• For pragmatic reasons we choose to model the mereology of a
domain in either of two ways

⋄⋄ either by defining a concrete type
as a model of the composite type,

⋄⋄ or by endowing the sub-parts of the composite part with
structures of unique part identifiers.

or by suitable combinations of these.

A Precursor for Requirements Engineering 83 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

84 4. Discrete Endurants: Parts 4.3. Properties4.3.2. Mereology

Example: 11 Container Bays, Etcetera: Mereology. First we
show how to model indexed set of container bays, rows and stacks for
the previous example.

• Narrative:

⋄⋄ (i) An indexed set, bs:BS, of bays is a bijective map
from unique bay identifiers, bid:BId, to bays, b:B.

⋄⋄ (ii) An indexed set, rs:RS, of rows is a bijective map
from unique row identifiers, rid:RId, to rows, r:R.

⋄⋄ (iii) An indexed set, ss:SS, of stacks is a bijective map
from unique stack identifiers, sid:SId, to stacks, s:S.

⋄⋄ (iv) A stack is a linear indexed sequence of containers, c:C.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 84 Domain Science & Engineering

854. Discrete Endurants: Parts 4.3. Properties4.3.2. Mereology

• Formalisation:

⋄⋄ (i) type BS, B, BId,
Bs=BId →m B,

value obs Bs: BS→Bs
(or obs Bs: BS→(BId →m B));

⋄⋄ (ii) type RS, R, RId,
Rs=RId →m R,

value obs Rs: RS→Rs
(or obs Rs: RS→(RId →m R));

⋄⋄ (iii) type SS, S, SId,
Ss=SId →m S;

⋄⋄ (iv) type C,
S=C∗.

A Precursor for Requirements Engineering 85 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

86
4. Discrete Endurants: Parts 4.3. Properties4.3.2. Mereology

Example: 12 Transport Nets: Mereology.

• We show how to model a mereology

⋄⋄ for a transport net of links and hubs.

• Narrative:

(i) Hubs and links are endowed with unique hub, respectively link
identifiers.

(ii) Each hub is furthermore endowed with a hub mereology which
lists the unique link identifiers of all the links attached to the
hub.

(iii) Each link is furthermore endowed with a link mereology which
lists the set of the two unique hub identifiers of the hubs
attached to the link.

(iv) Link identifiers of hubs and hub identifiers of links must
designate hubs, respectively links of the net.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 86 Domain Science & Engineering

874. Discrete Endurants: Parts 4.3. Properties4.3.2. Mereology

• Formalisation:

(i) type H, HI, L, LI;

value

(ii) uid HI:H→HI, uid LI:L→LI,

mereo H:H→LI-set, mereo L:L→HI-set,

axiom

(iii) ∀ l:L • card mereo L(l) = 2
(iv) ∀ n:N, l:L, h:H • l ∈ obs Ls(obs LS(n)) ∧ h ∈ obs Hs(obs HS(n))

∀ hi:HI • hi ∈ mereo L(l) ⇒
∃ h′:H•h′ ∈ obs Hs(obs HS(n)) ∧ uid HI(h)=hi

∧ ∀ li:LI • li ∈ mereo H(h) ⇒
∃ l′:L•l′ ∈ obs Ls(obs LS(n)) ∧ uid LI(l)=li

A Precursor for Requirements Engineering 87 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

88
4. Discrete Endurants: Parts 4.3. Properties4.3.2. Mereology

Concrete Models of Mereology
The concrete mereology example models above illustrated maps and sequences as
such models.

• In general we can model mereologies in terms of

⋄⋄ (i) sets: A-set,

⋄⋄ (ii) Cartesians: A1×A2×...×Am,

⋄⋄ (iii) lists: A∗, and

⋄⋄ (iv) maps: A →m B,

where A, A1, A2,...,Am and B are types [we assume that they are type names] and
where the A1, A2,...,Am type names need not be distinct.

• Additional concrete types, say D, can be defined by concrete type definitions,
D=E, where E is either of the type expressions (i–iv) given above or (v) Ei|Ej, or
(vi) (Ei). where Ek (for suitable k) are either of (i–vi).

• Finally it may be necessary to express well-formedness predicates for concretely
modelled mereologies.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 88 Domain Science & Engineering

89
4. Discrete Endurants: Parts 4.3. Properties4.3.2. Mereology

Abstract Models of Mereology
Abstractly modelling mereology of parts, to us, means the following.

• With part types P1, P2, . . . , Pn

⋄⋄ is associated the unique part identifier types, Π1, Π2, . . . , Πn,

⋄⋄ that is uid Πi: Pi→Πi for i ∈ {1..n},
• and with each part type, Pi,

⋄⋄ is then associated a mereology observer,

⋄⋄ mereo Pi: Pi → Πj-set×Πk-set×...×Πℓ-set,

• such that for all p:Pi we have that

⋄⋄ if mereo Pi(p) = ({..., πja, ...},{..., πkb
, ...},...,{..., πℓc, ...})

⋄⋄ for i, j, k, ...ℓ ∈ {1..n}
⋄⋄ then part p:Pi is connected (related) to the parts identified by

..., πja, ... πkb
, ..., πℓc,

• Finally it may be necessary to express axioms for abstractly modelled mereologies.

A Precursor for Requirements Engineering 89 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

90
4. Discrete Endurants: Parts 4.3. Properties4.3.2. Mereology

• How parts are related to other parts

⋄⋄ is really a modelling choice, made by the domain describer.

⋄⋄ It is not necessarily something
that is obvious
from observing the parts.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 90 Domain Science & Engineering

914. Discrete Endurants: Parts 4.3. Properties4.3.2. Mereology

Example: 13 Pipelines: A Physical Mereology.

• Let pipes of a pipe line be composed with valves, pumps, forks and
joins of that pipe line.

• Pipes, valves, pumps, forks and joins (i.e., pipe line units) are given
unique pipe, valve, pump, fork and join identifiers.

• A mereology for the pipe line could now endow pipes, valves and
pumps with

⋄⋄ one input unique identifier, that of the predecessor successor
unit, and

⋄⋄ one output unique identifier, that of the successor unit.

• Forks would then be endowed with

⋄⋄ two input unique identifiers, and

⋄⋄ one out put unique identifier;

• and joins “the other way around”.

A Precursor for Requirements Engineering 91 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

92 4. Discrete Endurants: Parts 4.3. Properties4.3.2. Mereology

Example: 14 Documents: A Conceptual Mereology.

• The mereology of, for example, this document,

⋄⋄ that is, of the tutorial slides,

is determined by the author.

• There unfolds, while writing the document,

⋄⋄ a set of unique identifiers

⋄⋄ for section, subsection, sub-subsection, paragraph, etc., units.
and

⋄⋄ between texts of a “paper version” of the document
and slides of a “slides version” of the document.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 92 Domain Science & Engineering

93
4. Discrete Endurants: Parts 4.3. Properties4.3.2. Mereology

• This occurs as the author necessarily

⋄⋄ inserts cross-references,

◦◦ in unit texts to other units, and

◦◦ from unit texts to other documents (i.e., ‘citations’);

⋄⋄ and while inserting “page” shifts for the slides.

• From those inserted references
there emerges what we could call the document mereology.

• So the determination of a, or the, mereology of composite parts

⋄⋄ is either given by physical considerations,

⋄⋄ or are given by (more-or-less) logical (or other) considerations,

⋄⋄ or by combinations of these.

• The “design” of mereologies improves with experience.

A Precursor for Requirements Engineering 93 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

94 4. Discrete Endurants: Parts 4.3. Properties4.3.2. Mereology

Example: 15 Pipelines: Mereology.

• We divert from our line of examples centered around

⋄⋄ transport nets and, to some degree,

⋄⋄ container transport,

• to bring a second, in a series of examples

⋄⋄ on pipelines

⋄⋄ (for liquid or gaseous material flow).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 94 Domain Science & Engineering

954. Discrete Endurants: Parts 4.3. Properties4.3.2. Mereology

1. A pipeline consists of connected units, u:U.

2. Units have unique identifiers.

3. And units have mereologies, ui:UI:

(a) pump, pu:Pu, pipe, pi:Pi, and valve, va:Va, units have one input
connector and one output connector;

(b) fork, fo:Fo, [join, jo:Jo] units have one [two] input connector[s]
and two [one] output connector[s];

(c) well, we:We, [sink, si:Si] units have zero [one] input connector
and one [zero] output connector.

(d) Connectors of a unit are designated by the unit identifier of the
connected unit.

(e) The auxiliary sel UIs in selector funtion selects the unique
identifiers of pipeline units providing input to a unit;

(f) sel UIs out selects unique identifiers of output recipients.

A Precursor for Requirements Engineering 95 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

96 4. Discrete Endurants: Parts 4.3. Properties4.3.2. Mereology

type

1. U = Pu | Pi | Va | Fo | Jo | Si | We
2. UI
value

2. uid U: U → UI
3. mereo U: U → UI-set × UI-set
3. wf mereo U: U → Bool

3. wf mereo U(u) ≡
3(a). is (Pu|Pi|Va)(u) → card iusi = 1 = card ouis,
3(b). is Fo(u) → card iuis = 1 ∧ card ouis = 2,
3(b). is Jo(u) → card iuis = 2 ∧ card ouis = 1,
3(c). is We(u) → card iuis = 0 ∧ card ouis = 1,
3(d). is Si(u) → card iuis = 1 ∧ card ouis = 0

3(e). sel UIs in
3(e). sel UIs in(u) ≡ let (iuis,)=mereo U(u) in iuis end

3(f). sel out: U → UI-set
3(f). sel UIs out(u) ≡ let (,ouis)=mereo U(u) in ouis end

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 96 Domain Science & Engineering

974. Discrete Endurants: Parts 4.3. Properties4.3.2. Mereology

• We omit treatment of axioms for pipeline units

⋄⋄ being indeed connected to existing other pipeline units.

⋄⋄ We refer to Example 23 on page 123 and 24 on page 127.

A Precursor for Requirements Engineering 97 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

98 4. Discrete Endurants: Parts 4.3. Properties4.3.3. Attributes

4.3.3. Attributes

• By an attribute of a part, p:P, we shall understand

⋄⋄ some observable property, some phenomenon,

⋄⋄ that is not a sub-part of p

⋄⋄ but which characterises p

⋄⋄ such that all parts of type P have that attribute and

⋄⋄ such that “removing” that attribute from p
(if such was possible)
“renders” the type of p undefined.

• We ascribe types to attributes — not, therefore, to be confused
with types of (their) parts.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 98 Domain Science & Engineering

994. Discrete Endurants: Parts 4.3. Properties4.3.3. Attributes

Example: 16 Attributes.

• Example attributes of links of a transport net are:

⋄⋄ length LEN,

⋄⋄ location LOC,

⋄⋄ state LΣ and

⋄⋄ state space LΩ,

• Example attributes of a person could be:

⋄⋄ name NAM,

⋄⋄ birth date BID,

⋄⋄ gender GDR,

⋄⋄ weight WGT,

⋄⋄ height HGT and

⋄⋄ address ADR.

A Precursor for Requirements Engineering 99 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

100
4. Discrete Endurants: Parts 4.3. Properties4.3.3. Attributes

• Example attributes of a transport net could be:

⋄⋄ name of the net,

⋄⋄ legal owner of the net,

⋄⋄ a map of the net,

⋄⋄ etc.

• Example attributes of a container vessel could be:

⋄⋄ name of container vessel,

⋄⋄ vessel dimensions,

⋄⋄ vessel tonnage (TEU),

⋄⋄ vessel owner,

⋄⋄ current stowage plan,

⋄⋄ current voyage plan, etc.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 100 Domain Science & Engineering

1014. Discrete Endurants: Parts 4.3. Properties4.3.3. Attributes4.3.3.1. Static and Dynamic Attributes

4.3.3.1 Static and Dynamic Attributes

• By a static attribute we mean an attribute (of a part) whose value
remains fixed.

• By a dynamic attribute we mean an attribute (of a part) whose
value may vary.

A Precursor for Requirements Engineering 101 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

102 4. Discrete Endurants: Parts 4.3. Properties4.3.3. Attributes4.3.3.1. Static and Dynamic Attributes

Example: 17 Static and Dynamic Attributes.

• The length and location attributes of links are static.

• The state and state space attributes of links and hubs are dynamic.

• The birth-date attribute of a person is considered static.

• The height and weight attributes of a person are dynamic.

• The map of a transport net may be considered dynamic.

• The current stowage and the current voyage plans of a vessel
should be considered dynamic.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 102 Domain Science & Engineering

1034. Discrete Endurants: Parts 4.3. Properties4.3.3. Attributes4.3.3.1. Static and Dynamic Attributes

Attribute Types and Observers, I/II

• Let the domain describer decide that parts of type P

• have attributes of types A1, A2, ..., At.

• This means that the following two formal clauses arise:

⋄⋄ P, A1, A2, ..., At and

⋄⋄ attr A1:P→A1, attr A2:P→A2, ..., attr At:P→At

A Precursor for Requirements Engineering 103 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

104
4. Discrete Endurants: Parts 4.3. Properties4.3.3. Attributes4.3.3.1. Static and Dynamic Attributes

Attribute Types and Observers, II/II

• We may wish to annotate the list of attribute type names as to
whether they are static or dynamic, that is,

⋄⋄ whether values of some attribute type

⋄⋄ vary or

⋄⋄ remain fixed.

• The prefix attr distinguishes attribute observers
from part observers (obs) and mereology observers (uid , mereo).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 104 Domain Science & Engineering

105
4. Discrete Endurants: Parts 4.4. Shared Attributes and Properties

4.4. Shared Attributes and Properties

• Shared attributes and shared properties

⋄⋄ play an important rôle in understanding domains.

4.4.1. Attribute Naming

• We now impose a restriction on the naming of part attributes.

⋄⋄ If attributes

◦◦ of two different parts

◦◦ of different part types

◦◦ are identically named

◦◦ then attributes must be somehow related, over time !

⋄⋄ The “somehow” relationship must be described.

A Precursor for Requirements Engineering 105 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

106 4. Discrete Endurants: Parts 4.4. Shared Attributes and Properties4.4.1. Attribute Naming

Example: 18 Shared Bus Time Tables.

• Let our domain include that of bus time tables for busses on a
bus transport net as described in many examples in this tutorial.

• We can then imagine a bus transport net as containing the
following parts:

⋄⋄ a net, ⋄⋄ a management
system,

⋄⋄ a set of busses.

• For the sake of argument we consider a bus time table to be an
attribute of the bus management system.

• And we also consider bus time tables to be attributes of busses.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 106 Domain Science & Engineering

107
4. Discrete Endurants: Parts 4.4. Shared Attributes and Properties4.4.1. Attribute Naming

• We think of the bus time table of a bus

⋄⋄ to be that subset of the
bus management system bus time table

⋄⋄ which corresponds to the bus’ line number.

• By saying that bus time tables

⋄⋄ “corresponds” to well-defined subsets of

⋄⋄ the bus management system bus time table

we mean the following

⋄⋄ The value of the bus bus time table

⋄⋄ must at every time

⋄⋄ be equal to the corresponding bus line entry in the
bus management system bus time table.

A Precursor for Requirements Engineering 107 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

108 4. Discrete Endurants: Parts 4.4. Shared Attributes and Properties4.4.2. Attribute Sharing

4.4.2. Attribute Sharing

• We say that two parts,

⋄⋄ of no matter what part type,

⋄⋄ share an attribute,

⋄⋄ if the following is the case:

◦◦ the corresponding part types (and hence the parts)

◦◦ have identically named attributes.

◦◦ We say that identically named attributes designate
shared attributes.

⋄⋄ We do not present the corresponding invariants
over parts with identically named attributes.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 108 Domain Science & Engineering

1094. Discrete Endurants: Parts 4.5. Shared Properties

4.5. Shared Properties

• We say that two parts,

⋄⋄ of no matter what part type,

⋄⋄ share a property,

⋄⋄ if either of the following is the case:

◦◦ (i) either the corresponding part types (and hence the parts)
have shared attributes;

◦◦ (ii) or the unique identifier type of one of the parts
potentially is in the mereology type of the other part;

◦◦ (iii) or both.

⋄⋄ We do not present the corresponding invariants over parts with
shared properties.

A Precursor for Requirements Engineering 109 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

110 4. Discrete Endurants: Parts 4.6. Summary of Discrete Endurants

4.6. Summary of Discrete Endurants

• We have introduced the endurant notions of atomic parts and
composite parts:

⋄⋄ part types,

⋄⋄ part observers (obs),

◦◦ sort observers, and

◦◦ concrete type observers;

⋄⋄ part properties:

◦◦ unique identifiers:

∗ unique part identifier
observers (uid),

∗ unique part identifier
types,

◦◦ mereology:

∗ part mereologies,

∗ part mereology observers
(mereo);

and

◦◦ attributes:

∗ attribute observers (attr)
and

∗ attribute types.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 110 Domain Science & Engineering

111
4. Discrete Endurants: Parts 4.6. Summary of Discrete Endurants

• The unique identifier property cannot necessarily be observed:

⋄⋄ it is an abstract concept and

⋄⋄ can be objectively “assigned”.

That is: unique identifiers are not required to be manifest.

• The mereology property also cannot usually be observed:

⋄⋄ it is also an abstract concept,

⋄⋄ but can be deduced from careful analysis.

That is: mereology is not required to be manifest.

• The attributes can be observed:

⋄⋄ usually by simple physical measurements,

⋄⋄ or by deduction from (conceptual) facts,

That is: attributes are usually only “indirectly” manifest.

A Precursor for Requirements Engineering 111 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

112 4. Discrete Endurants: Parts 4.6. Summary of Discrete Endurants

Discrete Endurant Modelling I/II
Faced with a phenomenon the domain analyser has to decide

• whether that phenomenon is an entity or not, that is, whether

⋄⋄ an endurant or

⋄⋄ a perdurant or

⋄⋄ neither.

• If endurant and if discrete, then whether it is

⋄⋄ an atomic part or

⋄⋄ a composite part.

• Then the domain analyser must decide on its type,

⋄⋄ whether an abstract type (a sort)

⋄⋄ or a concrete type, and, if so, which concrete form.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 112 Domain Science & Engineering

113
4. Discrete Endurants: Parts 4.6. Summary of Discrete Endurants

Discrete Endurant Modelling II/II

• Next the unique identifier and the
mereology of the part type (e.g., P) must be dealt with:

⋄⋄ type name (e.g., PI) for and, hence, unique identifier observer name
(uid PI) of unique identifiers and the

⋄⋄ part mereology types and mereology observer name (mereo P).

• Finally the designer must decide on the
part type attributes for parts p:P:

⋄⋄ for each such a suitable attribute type name,
for example, Ai for suitable i,

⋄⋄ a corresponding attribute observer signature, attr Ai:P→Ai,

⋄⋄ and whether an attribute is considered static or dynamic.

A Precursor for Requirements Engineering 113 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

114

End of Lecture 2: Last Session — Discrete Endurant Entities

Parts

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 114 Domain Science & Engineering

114

LONG BREAK

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 114 Domain Science & Engineering

114

WELCOME BACK

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 114 Domain Science & Engineering

115

Begin of Lecture 3: First Session — Continuous Endurants

Materials, States

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

A Precursor for Requirements Engineering 115 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

115

Tutorial Schedule
• Lectures 1–2 9:00–9:40 + 9:50–10:30

1 Introduction Slides 1–35

2 Endurant Entities: Parts Slides 36–114

• Lectures 3–5 11:00–11:15 + 11:20–11:45 + 11:50–12:30
√

3 Endurant Entities: Materials, States Slides 115–146

4 Perdurant Entities: Actions and Events Slides 147–178

5 Perdurant Entities: Behaviours Slides 179–284

Lunch 12:30–14:00

• Lectures 6–7 14:00–14:40 + 14:50–15:30

6 A Calculus: Analysers, Parts and Materials Slides 285–338

7 A Calculus: Function Signatures and Laws Slides 339–376

• Lectures 8–9 16:00–16:40 + 16:50–17:30

8 Domain and Interface Requirements Slides 377–423

9 Conclusion: Comparison to Other Work Slides 427–459

Conclusion: What Have We Achieved Slides 424–426 + 460–471

A Precursor for Requirements Engineering 115 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

116 5. Discrete Endurants: Parts

5. Continuous Endurants: Materials

• Let us start with examples of materials.

Example: 19 Materials. Examples of endurant continuous
entities are such as

• coal,

• air,

• natural gas,

• grain,

• sand,

• iron ore,

• minerals,

• crude oil,

• solid waste,

• sewage,

• steam and

• water.

The above materials are either

• liquid materials (crude oil, sewage, water),

• gaseous materials (air, gas, steam), or

• granular materials (coal, grain, sand, iron ore, mineral, or solid
waste).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 116 Domain Science & Engineering

1175. Continuous Endurants: Materials

• Endurant continuous entities, or materials as we shall call them,

⋄⋄ are the core endurants of process domains,

⋄⋄ that is, domains in which those materials
form the basis for their “raison d’être”.

Example: 20 Material Processing.

• Oil or gas materials are ubiquitous to pipeline systems.

• Sewage is ubiquitous to, well, sewage systems.

• Water is ubiquitous to systems composed from reservoirs, tunnels
and aqueducts which again are ubiquitous to hydro-electric power
plants or irrigation systems.

A Precursor for Requirements Engineering 117 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

118 5. Continuous Endurants: Materials

• Ubiquitous means ‘everywhere’.

• A continuous entity, that is, a material

⋄⋄ is a core material,

⋄⋄ if it is “somehow related”

⋄⋄ to one or more parts of a domain.

5.1. “Somehow Related” Parts and Materials

• We explain our use of the term “somehow related”.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 118 Domain Science & Engineering

1195. Continuous Endurants: Materials 5.1. “Somehow Related” Parts and Materials

Example: 21 “Somehow Related” Parts and Materials.

• Oil is pumped from wells, runs through pipes, is “lifted” by pumps,
diverted by forks, “runs together” by means of joins, and is
delivered to sinks – and is hence a core endurant.

• Grain is delivered to silos by trucks, piped through a network of
pipes, forks and valves to vessels, etc. – and is hence a core
endurant.

• Gravel, minerals (including) iron ore is mined, conveyed by belts to
lorries or trains or cargo vessels and finally deposited. For minerals
typically in mineral processing plants – and is hence a core
endurant.

• Iron ore, for example, is conveyed into smelters, roasted, reduced
and fluxed, mixed with other mineral ores to produced a molten,
pure metal, which is then “collected” into ingots, etc. – and is
hence a core endurant

A Precursor for Requirements Engineering 119 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

120
5. Continuous Endurants: Materials 5.2. Material Observers

5.2. Material Observers

• When analysing domains a key question,

⋄⋄ in view of the above notion of core continuous endurants
(i.e., materials)

is therefore:

⋄⋄ does the domain embody a notion of core continuous endurants
(i.e., materials);

⋄⋄ if so, then identify these “early on” in the domain analysis.

• Identifying materials —

⋄⋄ their types and

⋄⋄ attributes —

is slightly different from identifying discrete endurants, i.e., parts.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 120 Domain Science & Engineering

1215. Continuous Endurants: Materials 5.2. Material Observers

Example: 22 Pipelines: Core Continuous Endurant.

• The core continuous endurant, i.e., material,

• of (say oil) pipelines is, yes, oil:

type

O material

value

obs Materials: PLS → O

• The keyword material is a pragmatic.

• Materials are “few and far between” as compared to parts,

⋄⋄ we choose to mark the type definitions which designate materials
with the keyword material.

⋄⋄ In contrast, we do not mark the type definitions which designate
parts with the keyword discrete.

A Precursor for Requirements Engineering 121 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

122 5. Continuous Endurants: Materials 5.2. Material Observers

• First we do not associate the notion of atomicity or composition
with a material. Materials are continuous.

• Second, amongst the attributes, none have to do with geographic
(or cadestral) matters. Materials are moved.

• And materials have no unique identification or mereology. No
“part” of a material distinguishes it from other “parts”.

• But they do have other attributes when occurring in connection
with, that is, related to parts, for example,

⋄⋄ volume or

⋄⋄ weight.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 122 Domain Science & Engineering

1235. Continuous Endurants: Materials 5.2. Material Observers

Example: 23 Pipelines: Parts and Materials. We refer to
Example 15 on page 94.

4. From an oil pipeline system one can, amongst others,

(a) observe the finite set of all its pipeline bodies,

(b) units are composite and consists of a unit,

(c) and the oil, even if presently, at time of observation, empty of oil.

5. Whether the pipeline is an oil or a gas pipeline is an attribute of
the pipeline system.

(a) The volume of material that can be contained in a unit is an
attribute of that unit.

(b) There is an auxiliary function which estimates the volume of a
given “amount” of oil.

(c) The observed oil of a unit must be less than or equal to the
volume that can be contained by the unit.

A Precursor for Requirements Engineering 123 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

124 5. Continuous Endurants: Materials 5.2. Material Observers

type

4. PLS, B, U, O, Vol
value

4(a). obs Bs: PLS → B-set

4(b). obs U: B → U
4(c). obs O: B → O
5. attr PLS Type: PLS → {”oil”|”gas”}
5(a). attr Vol: U → Vol
5(b). vol: O → Vol
axiom

5(c). ∀ pls:PLS,b:B•b ∈ obs Bs(pls)⇒vol(obs O(b))≤attr Vol(obs U(b))

• Notice how bodies are composite and consists of

⋄⋄ a discrete, atomic part, the unit, and

⋄⋄ a material endurant, the oil.

• We refer to Example 24 on page 127.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 124 Domain Science & Engineering

125
5. Continuous Endurants: Materials 5.3. Material Properties

5.3. Material Properties

• These are some of the key concerns in domains focused on
materials:

⋄⋄ transport, flows, leaks and losses, and

⋄⋄ input to systems and output from systems,

• Other concerns are in the direction of

⋄⋄ dynamic behaviours of materials focused domains
(mining and production), including

⋄⋄ stability, periodicity, bifurcation and ergodicity.

• In this tutorial we shall, when dealing with systems focused on
materials, concentrate on modelling techniques for

⋄⋄ transport, flows, leaks and losses, and

⋄⋄ input to systems and output from systems.

A Precursor for Requirements Engineering 125 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

126 5. Continuous Endurants: Materials 5.3. Material Properties

• Formal specification languages like

⋄⋄ Alloy [alloy],

⋄⋄ Event B [JRAbrial:TheBBooks],

⋄⋄ CASL [CoFI:2004:CASL-RM]

⋄⋄ CafeOBJ [futatsugi2000a],

⋄⋄ RAISE [RaiseMethod],

⋄⋄ VDM

[e:db:Bj78bwo,e:db:Bj82b,jf-pgl-97]
and

⋄⋄ Z [m:z:jd+jcppw96]

do not embody the mathematical calculus notions of

⋄⋄ continuity, hence do not “exhibit”

⋄⋄ neither differential equations

⋄⋄ nor integrals.

• Hence cannot formalise dynamic systems within these
formal specification languages.

• We refer to Sect. 9 where we discuss these issues at some length.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 126 Domain Science & Engineering

1275. Continuous Endurants: Materials 5.3. Material Properties

Example: 24 Pipelines: Parts and Material Properties. We refer to
Examples 15 on page 94 and 23 on page 123.

6. Properties of pipeline units additionally include such which are concerned with
flows (F) and leaks (L) of materials:

(a) current flow of material into a unit input connector,

(b) maximum flow of material into a unit input connector while maintaining
laminar flow,

(c) current flow of material out of a unit output connector,

(d) maximum flow of material out of a unit output connector while maintaining
laminar flow,

(e) current leak of material at a unit input connector,

(f) maximum guaranteed leak of material at a unit input connector,

(g) current leak of material at a unit input connector,

(h) maximum guaranteed leak of material at a unit input connector,

(i) current leak of material from “within” a unit,

(j) maximum guaranteed leak of material from “within” a unit.

A Precursor for Requirements Engineering 127 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

128 5. Continuous Endurants: Materials 5.3. Material Properties

type

6. F, L

value

6(a). attr cur iF: U → UI → F
6(b). attr max iF: U → UI → F
6(c). attr cur oF: U → UI → F
6(d). attr max oF: U → UI → F
6(e). attr cur iL: U → UI → L
6(f). attr max iL: U → UI → L
6(g). attr cur oL: U → UI → L
6(h). attr max oL: U → UI → L
6(i). attr cur L: U → L
6(j). attr max L: U → L

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 128 Domain Science & Engineering

1295. Continuous Endurants: Materials 5.3. Material Properties

• The maximum flow attributes are static attributes
and are typically provided by the manufacturer
as indicators of flows below which laminar flow can be expected.

• The current flow attributes as dynamic attributes.

7. Properties of pipeline materials may additionally include

(a) kind of material24,

(b) paraffins,

(c) naphtenes,

(d) aromatics,

(e) asphatics,

(f) viscosity,

(g) etcetera.

• We leave it to the student to provide the formalisations.

24For example Brent Blend Crude Oil

A Precursor for Requirements Engineering 129 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

130 5. Continuous Endurants: Materials 5.4. Material Laws of Flows and Leaks

5.4. Material Laws of Flows and Leaks

• It may be difficult or costly, or both

⋄⋄ to ascertain flows and leaks in materials-based domains.

⋄⋄ But one can certainly speak of these concepts.

⋄⋄ This casts new light on domain modelling.

⋄⋄ That is in contrast to

◦◦ incorporating such notions of flows and leaks

◦◦ in requirements modelling

⋄⋄ where one has to show implementability.

• Modelling flows and leaks is important to the modelling of
materials-based domains.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 130 Domain Science & Engineering

131
5. Continuous Endurants: Materials 5.4. Material Laws of Flows and Leaks

Example: 25 Pipelines: Intra Unit Flow and Leak Law.

8. For every unit of a pipeline system, except the well and the sink
units, the following law apply.

9. The flows into a unit equal

(a) the leak at the inputs

(b) plus the leak within the unit

(c) plus the flows out of the unit

(d) plus the leaks at the outputs.

A Precursor for Requirements Engineering 131 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

132 5. Continuous Endurants: Materials 5.4. Material Laws of Flows and Leaks

axiom

8. ∀ pls:PLS,b:B\We\Si,u:U •

8. b ∈ obs Bs(pls)∧u=obs U(b)⇒
8. let (iuis,ouis) = mereo U(u) in

9. sum cur iF(iuis)(u) =
9(a). sum cur iL(iuis)(u)
9(b). ⊕ attr cur L(u)
9(c). ⊕ sum cur oF(ouis)(u)
9(d). ⊕ sum cur oL(ouis)(u)
8. end

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 132 Domain Science & Engineering

1335. Continuous Endurants: Materials 5.4. Material Laws of Flows and Leaks

10. The sum cur iF (cf. Item 9) sums current input flows over all input connectors.

11. The sum cur iL (cf. Item 9(a)) sums current input leaks over all input connectors.

12. The sum cur oF (cf. Item 9(c)) sums current output flows over all output
connectors.

13. The sum cur oL (cf. Item 9(d)) sums current output leaks over all output
connectors.

10. sum cur iF: UI-set → U → F
10. sum cur iF(iuis)(u) ≡ ⊕ {attr cur iF(ui)(u)|ui:UI•ui ∈ iuis}
11. sum cur iL: UI-set → U → L
11. sum cur iL(iuis)(u) ≡ ⊕ {attr cur iL(ui)(u)|ui:UI•ui ∈ iuis}
12. sum cur oF: UI-set → U → F
12. sum cur oF(ouis)(u) ≡ ⊕ {attr cur iF(ui)(u)|ui:UI•ui ∈ ouis}
13. sum cur oL: UI-set → U → L
13. sum cur oL(ouis)(u) ≡ ⊕ {attr cur iL(ui)(u)|ui:UI•ui ∈ ouis}

⊕: (F|L) × (F|L) → F

• where ⊕ is both an infix and a distributed-fix function which adds flows and or
leaks.

A Precursor for Requirements Engineering 133 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

134
5. Continuous Endurants: Materials 5.4. Material Laws of Flows and Leaks

Example: 26 Pipelines: Inter Unit Flow and Leak Law.

14. For every pair of connected units of a pipeline system the following law apply:

(a) the flow out of a unit directed at another unit minus the leak at that output
connector

(b) equals the flow into that other unit at the connector from the given unit plus
the leak at that connector.

14. ∀ pls:PLS,b,b′:B,u,u′:U•

14. {b,b′}⊆obs Bs(pls)∧b 6=b′∧u′=obs U(b′)
14. ∧ let (iuis,ouis)=mereo U(u),(iuis′,ouis′)=mereo U(u′),
14. ui=uid U(u),ui′=uid U(u′) in

14. ui ∈ iuis ∧ ui′ ∈ ouis′ ⇒
14(a). attr cur oF(us′)(ui′) − attr leak oF(us′)(ui′)
14(b). = attr cur iF(us)(ui) + attr leak iF(us)(ui)
14. end

14. comment: b′ precedes b

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 134 Domain Science & Engineering

1355. Continuous Endurants: Materials 5.4. Material Laws of Flows and Leaks

• From the above two laws one can prove the theorem:

⋄⋄ what is pumped from the wells equals

⋄⋄ what is leaked from the systems plus what is output to the sinks.

• We need formalising the flow and leak summation functions.

A Precursor for Requirements Engineering 135 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

136 5. Continuous Endurants: Materials 5.4. Material Laws of Flows and Leaks

Continuous Endurant Modelling
As one of the first steps

• in domain analysis

• determine if the domain is materials-focused.

If so, then determine

• the material types,

type M1, M2, ... Mn material

• the parts, that is, the part types, with which the materials are “somehow related”,

value obs Mi: Pi → Mi, obs Mj: Pj → Mj, ..., obs Mk: Pk → Mk

• the relevant flow or transport and/or leak or loss attributes, if any,

• and the possible laws related to these attributes.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 136 Domain Science & Engineering

1376. Continuous Endurants: Materials

6. States
6.1. General

• The above Wikipedia characterisation of the concept of perdurant

⋄⋄ mentioned time,

⋄⋄ but implied a concept that we shall call state.

• In this version of this tutorial

⋄⋄ we shall not cover the modelling of time phenomena —

⋄⋄ but we shall model that some actions occur before others.

A Precursor for Requirements Engineering 137 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

138
6. States 6.1. General

• By a state we shall understand a collection of parts

⋄⋄ such that each of these parts have dynamic attributes.

• We can characterise the state

⋄⋄ by giving it a type,

⋄⋄ for example, Σ, where the state type definition

⋄⋄ Σ = S1×S2×· · · ×Ss

⋄⋄ assembles the types of the parts making up the state —

⋄⋄ where we assume that types S1, S2, . . . , Ss

◦◦ are types of parts

◦◦ such that no Si is a sub-part (of a subpart, . . .) of some Sj,

◦◦ and such that each part has dynamic attributes.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 138 Domain Science & Engineering

1396. States 6.1. General

Example: 27 Net and Vessel States.

• We may consider a transport net, n:N, to represent a state (subject
to the actions of maintaining a net: adding or removing a hub,
adding or removing a link, etc.).

• We may also consider a hub, h:H, to represent a state (subject to
the changing of a hub traffic signal: from red to green, etc., for
specific directions through the hub).

• We may consider a container vessel to represent a state (subject to
adding or removing containers from, respectively onto the top of
stacks).

Thus the context determines how wide a scope the domain designer
chooses for the state concept.

A Precursor for Requirements Engineering 139 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

140 6. States 6.2. State Invariants

6.2. State Invariants

• States are subject to invariants.

Example: 28 State Invariants: Transport Nets. Nets, hubs
and links were first introduced in Example 3 on page 16 – and were
and will be prominent in this tutorial, to wit, Examples 7–16 and
29– ?? on page ??.

• Net hubs and links may be inserted into and removed from nets.

• Thus is also introduced changes to the net mereology.

• Yet, the axioms, as illustrated in Example 12, must remain
invariant.

• Likewise changes to dynamic attributes may well be subject to the
holding of certain well-formedness constraints.

• We will illustrate this claim.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 140 Domain Science & Engineering

141
6. States 6.2. State Invariants

With each hub we associate a hub [link] state and a hub [link] state
space.

15. A hub [link] state models the permissible routes from hub input
links to (same) hub output links [respectively through a link].

16. A hub [link] state space models the possible set of hub [link] states
that a hub [link] is intended to “occupy”.

type

15. HΣ = (LI × LI)-set, LΣ = HI-set
16. HΩ = HΣ-set, LΩ = LΣ-set

value

15. attr HΣ: H → HΣ, attr LΣ: L → LΣ
16. attr HΩ: H → HΩ, attr LΩ: L → LΩ

A Precursor for Requirements Engineering 141 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

142 6. States 6.2. State Invariants

17. For any given hub, h, with links, l1, l2, ..., ln incident upon (i.e., also
emanating from) that hub, each hub state in the hub state space

18. must only contain such pairs of (not necessarily distinct) link
identifiers that are identifiers of l1, l2, ..., ln .

value

17. wf HΩ: H → Bool

17. wf HΩ(h) ≡ ∀ hσ:HΣ • hσ ∈ attr HΩ(h) ⇒ wf HΣ(h)

17. wf HΣ: H → Bool

17. wf HΣ(h) ≡
18. ∀ (li,li′):(LI×LI)•(li,li′)∈ attr HΣ(h) ⇒ {li,li′} ⊆ mereo H(h)

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 142 Domain Science & Engineering

1436. States 6.2. State Invariants

• This well-formedness criterion is part of the state invariant over
nets.

⋄⋄ We never write down the full state invariant for nets.

⋄⋄ It is tacitly assume to be the collection of all the axioms and
well-formedness predicates over net parts.

A Precursor for Requirements Engineering 143 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

144 7. States

7. A Final Note on Endurant Properties

• The properties of parts and materials are fully captured by

⋄⋄ (i) the unique part identifiers,

⋄⋄ (ii) the part mereology and

⋄⋄ (iii) the full set ofpart attributes and material attributes

• We therefore postulate a property function

⋄⋄ when when applied to a part or a material

⋄⋄ yield this triplet, (i–iii), of properties

⋄⋄ in a suitable structure.

type

Props = {|PI|nil|} × {|(PI-set×...×PI-set)|nil|} × Attrs
value

props: Part|Material → Props

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 144 Domain Science & Engineering

1457. A Final Note on Endurant Properties

• where

⋄⋄ Part stands for a part type,

⋄⋄ Material stands for a material type,

⋄⋄ PI stand for unique part identifiers and

⋄⋄ PI-set×...×PI-set for part mereologies.

• The {|...|} denotes a proper specification language sub-type and
nil denotes the empty type.

A Precursor for Requirements Engineering 145 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

146

End of Lecture 3: First Session — Continuous Endurants

Materials, States

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 146 Domain Science & Engineering

146

MINI BREAK

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 146 Domain Science & Engineering

146

HAPPY TO SEE YOU AGAIN

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 146 Domain Science & Engineering

147

Begin of Lecture 4: Middle Session — Perdurant Entities

Actions and Events

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

A Precursor for Requirements Engineering 147 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

147

Tutorial Schedule
• Lectures 1–2 9:00–9:40 + 9:50–10:30

1 Introduction Slides 1–35

2 Endurant Entities: Parts Slides 36–114

• Lecture 3–5 11:00–11:15 + 11:20–11:45 + 11:50–12:30

3 Endurant Entities: Materials, States Slides 115–146
√

4 Perdurant Entities: Actions and Events Slides 147–178

5 Perdurant Entities: Behaviours Slides 179–284

Lunch 12:30–14:00

• Lectures 6–7 14:00–14:40 + 14:50–15:30

6 A Calculus: Analysers, Parts and Materials Slides 285–338

7 A Calculus: Function Signatures and Laws Slides 339–376

• Lectures 8–9 16:00–16:40 + 16:50–17:30

8 Domain and Interface Requirements Slides 377–423

9 Conclusion: Comparison to Other Work Slides 427–459

Conclusion: What Have We Achieved Slides 424–426 + 460–471

A Precursor for Requirements Engineering 147 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

148 8. A Final Note on Endurant Properties

8. Discrete Perdurants
8.1. General

• From Wikipedia:

⋄⋄ Perdurant: Also known as occurrent, accident or happening.

