

WELCOME

Domain Science \& Engineering A Precursor for Requirements Engineering

FM 2012 Tutorial, CNAM, 28 August 2012

Dines Bjørner

DTU Informatics
August 10, 2012: 09:44
Aug 10, 2012: 09:44

\qquad

2

Tutorial Schedule

- Lectures 1-2

9:00-9:40 + 9:50-10:30
1 Introduction
Slides 1-35
2 Endurant Entities: Parts
Slides 36-114

- Lectures 3-5

Slides 115-146
3 Endurant Entities: Materials, States
4 Perdurant Entities: Actions and Events
Slides 147-178
5 Perdurant Entities: Behaviours
Slides 179-28

Lunch

12:30-14:00

- Lectures 6-7

6 A Calculus: Analysers, Parts and Materials
7 A Calculus: Function Signatures and Laws

- Lecturs 8-9

8 Domain and Interface Requirements
9 Conclusion: Comparison to Other Work
Conclusion: What Have We Achieved

Summary

- This tutorial covers
\otimes a new science \& engineering of domains as well as
\otimes a new foundation for software development.
We treat the latter first.
- Instead of commencing with requirements engineering,
\otimes whose pursuit may involve repeated,
but unstructured forms of domain analysis,
\otimes we propose a predecessor phase of domain engineering.
- That is, we single out domain analysis as an activity to be pursued prior to requirements engineering.
${ }_{6}$
- Another facet is the pursuit of domain descriptions as a free-standing activity.
\otimes In this tutorial we emphasize domain description development need not lead to software development.
\otimes This gives a new meaning to business process engineering, and should lead to \oplus a deeper understanding of a domain
\oplus and to possible non-IT related business process re-engineering of areas of that domain.
- In this tutorial we shall investigate
\otimes a method for analysing domains,
\otimes for constructing domain descriptions
\otimes and some emerging scientific bases.
- In emphasising domain engineering as a predecessor phase
\otimes we, at the same time, introduce a number of facets
\otimes that are not present, we think,
\otimes in current software engineering studies and practices.
- One facet is the construction of separate domain descriptions.
\otimes Domain descriptions are void of any reference to requirements
\otimes and encompass the modelling of domain phenomena
\otimes without regard to their being computable.
- We also contribute to the analysis of discrete endurants in terms of the following notions:
\otimes part types and material types (Slides 55-73 and Slides 116-136),
\& part unique identifiers (Slides 79-81),
\otimes part mereology (Slides 82-97) and
\otimes part attributes and material attributes (Slides 98-109,
Slides 125-129) and
\otimes material laws (Slides 130-135).
- Of the above we point to the introduction, into computing science and software engineering of the notions of
\otimes materials (Slides 116-136) and
\otimes continuous behaviours (Slides 245-279)
as novel.

10

- This tutorial contributes to
\otimes the study and knowledge
\otimes of software engineering development methods.
- Its contributions are those of suggesting and exploring
\otimes domain engineering and
\otimes domain engineering as a basis for requirements engineering.
- We are not saying
"thou must develop software this way",
- but we do suggest
\otimes that since it is possible
\otimes and makes sense to do so
\otimes it may also be wise to do so.

1. Introduction

- I remind You of the abstract,
\otimes Slide 7,
\otimes as for the contributions of this tutorial.
- This is primarily a methodology paper.
- By a method we shall understand
\& a set of principles
\otimes for selecting and applying
\otimes a number of techniques and tools
\star in order to analyse a problem
\otimes and construct an artefact.
- By methodology we shall understand
\& the study and knowledge about methods.
\qquad
\qquad

1.1. Domains: Some Definitions

- By a domain we shall here understand
* an area of human activity
\otimes characterised by observable phenomena:
\oplus entities
* whether endurants (manifest parts and materials)
* or perdurants (actions, events or behaviours),
© whether
* discrete or
* continuous;
\oplus and of their properties.

Example: 1 Some Domains. Some examples are:
air traffic,
airport,
banking,
consumer market,
container lines,
fish industry,
health care,
logistics,
manufacturing,
pipelines,
securities trading,
transportation
etcetera.

1.1.1. Domain Analysis

- By domain analysis we shall understand
\otimes an inquiry into the domain,
* its entities
\otimes and their properties.
\qquad
\qquad 13

14

1. Introduction 1.1. Domains: Some Definitions1.1.1. Domain Analysis \qquad

1.1.2. Domain Descriptions

- By a domain description we shall understand
\otimes a narrative description
\otimes tightly coupled (say line-number-by-line-number)
\otimes to a formal description.
- To develop a domain description requires a thorough amount of domain analysis.
- actions:
\otimes container loading,
\otimes container unloading,
\otimes vessel arrival in port, etc.;
- events:
\otimes container falling overboard;
\otimes container afire;
\Leftrightarrow etc.;
- behaviour:
\Leftrightarrow vessel voyage,
\Leftrightarrow across the seas,
\otimes visiting ports, etc.

Length of a container is a container property.
Name of a vessel is a vessel property.
Location of a container terminal port is a port property.

Example: 3 A Transport Domain Description.

- Narrative:
\otimes a transport net, $\mathrm{n}: \mathrm{N}$,
consists of an aggregation of hubs, hs:HS,
which we "concretise" as a set of hubs, H-set, and
an aggregation of links, Is:LS, that is, a set L-set,
- Formalisation:
type $\mathrm{N}, \mathrm{HS}, \mathrm{LS}, \mathrm{Hs}=\mathrm{H}$-set, Ls $=\mathrm{L}$-set, H, L
value
obs_HS: $\mathrm{N} \rightarrow \mathrm{HS}$,
obs_LS: $\mathrm{N} \rightarrow \mathrm{LS}$.
obs_Hs: HS \rightarrow H-set,
obs_Ls: LS \rightarrow L-set.
■

16 \qquad
Examples of such theories, albeit in rather rough forms, are given in Appendices B-C.

1.1.3. Domain Engineering

- By domain engineering we shall understand
\otimes the engineering of a domain description,
\otimes that is,
\oplus the rigorous construction of domain descriptions, and
\oplus the further analysis of these, creating theories of domains ${ }^{1}$, etc.
\qquad

1.1.4. Domain Science

- By domain science we shall understand
\otimes two things:
\oplus the general study and knowledge of
* how to create and handle domain descriptions
* (a general theory of domain descriptions)
and
\oplus the specific study and knowledge of a particular domain.
\Leftrightarrow The two studies intertwine.

[^0]
1.2. The Triptych of Software Development

- We suggest a "dogma":
\otimes before software can be designed one must understand ${ }^{5}$ the requirements; and
\otimes before requirements can be expressed one must understand ${ }^{6}$ the domain.
- We can therefore view software development as ideally proceeding in three (i.e., TripTych) phases:
$凶$ an initial phase of domain engineering, followed by \otimes a phase of requirements engineering, ended by \& a phase of software design.

[^1]- In the domain engineering phase (\mathcal{D})
\otimes a domain is analysed, described and "theorised",
\otimes that is, the beginnings of a specific domain theory is established.
- In the requirements engineering phase (\mathcal{R})
\otimes a requirements prescription is constructed -
\otimes significant fragments of which are "derived",
Δ systematically, from the domain description.
- In the software design phase (\mathcal{S})
Δ a software design
* is derived, systematically, rigorously or formally,
\otimes from the requirements prescription.
- Finally the \mathcal{S} oftware is proven correct with respect to the \mathcal{R} equirements under assumption of the \mathcal{D} omain: $\mathcal{D}, \mathcal{S} \models \mathcal{R}$.
\qquad 21
\otimes Domain determination: hand-in-hand with domain initialisation a[n interleaved] stage of making values of types less non-deterministic, i.e., more deterministic, can take place.
\otimes Domain extension: Requirements often arise in the context of new business processes or technologies either placing old or replacing human processes in the domain. Domain extension is now the 'enrichment' of the domain requirements, so far developed, with the description of these new business processes or technologies.
\otimes Etcetera.
- The result of this part of "requirements derivation" is the domain requirements.
- A set of domain-to-requirements operators similarly exists for constructing interface requirements
\otimes from the domain description and,
\otimes independently, also from knowledge of the machine
\otimes for which the required IT system is to be developed.
- We illustrate the techniques of domain requirements and interface requirements in Sect. 4.
- Finally machine requirements are "derived"
\otimes from just the knowledge of the machine,
Δ that is,
\oplus the target hardware and
\oplus the software system tools for that hardware.

1.3. Issues of Domain Science \& Engineering

- We specifically focus on the following issues of domain science $\&^{7}$ engineering:
\otimes (i) which are the "things" to be described ${ }^{8}$,
\otimes (ii) how to analyse these "things" into description structures ${ }^{9}$,
\otimes (iii) how to describe these "things" informally and formally,
\otimes (iv) how to further structure descriptions ${ }^{10}$, and a further study of
\otimes (v) mereology ${ }^{11}$

[^2]Domain Entities 37
From Observations to Abstractions 39
Algebras 40
Phenomena 41
Entities 42
A Description Bias 43
An 'Upper Ontology` 45
\qquad
Continuous Endurants: Materials 111
"Somehow Related" Parts and Materials 113
Material Observers 115
Material Properties 120
Material Laws of Flows and Leaks 125
A Final Note on Endurant Properties 132
States 134
General 134
State Invariants 137
Endurants 48
General 49
Discrete and Continuous Endurants 49
Discrete Endurants: Parts 51
Atomic and Composite Parts 51
Atomic Parts 54
Composite Parts 63
Abstract Types, Sorts, and Concrete Types 65
Properties 70
Unique Identification 75
Mereology 78
Attributes 93
Shared Attributes and Properties 100
Attribute Naming 100
Attribute Sharing 103
Shared Properties 104
Summary of Discrete Endurants 105

\qquad 27Discrete Perdurants143
General 143
Discrete Actions 145
An Aside on Actions 147
Action Signatures 149
Action Definitions 150
Discrete Events 161
An Aside on Events 163
Event Signatures 164
Event Definitions 165
Discrete Behaviours 175
What is Meant by 'Behaviour'? 177
Behaviour Narratives 180
An Aside on Agents, Behaviours and Processes 184
On Behaviour Description Components 186
A Model of Parts and Behaviours 206
Sharing Properties \equiv Mutual Mereologies 215
Behaviour Signatures 217
Behaviour Definitions 220

\qquad 27
and 1. Introduction 1.4. Structure of Paper 27
Towards a Calculus of Domain Discoverers 258
ntroductory Notions 261
Discovery 261
Analysis 265
The \Re epository 271
Domain Analysers 274
IS MATTERIALS_BASED 275
IS_ATOM, IS_COMPOSITE 277
HAS_A_CONCRETE_TYPE 281
Continuous Perdurants 236
Some Examples 237
Motivation for Consolidated Models 242
Generation of Consolidated Models 246
The Pairing Process 247
Matching 249
An Aside on Time 250
A Research Agenda 251
Discussion 252
Discussion of Entities 25327
(and
2
Domain Discoverers 283
MATERIAL_SORTS 284
$\mathbb{P A R T}-\mathbb{S O R T S}$ 286
PART_TYPPES 290
UNIQUE IID 293
MEREOLOGY 294
ATTRIIBUTES 298
ACTION_SIGNATURES 306
$\mathbb{E V E N T}$ SIGNATURES 310
BEHAVIOUR SIGNATURES 313
Order of Analysis and "Discovery" 320
Analysis and "Discovery" of "Leftovers" 321
Laws of Domain Descriptions 323
1st Law of Commutativity 325
2nd Law of Commutativity 327
3rd Law of Commutativity 329
1st Law of Stability 331
2nd Law of Stability 332
Law of Non-interference 333
Discussion 336
Domain Requirements
Projection 353
Instantiation 358
Determina 363
Interface Requirements Prescription 372
Shared Parts 374
Shared Actions 380
Shared Events 382
Machine Requirements 383
Discussion of Requirements "Derivation" 384
Requirements Engineering 342
The Transport Domain - a Resumé 343
Nets, Hubs and Links 343
Mereology 344
A Requirements "Derivation" 346
Definition of Requirements 346
The Machine = Hardware + Software 347
Requirements Prescription 348
Some Requirements Principles 349
A Decomposition of Requirements Prescription 350
An Aside on Our Example 351

1. Introduction 1.4. Structure of Paper 27
Conclusion 388
Comparison to Other Work 390
Ontological Engineering: 391
Knowledge and Knowledge Engineering: 394
Domain Analysis: 398
Software Product Line Engineering: 400
Problem Frames: 402
Domain Specific Software Architectures (DSSA): 405
Domain Driven Design (DDD) 410
Feature-oriented Domain Analysis (FODA): 412
Unified Modelling Language (UML) 414
Requirements Engineering: 417
Summary of Comparisons 420
What Have We Achieved and Future Work 421
General Remarks 424
Acknowledgements 431
On A Theory of Transport Nets 433

Some Pictures

Some Pictures 434 434 434 434 434 434 434 434 434 434 434 434 434 434 434 434

Parts

Parts 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440

Nets, Hubs and Links

Nets, Hubs and Links 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440

Mereology

Mereology 441 441 441 441 441 441 441 441 441 441 441 441 441 441 441 441

An Auxiliary Function

An Auxiliary Function 442 442 442 442 442 442 442 442 442 442 442 442 442 442 442 442

Retrieving Hubs and Links

Retrieving Hubs and Links 443 443 443 443 443 443 443 443 443 443 443 443 443 443 443 443

Invariants over Link and Hub States and State Spaces

Invariants over Link and Hub States and State Spaces

Invariants over Link and Hub States and State Spaces

Invariants over Link and Hub States and State Spaces

Invariants over Link and Hub States and State Spaces

Invariants over Link and Hub States and State Spaces

Invariants over Link and Hub States and State Spaces

Invariants over Link and Hub States and State Spaces

Invariants over Link and Hub States and State Spaces

Invariants over Link and Hub States and State Spaces

Invariants over Link and Hub States and State Spaces

Invariants over Link and Hub States and State Spaces

Invariants over Link and Hub States and State Spaces

Invariants over Link and Hub States and State Spaces

Invariants over Link and Hub States and State Spaces

Invariants over Link and Hub States and State Spaces 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444

Maps

Maps 448 448 448 448 448 448 448 448 448 448 448 448 448 448 448 448

Routes

Routes 452 452 452 452 452 452 452 452 452 452 452 452 452 452 452 452

Special Routes

Special Routes 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455

Special Maps

Special Maps 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457

Actions

Actions 459 459 459 459 459 459 459 459 459 459 459 459 459 459 459 459

Insert Hub

Insert Hub 459 459 459 459 459 459 459 459 459 459 459 459 459 459 459 459

Insert Link

Insert Link 461 461 461 461 461 461 461 461 461 461 461 461 461 461 461 461
Remove Hub
Remove Hub 464 464 464 464 464 464 464 464 464 464 464 464 464 464 464 464
Remove Link
Remove Link 465 465 465 465 465 465 465 465 465 465 465 465 465 465 465 465

\qquad
27
\qquad
RSL: The Raise Specification Language 500
Type Expressions 500
Atomic Types 500
Composite Types 502
Type Definitions 505
Concrete Types 505
Subtypes 507
Sorts - Abstract Types 508
The RSL Predicate Calculus 509
Propositional Expressions 509
Simple Predicate Expressions 510
Quantified Expressions 511
On A Theory of Container Stowage 466
Some Pictures 467
Parts 470
A Basis 470
Mereological Constraints 477
Stack Indexes 478
Stowage Schemas 487
Actions 492
Remove Container from Vessel 492
Remove Container from CTP 495
Stack Container on Vessel 496
Stack Container in CTP 497
Transfer Container from Vessel to CTP 498
Transfer Container from CTP to Vessel 499

1. Introduction 1.4. Structure of Paper

$$
27
$$

Other Applicative Expressions 544
Simple let Expressions 544
Recursive let Expressions 545
Predicative let Expressions 546
Pattern and "Wild Card" let Expressions 547
Conditionals 548
Operator/Operand Expressions 549
Imperative Constructs 550
Statements and State Changes 550
Variables and Assignment 551
Statement Sequences and skip 552
Imperative Conditionals 553
Iterative Conditionals 554
Iterative Sequencing 555

$$
28
$$

1. Introduction 1.4. Structure of Paper

- Then, in (Sects. 2-10)
\otimes we bring a rather careful analysis of
\otimes the concept of the observable, manifest phenomena
\otimes that we shall refer to as entities.
- We strongly think that these sections of this tutorial
\otimes brings, to our taste, a simple and elegant
\otimes reformulation of what is usually called "data modelling",
\otimes in this case for domains -
\otimes but with major aspects applicable as well to
\otimes requirements development and software design.
Process Constructs 556
Process Channels 556
Process Composition 557
Input/Output Events 558
Process Definitions 559
Simple RSL Specifications 560
- First (Sect. 1) we introduce the problem. And that was done above.