⋄⋄ Perdurants are those entities for which only a fragment exists if
we look at them at any given snapshot in time.

⋄⋄ When we freeze time we can only see a fragment of the perdurant.

⋄⋄ Perdurants are often what we know as processes, for example
’running’.

⋄⋄ If we freeze time then we only see a fragment of the running,
without any previous knowledge one might not even be able to
determine the actual process as being a process of running.

⋄⋄ Other examples include an activation, a kiss, or a procedure.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 148 Domain Science & Engineering

1498. Discrete Perdurants 8.1. General

• We shall consider actions and events

⋄⋄ to occur instantaneously,

⋄⋄ that is, in time, but taking no time

• Therefore we shall consider actions and events to be perdurants.

A Precursor for Requirements Engineering 149 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

150 8. Discrete Perdurants 8.2. Discrete Actions

8.2. Discrete Actions

• By a function we understand

⋄⋄ a thing

⋄⋄ which when applied to a value, called its argument,

⋄⋄ yields a value, called its result.

• An action is

⋄⋄ a function

⋄⋄ invoked on a state value

⋄⋄ and is one that potentially changes that value.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 150 Domain Science & Engineering

1518. Discrete Perdurants 8.2. Discrete Actions

Example: 29 Transport Net and Container Vessel Actions.

• Inserting and removing hubs and links in a net are considered
actions.

• Setting the traffic signals for a hub (which has such signals) is
considered an action.

• Loading and unloading containers from or unto the top of a
container stack are considered actions.

A Precursor for Requirements Engineering 151 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

152
8. Discrete Perdurants 8.2. Discrete Actions8.2.1. An Aside on Actions

8.2.1. An Aside on Actions

Think’st thou existence doth depend on time?
It doth; but actions are our epochs.

George Gordon Noel Byron,
Lord Byron (1788-1824) Manfred. Act II. Sc. 1.

• “An action is

⋄⋄ something an agent does

⋄⋄ that was ‘intentional under some description’ ” [Davidson1980].

• That is, actions are performed by agents.

⋄⋄ We shall not yet go into any deeper treatment of agency or
agents. We shall do so later.

◦◦ Agents will here, for simplicity, be considered behaviours,

◦◦ and are treated later in this lecture.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 152 Domain Science & Engineering

153
8. Discrete Perdurants 8.2. Discrete Actions8.2.1. An Aside on Actions

• As to the relation between intention and action

⋄⋄ we note that Davidson wrote: ‘intentional under some
description’

⋄⋄ and take that as our cue:

◦◦ the agent follows a script,

◦◦ that is, a behaviour description,

◦◦ and invokes actions accordingly,

◦◦ that is, follow, or honours that script.

• The philosophical notion of ‘action’ is over-viewed in [sep-action].

• We

⋄⋄ observe actions in the domain

⋄⋄ but describe “their underlying” functions.

• Thus we abstract from the times at which actions occur.

A Precursor for Requirements Engineering 153 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

154
8. Discrete Perdurants 8.2. Discrete Actions8.2.2. Action Signatures

8.2.2. Action Signatures

• By an action signature we understand a quadruple:

⋄⋄ a function name,

⋄⋄ a function definition set type expression,

⋄⋄ a total or partial function designator (→, respectively
∼→), and

⋄⋄ a function image set type expression:
fct name: A → Σ (→|∼→) Σ [× R],

where (X | Y) means either X or Y , and [Z] means optional Z.

Example: 30 Action Signatures: Nets and Vessels.

insert Hub: N→H
∼→N;

remove Hub: N→HI
∼→N;

set Hub Signal: N→HI
∼→HΣ

∼→N
load Container: V→C→StackId

∼→V; and
unload Container: V→StackId

∼→(V×C).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 154 Domain Science & Engineering

1558. Discrete Perdurants 8.2. Discrete Actions8.2.3. Action Definitions

8.2.3. Action Definitions

• There are a number of ways in which to characterise an action.

• One way is to characterise its underlying function
by a pair of predicates:

⋄⋄ precondition: a predicate over function arguments — which
includes the state, and

⋄⋄ postcondition: a predicate over function arguments, a proper
argument state and the desired result state.

⋄⋄ If the precondition holds, i.e., is true, then the arguments,
including the argument state, forms a proper ‘input’ to the
action.

⋄⋄ If the postcondition holds, assuming that the precondition held,
then the resulting state [and possibly a yielded, additional
“result” (R)] is as they would be had the function been applied.

A Precursor for Requirements Engineering 155 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

156 8. Discrete Perdurants 8.2. Discrete Actions8.2.3. Action Definitions

Example: 31 Transport Nets: Insert Hub Action. We give
one example.

19. The insert action applies to a net and a hub and conditionally
yields an updated net.

(a) The condition is that there must not be a hub in the “argument”
net with the same unique hub identifier as that of the hub to be
inserted and

(b) the hub to be inserted does not initially designate links with
which it is to be connected.

(c) The updated net contains all the hubs of the initial net “plus”
the new hub.

(d) and the same links.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 156 Domain Science & Engineering

1578. Discrete Perdurants 8.2. Discrete Actions8.2.3. Action Definitions

value

19. insert H: N → H
∼→ N

19. insert H(n)(h) as n′, pre: pre insert H(n)(h), post: post insert H(n)(h)

19(a). pre insert H(n)(h) ≡
19(a). ∼∃ h′:H • h′ ∈ obs Hs(n) ∧ uid HI(h)=uid HI(h′)
19(b). ∧ mereo H(h) = {}

19(c). post insert H(n)(h)(n′) ≡
19(c). obs Hs(n) ∪ {h} = obs Hs(n′)
19(d). ∧ obs Ls(n) = obs Ls(n′)

• We refer to the notes accompanying these lectures.

• There you will find definitions of insert link, remove hub and
remove link action functions.

A Precursor for Requirements Engineering 157 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

158
8. Discrete Perdurants 8.2. Discrete Actions8.2.3. Action Definitions

• What is not expressed, but tacitly assume in the above pre- and
post-conditions is

⋄⋄ that the state, here n, satisfy invariant criteria before (i.e. n)
and after (i.e., n′) actions,

⋄⋄ whether these be implied by axioms

⋄⋄ or by well-formedness predicates.

over parts.

• This remark applies to any definition of actions, events and
behaviours.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 158 Domain Science & Engineering

159
8. Discrete Perdurants 8.2. Discrete Actions8.2.3. Action Definitions

Example: 32 Action: Remove Container from Vessel. We
give the second of two examples.

20. The remove Container from Vessel action applies to a vessel and a stack address
and conditionally yields an updated vessel and a container.

(a) We express the ‘remove from vessel’ function primarily by means of an
auxiliary function remove C from BS, remove C from BS(obs BS(v))(stid),
and some further post-condition on the before and after vessel states (cf.
Item 20(d)).

(b) The remove C from BS function yields a pair: an updated set of bays and a
container.

(c) When obs erving the BayS from the updated vessel, v′, and pairing that with
what is assumed to be a vessel, then one shall obtain the result of
remove C from BS(obs BS(v))(stid).

(d) Updating, by means of remove C from BS(obs BS(v))(stid), the bays of a
vessel must leave all other properties of the vessel unchanged.

A Precursor for Requirements Engineering 159 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

160 8. Discrete Perdurants 8.2. Discrete Actions8.2.3. Action Definitions

21. The pre-condition for remove C from BS(bs)(stid) is

(a) that stid is a valid address in bs, and

(b) that the stack in bs designated by stid is non empty.

22. The post-condition for remove C from BS(bs)(stid) wrt. the
updated bays, bs′, is

(a) that the yielded container, i.e., c, is obtained, get C(bs)(stid),
from the top of the non-empty, designated stack,

(b) that the mereology of bs′ is unchanged,
unchanged mereology(bs,bs′). wrt. bs. ,

(c) that the stack designated by stid in the “input” state, bs, is
popped, popped designated stack(bs,bs′)(stid), and

(d) that all other stacks are unchanged in bs′ wrt. bs,
unchanged non designated stacks(bs,bs′)(stid).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 160 Domain Science & Engineering

1618. Discrete Perdurants 8.2. Discrete Actions8.2.3. Action Definitions

value

20. remove C from V: V → StackId
∼→ (V×C)

20. remove C from V(v)(stid) as (v′,c)
20(c). (obs BS(v′),c) = remove C from BS(obs BS(v))(stid)
20(d). ∧ props(v)=props(v′′)

20(b). remove C from BS: BS → StackId → (BS×C)
20(a). remove C from BS(bs)(stid) as (bs′,c)
21(a). pre: valid address(bs)(stid)
21(b). ∧ non empty designated stack(bs)(stid)
22(a). post: c = get C(bs)(stid)
22(b). ∧ unchanged mereology(bs,bs′)
22(c). ∧ popped designated stack(bs,bs′)(stid)
22(d). ∧ unchanged non designated stacks(bs,bs′)(stid)

A Precursor for Requirements Engineering 161 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

162
8. Discrete Perdurants 8.2. Discrete Actions8.2.3. Action Definitions

• This example hints at a theory of container vessel bays, rows
and stacks.

• More on that is found in Appendix C.

• There are other ways of defining functions.

• But the form of these are not material to the aims of this tutorial.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 162 Domain Science & Engineering

163
8. Discrete Perdurants 8.2. Discrete Actions8.2.3. Action Definitions

Modelling Actions, I/III

• The domain describer has decided that an entity is a perdurant and
is, or represents an action: was “done by an agent and intentionally
under some description” [Davidson1980].

⋄⋄ The domain describer has further decided that the observed ac-
tion is of a class of actions — of the “same kind” — that need be
described.

⋄⋄ By actions of the ‘same kind’ is meant that these can be described
by the same function signature and function definition.

A Precursor for Requirements Engineering 163 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

164
8. Discrete Perdurants 8.2. Discrete Actions8.2.3. Action Definitions

Modelling Actions, II/III

• First the domain describer must decide on the underlying function
signature.

⋄⋄ The argument type and the result type of the signature are those
of either previously identified

◦◦ parts and/or materials,

◦◦ unique part identifiers, and/or

◦◦ attributes.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 164 Domain Science & Engineering

165
8. Discrete Perdurants 8.2. Discrete Actions8.2.3. Action Definitions

Modelling Actions, III/III

• Sooner or later the domain describer must decide on the function
definition.

⋄⋄ The form must be decided upon.

⋄⋄ For pre/post-condition forms it appears to be convenient to have
developed, “on the side”, a theory of mereology for the part types
involved in the function signature.

A Precursor for Requirements Engineering 165 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

166
8. Discrete Perdurants 8.3. Discrete Events

8.3. Discrete Events

• By an event we understand

⋄⋄ a state change

⋄⋄ resulting indirectly from an
unexpected application of a function,

⋄⋄ that is, that function was performed “surreptitiously”.

• Events can be characterised by a pair of (before and after) states, a
predicate over these and, optionally, a time or time interval.

• Events are thus like actions:

⋄⋄ change states,

⋄⋄ but are usually

◦◦ either caused by “previous” actions,

◦◦ or caused by “an outside action”.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 166 Domain Science & Engineering

1678. Discrete Perdurants 8.3. Discrete Events

Example: 33 Events.

• Container vessel: A container falls overboard
sometimes between times t and t′.

• Financial service industry: A bank goes bankrupt
sometimes between times t and t′.

• Health care: A patient dies
sometimes between times t and t′.

• Pipeline system: A pipe breaks
sometimes between times t and t′.

• Transportation: A link “disappears”
sometimes between times t and t′.

A Precursor for Requirements Engineering 167 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

168
8. Discrete Perdurants 8.3. Discrete Events8.3.1. An Aside on Events

8.3.1. An Aside on Events

• We may observe an event, and

⋄⋄ then we do so at a specific time or

⋄⋄ during a specific time interval.

• But we wish to describe,

⋄⋄ not a specific event

⋄⋄ but a class of events of “the same kind”.

• In this tutorial

⋄⋄ we therefore do not ascribe

⋄⋄ time points or time intervals

⋄⋄ with the occurrences of events.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 168 Domain Science & Engineering

169
8. Discrete Perdurants 8.3. Discrete Events8.3.2. Event Signatures

8.3.2. Event Signatures

• An event signature

⋄⋄ is a predicate signature

⋄⋄ having an event name,

⋄⋄ a pair of state types (Σ × Σ),

⋄⋄ a total function space operator (→)

⋄⋄ and a Boolean type constant:

⋄⋄ evt: (Σ×Σ) → Bool.

• Sometimes there may be a good reason

⋄⋄ for indicating the type, ET, of an event cause value,

⋄⋄ if such a value can be identified:

⋄⋄ evt: ET × (Σ × Σ) → Bool.

A Precursor for Requirements Engineering 169 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

170 8. Discrete Perdurants 8.3. Discrete Events8.3.3. Event Definitions

8.3.3. Event Definitions

• An event definition takes the form of a predicate definition:

⋄⋄ A predicate name and argument list, usually just a state pair,

⋄⋄ an existential quantification

◦◦ over some part (of the state) or

◦◦ over some dynamic attribute of some part (of the state)

◦◦ or combinations of the above

⋄⋄ a pre-condition expression over the input argument(s),

⋄⋄ an implication symbol (⇒), and

⋄⋄ a post-condition expression over the argument(s).

• evt(σ, σ′) = ∃ (ev:ET) • pre evt(ev)(σ) ⇒ post evt(ev)(σ, σ′).
• There may be variations to the above form.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 170 Domain Science & Engineering

1718. Discrete Perdurants 8.3. Discrete Events8.3.3. Event Definitions

Example: 34 Narrative of Link Event. The disappearance of a
link in a net, for example due to a mud slide, or a bridge falling down,
or a fire in a road tunnel, can, for example be described as follows:

23. Link disappearance is expressed as a predicate on the “before” and
“after” states of the net. The predicate identifies the “missing”
ℓink (!).

24. Before the disappearance of link ℓ in net n

(a) the hubs h′ and h′′ connected to link ℓ

(b) were connected to links identified by {l′1, l′2, . . . , l′p} respectively

{l′′1 , l′′2 , . . . , l′′q}
(c) where, for example, l′i, l

′′
j are the same and equal to uid Π(ℓ).

A Precursor for Requirements Engineering 171 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

172 8. Discrete Perdurants 8.3. Discrete Events8.3.3. Event Definitions

25. After link ℓ disappearance there are instead

(a) two separate links, ℓi and ℓj, “truncations” of ℓ

(b) and two new hubs h′′′ and h′′′′

(c) such that ℓi connects h′ and h′′′ and

(d) ℓj connects h′′ and h′′′′;
(e) Existing hubs h′ and h′′ now have mereology

i. {l′1, l′2, . . . , l′p} \ {uid Π(ℓ)} ∪ {uid Π(ℓi)} respectively

ii. {l′′1 , l′′2 , . . . , l′′q} \ {uid Π(ℓ)} ∪ {uid Π(ℓj)}
26. All other hubs and links of n are unaffected.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 172 Domain Science & Engineering

173
8. Discrete Perdurants 8.3. Discrete Events8.3.3. Event Definitions

Example: 35 Formalisation of Link Event. Continuing
Example 34 above:

23. link disappearance: N × N → Bool

23. link disappearance(n,n′) ≡
23. ∃ ℓ:L • pre link dis(n,ℓ) ⇒ post link dis(n,ℓ,n′)

24. pre link dis: N × L → Bool

24. pre link dis(n,ℓ) ≡ ℓ ∈ obs Ls(n)

A Precursor for Requirements Engineering 173 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

174 8. Discrete Perdurants 8.3. Discrete Events8.3.3. Event Definitions

27. We shall “explain” link disappearance as the combined,
instantaneous effect of

(a) first a remove link “event” where the removed link connected
hubs hij and hik;

(b) then the insertion of two new, “fresh” hubs, hα and hβ;

(c) “followed” by the insertion of two new, “fresh” links ljα and lkβ
such that

i. ljα connects hij and hα and

ii. lkβ connects hik and hkβ

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 174 Domain Science & Engineering

1758. Discrete Perdurants 8.3. Discrete Events8.3.3. Event Definitions

value

27. post link dis(n,ℓ,n′) ≡
27(a). let n′′ = remove L(n)(uid L(ℓ)) in

27(b). let hα,hβ:H • {hα,hβ}∩ obs Hs(n)={} in

27(b). let n′′′ = insert H(n′′)(hα) in

27(b). let n′′′′ = insert H(n′′′)(hβ) in

27(c). let ljα,lkβ:L • {ljα,lkβ}∩ obs Ls(n)={} in

27((c))i. let n′′′′′ = insert L(n′′′′)(ljα) in

27((c))ii. n′ = insert L(n′′′′′)(lkβ) end end end end end end

• We refer to the notes accompanying these lectures.

• There you will find definitions of insert link, remove hub and
remove link action functions.

A Precursor for Requirements Engineering 175 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

176
8. Discrete Perdurants 8.3. Discrete Events8.3.3. Event Definitions

Modelling Events I/II

• The domain describer has decided that an entity is a perdurant and
is, or represents an event: occurred surreptitiously, that is, was not
an action that was “done by an agent and intentionally under some
description” [Davidson1980].

⋄⋄ The domain describer has further decided that the observed event
is of a class of events — of the “same kind” — that need be
described.

⋄⋄ By events of the ‘same kind’ is meant that these can be described
by the same predicate function signature and predicate function
definition.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 176 Domain Science & Engineering

177
8. Discrete Perdurants 8.3. Discrete Events8.3.3. Event Definitions

Modelling Events, II/II

• First the domain describer must decide on the underlying predicate
function signature.

⋄⋄ The argument type and the result type of the signature are those
of either previously identified

◦◦ parts,

◦◦ unique part identifiers, or

◦◦ attributes.

• Sooner or later the domain describer must decide on the predicate
function definition.

⋄⋄ For predicate function definitions it appears to be convenient to
have developed, “on the side”, a theory of mereology for the part
types involved in the function signature.

A Precursor for Requirements Engineering 177 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

178

End of Lecture 4: Middle Session — Perdurant Entities

Actions and Events

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 178 Domain Science & Engineering

178

MINI BREAK

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 178 Domain Science & Engineering

178

LAST HAUL BEFORE LUNCH

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 178 Domain Science & Engineering

179

Begin of Lecture 5: Last Session — Perdurant Entities

Behaviours, Discussion Entities

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

A Precursor for Requirements Engineering 179 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

179

Tutorial Schedule
• Lectures 1–2 9:00–9:40 + 9:50–10:30

1 Introduction Slides 1–35

2 Endurant Entities: Parts Slides 36–114

• Lectures 3–5 11:00–11:15 + 11:20–11:45 + 11:50–12:30

3 Endurant Entities: Materials, States Slides 115–146

4 Perdurant Entities: Actions and Events Slides 147–178
√

5 Perdurant Entities: Behaviours Slides 179–284

Lunch 12:30–14:00

• Lectures 6–7 14:00–14:40 + 14:50–15:30

6 A Calculus: Analysers, Parts and Materials Slides 285–338

7 A Calculus: Function Signatures and Laws Slides 339–376

• Lectures 8–9 16:00–16:40 + 16:50–17:30

8 Domain and Interface Requirements Slides 377–423

9 Conclusion: Comparison to Other Work Slides 427–459

Conclusion: What Have We Achieved Slides 424–426 + 460–471

A Precursor for Requirements Engineering 179 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

180 8. Discrete Perdurants 8.4. Discrete Behaviours

8.4. Discrete Behaviours

• We shall distinguish between

⋄⋄ discrete behaviours (this section) and

⋄⋄ continuous behaviours (Sect.).

• Roughly discrete behaviours

⋄⋄ proceed in discrete (time) steps —

⋄⋄ where, in this tutorial, we omit considerations of time.

⋄⋄ Each step corresponds to an action or an event or a time interval
between these.

⋄⋄ Actions and events may take some (usually inconsiderable time),

⋄⋄ but the domain analyser has decided that it is not of interest to
understand what goes on in the domain during that time
(interval).

⋄⋄ Hence the behaviour is considered discrete.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 180 Domain Science & Engineering

181
8. Discrete Perdurants 8.4. Discrete Behaviours

• Continuous behaviours

⋄⋄ are continuous in the sense of the calculus of mathematical;

⋄⋄ to qualify as a continuous behaviour time must be an essential
aspect of the behaviour.

⋄⋄ We shall treat continuous behaviours in Sect. 9.

• Discrete behaviours can be modelled in many ways, for example
using

⋄⋄ CSP [Hoare85+2004].

⋄⋄ MSC [MSCall],

⋄⋄ Petri Nets [m:petri:wr09] and

⋄⋄ Statechart [Harel87].

• We refer to Chaps. 12–14 of [TheSEBook2wo].

• In this tutorial we shall use RSL/CSP.

A Precursor for Requirements Engineering 181 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

182
8. Discrete Perdurants 8.4. Discrete Behaviours8.4.1. What is Meant by ‘Behaviour’ ?

8.4.1. What is Meant by ‘Behaviour’ ?

• We give two characterisations of the concept of ‘behaviour’.

⋄⋄ a “loose” one and

⋄⋄ a “slanted one.

• A loose characterisation runs as follows:

⋄⋄ by a behaviour we understand

◦◦ a set of sequences of

◦◦ actions, events and behaviours.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 182 Domain Science & Engineering

1838. Discrete Perdurants 8.4. Discrete Behaviours8.4.1. What is Meant by ‘Behaviour’ ?

• A “slanted” characterisation runs as follows:

⋄⋄ by a behaviour we shall understand

◦◦ either a sequential behaviour consisting of a possibly infinite
sequence of zero or more actions and events;

◦◦ or one or more communicating behaviours whose output
actions of one behaviour may synchronise and communicate
with input actions of another behaviour; and

◦◦ or two or more behaviours acting either as internal
non-deterministic behaviours (⌈⌉) or as external
non-deterministic behaviours (⌈⌉⌊⌋).

A Precursor for Requirements Engineering 183 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

184 8. Discrete Perdurants 8.4. Discrete Behaviours8.4.1. What is Meant by ‘Behaviour’ ?

• This latter characterisation of behaviours

⋄⋄ is “slanted” in favour of a CSP, i.e., a communicating sequential
behaviour, view of behaviours.

⋄⋄ We could similarly choose to “slant” a behaviour
characterisation in favour of

◦◦ Petri Nets, or

◦◦ MSCs, or

◦◦ Statecharts, or other.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 184 Domain Science & Engineering

1858. Discrete Perdurants 8.4. Discrete Behaviours8.4.2. Behaviour Narratives

8.4.2. Behaviour Narratives

• Behaviour narratives may take many forms.

⋄⋄ A behaviour may best be seen as composed from several
interacting behaviours.

◦◦ Instead of narrating each of these,

◦◦ as will be done in Example ??,

◦◦ one may proceed by first narrating the interactions of these
behaviours.

⋄⋄ Or a behaviour may best be seen otherwise,

◦◦ for which, therefore, another style of narration may be called
for,

◦◦ one that “traverses the landscape” differently.

⋄⋄ Narration is an art.

⋄⋄ Studying narrations – and practice – is a good way to learn
effective narration.

A Precursor for Requirements Engineering 185 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

186
8. Discrete Perdurants 8.4. Discrete Behaviours8.4.3. An Aside on Agents, Behaviours and Processes

8.4.3. An Aside on Agents, Behaviours and Processes

• “In philosophy and sociology, agency is the capacity of an agent (a
person or other entity) to act in a world.”

• “In philosophy, the agency is considered as belonging to that agent
even if that agent represents a fictitious character, or some other
non-existent entity.”

• That is, we consider agents to be those persons or other entities
that

⋄⋄ are in the domain and

⋄⋄ observes the domain

⋄⋄ evaluates what is being observed

⋄⋄ and invokes actions.

• We describe agents by describing behaviours.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 186 Domain Science & Engineering

1878. Discrete Perdurants 8.4. Discrete Behaviours8.4.3. An Aside on Agents, Behaviours and Processes

• A behaviour description denotes a process, that is, a set of

⋄⋄ actions,

⋄⋄ events and

⋄⋄ processes.

• We shall not enter into any further speculations on

⋄⋄ agency,

⋄⋄ agents and

⋄⋄ how agents observe, including

◦◦ what they know and believe (epistemic logic),

◦◦ what is necessary and possible (deontic logic) and

◦◦ what is true at some tie and what is always true (temporal
logic).

⋄⋄ A proper domain science and engineering must, however,
eventually examine these (modal logic) issues.

A Precursor for Requirements Engineering 187 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

188 8. Discrete Perdurants 8.4. Discrete Behaviours8.4.4. On Behaviour Description Components

8.4.4. On Behaviour Description Components

• When narrating plus, at the same time, formalising,

⋄⋄ i.e., textually alternating between

⋄⋄ narrative texts and

⋄⋄ formal texts,

• one usually starts with what seems to be the most important
behaviour concepts of the given domain:

⋄⋄ which are the important part types characterising the domain;

⋄⋄ which of these parts will become a basis for behaviour processes;

⋄⋄ how are these behaviour processes to interact,

⋄⋄ that is, which channels and what messages may possibly be
communicated.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 188 Domain Science & Engineering

189
8. Discrete Perdurants 8.4. Discrete Behaviours8.4.4. On Behaviour Description Components

Example: 36 A Road Traffic System. We continue our long
line of examples around transport nets. The present example
interprets these as road nets.

8.4.4.1 Continuous Traffic

• For the road traffic system

⋄⋄ perhaps the most significant example of a behaviour

⋄⋄ is that of its traffic

28. the continuous time varying discrete positions of vehicles,
vp:VP25,

29. where time is taken as a dense set of points.

type

29. cT
28. cRTF = cT → (V →m VP)

25For VP see Item 47(a) on page 197.

A Precursor for Requirements Engineering 189 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

190 8. Discrete Perdurants 8.4. Discrete Behaviours8.4.4. On Behaviour Description Components8.4.4.2. Discrete Traffic

8.4.4.2 Discrete Traffic

• We shall model, not continuous time varying traffic, but

30. discrete time varying discrete positions of vehicles,

31. where time can be considered a set of linearly ordered points.

31. dT

30. dRTF = dT →m (V →m VP)

32. The road traffic that we shall model is, however, of vehicles referred
to by their unique identifiers.

type

32. RTF = dT →m (VI →m VP)

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 190 Domain Science & Engineering

1918. Discrete Perdurants 8.4. Discrete Behaviours8.4.4. On Behaviour Description Components8.4.4.3. Time: An Aside

8.4.4.3 Time: An Aside

• We shall take a rather simplistic view of time
[wayne.d.blizard.90,mctaggart-
t0,prior68,J.van.Benthem.Logic.Time91].

33. We consider dT, or just T, to stand for a totally ordered set of time
points.

34. And we consider TI to stand for time intervals based on T.

35. We postulate an infinitesimal small time interval δ.

36. T, in our presentation, has lower and upper bounds.

37. We can compare times and we can compare time intervals.

38. And there are a number of “arithmetics-like” operations on times
and time intervals.

A Precursor for Requirements Engineering 191 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

192
8. Discrete Perdurants 8.4. Discrete Behaviours8.4.4. On Behaviour Description Components8.4.4.3. Time: An Aside

type

33. T

34. TI

value

35. δ:TI

36. MIN, MAX: T → T

36. <,≤,=,≥,>: (T×T)|(TI×TI) → Bool

37. −: T×T → TI

38. +: T×TI,TI×T → T

38. −,+: TI×TI → TI

38. ∗: TI×Real → TI

38. /: TI×TI → Real

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 192 Domain Science & Engineering

1938. Discrete Perdurants 8.4. Discrete Behaviours8.4.4. On Behaviour Description Components8.4.4.3. Time: An Aside

39. We postulate a global clock behaviour which offers the current time.

40. We declare a channel clk ch.

value

39. clock: T → out clk ch Unit

39. clock(t) ≡ ... clk ch!t ... clock(t ⌈⌉ t+δ)
channnel
40. clk ch:T

A Precursor for Requirements Engineering 193 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

194 8. Discrete Perdurants 8.4. Discrete Behaviours8.4.4. On Behaviour Description Components8.4.4.4. Road Traffic System Behaviours

8.4.4.4 Road Traffic System Behaviours

41. Thus we shall consider our road traffic system, rts, as

(a) the concurrent behaviour of a number of vehicles and,
to “observe”, or, as we shall call it, to monitor their movements,

(b) the monitor behaviour.

value

41. trs() =
41(a). ‖ {veh(uid V(v))(v)|v:V•v ∈ vs}
41(b). ‖ mon(m)([])

• where the “extra” monitor argument ([])

⋄⋄ records the discrete road traffic, RTF,

⋄⋄ initially set to the empty map (of, “so far no road traffic”!).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 194 Domain Science & Engineering

1958. Discrete Perdurants 8.4. Discrete Behaviours8.4.4. On Behaviour Description Components8.4.4.5. Globally Observable Parts

8.4.4.5 Globally Observable Parts

• There is given

42. a net, n:N,

43. a set of vehicles, vs:V-set, and

44. a monitor, m:M.

• The n:N, vs:V-set and m:M are observable from the road traffic
system domain.

value

42. n:N = obs N(∆)
42. ls:L-set = obs Ls(obs LS(n)), hs:H-set = obs Hs(obs HS(n)),
42. lis:LI-set = {uid L(l)|l:L•l ∈ ls}, his:HI-set = {uid H(h)|h:H•h ∈ hs}
43. vs:V-set = obs Vs(obs VS(obs F(∆))), vis:V-set = {uid V(v)|v:V•v ∈ vs
44. m:obs M(∆)

A Precursor for Requirements Engineering 195 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

196 8. Discrete Perdurants 8.4. Discrete Behaviours8.4.4. On Behaviour Description Components8.4.4.6. Channels

8.4.4.6 Channels

• In order for the monitor behaviour to assess the vehicle positions

⋄⋄ these vehicles communicate their positions

⋄⋄ to the monitor

⋄⋄ via a vehicle to monitor channel.

• In order for the monitor to time-stamp these positions

⋄⋄ it must be able to “read” a clock.

45. Thus we declare a set of channels indexed by the unique identifiers
of vehicles and communicating vehicle positions; and

46. a single clock to monitor channel.

channel

45. {vm ch[vi]|vi:VI•vi ∈ vis}:VP
46. clkm ch:dT

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 196 Domain Science & Engineering

1978. Discrete Perdurants 8.4. Discrete Behaviours8.4.4. On Behaviour Description Components8.4.4.7. An Aside: Attributes of Vehicles

8.4.4.7 An Aside: Attributes of Vehicles

47. Dynamic attributes of vehicles include

(a) position

i. at a hub (about to enter the hub — referred to by the link it is coming
from, the hub it is at and the link it is going to, all referred to by their
unique identifiers or

ii. some fraction “down” a link (moving in the direction from a from hub to a
to hub — referred to by their unique identifiers)

iii. where we model fraction as a real between 0 and 1 included.

(b) velocity, acceleration, etcetera.

type

47(a). VP = atH | onL
47((a))i. atH :: fli:LI × hi:HI × tli:LI
47((a))ii. onL :: fhi:HI × li:LI × frac:FRAC × thi:HI
47((a))iii. FRAC = Real, axiom ∀ frac:FRAC • 0 ≤ frac ≤ 1
47(b). Vel, Acc, ...

A Precursor for Requirements Engineering 197 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

198 8. Discrete Perdurants 8.4. Discrete Behaviours8.4.4. On Behaviour Description Components8.4.4.8. Behaviour Signatures

8.4.4.8 Behaviour Signatures

48. The road traffic system behaviour, rts, takes no arguments; and
“behaves”, that is, continues forever.

49. The vehicle behaviours are indexed by the unique identifier,
uid V(v):VI, the vehicle part, v:V and the vehicle position; offers
communication to the monitor behaviour; and behaves “forever”.

50. The monitor behaviour takes monitor part, m:M, as argument and
also the discrete road traffic, drtf:dRTF; the behaviour otherwise
runs forever.

value

48. rts: Unit → Unit

49. veh: vi:VI → v:V → VP → out vm ch[vi] Unit

50. mon: m:M → RTF → in {vm ch[vi]|vi:VI•vi ∈ vis},clkm ch Unit

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 198 Domain Science & Engineering

1998. Discrete Perdurants 8.4. Discrete Behaviours8.4.4. On Behaviour Description Components8.4.4.9. The Vehicle Behaviour

8.4.4.9 The Vehicle Behaviour

51. A vehicle process

• is indexed by the unique vehicle identifier vi:VI,

• the vehicle “as such”, v:V and

• the vehicle position, vp:VP.

The vehicle process communicates

• with the monitor process on channel vm[vi]

• (sends, but receives no messages), and

• otherwise evolves “infinitely” (hence Unit).

A Precursor for Requirements Engineering 199 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

200 8. Discrete Perdurants 8.4. Discrete Behaviours8.4.4. On Behaviour Description Components8.4.4.9. The Vehicle Behaviour

52. We describe here an abstraction of the vehicle behaviour at a Hub
(hi).

(a) Either the vehicle remains at that hub informing the monitor,

(b) or, internally non-deterministically,

i. moves onto a link, tli, whose “next” hub, identified by thi, is
obtained from the mereology of the link identified by tli;

ii. informs the monitor, on channel vm[vi], that it is now on the
link identified by tli,

iii. whereupon the vehicle resumes the vehicle behaviour
positioned at the very beginning (0) of that link,

(c) or, again internally non-deterministically,

(d) the vehicle “disappears — off the radar” !

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 200 Domain Science & Engineering

2018. Discrete Perdurants 8.4. Discrete Behaviours8.4.4. On Behaviour Description Components8.4.4.9. The Vehicle Behaviour

52. veh(vi)(v)(vp:atH(fli,hi,tli)) ≡
52(a). vm ch[vi]!vp ; veh(vi)(v)(vp)
52(b). ⌈⌉
52((b))i. let {hi′,thi}=mereo L(get L(tli)(n)) in assert: hi′=hi
52((b))ii. vm ch[vi]!onL(tli,hi,0,thi) ;
52((b))iii. veh(vi)(v)(onL(tli,hi,0,thi)) end

52(c). ⌈⌉
52(d). stop

A Precursor for Requirements Engineering 201 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

202 8. Discrete Perdurants 8.4. Discrete Behaviours8.4.4. On Behaviour Description Components8.4.4.9. The Vehicle Behaviour

53. We describe here an abstraction of the vehicle behaviour on a Link (ii).
Either

(a) the vehicle remains at that link position informing the monitor,

(b) or, internally non-deterministically,

(c) if the vehicle’s position on the link has not yet reached the hub,

i. then the vehicle moves an arbitrary increment δ along the link informing
the monitor of this, or

ii. else, while obtaining a “next link” from the mereology of the hub (where
that next link could very well be the same as the link the vehicle is about
to leave),

A. the vehicle informs the monitor that it is now at the hub identified by thi,

B. whereupon the vehicle resumes the vehicle behaviour positioned at that
hub.

54. or, internally non-deterministically,

55. the vehicle “disappears — off the radar” !

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 202 Domain Science & Engineering

2038. Discrete Perdurants 8.4. Discrete Behaviours8.4.4. On Behaviour Description Components8.4.4.9. The Vehicle Behaviour

51. veh(vi)(v)(vp:onL(fhi,li,f,thi)) ≡
53(a). vm ch[vi]!vp ; veh(vi)(v)(vp)
53(b). ⌈⌉
53(c). if f + δ<1
53((c))i. then vm ch[vi]!onL(fhi,li,f+δ,thi) ;
53((c))i. veh(vi)(v)(onL(fhi,li,f+δ,thi))
53((c))ii. else let li′:LI•li′ ∈ mereo H(get H(thi)(n)) in

53((c))iiA. vm ch[vi]!atH(li,thi,li′);
53((c))iiB. veh(vi)(v)(atH(li,thi,li′)) end end

54. ⌈⌉
55. stop

A Precursor for Requirements Engineering 203 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

204 8. Discrete Perdurants 8.4. Discrete Behaviours8.4.4. On Behaviour Description Components8.4.4.10. The Monitor Behaviour

8.4.4.10 The Monitor Behaviour

56. The monitor behaviour evolves around the attributes of an own
“state”, m:M, a table of traces of vehicle positions, while accepting
messages about vehicle positions and otherwise progressing
“in[de]finitely”.

57. Either the monitor “does own work”

58. or, internally non-deterministically accepts messages from vehicles.

(a) A vehicle position message, vp, may arrive from the vehicle
identified by vi.

(b) That message is appended to that vehicle’s movement trace,

(c) whereupon the monitor resumes its behaviour —

(d) where the communicating vehicles range over all identified
vehicles.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 204 Domain Science & Engineering

205
8. Discrete Perdurants 8.4. Discrete Behaviours8.4.4. On Behaviour Description Components8.4.4.10. The Monitor Behaviour

56. mon(m)(rtf) ≡
57. mon(own mon work(m))(rtf)
58. ⌈⌉
58(a). ⌈⌉⌊⌋ { let ((vi,vp),t) = (vm ch[vi]?,clkm ch?), in

58(b). let rtf′ = rtf † [t 7→ rtf(max dom rtf) † [vi 7→ vp]] in

58(c). mon(m)(rtf′) end

58(d). end | vi:VI • vi ∈ vis }

57. own mon work: M → TBL → M

• We do not describe the clock behaviour by other than stating that
it continually offers the current time on channel clkm ch.

A Precursor for Requirements Engineering 205 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

206 8. Discrete Perdurants 8.4. Discrete Behaviours8.4.5. A Model of Parts and Behaviours

8.4.5. A Model of Parts and Behaviours

• How often have you not “confused”

⋄⋄ the perdurant notion of a train process: progressing from railway
station to railway station,

⋄⋄ with the endurant notion of the train, say as it appears listed in
a train time table, or as it is being serviced in workshops, etc.

• There is a reason for that — as we shall now see:
parts may be considered syntactic quantities
denoting semantic quantities.

⋄⋄ We therefore describe a general model of parts of domains

⋄⋄ and we show that for each instance of such a model

⋄⋄ we can ‘compile’ that instance into a CSP‘program’.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 206 Domain Science & Engineering

207

8. Discrete Perdurants 8.4. Discrete Behaviours 8.4.5. A Model of Parts and Behaviours

A Model of Parts

59. The whole contains a set of
parts.

60. Parts are either atomic or
composite.

61. From composite parts one can
observe a set of parts.

62. All parts have unique
identifiers

type

59. W, P, A, C
60. P = A | C
value

61. obs Ps: (W|C) → P-set

type

62. PI
value

62. uid Π: P → Π

A Precursor for Requirements Engineering 207 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

208

8. Discrete Perdurants 8.4. Discrete Behaviours 8.4.5. A Model of Parts and Behaviours

63. From a whole and from any part of
that whole we can extract all
contained parts.

64. Similarly one can extract the unique
identifiers of all those contained
parts.

65. Each part may have a mereology
which may be “empty”.

66. A mereology ’s unique part
identifiers must refer to some other
parts other than the part itself.

value

63. xtr Ps: (W|P) → P-set

63. xtr Ps(w) ≡
63. {xtr Ps(p)|p:P•p ∈ obs Ps(p)}
63. pre: is W(p)
63. xtr Ps(p) ≡
63. {xtr Ps(p)|p:C•p∈ obs Ps(p)}∪{p}
63. pre: is P(p)
64. xtr Πs: (W|P) → Π-set

64. xtr Πs(wop) ≡
64. {uid P(p)|p ∈ xtr Ps(wop)}
65. mereo P: P → Π-set

axiom

66. ∀ w:W
66. let ps = xtr Ps(w) in

66. ∀ p:P • p ∈ ps •

66. ∀ π:Π • π ∈ mereo P(p) ⇒
66. π ∈ xtr Πs(p) end

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 208 Domain Science & Engineering

209

8. Discrete Perdurants 8.4. Discrete Behaviours 8.4.5. A Model of Parts and Behaviours

67. An attribute map of a part associates
with attribute names, i.e., type
names, their values, whatever they
are.

68. From a part one can extract its
attribute map.

69. Two parts share attributes if their

respective attribute maps share
attribute names.