1. Introduction 1.4. Structure of Paper
\qquad
\qquad

- That analysis focuses on
\otimes endurant entities, also called parts and materials,
\oplus those that can be observed at no matter what time,
\oplus i.e., entities of substance or continuant, and
\otimes perdurant entities: action, event and behaviour entities, those
∞ that occur,
© that happen,
\oplus that, in a sense, are accidents.
- We think that this "decomposition" of the "data analysis" problem into
\otimes discrete parts and continuous materials,
\otimes atomic and composite parts,
\star their unique identifiers and mereology, and
\otimes their attributes
\otimes is novel,
\otimes and differs from past practices in domain analysis.

32

1. Introduction 1.4. Structure of Paper

- The domain description calculus is to be thought of
Δ as directives to the domain engineer,
\otimes mental aids that help a team of domain engineers
\otimes to steer it simply through the otherwise daunting task
\otimes of constructing a usually large domain description.
- Think of the calculus
\& as directing
\otimes a human calculation
\otimes of domain descriptions.
- Finally the domain description calculus section
* suggests a number of laws that the
\otimes domain description process ought satisfy.
- In Sect. 11 we suggest
\Leftrightarrow for each of the entity categories
\oplus parts,
\oplus events and
\oplus materials,
\oplus actions,
\otimes a calculus of meta-functions:
\oplus analytic functions,
* that guide the domain description developer
* in the process of selection,
and
\oplus so-called discovery functions,
* that guide that person
* in "generating" appropriate domain description texts, informal and formal.
\qquad 31
\qquad
- Finally (Sect. 12) we bring a brief survey of the kind of requirements engineering
\Leftrightarrow that one can now pursue based on a reasonably comprehensive domain description.
\otimes We show how one can systematically, but not automatically
* "derive" significant fragments \oplus of requirements prescriptions
\oplus from domain descriptions.
- The formal descriptions will here be expressed in the RAISE [RaiseMethod] Specification Language, RSL
- We otherwise refer to [TheSEBook1wo].
- Appendix brings a short primer,
mostly on the syntactic aspects of RSL.
- But other model-oriented formal specification languages can be used with equal success; for example:
\Leftrightarrow Alloy [alloy],

End of Lecture 1: First Session - Introduction

Domains, TripTych, Issues

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012
$凶$ Event B [JRAbrial:TheBBooks],
\otimes VDM [e:db:Bj78bwo,e:db:Bj82b,jf-pgl-97] and
\otimes Z [m:z:jd+jcppw96].

35

SHORT BREAK
NICE TO SEE YOU BACK

Tutorial Schedule

Begin of Lecture 2: Last Session - Discrete Endurant Entities

Parts

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012
\qquad 36 \qquad

2. Domain Entities

- The world is divisible into two kinds of people:
\otimes those who divide the population into two kinds of people \otimes and the others.
- In this tutorial we shall divide the phenomena we can observe and whose properties we can ascertain into two kinds:
\otimes the endurant entities and
\otimes the perdurant entities.
- Another "division" is of the phenomena and their properties into \otimes the discrete entities and Δ the continuous entities.
- You can have it, i.e., the the analysis and the presentation, either way.
- Lectures 1-2

9:00-9:40 + 9:50-10:30
1 Introduction
Slides 1-35
$\sqrt{ } 2$ Endurant Entities: Parts

- Lectures 3-5
$11: 00-11: 15+11: 20-11: 45+11: 50-12: 30$
3 Endurant Entities: Materials, States
Slides 115-146
4 Perdurant Entities: Actions and Events
Slides 147-178
5 Perdurant Entities: Behaviours
Slides 179-284

Lunch

- Lectures 6-7

6 A Calculus: Analysers, Parts and Materials
$14: 00-14: 40+14: 50-15: 30$
Slides 285-338
7 A Calculus: Function Signatures and Laws

- Lecture 8-9

8 Domain and Interface Requirements
$16: 00-16: 40+16: 50-17: 30$

9 Conclusion: Comparison to Other Work
Conclusion: What Have We Achieved
\qquad
12:30-14:00 Slides 339-376

Slides 377-423
Slides 427-459
Slides 424-426 + 460-471

38

- By a domain we shall understand a suitably delineated set of observable entities and abstractions of these, that is, of
\otimes discrete parts and
\otimes continuous materials and,
\otimes discrete actions
(operation applications causing state changes),
\otimes discrete events
("spurious" state changes not [intentionally] caused by actions),
\otimes discrete discrete behaviours
(seen as sets of sequences of actions, events and behaviours) and \otimes continuous behaviours
(abstracted as continuous functions in space and/or time).

2.2. Algebras

- Algebra: Taking a clue from mathematics, an algebra is considered
\otimes a set of endurants:
\oplus a set of parts and
\oplus a set of materials
and
\otimes a set of perdurants: operations on entities.
These operations yield parts or materials.
- With that in mind we shall try view a domain as an algebra, of some kind, of
\otimes parts and
\otimes actions, events and behaviours.

2.3. Domain Phenomena

- By a domain phenomenon we shall understand
\otimes something that can be observed by the human senses
\otimes or by equipment based on laws of physics and chemistry.
- Those phenomena that can be observed by
\otimes the human eye or
\otimes touched, for example, by human hands,
\otimes we call parts and materials.
- Those phenomena that can be observed of parts and materials
\otimes can usually be measured
\leftrightarrow and we call them properties of these parts and those materials.

2.4. Entities

- By a domain entity we shall understand
\& a manifest domain phenomenon or
\otimes a concept, i.e., an abstraction,
Δ derived from a domain entity.
- The distinction between
\otimes a manifest domain phenomenon and
\otimes a concept thereof, i.e., a domain concept,
is important.
- Really, what we describe are the domain concepts derived
\& from domain phenomena or
\otimes from other domain concepts.

2.4.1. A Description Bias

- One of several "twists"
\otimes that make the TripTych form of domain engineering
\otimes distinct from that of ontological engineering
$凶$ is that we use a model-oriented formal specification approach ${ }^{12}$
\otimes where usual ontology formalisation languages are variants of Lisp's [Lisp1] S-expressions.
\otimes KIF : Knowledge Interchange Format,
http://www.ksl.stanford.edu/knowledge-sharing/kif/ is a leading example.
${ }^{\text {rRAISE }}$ [RaiseMethod]. Our remarks in this section apply equally well had we instead chosen either of the Alloy [alloy], Event B [JRAbrial:TheBBooks], VDM [e:db:Bj78bwo,e:db:Bj82b,jf-pgl-97] or Z [m:z:jd+jcppw96] formal specification languages.
© (b) a function concept and facilities for defining functions (notably including predicates), that is: perdurants (actions and events).
\oplus (c) RSL further has constructs for defining processes, which we shall use to model behaviours.

都
\otimes endurant entities and
\otimes perdurant entities.

- We shall characterise these two terms:
\leftrightarrow endurants on Slide 50 and
\otimes perdurants on Slide 148.
- This distinction is supported by current literature on ontology [BarrySmith1993].
- In this section of this lecture we shall not enter a discourse on
"things",
\otimes objects,
\otimes entities,
\otimes etcetera.
- The bias is now this:
\otimes The model-oriented languages mentioned in this section all share the following:
\oplus (a) a type concept and facilities for defining types, that is: endurants (parts), and

2.4.2. An 'Upper Ontology’

- By an upper ontology we shall understand
\otimes a relatively small, ground set of ontology expressions
\otimes which form a basis for a usually very much larger set of ontology expressions.
- The need for introducing the notion of an upper ontology arose, in the late 1980s to early 1990s as follows:
\otimes usually an ontology was (is) expressed in some very basic language, viz., Lisp-like S-expressions ${ }^{13}$.
\otimes This was necessitated by the desire to be able to share ontologies between many computing applications worldwide.
\otimes Then it was found that several ontologies shared initial bases in terms of which the rest of their ontologies were formulated.
\otimes These shared bases were then referred to as upper ontologies and a need to "standardise" these arose
[ontology:guarino97a,StaabStuder2004].

[^3]47

3. Domain Entities

49

3. Endurants

- There is sort of a dichotomy buried in our treating endurants before perdurants. The dichotomy is this:
\otimes one could claim that the perdurants,
i.e., the actions, events and behaviours
is "what it, the domain, is all about";
- To describe these, however, we need refer to endurants!
- We therefore consider the following model-oriented specification language constructs as forming an upper ontology:
\otimes types, ground types, type expressions and type definitions;
\otimes functions, function signatures and function definitions;
\otimes processes, process signatures and process definitions,
as constituting an upper level ontology for TripTych domain descriptions.
- That is, every domain description is structured with respect to:
\otimes parts and materials using types,
\& actions using functions,
\otimes events using predicates,
\otimes discretebehaviours using processes and
\leftrightarrow continuous behaviours using partial differentialequations.
\qquad

3.1. General

Wikipedia:

- By an endurant (also known as a continuant or a substance) we shall understand an entity
\otimes that can be observed, i.e., perceived or conceived,
\Leftrightarrow as a complete concept,
\Leftrightarrow at no matter which given snapshot of time.
- Were we to freeze time
\Leftrightarrow we would still be able to observe the entire endurant.
3.2. Discrete and Continuous Endurants
- We distinguish between
\otimes discrete endurants, which we shall call parts, and
\otimes continuous endurants, which we shall call materials.

We motivate and characterise this distinction.

- By a discrete endurant, that is, a part, we shall understand something which is
\otimes separate or distinct in form or concept,
\otimes consisting of distinct or separate parts.
- By a continuous endurant, that is, a material, we shall understand something which is
\otimes prolonged without interruption,
\otimes in an unbroken series or pattern.
- We shall
\otimes first treat the idea of discrete endurant, that is, a part (Slides 52-114),
\otimes then the idea of continuous endurant, that is, a material (Slides 116-136).

51

\qquad
4. Discrete Endurants: Parts 4.1. What is Parti4.1.1. Classes of "Same Kind" Parts

Example: 4 Part Properties.

- Examples of part properties are:
\otimes has unique identity,
\otimes has mereology,
\leftrightarrow has length,
\leftrightarrow has location,
\otimes has traffic movement restriction,
\& has position,
\leftrightarrow has velocity and
\otimes has acceleration.

4. Discrete Endurants: Parts

4.1. What is a Part?

- By a part we mean an observable manifest endurant.

4.1.1. Classes of "Same Kind" Parts

- We repeat:
ω the domain describer does not describe instances of parts,
\otimes but seeks to describe classes of parts of the same kind.
- Instead of the term 'same kind' we shall use either the terms
\Leftrightarrow part sort or
\Leftrightarrow part type.
- By a same kind class of parts, that is a part sort or part type we shall mean
* a class all of whose members, i.e., parts,
\otimes enjoy "exactly" the same properties
\Leftrightarrow where a property is expressed as a proposition.

\qquad

4.1.2. Concept Analysis as a Basis for Part Typing

- The domain analyser examines collections of parts.
\Leftrightarrow In doing so the domain analyser discovers and thus identifies and lists a number of properties.
\Leftrightarrow Each of the parts examined usually satisfies only a subset of these properties.
\otimes The domain analyser now groups parts into collections
\oplus such that each collection have its parts satisfy the same set of properties,
\propto such that no two distinct collections are indexed, as it were, by the same set of properties, and
\oplus such that all parts are put in some collection.
\Leftrightarrow The domain analyser now
\oplus assigns distinct type names (same as sort names)
\oplus to distinct collections.
- That is how we assign types to parts.
- We shall return later to a proper treatment of formal concept analysis [Wille:ConceptualAnalysis1999].

4.2. Atomic and Composite Parts

- Parts may be analysed into disjoint sets of
\otimes atomic parts and
\otimes composite parts.
- Atomic parts are those which,
\otimes in a given context,
\otimes are deemed not to consist of
meaningful, separately observable proper sub-parts.
- Composite parts are those which,
\otimes in a given context,
\otimes are deemed to indeed consist of meaningful, separately observable proper sub-parts.
- A sub-part is a part.
\qquad

Example: 6 Container Lines.

- We shall presently consider containers (as used in container line shipping) to be atomic parts.
- And we shall consider a container vessel to be a composite part consisting of
\Leftrightarrow an indexed set of container bays
\otimes where each container bay consists of indexed set of container rows
\otimes where each container row consists of indexed set of container stacks
\otimes where each container stack consists of a linearly indexed sequence of containers.
- Thus container vessels, container bays, container rows and container stacks are composite parts.

Example: 5 Atomic and/or Composite Parts. To one person a part may be atomic; to another person the same part may be composite.

- It is the domain describer who decides the outcome of this aspect of domain analysis.
\otimes In some domain analysis a 'person' may be considered an atomic part.
\oplus For the domain of ferrying cars with passengers
\oplus persons are considered parts.
\otimes In some other domain analysis a 'person' may be considered a composite part.
\oplus For the domain of medical surgery
\oplus persons may be considered composite parts.

56

58
4. Discrete Endurants: Parts 4.2. Atomic and Composite Parts4.2.1. Atomic Parts

4.2.1. Atomic Parts

- When we observe
\otimes what we have decided, i.e., analysed, to be an endurant,
\otimes more specifically an atomic part, of a domain,
\otimes we are observing an instance of an atomic part.
- When we describe those instances
\otimes we describe, not their values, i.e., the instances,
\otimes but their
\oplus type and
\oplus properties.
- In this section on endurant entities
we shall unfold what these properties might be.
- But, for now, we focus on the type of the observed atomic part.
- So the situation is that we are observing a number of atomic parts
\otimes and we have furthermore decided that
\otimes they are all of "the same kind".
- That is,
\otimes we abstract a collection of atomic parts
\otimes to be of the same kind,
\otimes thereby "dividing the domain of endurants" into possibly two distinct sets
∞ those that are of the analysed kind, and
\oplus those that are not.
- What does it mean for a number of atomic parts to be of "the same kind" ?
\otimes It means
© that we have decided,
\oplus for any pair of parts considered of the same kind,
\oplus that the kinds of properties,
* for such two parts,
\oplus are "the same",
* that is, of the same type, but possibly of different values,
∞ and that a number of different, other "facets",
\oplus are not taken into consideration.

60

6
4. Discrete Endurants: Parts 4.2. Atomic and Composite Parts 4.2.1. Atomic Parts

- It is now our description choice to associate with a set of atomic parts of "the same kind"
\otimes a part type (by suggesting a name for that type, for example, T) and
\otimes a set of properties (of its values):
\oplus unique identifier,
\oplus mereology and
\oplus attributes.
- Later we shall introduce discrete perdurants
(actions, events and behaviours)
whose signatures involves (possibly amongst others) type T.
- Now we can characterise "of the same kind" atomic part facets ${ }^{14}$
\otimes being of the same, named part type,
\otimes having the same unique identifier type,
\otimes having the same mereology
(but not necessarily the same mereology values), and
Δ having the same set of attributes
(but not necessarily of the same attribute values),
- The "same kind" criteria apply equally well to composite part facets.
${ }^{14}$ as well as "of the same kind" composite part facets.

- The chosen attributes of
\otimes hubs include
© hub location,
© hub traffic state ${ }^{16}$,
\otimes hub design ${ }^{15}$,
\oplus hub traffic state space ${ }^{17}$, etc.;
∞ and of links include
\oplus link location
© link traffic state ${ }^{18}$,
\oplus link length,
\oplus link traffic state space ${ }^{19}$, etc.
- With these mereologies and attributes we see that we can consider hubs and links as different kinds of atomic parts.

[^4]
4.2.2. Composite Parts

- The domain describer has chosen to consider
\Leftrightarrow a part (i.e., a part type)
\otimes to be a composite part (i.e., a composite part type).
- Now the domain describer has to analyse the types of the sub-parts of the composite part.
\otimes There may be just one "kind of" sub-part of a composite part ${ }^{20}$, \Leftrightarrow or there may be more than one "kind of" 21 .
- For each such sub-part type
\otimes the domain describer decides on
\Leftrightarrow an appropriate, distinct type name and
\leftrightarrow a sub-part observer (i.e., a function signature).
${ }^{20}$ that is, only one sub-part type
${ }^{21}$ that is, more than one sub-part type
\qquad 67

4.2.3. Abstract Types, Sorts, and Concrete Types

- By an abstract type, or a sort, we shall understand a type
* which has been given a name
\otimes but is otherwise undefined, that is,
∞ is a space of undefined mathematical quantities,
* where these are given properties
* which we may express in terms of axioms over sort (including property) values.

Example: 8 Container Vessels: Composite Parts. We bring pairs of informal, narrative description texts and formalisations.

- For a container vessel, say of type V, we have
- Narrative:
$\oplus A$ container vessel, $\mathrm{v}: \mathrm{V}$, consists of container bays, bs:BS.
\oplus A container bay, $\mathrm{b}: \mathrm{B}$, consists of container rows, rs:RS.
$\oplus A$ container row, $r: R$, consists of container stacks, ss:SS.
\oplus A container stack, $\mathrm{s}: \mathrm{S}$, consists of a linearly indexed sequence of containers.
\Leftrightarrow Formalisation:
type $V, B S$, value obs_ $B S$: $V \rightarrow B S$,
type $B, R S$, value obs_RS: $B \rightarrow R S$,
type $R, S S$, value obs_CS: $R \rightarrow S S$,
type $S S, S$, value obs_S: $S S \rightarrow S$,
type $S=C^{*}$.
- By a concrete type we shall understand a type, T,
\otimes which has been given both a name
\leftrightarrow and a defining type expression of, for example the form
$\oplus \mathrm{T}=\mathrm{A}$-set,
$\oplus \mathrm{T}=\mathrm{A}^{*}$,
$\oplus \mathrm{T}=\mathrm{A} \rightarrow \mathrm{B}$,
$\oplus \mathrm{T}=\mathrm{A}$-infset,
$\oplus T=A^{\omega}$,
$\oplus T=A \xrightarrow{\sim} B$, or
$\oplus \mathrm{T}=\mathrm{A} \times \mathrm{B} \times \cdots \times \mathrm{C}$,
$\oplus \mathrm{T}=\mathrm{A} \underset{\mathrm{m}}{ } \mathrm{B}$,
$\oplus \mathrm{T}=\mathrm{A}|\mathrm{B}| \cdots \mid \mathrm{C}$.
\otimes where A, B, \ldots, C are type names or type expressions.

Example: 9 Container Bays. We continue Example 8 on page 68.
type $\mathrm{Bs}=\mathrm{Bld}{ }_{\pi r} \mathrm{~B}$,
value obs_Bs: $B S \rightarrow B s$,
type $\mathrm{Rs}=\mathrm{Rld}_{\vec{m}} \mathrm{R}$,
value obs_Rs: $B \rightarrow R s$,
type $\mathrm{Ss}=\mathrm{Sld}{ }_{\pi m} \mathrm{~S}$,
value obs_Ss: $R \rightarrow S$,
type $S=C^{*}$.

Observers for Composite Parts II/II

- We can also consider the types B, C, ... D, as concrete types,
\otimes type $\mathrm{Bc}=$ TypBex, $\mathrm{Cc}=$ TypCex,..., $\mathrm{Dc}=$ TypDex;
\otimes value obs_Bc: $\mathrm{B} \rightarrow \mathrm{Bc}$, obs_Cc: $\mathrm{C} \rightarrow \mathrm{Cc}, \ldots$, obs_Dc: $\mathrm{D} \rightarrow \mathrm{Dc}$,
\otimes where TypBex, TypCex, ..., TypDex are type expressions as, for example, hinted at above.
- The prefix obs_ distinguishes part observers
\& from mereology observers (uid_, mereo_) and
\otimes attribute observers (attr_).

Observers for Composite Parts I/II

- Let the domain describer decide
\otimes that a type, A (or Δ), is composite
\otimes and that it consists of sub-parts of types B, C, \ldots, D.
- We can initially consider these types B, C, \ldots, D, as abstract types, or sorts, as we shall mostly call them.
- That means that there are the following formalisations:
\otimes type $A, B, C, \ldots, D ;$
\otimes value obs_B: $A \rightarrow B$, obs_C: $A \rightarrow C, \ldots$, obs_D: $A \rightarrow D$.

4.3. Properties

- Endurants have properties.
\otimes Properties are
\oplus what makes up a parts (and materials) and,
\oplus with property values distinguishes one part from another part and one material from another material.
\otimes We name properties.
\oplus Properties of parts and materials can be given distinct names.
\oplus We let these names also be the property type name.
\oplus Hence two parts (materials) of the same part type (material type)
have the same set of property type names.
- Properties are all that distinguishes parts (and materials).
\otimes The part types (material types)
in themselves do not express properties.
\otimes They express a class of parts (respectively materials).
\Leftrightarrow All parts (materials) of the same type
\otimes have the same property types.
\otimes Parts (materials) of the different types have different sets of property types,

75

Example: 10 Atomic Part Property Kinds.

- We distinguish between two kinds of persons:
\& 'living persons' and 'deceased persons';
\leftrightarrow they could be modelled by two different part types:
\oplus LP: living person, with a set of properties,
\oplus DP: deceased person, with a, most likely, different set of properties.
- All persons have been born, hence have a birth date (static attributes).
- Only deceased persons have a (well-defined) death date.
- For pragmatic reasons we distinguish between three kinds of properties:
\otimes unique identifiers, \otimes mereology, and \Leftrightarrow attributes.
- If you "remove" a property from a part
\otimes it "looses" its (former) part type,
\otimes to, in a sense, attain another part type:
\oplus perhaps of another, existing one,
\oplus or a new "created" one.
- But we do not know how to model
removal of a property from an endurant value ! ${ }^{22}$

[^5]78
4. Discrete Endurants: Parts 4.3. Properties

- All persons also have height and weight profiles (i.e., with dated values, i.e., dynamic attributes).
- One can always associate a unique identifier with each person.
- Persons are related, family-wise:
\otimes have parents (living or deceased),
\otimes (up to four known) grandparents, etc.,
\otimes may have brothers and sisters (zero or more),
\otimes may have children (zero or more), etc.
\otimes These family-relations can be considered the mereology for living persons.

4.3.1. Unique Identification

- We can assume that all parts
\otimes of the same part type
\otimes can be uniquely distinguished,
\& hence can be given unique identifications.
- The unique identifier of a part
\otimes can not be changed;
\otimes hence we can say that
\oplus no matter what a given part's property values may take on,
\oplus that part cannot be confused with any other part.
- Since we can talk about this concept of unique identification,
\otimes we can abstractly describe it -
\oplus and do not have to bother about any representation,
\oplus that is, whether we can humanly observe unique identifiers.

Unique Identification

- With every part, whether atomic or composite we shall associate a unique part identifier, of just unique identifier.
- Thus we shall associate with part type T
\otimes the unique part type identifier type TI,
\otimes and a unique part identifier observer function, uid_TI: $\mathrm{T} \rightarrow \mathrm{TI}$.
- These associations (TI and uid_TI) are, however,
\otimes usually expressed explicitly,
\otimes whether they are ("subsequently") needed!

82
4. Discretet Endurants: Parts 4.3. Properties4.3.2. Mereology

4.3.2. Mereology

- Mereology [CasatiVarzi1999] ${ }^{23}$ (from the Greek $\left.\mu \epsilon \rho \circ \varsigma ~ ' p a r t '\right) ~ i s ~$
\otimes the theory of part-hood relations:
\otimes of the relations of part to whole and
\otimes the relations of part to part within a whole.
- For pragmatic reasons we choose to model the mereology of a domain in either of two ways
\otimes either by defining a concrete type
as a model of the composite type,
\leftrightarrow or by endowing the sub-parts of the composite part with structures of unique part identifiers.
or by suitable combinations of these.
- Formalisation:

```
\(\Leftrightarrow\) (i) type BS, B, Bld,
            \(\mathrm{Bs}=\mathrm{Bld} \underset{m}{ } \mathrm{~B}\),
    value obs_Bs: \(B S \rightarrow B s\)
            (or obs_Bs: BS \(\rightarrow(\) Bld \(\underset{m}{ } \mathrm{~B})\) );
\(\otimes\) (ii) type RS, R, RId,
            Rs=RId \(\vec{m}\) R,
    value obs_Rs: RS \(\rightarrow\) Rs
            (or obs_Rs: RS \(\rightarrow(\) RId \(\underset{m}{ } \mathrm{R})\) );
\(\otimes\) (iii) type
            SS, S, SId,
            Ss=SId \({ }_{m \mathrm{~m}} \mathrm{~S}\);
\(\Leftrightarrow\) (iv) type C,
            \(S=C^{*}\).
```

Example: 11 Container Bays, Etcetera: Mereology. First we show how to model indexed set of container bays, rows and stacks for the previous example.

- Narrative:
\otimes (i) An indexed set, bs:BS, of bays is a bijective map from unique bay identifiers, bid:Bld, to bays, b:B.
\Leftrightarrow (ii) An indexed set, rs:RS, of rows is a bijective map from unique row identifiers, rid:RId, to rows, r:R.
\otimes (iii) An indexed set, ss:SS, of stacks is a bijective map from unique stack identifiers, sid:SId, to stacks, s:S.
\otimes (iv) A stack is a linear indexed sequence of containers, c:C.

84
${ }^{86}$

4. Discrete Endurants: Parts 4.3. Properties4.3.2. Mereology

Example: 12 Transport Nets: Mereology.

- We show how to model a mereology
\otimes for a transport net of links and hubs.
- Narrative:
(i) Hubs and links are endowed with unique hub, respectively link identifiers.
(ii) Each hub is furthermore endowed with a hub mereology which lists the unique link identifiers of all the links attached to the hub.
(iii) Each link is furthermore endowed with a link mereology which lists the set of the two unique hub identifiers of the hubs attached to the link.
(iv) Link identifiers of hubs and hub identifiers of links must designate hubs, respectively links of the net.

- Formalisation:

(i) type $\mathrm{H}, \mathrm{HI}, \mathrm{L}, \mathrm{LI}$; value
(ii) uid_HI:H $\rightarrow \mathrm{HI}$, uid_LI:L $\rightarrow \mathrm{LI}$, mereo_H:H \rightarrow LI-set, mereo_L: $\mathrm{L} \rightarrow \mathrm{HI}$-set,

axiom

(iii) $\forall \mathrm{l}: \mathrm{L} \cdot$ card mereo_L(l) $=2$
(iv) $\forall \mathrm{n}: \mathrm{N}, \mathrm{l}: \mathrm{L}, \mathrm{h}: \mathrm{H} \cdot \mathrm{l} \in \mathrm{obs}$ _Ls(obs_LS(n)) $\wedge \mathrm{h} \in \mathrm{obs}_{-}$_Hs(obs_HS(n))
\forall hi:HI \cdot hi \in mereo_L $(1) \Rightarrow$
$\exists h^{\prime}: H \cdot h^{\prime} \in$ obs_Hs $\left(o b s _H S(n)\right) \wedge$ uid_HI(h) $=$ hi
$\wedge \forall$ li:LI $\cdot \mathrm{li} \in$ mereo_H(h) \Rightarrow
$\exists \mathrm{l}^{\prime}: \mathrm{L} \cdot \mathrm{l}^{\prime} \in$ obs_Ls $($ obs_LS $(\mathrm{n})) \wedge$ uid_LI(l) $=\mathrm{li}$

Abstract Models of Mereology

Abstractly modelling mereology of parts, to us, means the following.