70. Two parts share properties if the y

(a) either share attributes

(b) or the unique identifier of one is
in the mereology of the other.

type

67. AttrNm, AttrVAL,
67. AttrMap = AttrNm →m AttrVAL
value

68. attr AttrMap: P → AttrMap
69. share Attributes: P×P → Bool

69. share Attributes(p,p′) ≡

69. dom attr AttrMap(p) ∩
69. dom attr AttrMap(p′) 6= {}
70. share Properties: P×P → Bool

70. share Properties(p,p′) ≡
70(a). share Attributes(p,p′)
70(b). ∨ uid P(p) ∈ mereo P(p′)
70(b). ∨ uid P(p′) ∈ mereo P(p)

A Precursor for Requirements Engineering 209 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

210 8. Discrete Perdurants 8.4. Discrete Behaviours8.4.5. A Model of Parts and Behaviours

Conversion of Parts into CSP Programs

71. We can define the set of two element
sets of unique identifiers where

• one of these is a unique part
identifier and

• the other is in the mereology of
some other part.

• We shall call such two element
“pairs” of unique identifiers
connectors.

• That is, a connector is a two
element set, i.e., “pairs”, of unique

identifiers

⋄⋄ for which the identified parts
share properties.

72. Let there be given a ‘whole’, w:W.

73. To every such “pair” of unique
identifiers we associate a channel

• or rather a position in a matrix of
channels indexed over the “pair
sets” of unique identifiers.

• and communicating messages m:M.

type

71. K = Π-set axiom ∀ k:K•card k=2
value

71. xtr Ks: (W|P) → K-set

71. xtr Ks(wop) ≡
71. let ps = xtr Ps(w) in

71. {{uid P(p),π}|p:P,π:Π•p∈ ps
71. ∧ ∃ p′:P•p′6=p∧π=uid P(p′)
71. ∧ uid P(p)∈uid P(p′)} end

72. w:W
73. channel {ch[k]|k:xtr Ks(w)}:M

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 210 Domain Science & Engineering

211

8. Discrete Perdurants 8.4. Discrete Behaviours 8.4.5. A Model of Parts and Behaviours

74. Now the ‘whole’ behaviour
whole is the parallel
composition of part processes,
one for each of the immediate
parts of the whole.

75. A part process is

(a) either an atomic part
process, atom, if the part is
an atomic part,

(b) or it is a composite part
process, comp, if the part is
a composite part.

74. whole: W → Unit

74. whole(w) ≡
74. ‖ {part(uid P(p))(p) |
74. p:P•p ∈ xtr Ps(w)}

75. part: π:Π → P → Unit

75. part(π)(p) ≡
75(b). is A(p) → atom(π)(p),
75(b). → comp(π)(p)

A Precursor for Requirements Engineering 211 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

212

8. Discrete Perdurants 8.4. Discrete Behaviours 8.4.5. A Model of Parts and Behaviours

76. A composite process, part,
consists of

(a) a composite core process,
comp core, and

(b) the parallel composition of

part processes one for each
contained part of part.

77. An atomic process consists of
just an atomic core process,
atom core.

value

76. comp: π:Π → p:P →
76. in,out {ch[{π,π′}|{π′∈ mereo P(p)}]}
76. Unit

76. comp(π)(p) ≡
76(a). comp core(π)(p) ‖

76(b). ‖ {part(uid P(p′))(p′) |
76(b). p′:P•p′ ∈ obs Ps(p)}
77. atom: π:Π → p:P →
77. in,out {ch[{π,π′}|{π′∈ mereo P(p)}]}
77. Unit

77. atom(π)(p) ≡ atom core(π)(p)

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 212 Domain Science & Engineering

213

8. Discrete Perdurants 8.4. Discrete Behaviours 8.4.5. A Model of Parts and Behaviours

78. The core behaviours both

(a) update the part properties and

(b) recurses with the updated
properties,

(c) without changing the part
identification.

We leave the update action undefined.

value

78. core: π:Π → p:P →
78. in,out {ch[{π,π′}|{π′∈ mereo P(p)}]}
78. Unit

78. core(π)(p) ≡
78(a). let p′ = update(π)(p)

78(b). in core(π)(p′) end

78(b). assert: uid P(p)=π=uid P(p′)

A Precursor for Requirements Engineering 213 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

214
8. Discrete Perdurants 8.4. Discrete Behaviours8.4.5. A Model of Parts and Behaviours

• The model of parts can be said to be a syntactic model.

⋄⋄ No meaning was “attached” to parts.

• The conversion of parts into CSP programs can be said to be a
semantic model of parts,

⋄⋄ one which to every part associates a behaviour

⋄⋄ which evolves “around” a state

⋄⋄ which is that of the properties of the part.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 214 Domain Science & Engineering

2158. Discrete Perdurants 8.4. Discrete Behaviours8.4.6. Sharing Properties ≡ Mutual Mereologies

8.4.6. Sharing Properties ≡ Mutual Mereologies

• In the model of the tight relationship between parts and behaviours

⋄⋄ we “equated” two-element set of unique identifiers of parts that
share properties

⋄⋄ with the concept of connectors, and these again with channels.

• We need secure that this relationship,

⋄⋄ between the two-element connector sets of unique identifiers of
parts that share properties

⋄⋄ and the channels

with the following theorem:

A Precursor for Requirements Engineering 215 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

216 8. Discrete Perdurants 8.4. Discrete Behaviours8.4.6. Sharing Properties ≡ Mutual Mereologies

79. For every whole, i.e., domain,

80. if two distinct parts share properties

81. then their respective mereologies refer to one another,

82. and vice-versa

⋄⋄ if two distinct parts

⋄⋄ have their respective mereologies refer to one another,

⋄⋄ then they share properties.

theorem:

79. ∀ w:W,p,p′:P•p 6=p′∧{p,p′}⊆xtr Ps(w) ⇒
80. share Properties(p,p′)
82. ≡
81. uid P(p)∈mereo P(p′)∧uid P(p′)∈mereo P(p)

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 216 Domain Science & Engineering

2178. Discrete Perdurants 8.4. Discrete Behaviours8.4.7. Behaviour Signatures

8.4.7. Behaviour Signatures

• By a behaviour signature we shall understand the combination of three clauses:

⋄⋄ a message type clause,

◦◦ type M,

⋄⋄ possibly a channel index type clause,

◦◦ type Idx,

⋄⋄ a channel declaration clause

◦◦ channel ch:M or
channel {ch[i]|i:Idx•i ∈is}:M

where is is a set of Idx values (defined somehow, e.g., value is:Idx-set = ...
where . . . is an expression of Idx values), and, finally,

⋄⋄ a behaviour function signature:

◦◦ value beh: Π → P → out ch Unit or
value beh: Π → P → out ch Unit or
value beh: Π → P → in, out ch Unit or
value beh: Π → P → in, out {ch[i]|i:Idx• ∈is′} Unit or
value beh: Π → P → in {ch[i]|i:Idx• ∈is′} out {ch[j]|j:Idx• ∈is′} Unit,
etc.

A Precursor for Requirements Engineering 217 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

218
8. Discrete Perdurants 8.4. Discrete Behaviours8.4.7. Behaviour Signatures

• The Conversion of Parts into CSP Programs “story” gives the
general idea:

⋄⋄ To associate, in principle, with every part an own behaviour.

⋄⋄ (Example ?? (Slides ??–??) did not do that:

◦◦ in principle it did, but then it omitted describing

◦◦ behaviours of “un-interesting” parts !)

⋄⋄ Tentatively each behaviour signature, that is, each part
behaviour, is

◦◦ specified having a unique identifier type, respectively

◦◦ given a unique identifier argument.

Whether this tentative provision

◦◦ for unique identifiers is necessary

◦◦ will soon be revealed by further domain analysis.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 218 Domain Science & Engineering

2198. Discrete Perdurants 8.4. Discrete Behaviours8.4.7. Behaviour Signatures

⋄⋄ Before defining the behaviour process signatures

◦◦ the domain analyser examines each of the chosen behaviours

◦◦ with respect to its interaction with other chosen behaviours

◦◦ in order to decide on

∗ interaction message types and

∗ “dimensionality” of channels,

∗ whether singular or an array.

⋄⋄ Then the

◦◦ message types can be defined,

◦◦ the channels declared, and

◦◦ the behaviour function signature can be defined,

i.e., the full behaviour signature can be defined.

A Precursor for Requirements Engineering 219 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

220 8. Discrete Perdurants 8.4. Discrete Behaviours8.4.8. Behaviour Definitions

8.4.8. Behaviour Definitions

• We observe from the ‘Conversion of Parts into CSP Programs’
section, Slide 210,

⋄⋄ that the “generation” of the core processes was syntax directed,

⋄⋄ yet “delivered” a “flat” structure of parallel processes,

⋄⋄ that is, no processes “running”, embedded, within other
processes.

• We make this remark since parts did not follow that prescription:

⋄⋄ parts can, indeed, be embedded within one another.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 220 Domain Science & Engineering

2218. Discrete Perdurants 8.4. Discrete Behaviours8.4.8. Behaviour Definitions

• So our first “conclusion”26, with respect to the structure of domain
behaviours, is

⋄⋄ that we shall model all behaviours of the “whole” domain

⋄⋄ as a flat structure of concurrent behaviours —

◦◦ one for each part contained in the whole —

⋄⋄ which, when they need refer to properties of

⋄⋄ behaviours of parts within which the part

◦◦ on which “their” behaviour

is embedded

⋄⋄ then they interact with the behaviours of those parts,

⋄⋄ that is, communicate messages.

26We put double quotes around the term ‘conclusion’ (above) since that conclusion
was and is a choice, that is, not governed by necessity.

A Precursor for Requirements Engineering 221 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

222 8. Discrete Perdurants 8.4. Discrete Behaviours8.4.8. Behaviour Definitions

• The ‘Conversion of Parts into CSP Programs’ section, Slide 210,

⋄⋄ then suggested that there be

◦◦ one atom core behaviour for each atomic part, and

◦◦ one composite core behaviour for each composite part

of the domain.

• The domain analyser may find that some of these core behaviours

⋄⋄ are not necessary,

⋄⋄ that is, that they — for the chosen scope of the domain model —

⋄⋄ do not play a meaningful rôle.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 222 Domain Science & Engineering

2238. Discrete Perdurants 8.4. Discrete Behaviours8.4.8. Behaviour Definitions

Example: 37 “Redundant” Core Behaviours. We refer to the
series of examples around the transport net domain.

• Transport nets, n:N, consist of

⋄⋄ sets, hs:HS, of hubs and

⋄⋄ sets, ls:LS, of links.

• Yet we may decide, for one domain scope,

⋄⋄ to model only

◦◦ hub,

◦◦ link and

◦◦ vehicle

behaviours,

• and not ‘set of hubs’ and ‘set of links’ behaviours.

A Precursor for Requirements Engineering 223 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

224
8. Discrete Perdurants 8.4. Discrete Behaviours8.4.8. Behaviour Definitions

• Then the domain analyser can focus on exploring each individual
process behaviour.

• Again the Conversion of Parts into CSP Programs “story” gives the
general ideas that motivate the following:

• For each of the parts, p,
a behaviour expression can be “generated”:

⋄⋄ beh p(uid P(p))(p).

The idea is

⋄⋄ that (uid P(p)) uniquely identifies the part behaviour and

⋄⋄ that the part properties of (p) serve as the local state for beh p.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 224 Domain Science & Engineering

2258. Discrete Perdurants 8.4. Discrete Behaviours8.4.8. Behaviour Definitions

• Now we present an analysis of part behaviours around three
‘alternatives’:

⋄⋄ (i) a part behaviour which basically represents
a proactive behaviour;

⋄⋄ (ii) one which basically represents
a reactive behaviour; and

⋄⋄ (iii) one which, so-to-speak alternates between
proactive and reactive behaviours.

• What we are doing now is to examine

⋄⋄ the form of the core behaviours,

⋄⋄ cf. Item 78 (Slide 213).

A Precursor for Requirements Engineering 225 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

226 8. Discrete Perdurants 8.4. Discrete Behaviours8.4.8. Behaviour Definitions

• (i) A proactive behaviour is characterised by three facets.

⋄⋄ (i.1) taking the initiative to interact with other part behaviours
by offering output,

⋄⋄ (i.2) internally non-deterministically (⌈⌉) ranging interactions
over several alternatives, and

⋄⋄ (i.3) externally non-deterministically (⌈⌉⌊⌋) selecting which other
behaviour to interact with, i.e., to offer output to.

• (i.1) A proactive behaviour takes the initiative to interact by
expressing output clauses:

83. OP : ch ! val or ch[i] ! val or ch[i,j] ! val etc.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 226 Domain Science & Engineering

2278. Discrete Perdurants 8.4. Discrete Behaviours8.4.8. Behaviour Definitions

• (i.2) The proactive behaviour interaction request

⋄⋄ may range over either of a finite number of alternatives,

⋄⋄ one for each alternative, ai, “kind” of interaction.

⋄⋄ We may express such a non-deterministic (alternative) choice
either as follows:

84. NIP : type Choice = a1 ⌈⌉ a2 ⌈⌉ ... ⌈⌉ an

value let c:Choice in

case c of a1 → E1, a2 → E2, ..., an → En end end

⋄⋄ or, which is basically the same,

85. NIP : value ... E1 ⌈⌉ ... ⌈⌉ En ...

⋄⋄ where each Ei usually contains an input clause, for example, ch ?.

A Precursor for Requirements Engineering 227 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

228 8. Discrete Perdurants 8.4. Discrete Behaviours8.4.8. Behaviour Definitions

• (i.3) The proactive external non-deterministic choice is directed at
either of a number of other part behaviours.

⋄⋄ This proactive selection is expressed

86. NXP : Ci ⌈⌉⌊⌋ Cj ⌈⌉⌊⌋ ... ⌈⌉⌊⌋ Ck

◦◦ where each of the Clauses

◦◦ express respective output clauses

◦◦ (usually) directed at different part behaviours,

◦◦ say ch[i] ! val. ch[j] ! val, etc., ch[k] ! val.

⋄⋄ Another way of expressing external non-deterministic choice
selection is

87. NXP : ⌈⌉⌊⌋ { ...; ch[i] ! fct(i) ; ... | i:Idx•i ∈ is }
• Output clauses [(i.1)], Item 84 OP ,

⋄⋄ may [(i.2)] occur in the Ei clauses of NIP , Items 85 and 86 and

⋄⋄ must [(i.3)] occur in each of the Ci clauses of NXP , Item 87.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 228 Domain Science & Engineering

2298. Discrete Perdurants 8.4. Discrete Behaviours8.4.8. Behaviour Definitions

• (ii) A reactive behaviour is characterised by three

⋄⋄ (ii.1) offering to interact with other part behaviours by offering to
accept input,

⋄⋄ (ii.2) internally non-deterministically (⌈⌉) ranging interactions
over several alternatives, and

⋄⋄ (ii.3) externally non-deterministically (⌈⌉⌊⌋) selecting which other
behaviour to interact with, i.e., to accept input from.

• (ii.1) A reactive behaviour expresses input clauses:

88. IR: ch ? or ch[i] ? or ch[i,j] ? etc.

A Precursor for Requirements Engineering 229 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

230 8. Discrete Perdurants 8.4. Discrete Behaviours8.4.8. Behaviour Definitions

• (ii.2) The reactive behaviour

⋄⋄ may range over either of a finite number of alternatives,

⋄⋄ one for each alternative, ai, “kind” of interaction.

⋄⋄ We may express such a non-deterministic (alternative) choice
either as follows:

89. NIR: value let c:Choice in

case c of a1 → E1, ..., an → En end end

where each of the expressions, Ei, may, and usually contains a
input clause (I, Item 88 on the preceding page).

⋄⋄ Thus the NIR clause is almost identical to the NIP clause,
Item 85 on page 227.

⋄⋄ Hence another way of expressing external non-deterministic
choice is

90. NXR: ⌈⌉ { ...; ch[i] ! fct(i) ; ... | i:Idx•i ∈ is }.
c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 230 Domain Science & Engineering

2318. Discrete Perdurants 8.4. Discrete Behaviours8.4.8. Behaviour Definitions

• (ii.3) The reactive behaviour selection is directed at either of a
number of other part behaviours.

⋄⋄ This external non-deterministic choice is expressed

91. NXR: Ci ⌈⌉⌊⌋ Cj ⌈⌉⌊⌋ ... ⌈⌉⌊⌋ Ck

◦◦ where each of the Clauses

◦◦ express respective input clauses

◦◦ (usually) directed at different part behaviours,

◦◦ say ch[i] ?. ch[j] ?, etc., ch[k] ?.

⋄⋄ Another way of expressing external non-deterministic choice
selection is

92. NXR: ⌈⌉⌊⌋ { ...; ch[i] ? ; ... | i:Idx•i ∈ is }
⋄⋄ Thus the NXR clauses are almost identical to the NXP

clauses, Items 86–87.

A Precursor for Requirements Engineering 231 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

232 8. Discrete Perdurants 8.4. Discrete Behaviours8.4.8. Behaviour Definitions

• Input clauses [(ii.1)], Item 88 IR,

⋄⋄ may [(ii.2)] occur in the Ei clauses of NIR, Items 89–90 and

⋄⋄ must [(ii.3)] occur in each of the Ci clauses of NXR, Items 91–92.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 232 Domain Science & Engineering

2338. Discrete Perdurants 8.4. Discrete Behaviours8.4.8. Behaviour Definitions

• (iii) An alternating proactive behaviour and reactive behaviour

⋄⋄ is characterised by expressing both

◦◦ reactive behaviour and

◦◦ proactive behaviours

combined by either

◦◦ non-deterministic internal choice (⌈⌉) or

◦◦ non-deterministic external choice (⌈⌉⌊⌋) combinators.

For example:

93. (NIPi
[⌈⌉or⌈⌉⌊⌋]NXPj

)[⌈⌉or⌈⌉⌊⌋](NIRk
[⌈⌉or⌈⌉⌊⌋]NXRℓ

).

• The meta-clause [⌈⌉or⌈⌉⌊⌋] stands for either ⌈⌉ or ⌈⌉⌊⌋.
• Here there usually is a disciplined use of input/output clauses.

A Precursor for Requirements Engineering 233 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

234 8. Discrete Perdurants 8.4. Discrete Behaviours8.4.8. Behaviour Definitions

Example: 38 A Pipeline System Behaviour.

• We refer to Examples

⋄⋄ 15 (Slide 94) and

⋄⋄ 22–24 (Slides

⋄⋄ 121–129)

⋄⋄ and especially Examples 25–26 (Slides 131–135).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 234 Domain Science & Engineering

2358. Discrete Perdurants 8.4. Discrete Behaviours8.4.8. Behaviour Definitions

• We consider (cf. Example 23) the pipeline system units to represent
also the following behaviours:

⋄⋄ pls:PLS, Item 4(a) on page 123, to also represent the system
process, pipeline system, and for each kind of unit,
cf. Example 15, there are the unit processes:

◦◦ unit,

◦◦ well (Item 3(c) on page 95),

◦◦ pipe (Item 3(a)),

◦◦ pump (Item 3(a)),

◦◦ valve (Item 3(a)),

◦◦ fork (Item 3(b)),

◦◦ join (Item 3(b)) and

◦◦ sink (Item 3(d) on page 95).

A Precursor for Requirements Engineering 235 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

236 8. Discrete Perdurants 8.4. Discrete Behaviours8.4.8. Behaviour Definitions

channel

{ pls u ch[ui]:ui:UI•i ∈ UIs(pls) } MUPLS
{ u u ch[ui,uj]:ui,uj:UI•{ui,uj}⊆UIs(pls) } MUU

type

MUPLS, MUU
value

pipeline system: PLS → in,out { pls u ch[ui]:ui:UI•i ∈ UIs(pls) } Unit

pipeline system(pls) ≡ ‖ { unit(u)|u:U•u ∈ obs Us(pls) }
unit: U → Unit

unit(u) ≡
3(c). is We(u) → well(uid U(u))(u),
3(a). is Pu(u) → pump(uid U(u))(u),
3(a). is Pi(u) → pipe(uid U(u))(u),
3(a). is Va(u) → valve(uid U(u))(u),
3(b). is Fo(u) → fork(uid U(u))(u),
3(b). is Jo(u) → join(uid U(u))(u),
3(d). is Si(u) → sink(uid U(u))(u)

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 236 Domain Science & Engineering

2378. Discrete Perdurants 8.4. Discrete Behaviours8.4.8. Behaviour Definitions

• We illustrate essentials of just one of these behaviours.

3(b). fork: ui:UI → u:U → out,in pls u ch[ui],
in { u u ch[iui,ui] | iui:UI • iui ∈ sel UIs in(u) }
out { u u ch[ui,oui] | iui:UI • oui ∈ sel UIs out(u) } Unit

3(b). fork(ui)(u) ≡
3(b). let u′ = core fork behaviour(ui)(u) in

3(b). fork(ui)(u′) end

• The core fork behaviour(ui)(u) distributes

⋄⋄ what oil (or gas) in receives,

◦◦ on the one input sel UIs in(u) = {iui},
◦◦ along channel u u ch[iui]

⋄⋄ to its two outlets

◦◦ sel UIs out(u) = {oui1,oui2},
◦◦ along channels u u ch[oui1], u u ch[oui2].

A Precursor for Requirements Engineering 237 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

238 8. Discrete Perdurants 8.4. Discrete Behaviours8.4.8. Behaviour Definitions

• The core fork behaviour(ui)(u) also communicates with the
pipeline system behaviour.

⋄⋄ What we have in mind here is to model a traditional supervisory
control and data acquisition, SCADA system.

Figure 1: A supervisory control and data acquisition system

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 238 Domain Science & Engineering

2398. Discrete Perdurants 8.4. Discrete Behaviours8.4.8. Behaviour Definitions

• SCADA is then part of the pipeline system behaviour.

94.

94. pipeline system: PLS → in,out { pls u ch[ui]:ui:UI•i ∈ UIs(pls) } Unit

94. pipeline system(pls) ≡ scada(props(pls)) ‖ ‖{ unit(u)|u:U•u ∈ obs Us(pls)

• props was defined on Slide 144.

A Precursor for Requirements Engineering 239 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

240 8. Discrete Perdurants 8.4. Discrete Behaviours8.4.8. Behaviour Definitions

95. scada non-deterministically (internal choice, ⌈⌉), alternates between
continually

(a) doing own work,

(b) acquiring data from pipeline units, and

(c) controlling selected such units.

type

95. Props
value

95. scada: Props → in,out { pls ui ch[ui] | ui:UI•ui ∈ ∈ uis } Unit

95. scada(props) ≡
95(a). scada(scada own work(props))
95(b). ⌈⌉ scada(scada data acqui work(props))
95(c). ⌈⌉ scada(scada control work(props))

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 240 Domain Science & Engineering

2418. Discrete Perdurants 8.4. Discrete Behaviours8.4.8. Behaviour Definitions

• We leave it to the listeners imagination to describe scada own work.

96. The scada data acqui work

(a) non-deterministically, external choice, ⌈⌉⌊⌋, offers to accept data,

(b) and scada input updates the scada state —

(c) from any of the pipeline units.

value

96. scada data acqui work: Props → in,out { pls ui ch[ui] | ui:UI•ui ∈ ∈ uis
96. scada data acqui work(props) ≡
96(a). ⌈⌉⌊⌋ { let (ui,data) = pls ui ch[ui] ? in

96(b). scada input update(ui,data)(props) end

96(c). | ui:UI • ui ∈ uis }

96(b). scada input update: UI × Data → Props → Props
type

96(a). Data

A Precursor for Requirements Engineering 241 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

242 8. Discrete Perdurants 8.4. Discrete Behaviours8.4.8. Behaviour Definitions

97. The scada control work

(a) analyses the scada state (props) thereby selecting a pipeline unit,
ui, and the controls, ctrl, that it should be subjected to;

(b) informs the units of this control, and

(c) scada output updates the scada state.

97. scada control work: Props → in,out { pls ui ch[ui] | ui:UI•ui ∈ ∈ uis }
97. scada control work(props) ≡
97(a). let (ui,ctrl) = analyse scada(ui,props) in

97(b). pls ui ch[ui] ! ctrl ;
97(c). scada output update(ui,ctrl)(props) end

97(c). scada output update UI × Ctrl → Props → Props
type

97(a). Ctrl

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 242 Domain Science & Engineering

243
8. Discrete Perdurants 8.4. Discrete Behaviours8.4.8. Behaviour Definitions

Modelling Behaviours, I/II

• The domain describer has decided that an entity is a perdurant
and is, or represents a behaviour.

⋄⋄ The domain describer has further decided that the observed
behaviour is of a class of behaviours — of the “same kind” —
that need be described.

⋄⋄ By behaviours of the ‘same kind’ is meant that these can be
described by the same channel declarations, function signature
and function definition.

A Precursor for Requirements Engineering 243 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

244
8. Discrete Perdurants 8.4. Discrete Behaviours8.4.8. Behaviour Definitions

Modelling Behaviours, II/II

• First the domain describer must decide on
the underlying function signature.

⋄⋄ It must be decided which synchronisation and communication

◦◦ inputs and

◦◦ outputs

this behaviour requires, i.e., the in,out clause of the signature,

⋄⋄ that also includes the “discovery” of
necessary channel declarations.

• Finally the function definition must be decided upon.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 244 Domain Science & Engineering

245
9. Discrete Perdurants

9. Continuous Perdurants

• By a continuous perdurant we shall understand
a continuous behaviour.

• This section serves two purposes:

⋄⋄ to point out that believable system descriptions must entail both

◦◦ a discrete phenomena domain description and

◦◦ a continuous phenomena mathematical model.

⋄⋄ and this poses some semantics problems:

◦◦ the formal semantics of the
discrete phenomena description language and

◦◦ the meta-mathematics of, for example, differential equations,

at least as of today, August 10, 2012, are not commensurable !

⋄⋄ That is, we have a problem —
as will be outlined later in this lecture.

A Precursor for Requirements Engineering 245 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

246
9. Continuous Perdurants 9.1. Some Examples

9.1. Some Examples

Example: 39 Continuous Behaviour: The Weather. We give a familiar
example of continuous behaviour.

• The weather — understood as the time-wise evolution of a number of attributes
of the weather material:

⋄⋄ temperature,

⋄⋄ wind direction,

⋄⋄ wind force,

⋄⋄ atmospheric pressure,

⋄⋄ humidity,

⋄⋄ sky formation
(clear, cloudy, ...),

⋄⋄ precipitation,

⋄⋄ etcetera.

• That is, weather is seen as the state of the atmosphere as it evolves over time.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 246 Domain Science & Engineering

2479. Continuous Perdurants 9.1. Some Examples

Example: 40 Continuous Behaviour: Road Traffic. We give another
familiar example of continuous behaviour.

• The automobile traffic is the time-wise evolution of cars along a net has the
following additional attributes:

⋄⋄ car identity (CI),

⋄⋄ position (P, on the net),

⋄⋄ direction (D),

⋄⋄ velocity (V),

⋄⋄ acceleration (A),

⋄⋄ etcetera (...).

• The equation below captures this:

TF = T → (CI →m (P×D×V×A×...))

• We refer to Example??

⋄⋄ specifically the veh, hub and mon behaviours.

⋄⋄ These “mimic” a discretised version of the above:

TF = T →m (CI →m (P×D×V×A×...))

A Precursor for Requirements Engineering 247 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

248 9. Continuous Perdurants 9.1. Some Examples

Example: 41 Pipeline Flows. A last example of continuous
behaviour.

• We refer to Examples 13, 15, 22–26, 41–45 and 49.

• These examples focused on

⋄⋄ the atomicparts and the composite parts of pipelines,

⋄⋄ and dealt with the liquid or gas materials as they related to
pipeline units.

• In the present example we shall focus on

⋄⋄ the overall material flow “across” a pipeline.

⋄⋄ in particular the continuity as

⋄⋄ as contrasted with the pipeline unit discrete

⋄⋄ aspects of flow.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 248 Domain Science & Engineering

2499. Continuous Perdurants 9.1. Some Examples

• Which, then, are these pipeline system continuity concerns ?

⋄⋄ In general we are interested in

1. whether the flow is laminar or turbulent:

(a) within a unit, or

(b) within an entire, possibly intricately networked pipeline;

2. what the shear stresses are;

3. whether there are undesirable pressures ;

4. whether there are leaks above normal values;

etcetera.

• To answer questions like those posed in

⋄⋄ Items 1(a) and 2, we need not build up the models sketched in
Examples 13, 15, 25, 26, 41–45 and 49.

⋄⋄ But for questions like those posed in Items 1(b), 3 and 4 we need
such models.

A Precursor for Requirements Engineering 249 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

250
9. Continuous Perdurants 9.1. Some Examples

• To answer any of the above questions, and many others,
we need establish, in the case of pipelines, fluid dynamics models
[Batchelor1967,Thorley1991,Wendt1992,Coulbeck2010].

• These models involve such mathematical as are based,
for example, on

⋄⋄ Newtonian Fluid Behaviours,

⋄⋄ Bernoulli Equations,

⋄⋄ Navier–Stokes Equations,

⋄⋄ etcetera.

• Each of these mathematical models

⋄⋄ capture the dynamics of one specific pipeline unit,

⋄⋄ not assemblies of two or more.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 250 Domain Science & Engineering

251
9. Continuous Perdurants 9.2. Two Kinds of Continuous System Models

9.2. Two Kinds of Continuous System Models

• There are at least two different kinds of mathematical models for
continuous systems.

⋄⋄ There are the models which are based on physics models
mentioned above, for example

◦◦ the dynamics of flows in networks,

⋄⋄ and there are the models which builds on control theory to
express automatic control solutions to the monitoring & control
of pipelines, for example:

◦◦ the opening, closing and setting of pumps, and

◦◦ the opening, closing and setting of valves

depending on monitored values of dynamic well, pipe, pump,
valve, fork, join and sink attributes.

A Precursor for Requirements Engineering 251 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

252 9. Continuous Perdurants 9.2. Two Kinds of Continuous System Models

⋄⋄ Example 41 on page 248 assumes

◦◦ the fluid mechanics domain models

◦◦ to complement the discrete domain model of Example 38 on
page 234,

whereas

⋄⋄ Example 44 on page 271

◦◦ builds on Examples 41 and 38

◦◦ but assumes that automatic monitoring & control
requirements prescriptions

◦◦ have been derived, in the usual way from the former fluid
mechanics domain models.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 252 Domain Science & Engineering

253
9. Continuous Perdurants 9.3. Motivation for Consolidated Models

9.3. Motivation for Consolidated Models

• By a consolidated model

⋄⋄ we shall understand a formal description

⋄⋄ that brings together both

◦◦ discrete

∗ for example TripTych style domain description

and

◦◦ continuous

∗ for example classical mathematical description

⋄⋄ models of a system.

A Precursor for Requirements Engineering 253 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

254 9. Continuous Perdurants 9.3. Motivation for Consolidated Models

• We shall motivate the need for consolidated models,
that is for building both

⋄⋄ the novel domain descriptions,

◦◦ such as this tutorial suggests,

◦◦ with its many aspects of discreteness,

and the

⋄⋄ the classical mathematical models,

◦◦ as this section suggests,

◦◦ including, for example, as in the case of Example 41, fluid
dynamics mathematics.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 254 Domain Science & Engineering

2559. Continuous Perdurants 9.3. Motivation for Consolidated Models

• This motivation really provides the justification
for bringing the two disciplines together:

⋄⋄ discrete system domain modelling with

⋄⋄ continuous system physics modelling

in this tutorial.

A Precursor for Requirements Engineering 255 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

256
9. Continuous Perdurants 9.3. Motivation for Consolidated Models

• The classical mathematical models of, for example, pipelines,

⋄⋄ model physical phenomena within parts or within materials;

⋄⋄ and also combinations of neighbouring,

◦◦ parts with parts and ◦◦ parts with materials.

⋄⋄ But classical mathematical modelling

◦◦ cannot model continuous phenomena

◦◦ for other than definite concrete,
specific combinations of parts and/or materials.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 256 Domain Science & Engineering

2579. Continuous Perdurants 9.3. Motivation for Consolidated Models

• The kind of domain modelling,

⋄⋄ that is brought forward in this tutorial can,

⋄⋄ within one domain description

⋄⋄ model a whole class,

⋄⋄ indeed an indefinite,

⋄⋄ class of systems.

A Precursor for Requirements Engineering 257 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

258 9. Continuous Perdurants 9.4. Generation of Consolidated Models

9.4. Generation of Consolidated Models

• The idea is therefore this

⋄⋄ create a domain description
for a whole, the indefinite class of “alike” systems, to wit

◦◦ for an indefinite class of pipelines,

◦◦ for an indefinite class of container lines,

◦◦ for an indefinite class of health care systems,

⋄⋄ and then “adorn” such a description

◦◦ first with classical mathematical models
of simple parts of such systems; and

◦◦ then “replicate” these mathematical models across the
indefinite class of discrete models

◦◦ by “pairing”

∗ each definite classical concrete mathematical model

∗ with an, albeit abstract general discrete model.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 258 Domain Science & Engineering

2599. Continuous Perdurants 9.4. Motivation for Consolidated Models9.4.1. The Pairing Process

9.4.1. The Pairing Process

• The “pairing process” depends on a notion of boundary condition.

⋄⋄ The boundary conditions for mereology-related parts are, yes,

◦◦ expressed by their mereology,

◦◦ that is, by how the parts fit together.

⋄⋄ The boundary conditions for continuous models are understood as

◦◦ the set of conditions specified for the solution

◦◦ to a set of differential equations at the boundary
between the parts being individually modelled.

A Precursor for Requirements Engineering 259 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

260 9. Continuous Perdurants 9.4. Motivation for Consolidated Models9.4.1. The Pairing Process

• In pairing we take the “cue”, i.e., directives, from

⋄⋄ the discrete domain model
for the generic part and its related material

⋄⋄ since it is the more general, and

⋄⋄ “match” its mereology with

⋄⋄ the continuous mathematics model
of a part and its related material

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 260 Domain Science & Engineering

2619. Continuous Perdurants 9.4. Motivation for Consolidated Models9.4.2. Matching

9.4.2. Matching

• Matching now means the following.

⋄⋄ Let DP,M
◦◦ designate a Domain Description

◦◦ for a part and/or a material, of type P, respectively M,

◦◦ zero or one part type and zero or one material type(s).

⋄⋄ Let MP,M
◦◦ designate a Mathematical Model

◦◦ for a part and/or a material of type P, respectively M,

◦◦ zero or one part type and zero or one material type(s).

A Precursor for Requirements Engineering 261 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

262 9. Continuous Perdurants 9.4. Motivation for Consolidated Models9.4.2. Matching

Example: 42 A Transport Behaviour Consolidation.

• An example DP,M could be

⋄⋄ the one, for vehicles, shown in Example?? (Slides??–205)

⋄⋄ as specifically expressed in the two frames:

◦◦ ‘The Vehicle Behaviour at Hubs’ on Slide 201 and

◦◦ ‘The Vehicle Behaviour along Links’ on Slide 203.

• On Slide 201 of Example?? notice vehicle vi movement at hub in formula line

⋄⋄ 52(a) — apparently not showing any movement and

⋄⋄ 52((b))iii — showing movement from hub onto link.

• On Slide 203 notice vehicle vi movements along link in formula lines

⋄⋄ 53(a) — no movement (stopped or parked),

⋄⋄ 53((c))i — incremental movement along link, and

⋄⋄ 53((c))iiB — movement from link into hub.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 262 Domain Science & Engineering

2639. Continuous Perdurants 9.4. Motivation for Consolidated Models9.4.2. Matching

• The corresponding example MP,M might then be

⋄⋄ modelling these movements and no movements

⋄⋄ requiring access to such attributes as

◦◦ link length,

◦◦ vehicle position,

◦◦ vehicle velocity,

◦◦ vehicle acceleration,

etcetera.

• This model would need to abstract the non-deterministic behaviour
of the driver:

⋄⋄ accelerating, ⋄⋄ decelerating or ⋄⋄ steady velocity.

• Example??’s model of vehicles’ link position in terms of a fragment
(δ) can be expected to appear in MP,M as an x, viewing the link
as an x-axis.

A Precursor for Requirements Engineering 263 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

264 9. Continuous Perdurants 9.4. Motivation for Consolidated Models9.4.2. Matching

Example: 43 A Pipeline Behaviour Consolidation. We continue the line of
exemplifying formalisations of pipelines, cf. Examples 15 (Slide 94) and 22–24
(Slides 121–129) and especially Examples 25–26 (Slides 131–135).

• Let the DP,M model be focused on the flows and leaks of pipeline units,
cf. Examples 25 and 26.

• The MP,M model would then Mathematically model the fluid dynamics of the
pipeline material per pipeline unit: flow and part actions and reactions for any of
the corresponding Domain models:

⋄⋄ wells, Dwell
U,O → Mwell

U,O,

⋄⋄ pipes, Dpipe
U,O

→ Mpipe
U,O

,

⋄⋄ pumps, Dpump
U,O

→ Mpump
U,O

,

⋄⋄ valves, Dvalve
U,O → Mvalve

U,O ,

⋄⋄ forks, Dfork
U,O → Mfork

U,O,

⋄⋄ joins, Djoin
U,O

→ Mjoin
U,O

, and

⋄⋄ sinks Dsink
U,O → Msink

U,O.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 264 Domain Science & Engineering

2659. Continuous Perdurants 9.4. Motivation for Consolidated Models9.4.2. Matching

• Some more model annotations,

⋄⋄ reflecting the match between DP,M and MP,M,

seem relevant.

⋄⋄ Thus we further subscript DP,M optionally with

◦◦ a unique identifier variable, π, and

◦◦ the properties pi, pj, ..., pk where

∗ pi is a property name of part type P or of material type M,

∗ and where these property names typically are the distinct attribute
names of P and/or M,

to arrive at Dπ
P,Mpi,pj,...,pk

.

⋄⋄ Here π is a variable name for p:P, i.e., π is uid P(p).

⋄⋄ Do not confuse property names, pi etc., with part names, p.

A Precursor for Requirements Engineering 265 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

266 9. Continuous Perdurants 9.4. Motivation for Consolidated Models9.4.2. Matching

• And we likewise adorn MP,M optionally with

⋄⋄ superscripts pi, pj, ..., pk and

⋄⋄ subscripts xi, xj, ..., xk where

◦◦ pi, pj, ..., pk are as for Dπ
P,Mpi,pj,...,pk

and

◦◦ xi, xj, ..., xk are the names of the variables occurring in
MP,M
∗ possibly in its partial differential equations,

∗ possibly in its difference equations,

∗ possibly in its other mathematical expressions of the MP,M
model.

to arrive at Mπ

P,M
pi,pj,...,pk
xi,xj,...,xk

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 266 Domain Science & Engineering

267
9. Continuous Perdurants 9.4. Motivation for Consolidated Models9.4.2. Matching

• The “adornments” are the result of an analysis which

⋄⋄ identifies the variables of MP,M
⋄⋄ with the properties of DP,M.

• Common to all conventional mathematical models

⋄⋄ is that they all operate with a very simple type concept:

◦◦ Reals, Integers,

◦◦ arrays (vectors, matrices, and tensors),

◦◦ sets of the above and sets.