- With part types $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{n}$
\Leftrightarrow is associated the unique part identifier types, $\Pi_{1}, \Pi_{2}, \ldots, \Pi_{n}$,
\otimes that is uid_ $\Pi_{i}: \mathrm{P}_{i} \rightarrow \Pi_{i}$ for $i \in\{1 . . n\}$,
- and with each part type, P_{i},
\otimes is then associated a mereology observer,
\Leftrightarrow mereo_ $\mathrm{P}_{i}: \mathrm{P}_{i} \rightarrow \Pi_{j}$-set $\times \Pi_{k}$-set $\times \ldots \times \Pi_{\ell}$-set,
- such that for all $\mathrm{p}: \mathrm{Pi}$ we have that
\Leftrightarrow if mereo $\mathrm{P}_{i}(\mathrm{p})=\left(\left\{\ldots, \pi_{j_{a}}, \ldots\right\},\left\{\ldots, \pi_{k_{b}}, \ldots\right\}, \ldots,\left\{\ldots, \pi_{\ell_{c}}, \ldots\right\}\right)$
\otimes for $i, j, k, \ldots \ell \in\{1 . . n\}$
\Leftrightarrow then part $\mathrm{p}: \mathrm{P}_{i}$ is connected (related) to the parts identified by

$$
\ldots, \pi_{j_{a}}, \ldots \pi_{k_{b}}, \ldots, \pi_{\ell_{c}}, \ldots
$$

- Finally it may be necessary to express axioms for abstractly modelled mereologies.

Concrete Models of Mereology

The concrete mereology example models above illustrated maps and sequences as such models.

- In general we can model mereologies in terms of
\otimes (i) sets: A-set,
Δ (iii) lists: A^{*}, and
\Leftrightarrow (ii) Cartesians: $\mathrm{A}_{1} \times \mathrm{A}_{2} \times \ldots \times \mathrm{A}_{m}$,
\otimes (iv) maps: $\mathrm{A}_{\vec{m}} \mathrm{~B}$
where $A, A_{1}, A_{2}, \ldots, A_{m}$ and B are types [we assume that they are type names] and where the $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{m}$ type names need not be distinct.
- Additional concrete types, say D, can be defined by concrete type definitions, $\mathrm{D}=\mathrm{E}$, where E is either of the type expressions (i-iv) given above or (v) $\mathrm{E}_{i} \mid \mathrm{E}_{j}$, or (vi) $\left(\mathrm{E}_{i}\right)$. where E_{k} (for suitable k) are either of (i-vi).
- Finally it may be necessary to express well-formedness predicates for concretely modelled mereologies.
- How parts are related to other parts
\leftrightarrow is really a modelling choice, made by the domain describer.
\Leftrightarrow It is not necessarily something
that is obvious
from observing the parts.

Example: 13 Pipelines: A Physical Mereology.

- Let pipes of a pipe line be composed with valves, pumps, forks and joins of that pipe line.
- Pipes, valves, pumps, forks and joins (i.e., pipe line units) are given unique pipe, valve, pump, fork and join identifiers.
- A mereology for the pipe line could now endow pipes, valves and pumps with
\otimes one input unique identifier, that of the predecessor successor unit, and
\otimes one output unique identifier, that of the successor unit.
- Forks would then be endowed with
\Leftrightarrow two input unique identifiers, and
\otimes one out put unique identifier;
- and joins "the other way around".

91 \qquad
4. Discrete Endurants: Parts 4.3. Properties 4.3.2. Mereology

- This occurs as the author necessarily
*inserts cross-references,
\odot in unit texts to other units, and
\oplus from unit texts to other documents (i.e., 'citations');
* and while inserting "page" shifts for the slides.
- From those inserted references
there emerges what we could call the document mereology.
- So the determination of a, or the, mereology of composite parts \otimes is either given by physical considerations,
\otimes or are given by (more-or-less) logical (or other) considerations, \otimes or by combinations of these.
- The "design" of mereologies improves with experience.

Example: 14 Documents: A Conceptual Mereology.

- The mereology of, for example, this document,
\otimes that is, of the tutorial slides,
is determined by the author.
- There unfolds, while writing the document,
\otimes a set of unique identifiers
\otimes for section, subsection, sub-subsection, paragraph, etc., units. and
\leftrightarrow between texts of a "paper version" of the document and slides of a "slides version" of the document.

94
4. Discrete Endurants: Parts 4.3. Properties 4 .3.2. Mereology

Example: 15 Pipelines: Mereology.

- We divert from our line of examples centered around \leftrightarrow transport nets and, to some degree,
\Leftrightarrow container transport,
- to bring a second, in a series of examples
\Leftrightarrow on pipelines
\otimes (for liquid or gaseous material flow).

1. A pipeline consists of connected units, $u: U$.
2. Units have unique identifiers.
3. And units have mereologies, ui:UI:
(a) pump, pu:Pu, pipe, pi:Pi, and valve, va:Va, units have one input connector and one output connector;
(b) fork, fo:Fo, [join, jo:Jo] units have one [two] input connector [s] and two [one] output connector[s];
(c) well, we:We, [sink, si:Si] units have zero [one] input connector and one [zero] output connector.
(d) Connectors of a unit are designated by the unit identifier of the connected unit.
(e) The auxiliary sel_Uls_in selector funtion selects the unique identifiers of pipeline units providing input to a unit;
(f) sel_Uls_out selects unique identifiers of output recipients.
\qquad 95

4. Discrete Endurants: Parts 4.3. Properties4.3.2. Mereology ${ }^{97}$

- We omit treatment of axioms for pipeline units
\otimes being indeed connected to existing other pipeline units.
\otimes We refer to Example 23 on page 123 and 24 on page 127.

```
type
    1. \(\mathrm{U}=\mathrm{Pu}|\mathrm{Pi}| \mathrm{Va} \mid\) Fo \(\mid\) Jo \(|\mathrm{Si}| \mathrm{We}\)
2. UI
value
2. uid_U: \(\mathrm{U} \rightarrow \mathrm{UI}\)
3. mereo_U: U \(\rightarrow\) UI-set \(\times\) UI-set
3. wf_mereo_U: U \(\rightarrow\) Bool
3. wf_mereo_U(u) 三
\(3(\mathrm{a}) . \quad\) is_ \((\mathrm{Pu}|\mathrm{Pi}| \mathrm{Va})(\mathrm{u}) \rightarrow\) card iusi \(=1=\mathbf{c a r d}\) ouis,
\(3(\mathrm{~b}) . \quad\) is_Fo \((\mathrm{u}) \rightarrow\) card iuis \(=1 \wedge\) card ouis \(=2\),
\(3(\mathrm{~b}) . \quad\) is_Jo \((\mathrm{u}) \rightarrow\) card iuis \(=2 \wedge\) card ouis \(=1\),
\(3(c) . \quad\) is_We \((u) \rightarrow\) card iuis \(=0 \wedge\) card ouis \(=1\),
\(3(d) . \quad\) is_Si(u) \(\rightarrow\) card iuis \(=1 \wedge\) card ouis \(=0\)
3(e). sel_UIs_in
\(3(\mathrm{e})\). sel_UIs_in \((\mathrm{u}) \equiv\) let (iuis,_) \(=\) mereo_U(u) in iuis end
3(f). sel_out: U \(\rightarrow\) UI-set
\(3(f)\). sel_UIs_out \((u) \equiv\) let (_,ouis)=mereo_U(u) in ouis end
```


\qquad 4. Discrete Endurants: Parts 4.3. Properties 4.3.3. Attributes

4.3.3. Attributes

- By an attribute of a part, p:P, we shall understand
\leftrightarrow some observable property, some phenomenon,
\otimes that is not a sub-part of p
© but which characterises p
\otimes such that all parts of type P have that attribute and
\otimes such that "removing" that attribute from p
(if such was possible)
"renders" the type of p undefined.
- We ascribe types to attributes - not, therefore, to be confused with types of (their) parts.

Example: 16 Attributes.

- Example attributes of links of a transport net are:
* length LEN,
\& location LOC,
\otimes state $\mathrm{L} \Sigma$ and
\otimes state space $L \Omega$,
- Example attributes of a person could be:
\& name NAM,
© birth date BID,
\leftrightarrow gender GDR,
* weight WGT,
\otimes height HGT and
\otimes address ADR.

4.3.3.1 Static and Dynamic Attributes

- By a static attribute we mean an attribute (of a part) whose value remains fixed.
- By a dynamic attribute we mean an attribute (of a part) whose value may vary.
- Example attributes of a transport net could be:
\otimes name of the net,
\leftrightarrow legal owner of the net,
\& a map of the net,
\otimes etc.
- Example attributes of a container vessel could be:
name of container vessel,
\otimes vessel dimensions,
\otimes vessel tonnage (TEU),
\otimes vessel owner,
© current stowage plan,
\leftrightarrow current voyage plan, etc.

100

102
4. Discrete Endurants: Parts 4.3. Properties4.3.3. Attributes4.3.3.1. Static and Dymamic Attributes

Example: 17 Static and Dynamic Attributes.

- The length and location attributes of links are static.
- The state and state space attributes of links and hubs are dynamic.
- The birth-date attribute of a person is considered static.
- The height and weight attributes of a person are dynamic.
- The map of a transport net may be considered dynamic.
- The current stowage and the current voyage plans of a vessel should be considered dynamic.

Attribute Types and Observers, I/II

- Let the domain describer decide that parts of type P
- have attributes of types $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{t}$.
- This means that the following two formal clauses arise:
$\otimes \mathrm{P}, \mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{t}$ and
$\otimes \operatorname{attr} _\mathrm{A}_{1}: P \rightarrow \mathrm{~A}_{1}$, attr_ $\mathrm{A}_{2}: P \rightarrow \mathrm{~A}_{2}, \ldots$, attr_ $\mathrm{A}_{t}: P \rightarrow \mathrm{~A}_{t}$

Attribute Types and Observers, II/II

- We may wish to annotate the list of attribute type names as to whether they are static or dynamic, that is,
whether values of some attribute type
\otimes vary or
Δ remain fixed.
- The prefix attr_ distinguishes attribute observers from part observers (obs_) and mereology observers (uid_, mereo_).
\qquad

4.4. Shared Attributes and Properties

- Shared attributes and shared properties
\otimes play an important rôle in understanding domains.

4.4.1. Attribute Naming

- We now impose a restriction on the naming of part attributes.
\otimes If attributes
© of two different parts
\oplus of different part types
\oplus are identically named
\oplus then attributes must be somehow related, over time!
\otimes The "somehow" relationship must be described.
\qquad
\qquad

Example: 18 Shared Bus Time Tables.

- Let our domain include that of bus time tables for busses on a bus transport net as described in many examples in this tutorial.
- We can then imagine a bus transport net as containing the following parts:
\Leftrightarrow a net, $\quad \Leftrightarrow$ a management $\quad \Leftrightarrow$ a set of busses.
- For the sake of argument we consider a bus time table to be an attribute of the bus management system.
- And we also consider bus time tables to be attributes of busses.
- We think of the bus time table of a bus
\Leftrightarrow to be that subset of the
bus management system bus time table
\otimes which corresponds to the bus' line number.
- By saying that bus time tables
Δ "corresponds" to well-defined subsets of
\otimes the bus management system bus time table
we mean the following
\otimes The value of the bus bus time table
\otimes must at every time
\otimes be equal to the corresponding bus line entry in the bus management system bus time table.

4.5. Shared Properties

- We say that two parts,
\Leftrightarrow of no matter what part type,
\otimes share a property,
\leftrightarrow if either of the following is the case:
$\oplus(\mathrm{i})$ either the corresponding part types (and hence the parts) have shared attributes;
\otimes (ii) or the unique identifier type of one of the parts potentially is in the mereology type of the other part
\oplus (iii) or both.
\leftrightarrow We do not present the corresponding invariants over parts with shared properties.

4.4.2. Attribute Sharing

- We say that two parts,
\otimes of no matter what part type,
\Leftrightarrow share an attribute,
\leftrightarrow if the following is the case:
\oplus the corresponding part types (and hence the parts)
\oplus have identically named attributes.
\oplus We say that identically named attributes designate shared attributes.
\leftrightarrow We do not present the corresponding invariants over parts with identically named attributes.
\qquad

4.6. Summary of Discrete Endurants

- We have introduced the endurant notions of atomic parts and composite parts

```
&art types,
part observers (obs_),
    \otimes sort observers, and
    \otimes concrete type observers
\otimes \text { part properties}
    \otimesunique identifiers:
    * unique part identifier
        observers (uid_),
        * unique part identifier
        types,
\infty}\mathrm{ mereology:
    * part mereologies,
    * part mereology observers
        (mereo_);
    and
\infty}\mathrm{ attributes:
    * attribute observers (attr_)
        and
```


Discrete Endurant Modelling I/II

Faced with a phenomenon the domain analyser has to decide

- whether that phenomenon is an entity or not, that is, whether \leftrightarrow an endurant or
\otimes a perdurant or
\otimes neither.
- If endurant and if discrete, then whether it is
\otimes an atomic part or
\& a composite part.
- Then the domain analyser must decide on its type,
\otimes whether an abstract type (a sort)
\otimes or a concrete type, and, if so, which concrete form.
That is: attributes are usually only "indirectly" manifest.

Discrete Endurant Modelling II/II

- Next the unique identifier and the
mereology of the part type (e.g., P) must be dealt with:
\otimes type name (e.g., PI) for and, hence, unique identifier observer name (uid_PI) of unique identifiers and the
Δ part mereology types and mereology observer name (mereo_P).
- Finally the designer must decide on the part type attributes for parts $p: P$:
\otimes for each such a suitable attribute type name,
for example, A_{i} for suitable i,
Δ a corresponding attribute observer signature, attr_ $\mathrm{A}_{i}: \mathrm{P} \rightarrow \mathrm{A}_{i}$,
\otimes and whether an attribute is considered static or dynamic.

End of Lecture 2: Last Session - Discrete Endurant Entities

Parts

Software Engineering 1
$\square+2$

WELCOME BACK

LONG BREAK

Tutorial Schedule

- Lectures 1-2

9:00-9:40 + 9:50-10:30
Slides 1-35
2 Endurant Entities: Parts
Slides 36-114

- Lectures 3-5
$11: 00-11: 15+11: 20-11: 45+11: 50-12: 30$
/ 3 Endurant Entities: Materials, States
Slides 115-146
4 Perdurant Entities: Actions and Events Slides 147-178

5 Perdurant Entities: Behaviours
Slides 179-284

Lunch

- Lectures 6-7

6 A Calculus: Analysers, Parts and Materials
7 A Calculus: Function Signatures and Laws

- Lectures 8-9

8 Domain and Interface Requirements
9 Conclusion: Comparison to Other Work
Conclusion: What Have We Achieved

12:30-14:00
$14: 00-14: 40+14: 50-15: 30$
Slides 285-338
Slides 339-376
$16: 00-16: 40+16: 50-17: 30$
Slides 377-423
Slides 427-459
Slides 424-426 + 460-471

5. Continuous Endurants: Materials

- Let us start with examples of materials.