• Common to all domain model descriptions

⋄⋄ is that they all operate with a rather sophisticated type concept:

◦◦ abstract types and concrete types,

◦◦ union (Ti|Tj...) of these,

◦◦ sets, Cartesians, lists, maps, and partial functions and total
functions over these, etcetera.

A Precursor for Requirements Engineering 267 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

268 9. Continuous Perdurants 9.4. Motivation for Consolidated Models9.4.3. Model Instantiation

9.4.3. Model Instantiation

• The above models, DP,M and MP,M, differ as follows.

⋄⋄ The DP,M models (are claimed to) hold for indefinite sets of
domains “of the same kind”:

◦◦ The axioms and invariants, cf.

∗ Example 12 on page 86,

∗ Examples 25–26 (Slides 131–134) and

∗ Example 28 on page 140,

are universally quantified over all transport nets.

• The MP,M models express no such logic.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 268 Domain Science & Engineering

2699. Continuous Perdurants 9.4. Motivation for Consolidated Models9.4.3. Model Instantiation

• The above difference can, however, be ameliorated.

⋄⋄ For a given, that is, an instantiated domain,

◦◦ we can “compile” the DP,M models

◦◦ into a set of models,

◦◦ one per part of that domain;

⋄⋄ similarly, with the binding of model MP,M variables to
instantiated model DP,M attributes,

◦◦ we can “compile” the MP,M models

◦◦ into as set of — instantiated MP,M models,

◦◦ one per part of that domain.

A Precursor for Requirements Engineering 269 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

270 9. Continuous Perdurants 9.4. Motivation for Consolidated Models9.4.3. Model Instantiation9.4.3.1. Model Instantiation – in Principle

9.4.3.1 Model Instantiation – in Principle

• Since this partial evaluation compilation can be (almost) automated,

⋄⋄ there is really no reason to actually perform it;

⋄⋄ all necessary theorems should be derivable from the annotated
models.

◦◦ Dπ
P,Mpi,pj,...,pk

and ◦◦ Mπ

P,M
pi,pj,...,pk
xi,xj,...,xk

.

• That is, as far as a domain understanding concerns

⋄⋄ we might, with

◦◦ continuous mathematical modelling and

◦◦ mostly discrete domain modelling

⋄⋄ very well have achieved all we can possibly, today, achieve.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 270 Domain Science & Engineering

2719. Continuous Perdurants 9.4. Motivation for Consolidated Models9.4.3. Model Instantiation9.4.3.2. Model Instantiation – in Practice

9.4.3.2 Model Instantiation – in Practice

• We continue Example 38 (Slides 234–242).

⋄⋄ The definition of pipeline system function (Slide 239)
indicates the basis for an instantiation.

Example: 44 An Instantiated Pipeline System.

• Figure 2 indicates an instantiation.

ue
ug

uu

us

ur

uquo

ui

ua

ub
uc

ud
uf

uj
uk

ul
uh

um

un up

ut

uv
uw

ux
uy

uz

Figure 2: A specific pipeline

A Precursor for Requirements Engineering 271 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

272 9. Continuous Perdurants 9.4. Motivation for Consolidated Models9.4.3. Model Instantiation9.4.3.2. Model Instantiation – in Practice

• That pipeline system gives rise to the following instantiation.

scada(pro)‖
unit(ua)‖unit(ub)‖unit(uc)‖unit(ud)‖unit(ue)‖unit(uf)‖unit(ug)‖
unit(uh)‖
unit(ui)‖unit(uj)‖unit(uk)‖unit(ul)‖
unit(um)‖unit(un)‖...‖unit(uo)‖unit(up)‖unit(uq)‖
unit(ur)‖
unit(us)‖unit(ut)‖unit(uu)‖
unit(uv)‖unit(uw)‖unit(ux)‖unit(uy)‖unit(uz)

• It is in the scada behaviour, that each of the Muid U(u)
U,O models are

‘instantiated’.

• The above instantiated model

⋄⋄ is not a domain model of a generic pipeline system

⋄⋄ but is a requirements model for the monitoring & control
of a specific pipeline system.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 272 Domain Science & Engineering

273
9. Continuous Perdurants 9.5. An Aside on Time

9.5. An Aside on Time

• An important aspect of domain modelling is the description of time
phenomena:

⋄⋄ absolute time (or just time) and

⋄⋄ time intervals.

• We shall, regrettably, not cover this facet in this tutorial, but refer
to

⋄⋄ a number of specifications expressed in combined uses of

◦◦ the RAISE [RaiseMethod] combined with

◦◦ the DC: Duration Calculus [zcc+mrh2002].

⋄⋄ We could also express these specifications using TLA+

[Lamport-TLA+02]: Lamport’s Temporal Logic of

Actions.

• We otherwise refer to [TheSEBook2wo] (Chap. 15.).

A Precursor for Requirements Engineering 273 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

274 9. Continuous Perdurants 9.6. A Research Agenda

9.6. A Research Agenda

• This section opens two main lines of research problems;

⋄⋄ methodology problems cum computing science problems and

⋄⋄ computer science cum mathematics problems.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 274 Domain Science & Engineering

2759. Continuous Perdurants 9.6. A Research Agenda9.6.1. Computing Science cum Programming Methodology Problems

9.6.1. Computing Science cum Programming Methodology Problems

• Some of the methodology problems are

⋄⋄ techniques for developing continuous mathematics models —
which we leave to the relevant fields of

◦◦ physics and

◦◦ control theory

to “deliver”;

⋄⋄ contained in this are more detailed techniques for matching
DD,M and MD,M models,

◦◦ that is, for identifying and pairing the pis and xis in

∗ Dπ
P,Mpi,pj,...,pk

and ∗ Mπ

P,M
pi,pj,...,pk
xi,xj,...,xk

and

◦◦ for instantiating these.

A Precursor for Requirements Engineering 275 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

276 9. Continuous Perdurants 9.6. A Research Agenda9.6.1. Computing Science cum Programming Methodology Problems

• A problem of current programming methodology in

⋄⋄ that it has for most of its “existence”

⋄⋄ relied on discrete mathematics

⋄⋄ and not sufficiently educated and trained

⋄⋄ its candidates in continuous mathematics.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 276 Domain Science & Engineering

277
9. Continuous Perdurants 9.6. A Research Agenda9.6.2. Mathematical Modelling Problems

9.6.2. Mathematical Modelling Problems

• Some of the open mathematics problems are

⋄⋄ the lack of well-understood interfaces between

◦◦ discrete mathematics models and

◦◦ continuous mathematics models;

⋄⋄ and the lack of proof systems across the two modes of expression.

A Precursor for Requirements Engineering 277 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

278 9. Continuous Perdurants 9.6. A Research Agenda9.6.2. Mathematical Modelling Problems

• By well-understood interfaces between the two modes of expression,

⋄⋄ the discrete mathematics models and

⋄⋄ the continuous mathematics models;

we mean that the semantics models of

⋄⋄ the discrete mathematics formal specification languages and

⋄⋄ the continuous mathematics specification notations,

at this time, August 10, 2012, are not commensurate, that is, do
not “carry over”:

⋄⋄ a variable, a of some, even abstract type, say A,

⋄⋄ cannot easily be related to what it has to be related to, namely

⋄⋄ a variable, x of some concrete, mathematical type, say Real or
Integer, or arrays of these, etc.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 278 Domain Science & Engineering

2799. Continuous Perdurants 9.6. A Research Agenda9.6.2. Mathematical Modelling Problems

• Lack of proof systems across the two modes of expression.

⋄⋄ the discrete mathematics models and

⋄⋄ the continuous mathematics models;

we mean,

⋄⋄ firstly, that the former problem of lack of clear a↔x relations is
taken to prevent such proof systems,

⋄⋄ secondly, that mathematics essentially does not embody a
“formal language”.

• But nobody is really looking into, that is, researching possible
“solutions” to these problems.

A Precursor for Requirements Engineering 279 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

280 10. Continuous Perdurants

10. Discussion of Entities

• We have examined the concepts of entities, endurant and perdurant.

• We have not examined those “things” (of a domain)
which “fall outside” this categorisation.

⋄⋄ That would lead to a rather lengthy discourse.

⋄⋄ In the interest of “really understanding” what can be described
such a computer science study should be made.

⋄⋄ Philosophers have clarified the issues in centuries of studies.

◦◦ Their interest is in

∗ identifying the issues and

∗ clarifying the questions.

◦◦ Computer scientists are interested in answers.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 280 Domain Science & Engineering

28110. Discussion of Entities

• We see entities as either

⋄⋄ endurants or

⋄⋄ perdurants

or as either

⋄⋄ discrete or

⋄⋄ continuous.

• We analyse discrete endurants into atomic and composite parts with

⋄⋄ observers,

⋄⋄ unique identifiers,

⋄⋄ mereology and

⋄⋄ attributes.

• And we analyse perdurants into actions, events and behaviours.

A Precursor for Requirements Engineering 281 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

282 10. Discussion of Entities

• This domain ontology is entirely a pragmatic one:

⋄⋄ it appears to work;

⋄⋄ it has been used in the description of numerous cases;

⋄⋄ it leads to descriptions which in a straightforward manner lend

◦◦ themselves to the “derivation”

◦◦ of significant fragments of requirements;

⋄⋄ and appears not to stand in the way of obtaining remaining
requirements.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 282 Domain Science & Engineering

28310. Discussion of Entities

• Most convincingly to us is that the concepts of our approach

⋄⋄ endurants and perdurants,

⋄⋄ atomic and composite parts,

⋄⋄ mereology and attributes,

⋄⋄ actions, events and behaviours

fit it with major categories of philosophically analyses.

A Precursor for Requirements Engineering 283 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

284

End of Lecture 5: Last Session — Perdurant Entities

Behaviours, Discussion Entities

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 284 Domain Science & Engineering

284

HAVE A GOOD LUNCH – SEE YOU BACK AT 2 PM

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 284 Domain Science & Engineering

284

HAD A GOOD LUNCH ?

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 284 Domain Science & Engineering

285

Begin of Lecture 6: First Session — Calculus I

Part and Material Discoverers

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

A Precursor for Requirements Engineering 285 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

285

Tutorial Schedule
• Lectures 1–2 9:00–9:40 + 9:50–10:30

1 Introduction Slides 1–35

2 Endurant Entities: Parts Slides 36–114

• Lectures 3–5 11:00–11:15 + 11:20–11:45 + 11:50–12:30

3 Endurant Entities: Materials, States Slides 115–146

4 Perdurant Entities: Actions and Events Slides 147–178

5 Perdurant Entities: Behaviours Slides 179–284

Lunch 12:30–14:00

• Lectures 6–7 14:00–14:40 + 14:50–15:30
√

6 A Calculus: Analysers, Parts and Materials Slides 285–338

7 A Calculus: Function Signatures and Laws Slides 339–376

• Lectures 8–9 16:00–16:40 + 16:50–17:30

8 Domain and Interface Requirements Slides 377–423

9 Conclusion: Comparison to Other Work Slides 427–459

Conclusion: What Have We Achieved Slides 424–426 + 460–471

A Precursor for Requirements Engineering 285 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

286 11. Discussion of Entities

11. Towards a Calculus of Domain Discoverers

• The ‘towards’ term is significant.

• We are not presenting

⋄⋄ a “ready to serve”

⋄⋄ comprehensive,

⋄⋄ tested and tried

calculus.

• We hope that the one we show you is interesting.

• It is, we think, the first time such a calculus is presented.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 286 Domain Science & Engineering

28711. Towards a Calculus of Domain Discoverers

• By a domain description calculus

⋄⋄ or, as we shall also call it,

◦◦ either a domain discovery calculus

◦◦ or a calculus of domain discoverers

we shall understand an algebra, that is,

⋄⋄ a set of meta-operations and

⋄⋄ a pair of

◦◦ a fixed domain and

◦◦ a varying repository.

• The meta-operations will be outlined in this section.

• The fixed domain is of the kind of domains alluded to in the previous section of
this tutorial.

• The varying repository contains fragments of a description of the fixed domain.

A Precursor for Requirements Engineering 287 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

288 11. Towards a Calculus of Domain Discoverers

• The meta-operators are referred to as

⋄⋄ either domain analysis meta-functions

⋄⋄ or domain discovery meta-functions.

• The former are carried out by the domain analyser when inquiring (the domain)
as to its properties.

• The latter are carried out by the domain describer when deciding upon which
descriptions “to go for” !

• The two persons can be the same one domain engineer.

• The operators are referred to as meta-functions,

⋄⋄ or meta-linguistic functions,

⋄⋄ since they are

◦◦ applied and ◦◦ calculated

⋄⋄ by humans, i.e., the domain describers.

• They are directives which can be referred to by the domain describers while
carrying out their analytic and creative work.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 288 Domain Science & Engineering

28911. Towards a Calculus of Domain Discoverers 11.1. Introductory Notions

11.1. Introductory Notions

• In order to present the operators of the calculus

⋄⋄ we must clear a few concepts.

11.1.1. Discovery

• By a domain discovery calculus we shall understand

⋄⋄ a set of operations (the domain discoverers),

◦◦ which when applied to a domain

◦◦ by a human agent, the domain describer,

and

◦◦ yield domain description texts.

A Precursor for Requirements Engineering 289 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

290 11. Towards a Calculus of Domain Discoverers 11.1. Introductory Notions11.1.1. Discovery

• The domain discoverers are applied “mentally”.

⋄⋄ That is, not in a mechanisable way.

◦◦ It is not like when procedure calls

◦◦ invoke computations

◦◦ of a computer.

⋄⋄ But they are applied by the domain describer.

⋄⋄ That person is to follow the ideas laid down for

⋄⋄ these domain discoverers

◦◦ (as they were in the earlier parts of this talk).

⋄⋄ They serve to guide the domain engineer

◦◦ to discoverer the desired domain entities

◦◦ and their properties.

• In this section we shall review an ensemble of (so far) nine domain
discoverers and (so far) four domain analysers.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 290 Domain Science & Engineering

29111. Towards a Calculus of Domain Discoverers 11.1. Introductory Notions11.1.1. Discovery

We list the nine domain discoverers.

• [Slide 319] PART SORTS,
[Slide 316] MATEREIAL SORTS,
[Slide 323] PART TYPES,
[Slide 326] UNIQUE ID,
[Slide 327] MEREOLOGY,
[Slide 331] ATTRIBUTES,
[Slide 340] ACTION SIGNATURES,
[Slide 345] EVENT SIGNATURES and
[Slide 348] BEHAVIOUR SIGNATURES.

A Precursor for Requirements Engineering 291 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

292 11. Towards a Calculus of Domain Discoverers 11.1. Introductory Notions11.1.2. Analysis

11.1.2. Analysis

• In order to “apply” these domain discoverers certain conditions
must be satisfied.

• Some of these condition inquiries can be represented by (so far)
four domain analysers.

⋄⋄ [Slide 305] IS MATERIALS BASED,
[Slide 307] IS ATOM,
[Slide 307] IS COMPOSITE and
[Slide 311] HAS A CONCRETE TYPE.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 292 Domain Science & Engineering

29311. Towards a Calculus of Domain Discoverers 11.1. Introductory Notions11.1.3. Domain Indexes

11.1.3. Domain Indexes

• In order to discover, the domain describer must decide on
“where & what in the domain” to analyse and describe.

• One can, for this purpose, think of the domain as
semi-lattice-structured.

⋄⋄ The root of the lattice is then labelled ∆.

⋄⋄ Let us refer to the domain as ∆.

⋄⋄ We say that it has index 〈∆〉.
⋄⋄ Initially we analyse the usually composite ∆ domain to consist of

one or more distinctly typed parts p1:t1, p2:t2, . . . , pm:tm.

⋄⋄ Each of these have indexes 〈∆, ti〉.
⋄⋄ So we view ∆, in the semi-lattice, to be the join of m

sub-semi-lattices whose roots we shall label with t1, t2, . . . , tm.

A Precursor for Requirements Engineering 293 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

294 11. Towards a Calculus of Domain Discoverers 11.1. Introductory Notions11.1.3. Domain Indexes

⋄⋄ And so forth for any composite part type ti, etcetera.

⋄⋄ It may be that any two or more such sub-semi-lattice root types,
tij, tij, . . . , tik designate the same, shared type tix, that is tij =
tij = . . . = tik = tix.

⋄⋄ If so then the k sub-semi-lattices are “collapsed” into one
sub-semi-lattice.

⋄⋄ The building of the semi-lattice terminates when one can no
longer analyse part types into further sub-semi-lattices, that is,
when these part types are atomic.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 294 Domain Science & Engineering

29511. Towards a Calculus of Domain Discoverers 11.1. Introductory Notions11.1.3. Domain Indexes

∆

N F

VS

Vs

V

HS

Hs

H L

LS

Ls

M

Hubs Links

Hub Link

FleetNet Monitor

Vehicles

Vehicle

Vehicle Monitoring Domain

< >,

< ,N,HS>, < ,N,LS>, < ,F,VS>
< ,N,HS,Hs>, < ,N,LS,Ls>, < ,F,VS,Vs>,
< ,N,HS,Hs,H>, < ,N,LS,Ls,L>, < ,F,VS,Vs,V>

∆
< ,N>, < ,F>, < ,M>∆ ∆ ∆

∆∆∆
∆∆∆

∆∆∆

∆

TSVS

Vs Ts

V T

Bs

B

RS

Rs

R

SS

Ss

S

C

K FS

Fs

F

BS

Line Domain

Container Terminal Ports

Container Terminal Port

Bays

Bay

Rows

Row

Stacks

Stack

Container

Freights

Freight

Container Body

Container Vessels

Container Vessel

Figure 3: Domain indices

A Precursor for Requirements Engineering 295 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

296
11. Towards a Calculus of Domain Discoverers 11.1. Introductory Notions11.1.3. Domain Indexes

• That is, the roots of the sub-trees of the ∆ tree are labelled with
type names.

⋄⋄ Every point in the semi-lattice can be identified by a domain
index.

◦◦ The root is defined to have index 〈∆〉.
◦◦ The immediate sub-semi-lattices of ∆ have domain indexes
〈∆,t1〉, 〈∆,t2〉, . . . , 〈∆,tm〉.

◦◦ And so forth.

◦◦ If ℓ̂〈t〉 is a prefix of another domain index, say ℓ̂〈t,t′〉,
then t designates a composite type.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 296 Domain Science & Engineering

29711. Towards a Calculus of Domain Discoverers 11.1. Introductory Notions11.1.3. Domain Indexes

• For every domain index, ℓ̂〈t〉,
that index designates the type t domain type texts.

• These texts consists of several sub-texts.

• There are the texts directly related to the parts, p:P:

⋄⋄ the observer functions, obs · · · , if type t is composite,

⋄⋄ the unique identifier functions, uid P,

⋄⋄ the mereology function, mereo P, and

⋄⋄ the attribute functions, attr · · · .
⋄⋄ To the above “add”

◦◦ possible auxiliary types and auxiliary functions

◦◦ as well as possible axioms.

A Precursor for Requirements Engineering 297 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

298 11. Towards a Calculus of Domain Discoverers 11.1. Introductory Notions11.1.3. Domain Indexes

• Then there are the texts related to

⋄⋄ actions,

⋄⋄ events, and

⋄⋄ behaviours

“based” (primarily) on parts p:P.

• These texts consists of

⋄⋄ function signatures (for actions, events, and behaviours),

⋄⋄ function definitions for these, and

⋄⋄ channel

◦◦ declarations and

◦◦ channel message type definitions

for behaviours.

We shall soon see examples of the above.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 298 Domain Science & Engineering

29911. Towards a Calculus of Domain Discoverers 11.1. Introductory Notions11.1.3. Domain Indexes

• But not all can be “discovered” by just examining the domain from
the point of view of a sub-semi-lattice type.

⋄⋄ Many interesting action, event and behaviour signatures depend
on domain type texts designated by “roots” of disjoint sub-trees
of the semi-lattice.

⋄⋄ Each such root has its own domain index.

⋄⋄ Together a meet of the semi-lattice is defined by the set of
disjoint domain indices: {ℓi, ℓj, · · · , ℓk}.

• It is thus that we arrive at a proper semi-lattice structure relating
the various entities of the domain rooted in ∆.

A Precursor for Requirements Engineering 299 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

300
11. Towards a Calculus of Domain Discoverers 11.1. Introductory Notions11.1.3. Domain Indexes

• The domain discoverers are therefore provided with arguments:

⋄⋄ either a single domain index, DOMAIN FUNCTION(ℓ),

⋄⋄ or a pair, DOMAIN FUNCTION(ℓ)({ℓi, ℓj, · · · ,ℓk}),
◦◦ the single domain index ℓ and

◦◦ a set of domain indices, {ℓi, ℓj, · · · , ℓk}
where DOMAIN FUNCTION is any of the

◦◦ domain discoverers or

◦◦ domain analysers

listed earlier.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 300 Domain Science & Engineering

301
11. Towards a Calculus of Domain Discoverers 11.1. Introductory Notions11.1.4. The ℜepository

11.1.4. The ℜepository

• We have yet to give the full signature of the domain discoverers and
domain analysers.

⋄⋄ One argument of these meta-functions

◦◦ was parts of the actual domain

◦◦ as designated by the domain indices.

⋄⋄ Another argument

◦◦ is to be the ℜepository of description texts

◦◦ being inspected (together with the sub-domain) when

∗ analysing that sub-domain and

◦◦ being updated

∗ when “generating” the “discovered” description texts.

A Precursor for Requirements Engineering 301 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

302 11. Towards a Calculus of Domain Discoverers 11.1. Introductory Notions11.1.4. The ℜepository

⋄⋄ We can assume, without loss of generality, that

◦◦ the ℜepository of description texts

◦◦ is the description texts discovered so far.

⋄⋄ The result of domain analysis is either undefined or a truth value.
We can assume, without any loss of generality that that result is
not recorded.

⋄⋄ The result of domain discovery is either undefined or is a
description text consisting of two well-defined fragments:

◦◦ a narrative text, and

◦◦ a formal text.

⋄⋄ Those well-defined texts are “added” to the text of the
ℜepository of description texts.

◦◦ For pragmatic reasons,

◦◦ when we explain the positive effect of domain discovery,

◦◦ then we show just this “addition” to the ℜepository.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 302 Domain Science & Engineering

30311. Towards a Calculus of Domain Discoverers 11.1. Introductory Notions11.1.4. The ℜepository

98. The proper type of the discover functions is therefore:

98. DISCOVER FUNCTION: Index→Index-set→ℜ∼→ℜ

• In the following we shall omit the ℜepository argument and result.

99. So, instead of showing the discovery function invocation and result
as:

99. DISCOVER FUNCTION(ℓ)(ℓset)(ρ) = ρ′

• where ρ′ incorporates a pair of texts and RSL formulas,

100. we shall show the discover function signature, the invocation and
the result as:

100. DISCOVER FUNCTION: Index→Index-set
∼→(Narr Text×RSL Text)

100. DISCOVER FUNCTION(ℓ)(ℓset): (narr text,RSL text)

A Precursor for Requirements Engineering 303 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

304 11. Towards a Calculus of Domain Discoverers 11.2. Domain Analysers

11.2. Domain Analysers

• Currently we identify four analysis functions.

• As the discovery calculus evolves

⋄⋄ (through further practice and research)

⋄⋄ we expect further analysis functions to be identified.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 304 Domain Science & Engineering

30511. Towards a Calculus of Domain Discoverers 11.2. Domain Analysers11.2.1. IS MATERIALS BASED

11.2.1. IS MATERIALS BASED

• You are reminded of the Continuous Endurant Modelling frame
on Slide 136.

IS MATERIALS BASED

• An early decision has to be made as to whether a domain is signifi-
cantly based on materials or not:

101. IS MATERIALS BASED(〈∆Name〉).
• If Item 101 holds of a domain ∆Name

⋄⋄ then the domain describer can apply

⋄⋄ MATERIAL SORTS (Item 103 on page 316).

A Precursor for Requirements Engineering 305 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

306
11. Towards a Calculus of Domain Discoverers 11.2. Domain Analysers11.2.1. IS MATERIALS BASED

Example: 45 Pipelines and Transports: Materials or Parts.

• IS MATERIALS BASED(〈∆Pipeline〉) = true.

• IS MATERIALS BASED(〈∆Transport〉)= false.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 306 Domain Science & Engineering

30711. Towards a Calculus of Domain Discoverers 11.2. Domain Analysers11.2.2. IS ATOM, IS COMPOSITE

11.2.2. IS ATOM, IS COMPOSITE

• During the discovery process

⋄⋄ discrete part types arise (i.e., the names are yielded)

⋄⋄ and these may either denote atomic or composite parts.

• The domain describer

⋄⋄ must now decide as to

⋄⋄ whether a named, discrete type is atomic or is composite.

A Precursor for Requirements Engineering 307 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

308 11. Towards a Calculus of Domain Discoverers 11.2. Domain Analysers11.2.2. IS ATOM, IS COMPOSITE

IS ATOM

• The IS ATOM analyser serves that purpose:

value

IS ATOM: Index
∼→ Bool

IS ATOM(ℓ̂〈t〉) ≡ true | false | chaos

• The analysis is undefined for ill-formed indices.

Example: 46 Transport Nets: Atomic Parts (II). We refer to
Example 3 (Slide 16).

IS ATOM(〈∆,N,HS,Hs,H〉), IS ATOM(〈∆,N,LS,Ls,L〉)
∼ IS ATOM(〈∆,N,HS,Hs〉), ∼ IS ATOM(〈∆,N,LS,Ls〉)

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 308 Domain Science & Engineering

30911. Towards a Calculus of Domain Discoverers 11.2. Domain Analysers11.2.2. IS ATOM, IS COMPOSITE

IS COMPOSITE

• The IS COMPOSITE analyser is

⋄⋄ similarly applied by the domain describer

⋄⋄ to a part type t

⋄⋄ to help decide whether t is a composite type.

value

IS COMPOSITE: Index
∼→ Bool

IS COMPOSITE(ℓ̂〈t〉) ≡ true | false | chaos

A Precursor for Requirements Engineering 309 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

310
11. Towards a Calculus of Domain Discoverers 11.2. Domain Analysers11.2.2. IS ATOM, IS COMPOSITE

Example: 47 Transport Nets: Composite Parts. We refer to
Example 3 (Slide 16)

IS COMPOSITE(〈∆〉),
IS COMPOSITE(〈∆,N〉)
IS COMPOSITE(〈∆,N,HS,Hs〉),
IS COMPOSITE(〈∆,N,LS,Ls〉)
∼ IS COMPOSITE(〈∆,N,HS,Hs,H〉),
∼ IS COMPOSITE(〈∆,N,LS,Ls,L〉)

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 310 Domain Science & Engineering

31111. Towards a Calculus of Domain Discoverers 11.2. Domain Analysers11.2.3. HAS A CONCRETE TYPE

11.2.3. HAS A CONCRETE TYPE

• Sometimes we find it expedient

⋄⋄ to endow a “discovered” sort with a concrete type expression,
that is,

⋄⋄ “turn” a sort definition into a concrete type definition.

HAS A CONCRETE TYPE

102. Thus we introduce the analyser:

102 HAS A CONCRETE TYPE: Index
∼→ Bool

102 HAS A CONCRETE TYPE(ℓ̂〈t〉): true | false | chaos

A Precursor for Requirements Engineering 311 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

312
11. Towards a Calculus of Domain Discoverers 11.2. Domain Analysers11.2.3. HAS A CONCRETE TYPE

Example: 48 Transport Nets: Concrete Types . We refer to
Example 3 (Slide 16) while exemplifying four cases:

HAS A CONCRETE TYPE(〈∆,N,HS,Hs〉)
HAS A CONCRETE TYPE(〈∆,N,LS,Ls〉)
∼ HAS A CONCRETE TYPE(〈∆,N,HS,Hs,H〉)
∼ HAS A CONCRETE TYPE(〈∆,N,LS,Ls,L〉)

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 312 Domain Science & Engineering

31311. Towards a Calculus of Domain Discoverers 11.2. Domain Analysers11.2.3. HAS A CONCRETE TYPE

• We remind the listener that

⋄⋄ it is a decision made by the domain describer

⋄⋄ as to whether a part type is

◦◦ to be considered a sort or

◦◦ be given a concrete type.

• We shall later cover a domain discoverer related to the positive
outcome of the above inquiry.

A Precursor for Requirements Engineering 313 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

314 11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers

11.3. Domain Discoverers

• A domain discoverer is a mental tool.

⋄⋄ It takes a written form shown earlier.

⋄⋄ It is to be “applied” by a human, the domain describer.

⋄⋄ The domain describer applies the domain discoverer to a
fragment of the domain, as it is: “out there” !

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 314 Domain Science & Engineering

31511. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers

• ‘Application’ means the following.

⋄⋄ The domain describer examines the domain as directed by the
explanation given for the domain discoverer — as here, in these
lectures.

⋄⋄ As the brain of the domain describer views, examines, analyses, a
domain index-designated fragment of the domain,

◦◦ ideas as to which domain concepts to capture arise

◦◦ and these take the form of pairs of narrative and formal texts.

A Precursor for Requirements Engineering 315 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

316 11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.1. MATERIAL SORTS

11.3.1. MATERIAL SORTS

MATERIAL SORTS – I/II

103. The MATERIAL SORTS discovery function applies to a domain,
usually designated by 〈∆Name〉
where Name is a pragmatic hinting at the domain by name.

104. The result of the domain discoverer applying this meta-function
is some narrative text

105. and the types of the discovered materials

106. usually affixed a comment

(a) which lists the “somehow related” part types

(b) and their related materials observers.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 316 Domain Science & Engineering

317
11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.1. MATERIAL SORTS

MATERIAL SORTS II/II

103. MATERIAL SORTS: 〈∆〉 → (Text × RSL)
103. MATERIAL SORTS(〈∆Name〉):
104. [narrative text ;
105. type Ma, Mb, ..., Mc materials

106. comment: related part types: Pi, Pj, ..., Pk
106. obs Mn : Pm → Mn, ...]
101. pre: IS MATERIALS BASED(〈∆Name〉)

A Precursor for Requirements Engineering 317 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

318
11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.1. MATERIAL SORTS

Example: 49 Pipelines: Material.

• MATERIAL SORTS(〈∆Oil Pipeline System〉):
[The oil pipeline system is focused on oil ;
type O material

comment related part type: U, obs O: U → O]

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 318 Domain Science & Engineering

31911. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.2. PART SORTS

11.3.2. PART SORTS

PART SORTS I/II

107. The part type discoverer PART SORTS

(a) applies to a simply indexed domain, ℓ̂〈t〉,
(b) where t denotes a composite type, and yields a pair

i. of narrative text and

ii. formal text which itself consists of a pair:

A. a set of type names

B. each paired with a part (sort) observer.

A Precursor for Requirements Engineering 319 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

320
11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.2. PART SORTS

PART SORTS II/II

value

107. PART SORTS: Index
∼→ (Text×RSL)

107(a). PART SORTS(ℓ̂〈t〉):
107((b))i. [narrative, possibly enumerated texts ;
107((b))iiA. type t1,t2,...,tm,
107((b))iiB. value obs t1:t→t1,obs t2:t→t2,...,obs tm:t→tm
107(b). pre: IS COMPOSITE(ℓ̂〈t〉)]

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 320 Domain Science & Engineering

321
11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.2. PART SORTS

Example: 50 Transport: Part Sorts. We apply a concrete
version of the above sort discoverer to the road traffic system domain
∆. See Example 36.

• PART SORTS(〈∆〉):
[the vehicle monitoring domain contains three sub-parts:
net, fleet and monitor ;
type N, F, M,
value obs N: ∆ → N, obs F: ∆ → F, obs M: ∆ → M]

• PART SORTS(〈∆,N〉):
[the net domain contains two sub-parts:
sets of hubs and sets of link ;
type HS, LS,
value obs HS: N → HS, obs LS: N → LS]

A Precursor for Requirements Engineering 321 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

322 11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.2. PART SORTS

• PART SORTS(〈∆,F〉):
[the fleet domain consists of one sub-domain:
set of vehicles;
type VS,
value obs VS: F → VS]

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 322 Domain Science & Engineering

32311. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.3. PART TYPES

11.3.3. PART TYPES

PART TYPES I/II

108. The PART TYPES discoverer applies to a composite sort, t,
and yields a pair

(a) of narrative, possibly enumerated texts [omitted], and

(b) some formal text:

i. a type definition, tc = te,

ii. together with the sort definitions
of so far undefined type names of te.

iii. An observer function observes tc from t.

iv. The PART TYPES discoverer is not defined
if the designated sort is judged
to not warrant a concrete type definition.

A Precursor for Requirements Engineering 323 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

324
11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.3. PART TYPES

PART TYPES II/II

108. PART TYPES: Index
∼→ (Text×RSL)

108. PART TYPES(ℓ̂〈t〉):
108(a). [narrative, possibly enumerated texts ;
108((b))i. type tc = te,
108((b))ii. tα, tβ, ..., tγ,
108((b))iii. value obs tc: t → tc
108((b))iv. pre: HAS CONCRETE TYPE(ℓ̂〈t〉)]
108((b))ii. where: type expression te contains
108((b))ii. type names tα, tβ, ..., tγ

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 324 Domain Science & Engineering

325
11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.3. PART TYPES

Example: 51 Transport: Concrete Part Types. Continuing
Examples??–50 and Example 3 – we omit narrative informal texts.

PART TYPES(〈∆,F,VS〉):
type V, Vs=V-set, value obs Vs: VS→Vs

PART TYPES(〈∆,N,HS〉):
type H, Hs=H-set, value obs Hs: HS→Hs

PART TYPES(〈∆,N,LS〉):
type L, Ls=L-set, value obs Ls: LS→Ls

A Precursor for Requirements Engineering 325 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

326 11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.4. UNIQUE ID

11.3.4. UNIQUE ID

UNIQUE ID

109. For every part type t we postulate a unique identity analyser function uid t.

value

109. UNIQUE ID: Index → (Text×RSL)
109. UNIQUE ID(ℓ̂〈t〉):
109. [narrative, possibly enumerated text ;
109. type ti
109. value uid t: t → ti]

Example: 52 Transport Nets: Unique Identifiers. Continuing Example 3:

UNIQUE ID(〈∆,HS,Hs,H〉): type H, HI, value uid H→HI
UNIQUE ID(〈∆,LS,Ls,L〉): type L, LI, value uid L→LI

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 326 Domain Science & Engineering

32711. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.5. MEREOLOGY

11.3.5. MEREOLOGY

• Given a part, p, of type t, the mereology, MEREOLOGY, of that
part

⋄⋄ is the set of all the unique identifiers
of the other parts to which part p is part-ship-related

⋄⋄ as “revealed” by the mereo tii functions applied to p.

• Henceforth we omit the otherwise necessary narrative texts.

A Precursor for Requirements Engineering 327 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

328 11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.5. MEREOLOGY

MEREOLOGY I/II

110. Let type names t1, t2, . . . , tn
denote the types of all parts of a domain.

111. Let type names ti1, ti2, . . . , tin
27, be the corresponding

type names of the unique identifiers of all parts of that domain.

112. The mereology analyser MEREOLOGY is a generic function
which applies to a pair of an index and an index set
and yields some structure of unique identifiers.
We suggest two possibilities,
but otherwise leave it to the domain analyser
to formulate the mereology function.

113. Together with the “discovery” of the mereology function
there usually follows some axioms.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 328 Domain Science & Engineering

329
11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.5. MEREOLOGY

MEREOLOGY II/II

type

110. t1, t2, ..., tn
111. tidx = ti1 | ti2 | ... | tin

112. MEREOLOGY: Index
∼→ Index-set

∼→ (Text×RSL)
112. MEREOLOGY(ℓ̂〈t〉)({ℓî〈tj〉,...,ℓk̂〈tl〉}):
112. [narrative, possibly enumerated texts ;
112. either: {}
112. or: value mereo t: t → tix
112. or: value mereo t: t → tix-set × tiy-set × ... × tix-set
113. axiom Predicate over values of t′ and tidx]

where none of the tix, tiy, . . . , tiz are equal to ti.

27We here assume that all parts have unique identifications.

A Precursor for Requirements Engineering 329 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

330
11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.5. MEREOLOGY

Example: 53 Transport Net Mereology. Examples:

• MEREOLOGY(〈∆,N,HS,Hs,H〉)({〈∆,N,LS,Ls,L〉}):
value mereo H→LI-set

• MEREOLOGY(〈∆,N,LS,Ls,L〉)({〈∆,N,HS,Hs,H〉}):
value mereo L→HI-set
axiom see Example 11 Slide 87.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 330 Domain Science & Engineering

33111. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.6. ATTRIBUTES

11.3.6. ATTRIBUTES

• A general attribute analyser analyses parts beyond their unique
identities and possible mereologies.

⋄⋄ Part attributes have names.

⋄⋄ We consider these names to also abstractly name the
corresponding attribute types.

A Precursor for Requirements Engineering 331 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

332 11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.6. ATTRIBUTES

ATTRIBUTES I/II

114. Attributes have types.
We assume attribute type names to be distict from part type names.

115. ATTRIBUTES applies to parts of type t and yields a pair of

(a) narrative text and

(b) formal text, here in the form of a pair

i. a set of one or more attribute types, and

ii. a set of corresponding attribute observer functions attr at, one
for each attribute sort at of t.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 332 Domain Science & Engineering

333
11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.6. ATTRIBUTES

ATTRIBUTES II/II

type

114. at = at1 | at2 | ... | atn
value

115. ATTRIBUTES: Index → (Text×RSL)
115. ATTRIBUTES(ℓ̂〈t〉):
115(a). [narrative, possibly enumerated texts ;
115((b))i. type at1, at2, ..., atm
115((b))ii. value attr at1:t→at1,attr at2:t→at2,...,attr atm:t→atm]

• where m≤n

A Precursor for Requirements Engineering 333 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

334
11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.6. ATTRIBUTES

Example: 54 Transport Nets: Part Attributes. We exemplify
attributes of composite and of atomic parts — omitting narrative
texts:

ATTRIBUTES(〈∆〉):
type Domain Name, ...
value attr Domain Name: ∆ → Domain Name, ...

• where

⋄⋄ Domain Name could include State Roads or Rail Net.

⋄⋄ etcetera.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 334 Domain Science & Engineering

335
11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.6. ATTRIBUTES

ATTRIBUTES(〈∆,N〉):
type

Sub Domain Name ex.: State Roads
Sub Domain Location ex.: Denmark
Sub Domain Owner ex.: The Danish Road Directorate
...
Length ex.: 3.786 Kms.

value

attr Sub Domain Name: N → Sub Domain Name
attr Sub Domain Location: N → Sub Domain Location
attr Sub Domain Owner: N → Sub Domain Owner
...
attr Length: N → Length

A Precursor for Requirements Engineering 335 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

336 11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.6. ATTRIBUTES

ATTRIBUTES(〈∆,N,LS,Ls,L〉):
type LOC, LEN, ...
value attr LOC: L → LOC, attr LEN: L → LEN, ...

ATTRIBUTES(〈∆,N,LS,Ls,L〉)({,〈∆,N,HS,Hs,H〉}):
type

LΣ=HI-set
LΩ=LΣ-set

value

attr LΣ:L→LΣ
attr LΩ:L→LΩ

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 336 Domain Science & Engineering

33711. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.6. ATTRIBUTES

• where

⋄⋄ LOC might reveal some Bézier curve28 representation of the
possibly curved three dimensional location of the link in question,

⋄⋄ LEN might designate length in meters,

⋄⋄ LΣ designates the state of the link,

⋄⋄ LΩ designates the space of all allowed states of the link.