Example: 19 Materials. Examples of endurant continuous entities are such as

- coal,
- air,
- natural gas,
- grain,
- sand,
- iron ore,
- minerals,
- crude oil
- solid waste,
- sewage,
- steam and
- water.

The above materials are either

- liquid materials (crude oil, sewage, water),
- gaseous materials (air, gas, steam), or
- granular materials (coal, grain, sand, iron ore, mineral, or solid waste).
\qquad
\qquad
- Ubiquitous means 'everywhere'.
- A continuous entity, that is, a material
\otimes is a core material,
\Leftrightarrow if it is "somehow related"
\Leftrightarrow to one or more parts of a domain.

5.1. "Somehow Related" Parts and Materials

- We explain our use of the term "somehow related".
- Endurant continuous entities, or materials as we shall call them,
\otimes are the core endurants of process domains,
\Leftrightarrow that is, domains in which those materials
form the basis for their "raison d'être".

Example: 20 Material Processing.

- Oil or gas materials are ubiquitous to pipeline systems.
- Sewage is ubiquitous to, well, sewage systems.
- Water is ubiquitous to systems composed from reservoirs, tunnels and aqueducts which again are ubiquitous to hydro-electric power plants or irrigation systems.

Example: 21 "Somehow Related" Parts and Materials.

- Oil is pumped from wells, runs through pipes, is "lifted" by pumps, diverted by forks, "runs together" by means of joins, and is delivered to sinks - and is hence a core endurant.
- Grain is delivered to silos by trucks, piped through a network of pipes, forks and valves to vessels, etc. - and is hence a core endurant.
- Gravel, minerals (including) iron ore is mined, conveyed by belts to lorries or trains or cargo vessels and finally deposited. For minerals typically in mineral processing plants - and is hence a core endurant.
- Iron ore, for example, is conveyed into smelters, roasted, reduced and fluxed, mixed with other mineral ores to produced a molten, pure metal, which is then "collected" into ingots, etc. - and is hence a core endurant

5.2. Material Observers

- When analysing domains a key question,
\leftrightarrow in view of the above notion of core continuous endurants (i.e., materials)
is therefore:
\otimes does the domain embody a notion of core continuous endurants (i.e., materials);
\otimes if so, then identify these "early on" in the domain analysis.
- Identifying materials -
\otimes their types and
\otimes attributes -
is slightly different from identifying discrete endurants, i.e., parts.
\qquad 120 \qquad

122

- First we do not associate the notion of atomicity or composition with a material. Materials are continuous.
- Second, amongst the attributes, none have to do with geographic (or cadestral) matters. Materials are moved.
- And materials have no unique identification or mereology. No "part" of a material distinguishes it from other "parts".
- But they do have other attributes when occurring in connection with, that is, related to parts, for example,
\otimes volume or
\otimes weight.

Example: 22 Pipelines: Core Continuous Endurant.

- The core continuous endurant, i.e., material,
- of (say oil) pipelines is, yes, oil:

type

O material

value

obs_Materials: PLS \rightarrow O

- The keyword material is a pragmatic.
- Materials are "few and far between" as compared to parts,
\otimes we choose to mark the type definitions which designate materials with the keyword material.
\otimes In contrast, we do not mark the type definitions which designate parts with the keyword discrete.
\qquad

Example: 23 Pipelines: Parts and Materials. We refer to

 Example 15 on page 94.4. From an oil pipeline system one can, amongst others,
(a) observe the finite set of all its pipeline bodies,
(b) units are composite and consists of a unit,
(c) and the oil, even if presently, at time of observation, empty of oil.
5. Whether the pipeline is an oil or a gas pipeline is an attribute of the pipeline system.
(a) The volume of material that can be contained in a unit is an attribute of that unit.
(b) There is an auxiliary function which estimates the volume of a given "amount" of oil.
(c) The observed oil of a unit must be less than or equal to the volume that can be contained by the unit.

type

4. PLS, B, U, O, Vol

value

4(a). obs_Bs: PLS \rightarrow B-set
4(b). obs_U: B \rightarrow U
4(c). obs_O: $\mathrm{B} \rightarrow \mathrm{O}$
5. attr_PLS_Type: PLS $\rightarrow\{$ "oil" \mid "gas" $\}$

5(a). attr_Vol: $\mathrm{U} \rightarrow \mathrm{Vo}$
5(b). vol: $\mathrm{O} \rightarrow \mathrm{Vol}$

axiom

5(c). \forall pls:PLS,b:B•b \in obs_Bs(pls) $\Rightarrow \operatorname{vol}\left(o b s _O(b)\right) \leq$ attr_Vol(obs_U(b))

- Notice how bodies are composite and consists of
\otimes a discrete, atomic part, the unit, and
\otimes a material endurant, the oil.
- We refer to Example 24 on page 127.
\qquad
\qquad

5. Continuous Endurants: Materials 5.3. Material Properties

- Formal specification languages like

\otimes Alloy [alloy],	\otimes RAISE [RaiseMethod],
\otimes Event B [JRAbrial:TheBBooks],	\otimes VDM
\otimes CASL [CoFI:2004:CASL-RM]	and
\otimes CafeOBJ [futatsugi2000a],	$\otimes \mathrm{Z}$ [m:z:jd $+\mathrm{jcppw} 96]$

do not embody the mathematical calculus notions of
\Leftrightarrow continuity, hence do not "exhibit"
\otimes neither differential equations
\otimes nor integrals.

- Hence cannot formalise dynamic systems within these formal specification languages.
- We refer to Sect. 9 where we discuss these issues at some length.

5.3. Material Properties

- These are some of the key concerns in domains focused on materials:
\otimes transport, flows, leaks and losses, and
\otimes input to systems and output from systems
- Other concerns are in the direction of
\Leftrightarrow dynamic behaviours of materials focused domains
(mining and production), including
\otimes stability, periodicity, bifurcation and ergodicity.
- In this tutorial we shall, when dealing with systems focused on materials, concentrate on modelling techniques for
\otimes transport, flows, leaks and losses, and
\Leftrightarrow input to systems and output from systems
\qquad 125

Example: 24 Pipelines: Parts and Material Properties. We refer to Examples 15 on page 94 and 23 on page 123.
6. Properties of pipeline units additionally include such which are concerned with flows (F) and leaks (L) of materials:
(a) current flow of material into a unit input connector,
(b) maximum flow of material into a unit input connector while maintaining laminar flow,
(c) current flow of material out of a unit output connector,
(d) maximum flow of material out of a unit output connector while maintaining laminar flow,
(e) current leak of material at a unit input connector,
(f) maximum guaranteed leak of material at a unit input connector,
(g) current leak of material at a unit input connector,
(h) maximum guaranteed leak of material at a unit input connector,
(i) current leak of material from "within" a unit,
(j) maximum guaranteed leak of material from "within" a unit.

type

6. F, L

value

6(a). attr_cur_iF: $\mathrm{U} \rightarrow \mathrm{UI} \rightarrow \mathrm{F}$
6(b). attr_max_iF: $\mathrm{U} \rightarrow \mathrm{UI} \rightarrow \mathrm{F}$
6(c). attr_cur_oF: $\mathrm{U} \rightarrow \mathrm{UI} \rightarrow \mathrm{F}$
6(d). attr_max_oF: $\mathrm{U} \rightarrow \mathrm{UI} \rightarrow \mathrm{F}$
6(e). attr_cur_iL: U $\rightarrow \mathrm{UI} \rightarrow \mathrm{L}$
6(f). attr_max_iL: U $\rightarrow \mathrm{UI} \rightarrow \mathrm{L}$
$6(\mathrm{~g})$. attr_cur_oL: $\mathrm{U} \rightarrow \mathrm{UI} \rightarrow \mathrm{L}$
6(h). attr_max_oL: $\mathrm{U} \rightarrow \mathrm{UI} \rightarrow \mathrm{L}$
6(i). attr_cur_L: U \rightarrow L
$6(\mathrm{j})$. attr_max_L: $\mathrm{U} \rightarrow \mathrm{L}$
\qquad
\qquad

5.4. Material Laws of Flows and Leaks

- It may be difficult or costly, or both
\leftrightarrow to ascertain flows and leaks in materials-based domains.
\otimes But one can certainly speak of these concepts.
\otimes This casts new light on domain modelling.
\otimes That is in contrast to
\oplus incorporating such notions of flows and leaks \oplus in requirements modelling
\otimes where one has to show implementability.
- Modelling flows and leaks is important to the modelling of materials-based domains.
- The maximum flow attributes are static attributes and are typically provided by the manufacturer as indicators of flows below which laminar flow can be expected.
- The current flow attributes as dynamic attributes.

7. Properties of pipeline materials may additionally include
(a) kind of material ${ }^{24}$,
(e) asphatics,
(b) paraffins,
(f) viscosity,
(c) naphtenes,
(g) etcetera.
(d) aromatics,

- We leave it to the student to provide the formalisations.
${ }^{24}$ For example Brent Blend Crude Oil
\qquad

Example: 25 Pipelines: Intra Unit Flow and Leak Law.

8. For every unit of a pipeline system, except the well and the sink units, the following law apply.
9. The flows into a unit equal
(a) the leak at the inputs
(b) plus the leak within the unit
(c) plus the flows out of the unit
(d) plus the leaks at the outputs.

axiom

8. \forall pls:PLS,b:B \backslash We\Si,u:U
$\mathrm{b} \in$ obs_Bs(pls) $\wedge \mathrm{u}=\mathrm{obs} _\mathrm{U}(\mathrm{b}) \Rightarrow$
9. let (iuis,ouis) $=$ mereo_U(u) in
10. \quad sum_cur_iF(iuis) $(\mathrm{u})=$

9(a). sum_cur_iL(iuis)(u)
9(b). \oplus attr_cur_L(u)
9(c). \oplus sum_cur_oF(ouis)(u)
9(d). \oplus sum_cur_oL(ouis)(u)
8. end
\qquad
\qquad

134
5. Continuous Endurants. Materials 5.4 . Material Laws of Flows and Leaks

Example: 26 Pipelines: Inter Unit Flow and Leak Law.

14. For every pair of connected units of a pipeline system the following law apply:
(a) the flow out of a unit directed at another unit minus the leak at that output connector
(b) equals the flow into that other unit at the connector from the given unit plus the leak at that connector.
15. $\quad \forall$ pls:PLS, $\mathrm{b}, \mathrm{b}^{\prime}: \mathrm{B}, \mathrm{u}, \mathrm{u}^{\prime}: \mathrm{U}$.
16. $\left\{b, b^{\prime}\right\} \subseteq o b s _B s(p l s) \wedge b \neq b^{\prime} \wedge u^{\prime}=o b s _U\left(b^{\prime}\right)$
17.

\wedge let (iuis,ouis)=mereo_U(u),(iuis',ouis $\left.{ }^{\prime}\right)=$ mereo_U $\left(\mathrm{u}^{\prime}\right)$, ui $=$ uid_U(u), ui' $=$ uid_U $\left(u^{\prime}\right)$ in
14.
ui \in iuis \wedge uil $^{\prime} \in$ ouis $^{\prime} \Rightarrow$
$14(\mathrm{a})$. attr_cur_oF(us') (ui') - attr_leak_oF(us')(ui') $=$ attr_cur_iF(us)(ui) + attr_leak_iF(us)(ui)
14(b).
end
comment: b^{\prime} precedes b
10. The sum_cur_iF (cf. Item 9) sums current input flows over all input connectors.
11. The sum_cur_iL (cf. Item 9(a)) sums current input leaks over all input connectors.
12. The sum_cur_oF (cf. Item 9(c)) sums current output flows over all output connectors.
13. The sum_cur_oL (cf. Item 9(d)) sums current output leaks over all output connectors
10. sum_cur_iF: UI-set $\rightarrow \mathrm{U} \rightarrow \mathrm{F}$
10. sum_cur_iF(iuis)(u) $\equiv \oplus$ \{attr_cur_iF(ui)(u)|ui:UI•ui \in iuis $\}$
11. sum_cur_iL: UI-set $\rightarrow \mathrm{U} \rightarrow \mathrm{L}$
11. sum_cur_iL(iuis)(u) $\equiv \oplus$ \{attr_cur_iL(ui)(u)|ui:UI•ui \in iuis $\}$
12. sum_cur_oF: UI-set $\rightarrow U \rightarrow F$
12. sum_cur_oF(ouis)(u) $\equiv \oplus$ \{attr_cur_iF(ui)(u)|ui:UI•ui \in ouis $\}$
13. sum_cur_oL: UI-set $\rightarrow \mathrm{U} \rightarrow \mathrm{L}$
13. sum_cur_oL(ouis)(u) $\equiv \oplus$ \{attr_cur_iL(ui)(u)|ui:UI•ui \in ouis $\}$ $\oplus:(\mathrm{F} \mid \mathrm{L}) \times(\mathrm{F} \mid \mathrm{L}) \rightarrow \mathrm{F}$

- where \oplus is both an infix and a distributed-fix function which adds flows and or leaks.
\qquad 133
- From the above two laws one can prove the theorem:
\otimes what is pumped from the wells equals
\otimes what is leaked from the systems plus what is output to the sinks.
- We need formalising the flow and leak summation functions.

Continuous Endurant Modelling

As one of the first steps

- in domain analysis

- determine if the domain is materials-focused.

If so, then determine

- the material types,
type M1, M2, ... Mn material
- the parts, that is, the part types, with which the materials are "somehow related"
value obs_Mi: $\mathrm{Pi} \rightarrow \mathrm{Mi}$, obs_Mj: $\mathrm{Pj} \rightarrow \mathrm{Mj}, \ldots$, obs_Mk: $\mathrm{Pk} \rightarrow \mathrm{Mk}$
- the relevant flow or transport and/or leak or loss attributes, if any,
- and the possible laws related to these attributes.
\qquad
\qquad
\qquad
- The above Wikipedia characterisation of the concept of perdurant \otimes mentioned time,
\otimes but implied a concept that we shall call state.
- In this version of this tutorial
\otimes we shall not cover the modelling of time phenomena -
\otimes but we shall model that some actions occur before others.

6. States
 6.1. General

- By a state we shall understand a collection of parts
\& such that each of these parts have dynamic attributes.
- We can characterise the state
\otimes by giving it a type,
\otimes for example, Σ, where the state type definition
$\triangle \Sigma \mathrm{S}_{1} \times \mathrm{S}_{2} \times \cdots \times \mathrm{S}_{s}$
\leftrightarrow assembles the types of the parts making up the state -
\otimes where we assume that types $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{s}$ \oplus are types of parts
\oplus such that no S_{i} is a sub-part (of a subpart, ...) of some S_{j}, \oplus and such that each part has dynamic attributes.

Example: 27 Net and Vessel States.

- We may consider a transport net, n: N , to represent a state (subject to the actions of maintaining a net: adding or removing a hub, adding or removing a link, etc.).
- We may also consider a hub, h:H, to represent a state (subject to the changing of a hub traffic signal: from red to green, etc., for specific directions through the hub).
- We may consider a container vessel to represent a state (subject to adding or removing containers from, respectively onto the top of stacks).

Thus the context determines how wide a scope the domain designer chooses for the state concept.

6.2. State Invariants

- States are subject to invariants.

Example: 28 State Invariants: Transport Nets. Nets, hubs and links were first introduced in Example 3 on page 16 - and were and will be prominent in this tutorial, to wit, Examples 7-16 and 29- ?? on page ??

- Net hubs and links may be inserted into and removed from nets.
- Thus is also introduced changes to the net mereology.
- Yet, the axioms, as illustrated in Example 12, must remain invariant.
- Likewise changes to dynamic attributes may well be subject to the holding of certain well-formedness constraints.
- We will illustrate this claim.
\qquad
\qquad

142
6. States 6.2. State Invariants
17. For any given hub, h, with links, $l_{1}, l_{2}, \ldots, l_{n}$ incident upon (i.e., also emanating from) that hub, each hub state in the hub state space
18. must only contain such pairs of (not necessarily distinct) link identifiers that are identifiers of $l_{1}, l_{2}, \ldots, l_{n}$.

value

17. wf_H $\Omega: \mathrm{H} \rightarrow$ Bool
18. wf_H $\Omega(\mathrm{h}) \equiv \forall \mathrm{h} \sigma: \mathrm{H} \Sigma \cdot \mathrm{h} \sigma \in \operatorname{attr}-\mathrm{H} \Omega(\mathrm{h}) \Rightarrow$ wf_H $\Sigma(\mathrm{h})$
19. wf_Hट: $\mathrm{H} \rightarrow$ Bool
20. wf_Hट(h) \equiv
21. $\quad \forall\left(\mathrm{li}, \mathrm{li}^{\prime}\right):(\mathrm{LI} \times \mathrm{LI}) \cdot\left(\mathrm{li}, \mathrm{li}^{\prime}\right) \in \operatorname{attr} _\mathrm{H} \Sigma(\mathrm{h}) \Rightarrow\left\{\mathrm{li}, \mathrm{li}^{\prime}\right\} \subseteq$ mereo_H(h)

With each hub we associate a hub [link] state and a hub [link] state space.
15. A hub [link] state models the permissible routes from hub input links to (same) hub output links [respectively through a link].
16. A hub [link] state space models the possible set of hub [link] states that a hub [link] is intended to "occupy".

type

15. $\mathrm{H} \Sigma=(\mathrm{LI} \times \mathrm{LI})$-set, $\mathrm{L} \Sigma=\mathrm{HI}$-set
16. $\mathrm{H} \Omega=\mathrm{H} \Sigma$-set, $\mathrm{L} \Omega=\mathrm{L} \Sigma$-set
value
17. attr_H $\Sigma: H \rightarrow H \Sigma$, attr_L $\Sigma: L \rightarrow L \Sigma$
18. attr_ $\mathrm{H} \Omega: \mathrm{H} \rightarrow \mathrm{H} \Omega$, attr $L \Omega: \mathrm{L} \rightarrow \mathrm{L} \Omega$
\qquad

- This well-formedness criterion is part of the state invariant over nets.
\otimes We never write down the full state invariant for nets.
\leftrightarrow It is tacitly assume to be the collection of all the axioms and well-formedness predicates over net parts.

7. A Final Note on Endurant Properties

- The properties of parts and materials are fully captured by
\otimes (i) the unique part identifiers,
\Leftrightarrow (ii) the part mereology and
∞ (iii) the full set ofpart attributes and material attributes
- We therefore postulate a property function
\Leftrightarrow when when applied to a part or a material
\otimes yield this triplet, (i-iii), of properties
\otimes in a suitable structure.

```
type
    Props \(=\{\mid\) PI \(\mid\) nil \(\mid\} \times\{\mid(\) PI-set \(\times \ldots \times\) PI-set \() \mid\) nil \(\mid\} \times\) Attrs
```

value
props: Part|Material \rightarrow Props
\qquad

146

End of Lecture 3: First Session - Continuous Endurants

Materials, States

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

- where
\leftrightarrow Part stands for a part type,
\otimes Material stands for a material type,
$\leftrightarrow \mathrm{PI}$ stand for unique part identifiers and
$\Leftrightarrow \mathrm{Pl}$-set $\times \ldots \times \mathrm{Pl}$-set for part mereologies.
- The $\{|\ldots|\}$ denotes a proper specification language sub-type and nil denotes the empty type.
\qquad 145

146

MINI BREAK

Begin of Lecture 4: Middle Session - Perdurant Entities

Actions and Events

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012
\qquad
147
8. A Final Note on Endurant Properties
8. Discrete Perdurants
8.1. General

- From Wikipedia:
\leftrightarrow Perdurant: Also known as occurrent, accident or happening.
\otimes Perdurants are those entities for which only a fragment exists if we look at them at any given snapshot in time.
\otimes When we freeze time we can only see a fragment of the perdurant.
\otimes Perdurants are often what we know as processes, for example 'running'.
Δ If we freeze time then we only see a fragment of the running, without any previous knowledge one might not even be able to determine the actual process as being a process of running.
\leftrightarrow Other examples include an activation, a kiss, or a procedure.

Slides 285-338
Slides 339-376
$16: 00-16: 40+16: 50-17: 30$
Slides 377-423
Slides 427-459
Slides 424-426 + 460-471

- Lectures 1-2
$9: 00-9: 40+9: 50-10: 30$
Slides 1-35
Slides 36-114
2 Endurant Entities: Parts
$11: 00-11: 15+11: 20-11: 45+11: 50-12: 30$
3 Endurant Entities: Materials, States
Slides 115-146
$\sqrt{ } 4$ Perdurant Entities: Actions and Events
Slides 147-178
5 Perdurant Entities: Behaviours
Slides 179-284

8 Domain and Interface Requirements
9 Conclusion: Comparison to Other Work
Conclusion: What Have We Achieved

Lunch

- Lectures 6-7

6 A Calculus: Analysers, Parts and Materials
7 A Calculus: Function Signatures and Laws

- Lectures 8-9
\qquad . 117

8.2. Discrete Actions

- We shall consider actions and events
< to occur instantaneously,
\otimes that is, in time, but taking no time
- Therefore we shall consider actions and events to be perdurants.

Example: 29 Transport Net and Container Vessel Actions.

- Inserting and removing hubs and links in a net are considered actions.
- Setting the traffic signals for a hub (which has such signals) is considered an action.
- Loading and unloading containers from or unto the top of a container stack are considered actions.
- By a function we understand
\otimes a thing
* which when applied to a value, called its argument, \Leftrightarrow yields a value, called its result.
- An action is
\otimes a function
\otimes invoked on a state value
\otimes and is one that potentially changes that value.

8.2.1. An Aside on Actions

Think'st thou existence doth depend on time? It doth; but actions are our epochs.

George Gordon Noel Byron, Lord Byron (1788-1824) Manfred. Act II. Sc. 1.

- "An action is
\otimes something an agent does
\otimes that was 'intentional under some description'" [Davidson1980].
- That is, actions are performed by agents.
\otimes We shall not yet go into any deeper treatment of agency or agents. We shall do so later.
\oplus Agents will here, for simplicity, be considered behaviours,
\oplus and are treated later in this lecture.
- As to the relation between intention and action
\otimes we note that Davidson wrote: 'intentional under some description'
\otimes and take that as our cue:
\oplus the agent follows a script,
\oplus that is, a behaviour description,
\oplus and invokes actions accordingly,
\oplus that is, follow, or honours that script.
- The philosophical notion of 'action' is over-viewed in [sep-action].
- We
\& observe actions in the domain
\otimes but describe "their underlying" functions.
- Thus we abstract from the times at which actions occur.
\qquad 153

8.2.3. Action Definitions

- There are a number of ways in which to characterise an action.
- One way is to characterise its underlying function
by a pair of predicates:
\otimes precondition: a predicate over function arguments - which includes the state, and
\otimes postcondition: a predicate over function arguments, a proper argument state and the desired result state.
\otimes If the precondition holds, i.e., is true, then the arguments, including the argument state, forms a proper 'input' to the action.
\otimes If the postcondition holds, assuming that the precondition held, then the resulting state [and possibly a yielded, additional "result" (R)] is as they would be had the function been applied.

8.2.2. Action Signatures

- By an action signature we understand a quadruple:
\otimes a function name,
\otimes a function definition set type expression,
\otimes a total or partial function designator $(\rightarrow$, respectively $\xrightarrow{\sim})$, and
\otimes a function image set type expression:
fct_name: $\mathrm{A} \rightarrow \Sigma(\rightarrow \mid \xrightarrow{\sim}) \Sigma[\times \mathrm{R}]$,
where $(X \mid Y)$ means either X or Y, and $[Z]$ means optional Z.

Example: 30 Action Signatures: Nets and Vessels.

insert_Hub: $\mathrm{N} \rightarrow \mathrm{H} \xrightarrow{\sim} \mathrm{N}$;
remove_Hub: $\mathrm{N} \rightarrow \mathrm{HI} \xrightarrow{\sim} \mathrm{N}$
set_Hub_Signal: $\mathrm{N} \rightarrow \mathrm{HI} \xrightarrow{\sim} \mathrm{H} \Sigma \stackrel{\sim}{\sim} \mathrm{N}$
load_Container: $\mathrm{V} \rightarrow \mathrm{C} \rightarrow$ Stackld $\stackrel{\sim}{\sim} \mathrm{V}$; and
unload_Container: $\mathrm{V} \rightarrow$ Stackld $\xrightarrow{\sim}(\mathrm{V} \times \mathrm{C})$.
\qquad
154

Example: 31 Transport Nets: Insert Hub Action. We give one example.
19. The insert action applies to a net and a hub and conditionally yields an updated net.
(a) The condition is that there must not be a hub in the "argument" net with the same unique hub identifier as that of the hub to be inserted and
(b) the hub to be inserted does not initially designate links with which it is to be connected.
(c) The updated net contains all the hubs of the initial net "plus" the new hub.
(d) and the same links.

value

19. insert_H: $\mathrm{N} \rightarrow \mathrm{H} \xrightarrow{\sim} \mathrm{N}$
20. insert_H(n)(h) as n^{\prime}, pre: pre_insert_H(n)(h), post: post_insert_H(n)(h)

19(a). pre_insert_H(n)(h) \equiv

$$
\begin{aligned}
& \text { 19(a). } \sim \exists \mathrm{h}^{\prime}: \mathrm{H} \cdot \mathrm{~h}^{\prime} \in \text { obs_Hs }(\mathrm{n}) \wedge \text { uid_HI }(\mathrm{h})=\text { uid_HI }\left(\mathrm{h}^{\prime}\right) \\
& \text { 19(b). } \\
& \wedge \text { mereo_H }(\mathrm{h})=\{ \}
\end{aligned}
$$

19(c). post_insert_H(n)(h)(n') \equiv
19(c). obs_Hs $(\mathrm{n}) \cup\{\mathrm{h}\}=$ obs_Hs(n')
19(d). \wedge obs_Ls(n) $=$ obs_Ls(n' $\left.{ }^{\prime}\right)$

- We refer to the notes accompanying these lectures.
- There you will find definitions of insert_link, remove_hub and remove_link action functions.

8. Discrete Perdurants 8.2. Discrete Actions8.2.3. Action Definitions

Example: 32 Action: Remove Container from Vessel. We give the second of two examples.
20. The remove_Container_from_Vessel action applies to a vessel and a stack address and conditionally yields an updated vessel and a container.
(a) We express the 'remove from vessel' function primarily by means of an auxiliary function remove_C_from_BS, remove_C_from_BS(obs_BS(v))(stid), and some further post-condition on the before and after vessel states (cf. Item 20(d)).
(b) The remove_C_from_BS function yields a pair: an updated set of bays and a container.
(c) When obs_erving the BayS from the updated vessel, v^{\prime}, and pairing that with what is assumed to be a vessel, then one shall obtain the result of remove_C_from_BS(obs_BS(v))(stid).
(d) Updating, by means of remove_C_from_BS(obs_BS(v))(stid), the bays of a vessel must leave all other properties of the vessel unchanged.

- What is not expressed, but tacitly assume in the above pre- and post-conditions is
\Leftrightarrow that the state, here n, satisfy invariant criteria before (i.e. n) and after (i.e., n^{\prime}) actions,
\otimes whether these be implied by axioms
\otimes or by well-formedness predicates.
over parts.
- This remark applies to any definition of actions, events and behaviours.

21. The pre-condition for remove_C_from_BS(bs)(stid) is
(a) that stid is a valid_address in bs, and
(b) that the stack in bs designated by stid is non_empty.
22. The post-condition for remove_C_from_BS(bs)(stid) wrt. the updated bays, bs', is
(a) that the yielded container, i.e., c, is obtained, get_C(bs)(stid), from the top of the non-empty, designated stack,
(b) that the mereology of bs^{\prime} is unchanged, unchanged_mereology (bs,bs'). wrt. bs. ,
(c) that the stack designated by stid in the "input" state, bs, is popped, popped_designated_stack(bs,bs')(stid), and
(d) that all other stacks are unchanged in bs' wrt. bs, unchanged_non_designated_stacks(bs,bs')(stid).

value

20. remove_C from_V: $\mathrm{V} \rightarrow$ StackId $\xrightarrow{\sim}(\mathrm{V} \times \mathrm{C})$
21. remove_C_from_V(v)(stid) as ($\mathrm{v}^{\prime}, \mathrm{c}$)

20(c). (obs_BS $\left.\left(\mathrm{v}^{\prime}\right), \mathrm{c}\right)=$ remove_C_from_BS(obs_BS(v))(stid)
20(d). $\wedge \operatorname{props}(\mathrm{v})=\operatorname{props}\left(\mathrm{v}^{\prime \prime}\right)$
20(b). remove_C_from_BS: BS \rightarrow StackId \rightarrow (BS \times C $)$
20(a). remove_C_from_BS(bs)(stid) as (bs ${ }^{\prime}$, c)
21(a). pre: valid_address(bs)(stid)
21(b). $\quad \wedge$ non_empty_designated_stack(bs)(stid)
22(a). post: $\mathrm{c}=$ get_C(bs)(stid)
22(b). $\quad \wedge$ unchanged_mereology(bs,bs')
22(c). \wedge popped_designated_stack(bs,bs')(stid)
22(d). \wedge unchanged_non_designated_stacks(bs,bs')(stid)

Modelling Actions, I/III

- The domain describer has decided that an entity is a perdurant and is, or represents an action: was "done by an agent and intentionally under some description" [Davidson1980].
\otimes The domain describer has further decided that the observed action is of a class of actions - of the "same kind" - that need be described.
\Leftrightarrow By actions of the 'same kind' is meant that these can be described by the same function signature and function definition.
- This example hints at a theory of container vessel bays, rows and stacks.
- More on that is found in Appendix C.
- There are other ways of defining functions.
- But the form of these are not material to the aims of this tutorial.