28http://en.wikipedia.org/wiki/Bézier curve

A Precursor for Requirements Engineering 337 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

338

End of Lecture 6: First Session — Calculus I

Part and Material Discoverers

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 338 Domain Science & Engineering

338

SHORT BREAK

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 338 Domain Science & Engineering

338

HELLO THERE !

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 338 Domain Science & Engineering

339

Begin of Lecture 7: Last Session — Calculus II

Function Signature Discoverers and Laws

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

A Precursor for Requirements Engineering 339 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

339

Tutorial Schedule
• Lectures 1–2 9:00–9:40 + 9:50–10:30

1 Introduction Slides 1–35

2 Endurant Entities: Parts Slides 36–114

• Lectures 3–5 11:00–11:15 + 11:20–11:45 + 11:50–12:30

3 Endurant Entities: Materials, States Slides 115–146

4 Perdurant Entities: Actions and Events Slides 147–178

5 Perdurant Entities: Behaviours Slides 179–284

Lunch 12:30–14:00

• Lecture 6–7 14:00–14:40 + 14:50–15:30

6 A Calculus: Analysers, Parts and Materials Slides 285–338
√

7 A Calculus: Function Signatures and Laws Slides 339–376

• Lecture 8–9 16:00–16:40 + 16:50–17:30

8 Domain and Interface Requirements Slides 377–423

9 Conclusion: Comparison to Other Work Slides 427–459

Conclusion: What Have We Achieved Slides 424–426 + 460–471

A Precursor for Requirements Engineering 339 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

340 11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.7. ACTION SIGNATURES

11.3.7. ACTION SIGNATURES

• We really should discover actions, but actually analyse function
definitions.

• And we focus, in this tutorial, on just “discovering” the function
signatures of these actions.

• By a function signature, to repeat, we understand

⋄⋄ a functions name, say fct, and

⋄⋄ a function type expression (te), say dte
∼→rte where

◦◦ dte defines the type of the function’s definition set

◦◦ and rte defines the type of the function’s image, or range set.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 340 Domain Science & Engineering

34111. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.7. ACTION SIGNATURES

• We use the term ‘functions’ to cover actions, events and behaviours.

• We shall in general find that the signatures of actions, events and
behaviours depend on types of more than one domain.

⋄⋄ Hence the schematic index set {ℓ1̂〈t1〉,ℓ2̂〈t2〉,...,ℓn̂〈tn〉}
⋄⋄ is used in all action, event and behaviour discoverers.

A Precursor for Requirements Engineering 341 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

342 11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.7. ACTION SIGNATURES

ACTION SIGNATURES I/II

116. The ACTION SIGNATURES meta-function,
besides narrative texts, yields

(a) a set of auxiliary sort or concrete type definitions and

(b) a set of action signatures each consisting of
an action name and
a pair of definition set and range type expressions where

(c) the type names that occur in these type expressions
are defined by in the domains indexed by the index set.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 342 Domain Science & Engineering

343
11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.7. ACTION SIGNATURES

ACTION SIGNATURES II/II

116 ACTION SIGNATURES: Index → Index-set
∼→ (Text×RSL)

116 ACTION SIGNATURES(ℓ̂〈t〉)({ℓ1̂〈t1〉,ℓ2̂〈t2〉,...,ℓn̂〈tn〉}):
116 [narrative, possibly enumerated texts ;
116 type ta,tb,... tc,
116(b) value

116(b) acti:teid
∼→teir,actj:tejd

∼→tejr,...,actk:tekd

∼→tekr
116(c) where:
116(c) type names in te(i|j|...|k)d and in te(i|j|...|k)r are either
116(c) type names ta, tb, ... tc or are type names defined by the
116(c) indices which are prefixes of ℓm̂〈Tm〉 and where Tm is
116(c) in some signature acti|j|...|k]

A Precursor for Requirements Engineering 343 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

344
11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.7. ACTION SIGNATURES

Example: 55 Transport Nets: Action Signatures.

• ACTION SIGNATURES(〈∆,N,HS,Hs,H〉)({〈∆,N,LS,Ls,L〉〉}):
insert H: N → H

∼→ N
remove H: N → HI

∼→ N
· · ·

• ACTION SIGNATURES(〈∆,N,LS,Ls,L〉)({〈∆,N,HS,Hs,H〉〉}):
insert L: N → L

∼→ N
remove L: N → LI

∼→ N
· · ·

• where · · · refer to the possibility of discovering further action
signatures “rooted” in

⋄⋄ 〈∆,N,HS,Hs,H〉, respectively

⋄⋄ 〈∆,N,LS,Ls,L〉.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 344 Domain Science & Engineering

34511. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.8. EVENT SIGNATURES

11.3.8. EVENT SIGNATURES

EVENT SIGNATURES I/II

117. The EVENT SIGNATURES meta-function, besides narrative
texts, yields

(a) a set of auxiliary event sorts or concrete type definitions and

(b) a set of event signatures each consisting of

• an event name and

• a pair of definition set and range type expressions

where

(c) the type names that occur in these type expressions
are defined either in the domains indexed by the indices
or by the auxiliary event sorts or types.

A Precursor for Requirements Engineering 345 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

346
11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.8. EVENT SIGNATURES

EVENT SIGNATURES II/II

117 EVENT SIGNATURES: Index → Index-set
∼→ (Text×RSL)

117 EVENT SIGNATURES(ℓ̂〈t〉)({ℓ1̂〈t1〉,ℓ2̂〈t2〉,...,ℓn̂〈tn〉}):
117(a) [narrative, possibly enumerated texts omitted ;
117(a) type ta,tb,... tc,
117(b) value

117(b) evt predi: tedi
× teri

→ Bool

117(b) evt predj: tedj
× terj

→ Bool

117(b) ...
117(b) evt predk: tedk

× terk
→ Bool]

117(c) where: t is any of ta,tb,...,tc or type names listed in in indices; type
names of the ‘d’efinition set and ‘r’ange set type expressions ted and ter are
type names listed in domain indices or are in ta,tb,...,tc, the auxiliary discovered
event types.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 346 Domain Science & Engineering

347
11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.8. EVENT SIGNATURES

Example: 56 Transport Nets: Event Signatures.
We refer to Example 35 on page 173. The omitted narrative text
would, if included, as it should, be a subset of the Items 23–26 texts
on Slide 171.

• EVENT SIGNATURES(〈∆,N,LS,Ls,L〉)({〈∆,N,HS,Hs,H〉〉}):
value

link disappearance: N × N
∼→ Bool

link disappearance(n,n′) ≡
∃ ℓ:L • l ∈ obs Ls(n) ⇒ pre cond(n,ℓ) ∧ post cond(n,ℓ,n′)

... [possibly further, discovered event]

... [signatures “rooted” in 〈∆,N,LS,Ls,L〉]

• The undefined pre and post conditions were “fully discovered” on
Slides 173 and 175.

A Precursor for Requirements Engineering 347 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

348
11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.9. BEHAVIOUR SIGNATURES

11.3.9. BEHAVIOUR SIGNATURES

• We choose, in this tutorial, to model behaviours in CSP29.

• This means that we model (synchronisation and) communication
between behaviours by means of messages m of type M, CSP
channels (channel ch:M) and CSP

⋄⋄ output: ch!e [offer to deliver value of e on channel ch], and

⋄⋄ input: ch? [offer to accept a value on channel ch].

29Other behaviour modelling languages are Petri Nets, MSCs: Message Sequence
Charts, Statechart etc.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 348 Domain Science & Engineering

34911. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.9. BEHAVIOUR SIGNATURES

• We allow for the declaration of single channels as well as of one,
two, ..., n dimensional arrays of channels with indexes ranging over
channel index types

⋄⋄ type Idx, CIdx, RIdx . . . :

⋄⋄ channel ch:M, { ch v[vi]:M′|vi:Idx }, { ch m[ci,ri]:M′′|ci:CIdx,ri:RIdx }, . . .

etcetera.

• We assume some familiarity with CSP [Hoare85+2004]
(or even RSL/CSP [TheSEBook1wo] [Chapter 21]).

A Precursor for Requirements Engineering 349 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

350 11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.9. BEHAVIOUR SIGNATURES

• A behaviour usually involves two or more distinct sub-domains.

Example: 57 Vehicle Behaviour. Let us illustrate that
behaviours usually involve two or more distinct sub-domains.

• A vehicle behaviour, for example, involves

⋄⋄ the vehicle sub-domain,

⋄⋄ the hub sub-domain (as vehicles pass through hubs),

⋄⋄ the link sub-domain (as vehicles pass along links) and,

⋄⋄ for the road pricing system, also the monitor sub-domain.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 350 Domain Science & Engineering

35111. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.9. BEHAVIOUR SIGNATURES

BEHAVIOUR SIGNATURES I/II

118. The BEHAVIOUR SIGNATURES meta-function, besides narrative texts,
yields

119. It applies to a set of indices and results in a pair,

(a) a narrative text and

(b) a formal text:

i. a set of one or more message types,

ii. a set of zero, one or more channel index types,

iii. a set of one or more channel declarations,

iv. a set of one or more process signatures with each signature containing a
behaviour name, an argument type expression, a result type expression,
usually just Unit, and

v. an input/output clause which refers to channels over which the signatured
behaviour may interact with its environment.

A Precursor for Requirements Engineering 351 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

352 11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.9. BEHAVIOUR SIGNATURES

BEHAVIOUR SIGNATURES II/II

118. BEHAVIOUR SIGNATURES: Index→ Index-set
∼→ (Text×RSL)

118. BEHAVIOUR SIGNATURES(ℓ̂〈t〉)({ℓ1̂〈t1〉,ℓ2̂〈t2〉,...,ℓn̂〈tn〉}):
119(a). [narrative, possibly enumerated texts ;
119((b))i. type m = m1 | m 2 | ... | mµ, µ≥1
119((b))ii. i = i1 | i2 | ... | in, n≥0
119((b))iii. channel c:m, {vc[x]|x:ia}:m, {mc[x,y]|x:ib,y:ic}:m,...
119((b))iv. value

119((b))iv. bhv1: ate1 → inout1 rte1,
119((b))iv. ... ,
119((b))iv. bhvm: atem → inoutm rtem.]
119((b))iv. where type expressions ateii and rtei for all i involve at least
119((b))iv. two types t′i, t′′j of respective indexes ℓî〈ti〉, ℓĵ〈tj〉,
119((b))v. where Unit may appear in either atei or rtej or both.
119((b))v. where inouti: in k | out k | in,out k
119((b))v. where k: c or vc[x] or {vc[x]|x:ia•x ∈ xs} or

119((b))v. {mc[x,y]|x:ib,y:ic • x ∈ xs ∧ y ∈ ys} or ...

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 352 Domain Science & Engineering

353
11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.9. BEHAVIOUR SIGNATURES

Example: 58 Vehicle Transport: Behaviour Signatures. We
refer to Example 36.

BEHAVIOUR SIGNATURES(〈∆,F,VS,Vs,V〉)({〈∆,M〉}):
[With each vehicle we associate behaviour with the following

arguments: the vehicle identifier, the vehicle parts, and
the vehicle position. The vehicle communicates with
the monitor process over a vehicle to monitor array of
channels, one for each vehicle ... ;

type

VP
channel

{vm[vi]|vi:VI • vi ∈ vis}:VP
value

veh: vi:VI → v:V → vp:VP → out vm[vi] Unit]

A Precursor for Requirements Engineering 353 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

354 11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.9. BEHAVIOUR SIGNATURES

BEHAVIOUR SIGNATURES(〈∆,M〉)({〈∆,F,VS,Vs,V〉}):
[With the monitor part we associate a behaviour with the monitor

part as only argument. The monitor accepts communications
from vehicle behaviours ... ;

value

mon: M → in {vm[vi]|vi:VI • vi ∈ vis},clkm ch Unit]

• The “discovery” of vehicle positions into positions

⋄⋄ on a link, some fraction down that link, or

⋄⋄ at a hub,

that “discovery”, is left for further analysis.

We refer to Slide 197 (Items 47(a)–47((a))iii).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 354 Domain Science & Engineering

35511. Towards a Calculus of Domain Discoverers 11.4. Order of Analysis and “Discovery”

11.4. Order of Analysis and “Discovery”

• Analysis and “discovery”, that is, the “application” of

⋄⋄ the analysis meta-functions and

⋄⋄ the “discovery” meta-functions

• has to follow some order:

⋄⋄ starts at the “root”, that is with index 〈∆〉,
⋄⋄ and proceeds with indices appending part domain type names

already discovered.

A Precursor for Requirements Engineering 355 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

356 11. Towards a Calculus of Domain Discoverers 11.5. Analysis and “Discovery” of “Leftovers”

11.5. Analysis and “Discovery” of “Leftovers”

• The analysis and discovery meta-functions focus on types, that is,
the types

⋄⋄ of abstract parts, i.e., sorts,

⋄⋄ of concrete parts, i.e., concrete types,

⋄⋄ of unique identifiers,

⋄⋄ of mereologies, and of

⋄⋄ attributes – where the latter has been largely left as sorts.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 356 Domain Science & Engineering

35711. Towards a Calculus of Domain Discoverers 11.5. Analysis and “Discovery” of “Leftovers”

• In this tutorial we do not suggest any meta-functions for such
analyses that may lead to

⋄⋄ concrete types from non-part sorts, or to

⋄⋄ action, event and behaviour definitions

◦◦ say in terms of pre/post-conditions,

◦◦ etcetera.

⋄⋄ So, for the time, we suggest, as a remedy for the absence of such
“helpers”, good “old-fashioned” domain engineer ingenuity.

A Precursor for Requirements Engineering 357 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

358 11. Towards a Calculus of Domain Discoverers 11.6. Laws of Domain Descriptions

11.6. Laws of Domain Descriptions

• By a domain description law we shall understand

⋄⋄ some desirable property

⋄⋄ that we expect (the ‘human’) results of

⋄⋄ the (the ‘human’) use of the domain description calculus

⋄⋄ to satisfy.

• We may think of these laws as axioms

⋄⋄ which an ideal domain description ought satisfy,

⋄⋄ something that domain describers should strive for.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 358 Domain Science & Engineering

35911. Towards a Calculus of Domain Discoverers 11.6. Laws of Domain Descriptions

Notational Shorthands:

• (f ; g; h)(ℜ) = h(g(f (ℜ)))

• (f1; f2; . . . ; fm)(ℜ) ≃ (g1; g2; . . . ; gn)(ℜ)
means that the two “end” states are equivalent modulo appropriate
renamings of types, functions, predicates, channels and behaviours.

• [f ; g; . . . ; h; α]
stands for the Boolean value yielded by α (in state ℜ).

A Precursor for Requirements Engineering 359 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

360 11. Towards a Calculus of Domain Discoverers 11.6. Laws of Domain Descriptions11.6.1. 1st Law of Commutativity

11.6.1. 1st Law of Commutativity

• We make a number of assumptions:

⋄⋄ the following two are well-formed indices of a domain:

◦◦ ι′: 〈∆〉̂ℓ′̂〈A〉, ◦◦ ι′′: 〈∆〉̂ℓ′′̂〈B〉,
where ℓ′ and ℓ′′ may be different or empty (〈〉)
and A and B are distinct;

⋄⋄ that F and G are two, not necessarily distinct
discovery functions; and

⋄⋄ that the domain at ι′ and at ι′′ have not yet been explored.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 360 Domain Science & Engineering

36111. Towards a Calculus of Domain Discoverers 11.6. Laws of Domain Descriptions11.6.1. 1st Law of Commutativity

• We wish to express,

⋄⋄ as a desirable property of domain description development

⋄⋄ that exploring domain ∆ at

◦◦ either ι′ first and then ι′′

◦◦ or at ι′′ first and then ι′,
⋄⋄ the one right after the other (hence the “;”),

⋄⋄ ought yield the same partial description fragment:

120. (G(ι′′) ; (F(ι′)))(ℜ) ≃ (F(ι′) ; (G(ι′′)))(ℜ)

When a domain description development satisfies Law 120.,

under the above assumptions,

⋄⋄ then we say that the development,

⋄⋄ modulo type, action, event and behaviour name “assignments”,

⋄⋄ satisfies a mild form of commutativity.

A Precursor for Requirements Engineering 361 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

362 11. Towards a Calculus of Domain Discoverers 11.6. Laws of Domain Descriptions11.6.2. 2nd Law of Commutativity

11.6.2. 2nd Law of Commutativity

• Let us assume

⋄⋄ that we are exploring the sub-domain at index

⋄⋄ ι: 〈∆〉̂ℓ̂〈A〉.
• Whether we

⋄⋄ first “discover” Attributes

⋄⋄ and then Mereology (including Unique identifiers)

or

⋄⋄ first “discover” Mereology (including Unique identifiers)

⋄⋄ and then Attributes

should not matter.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 362 Domain Science & Engineering

363
11. Towards a Calculus of Domain Discoverers 11.6. Laws of Domain Descriptions11.6.2. 2nd Law of Commutativity

• We make some abbreviations:

⋄⋄ A stand for the ATTRIBUTES,

⋄⋄ U stand for the UNIQUE IDENTIFIER,

⋄⋄ M stand for the MEREOLOGY,

⋄⋄ ι for index 〈∆〉̂ℓ̂〈A〉, and

⋄⋄ ιs for a suitable set of indices.

• Thus we wish the following law to hold:

121. (A(ι);U(ι);M(ι)(ιs))(ℜ) ≃
(U(ι);M(ι)(ιs);A(ι))(ℜ) ≃
(U(ι);A(ι);M(ι)(ιs))(ℜ).

⋄⋄ here modulo attribute and unique identifier type name renaming.

A Precursor for Requirements Engineering 363 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

364 11. Towards a Calculus of Domain Discoverers 11.6. Laws of Domain Descriptions11.6.3. 3rd Law of Commutativity

11.6.3. 3rd Law of Commutativity

• Let us again assume

⋄⋄ that we are exploring the sub-domain at index

⋄⋄ ι: 〈∆〉̂ℓ̂〈A〉
⋄⋄ where ιs is a suitable set of indices.

• Whether we are

⋄⋄ exploring actions, events or behaviours at that domain index

⋄⋄ in that order,

⋄⋄ or some other order

ought be immaterial.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 364 Domain Science & Engineering

36511. Towards a Calculus of Domain Discoverers 11.6. Laws of Domain Descriptions11.6.3. 3rd Law of Commutativity

• Hence with

⋄⋄ A now standing for the ACTION SIGNATURES,

⋄⋄ E standing for the EVENT SIGNATURES,

⋄⋄ B standing for the BEHAVIOUR SIGNATURES,

• discoverers, we wish the following law to hold:

122. (A(ι)(ιs); E(ι)(ιs);B(ι)(ιs))(ℜ) ≃
(A(ι)(ιs);B(ι)(ιs); E(ι)(ιs))(ℜ) ≃
(E(ι)(ιs);A(ι)(ιs);B(ι)(ιs))(ℜ) ≃
(E(ι)(ιs);B(ι)(ιs);A(ι)(ιs))(ℜ) ≃
(B(ι)(ιs);A(ι)(ιs); E(ι)(ιs))(ℜ) ≃
(B(ι)(ιs); E(ι)(ιs);A(ι)(ιs))(ℜ).

⋄⋄ here modulo action function, event predicate, channel, message
type and behaviour (and all associated, auxiliary type)
renamings.

A Precursor for Requirements Engineering 365 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

366 11. Towards a Calculus of Domain Discoverers 11.6. Laws of Domain Descriptions11.6.4. 1st Law of Stability

11.6.4. 1st Law of Stability

• Re-performing

⋄⋄ the same discovery function

⋄⋄ over the same sub-domain,

⋄⋄ that is with identical indices,

⋄⋄ one or more times,

ought not produce any new description texts.

• That is:

123. (D(ι)(ιs);A and D seq)(ℜ) ≃
(D(ι)(ιs);A and D seq;D(ι)(ιs))(ℜ)

• where

⋄⋄ D is any discovery function,

⋄⋄ A and D seq is any specific sequence of
intermediate analyses and discoveries, and where

⋄⋄ ι and ιs are suitable indices, respectively sets of indices.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 366 Domain Science & Engineering

36711. Towards a Calculus of Domain Discoverers 11.6. Laws of Domain Descriptions11.6.5. 2nd Law of Stability

11.6.5. 2nd Law of Stability

• Re-performing

⋄⋄ the same analysis functions

⋄⋄ over the same sub-domain,

⋄⋄ that is with identical indices,

⋄⋄ one or more times,

ought not produce any new analysis results.

• That is:

124. [A(ι)] = [A(ι); . . . ;A(ι)]

• where

⋄⋄ A is any analysis function,

⋄⋄ “. . . ” is any sequence of intermediate analyses and discoveries,
and where

⋄⋄ ι is any suitable index.

A Precursor for Requirements Engineering 367 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

368 11. Towards a Calculus of Domain Discoverers 11.6. Laws of Domain Descriptions11.6.6. Law of Non-interference

11.6.6. Law of Non-interference

• When performing a discovery meta-operation, D
⋄⋄ on any index, ι, and possibly index set, ιs, and

⋄⋄ on a repository state, ℜ,

⋄⋄ then using the [D(ι)(ιs)] notation

⋄⋄ expresses a pair of a narrative text and some formulas, [txt,rsl],

⋄⋄ whereas using the (D(ι)(ιs))(ℜ) notation

⋄⋄ expresses a next repository state, ℜ′.
• What is the “difference” ?

• Informally and simplifying we can say that the relation between the
two expressions is:

125. [D(ι)(ιs)]: [txt,rsl]
(D(ι)(ιs))(ℜ) = ℜ′
where ℜ′ = ℜ ∪ {[txt,rsl]}

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 368 Domain Science & Engineering

36911. Towards a Calculus of Domain Discoverers 11.6. Laws of Domain Descriptions11.6.6. Law of Non-interference

• We say that when 125. is satisfied

⋄⋄ for any discovery meta-function D,

⋄⋄ for any indices ι and ιs

⋄⋄ and for any repository state ℜ,

then the repository is not interfered with,

⋄⋄ that is, “what you see is what you get:”

and therefore that

⋄⋄ the discovery process satisfies the law on non-interference.

A Precursor for Requirements Engineering 369 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

370 11. Towards a Calculus of Domain Discoverers 11.7. Discussion

11.7. Discussion

• The above is just a hint at domain development laws
that we might wish orderly developments to satisfy.

• We invite the audience to suggest other laws.

• The laws of the analysis and discovery calculus

⋄⋄ forms an ideal set of expectations

⋄⋄ that we have of not only one domain describer

⋄⋄ but from a domain describer team

⋄⋄ of two or more domain describers

⋄⋄ whom we expect to work, i.e., loosely collaborate,

⋄⋄ based on “near”-identical domain development principles.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 370 Domain Science & Engineering

37111. Towards a Calculus of Domain Discoverers 11.7. Discussion

• These are quite some expectations.

⋄⋄ But the whole point of

◦◦ a highest-level

◦◦ academic scientific education and

◦◦ engineering training

⋄⋄ is that one should expect commensurate development results.

A Precursor for Requirements Engineering 371 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

372 11. Towards a Calculus of Domain Discoverers 11.7. Discussion

• Now, since the ingenuity and creativity in the analysis and
discovery process does differ between domain developers

⋄⋄ we expect that a daily process of “buddy checking”,

⋄⋄ where individual team members present their findings

⋄⋄ and where these are discussed by the team

⋄⋄ will result in adherence to the laws of the calculus.

• The laws of the analysis and discovery calculus

⋄⋄ expressed some properties that we wish the repository to exhibit.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 372 Domain Science & Engineering

37311. Towards a Calculus of Domain Discoverers 11.7. Discussion

• We have deliberately abstained from “over-defining”

⋄⋄ the structure of repositories and

⋄⋄ the “hidden” operations (i.e., ‘update’, etc.)

repositories.

• We expect further

⋄⋄ research into,

⋄⋄ development of,

⋄⋄ possible changes to

⋄⋄ and use

of the calculus to yield such insight as to lead to

⋄⋄ a firmer understanding of

⋄⋄ the nature of repositories.

A Precursor for Requirements Engineering 373 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

374 11. Towards a Calculus of Domain Discoverers 11.7. Discussion

• In the analysis and discovery calculus

⋄⋄ such as we have presented it

• we have emphasised

⋄⋄ the types of parts, sorts and immediate part concrete types, and

⋄⋄ the signatures of actions, events and behaviours —

⋄⋄ as these predominantly featured type expressions.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 374 Domain Science & Engineering

37511. Towards a Calculus of Domain Discoverers 11.7. Discussion

• We have therefore, in this tutorial, not investigated, for example,

⋄⋄ pre/post conditions of action function,

⋄⋄ form of event predicates, or

⋄⋄ behaviour process expressions.

• We leave that, substantially more demanding issue, for future
explorative and experimental research.

A Precursor for Requirements Engineering 375 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

376

End of Lecture 7: Last Session — Calculus II

Function Signature Discoverers and Laws

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 376 Domain Science & Engineering

376

LONG BREAK

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 376 Domain Science & Engineering

376

DRAWING TO A CLOSE

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 376 Domain Science & Engineering

377

Begin of Lecture 8: First Session — Requirements Engineering

Domain and Interface Requirements

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

A Precursor for Requirements Engineering 377 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

377

Tutorial Schedule
• Lectures 1–2 9:00–9:40 + 9:50–10:30

1 Introduction Slides 1–35

2 Endurant Entities: Parts Slides 36–114

• Lectures 3–5 11:00–11:15 + 11:20–11:45 + 11:50–12:30

3 Endurant Entities: Materials, States Slides 115–146

4 Perdurant Entities: Actions and Events Slides 147–178

5 Perdurant Entities: Behaviours Slides 179–284

Lunch 12:30–14:00

• Lectures 6–7 14:00–14:40 + 14:50–15:30

6 A Calculus: Analysers, Parts and Materials Slides 285–338

7 A Calculus: Function Signatures and Laws Slides 339–376

• Lectures 8–9 16:00–16:40 + 16:50–17:30
√

8 Requirements Domain & I/F Reqs. Slides 377–423

9 Conclusion: Comparison to Other Work Slides 427–459

Conclusion: What Have We Achieved Slides 424–426 + 460–471

A Precursor for Requirements Engineering 377 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

378 12. Towards a Calculus of Domain Discoverers

12. Requirements Engineering

• We shall present a terse overview of

⋄⋄ how one can “derive” essential fragments of
requirements prescriptions

⋄⋄ from a domain description.

• First we give,

⋄⋄ in the next section,

⋄⋄ a summary of the net domain, N,

⋄⋄ as developed in earlier sections.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 378 Domain Science & Engineering

37912. Requirements Engineering 12.1. The Transport Domain — a Resumé

12.1. The Transport Domain — a Resumé
12.1.1. Nets, Hubs and Links

126. From a transport net one can observe sets of hubs and links.

type

126. N, HS, Hs = H-set, H, LS, Ls = L-set, L
127. HI, LI
15. LΣ = HI-set, HΣ = (LI×LI)-set
16. LΩ = LΣ-set, HΩ = HΣ-set

value

126. obs HS: N → HS, obs LS: N → LS
126. obs Hs: N → H-set, obs Ls: N → L-set

15. attr LΣ: L → LΣ, attr HΣ: H → HΣ
16. attr LΩ: L → LΩ, attr HΩ: H → HΩ

A Precursor for Requirements Engineering 379 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

380 12. Requirements Engineering 12.1. The Transport Domain — a Resumé12.1.2. Mereology

12.1.2. Mereology

127. From hubs and links one can observe their unique hub, respectively
link identifiers and their respective mereologies.

128. The mereology of a link identifies exactly two distinct hubs.

129. The mereologies of hubs and links must identify actual links and
hubs of the net.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 380 Domain Science & Engineering

381
12. Requirements Engineering 12.1. The Transport Domain — a Resumé12.1.2. Mereology

value

127. uid H: H → HI, uid L: L → LI
127. mereo H: H → LI-set, mereo L: L → HI-set
axiom

128. ∀ l:L•cardmereo L(l)=2
129. ∀ n:N,l:L•l ∈ obs Ls(n) ⇒
129. ∧ ∀ hi:HI•hi ∈ mereo L(l)
129. ⇒ ∃ h:h•h ∈ obs Hs(n)∧uid H(h)=hi
129. ∧ ∀ h:H•h ∈ obs Hs(n) ⇒
129. ∀ li:LI•li ∈ mereo H(h)
129. ⇒ ∃ l:L•l ∈ obs Ls(n)∧uid L(l)=li

A Precursor for Requirements Engineering 381 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

382 12. Requirements Engineering 12.2. A Requirements “Derivation”

12.2. A Requirements “Derivation”
12.2.1. Definition of Requirements

IEEE Definition of ‘Requirements’

• By a requirements we understand
(cf. IEEE Standard 610.12 [ieee-610.12]):

⋄⋄ “A condition or capability needed by a user
to solve a problem or achieve an objective”.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 382 Domain Science & Engineering

383
12. Requirements Engineering 12.2. A Requirements “Derivation”12.2.2. The Machine = Hardware + Software

12.2.2. The Machine = Hardware + Software

• By ‘the machine’ we shall understand the

⋄⋄ software to be developed and

⋄⋄ hardware (equipment + base software) to be configured

for the domain application.

A Precursor for Requirements Engineering 383 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

384 12. Requirements Engineering 12.2. A Requirements “Derivation”12.2.3. Requirements Prescription

12.2.3. Requirements Prescription

• The core part of the requirements engineering of a computing
application is the requirements prescription.

⋄⋄ A requirements prescription tells us which parts of the domain
are to be supported by ‘the machine’.

⋄⋄ A requirements is to satisfy some goals.

⋄⋄ Usually the goals cannot be prescribed in such a manner that
they can serve directly as a basis for software design.

⋄⋄ Instead we derive the requirements from the domain descriptions
and then argue
(incl. prove) that the goals satisfy the requirements.

⋄⋄ In this colloquium we shall not show the latter
but shall show the former.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 384 Domain Science & Engineering

385
12. Requirements Engineering 12.2. A Requirements “Derivation”12.2.4. Some Requirements Principles

12.2.4. Some Requirements Principles

The “Golden Rule” of Requirements Engineering

• Prescribe only such requirements

⋄⋄ that can be objectively shown to hold

⋄⋄ for the designed software.

An “Ideal Rule” of Requirements Engineering

• When prescribing (including formalising) requirements,

⋄⋄ also formulate tests (theorems, properties for model checking)

⋄⋄ whose actualisation should show adherence to the requirements.

• We shall not show adherence to the above rules.

A Precursor for Requirements Engineering 385 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

386
12. Requirements Engineering 12.2. A Requirements “Derivation”12.2.5. A Decomposition of Requirements Prescription

12.2.5. A Decomposition of Requirements Prescription

• We consider three forms of requirements prescription:

⋄⋄ the domain requirements,

⋄⋄ the interface requirements and

⋄⋄ the machine requirements.

• Recall that the machine is the hardware and software (to be
required).

⋄⋄ Domain requirements are those whose technical terms
are from the domain only.

⋄⋄ Machine requirements are those whose technical terms
are from the machine only.

⋄⋄ Interface requirements are those whose technical terms
are from both.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 386 Domain Science & Engineering

387
12. Requirements Engineering 12.2. A Requirements “Derivation”12.2.6. An Aside on Our Example

12.2.6. An Aside on Our Example

• We shall continue our “ongoing” example.

• Our requirements is for a tollway system.

• By a requirements goal we mean

⋄⋄ an objective

⋄⋄ the system under consideration

⋄⋄ should achieve [LamsweerdeIEEE2001].

• The goals of having a tollway system are:

⋄⋄ to decrease transport times
between selected hubs of a general net; and

⋄⋄ to decrease traffic accidents and fatalities
while moving on the tollway net
as compared to comparable movements on the general net.

A Precursor for Requirements Engineering 387 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

388 12. Requirements Engineering 12.2. A Requirements “Derivation”12.2.6. An Aside on Our Example

• The tollway net, however, must be paid for by its users.

⋄⋄ Therefore tollway net entries and exits occur at tollway plazas

⋄⋄ with these plazas containing entry and exit toll collectors

⋄⋄ where tickets can be issued,
respectively collected and
travel paid for.

• We shall very briefly touch upon these toll collectors,
in the Extension part (as from Slide 404) below.

• So all the other parts of the next section
serve to build up to the Extension section.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 388 Domain Science & Engineering

38912. Requirements Engineering 12.3. Domain Requirements

12.3. Domain Requirements

• Domain requirements cover all those aspects of the domain —

⋄⋄ parts and materials,

⋄⋄ actions,

⋄⋄ events and

⋄⋄ behaviours —

• which are to be supported by ‘the machine’.

A Precursor for Requirements Engineering 389 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

390 12. Requirements Engineering 12.3. Domain Requirements

• Thus domain requirements are developed by systematically
“revising” cum “editing” the domain description:

⋄⋄ which parts are to be projected: left in or out;

⋄⋄ which general descriptions are to be instantiated
into more specific ones;

⋄⋄ which non-deterministic properties
are to be made more determinate; and

⋄⋄ which parts are to be extended
with such computable domain description parts
which are not feasible without IT.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 390 Domain Science & Engineering

391
12. Requirements Engineering 12.3. Domain Requirements

• Thus

⋄⋄ projection,

⋄⋄ instantiation,

⋄⋄ determination and

⋄⋄ extension

are the basic engineering tasks of domain requirements engineering.

A Precursor for Requirements Engineering 391 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

392 12. Requirements Engineering 12.3. Domain Requirements

• An example may best illustrate what is at stake.

• The example is that of a tollway system —

⋄⋄ in contrast to the general nets covered by description
Items 126–129

⋄⋄ (Slides 379–380).

⋄⋄ See Fig. 4 on the next page.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 392 Domain Science & Engineering

39312. Requirements Engineering 12.3. Domain Requirements

.....

.....
hubs

links

h1 h2 h7 h8

p1 p3p2 p7 p8

hub
plaza

to
plaza

h4

General Net

links

"twinned"

Tollway Net

tollway

tollway links
tollway hub

Figure 4: General and Tollway Nets

A Precursor for Requirements Engineering 393 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

394
12. Requirements Engineering 12.3. Domain Requirements12.3.1. Projection

12.3.1. Projection
We keep what is needed to prescribe the tollway system and leave out
the rest.

130. We keep the description, narrative and
formalisation,

(a) nets, hubs, links,

(b) hub and link identifiers,

(c) hub and link states,

131. as well as related observer functions.

type

130(a). N, H, L
130(b). HI, LI
130(c). HΣ, LΣ
value

131. obs Hs,obs Ls,obs HI,obs LI,
131. obs HIs,obs LIs,obs HΣ,obs L Σ

• We omit bringing the composite part concepts

• of HS, LS, Hs and Ls

• into the requirements.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 394 Domain Science & Engineering

39512. Requirements Engineering 12.3. Domain Requirements12.3.2. Instantiation

12.3.2. Instantiation

.....

.....
hubs

links

h1 h2 h7 h8

p1 p3p2 p7 p8

hub
plaza

to
plaza

h4

General Net

links

"twinned"

Tollway Net

tollway

tollway links
tollway hub

Figure 5: General and Tollway Nets

A Precursor for Requirements Engineering 395 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

396
12. Requirements Engineering 12.3. Domain Requirements12.3.2. Instantiation

• From the general net model of earlier formalisations
we instantiate, that is, make more concrete,
the tollway net model now described.

132. The net is now concretely modelled as a pair of sequences.

133. One sequence models the plaza hubs, their plaza-to-tollway link and the connected
tollway hub.

134. The other sequence models the pairs of “twinned” tollway links.

135. From plaza hubs one can observe their hubs and the identifiers of these hubs.

136. The former sequence is of m such plaza “complexes” where m ≥ 2; the latter
sequence is of m − 1 “twinned” links.

137. From a tollway net one can abstract a proper net.

138. One can show that the posited abstraction function yields well-formed nets, i.e.,
nets which satisfy previously stated axioms.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 396 Domain Science & Engineering

39712. Requirements Engineering 12.3. Domain Requirements12.3.2. Instantiation

type

132. TWN = PC∗ × TL∗

133. PC = PH × L × H

134. TL = L × L

value

133. obs H: PH → H, obs HI: PH → HI

axiom

136. ∀ (pcl,tll):TWN •

136. 2≤len pcl∧len pcl=len tll+1

value

137. abs N: TWN → N

137. abs N(pcl,tll) as n

137. pre: wf TWN(pcl,tll)

137. post:

137. obs Hs(n) =

137. {h,h′|(h, ,h′):PC

137. •(h, ,h′)∈ elems pcl}
137. ∧ obs Ls(n) =

137. {l|(,l,):PC

137. •(,l,)∈ elems pcl} ∪
137. {l,l′|(l,l′):TL•(l,l′)∈ elems tll}

theorem:

138. ∀ twn:TWN • wf TWN(twn)

138. ⇒ wf N(abs N(twn))

.....

.....
hubs

links

h1 h2 h7 h8

p1 p3p2 p7 p8

hub
plaza

to
plaza

h4

General Net

links

"twinned"

Tollway Net

tollway

tollway links
tollway hub

Figure 6: General and tollway Nets

A Precursor for Requirements Engineering 397 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

398
12. Requirements Engineering 12.3. Domain Requirements12.3.2. Instantiation12.3.2.1. Model Well-formedness wrt. Instantiation

12.3.2.1 Model Well-formedness wrt. Instantiation

• Instantiation restricts general nets to tollway nets.

• Well-formedness deals with proper mereology:
that observed identifier references are proper.

• The well-formedness of instantiation of the tollway system model
can be defined as follows:

139. The i’plaza complex, (pi, li, hi), is instantiation-well-formed if

(a) link li identifies hubs pi and hi, and

(b) hub pi and hub hi both identifies link li; and if

140. the i’th pair of twinned links, tli, tl
′
i,

(a) has these links identify the tollway hubs of the i’th and i+1’st plaza complexes
((pi, li, hi) respectively (pi+1, li+1, hi1)).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 398 Domain Science & Engineering

39912. Requirements Engineering 12.3. Domain Requirements12.3.2. Instantiation12.3.2.1. Model Well-formedness wrt. Instantiation

value

Instantiation wf TWN: TWN → Bool

Instantiation wf TWN(pcl,tll) ≡
139. ∀ i:Nat • i ∈ inds pcl⇒
139. let (pi,li,hi)=pcl(i) in

139(a). obs LIs(li)={obs HI(pi),obs HI(hi)}
139(b). ∧ obs LI(li)∈ obs LIs(pi)∩ obs LIs(hi)
140. ∧ let (li′,li′′) = tll(i) in

140. i < len pcl ⇒
140. let (pi′,li′′′,hi′) = pcl(i+1) in

140(a). obs HIs(li) = obs HIs(li′)
140(a). = {obs HI(hi),obs HI(hi′)}

end end end

A Precursor for Requirements Engineering 399 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

400 12. Requirements Engineering 12.3. Domain Requirements12.3.3. Determination

12.3.3. Determination

• Determination, in this example, fixes states of hubs and links.

• The state sets contain only one set.

⋄⋄ Twinned tollway links allow traffic only in opposite directions.

⋄⋄ Plaza to tollway hubs allow traffic in both directions.

⋄⋄ tollway hubs allow traffic to flow freely from

◦◦ plaza to tollway links

◦◦ and from incoming tollway links

◦◦ to outgoing tollway links

◦◦ and tollway to plaza links.

• The determination-well-formedness of the tollway system model
can be defined as follows30:

30i ranges over the length of the sequences of twinned tollway links, that is, one less
than the length of the sequences of plaza complexes. This “discrepancy” is reflected
in out having to basically repeat formalisation of both Items 142(a) and 142(b).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 400 Domain Science & Engineering

401
12. Requirements Engineering 12.3. Domain Requirements12.3.3. Determination12.3.3.1. Model Well-formedness wrt. Determination

12.3.3.1 Model Well-formedness wrt. Determination

• We need define well-formedness wrt. determination.