Modelling Actions, II/III

- First the domain describer must decide on the underlying function signature.
\otimes The argument type and the result type of the signature are those of either previously identified
\oplus parts and/or materials,
\oplus unique part identifiers, and/or
\propto attributes.

Modelling Actions, III/III

- Sooner or later the domain describer must decide on the function definition.
\otimes The form must be decided upon.
\otimes For pre/post-condition forms it appears to be convenient to have developed, "on the side", a theory of mereology for the part types involved in the function signature.
\qquad

Example: 33 Events.

- Container vessel: A container falls overboard sometimes between times t and t^{\prime}.
- Financial service industry: A bank goes bankrupt sometimes between times t and t^{\prime}.
- Health care: A patient dies sometimes between times t and t^{\prime}.
- Pipeline system: A pipe breaks sometimes between times t and t^{\prime}.
- Transportation: A link "disappears" sometimes between times t and t^{\prime}.

8.3. Discrete Events

- By an event we understand
a state change
\otimes resulting indirectly from an unexpected application of a function,
\otimes that is, that function was performed "surreptitiously".
- Events can be characterised by a pair of (before and after) states, a predicate over these and, optionally, a time or time interval.
- Events are thus like actions:
\Leftrightarrow change states,
\otimes but are usually
\oplus either caused by "previous" actions,
\oplus or caused by "an outside action".

8.3.1. An Aside on Events

- We may observe an event, and
\otimes then we do so at a specific time or
\otimes during a specific time interval.
- But we wish to describe,
\leftrightarrow not a specific event
but a class of events of "the same kind".
- In this tutorial
\otimes we therefore do not ascribe
\leftrightarrow time points or time intervals
\otimes with the occurrences of events.

8.3.2. Event Signatures

- An event signature
\otimes is a predicate signature
having an event name,
\otimes a pair of state types $(\Sigma \times \Sigma)$,
\otimes a total function space operator (\rightarrow)
\otimes and a Boolean type constant:
\otimes evt: $(\Sigma \times \Sigma) \rightarrow$ Bool.
- Sometimes there may be a good reason
\otimes for indicating the type, ET, of an event cause value,
\otimes if such a value can be identified:
\otimes evt: $\mathrm{ET} \times(\Sigma \times \Sigma) \rightarrow$ Bool.
\qquad

Example: 34 Narrative of Link Event. The disappearance of a link in a net, for example due to a mud slide, or a bridge falling down, or a fire in a road tunnel, can, for example be described as follows:
23. Link disappearance is expressed as a predicate on the "before" and "after" states of the net. The predicate identifies the "missing" ink (!).
24. Before the disappearance of $\operatorname{link} \ell$ in net n
(a) the hubs h^{\prime} and $h^{\prime \prime}$ connected to link ℓ
(b) were connected to links identified by $\left\{l_{1}^{\prime}, l_{2}^{\prime}, \ldots, l_{p}^{\prime}\right\}$ respectively $\left\{l_{1}^{\prime \prime}, l_{2}^{\prime \prime}, \ldots, l_{q}^{\prime \prime}\right\}$
(c) where, for example, $l_{i}^{\prime}, l_{j}^{\prime \prime}$ are the same and equal to uid $\Pi(\ell)$.

8.3.3. Event Definitions

- An event definition takes the form of a predicate definition:
\leftrightarrow A predicate name and argument list, usually just a state pair,
\otimes an existential quantification
\oplus over some part (of the state) or
\oplus over some dynamic attribute of some part (of the state)
\oplus or combinations of the above
\otimes a pre-condition expression over the input argument(s),
\otimes an implication symbol (\Rightarrow), and
\otimes a post-condition expression over the argument(s).
$\bullet \operatorname{evt}\left(\sigma, \sigma^{\prime}\right)=\exists(\mathrm{ev}: \mathrm{ET}) \bullet \operatorname{pre} \operatorname{evt}(\mathrm{ev})(\sigma) \Rightarrow \operatorname{post} \operatorname{evt}(\mathrm{ev})\left(\sigma, \sigma^{\prime}\right)$.
- There may be variations to the above form.

25. After link ℓ disappearance there are instead
(a) two separate links, ℓ_{i} and ℓ_{j}, "truncations" of ℓ
(b) and two new hubs $h^{\prime \prime \prime}$ and $h^{\prime \prime \prime \prime}$
(c) such that ℓ_{i} connects h^{\prime} and $h^{\prime \prime \prime}$ and
(d) ℓ_{j} connects $h^{\prime \prime}$ and $h^{\prime \prime \prime \prime}$;
(e) Existing hubs h^{\prime} and $h^{\prime \prime}$ now have mereology
i. $\left\{l_{1}^{\prime}, l_{2}^{\prime}, \ldots, l_{p}^{\prime}\right\} \backslash\{$ uid $\Pi(\ell)\} \cup\left\{\right.$ uid $\left._\left(\ell_{i}\right)\right\}$ respectively
ii. $\left\{l_{1}^{\prime \prime}, l_{2}^{\prime \prime}, \ldots, l_{q}^{\prime \prime}\right\} \backslash\{$ uid_ $\Pi(\ell)\} \cup\left\{\right.$ uid_ $\left.\Pi\left(\ell_{j}\right)\right\}$
26. All other hubs and links of n are unaffected.

Example: 35 Formalisation of Link Event. Continuing

Example 34 above:
23. link_disappearance: $\mathrm{N} \times \mathrm{N} \rightarrow$ Bool
23. link_disappearance $\left(\mathrm{n}, \mathrm{n}^{\prime}\right) \equiv$
23. $\exists \ell: L \cdot$ pre_link_dis $(\mathrm{n}, \ell) \Rightarrow$ post_link_dis $\left(\mathrm{n}, \ell, \mathrm{n}^{\prime}\right)$
24. pre_link_dis: $\mathrm{N} \times \mathrm{L} \rightarrow$ Bool
24. pre_link_dis(n, $\ell) \equiv \ell \in$ obs_Ls(n)
27. We shall "explain" link disappearance as the combined, instantaneous effect of
(a) first a remove link "event" where the removed link connected hubs hij and hi ${ }_{k}$;
(b) then the insertion of two new, "fresh" hubs, h_{α} and h_{β};
(c) "followed" by the insertion of two new, "fresh" links $\mathbf{I}_{j \alpha}$ and $\mathbf{I}_{k \beta}$ such that
i. $I_{j \alpha}$ connects hi ${ }_{j}$ and h_{α} and
ii. $I_{k \beta}$ connects hi_{k} and $\mathrm{h}_{k \beta}$
\qquad

value

27. post_link_dis $\left(\mathrm{n}, \ell, \mathrm{n}^{\prime}\right) \equiv$

$27(\mathrm{a})$.	let $\mathrm{n}^{\prime \prime} \quad=$ remove_L $\mathrm{L}(\mathrm{n})($ uid_L $(\ell))$ in
27(b).	let $\mathrm{h}_{\alpha}, \mathrm{h}_{\beta}: \mathrm{H} \cdot\left\{\mathrm{h}_{\alpha}, \mathrm{h}_{\beta}\right\} \cap$ obs_Hs $(\mathrm{n})=\{ \}$ in
27(b).	let $\mathrm{n}^{\prime \prime \prime} \quad=$ insert_ $\mathrm{H}\left(\mathrm{n}^{\prime \prime}\right)\left(\mathrm{h}_{\alpha}\right)$ in
27(b).	let $\mathrm{n}^{\prime \prime \prime \prime} \quad=$ insert_ $\mathrm{H}\left(\mathrm{n}^{\prime \prime \prime}\right)\left(\mathrm{h}_{\beta}\right)$ in
$27(\mathrm{c})$.	let $\mathrm{l}_{j \alpha}, \mathrm{l}_{k \beta}: \mathrm{L} \cdot\left\{\mathrm{l}_{j \alpha}, \mathrm{l}_{k \beta}\right\} \cap$ obs_Ls(n) $=\{ \}$ in
$27((\mathrm{c}) \mathrm{i}$ i.	let $\mathrm{n}^{\prime \prime \prime \prime \prime \prime} \quad=$ insert_L $\left(\mathrm{n}^{\prime \prime \prime \prime}\right)\left(1_{j \alpha}\right)$ in
$27($ (c))ii	$\mathrm{n}^{\prime}=$ insert_L $\left(\mathrm{n}^{\prime \prime \prime \prime \prime}\right)\left(l_{k \beta}\right)$ end end end end end end

- We refer to the notes accompanying these lectures.
- There you will find definitions of insert_link, remove_hub and

Modelling Events I/II

- The domain describer has decided that an entity is a perdurant and is, or represents an event: occurred surreptitiously, that is, was not an action that was "done by an agent and intentionally under some description" [Davidson1980].
\otimes The domain describer has further decided that the observed event is of a class of events - of the "same kind" - that need be described.
\otimes By events of the 'same kind' is meant that these can be described by the same predicate function signature and predicate function definition. remove link action functions.

Modelling Events, II/II

- First the domain describer must decide on the underlying predicate function signature.
\otimes The argument type and the result type of the signature are those of either previously identified
\oplus parts,
\oplus unique part identifiers, or
\propto attributes.
- Sooner or later the domain describer must decide on the predicate function definition.
\otimes For predicate function definitions it appears to be convenient to have developed, "on the side", a theory of mereology for the part types involved in the function signature.

178

Engineering 1

$\square+2+1$

B4tre

End of Lecture 4: Middle Session - Perdurant Entities

Actions and Events

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

LAST HAUL BEFORE LUNCH

MINI BREAK

Tutorial Schedule

Begin of Lecture 5: Last Session - Perdurant Entities

Behaviours, Discussion Entities

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

8.4. Discrete Behaviours

- We shall distinguish between
\otimes discrete behaviours (this section) and
\otimes continuous behaviours (Sect.).
- Roughly discrete behaviours
\otimes proceed in discrete (time) steps -
\otimes where, in this tutorial, we omit considerations of time.
\otimes Each step corresponds to an action or an event or a time interval between these.
\leftrightarrow Actions and events may take some (usually inconsiderable time),
\otimes but the domain analyser has decided that it is not of interest to understand what goes on in the domain during that time (interval).
\otimes Hence the behaviour is considered discrete.
- Lectures 1-2

1 Introduction
9:00-9:40 $+9: 50-10: 30$

2 Endurant Entities: Parts

- Lectures 3-5
$11: 00-11: 15+11: 20-11: 45+11: 50-12: 30$
3 Endurant Entities: Materials, States
4 Perdurant Entities: Actions and Events Slides 147-178
$\sqrt{ } 5$ Perdurant Entities: Behaviours
Lunch
- Lectures 6-7

6 A Calculus: Analysers, Parts and Materials
7 A Calculus: Function Signatures and Laws

- Lectures 8-9

8 Domain and Interface Requirements
9 Conclusion: Comparison to Other Work
Conclusion: What Have We Achieved
\qquad 179

Slides 115-146
Slides 1-35
Slides 36-114
$14: 00-14: 40+14: 50-15: 30$
Slides 285-338
$16: 00-16: 40+16: 50-17: 30$
Slides 377-423
Slides 424-426 + 460-471

Slides 339-376
$\rightarrow-1$
\qquad

- Continuous behaviours
\otimes are continuous in the sense of the calculus of mathematical;
\Leftrightarrow to qualify as a continuous behaviour time must be an essential aspect of the behaviour.
\otimes We shall treat continuous behaviours in Sect. 9 .
- Discrete behaviours can be modelled in many ways, for example using
\otimes CSP [Hoare85+2004].
\otimes MSC [MSCall],
\otimes Petri Nets [m:petri:wr09] and
\otimes Statechart [Harel87].
- We refer to Chaps. 12-14 of [TheSEBook2wo].
- In this tutorial we shall use RSL/CSP.

8.4.1. What is Meant by 'Behaviour’?

- We give two characterisations of the concept of 'behaviour'.
\otimes a "loose" one and
\otimes a "slanted one.
- A loose characterisation runs as follows:
\leftrightarrow by a behaviour we understand
\oplus a set of sequences of
\oplus actions, events and behaviours.

\qquad

184
8. Discrete Perdurants 8.4. Discrete Eehaviours8.4.1. What is Meant by 'Behaviour'?

- This latter characterisation of behaviours
Δ is "slanted" in favour of a CSP, i.e., a communicating sequential behaviour, view of behaviours.
\otimes We could similarly choose to "slant" a behaviour characterisation in favour of
\oplus Petri Nets, or
\oplus MSCs, or
\oplus Statecharts, or other.
- A "slanted" characterisation runs as follows:
\otimes by a behaviour we shall understand
\oplus either a sequential behaviour consisting of a possibly infinite sequence of zero or more actions and events;
\oplus or one or more communicating behaviours whose output actions of one behaviour may synchronise and communicate with input actions of another behaviour; and
\oplus or two or more behaviours acting either as internal non-deterministic behaviours (Π) or as external non-deterministic behaviours ($[$).
\qquad
8.4.2. Behaviour Narratives
- Behaviour narratives may take many forms.
\leftrightarrow A behaviour may best be seen as composed from several interacting behaviours.
\oplus Instead of narrating each of these,
\oplus as will be done in Example ??,
\oplus one may proceed by first narrating the interactions of these behaviours.
\otimes Or a behaviour may best be seen otherwise,
\oplus for which, therefore, another style of narration may be called for,
\oplus one that "traverses the landscape" differently.
\otimes Narration is an art.
\otimes Studying narrations - and practice - is a good way to learn effective narration.