• Please study Fig. 7.

l1 li ln

lm’li’lj’

lj’’ li’’ lm’’l1’’

l1’

j=i−1 m = n−1 = len tll = len pcl − 1

... ...

Figure 7: Hubs and Links

A Precursor for Requirements Engineering 401 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

402 12. Requirements Engineering 12.3. Domain Requirements12.3.3. Determination12.3.3.1. Model Well-formedness wrt. Determination

141. All hub and link state spaces contain just one hub, respectively link state.

142. The i’th plaza complex, pcl(i):(pi, li, hi) is determination-well-formed if

(a) li is open for traffic in both directions and

(b) pi allows traffic from hi to “revert”; and if

143. the i’th pair of twinned links (li′, li′′) (in the context of the i+1st plaza complex,

pcl(i+1):(pi+1, li+1, hi+1)) are determination-well-formed if

(a) link l′i is open only from hi to hi+1 and

(b) link l′′i is open only from hi+1 to hi; and if

144. the jth tollway hub, hj (for 1 ≤ j ≤ len pcl) is determination-well-formed if, depending on

whether j is the first, or the last, or any “in-between” plaza complex positions,

(a) [the first:] hub i = 1 allows traffic in from l1 and l′′1 , and onto l1 and l′1.

(b) [the last:] hub j = i + 1 = len pcl allows traffic in from llen tll and l′′
len tll−1

, and onto

llen tll and l′
len tll−1

.

(c) [in-between:] hub j = i allows traffic in from li, l′′i and l′i and onto li, l′i−1 and l′′i .

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 402 Domain Science & Engineering

40312. Requirements Engineering 12.3. Domain Requirements12.3.3. Determination12.3.3.1. Model Well-formedness wrt. Determination

value

142. Determination wf TWN: TWN → Bool

142. Determination wf TWN(pcl,tll) ≡
142. ∀ i:Nat• i ∈ inds tll ⇒
142. let (pi,li,hi) = pcl(i),
142. (npi,nli,nhi) = pcl(i+1), in

142. (li′,li′′) = tll(i) in

141. obs HΩ(pi)={obs HΣ(pi)}∧obs HΩ(hi)={obs HΣ(hi)}
141. ∧ obs LΩ(li)={obs LΣ(li)}∧obs LΩ(li′)={obs LΣ(li′)}
141. ∧ obs LΩ(li′′)={obs LΣ(li′′)}
142(a). ∧ obs LΣ(li)
142(a). = {(obs HI(pi),obs HI(hi)),(obs HI(hi),obs HI(pi))}
142(a). ∧ obs LΣ(nli)
142(a). = {(obs HI(npi),obs HI(nhi)),(obs HI(nhi),obs HI(npi))}
142(b). ∧ {(obs LI(li),obs LI(li))}⊆obs HΣ(pi)
142(b). ∧ {(obs LI(nli),obs LI(nli))}⊆obs HΣ(npi)
143(a). ∧ obs LΣ(li′)={(obs HI(hi),obs HI(nhi))}
143(b). ∧ obs LΣ(li′′)={(obs HI(nhi),obs HI(hi))}
144. ∧ case i+1 of

144(a). 2 → obs HΣ(h 1)=
144(a). {(obs LΣ(l 1),obs LΣ(l 1)), (obs LΣ(l 1),obs LΣ(l 1′′)),
144(a). (obs LΣ(l′′ 1),obs LΣ(l 1)), (obs LΣ(l′′ 1),obs LΣ(l′ 1))},
144(b). len pcl → obs HΣ(h i+1)=
144(b). {(obs LΣ(l len pcl),obs LΣ(l len pcl)),
144(b). (obs LΣ(l len pcl),obs LΣ(l′ len tll)),
144(b). (obs LΣ(l′′ len tll),obs LΣ(l len pcl)),
144(b). (obs LΣ(l′′ len tll),obs LΣ(l′ len tll))},
144(c). → obs HΣ(h i)=
144(c). {(obs LΣ(l i),obs LΣ(l i)), (obs LΣ(l i),obs LΣ(l′ i)),
144(c). (obs LΣ(l i),obs LΣ(l′′ i−1)), (obs LΣ(l′′ i),obs LΣ(l′ i)),
144(c). (obs LΣ(l′′ i),obs LΣ(l′ i−1)), (obs LΣ(l′′ i),obs LΣ(l′ i))}
142. end end

A Precursor for Requirements Engineering 403 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

404 12. Requirements Engineering 12.3. Domain Requirements12.3.4. Extension

12.3.4. Extension

• By domain extension we understand the

⋄⋄ introduction of domain entities, actions, events and
behaviours that were not feasible in the original domain,

⋄⋄ but for which, with computing and communication,

⋄⋄ there is the possibility of feasible implementations,

⋄⋄ and such that what is introduced become part of the
emerging domain requirements prescription.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 404 Domain Science & Engineering

40512. Requirements Engineering 12.3. Domain Requirements12.3.4. Extension12.3.4.1. Narrative

12.3.4.1 Narrative

• The domain extension is that of the controlled access of vehicles to
and departure from the tollway net:

⋄⋄ the entry to (and departure from) tollgates from (respectively
to) an "an external" net — which we do not describe;

⋄⋄ the new entities of tollgates with all their machinery;

⋄⋄ the user/machine functions:

◦◦ upon entry:

∗ driver pressing entry
button,

∗ tollgate delivering ticket;

◦◦ upon exit:

∗ driver presenting ticket,

∗ tollgate requesting
payment,

∗ driver providing payment,
etc.

A Precursor for Requirements Engineering 405 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

406
12. Requirements Engineering 12.3. Domain Requirements12.3.4. Extension12.3.4.1. Narrative

Entry
Booth

Exit
Booth

Car

Car

Enter Sensor Exit Sensor

Entry Booth
Exit Sensor

Exit Booth
Enter Sensor

Payment Display & Acceptor

Ticket Collector

Entry Booth
Exit Gate

Vehicle
Direction

Vehicle
Direction

Ticket Dispensor

Exit Gate

Entry Booth Exit Booth

Exit Booth

Figure 8: Entry and Exit Tollbooths

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 406 Domain Science & Engineering

407
12. Requirements Engineering 12.3. Domain Requirements12.3.4. Extension12.3.4.1. Narrative

• One added (extended) domain requirements:

⋄⋄ as vehicles are allowed to cruise the entire net

⋄⋄ payment is a function of the totality of links traversed, possibly
multiple times.

• This requires, in our case,

⋄⋄ that tickets be made such as to be sensed somewhat remotely,

⋄⋄ and that hubs be equipped with sensors which can record

⋄⋄ and transmit information about vehicle hub crossings.

◦◦ (When exiting, the tollgate machine can then access the
exiting vehicles’ sequence of hub crossings — based on which a
payment fee calculation can be done.)

◦◦ All this to be described in detail — including all the things
that can go wrong (in the domain) and how drivers and
tollgates are expected to react.

A Precursor for Requirements Engineering 407 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

408 12. Requirements Engineering 12.3. Domain Requirements12.3.4. Extension12.3.4.1. Narrative

• We omit details of narration and formalisation.

⋄⋄ In this case the extension description would entail a number of
formalisations:

◦◦ An initial one which relies significantly on the use of RSL/CSP
[CARH:Electronic,TheSEBook1wo].
It basically models tollbooth and vehicle behaviours.

◦◦ A “derived” one which models temporal properties.
It is expressed, for example, in the Duration Calculus, DC

[zcc+mrh2002].

◦◦ And finally a timed-automata [AluDil:94,olderogdirks2008]
model which “implements” the DC model.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 408 Domain Science & Engineering

40912. Requirements Engineering 12.4. Interface Requirements Prescription

12.4. Interface Requirements Prescription

• A systematic reading of the domain requirements shall

⋄⋄ result in an identification of all shared

◦◦ parts and materials,

◦◦ actions,

◦◦ events and

◦◦ behaviours.

• An entity is said to be a shared entity if it is mentioned in both

⋄⋄ the domain description and

⋄⋄ the requirements prescription.

• That is, if the entity

⋄⋄ is present in the domain and

⋄⋄ is to be present in the machine.

A Precursor for Requirements Engineering 409 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

410 12. Requirements Engineering 12.4. Interface Requirements Prescription

• Each such shared phenomenon shall then be individually dealt with:

⋄⋄ part and materials sharing shall lead to interface requirements
for data initialisation and refreshment;

⋄⋄ action sharing shall lead to interface requirements for
interactive dialogues between the machine and its
environment;

⋄⋄ event sharing shall lead to interface requirements for how
events are communicated between the environment of
the machine and the machine.

⋄⋄ behaviour sharing shall lead to interface requirements for
action and event dialogues between the machine and its
environment.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 410 Domain Science & Engineering

411
12. Requirements Engineering 12.4. Interface Requirements Prescription12.4.1. Shared Parts

12.4.1. Shared Parts

• The main shared parts of the main example of this section are

⋄⋄ the net, hence the hubs and the links.

• As domain parts they repeatedly undergo changes with respect to
the values of a great number of attributes and otherwise possess
attributes — most of which have not been mentioned so far:

⋄⋄ length, cadestral information, namings,

⋄⋄ wear and tear (where-ever applicable),

⋄⋄ last/next scheduled maintenance (where-ever applicable),

⋄⋄ state and state space, and

⋄⋄ many others.

A Precursor for Requirements Engineering 411 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

412 12. Requirements Engineering 12.4. Interface Requirements Prescription12.4.1. Shared Parts

• We “split” our interface requirements development into two
separate steps:

⋄⋄ the development of dr.net

◦◦ (the common domain requirements for
the shared hubs and links),

⋄⋄ and the co-development of dr.db:i/f

◦◦ (the common domain requirements for
the interface between dr.net and DBrel —

• under the assumption of an available
relational database system DBrel

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 412 Domain Science & Engineering

41312. Requirements Engineering 12.4. Interface Requirements Prescription12.4.1. Shared Parts

• When planning the common domain requirements for the net, i.e.,
the hubs and links,

⋄⋄ we enlarge our scope of requirements concerns
beyond the two so far treated (dr.toll, dr.maint.)

⋄⋄ in order to make sure that
the shared relational database of nets, their hubs and links,
may be useful beyond those requirements.

A Precursor for Requirements Engineering 413 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

414 12. Requirements Engineering 12.4. Interface Requirements Prescription12.4.1. Shared Parts

• We then come up with something like

⋄⋄ hubs and links are to be represented
as tuples of relations;

⋄⋄ each net will be represented by a pair of relations

◦◦ a hubs relation and a links relation;

◦◦ each hub and each link may or will
be represented by several tuples;

⋄⋄ etcetera.

• In this database modelling effort
it must be secured that “standard” actions on nets, hubs and links
can be supported by the chosen relational database system DBrel.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 414 Domain Science & Engineering

41512. Requirements Engineering 12.4. Interface Requirements Prescription12.4.1. Shared Parts12.4.1.1. Data Initialisation

12.4.1.1 Data Initialisation

• As part of dr.net one must prescribe data initialisation, that is
provision for

⋄⋄ an interactive user interface dialogue
with a set of proper display screens,

◦◦ one for establishing net, hub or link attributes (names) and
their types and,

◦◦ for example, two for the input of hub and link attribute values.

⋄⋄ Interaction prompts may be prescribed:

◦◦ next input,

◦◦ on-line vetting and

◦◦ display of evolving net, etc.

⋄⋄ These and many other aspects may therefore need prescriptions.

• Essentially these prescriptions concretise the insert link action.

A Precursor for Requirements Engineering 415 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

416 12. Requirements Engineering 12.4. Interface Requirements Prescription12.4.1. Shared Parts12.4.1.2. Data Refreshment

12.4.1.2 Data Refreshment

• As part of dr.net one must also prescribe data refreshment:

⋄⋄ an interactive user interface dialogue
with a set of proper display screens

◦◦ one for updating net, hub or link attributes (names)
and their types and,

◦◦ for example, two for the update of hub and link
attribute values.

⋄⋄ Interaction prompts may be prescribed:

◦◦ next update,

◦◦ on-line vetting and

◦◦ display of revised net, etc.

⋄⋄ These and many other aspects may therefore need prescriptions.

• These prescriptions concretise remove and insert link actions.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 416 Domain Science & Engineering

41712. Requirements Engineering 12.4. Interface Requirements Prescription12.4.2. Shared Actions

12.4.2. Shared Actions

• The main shared actions are related to

⋄⋄ the entry of a vehicle into the tollway system and

⋄⋄ the exit of a vehicle from the tollway system.

12.4.2.1 Interactive Action Execution

• As part of dr.toll we must therefore prescribe

⋄⋄ the varieties of successful and less successful sequences

⋄⋄ of interactions between vehicles (or their drivers) and the toll
gate machines.

• The prescription of the above necessitates determination of a
number of external events, see below.

• (Again, this is an area of embedded, real-time safety-critical system
prescription.)

A Precursor for Requirements Engineering 417 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

418 12. Requirements Engineering 12.4. Interface Requirements Prescription12.4.3. Shared Events

12.4.3. Shared Events

• The main shared external events are related to

⋄⋄ the entry of a vehicle into the tollway system,

⋄⋄ the crossing of a vehicle through a tollway hub and

⋄⋄ the exit of a vehicle from the tollway system.

• As part of dr.toll we must therefore prescribe

⋄⋄ the varieties of these events,

⋄⋄ the failure of all appropriate sensors and

⋄⋄ the failure of related controllers:

◦◦ gate opener and closer (with sensors and actuators),

◦◦ ticket “emitter” and “reader” (with sensors and actuators),

◦◦ etcetera.

• The prescription of the above necessitates extensive fault analysis.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 418 Domain Science & Engineering

41912. Requirements Engineering 12.4. Interface Requirements Prescription12.4.4. Shared Behaviours

12.4.4. Shared Behaviours

• The main shared behaviours are therefore related to

⋄⋄ the journey of a vehicle through the tollway system and

⋄⋄ the functioning of a toll gate machine during “its lifetime”.

• Others can be thought of, but are omitted here.

• In consequence of considering, for example, the journey of a vehicle
behaviour, we may “add” some further, extended requirements:

⋄⋄ requirements for a vehicle statistics “package”;

⋄⋄ requirements for tracing supposedly “lost” vehicles;

⋄⋄ requirements limiting tollway system access in case of traffic
congestion; etcetera.

A Precursor for Requirements Engineering 419 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

420 12. Requirements Engineering 12.5. Machine Requirements

12.5. Machine Requirements

• The machine requirements

⋄⋄ make hardly any concrete reference to the domain description;

⋄⋄ so we omit its treatment altogether.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 420 Domain Science & Engineering

42112. Requirements Engineering 12.6. Discussion of Requirements “Derivation”

12.6. Discussion of Requirements “Derivation”

• We have indicated

⋄⋄ how the domain engineer

⋄⋄ and the requirements engineer

⋄⋄ can work together

⋄⋄ to “derive” significant fragments

⋄⋄ of a requirements prescription.

A Precursor for Requirements Engineering 421 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

422 12. Requirements Engineering 12.6. Discussion of Requirements “Derivation”

• This puts requirements engineering in a new light.

⋄⋄ Without a previously existing domain descriptions

⋄⋄ the requirements engineer has to do double work:

◦◦ both domain engineering

◦◦ and requirements engineering

⋄⋄ but without the principles of domain description,

◦◦ as laid down in this tutorial

⋄⋄ that job would not be so straightforward as we now suggest.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 422 Domain Science & Engineering

423

End of Lecture 8: First Session — Requirements Engineering

Domain and Interface Requirements

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

A Precursor for Requirements Engineering 423 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

423

SHORT BREAK

A Precursor for Requirements Engineering 423 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

423

FINAL LAST HAUL !

A Precursor for Requirements Engineering 423 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

424

Begin of Lecture 9: Last Session — Conclusion

Comparisons and What Have We Achieved

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 424 Domain Science & Engineering

424

Tutorial Schedule
• Lectures 1–2 9:00–9:40 + 9:50–10:30

1 Introduction Slides 1–35

2 Endurant Entities: Parts Slides 36–114

• Lectures 3–5 11:00–11:15 + 11:20–11:45 + 11:50–12:30

3 Endurant Entities: Materials, States Slides 115–146

4 Perdurant Entities: Actions and Events Slides 147–178

5 Perdurant Entities: Behaviours Slides 179–284

Lunch 12:30–14:00

• Lectures 6–7 14:00–14:40 + 14:50–15:30

6 A Calculus: Analysers, Parts and Materials Slides 285–338

7 A Calculus: Function Signatures and Laws Slides 339–376

• Lectures 8–9 16:00–16:40 + 16:50–17:30

8 Domain and Interface Requirements Slides 377–423
√

9 Conclusion: Comparison to Other Work Slides 427–459
√

Conclusion: What Have We Achieved Slides 424–426 + 460–471

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 424 Domain Science & Engineering

42513. Requirements Engineering

13. Conclusion

• This document,

⋄⋄ meant as the basis for my tutorial

⋄⋄ at FM 2012 (CNAM, Paris, August 28),

⋄⋄ “grew” from a paper being written for possible journal
publication.

◦◦ Sections 2–3 possibly represent
two publishable journal papers.

◦◦ Section 4 has been “added” to the ‘tutorial’ notes.

A Precursor for Requirements Engineering 425 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

426
13. Conclusion

• The style of the two tutorial “parts”,

⋄⋄ Sects. 2–3 and

⋄⋄ Sect. 4

⋄⋄ are, necessarily, different:

◦◦ Sects. 2–3
are in the form of research notes,

◦◦ whereas Sect. 4
is in the form of “lecture notes” on methodology.

⋄⋄ Be that as it may. Just so that you are properly notified !

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 426 Domain Science & Engineering

42713. Conclusion 13.1. Comparison to Other Work

13.1. Comparison to Other Work

• In this section we shall only compare

⋄⋄ our contribution to domain engineering as presented in the
section on domain entities

⋄⋄ to that found in the broader literature with respect to the
software engineering term ‘domain’.

• We shall not compare

⋄⋄ our contribution to requirements engineering

⋄⋄ as surveyed in the section on requirements engineering.

⋄⋄ to that, also, found in the broader requirements engineering
literature.

• Finally we shall also not compare

⋄⋄ our work on a description calculus

⋄⋄ as we find no comparable literature !

A Precursor for Requirements Engineering 427 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

428 13. Conclusion 13.1. Comparison to Other Work13.1.1. Ontological Engineering:

13.1.1. Ontological Engineering:

• Ontological engineering is described mostly on the Internet, see
however [Benjamins+Fensel98].

• Ontology engineers build ontologies.

• And ontologies are, in the tradition of ontological engineering,
“formal representations of a set of concepts within a domain and the
relationships between those concepts” — expressed usually in some
logic.

• Published ontologies usually consists of thousands of logical
expressions.

• These are represented in some, for example, low-level mechanisable
form so that they can be interchanged between ontology groups
building upon one-anothers work and processed by various tools.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 428 Domain Science & Engineering

42913. Conclusion 13.1. Comparison to Other Work13.1.1. Ontological Engineering:

• There does not seem to be a concern for “deriving” such ontologies
into requirements for software.

• Usually ontology presentations

⋄⋄ either start with the presentation

⋄⋄ or makes reference to its reliance

of an upper ontology.

• Instead the ontology databases

⋄⋄ appear to be used for the computerised

⋄⋄ discovery and analysis

⋄⋄ of relations between ontologies.

A Precursor for Requirements Engineering 429 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

430 13. Conclusion 13.1. Comparison to Other Work13.1.1. Ontological Engineering:

• The TripTych form of domain science & engineering differs from
conventional ontological engineering in the following, essential ways:

⋄⋄ The TripTych domain descriptions rely essentially
on a “built-in” upper ontology:

◦◦ types, abstract as well as model-oriented (i.e., concrete) and

◦◦ actions, events and behaviours.

⋄⋄ Domain science & engineering is not, to a first degree, concerned
with modalities, and hence do not focus on the modelling of

◦◦ knowledge and belief,

◦◦ necessity and possibility, i.e., alethic modalities,

◦◦ epistemic modality (certainty),

◦◦ promise and obligation (deontic modalities),

◦◦ etcetera.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 430 Domain Science & Engineering

431
13. Conclusion 13.1. Comparison to Other Work13.1.2. Knowledge and Knowledge Engineering:

13.1.2. Knowledge and Knowledge Engineering:

• The concept of knowledge has occupied philosophers since Plato.

⋄⋄ No common agreement on what ‘knowledge’ is has been reached.

⋄⋄ From Wikipedia we may learn that

◦◦ knowledge is a familiarity with someone or something;

∗ it can include facts, information, descriptions, or skills
acquired through experience or education;

∗ it can refer to the theoretical or practical understanding of a
subject;

◦◦ knowledge is produced by socio-cognitive aggregates

∗ (mainly humans)

∗ and is structured according to our understanding of how
human reasoning and logic works.

A Precursor for Requirements Engineering 431 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

432 13. Conclusion 13.1. Comparison to Other Work13.1.2. Knowledge and Knowledge Engineering:

• The aim of knowledge engineering was formulated, in 1983, by an
originator of the concept, Edward A. Feigenbaum [Feigenbaum83]:

⋄⋄ knowledge engineering is an engineering discipline

⋄⋄ that involves integrating knowledge into computer systems

⋄⋄ in order to solve complex problems

⋄⋄ normally requiring a high level of human expertise.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 432 Domain Science & Engineering

43313. Conclusion 13.1. Comparison to Other Work13.1.2. Knowledge and Knowledge Engineering:

• Knowledge engineering focuses on

⋄⋄ continually building up (acquire) large,
shared data bases (i.e., knowledge bases),

⋄⋄ their continued maintenance,

⋄⋄ testing the validity of the stored ‘knowledge’,

⋄⋄ continued experiments with respect to knowledge representation,

⋄⋄ etcetera.

A Precursor for Requirements Engineering 433 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

434
13. Conclusion 13.1. Comparison to Other Work13.1.2. Knowledge and Knowledge Engineering:

• Knowledge engineering can, perhaps, best be understood in contrast
to algorithmic engineering:

⋄⋄ In the latter we seek more-or-less conventional, usually
imperative programming language expressions of algorithms
◦◦ whose algorithmic structure embodies the knowledge

◦◦ required to solve the problem being solved by the algorithm.

⋄⋄ The former seeks to solve problems based on an interpreter
inferring possible solutions from logical data. This logical data
has three parts:
◦◦ a collection that “mimics” the semantics of, say, the imperative

programming language,

◦◦ a collection that formulates the problem, and

◦◦ a collection that constitutes the knowledge particular to the problem.

• We refer to [BjornerNilsson1992].

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 434 Domain Science & Engineering

43513. Conclusion 13.1. Comparison to Other Work13.1.2. Knowledge and Knowledge Engineering:

• The concerns of TripTych domain science & engineering is based
on that of algorithmic engineering.

⋄⋄ Domain science & engineering is not aimed at

◦◦ letting the computer solve problems based on

◦◦ the knowledge it may have stored.

⋄⋄ Instead it builds models based on knowledge of the domain.

• Further references to seminal exposés of knowledge engineering are
[Studer1998,Kendal2007].

A Precursor for Requirements Engineering 435 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

436 13. Conclusion 13.1. Comparison to Other Work13.1.3. Domain Analysis:

13.1.3. Domain Analysis:

• There are different “schools of domain analysis”.

⋄⋄ Domain analysis, or product line analysis (see below), as it was
first conceived in the early 1980s by James Neighbors

◦◦ is the analysis of related software systems in a domain

◦◦ to find their common and variable parts.

◦◦ It is a model of wider business context for the system.

⋄⋄ This form of domain analysis turns matters “upside-down”:

◦◦ it is the set of software “systems” (or packages)

◦◦ that is subject to some form of inquiry,

◦◦ albeit having some domain in mind,

◦◦ in order to find common features of the software

◦◦ that can be said to represent a named domain.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 436 Domain Science & Engineering

43713. Conclusion 13.1. Comparison to Other Work13.1.3. Domain Analysis:

• In this section we shall mainly be comparing the TripTych
approach to domain analysis to that of Reubén Prieto-D̃ıaz’s
approach [Prieto-Diaz:1987,Prieto-Diaz:1990,Prieto-Diaz:1991].

• Firstly, the two meanings of domain analysis basically coincide.

• Secondly, in, for example, [Prieto-Diaz:1987], Prieto-D̃ıaz’s domain
analysis is focused on the very important stages that precede the
kind of domain modelling that we have described:

⋄⋄ major concerns are

◦◦ selection of what appears to be similar, but specific entities,

◦◦ identification of common features,

◦◦ abstraction of entities and

◦◦ classification.

⋄⋄ Selection and identification is assumed in our approach, but we suggest to
follow the ideas of Prieto-Dı̃az.

⋄⋄ Abstraction (from values to types and signatures) and classification into parts,
materials, actions, events and behaviours is what we have focused on.

A Precursor for Requirements Engineering 437 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

438
13. Conclusion 13.1. Comparison to Other Work13.1.3. Domain Analysis:

• All-in-all we find Prieto-Dı̃az’s work very relevant to our work:

⋄⋄ relating to it by providing guidance to pre-modelling steps,

⋄⋄ thereby emphasising issues that are necessarily informal,

⋄⋄ yet difficult to get started on by most software engineers.

• Where we might differ is on the following:

⋄⋄ although Prieto-Dı̃az does mention a need for domain specific languages,

⋄⋄ he does not show examples of domain descriptions in such DSLs.

⋄⋄ We, of course, basically use mathematics as the DSL.

• In the TripTych approach to domain analysis

⋄⋄ we provide a full ontology — cf. Sects. 2.–10. and

⋄⋄ suggest a domain description calculus.

• In our approach

⋄⋄ we do not consider requirements, let alone software components,

⋄⋄ as do Prieto-Dı̃az,

but we find that that is not an important issue.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 438 Domain Science & Engineering

43913. Conclusion 13.1. Comparison to Other Work13.1.4. Software Product Line Engineering:

13.1.4. Software Product Line Engineering:

• Software product line engineering,
earlier known as domain engineering,

⋄⋄ is the entire process of reusing domain knowledge in the
production of new software systems.

• Key concerns of software product line engineering are

⋄⋄ reuse,

⋄⋄ the building of repositories of reusable software components, and

⋄⋄ domain specific languages with which to, more-or-less
automatically build software based on reusable software
components.

A Precursor for Requirements Engineering 439 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

440 13. Conclusion 13.1. Comparison to Other Work13.1.4. Software Product Line Engineering:

• These are not the primary concerns of
TripTych domain science & engineering.

⋄⋄ But they do become concerns as we move from domain
descriptions to requirements prescriptions.

⋄⋄ But it strongly seems that software product line engineering is
not really focused on the concerns of domain description — such
as is TripTych domain engineering.

⋄⋄ It seems that software product line engineering is primarily based,
as is, for example, FODA: Feature-oriented Domain

Analysis, on analysing features of software systems.

⋄⋄ Our [dines-maurer] puts the ideas of software product lines and
model-oriented software development in the context of the
TripTych approach.

• Notable sources on software product line engineering are
[dom:Bayer:1999,dom:Weiss:1999,dom:Ardis:2000,dom:Thiel:2000,dom:Harsu

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 440 Domain Science & Engineering

44113. Conclusion 13.1. Comparison to Other Work13.1.5. Problem Frames:

13.1.5. Problem Frames:

• The concept of problem frames is covered in [mja2001a].

• Jackson’s prescription for software development focuses on the
“triple development” of descriptions of

⋄⋄ the problem world,

⋄⋄ the requirements and

⋄⋄ the machine (i.e., the hardware and software) to be built.

• Here domain analysis means, the same as for us, the problem world
analysis.

A Precursor for Requirements Engineering 441 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

442 13. Conclusion 13.1. Comparison to Other Work13.1.5. Problem Frames:

• In the problem frame approach the software developer plays three,
that is, all the TripTych rôles:

⋄⋄ domain engineer,

⋄⋄ requirements engineer and

⋄⋄ software engineer

“all at the same time”,

• well, iterating between these rôles repeatedly.

• So, perhaps belabouring the point,

⋄⋄ domain engineering is done only to the extent needed by the
prescription of requirements and the design of software.

• These, really are minor points.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 442 Domain Science & Engineering

44313. Conclusion 13.1. Comparison to Other Work13.1.5. Problem Frames:

• But in “restricting” oneself to consider

⋄⋄ only those aspects of the domain which are mandated by the
requirements prescription

⋄⋄ and software design

one is considering a potentially smaller fragment [Jackson2010Facs]
of the domain than is suggested by the TripTych approach.

• At the same time one is, however, sure to

⋄⋄ consider aspects of the domain

⋄⋄ that might have been overlooked when pursuing domain
description development

⋄⋄ the TripTych, “more general”, approach.

A Precursor for Requirements Engineering 443 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

444 13. Conclusion 13.1. Comparison to Other Work13.1.6. Domain Specific Software Architectures (DSSA):

13.1.6. Domain Specific Software Architectures (DSSA):

• It seems that the concept of DSSA

⋄⋄ was formulated by a group of ARPA31 project “seekers”

⋄⋄ who also performed a year long study
(from around early-mid 1990s);

⋄⋄ key members of the DSSA project were Will Tracz, Bob Balzer,
Rick Hayes-Roth and Richard Platek [dom:Trasz:1994].

• The [dom:Trasz:1994] definition of domain engineering is “the
process of creating a DSSA:

⋄⋄ domain analysis and domain modelling

⋄⋄ followed by creating a software architecture

⋄⋄ and populating it with software components.”

31ARPA: The US DoD Advanced Research Projects Agency

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 444 Domain Science & Engineering

44513. Conclusion 13.1. Comparison to Other Work13.1.6. Domain Specific Software Architectures (DSSA):

• This definition is basically followed also by
[Mettala+Graham:1992,Shaw+Garlan:1996,Medvidovic+Colbert:2004].

• Defined and pursued this way, DSSA appears,

⋄⋄ notably in these latter references, to start with the

⋄⋄ with the analysis of software components, “per domain”,

⋄⋄ to identify commonalities within application software,

⋄⋄ and to then base the idea of software architecture

⋄⋄ on these findings.

A Precursor for Requirements Engineering 445 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

446 13. Conclusion 13.1. Comparison to Other Work13.1.6. Domain Specific Software Architectures (DSSA):

• Thus DSSA turns matter “upside-down” with respect to
TripTych requirements development

⋄⋄ by starting with software components,

⋄⋄ assuming that these satisfy some requirements,

⋄⋄ and then suggesting domain specific software

⋄⋄ built using these components.

• This is not what we are doing:

⋄⋄ We suggest that requirements

◦◦ can be “derived” systematically from,

◦◦ and related back, formally to domain descriptionss

◦◦ without, in principle, considering software components,

◦◦ whether already existing, or being subsequently developed.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 446 Domain Science & Engineering

44713. Conclusion 13.1. Comparison to Other Work13.1.6. Domain Specific Software Architectures (DSSA):

⋄⋄ Of course, given a domain descriptions

◦◦ it is obvious that one can develop, from it, any number of
requirements prescriptions

◦◦ and that these may strongly hint at shared, (to be)
implemented software components;

⋄⋄ but it may also, as well, be the case

◦◦ two or more requirements prescriptions

◦◦ “derived” from the same domain description

◦◦ may share no software components whatsoever !

⋄⋄ So that puts a “damper” of my “enthusiasm” for DSSA.

A Precursor for Requirements Engineering 447 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

448 13. Conclusion 13.1. Comparison to Other Work13.1.6. Domain Specific Software Architectures (DSSA):

• It seems to this author that had the DSSA promoters

⋄⋄ based their studies and practice on also using formal
specifications,

⋄⋄ at all levels of their study and practice,

⋄⋄ then some very interesting insights might have arisen.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 448 Domain Science & Engineering

44913. Conclusion 13.1. Comparison to Other Work13.1.7. Domain Driven Design (DDD)

13.1.7. Domain Driven Design (DDD)

• Domain-driven design (DDD)32

⋄⋄ “is an approach to developing software for complex needs

⋄⋄ by deeply connecting the implementation to an evolving
model of the core business concepts;

⋄⋄ the premise of domain-driven design is the following:

◦◦ placing the project’s primary focus on the core domain
and domain logic;

◦◦ basing complex designs on a model;

◦◦ initiating a creative collaboration between technical and
domain experts to iteratively cut ever closer to the
conceptual heart of the problem.”33

32Eric Evans: http://www.domaindrivendesign.org/
33http://en.wikipedia.org/wiki/Domain-driven design

A Precursor for Requirements Engineering 449 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

450 13. Conclusion 13.1. Comparison to Other Work13.1.7. Domain Driven Design (DDD)

• We have studied some of the DDD literature,

⋄⋄ mostly only accessible on The Internet, but see also
[Haywood2009],

⋄⋄ and find that it really does not contribute to new insight into
domains such as wee see them:

⋄⋄ it is just “plain, good old software engineering cooked up with a
new jargon.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 450 Domain Science & Engineering

45113. Conclusion 13.1. Comparison to Other Work13.1.8. Feature-oriented Domain Analysis (FODA):

13.1.8. Feature-oriented Domain Analysis (FODA):

• Feature oriented domain analysis (FODA)

⋄⋄ is a domain analysis method

⋄⋄ which introduced feature modelling to domain engineering

⋄⋄ FODA was developed in 1990 following several U.S. Government
research projects.

⋄⋄ Its concepts have been regarded as critically advancing software
engineering and software reuse.

• The US Government supported report [KyoKang+et.al.:1990]
states: “FODA is a necessary first step” for software reuse.

A Precursor for Requirements Engineering 451 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

452 13. Conclusion 13.1. Comparison to Other Work13.1.8. Feature-oriented Domain Analysis (FODA):

• To the extent that

⋄⋄ TripTych domain engineering

⋄⋄ with its subsequent requirements engineering

indeed encourages reuse at all levels:

⋄⋄ domain descriptions and

⋄⋄ requirements prescription,

we can only agree.

• Another source on FODA is [Czarnecki2000].

• Since FODA “leans” quite heavily on ‘Software Product Line
Engineering’ our remarks in that section, above, apply equally well
here.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 452 Domain Science & Engineering

453
13. Conclusion 13.1. Comparison to Other Work13.1.9. Unified Modelling Language (UML)

13.1.9. Unified Modelling Language (UML)

• Three books representative of UML are
[Booch98,Rumbaugh98,Jacobson99].

• The term domain analysis appears numerous times in these books,

⋄⋄ yet there is no clear, definitive understanding

⋄⋄ of whether it, the domain, stands for entities in the domain such
as we understand it,

⋄⋄ or whether it is wrought up, as in several of the ‘approaches’
treated in this section, to wit, Items [3,4,6,7,8], with

◦◦ either software design (as it most often is),

◦◦ or requirements prescription.

A Precursor for Requirements Engineering 453 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

454 13. Conclusion 13.1. Comparison to Other Work13.1.9. Unified Modelling Language (UML)

• Certainly, in UML,

⋄⋄ in [Booch98,Rumbaugh98,Jacobson99] as well as

⋄⋄ in most published papers claiming “adherence” to UML,
⋄⋄ that domain analysis usually

◦◦ is manifested in some UML text

◦◦ which “models” some requirements facet.

⋄⋄ Nothing is necessarily wrong with that;

⋄⋄ but it is therefore not really the TripTych form of domain
analysis
◦◦ with its concepts of abstract representations of endurant and perdurants,

and

◦◦ with its distinctions between domain and requirements, and

◦◦ with its possibility of “deriving”

∗ requirements prescriptions from

∗ domain descriptions.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 454 Domain Science & Engineering

455
13. Conclusion 13.1. Comparison to Other Work13.1.9. Unified Modelling Language (UML)

• There is, however, some important notions of UML

⋄⋄ and that is the notions of

◦◦ class diagrams,

◦◦ objects, etc.

⋄⋄ How these notions relate to the discovery

◦◦ of part types, unique part identifiers, mereology and
attributes, as well as

◦◦ action, event and behaviour signatures and channels,

⋄⋄ as discovered at a particular domain index,

⋄⋄ is not yet clear to me.

⋄⋄ That there must be some relation seems obvious.

• We leave that as an interesting, but not too difficult, research topic.

A Precursor for Requirements Engineering 455 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

456 13. Conclusion 13.1. Comparison to Other Work13.1.10. Requirements Engineering:

13.1.10. Requirements Engineering:

• There are in-numerous books and published papers on requirements
engineering.

⋄⋄ A seminal one is [AvanLamsweerde2009].

⋄⋄ I, myself, find [SorenLauesen2002] full of very useful, non-trivial
insight.

⋄⋄ [Dorfman+Thayer:1997:IEEEComp.Soc.Press] is seminal in that
it brings a number or early contributions and views on
requirements engineering.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 456 Domain Science & Engineering

45713. Conclusion 13.1. Comparison to Other Work13.1.10. Requirements Engineering:

• Conventional text books, notably
[Pfleeger2001,Pressman2001,Sommerville2006] all have their
“mandatory”, yet conventional coverage of requirements
engineering.

⋄⋄ None of them “derive” requirements from domain descriptions,

◦◦ yes, OK, from domains,

◦◦ but since their description is not mandated

◦◦ it is unclear what “the domain” is.

⋄⋄ Most of them repeatedly refer to domain analysis

◦◦ but since a written record of that domain analysis is not
mandated

◦◦ it is unclear what “domain analysis” really amounts to.

A Precursor for Requirements Engineering 457 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

458 13. Conclusion 13.1. Comparison to Other Work13.1.10. Requirements Engineering:

• Axel van Laamsweerde’s book [AvanLamsweerde2009] is
remarkable.

⋄⋄ Although also it does not mandate descriptions of domains

⋄⋄ it is quite precise as to the relationships between domains and
requirements.

⋄⋄ Besides, it has a fine treatment of the distinction between goals
and requirements,

⋄⋄ also formally.

• Most of the advices given in [SorenLauesen2002]

⋄⋄ can beneficially be followed also in

⋄⋄ TripTych requirements development.

• Neither [AvanLamsweerde2009] nor [SorenLauesen2002] preempts
TripTych requirements development.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 458 Domain Science & Engineering

45913. Conclusion 13.1. Comparison to Other Work13.1.11. Summary of Comparisons

13.1.11. Summary of Comparisons

• It should now be clear from the above that

⋄⋄ basically only Jackson’s problem frames really take

◦◦ the same view of domains and,

◦◦ in essence, basically maintain similar relations between

∗ requirements prescription and

∗ domain description.

⋄⋄ So potential sources of, we should claim, mutual inspiration

◦◦ ought be found in one-another’s work —

◦◦ with, for example, [ggjz2000,Jackson2010Facs],

◦◦ and the present document,

◦◦ being a good starting point.

A Precursor for Requirements Engineering 459 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

460 13. Conclusion 13.2. What Have We Achieved and Future Work

13.2. What Have We Achieved and Future Work

• Sect. 13.1 has already touched upon, or implied,

⋄⋄ a number of ‘achievement’ points and

⋄⋄ issues for future work.

• Here is a summary of ‘achievement’ and future work items.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 460 Domain Science & Engineering

46113. Conclusion 13.2. What Have We Achieved and Future Work

• We claim that there are three major contributions being reported
upon:

⋄⋄ (i) the separation of domain engineering from requirements
engineering,

⋄⋄ (ii) the separate treatment of domain science & engineering:

◦◦ as “free-standing” with respect, ultimately, to computer
science,

◦◦ and endowed with quite a number of domain analysis principles
and domain description principles; and

⋄⋄ (iii) the identification of a number of techniques

◦◦ for “deriving” significant fragments of requirements
prescriptions from domain descriptions —

◦◦ where we consider this whole relation between domain
engineering and requirements engineering to be novel.

A Precursor for Requirements Engineering 461 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

462 13. Conclusion 13.2. What Have We Achieved and Future Work

• Yes, we really do consider the possibility of a systematic

⋄⋄ ‘derivation’ of significant fragments of requirements prescriptions
from domain descriptions

⋄⋄ to cast a different light on requirements engineering.

• What we have not shown in this tutorial is

⋄⋄ the concept of domain facets;

⋄⋄ this concept is dealt with in [dines:facs:2008] —

⋄⋄ but more work has to be done to give a firm theoretical
understanding of domain facets of

◦◦ domain intrinsics,

◦◦ domain support technology,

◦◦ domain scripts,

◦◦ domain rules and regulations,

◦◦ domain management and
organisation, and

◦◦ human domainbehaviour.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 462 Domain Science & Engineering

463
13. Conclusion 13.3. General Remarks

13.3. General Remarks

• Perhaps belaboring the point:

⋄⋄ one can pursue creating and studying domain descriptions

⋄⋄ without subsequently aiming at requirements development,

⋄⋄ let alone software design.

• That is, domain descriptions

⋄⋄ can be seen as

◦◦ “free-standing”,

◦◦ of their “own right”,

◦◦ useful in simply just understanding

◦◦ domains in which humans act.

A Precursor for Requirements Engineering 463 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

464
13. Conclusion 13.3. General Remarks

• Just like it is deemed useful

⋄⋄ that we study “Mother Nature”,

⋄⋄ the physical world around us,

⋄⋄ given before humans “arrived”;

• so we think that

⋄⋄ there should be concerted efforts to study and create domain
models,

⋄⋄ for use in

◦◦ studying “our man-made domains of discourses”;

◦◦ possibly proving laws about these domains;

◦◦ teaching, from early on, in middle-school, the domains in
which the middle-school students are to be surrounded by;

◦◦ etcetera

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 464 Domain Science & Engineering

465
13. Conclusion 13.3. General Remarks

• How far must one formalise such domain descriptions ?

⋄⋄ Well, enough, so that possible laws can be mathematically
proved.

⋄⋄ Recall that domain descriptions usually will or must be developed
by domain researchers — not necessarily domain engineers —

◦◦ in research centres, say universities,

◦◦ where one also studies physics.

A Precursor for Requirements Engineering 465 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

466 13. Conclusion 13.3. General Remarks

⋄⋄ And, when we base requirements development on domain
descriptions,

◦◦ as we indeed advocate,

◦◦ then the requirements engineers

◦◦ must understand the formal domain descriptions,

◦◦ that is, be able to perform formal

∗ domain projection,

∗ domain instantiation,

∗ domain determination,

∗ domain extension,

etcetera.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 466 Domain Science & Engineering

467
13. Conclusion 13.3. General Remarks

• This is similar to the situation in classical engineering

⋄⋄ which rely on the sciences of physics,

⋄⋄ and where, for example,

◦◦ Bernoulli’s equations,

◦◦ Navier-Stokes equations,

◦◦ Maxwell’s equations,

◦◦ etcetera

⋄⋄ were developed by physicists and mathematicians,

⋄⋄ but are used, daily, by engineers:

◦◦ read and understood,

◦◦ massaged into further differential equations, etcetera,

◦◦ in order to calculate (predict, determine values), etc.

A Precursor for Requirements Engineering 467 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

468 13. Conclusion 13.3. General Remarks

• Nobody would hire non-skilled labour

⋄⋄ for the engineering development of airplane designs

◦◦ unless that “labourer” was skilled in Navier-Stokes equations,

or

⋄⋄ for the design of mobile telephony transmission towers

◦◦ unless that person was skilled in Maxwell’s equations.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 468 Domain Science & Engineering

46913. Conclusion 13.3. General Remarks

• So we must expect a future, we predict,

⋄⋄ where a subset of the software engineering candidates from
universities

◦◦ are highly skilled in the development of

∗ formal domain descriptions

∗ formal requirements prescriptions

⋄⋄ in at least one domain, such as

◦◦ transportation, for example,

∗ air traffic,

∗ railway systems,

∗ road traffic and

∗ shipping;

or

◦◦ manufacturing,

◦◦ services (health care, public administration, etc.),

◦◦ financial industries, or the like.

A Precursor for Requirements Engineering 469 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

470 13. Conclusion 13.4. Acknowledgements

13.4. Acknowledgements

• I thank the tutorial organisers of the FM 2012 event for accepting my Dec. 31.
2011 tutorial proposal.

• I thank that part of participants

⋄⋄ who first met up for this tutorial this morning (Tuesday 28 August, 2012)

⋄⋄ to have remained in this room for most, if not all of the time.

• I thank colleagues and PhD students around Europe

⋄⋄ for having listened to previous,

⋄⋄ somewhat less polished versions of this tutorial.

⋄⋄ I in particular thank Drs. Magne Haveraaen and Marc Bezem of the
University of Bergen for providing an important step in the development of
the present material.

• And I thank my wife

⋄⋄ for her patience during the spring and summer of 2012

⋄⋄ where I ought to have been tending to the garden, etc. !

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 470 Domain Science & Engineering

471

End of Lecture 9: Last Session — Conclusion

Comparisons and What Have We Achieved

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

A Precursor for Requirements Engineering 471 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

471

THANKS AGAIN — HAVE A NICE CONFERENCE

A Precursor for Requirements Engineering 471 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

472
14. Conclusion

14. On A Theory of Transport Nets

• This section is under development.

⋄⋄ The idea of this section is

◦◦ not so much to present a transport domain description,

◦◦ but rather to present fragments, “bits and pieces”, of a theory
of such a domain.

• The purpose of having a theory

⋄⋄ is to “draw” upon the ‘bits and pieces’

⋄⋄ when expressing

◦◦ properties of endurants and

◦◦ definitions of

∗ actions, ∗ events and ∗ behaviours.

• Again: this section is very much in embryo.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 472 Domain Science & Engineering

47314. On A Theory of Transport Nets 14.1. Some Pictures

14.1. Some Pictures

• Nets can either be

⋄⋄ rail nets,

⋄⋄ road nets,

⋄⋄ shipping lanes, or

⋄⋄ air traffic nets.

• The following pictures illustrate some of these nets.

A rail net; a traffic light

A Precursor for Requirements Engineering 473 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

474 14. On A Theory of Transport Nets 14.1. Some Pictures

A freeway hub

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 474 Domain Science & Engineering

47514. On A Theory of Transport Nets 14.1. Some Pictures

Another freeway hub

A Precursor for Requirements Engineering 475 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

476 14. On A Theory of Transport Nets 14.1. Some Pictures

• The left side of the road roundabout below is rather special.

⋄⋄ Its traffic lights are also located in the inner circle of the
roundabout.

⋄⋄ One drives in,

◦◦ at green light,

◦◦ and may be guided by striping,

◦◦ depending on where one is driving,

◦◦ either directly to an outgoing link,

◦◦ or is queued up against a red light

◦◦ awaiting permission to continue.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 476 Domain Science & Engineering

47714. On A Theory of Transport Nets 14.1. Some Pictures

A roundabout

A Precursor for Requirements Engineering 477 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

478
14. On A Theory of Transport Nets 14.1. Some Pictures

• The map below left is for a container line serving one route
between Liverpool (UK), Chester (PA, USA), Wilmington (NC,
USA) and Antwerp (Belgium), an so forth, circularly.

• The map below right is an “around Africa” Mitsui O.S.K. Line.

Two shipping line nets

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 478 Domain Science & Engineering

47914. On A Theory of Transport Nets 14.2. Parts

14.2. Parts
14.2.1. Nets, Hubs and Links

145. From a transport net one can observe sets of hubs and links.

type

145. N, H, L
value

145. obs Hs: N → H-set, obs Ls: N → L-set

A Precursor for Requirements Engineering 479 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

480 14. On A Theory of Transport Nets 14.2. Parts14.2.2. Mereology

14.2.2. Mereology

146. From hubs and links one can observe their unique hub, respectively link
identifiers and their respective mereologies.

147. The mereology of a link identifies exactly two distinct hubs.

148. The mereologies of hubs and links must identify actual links and hubs of the net.

type

146. HI, LI
value

146. uid H: H → HI, uid L: L → LI
146. mereo H: H → LI-set, mereo L: L → HI-set
axiom

147. ∀ l:L•cardmereo L(l)=2
148. ∀ n:N,l:L•l ∈ obs Ls(n) ⇒
148. ∧ ∀ hi:HI•hi ∈ mereo L(l)
148. ⇒ ∃ h:h•h ∈ obs Hs(n)∧uid H(h)=hi
148. ∧ ∀ h:H•h ∈ obs Hs(n) ⇒
148. ∀ li:LI•li ∈ mereo H(h)
148. ⇒ ∃ l:L•l ∈ obs Ls(n)∧uid L(l)=li

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 480 Domain Science & Engineering

48114. On A Theory of Transport Nets 14.2. Parts14.2.3. An Auxiliary Function

14.2.3. An Auxiliary Function

149. For every net we can define functions which

(a) extracts all its link identifiers,

(b) and all its hub identifiers.

value

149(a). xtr HIs: N → HI-set
149(a). xtr HIs(n) ≡ {uid H(h)|h:H•h ∈ obs Hs(n)}
149(b). xtr LIs: N → LI-set
149(b). xtr LIs(n) ≡ {uid L(l)|l:L•l ∈ obs Ls(n)}

A Precursor for Requirements Engineering 481 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

482 14. On A Theory of Transport Nets 14.2. Parts14.2.4. Retrieving Hubs and Links

14.2.4. Retrieving Hubs and Links

150. We can also define functions which

(a) given a net and a hub identifier obtains the designated hub,
respectively

(b) given a net and a link identifier obtains the designated link.

value

150(a). get H: N → HI
∼→ H

150(a). get H(n)(hi) as h
150(a). pre hi ∈ xtr HIs(n)
150(a). post h ∈ obs Hs(n)∧hi=uid H(h)

150(b). get L: N → LI
∼→ L

150(b). pre li ∈ xtr LIs(n)
150(b). post l ∈ obs Ls(n)∧li=uid L(l)

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 482 Domain Science & Engineering

48314. On A Theory of Transport Nets 14.2. Parts14.2.5. Invariants over Link and Hub States and State Spaces

14.2.5. Invariants over Link and Hub States and State Spaces

151. Links include two attributes:

(a) Link states. These are sets of pairs of the identifiers of the hubs
to which the links are connected.

(b) Link state spaces. These are the sets of link states that a link
may attain.

152. The link states must mention only those hub identifiers of the two
hubs to which the link is connected.

153. The link state spaces must likewise mention only such link states as
are defined in Items 151(a) and 152.

A Precursor for Requirements Engineering 483 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

484 14. On A Theory of Transport Nets 14.2. Parts14.2.5. Invariants over Link and Hub States and State Spaces

type

151(a). LΣ = (HI×HI)-set axiom ∀ lσ:LΣ•card lσ≤2
151(b). LΩ = LΣ-set

value

151(a). attr LΣ: L → LΣ
151(b). attr LΩ: L → LΩ
axiom

152. ∀ l:L, lσ′:LΣ • lσ′ ∈ attr LΩ(l)
152. ⇒ lσ′ ⊆ {(hi,hi′)|hi,hi′:HI•{hi,hi′}⊆mereo L(l)}
152. ∧ attr LΣ(l) ∈ attr LΩ(l)

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 484 Domain Science & Engineering

48514. On A Theory of Transport Nets 14.2. Parts14.2.5. Invariants over Link and Hub States and State Spaces

154. Hubs include two attributes:

(a) Hub states. These are sets of pairs of identifiers of the links to
which the hubs are connected.

(b) Hub state spaces. These are the sets of hub states that a hub
may attain.

155. The hub states must mention only those link identifiers of the links
to which the hub is connected.

156. The hub state spaces must likewise mention only such hub states as
are defined in Items 154(a) and 155.

A Precursor for Requirements Engineering 485 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

486 14. On A Theory of Transport Nets 14.2. Parts14.2.5. Invariants over Link and Hub States and State Spaces

type

154(a). HΣ = (LI×LI)-set
154(b). HΩ = HΣ-set

value

154(a). attr HΣ: H → HΣ
154(b). attr HΩ: H → HΩ
axiom

155. ∀ h:H, hσ′:HΣ • hσ′ ∈ attr HΩ(h)
155. ⇒ hσ′ ⊆ {(li,li′)|li,li′:LI•{li,li′}⊆mereo H(h)}
155. ∧ attr HΣ(h) ∈ attr HΩ(h)

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 486 Domain Science & Engineering

48714. On A Theory of Transport Nets 14.2. Parts14.2.6. Maps

14.2.6. Maps

• A map is an abstraction of a net.

⋄⋄ The map just shows the hub and link identifiers of the net, and
hence its mereology.

type

Map′ = HI →m (LI →m HI)
Map = {|m:Map′

•wf Map(m)|}
value

wf Map: Map′ → Bool

wf Map(m) ≡ dom m = ∪ { rng lhm | lhm:(LI →m HI) • lhm ∈ rng m }

A Precursor for Requirements Engineering 487 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

488 14. On A Theory of Transport Nets 14.2. Parts14.2.6. Maps

• Let m be a map.

• The definition set of the map is domṁ.

• Let hi be in the definition set of map m.

• Then m(hi) is the image of hi in m.

• Let li be in the image of m(hi), that is, liISINdom (m(hi)), then
hi’=(m(hi))(li) is the target of li in m(hi).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 488 Domain Science & Engineering

48914. On A Theory of Transport Nets 14.2. Parts14.2.6. Maps

• Given a net which satisfies the axiom concerning mereology

• one can extract from that net a corresponding map.

value

xtr Map: N → Map
xtr Map(n) ≡

[hi 7→ [li 7→ uid H(retr H(n)(hi)(li))
| li:LI • li ∈ mere H(get H(n)(hi))]

| h:H,hi:HI • h ∈ obs Hs(n) ∧ hi = uid H(h)]

A Precursor for Requirements Engineering 489 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

490 14. On A Theory of Transport Nets 14.2. Parts14.2.6. Maps

• The retrieve hub function

⋄⋄ retrieve the “second” hub, i.e., “at the other end”, of

⋄⋄ a link wrt. a “first” hub.

retr H: N → HI → LI → H
retr H(n)(hi)(li) ≡

let h = get H(n)(hi) in

let l = get L(n)(li) in

let {hi′′′} = mereo L(l)\{hi} in

get H(n)(hi′′′) end end end

pre: hi ∈ mereo L(get L(n)(li))

xtr LIs: Map → LI-set
xtr LIs(m) = ∪ {dom(m(hi))|hi:HI • hi ∈ dom m}

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 490 Domain Science & Engineering

49114. On A Theory of Transport Nets 14.2. Parts14.2.7. Routes

14.2.7. Routes

157. A route is an alternating sequence of hub and link identifiers.

157. R′ = (HI|LI)ω, R = {|r:R′
•wf R(r)|}

value

157. wf R: R′ → Bool

157. wf R(r) ≡
157. ∀ i:Nat • {i,i+1}⊆inds r ⇒
157. is HI(r(i))∧is LI(r(i+1)) ∨ is LI(r(i))∧is HI(r(i+1))

A Precursor for Requirements Engineering 491 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

492 14. On A Theory of Transport Nets 14.2. Parts14.2.7. Routes

158. A route of a map, m, is a route as follows:

(a) An empty sequence is a route.

(b) A sequence of just a single hub identifier or of hubs of the map is
a route.

(c) A sequence of just a single link identifier of links of the map is a
route.

(d) If r̂〈hi〉 and 〈li〉̂r′ are routes of the map and li is in the
definition set of m(hi) then r̂〈hi,li〉̂r′ is a route of the map.

(e) If r̂〈li〉 and 〈hi〉̂r′ are routes of the map and hi is the target of
(m(hi′))(li) then r̂〈li,hi〉̂r′ is a route of the map.

(f) Only such routes are routes of a net if they result from a finite
[possibly infinite] set of uses of Items 158(a)-158(e).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 492 Domain Science & Engineering

49314. On A Theory of Transport Nets 14.2. Parts14.2.7. Routes

type

type

158. MR′ = R, MR = {r:MR′
•∃ m:Map • r ∈ routes(m)|}

value

158. routes: N → MR-infset

158. routes(n) ≡ routes(xtr Map(n))
158. routes: Map → MR-infset

158. routes(m) ≡
158(a). let rs = {〈〉}
158(b). ∪ ∪ {〈hi〉|hi:HI • hi ∈ dom m}
158(c). ∪ ∪ {〈li〉|li:LI,hi:HI • li ∈ xtr LIs(m)}
158(d). ∪ ∪ {r̂〈hi,li〉̂r′|r,r′:MR,hi:HI,li:LI•{r,r′}⊆rs∧li ∈ dom m(hi)}
158(e). ∪ ∪ {r̂〈li,hi〉̂tl r′|r,r′:MR,li:LI,hi:HI•{r,r′}⊆rs∧is target(m)(hi)(li)}
158(f). in rs end

158(e). is target: Map → HI × LI
158(e). is target(m)(hi)(li) ≡
158(e). ∃ h′′:HI•h′′∈ dom m∧li ∈ dom m(hi′′)∧hi=(m(hi′′))(li)

A Precursor for Requirements Engineering 493 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

494 14. On A Theory of Transport Nets 14.2. Parts14.2.8. Special Routes

14.2.8. Special Routes
14.2.8.1 Acyclic Routes

159. A route of a map is acyclic if no hub identifier appears twice or
more.

value

159. is Acyclic: MR → Map
∼→ Bool

159. is Acyclic(mr)(m) ≡ ∼∃ hi:HI,i,j:Nat•{i,j}⊆inds mr ∧ i6=j ⇒ mr(i)=hi=mr(j)
159. pre mr ∈ routes(m)

14.2.8.2 Direct Routes

160. A route, r, of a map (from hub hi or linkli to hub hi′ or linkli′) is a
direct route if r is acyclic.

160. direct route: MR → Map
∼→ Bool

160. direct route(mr) ≡ is Acyclic(mr)
160. pre mr ∈ routes(m)

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 494 Domain Science & Engineering

49514. On A Theory of Transport Nets 14.2. Parts14.2.8. Special Routes14.2.8.3. Routes Between Hubs

14.2.8.3 Routes Between Hubs

161. Let there be given two distinct hub identifiers of a route map. Find
the set of acyclic routes between them, including zero if no routes.

value

161. find MR: Map → (HI×HI)
∼→ MR-set

161. find MR(m)(hi,hi′) ≡
161. let rs = routes(m) in

161. {mr | mr,mr′:MR • mr ∈ rs
161. ∧ mr ∈ mr = 〈hi〉̂mr′〈hi′〉 ∧ is Acyclic(mr)(m) }
161. end

161. pre: {hi,hi′}⊆dom m

A Precursor for Requirements Engineering 495 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

496 14. On A Theory of Transport Nets 14.2. Parts14.2.9. Special Maps

14.2.9. Special Maps
14.2.9.1 Isolated Hubs

162. A net, n, consists of two or more isolated hubs

(a) if there exists two hub identifiers, hi1,hi2, of the map of the net

(b) such that there is no route from hi1 to hi2.

value

162. are isolated hubs: Map → Bool

162. are isolated hubs(m) ≡
162(a). ∃ hi1,hi2:HI • {hi1,hi2}⊆dom m ⇒
162(b). ∼∃ mr,mri:MR • mr ∈ routes(m) ⇒ mr = 〈hi1〉̂mrî〈hi2〉

14.2.9.2 Isolated Maps

163. If there are isolated hubs in a net then the net can be seen as two or more
isolated nets.

value

163. are isolated nets: Map → Bool

163. are isolated nets(m) ≡ are isolated hubs(m)

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 496 Domain Science & Engineering

49714. On A Theory of Transport Nets 14.2. Parts14.2.9. Special Maps14.2.9.3. Sub Maps

14.2.9.3 Sub Maps

164. Given a map one can identify the set of all sub maps which which contains a
given hub identifier.

165. Given a map one can identify the sub map which contains a given hub identifier.

value

164. sub maps: Map → Map-set
164. sub maps(m) as ms
164. { xtr Map(m)(hi) | hi:HI • hi ∈ dom m }

165. sub Map: Map → HI
∼→ Map

165. sub Map(m)(hi) ≡
165. let his = { hi′ | hi′:HI ∧ hi′ ∈ dom m ∧ find MRs(m)(hi,hi′) 6={} } in

165. [hi′′ 7→ m(hi′′) | hi′′ ∈ his] end

theorem: are isolated nets(m) ⇒ sub maps(m) 6= { m }

A Precursor for Requirements Engineering 497 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

498 14. On A Theory of Transport Nets 14.3. Actions

14.3. Actions
14.3.1. Insert Hub

166. The insert action

(a) applies to a net and a hub and conditionally yields an updated
net.

(b) The condition is that there must not be a hub in the initial net
with the same unique hub identifier as that of the hub to be
inserted and

(c) the hub to be inserted does not initially designate links with
which it is to be connected.

(d) The updated net contains all the hubs of the initial net “plus”
the new hub.

(e) and the same links.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 498 Domain Science & Engineering

49914. On A Theory of Transport Nets 14.3. Actions14.3.1. Insert Hub

value

166. insert H: N → H
∼→ N

166(a). insert H(n)(h) as n′
166(a). pre: pre insert H(n)(h)
166(a). post: post insert H(n)(h)(n′)

166(b). pre insert H(n)(h) ≡
166(b). ∼∃ h′:H • h′ ∈ obs Hs(n) ∧ uid H(h)=uid H(h′)
166(c). ∧ mereo H(h) = {}

166(d). post insert H(n)(h)(n′) ≡
166(d). obs Hs(n) ∪ {h} = obs Hs(n′)
166(e). ∧ obs Ls(n) = obs Ls(n′)

A Precursor for Requirements Engineering 499 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

500 14. On A Theory of Transport Nets 14.3. Actions14.3.2. Insert Link

14.3.2. Insert Link

167. The insert link action

(a) is given a “fresh” link,
that is, one not in the net (before the action)

(b) but where the two distinct hub identifiers of the mereology
of the inserted link are of hubs in the net.

(c) The link is inserted.

(d) These two hubs

(e) have their mereologies updated
to reflect the new link

(f) and nothing else;
all other links and hubs of the net are unchanged.

value

167. insert L: N → L
∼→ N

167. insert L(n)(l) as n′

167. ∃ l:L • pre insert L(n)(l) ⇒ pre insert L(n)(l) ∧ post insert L(n,n′)(l)

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 500 Domain Science & Engineering

50114. On A Theory of Transport Nets 14.3. Actions14.3.2. Insert Link

167. pre insert L: N → L → Bool

167. pre insert L(n)(l) ≡
167(a). uid L(l) 6∈ xtr LIs(n)
167(b). ∧ mereo L(l)⊆xtr HIs(n)

167. post insert L: N × N → L → Bool

167. post insert L(n,n′)(l) ≡
167(c). obs Ls(n) ∪ {l} = obs Ls(n′)
167(d). ∧ let {hi1,hi2} = mereo L(l) in

167(d). let (h1,h2) = (get H(n)(hi1),get H(n)(hi2)),
167(d). (h1′,h2′) = (get H(n′)(hi1),get H(n′)(hi2)) in

167(e). mereo H(h)∪{uid L(l)}=mereo H(h′)
167(f). ∧ obs Hs(n)\{h1,h2} = obs Hs(n′)\{h1′,h2′}
167(f). ∧ [all other properties of h1 and h2 unchanged]
167(f). [that is, same as h1′ and h2′]
167. end end

A Precursor for Requirements Engineering 501 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

502 14. On A Theory of Transport Nets 14.3. Actions14.3.2. Insert Link

• The insert link post-condition has too many lines.

• I will instead compose the post-condition

⋄⋄ from the conjunction of a number of invocations

⋄⋄ of predicates with “telling” names.

• For these action function definitions

⋄⋄ such “small” predicates

⋄⋄ amount to building a nicer theory.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 502 Domain Science & Engineering

50314. On A Theory of Transport Nets 14.3. Actions14.3.3. Remove Hub

14.3.3. Remove Hub

168. remove hub

(a) where a hub, known by its hub identifier, is given,

(b) where the [to be] removed hub is indeed in the net (before the action),

(c) where the removed hub’s mereology is empty (that is, the [to be] removed
hub) is not connected to any links in the net (before the action)).

(d) All other links and hubs of the net are unchanged.

value

168. remove H: N → HI
∼→ N

168(a). remove H(n)(hi) as n′

168(b). ∃ h:H • uid H(h)=hi ∧ h ∈ obs Hs(n) ⇒
168(c). pre remove H(n)(hi) ∧ post remove H(n,n′)(hi)

• We leave the definitions of the pre/post conditions of this and the next action
function to the listener.

A Precursor for Requirements Engineering 503 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

504 14. On A Theory of Transport Nets 14.3. Actions14.3.4. Remove Link

14.3.4. Remove Link

169. remove link

(a) where a link, known by its link identifier, is given,

(b) where that link is indeed in the net (before the action),

(c) where hubs to which the link is connected after the action has the only change
to their mereologies changed be that they do not list the [to be] removed link.

(d) All other links and hubs of the net are unchanged.

value

169. remove L: N → LI
∼→ N

169(a). remove L(n)(li) as n′

169(b). ∃ l:L • uid L(l)=li ∧ l ∈ obs Ls(n) ⇒
169(c). pre remove L(n)(li) ∧ post remove L(n,n′)(li)

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 504 Domain Science & Engineering

50515. On A Theory of Transport Nets

15. On A Theory of Container Stowage

• This section is under development.

⋄⋄ The idea of this section is

◦◦ not so much to present a container domain description,

◦◦ but rather to present fragments, “bits and pieces”, of a theory
of such a domain.

• The purpose of having a theory

⋄⋄ is to “draw” upon the ‘bits and pieces’

⋄⋄ when expressing

◦◦ properties of endurants and

◦◦ definitions of

∗ actions, ∗ events and ∗ behaviours.

• Again: this section is very much in embryo.

A Precursor for Requirements Engineering 505 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

506 15. On A Theory of Container Stowage 15.1. Some Pictures

15.1. Some Pictures

A container vessel with ‘bay’ numbering

• Container vessels ply the seven seas and in-numerous other waters.

• They carry containers from port to port.

• The history of containers goes back to the late 1930s.

• The first container vessels made their first transports in 1956.

• Malcolm P. McLean is credited to have invented the container.

• To prove the concept of container transport he founded the container line
Sea-Land Inc. which was sold to Maersk Lines at the end of the 1990s.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 506 Domain Science & Engineering

50715. On A Theory of Container Stowage 15.1. Some Pictures

Bay numbers. Ship stowage cross section

• Down along the vessel, horisontally,

⋄⋄ from front to aft,

⋄⋄ containers are grouped, in numbered bays.

A Precursor for Requirements Engineering 507 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

508 15. On A Theory of Container Stowage 15.1. Some Pictures

Row and tier numbers

• Bays are composed from rows, horisontally, across the vessel.

• Rows are composed from stacks, horisontally, along the vessel.

• And stacks are composed, vertically, from [tiers of] containers

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 508 Domain Science & Engineering

50915. On A Theory of Container Stowage 15.2. Parts

15.2. Parts
15.2.1. A Basis

170. From a container vessel (cv:CV) and from a container terminal port
(ctp:CTP) one can observe their bays (bays:BAYS).

type

170. CV, CTP, BAYS
value

170. obs BAYS: (CV|CTP) → BAYS

A Precursor for Requirements Engineering 509 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

510 15. On A Theory of Container Stowage 15.2. Parts15.2.1. A Basis

171. The bays, bs:BS, (of a container vessel or a container terminal
port) are mereologically structured as an (BId) indexed set of
individual bays (b:B).

type

171. BId, B
171. BS = BId →m B
value

171. obs BS: BAYS → BS (i.e., BId →m B)

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 510 Domain Science & Engineering

51115. On A Theory of Container Stowage 15.2. Parts15.2.1. A Basis

172. From a bay, b:B, one can observe its rows, rs:ROWS.

173. The rows, rs:RS, (of a bay) are mereologically structured as an
(RId) indexed set of individual rows (r:R).

type

172. ROWS, RId, R
173. RS = RId →m R
value

172. obs ROWS: B → ROWS
173. obs RS: ROWS → RS (i.e., RId →m R)

A Precursor for Requirements Engineering 511 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

512 15. On A Theory of Container Stowage 15.2. Parts15.2.1. A Basis

174. From a row, r:R, one can observe its stacks, STACKS.

175. The stacks, ss:SS (of a row) are mereologically structured as an
(SId) indexed set of individual stacks (s:S).

type

174. STACKS, SId, S
175. SS = SId →m S
value

174. obs STACKS: R → STACKS
175. obs SS: STACKS → SS (i.e., SId →m S)

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 512 Domain Science & Engineering

51315. On A Theory of Container Stowage 15.2. Parts15.2.1. A Basis

176. A stack (s:S) is mereologically structured as a linear sequence of
containers (c:C).

type

176. C
176. S = C∗

• The containers of the same stack index across stacks are called the
tier at that index, cf. photo on Page 508..

A Precursor for Requirements Engineering 513 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

514 15. On A Theory of Container Stowage 15.2. Parts15.2.1. A Basis

177. A container is here considered a composite part

(a) of the container box, k:K

(b) and freight, f:F.

178. Freight is considered composite

(a) and consists of zero, one or more colli (package, indivisible unit
of freight),

(b) each having a unique colli identifier (over all colli of the entire
world !).

(c) Container boxes likewise have unique container identifiers.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 514 Domain Science & Engineering

51515. On A Theory of Container Stowage 15.2. Parts15.2.1. A Basis

type

177. C, K, F, P
value

177(a). obs K: C → K
177(b). obs F: C → F
178(a). obs Ps: F → P-set

type

178(b). PI
178(c). CI
value

178(b). uid P: P → PI
178(c). uid C: C → CI

A Precursor for Requirements Engineering 515 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

516 15. On A Theory of Container Stowage 15.2. Parts15.2.2. Mereological Constraints

15.2.2. Mereological Constraints

179. For any bay of a vessel the index sets of its rows are identical.

180. For a bay of a vessel the index sets of its stacks are identical.

axiom

179. ∀ cv:CV •

179. ∀ b:B•b ∈ rng obs BS(obs BAYS(cv))⇒
179. let rws=obs ROWS(b) in

179. ∀ r,r′:R•{r,r′}⊆rng obs RS(b)⇒dom r=dom r′

180. ∧ dom obs SS(r) = dom obs SS(r′) end

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 516 Domain Science & Engineering

51715. On A Theory of Container Stowage 15.2. Parts15.2.3. Stack Indexes

15.2.3. Stack Indexes

181. A container stack (and a container) is designated by an index
triple: a bay index, a row index and a stack index.

182. A container index triple is valid, for a vessel, if its indices are valid
indices.

type

181. StackId = BId×RId×SId
value

182. valid address: BS → StackId → Bool

182. valid address(bs)(bid,rid,sid) ≡
182. bid ∈ dom bs
182. ∧ rid ∈ dom (obs RS(bs))(bid)
182. ∧ sid ∈ dom (obs SS((obs RS(bs))(bid)))(rid)

A Precursor for Requirements Engineering 517 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

518 15. On A Theory of Container Stowage 15.2. Parts15.2.3. Stack Indexes

• The above can be defined in terms of the below.

type

BayId = BId
RowId = BId×RId

value

182. valid BayId: V → BayId → Bool

182. valid BayId(v)(bid) ≡ bid ∈ dom obs BS(obs BAYS(v))

182. get B: V → BayId
∼→ B

182. get B(v)(bid) ≡ (get B(bs))(bid) pre: valid BId(v)(bid)

182. get B: BS → BayId
∼→ B

182. get B(bs)(bid) ≡ (obs BS(obs BAYS(v)))(bid) pre: bid ∈ dom bs

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 518 Domain Science & Engineering

51915. On A Theory of Container Stowage 15.2. Parts15.2.3. Stack Indexes

182. valid RowId: V → RowId → Bool

182. valid RowId(v)(bid,rid) ≡ rid ∈ dom obs RS(get B(v)(bid))
182. pre: valid BayId(v)(bid)

182. get R: V → RowId
∼→ R

182. get R(v)(bid,rid) ≡ get R(obs BS(v))(bid,rid) pre: valid RowId(v)(bid,rid)

182. get R: BS → RowId
∼→ R

182. get R(bs)(bid,rid) ≡ (obs RS(get RS(bs(bid))))(rid)
182. pre: valid RowId(v)(bid,rid)

A Precursor for Requirements Engineering 519 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

520 15. On A Theory of Container Stowage 15.2. Parts15.2.3. Stack Indexes

182. get S: V → StackId
∼→ S

182. get S(v)(bid,rid,sid) ≡ (obs SS(get R(get B(v)(bid,rid))))(sid)
182. pre: valid address(v)(bid,rid,sid)

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 520 Domain Science & Engineering

52115. On A Theory of Container Stowage 15.2. Parts15.2.3. Stack Indexes

182. get C: V → StackId
∼→ C

182. get C(v)(stid) ≡ get C(obs BS(v))(stid) pre: get S(v)(bid,rid,sid) 6= 〈〉

182. get C: BS → StackId
∼→ C

182. get C(bs)(bid,rid,sid) ≡ hd(obs SS(get R((bs(bid))(rid))))(sid)
182. pre: get S(bs)(bid,rid,sid) 6= 〈〉

182. valid addresses: V → StackId-set
182. valid addresses(v) ≡ {adr|adr:StackId•valid address(adr)(v)}

A Precursor for Requirements Engineering 521 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

522 15. On A Theory of Container Stowage 15.2. Parts15.2.3. Stack Indexes

183. The predicate non empty designated stack checks whether the
designated stack is non-empty.

183. non empty designated stack: V → StackId → Bool

183. non empty designated stack(v)(bid,rid,sid) ≡ get S(v)(bid,rid,sid) 6= 〈〉

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 522 Domain Science & Engineering

52315. On A Theory of Container Stowage 15.2. Parts15.2.3. Stack Indexes

184. Two vessels have the same mereology if they have the same set of
valid-addresses.

value

184. unchanged mereology: BS × BS → Bool

184. unchanged mereology(bs,bs′) ≡ valid addresses(bs) = valid addresses(bs

A Precursor for Requirements Engineering 523 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

524 15. On A Theory of Container Stowage 15.2. Parts15.2.3. Stack Indexes

185. The designated stack, s′, of a vessel, v′ is popped with respect the
“same designated” stack, s, of a vessel, v

(a) if the ordered sequence of the containers of s′ are identical to the
ordered sequence of containers of all but the first container of s.

185. popped designated stack: BS × BS → StackId → Bool

185. popped designated stack(bs,bs′)(stid) ≡
185(a). tl get S(v)(stid) = get S(bs′)(stid)

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 524 Domain Science & Engineering

52515. On A Theory of Container Stowage 15.2. Parts15.2.3. Stack Indexes

186. For a given stack index, valid for two bays (bs, bs′) of two vessels or
two container terminal ports, and say stid, these two bays enjoy the
unchanged non designated stacks(bs,bs′)(stid) property

(a) if the stacks (of the two bays) not identified by stid are identical.

186. unchanged non designated stacks: BS × BS → StackId → Bool

186. unchanged non designated stacks(bs,bs′)(stid) ≡
186(a). ∀ adr:StackId•adr ∈ valid addresses(v)\{stid}⇒
186(a). get S(bs)(adr) = get S(bs′)(adr)
186. pre: unchanged mereology(bs,bs′)

A Precursor for Requirements Engineering 525 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

526 15. On A Theory of Container Stowage 15.2. Parts15.2.4. Stowage Schemas

15.2.4. Stowage Schemas

187. By a stowage schema of a vessel we understand a “table”

(a) which for every bay identifier of that vessel records a bay schema

(b) which for every row identifier of an identified bay records a row
schema

(c) which for every stack identifier of an identified row records a
stack schema

(d) which for every identified stack records its tier schema.

(e) A stack schema records for every tier index (which is a natural
number) the type of container (contents) that may be stowed at
that position.

(f) The tier indexes of a stack schema form a set of natural numbers
from one to the maximum number in the index set.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 526 Domain Science & Engineering

527
15. On A Theory of Container Stowage 15.2. Parts15.2.4. Stowage Schemas

value

187. obs StoSchema: V → StoSchema
type

187(a). StoSchema = BId →m BaySchema
187(b). BaySchema = RId →m RowSchema
187(c). RowSchema = SId →m StaSchema
187(d). StaSchema = Nat →m C Type
187(e). C Type
axiom

187(f). ∀ stsc:StaSchema • dom stsc = {1..maxdom stsc}

A Precursor for Requirements Engineering 527 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

528 15. On A Theory of Container Stowage 15.2. Parts15.2.4. Stowage Schemas

188. One can define a function which from an actual vessel “derives” its
“current stowage schema”.

188. cur sto schema: V → StoSchema
188. cur sto schema(v) ≡
188. let bs = obs BS(obs BAYS(v)) in

188. [bid 7→ let rws = obs RS(obs ROWS(bs(bid))) in

188. [rid 7→ let ss = obs SS(obs STACKS(rws)(rid)) in

188. [sid 7→ 〈 analyse container(ss(i))|i:Nat•i ∈ inds ss 〉
188. | sid:SId•sid ∈ ss] end

188. | rid:RId•rid ∈ dom rws] end

188. | bid:BId•bid ∈ dom ds] end

188. analyse container: C → C Type

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 528 Domain Science & Engineering

52915. On A Theory of Container Stowage 15.2. Parts15.2.4. Stowage Schemas

189. Given a stowage schema and a current stowage schema one can
check the latter for conformance wrt. the former.

189. conformance: StoSchema × StoSchema → Bool

189. conformance(stosch,cur stosch) ≡
189. dom cur stosch = dom stosch
189. ∧ ∀ bid:BId • bid ∈ dom stosch ⇒
189. dom cur stosch(bid) = dom stosch(bid)
189. ∧ ∀ rid:RId • rid ∈ dom(stosch(bid))(rid) ⇒
189. dom(cur stosch(bid))(rid) = dom(stosch(bid))(rid)
189. ∧ ∀ sid:SId • sid ∈ dom(cur stosch(bid))(rid)
189. ∀ i:Nat • i ∈ inds((cur stosch(bid))(rid))(sid) ⇒
189. conform((((cur stosch(bid))(rid))(sid))(i),
189. (((stosch(bid))(rid))(sid))(i))

189. conform: C Type × C Type → Bool

A Precursor for Requirements Engineering 529 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

530 15. On A Theory of Container Stowage 15.2. Parts15.2.4. Stowage Schemas

190. From a vessel one can observe its mandated stowage schema.

191. The current stowage schema of a vessel must always conform to its
mandated stowage schema.

value

190. obs StoSchema: V → StoSchema

191. stowage conformance: V → Bool

191. stowage conformance(v) ≡
191. let mandated = obs StoSchema(v),
191. current = cur sto schema(v) in

191. conformance(mandated,current) end

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 530 Domain Science & Engineering

53115. On A Theory of Container Stowage 15.3. Actions

15.3. Actions
15.3.1. Remove Container from Vessel

20. The remove Container from Vessel action applies to a vessel and a stack address
and conditionally yields an updated vessel and a container.

20(a). We express the ‘remove from vessel’ function primarily by means of an
auxiliary function remove C from BS, remove C from BS(obs BS(v))(stid),
and some further post-condition on the before and after vessel states (cf.
Item 20(d)).

20(b). The remove C from BS function yields a pair: an updated set of bays and a
container.

20(c). When obs erving the BayS from the updated vessel, v′, and pairing that with
what is assumed to be a vessel, then one shall obtain the result of
remove C from BS(obs BS(v))(stid).

20(d). Updating, by means of remove C from BS(obs BS(v))(stid), the bays of a
vessel must leave all other properties of the vessel unchanged.

A Precursor for Requirements Engineering 531 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

532 15. On A Theory of Container Stowage 15.3. Actions15.3.1. Remove Container from Vessel

21. The pre-condition for remove C from BS(bs)(stid) is

21(a). that stid is a valid address in bs, and

21(b). that the stack in bs designated by stid is non empty.

22. The post-condition for remove C from BS(bs)(stid) wrt. the
updated bays, bs′, is

22(a). that the yielded container, i.e., c, is obtained, get C(bs)(stid),
from the top of the non-empty, designated stack,

22(b). that the mereology of bs′ is unchanged,
unchanged mereology(bs,bs′). wrt. bs. ,

22(c). that the stack designated by stid in the “input” state, bs, is
popped, popped designated stack(bs,bs′)(stid), and

22(d). that all other stacks are unchanged in bs′ wrt. bs,
unchanged non designated stacks(bs,bs′)(stid).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 532 Domain Science & Engineering

53315. On A Theory of Container Stowage 15.3. Actions15.3.1. Remove Container from Vessel

value

20. remove C from V: V → StackId
∼→ (V×C)

20. remove C from V(v)(stid) as (v′,c)
20(c). (obs BS(v′),c) = remove C from BS(obs BS(v))(stid)
20(d). ∧ props(v)=props(v′′)

20(b). remove C from BS: BS → StackId → (BS×C)
20(a). remove C from BS(bs)(stid) as (bs′,c)
21(a). pre: valid address(bs)(stid)
21(b). ∧ non empty designated stack(bs)(stid)
22(a). post: c = get C(bs)(stid)
22(b). ∧ unchanged mereology(bs,bs′)
22(c). ∧ popped designated stack(bs,bs′)(stid)
22(d). ∧ unchanged non designated stacks(bs,bs′)(stid)

A Precursor for Requirements Engineering 533 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

534
15. On A Theory of Container Stowage 15.3. Actions15.3.2. Remove Container from CTP

15.3.2. Remove Container from CTP

• We define a remove action similar to that of the previous section.

192. Instead of vessel bays we are now dealing with the bays of
container terminal ports.

We omit the narrative — which is very much like that of narrative
Items 20(c) and 20(d).

value

192. remove C from CTP: CTP → StackId
∼→ (CTP×C)

192. remove C from CTP(ctp)(stid) as (ctp′,c)
20(c). (obs BS(ctp′),c) = remove C from BS(obs BS(ctp))(stid)
20(d). ∧ props(ctp)=props(ctp′′)

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 534 Domain Science & Engineering

53515. On A Theory of Container Stowage 15.3. Actions15.3.3. Stack Container on Vessel

15.3.3. Stack Container on Vessel

193. Stacking a container at a vessel bay stack location

(a)

(b)

(c)

value

193. stack C on vessel: BS → StackId
∼→ C

∼→ BS
193(a). stack C on vessel(bs)(stid)(c) as bs′

193(a). comment: bs is bays of a v:V, i.e., bs = obs BS(v)
193(b). pre:
193(c). post:

A Precursor for Requirements Engineering 535 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

536 15. On A Theory of Container Stowage 15.3. Actions15.3.4. Stack Container in CTP

15.3.4. Stack Container in CTP

194.

195.

196.

197.

value

194. stack C in CTP: CTP → StackId → C
∼→ CTP

195. stack C in CTP(ctp)(stid)(c) as ctp′

196. pre:
197. post:

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 536 Domain Science & Engineering

53715. On A Theory of Container Stowage 15.3. Actions15.3.5. Transfer Container from Vessel to CTP

15.3.5. Transfer Container from Vessel to CTP

198.

199.

200.

201.

value

198. transfer C from V to CTP: V→StackId
∼→CTP→StackId

∼→(V×CTP)
199. transfer C from V to CTP(v)(v stid)(ctp)(ctp stid) ≡
200. let (c,v′) = remove C from V(v)(v stid) in

200. (v′,stack C in CTP(ctp)(ctp stid)(c)) end

A Precursor for Requirements Engineering 537 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

538 15. On A Theory of Container Stowage 15.3. Actions15.3.6. Transfer Container from CTP to Vessel

15.3.6. Transfer Container from CTP to Vessel

202.

203.

204.

value

202. transfer C from CTP to V: CTP→StackId
∼→V→StackId

∼→(CTP×V)
203. transfer C from CTP to V(ctp)(ctp stid)(v)(v stid) ≡
204. let (c,ctp′) = remove C from CTP(ctp)(ctp stid) in

204. (ctp′,stack C in CTP(ctp)(ctp stid)(c)) end

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 538 Domain Science & Engineering

538

Any Questions ?

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 538 Domain Science & Engineering

539
16. On A Theory of Container Stowage

16. RSL: The Raise Specification Language
16.1. Type Expressions

• Type expressions are expressions whose value are type, that is,

• possibly infinite sets of values (of “that” type).

16.1.1. Atomic Types

• Atomic types have (atomic) values.

• That is, values which we consider to have no proper constituent
(sub-)values,

• i.e., cannot, to us, be meaningfully “taken apart”.

A Precursor for Requirements Engineering 539 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

540 16. RSL: The Raise Specification Language 16.1. Type Expressions16.1.1. Atomic Types

type

[1] Bool true, false

[2] Int ... , −2, −2, 0, 1, 2, ...
[3] Nat 0, 1, 2, ...
[4] Real ..., −5.43, −1.0, 0.0, 1.23· · · , 2,7182· · · , 3,1415· · · , 4.56, ...
[5] Char ”a”, ”b”, ..., ”0”, ...
[6] Text ”abracadabra”

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 540 Domain Science & Engineering

54116. RSL: The Raise Specification Language 16.1. Type Expressions16.1.2. Composite Types

16.1.2. Composite Types

• Composite types have composite values.

⋄⋄ That is, values which we consider to have proper constituent
(sub-)values,

⋄⋄ i.e., can be meaningfully “taken apart”.

• There are two ways of expressing composite types:

⋄⋄ either explicitly, using concrete type expressions,

⋄⋄ or implicitly, using sorts (i.e., abstract types) and observer
functions.

A Precursor for Requirements Engineering 541 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

542
16. RSL: The Raise Specification Language 16.1. Type Expressions16.1.2. Composite Types16.1.2.1. Concrete Composite Types

16.1.2.1 Concrete Composite Types

[7] A-set

[8] A-infset

[9] A × B × ... × C
[10] A∗
[11] Aω

[12] A →m B[13] A → B

[14] A
∼→ B

[15] (A)
[16] A | B | ... | C
[17] mk id(sel a:A,...,sel b:B)
[18] sel a:A ... sel b:B

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 542 Domain Science & Engineering

54316. RSL: The Raise Specification Language 16.1. Type Expressions16.1.2. Composite Types16.1.2.2. Sorts and Observer Functions

16.1.2.2 Sorts and Observer Functions

type

A, B, C, ..., D
value

obs B: A → B, obs C: A → C, ..., obs D: A → D

• The above expresses

⋄⋄ that values of type A

⋄⋄ are composed from at least three values —

⋄⋄ and these are of type B, C, . . . , and D.

• A concrete type definition corresponding to the above

⋄⋄ presupposing material of the next section

type

B, C, ..., D
A = B × C × ... × D

A Precursor for Requirements Engineering 543 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

544 16. RSL: The Raise Specification Language 16.2. Type Definitions

16.2. Type Definitions
16.2.1. Concrete Types

• Types can be concrete

• in which case the structure of the type is specified by type expressions:

type

A = Type expr

• Schematic type definitions:

[1] Type name = Type expr /∗ without | s or subtypes ∗/
[2] Type name = Type expr 1 | Type expr 2 | ... | Type expr n
[3] Type name ==

mk id 1(s a1:Type name a1,...,s ai:Type name ai) |
... |
mk id n(s z1:Type name z1,...,s zk:Type name zk)

[4] Type name :: sel a:Type name a ... sel z:Type name z
[5] Type name = {| v:Type name′

• P(v) |}

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 544 Domain Science & Engineering

54516. RSL: The Raise Specification Language 16.2. Type Definitions16.2.1. Concrete Types

• where a form of [2–3] is provided by combining the types:

Type name = A | B | ... | Z
A == mk id 1(s a1:A 1,...,s ai:A i)
B == mk id 2(s b1:B 1,...,s bj:B j)
...
Z == mk id n(s z1:Z 1,...,s zk:Z k)

axiom

∀ a1:A 1, a2:A 2, ..., ai:Ai •

s a1(mk id 1(a1,a2,...,ai))=a1 ∧ s a2(mk id 1(a1,a2,...,ai))=a2 ∧
... ∧ s ai(mk id 1(a1,a2,...,ai))=ai ∧

∀ a:A • let mk id 1(a1′,a2′,...,ai′) = a in

a1′ = s a1(a) ∧ a2′ = s a2(a) ∧ ... ∧ ai′ = s ai(a) end

A Precursor for Requirements Engineering 545 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

546 16. RSL: The Raise Specification Language 16.2. Type Definitions16.2.2. Subtypes

16.2.2. Subtypes

• In RSL, each type represents a set of values. Such a set can be
delimited by means of predicates.

• The set of values b which have type B and which satisfy the
predicate P , constitute the subtype A:

type

A = {| b:B • P(b) |}

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 546 Domain Science & Engineering

54716. RSL: The Raise Specification Language 16.2. Type Definitions16.2.3. Sorts — Abstract Types

16.2.3. Sorts — Abstract Types

• Types can be (abstract) sorts

• in which case their structure is not specified:

type

A, B, ..., C

A Precursor for Requirements Engineering 547 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

548 16. RSL: The Raise Specification Language 16.3. The RSL Predicate Calculus

16.3. The RSL Predicate Calculus
16.3.1. Propositional Expressions

• Let identifiers (or propositional expressions) a, b, ..., c designate
Boolean values (true or false [or chaos]).

• Then:

false, true

a, b, ..., c ∼a, a∧b, a∨b, a⇒b, a=b, a 6=b

• are propositional expressions having Boolean values.

• ∼, ∧, ∨, ⇒, = and 6= are Boolean connectives (i.e., operators).

• They can be read as: not, and, or, if then (or implies), equal and
not equal.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 548 Domain Science & Engineering

54916. RSL: The Raise Specification Language 16.3. The RSL Predicate Calculus16.3.2. Simple Predicate Expressions

16.3.2. Simple Predicate Expressions

• Let identifiers (or propositional expressions) a, b, ..., c designate
Boolean values,

• let x, y, ..., z (or term expressions) designate non-Boolean values

• and let i, j, . . ., k designate number values,

• then:

false, true

a, b, ..., c
∼a, a∧b, a∨b, a⇒b, a=b, a 6=b
x=y, x6=y,
i<j, i≤j, i≥j, i 6=j, i≥j, i>j

• are simple predicate expressions.

A Precursor for Requirements Engineering 549 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

550 16. RSL: The Raise Specification Language 16.3. The RSL Predicate Calculus16.3.3. Quantified Expressions

16.3.3. Quantified Expressions

• Let X, Y, . . ., C be type names or type expressions,

• and let P(x), Q(y) and R(z) designate predicate expressions in
which x, y and z are free.

• Then:

∀ x:X • P(x)
∃ y:Y • Q(y)
∃ ! z:Z • R(z)

• are quantified expressions — also being predicate expressions.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 550 Domain Science & Engineering

55116. RSL: The Raise Specification Language 16.4. Concrete RSL Types: Values and Operations

16.4. Concrete RSL Types: Values and Operations
16.4.1. Arithmetic

type

Nat, Int, Real

value

+,−,∗: Nat×Nat→Nat | Int×Int→Int | Real×Real→Real

/: Nat×Nat
∼→Nat | Int×Int

∼→Int | Real×Real
∼→Real

<,≤,=, 6=,≥,> (Nat|Int|Real) → (Nat|Int|Real)

A Precursor for Requirements Engineering 551 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

552 16. RSL: The Raise Specification Language 16.4. Concrete RSL Types: Values and Operations16.4.2. Set Expressions

16.4.2. Set Expressions
16.4.2.1 Set Enumerations

Let the below a’s denote values of type A, then the below designate
simple set enumerations:

{{}, {a}, {e1,e2,...,en}, ...} ∈ A-set

{{}, {a}, {e1,e2,...,en}, ..., {e1,e2,...}} ∈ A-infset

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 552 Domain Science & Engineering

55316. RSL: The Raise Specification Language 16.4. Concrete RSL Types: Values and Operations16.4.2. Set Expressions16.4.2.2. Set Comprehension

16.4.2.2 Set Comprehension

• The expression, last line below, to the right of the ≡, expresses set
comprehension.

• The expression “builds” the set of values satisfying the given
predicate.

• It is abstract in the sense that it does not do so by following a
concrete algorithm.

type

A, B
P = A → Bool

Q = A
∼→ B

value

comprehend: A-infset × P × Q → B-infset

comprehend(s,P,Q) ≡ { Q(a) | a:A • a ∈ s ∧ P(a)}

A Precursor for Requirements Engineering 553 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

554 16. RSL: The Raise Specification Language 16.4. Concrete RSL Types: Values and Operations16.4.3. Cartesian Expressions

16.4.3. Cartesian Expressions
16.4.3.1 Cartesian Enumerations

• Let e range over values of Cartesian types involving A, B, . . ., C,

• then the below expressions are simple Cartesian enumerations:

type

A, B, ..., C
A × B × ... × C

value

(e1,e2,...,en)

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 554 Domain Science & Engineering

55516. RSL: The Raise Specification Language 16.4. Concrete RSL Types: Values and Operations16.4.4. List Expressions

16.4.4. List Expressions
16.4.4.1 List Enumerations

• Let a range over values of type A,

• then the below expressions are simple list enumerations:

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ...} ∈ A∗
{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ..., 〈e1,e2,...,en,... 〉, ...} ∈ Aω

〈 a i .. a j 〉

• The last line above assumes ai and aj to be integer-valued
expressions.

• It then expresses the set of integers from the value of ei to and
including the value of ej.

• If the latter is smaller than the former, then the list is empty.

A Precursor for Requirements Engineering 555 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

556 16. RSL: The Raise Specification Language 16.4. Concrete RSL Types: Values and Operations16.4.4. List Expressions16.4.4.2. List Comprehension

16.4.4.2 List Comprehension

• The last line below expresses list comprehension.

type

A, B, P = A → Bool, Q = A
∼→ B

value

comprehend: Aω × P × Q
∼→ Bω

comprehend(l,P,Q) ≡
〈 Q(l(i)) | i in 〈1..len l〉 • P(l(i))〉

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 556 Domain Science & Engineering

55716. RSL: The Raise Specification Language 16.4. Concrete RSL Types: Values and Operations16.4.5. Map Expressions

16.4.5. Map Expressions
16.4.5.1 Map Enumerations

• Let (possibly indexed) u and v range over values of type T1 and
T2, respectively,

• then the below expressions are simple map enumerations:

type

T1, T2
M = T1 →m T2

value

u,u1,u2,...,un:T1, v,v1,v2,...,vn:T2
[], [u 7→v], ..., [u1 7→v1,u27→v2,...,un 7→vn] ∀ ∈ M

A Precursor for Requirements Engineering 557 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

558 16. RSL: The Raise Specification Language 16.4. Concrete RSL Types: Values and Operations16.4.5. Map Expressions16.4.5.2. Map Comprehension

16.4.5.2 Map Comprehension

• The last line below expresses map comprehension:

type

U, V, X, Y
M = U →m V

F = U
∼→ X

G = V
∼→ Y

P = U → Bool

value

comprehend: M×F×G×P → (X →m Y)
comprehend(m,F,G,P) ≡

[F(u) 7→ G(m(u)) | u:U • u ∈ dom m ∧ P(u)]

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 558 Domain Science & Engineering

55916. RSL: The Raise Specification Language 16.4. Concrete RSL Types: Values and Operations16.4.6. Set Operations

16.4.6. Set Operations
16.4.6.1 Set Operator Signatures

value

205 ∈: A × A-infset → Bool

206 6∈: A × A-infset → Bool

207 ∪: A-infset × A-infset → A-infset

208 ∪: (A-infset)-infset → A-infset

209 ∩: A-infset × A-infset → A-infset

210 ∩: (A-infset)-infset → A-infset

211 \: A-infset × A-infset → A-infset

212 ⊂: A-infset × A-infset → Bool

213 ⊆: A-infset × A-infset → Bool

214 =: A-infset × A-infset → Bool

215 6=: A-infset × A-infset → Bool

216 card: A-infset
∼→ Nat

A Precursor for Requirements Engineering 559 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

560 16. RSL: The Raise Specification Language 16.4. Concrete RSL Types: Values and Operations16.4.6. Set Operations16.4.6.2. Set Examples

16.4.6.2 Set Examples

examples

a ∈ {a,b,c}
a 6∈ {}, a 6∈ {b,c}
{a,b,c} ∪ {a,b,d,e} = {a,b,c,d,e}
∪{{a},{a,b},{a,d}} = {a,b,d}
{a,b,c} ∩ {c,d,e} = {c}
∩{{a},{a,b},{a,d}} = {a}
{a,b,c} \ {c,d} = {a,b}
{a,b} ⊂ {a,b,c}
{a,b,c} ⊆ {a,b,c}
{a,b,c} = {a,b,c}
{a,b,c} 6= {a,b}
card {} = 0, card {a,b,c} = 3

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 560 Domain Science & Engineering

56116. RSL: The Raise Specification Language 16.4. Concrete RSL Types: Values and Operations16.4.6. Set Operations16.4.6.3. Informal Explication

16.4.6.3 Informal Explication

205. ∈: The membership operator expresses that an element is a member of a set.

206. 6∈: The nonmembership operator expresses that an element is not a member of a
set.

207. ∪: The infix union operator. When applied to two sets, the operator gives the
set whose members are in either or both of the two operand sets.

208. ∪: The distributed prefix union operator. When applied to a set of sets, the
operator gives the set whose members are in some of the operand sets.

209. ∩: The infix intersection operator. When applied to two sets, the operator gives
the set whose members are in both of the two operand sets.

210. ∩: The prefix distributed intersection operator. When applied to a set of sets,
the operator gives the set whose members are in some of the operand sets.

A Precursor for Requirements Engineering 561 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

562 16. RSL: The Raise Specification Language 16.4. Concrete RSL Types: Values and Operations16.4.6. Set Operations16.4.6.3. Informal Explication

211. \: The set complement (or set subtraction) operator. When
applied to two sets, the operator gives the set whose members are
those of the left operand set which are not in the right operand set.

212. ⊆: The proper subset operator expresses that all members of the
left operand set are also in the right operand set.

213. ⊂: The proper subset operator expresses that all members of the
left operand set are also in the right operand set, and that the two
sets are not identical.

214. =: The equal operator expresses that the two operand sets are
identical.

215. 6=: The nonequal operator expresses that the two operand sets are
not identical.

216. card: The cardinality operator gives the number of elements in a
finite set.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 562 Domain Science & Engineering

56316. RSL: The Raise Specification Language 16.4. Concrete RSL Types: Values and Operations16.4.6. Set Operations16.4.6.4. Set Operator Definitions

16.4.6.4 Set Operator Definitions

value

s′ ∪ s′′ ≡ { a | a:A • a ∈ s′ ∨ a ∈ s′′ }
s′ ∩ s′′ ≡ { a | a:A • a ∈ s′ ∧ a ∈ s′′ }
s′ \ s′′ ≡ { a | a:A • a ∈ s′ ∧ a 6∈ s′′ }
s′ ⊆ s′′ ≡ ∀ a:A • a ∈ s′ ⇒ a ∈ s′′

s′ ⊂ s′′ ≡ s′ ⊆ s′′ ∧ ∃ a:A • a ∈ s′′ ∧ a 6∈ s′

s′ = s′′ ≡ ∀ a:A • a ∈ s′ ≡ a ∈ s′′ ≡ s⊆s′ ∧ s′⊆s
s′ 6= s′′ ≡ s′ ∩ s′′ 6= {}
card s ≡
if s = {} then 0 else

let a:A • a ∈ s in 1 + card (s \ {a}) end end

pre s /∗ is a finite set ∗/
card s ≡ chaos /∗ tests for infinity of s ∗/

A Precursor for Requirements Engineering 563 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

564 16. RSL: The Raise Specification Language 16.4. Concrete RSL Types: Values and Operations16.4.7. Cartesian Operations

16.4.7. Cartesian Operations

type

A, B, C
g0: G0 = A × B × C
g1: G1 = (A × B × C)
g2: G2 = (A × B) × C
g3: G3 = A × (B × C)

value

va:A, vb:B, vc:C, vd:D
(va,vb,vc):G0,

(va,vb,vc):G1
((va,vb),vc):G2
(va3,(vb3,vc3)):G3

decomposition expressions

let (a1,b1,c1) = g0,
(a1′,b1′,c1′) = g1 in .. end

let ((a2,b2),c2) = g2 in .. end

let (a3,(b3,c3)) = g3 in .. end

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 564 Domain Science & Engineering

56516. RSL: The Raise Specification Language 16.4. Concrete RSL Types: Values and Operations16.4.8. List Operations

16.4.8. List Operations
16.4.8.1 List Operator Signatures

value

hd: Aω ∼→ A

tl: Aω ∼→ Aω

len: Aω ∼→ Nat

inds: Aω → Nat-infset

elems: Aω → A-infset

.(.): Aω × Nat
∼→ A

̂: A∗ × Aω → Aω=: Aω × Aω → Bool6=: Aω × Aω → Bool

A Precursor for Requirements Engineering 565 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

566 16. RSL: The Raise Specification Language 16.4. Concrete RSL Types: Values and Operations16.4.8. List Operations16.4.8.2. List Operation Examples

16.4.8.2 List Operation Examples

examples

hd〈a1,a2,...,am〉=a1
tl〈a1,a2,...,am〉=〈a2,...,am〉
len〈a1,a2,...,am〉=m
inds〈a1,a2,...,am〉={1,2,...,m}
elems〈a1,a2,...,am〉={a1,a2,...,am}
〈a1,a2,...,am〉(i)=ai
〈a,b,c〉̂〈a,b,d〉 = 〈a,b,c,a,b,d〉
〈a,b,c〉=〈a,b,c〉
〈a,b,c〉 6= 〈a,b,d〉

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 566 Domain Science & Engineering

56716. RSL: The Raise Specification Language 16.4. Concrete RSL Types: Values and Operations16.4.8. List Operations16.4.8.3. Informal Explication

16.4.8.3 Informal Explication

• hd: Head gives the first element in a nonempty list.

• tl: Tail gives the remaining list of a nonempty list when Head is
removed.

• len: Length gives the number of elements in a finite list.

• inds: Indices give the set of indices from 1 to the length of a
nonempty list. For empty lists, this set is the empty set as well.

• elems: Elements gives the possibly infinite set of all distinct
elements in a list.

• ℓ(i): Indexing with a natural number, i larger than 0, into a list ℓ
having a number of elements larger than or equal to i, gives the ith
element of the list.

A Precursor for Requirements Engineering 567 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

568
16. RSL: The Raise Specification Language 16.4. Concrete RSL Types: Values and Operations16.4.8. List Operations16.4.8.3. Informal Explication

• ̂: Concatenates two operand lists into one. The elements of the
left operand list are followed by the elements of the right. The
order with respect to each list is maintained.

• =: The equal operator expresses that the two operand lists are
identical.

• 6=: The nonequal operator expresses that the two operand lists are
not identical.

The operations can also be defined as follows:

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 568 Domain Science & Engineering

56916. RSL: The Raise Specification Language 16.4. Concrete RSL Types: Values and Operations16.4.8. List Operations16.4.8.4. List Operator Definitions

16.4.8.4 List Operator Definitions

value

is finite list: Aω → Bool

len q ≡
case is finite list(q) of

true → if q = 〈〉 then 0 else 1 + len tl q end,
false → chaos end

inds q ≡
case is finite list(q) of

true → { i | i:Nat • 1 ≤ i ≤ len q },
false → { i | i:Nat • i6=0 } end

elems q ≡ { q(i) | i:Nat • i ∈ inds q }

A Precursor for Requirements Engineering 569 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

570 16. RSL: The Raise Specification Language 16.4. Concrete RSL Types: Values and Operations16.4.8. List Operations16.4.8.4. List Operator Definitions

q(i) ≡
if i=1
then

if q6=〈〉
then let a:A,q′:Q • q=〈a〉̂q′ in a end

else chaos end

else q(i−1) end

fq ̂ iq ≡
〈 if 1 ≤ i ≤ len fq then fq(i) else iq(i − len fq) end

| i:Nat • if len iq6=chaos then i ≤ len fq+len end 〉
pre is finite list(fq)

iq′ = iq′′ ≡
inds iq′ = inds iq′′ ∧ ∀ i:Nat • i ∈ inds iq′ ⇒ iq′(i) = iq′′(i)

iq′ 6= iq′′ ≡ ∼(iq′ = iq′′)

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 570 Domain Science & Engineering

57116. RSL: The Raise Specification Language 16.4. Concrete RSL Types: Values and Operations16.4.9. Map Operations

16.4.9. Map Operations
16.4.9.1 Map Operator Signatures and Map Operation Examples

value

m(a): M → A
∼→ B, m(a) = b

dom: M → A-infset [domain of map]
dom [a1 7→b1,a27→b2,...,an 7→bn] = {a1,a2,...,an}

rng: M → B-infset [range of map]
rng [a1 7→b1,a27→b2,...,an 7→bn] = {b1,b2,...,bn}

†: M × M → M [override extension]
[a 7→b,a′7→b′,a′′7→b′′] † [a′7→b′′,a′′7→b′] = [a 7→b,a′7→b′′,a′′7→b′]

A Precursor for Requirements Engineering 571 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

57216. RSL: The Raise Specification Language 16.4. Concrete RSL Types: Values and Operations16.4.9. Map Operations16.4.9.1. Map Operator Signatures and Map Operation Examples

∪: M × M → M [merge ∪]
[a 7→b,a′7→b′,a′′7→b′′] ∪ [a′′′7→b′′′] = [a 7→b,a′7→b′,a′′7→b′′,a′′′7→b′′′]

\: M × A-infset → M [restriction by]
[a 7→b,a′7→b′,a′′7→b′′]\{a} = [a′7→b′,a′′7→b′′]

/: M × A-infset → M [restriction to]
[a 7→b,a′7→b′,a′′7→b′′]/{a′,a′′} = [a′7→b′,a′′7→b′′]

=, 6=: M × M → Bool

◦: (A →m B) × (B →m C) → (A →m C) [composition]
[a 7→b,a′7→b′] ◦ [b 7→c,b′7→c′,b′′7→c′′] = [a 7→c,a′7→c′]

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 572 Domain Science & Engineering

57316. RSL: The Raise Specification Language 16.4. Concrete RSL Types: Values and Operations16.4.9. Map Operations16.4.9.2. Map Operation Explication

16.4.9.2 Map Operation Explication

• m(a): Application gives the element that a maps to in the map m.

• dom: Domain/Definition Set gives the set of values which maps to

in a map.

• rng: Range/Image Set gives the set of values which are mapped to

in a map.

• †: Override/Extend. When applied to two operand maps, it gives
the map which is like an override of the left operand map by all or
some “pairings” of the right operand map.

• ∪: Merge. When applied to two operand maps, it gives a merge of
these maps.

• \: Restriction. When applied to two operand maps, it gives the
map which is a restriction of the left operand map to the elements
that are not in the right operand set.

A Precursor for Requirements Engineering 573 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

574 16. RSL: The Raise Specification Language 16.4. Concrete RSL Types: Values and Operations16.4.9. Map Operations16.4.9.2. Map Operation Explication

• /: Restriction. When applied to two operand maps, it gives the
map which is a restriction of the left operand map to the elements
of the right operand set.

• =: The equal operator expresses that the two operand maps are
identical.

• 6=: The nonequal operator expresses that the two operand maps are
not identical.

• ◦: Composition. When applied to two operand maps, it gives the
map from definition set elements of the left operand map, m1, to
the range elements of the right operand map, m2, such that if a is
in the definition set of m1 and maps into b, and if b is in the
definition set of m2 and maps into c, then a, in the composition,
maps into c.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 574 Domain Science & Engineering

57516. RSL: The Raise Specification Language 16.4. Concrete RSL Types: Values and Operations16.4.9. Map Operations16.4.9.3. Map Operation Redefinitions

16.4.9.3 Map Operation Redefinitions
value

rng m ≡ { m(a) | a:A • a ∈ dom m }

m1 † m2 ≡
[a 7→b | a:A,b:B •

a ∈ dom m1 \ dom m2 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a)]

m1 ∪ m2 ≡ [a 7→b | a:A,b:B •

a ∈ dom m1 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a)]

m \ s ≡ [a 7→m(a) | a:A • a ∈ dom m \ s]

m / s ≡ [a 7→m(a) | a:A • a ∈ dom m ∩ s]

m1 = m2 ≡
dom m1 = dom m2 ∧ ∀ a:A • a ∈ dom m1 ⇒ m1(a) = m2(a)

m1 6= m2 ≡ ∼(m1 = m2)

m◦n ≡
[a 7→c | a:A,c:C • a ∈ dom m ∧ c = n(m(a))]

pre rng m ⊆ dom n

A Precursor for Requirements Engineering 575 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

576 16. RSL: The Raise Specification Language 16.5. λ-Calculus + Functions

16.5. λ-Calculus + Functions
16.5.1. The λ-Calculus Syntax

type /∗ A BNF Syntax: ∗/
〈L〉 ::= 〈V〉 | 〈F〉 | 〈A〉 | (〈A〉)
〈V〉 ::= /∗ variables, i.e. identifiers ∗/
〈F〉 ::= λ〈V〉 • 〈L〉
〈A〉 ::= (〈L〉〈L〉)

value /∗ Examples ∗/
〈L〉: e, f, a, ...
〈V〉: x, ...
〈F〉: λ x • e, ...
〈A〉: f a, (f a), f(a), (f)(a), ...

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 576 Domain Science & Engineering

57716. RSL: The Raise Specification Language 16.5. λ-Calculus + Functions16.5.2. Free and Bound Variables

16.5.2. Free and Bound Variables
Let x, y be variable names and e, f be λ-expressions.

• 〈V〉: Variable x is free in x.

• 〈F〉: x is free in λy •e if x 6= y and x is free in e.

• 〈A〉: x is free in f (e) if it is free in either f or e (i.e., also in both).

A Precursor for Requirements Engineering 577 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

578 16. RSL: The Raise Specification Language 16.5. λ-Calculus + Functions16.5.3. Substitution

16.5.3. Substitution

• subst([N/x]x) ≡ N;

• subst([N/x]a) ≡ a,

for all variables a 6= x;

• subst([N/x](P Q)) ≡ (subst([N/x]P) subst([N/x]Q));

• subst([N/x](λx•P)) ≡ λ y•P;

• subst([N/x](λ y•P)) ≡ λy• subst([N/x]P),

if x6=y and y is not free in N or x is not free in P;

• subst([N/x](λy•P)) ≡ λz•subst([N/z]subst([z/y]P)),

if y6=x and y is free in N and x is free in P

(where z is not free in (N P)).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 578 Domain Science & Engineering

57916. RSL: The Raise Specification Language 16.5. λ-Calculus + Functions16.5.4. α-Renaming and β-Reduction

16.5.4. α-Renaming and β-Reduction

• α-renaming: λx•M

If x, y are distinct variables then replacing x by y in λx•M results in
λy•subst([y/x]M). We can rename the formal parameter of a
λ-function expression provided that no free variables of its body M
thereby become bound.

• β-reduction: (λx•M)(N)

All free occurrences of x in M are replaced by the expression N
provided that no free variables of N thereby become bound in the
result. (λx•M)(N) ≡ subst([N/x]M)

A Precursor for Requirements Engineering 579 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

580 16. RSL: The Raise Specification Language 16.5. λ-Calculus + Functions16.5.5. Function Signatures

16.5.5. Function Signatures
For sorts we may want to postulate some functions:

type

A, B, C
value

obs B: A → B,
obs C: A → C,
gen A: B×C → A

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 580 Domain Science & Engineering

58116. RSL: The Raise Specification Language 16.5. λ-Calculus + Functions16.5.6. Function Definitions

16.5.6. Function Definitions
Functions can be defined explicitly:

value

f: Arguments → Result
f(args) ≡ DValueExpr

g: Arguments
∼→ Result

g(args) ≡ ValueAndStateChangeClause
pre P(args)

A Precursor for Requirements Engineering 581 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

582 16. RSL: The Raise Specification Language 16.5. λ-Calculus + Functions16.5.6. Function Definitions

Or functions can be defined implicitly:

value

f: Arguments → Result
f(args) as result
post P1(args,result)

g: Arguments
∼→ Result

g(args) as result
pre P2(args)
post P3(args,result)

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 582 Domain Science & Engineering

58316. RSL: The Raise Specification Language 16.6. Other Applicative Expressions

16.6. Other Applicative Expressions
16.6.1. Simple let Expressions

Simple (i.e., nonrecursive) let expressions:

let a = Ed in Eb(a) end

is an “expanded” form of:

(λa.Eb(a))(Ed)

A Precursor for Requirements Engineering 583 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

584 16. RSL: The Raise Specification Language 16.6. Other Applicative Expressions16.6.2. Recursive let Expressions

16.6.2. Recursive let Expressions
Recursive let expressions are written as:

let f = λa:A • E(f) in B(f,a) end

is “the same” as:

let f = YF in B(f,a) end

where:

F ≡ λg•λa•(E(g)) and YF = F(YF)

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 584 Domain Science & Engineering

58516. RSL: The Raise Specification Language 16.6. Other Applicative Expressions16.6.3. Predicative let Expressions

16.6.3. Predicative let Expressions
Predicative let expressions:

let a:A • P(a) in B(a) end

express the selection of a value a of type A which satisfies a predicate
P(a) for evaluation in the body B(a).

A Precursor for Requirements Engineering 585 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

586 16. RSL: The Raise Specification Language 16.6. Other Applicative Expressions16.6.4. Pattern and “Wild Card” let Expressions

16.6.4. Pattern and “Wild Card” let Expressions
Patterns and wild cards can be used:

let {a} ∪ s = set in ... end

let {a, } ∪ s = set in ... end

let (a,b,...,c) = cart in ... end

let (a, ,...,c) = cart in ... end

let 〈a〉̂ℓ = list in ... end

let 〈a, ,b〉̂ℓ = list in ... end

let [a 7→b] ∪ m = map in ... end

let [a 7→b,] ∪ m = map in ... end

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 586 Domain Science & Engineering

58716. RSL: The Raise Specification Language 16.6. Other Applicative Expressions16.6.5. Conditionals

16.6.5. Conditionals

if b expr then c expr else a expr
end

if b expr then c expr end ≡ /∗ same as: ∗/
if b expr then c expr else skip end

if b expr 1 then c expr 1
elsif b expr 2 then c expr 2
elsif b expr 3 then c expr 3
...
elsif b expr n then c expr n end

case expr of

choice pattern 1 → expr 1,
choice pattern 2 → expr 2,
...
choice pattern n or wild card → expr n

end

A Precursor for Requirements Engineering 587 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

588 16. RSL: The Raise Specification Language 16.6. Other Applicative Expressions16.6.6. Operator/Operand Expressions

16.6.6. Operator/Operand Expressions

〈Expr〉 ::=
〈Prefix Op〉 〈Expr〉
| 〈Expr〉 〈Infix Op〉 〈Expr〉
| 〈Expr〉 〈Suffix Op〉
| ...

〈Prefix Op〉 ::=
− | ∼ | ∪ | ∩ | card | len | inds | elems | hd | tl | dom | rng

〈Infix Op〉 ::=
= | 6= | ≡ | + | − | ∗ | ↑ | / | < | ≤ | ≥ | > | ∧ | ∨ | ⇒
| ∈ | 6∈ | ∪ | ∩ | \ | ⊂ | ⊆ | ⊇ | ⊃ | ̂ | † | ◦

〈Suffix Op〉 ::= !

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 588 Domain Science & Engineering

58916. RSL: The Raise Specification Language 16.7. Imperative Constructs

16.7. Imperative Constructs
16.7.1. Statements and State Changes

Unit

value

stmt: Unit → Unit

stmt()

• Statements accept no arguments.

• Statement execution changes the state (of declared variables).

• Unit → Unit designates a function from states to states.

• Statements, stmt, denote state-to-state changing functions.

• Writing () as “only” arguments to a function “means” that () is an
argument of type Unit.

A Precursor for Requirements Engineering 589 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

590 16. RSL: The Raise Specification Language 16.7. Imperative Constructs16.7.2. Variables and Assignment

16.7.2. Variables and Assignment

0. variable v:Type := expression
1. v := expr

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 590 Domain Science & Engineering

59116. RSL: The Raise Specification Language 16.7. Imperative Constructs16.7.3. Statement Sequences and skip

16.7.3. Statement Sequences and skip

2. skip

3. stm 1;stm 2;...;stm n

A Precursor for Requirements Engineering 591 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

592 16. RSL: The Raise Specification Language 16.7. Imperative Constructs16.7.4. Imperative Conditionals

16.7.4. Imperative Conditionals

4. if expr then stm c else stm a end

5. case e of: p 1→S 1(p 1),...,p n→S n(p n) end

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 592 Domain Science & Engineering

59316. RSL: The Raise Specification Language 16.7. Imperative Constructs16.7.5. Iterative Conditionals

16.7.5. Iterative Conditionals

6. while expr do stm end

7. do stmt until expr end

A Precursor for Requirements Engineering 593 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

594 16. RSL: The Raise Specification Language 16.7. Imperative Constructs16.7.6. Iterative Sequencing

16.7.6. Iterative Sequencing

8. for e in list expr • P(b) do S(b) end

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 594 Domain Science & Engineering

59516. RSL: The Raise Specification Language 16.8. Process Constructs

16.8. Process Constructs
16.8.1. Process Channels

Let A and B stand for two types of (channel) messages and i:KIdx for
channel array indexes, then:

channel c:A
channel { k[i]:B • i:KIdx }

A Precursor for Requirements Engineering 595 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

596 16. RSL: The Raise Specification Language 16.8. Process Constructs16.8.2. Process Composition

16.8.2. Process Composition

• Let P and Q stand for names of process functions,

• i.e., of functions which express willingness to engage in input
and/or output events,

• thereby communicating over declared channels.

• Let P() and Q stand for process expressions, then:

P ‖ Q Parallel composition
P ⌈⌉⌊⌋ Q Nondeterministic external choice (either/or)
P ⌈⌉ Q Nondeterministic internal choice (either/or)
P –‖ Q Interlock parallel composition

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 596 Domain Science & Engineering

59716. RSL: The Raise Specification Language 16.8. Process Constructs16.8.3. Input/Output Events

16.8.3. Input/Output Events
Let c, k[i] and e designate channels of type A and B, then:

c ?, k[i] ? Input
c ! e, k[i] ! e Output

• expresses the willingness of a process to engage in an event that

⋄⋄ “reads” an input, respectively

⋄⋄ “writes” an output.

A Precursor for Requirements Engineering 597 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

598 16. RSL: The Raise Specification Language 16.8. Process Constructs16.8.4. Process Definitions

16.8.4. Process Definitions
The below signatures are just examples. They emphasise that process
functions must somehow express, in their signature, via which
channels they wish to engage in input and output events.

value

P: Unit → in c out k[i]
Unit

Q: i:KIdx → out c in k[i] Unit

P() ≡ ... c ? ... k[i] ! e ...
Q(i) ≡ ... k[i] ? ... c ! e ...

The process function definitions (i.e., their bodies) express possible
events.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44 598 Domain Science & Engineering

599
16. RSL: The Raise Specification Language 16.9. Simple RSL Specifications

16.9. Simple RSL Specifications

type

...
variable

...
channel

...
value

...
axiom

...

A Precursor for Requirements Engineering 599 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 10, 2012: 09:44