8.4.3. An Aside on Agents, Behaviours and Processes

- "In philosophy and sociology, agency is the capacity of an agent (a person or other entity) to act in a world."
- "In philosophy, the agency is considered as belonging to that agent even if that agent represents a fictitious character, or some other non-existent entity."
- That is, we consider agents to be those persons or other entities that
\otimes are in the domain and
\otimes observes the domain
\otimes evaluates what is being observed
Δ and invokes actions.
- We describe agents by describing behaviours.
\qquad

8.4.4. On Behaviour Description Components

- When narrating plus, at the same time, formalising,
© i.e., textually alternating between
\otimes narrative texts and
\otimes formal texts,
- one usually starts with what seems to be the most important behaviour concepts of the given domain:
\otimes which are the important part types characterising the domain;
\otimes which of these parts will become a basis for behaviour processes;
\otimes how are these behaviour processes to interact,
\otimes that is, which channels and what messages may possibly be communicated.
- A behaviour description denotes a process, that is, a set of * actions,
\otimes events and
\otimes processes.
- We shall not enter into any further speculations on
* agency,
\otimes agents and
\leftrightarrow how agents observe, including
\oplus what they know and believe (epistemic logic),
\oplus what is necessary and possible (deontic logic) and
\oplus what is true at some tie and what is always true (temporal $\operatorname{logic})$.
\otimes A proper domain science and engineering must, however, eventually examine these (modal logic) issues.
\qquad 187

8. Discrete Perdurants 8.4. Discrete Behaviours8.4.4. On Behaviour Description Components

Example: 36 A Road Traffic System. We continue our long line of examples around transport nets. The present example interprets these as road nets.

8.4.4.1 Continuous Traffic

- For the road traffic system
\otimes perhaps the most significant example of a behaviour
Δ is that of its traffic

28. the continuous time varying discrete positions of vehicles, vp:VP ${ }^{25}$,
29. where time is taken as a dense set of points.

type

29. cT
30. $\mathrm{cRTF}=\mathrm{cT} \rightarrow(\mathrm{V} \overrightarrow{\mathrm{m}} \mathrm{VP})$

8.4.4.2 Discrete Traffic

- We shall model, not continuous time varying traffic, but

30. discrete time varying discrete positions of vehicles,
31. where time can be considered a set of linearly ordered points.
32. dT
33. $\mathrm{dRTF}=\mathrm{d} \mathbb{T} \pi(\mathrm{V} \pi \mathrm{VP})$
34. The road traffic that we shall model is, however, of vehicles referred to by their unique identifiers.

type

32. $\mathrm{RTF}=\mathrm{d} \mathbb{T} \quad \pi(\mathrm{VI} \vec{m} \mathrm{VP})$

\qquad

192
B. Discrete Perdurants 8.4. Discrete Behaviours8.4.4. On Behaviour Description Components8.4.4.3. Time: An Aside

```
type
33. }\mathbb{T
34. TII
value
35. \delta:T\mathbb{I}
36. MIIN, MA\mathbb{X}:\mathbb{T}->\mathbb{T}
36. }<,\leq,=,\geq,>:(\mathbb{T}\times\mathbb{T})|(\mathbb{TIX\mathbb{T}I)->\mathrm{ Bool}
37. -: \mathbb{T}\times\mathbb{T}->\mathbb{TI}
38. +: }\mathbb{T}\times\mathbb{T},\mathbb{T}\mathbb{I}\times\mathbb{T}->\mathbb{T
38. -,+: \mathbb{TI}\times\mathbb{TII}->\mathbb{TI}
38. *: \mathbb{TI}\times\mathrm{ Real }->\mathbb{TI}
38. /: \mathbb{TI}\times\mathbb{TI}->\mathrm{ Real}
```


8.4.4.3 Time: An Aside

- We shall take a rather simplistic view of time
[wayne.d.blizard.90,mctaggart-
t0,prior68,J.van.Benthem.Logic.Time91].

33. We consider $\mathbf{d} \mathbb{T}$, or just \mathbb{T}, to stand for a totally ordered set of time points.
34. And we consider $\mathbb{T I}$ to stand for time intervals based on \mathbb{T}.
35. We postulate an infinitesimal small time interval δ.
36. \mathbb{T}, in our presentation, has lower and upper bounds.
37. We can compare times and we can compare time intervals.
38. And there are a number of "arithmetics-like" operations on times and time intervals.

39. Discrete Perdurants 8.4. Discrete Behaviours8.4.4. on Behaviour Description Components8.4.4.3. Time: An Aside
40. We postulate a global clock behaviour which offers the current time.
41. We declare a channel clk_ch.

value

39. clock: $\mathbb{T} \rightarrow$ out clk_ch Unit
40. $\operatorname{clock}(\mathrm{t}) \equiv \ldots$ clk_ch!t $\ldots \operatorname{clock}(\mathrm{t}\rceil \mathrm{t}+\boldsymbol{\delta})$
channnel
41. clk_ch:T

8.4.4.4 Road Traffic System Behaviours

41. Thus we shall consider our road traffic system, rts, as
(a) the concurrent behaviour of a number of vehicles and, to "observe", or, as we shall call it, to monitor their movements,
(b) the monitor behaviour.

value

```
41. trs() =
41(a). || {veh(uid_V(v))(v)|v:V\cdotv \in vs}
41(b). || mon(m)([])
```

- where the "extra" monitor argument ([])
\otimes records the discrete road traffic, RTF,
© initially set to the empty map (of, "so far no road traffic"!).
\qquad
\qquad

196
8. Discrete Perdurants 8.4. Discrete Eehaviours8.4.4. On Behaviour Description Components8.4.4.6. Channel

8.4.4.6 Channels

- In order for the monitor behaviour to assess the vehicle positions
\otimes these vehicles communicate their positions
\otimes to the monitor
\otimes via a vehicle to monitor channel.
- In order for the monitor to time-stamp these positions
© it must be able to "read" a clock.

45. Thus we declare a set of channels indexed by the unique identifiers of vehicles and communicating vehicle positions; and
46. a single clock to monitor channel.

channel

45. $\{$ vm_ch[vi]|vi:VI•vi \in vis $\}: V P$
46. clkm_ch:dT

8.4.4.5 Globally Observable Parts

- There is given

42. a net, $\mathrm{n}: \mathrm{N}$,
43. a set of vehicles, vs:V-set, and
44. a monitor, m:M.

- The $\mathrm{n}: \mathrm{N}, \mathrm{vs}: \mathrm{V}$-set and $\mathrm{m}: \mathrm{M}$ are observable from the road traffic system domain.

value

42. $\mathrm{n}: \mathrm{N}=$ obs_ $\mathrm{N}(\Delta)$
43. ls:L-set $=$ obs_Ls(obs_LS(n)), hs:H-set $=$ obs_Hs(obs_HS(n)),
44. lis:LI-set $=\{$ uid_L(1)|l:L•l \in ls $\}$, his:HI-set $=\{$ uid_H(h)|h:H•h $\in \mathrm{hs}\}$
45. vs:V-set $=$ obs_Vs $($ obs_VS $($ obs_F $(\Delta)))$, vis:V-set $=\{$ uid_V $(\mathrm{v}) \mid \mathrm{v}: V \cdot \mathrm{~V} \cdot \mathrm{v} \in$
46. m:obs_M (Δ)

8.4.4.7 An Aside: Attributes of Vehicles

47. Dynamic attributes of vehicles include

(a) position
i. at a hub (about to enter the hub - referred to by the link it is coming from, the hub it is at and the link it is going to, all referred to by their unique identifiers or
ii. some fraction "down" a link (moving in the direction from a from hub to a to hub - referred to by their unique identifiers)
iii. where we model fraction as a real between 0 and 1 included.
(b) velocity, acceleration, etcetera.

```
type
47(a). \(\quad \mathrm{VP}=\mathrm{atH} \mid \mathrm{onL}\)
\(47((\mathrm{a})) \mathrm{i} . \quad\) atH \(::\) fli:LI \(\times\) hi:HI \(\times\) tli:LI
47((a))ii. onL :: fhi:HI \(\times\) li:LI \(\times\) frac:FRAC \(\times\) thi \(: H I\)
\(47((\mathrm{a}))\) iii. \(\quad\) FRAC \(=\) Real, axiom \(\forall\) frac: FRAC \(\cdot 0 \leq\) frac \(\leq 1\)
47(b). Vel, Acc, ...
```


8.4.4.8 Behaviour Signatures

48. The road traffic system behaviour, rts, takes no arguments; and "behaves", that is, continues forever.
49. The vehicle behaviours are indexed by the unique identifier, uid_V(v):VI, the vehicle part, $\mathrm{v}: \mathrm{V}$ and the vehicle position; offers communication to the monitor behaviour; and behaves "forever".
50. The monitor behaviour takes monitor part, m:M, as argument and also the discrete road traffic, drtf:dRTF; the behaviour otherwise runs forever.

value

```
48. rts: Unit \(\rightarrow\) Unit
49. veh: vi:VI \(\rightarrow \mathrm{v}: \mathrm{V} \rightarrow \mathrm{VP} \rightarrow\) out vm_ch[vi] Unit
50. mon: \(\mathrm{m}: \mathrm{M} \rightarrow \mathrm{RTF} \rightarrow\) in \(\left\{\mathrm{vm} \_c h[\right.\) vi \(] \mid\) vi:VI.vi \(\in\) vis \(\}\),clkm_ch Unit
```

\qquad
52. We describe here an abstraction of the vehicle behaviour at a Hub (hi).
(a) Either the vehicle remains at that hub informing the monitor,
(b) or, internally non-deterministically,
i. moves onto a link, tli, whose "next" hub, identified by thi, is obtained from the mereology of the link identified by tli;
ii. informs the monitor, on channel vm[vi], that it is now on the link identified by tli,
iii. whereupon the vehicle resumes the vehicle behaviour positioned at the very beginning (0) of that link,
(c) or, again internally non-deterministically,
(d) the vehicle "disappears - off the radar" !

8.4.4.9 The Vehicle Behaviour

51. A vehicle process

- is indexed by the unique vehicle identifier vi:VI,
- the vehicle "as such", $\mathrm{v}: \mathrm{V}$ and
- the vehicle position, vp:VP.

The vehicle process communicates

- with the monitor process on channel vm[vi]
- (sends, but receives no messages), and
- otherwise evolves "infinitely" (hence Unit).
\qquad

52. $\quad \operatorname{veh}(\mathrm{vi})(\mathrm{v})(\mathrm{vp}: a t \mathrm{H}(\mathrm{fli}, \mathrm{hi}, \mathrm{tli})) \equiv$

52(a). vm_ch[vi]!vp ; veh(vi)(v)(vp)
52(b). П
$52((\mathrm{~b}))$ i. let $\{$ hi',thi $\}=$ mereo_L(get_L(tli)(n)) in assert: hi'=hi
52((b))ii. vm_ch[vi]!onL(tli,hi,0,thi) ;
$52((\mathrm{~b}))$ iii. $\quad \operatorname{veh}(\mathrm{vi})(\mathrm{v})(\mathrm{onL}(\mathrm{tli}, \mathrm{hi}, 0$, thi) $)$ end
52(c). $\quad 7$
52(d). stop
53. We describe here an abstraction of the vehicle behaviour on a Link (ii) Either
(a) the vehicle remains at that link position informing the monitor,
(b) or, internally non-deterministically,
(c) if the vehicle's position on the link has not yet reached the hub,
i. then the vehicle moves an arbitrary increment δ along the link informing the monitor of this, or
ii. else, while obtaining a "next link" from the mereology of the hub (where that next link could very well be the same as the link the vehicle is about to leave),
A. the vehicle informs the monitor that it is now at the hub identified by thi,
B. whereupon the vehicle resumes the vehicle behaviour positioned at that hub.
54. or, internally non-deterministically,
55. the vehicle "disappears - off the radar" !
\qquad

8.4.4.10 The Monitor Behaviour

56. The monitor behaviour evolves around the attributes of an own "state", m:M, a table of traces of vehicle positions, while accepting messages about vehicle positions and otherwise progressing "in[de]finitely".
57. Either the monitor "does own work"
58. or, internally non-deterministically accepts messages from vehicles.
(a) A vehicle position message, vp, may arrive from the vehicle identified by vi.
(b) That message is appended to that vehicle's movement trace,
(c) whereupon the monitor resumes its behaviour -
(d) where the communicating vehicles range over all identified vehicles.
\qquad
```
```

51. \quad veh(vi)(v)(vp:onL(fhi,li,f,thi) $) \equiv$
```
```

51. \quad veh(vi)(v)(vp:onL(fhi,li,f,thi) $) \equiv$
53(a). vm_ch[vi]!vp; veh(vi)(v)(vp)
53(a). vm_ch[vi]!vp; veh(vi)(v)(vp)
53(b). П
53(b). П
53(c). if $\mathrm{f}+\delta<1$
53(c). if $\mathrm{f}+\delta<1$
$53((\mathrm{c})$) i.
$53((\mathrm{c})$) i.
then vm_ch[vi]!onL(fhi,li,f+ δ, thi) ;
then vm_ch[vi]!onL(fhi,li,f+ δ, thi) ;
veh(vi)(v)(onL(fhi,li,f+ $\mathrm{f}, \mathrm{thi}))$
veh(vi)(v)(onL(fhi,li,f+ $\mathrm{f}, \mathrm{thi}))$
$53((\mathrm{c})) \mathrm{i}$.
$53((\mathrm{c})) \mathrm{i}$.
else let li':LI.li' \in mereo_H $($ get_H(thi) $(\mathrm{n}))$ in
else let li':LI.li' \in mereo_H $($ get_H(thi) $(\mathrm{n}))$ in
$53((\mathrm{c}))$ ii.
$53((\mathrm{c}))$ ii.
vm_ch[vi]!atH(li,thi,li');
vm_ch[vi]!atH(li,thi,li');
veh(vi)(v)(atH(li,thi,li')) end end
veh(vi)(v)(atH(li,thi,li')) end end
$53((\mathrm{c})) \mathrm{iiA}$
$53((\mathrm{c})) \mathrm{iiA}$
$53((\mathrm{c})) \mathrm{iiB}$.
$53((\mathrm{c})) \mathrm{iiB}$.
$54 . \quad \prod$
$54 . \quad \prod$
52. stop
```
```

55. stop
```
```

$(\mathrm{m})(\mathrm{rtf}) \equiv$
56. $\operatorname{mon}(\mathrm{m})(\mathrm{rtf}) \equiv$
57. mon(own_mon_work(m))(rtf)
58. П
58(a). $]$ \{ let $((v i, v p), t)=\left(v m _c h[v i] ?, c l k m _c h ?\right)$, in
58(b). let $\mathrm{rtf}=\mathrm{rtf} \dagger[\mathrm{t} \mapsto \mathrm{rtf}(\max$ dom rtf$) \dagger[\mathrm{vi} \mapsto \mathrm{vp}]]$ in
58(c). $\quad \operatorname{mon}(m)\left(\mathrm{rtf}^{\prime}\right)$ end
58(d). \quad end \mid vi:VI \cdot vi \in vis $\}$
57. own_mon_work: $\mathrm{M} \rightarrow \mathrm{TBL} \rightarrow \mathrm{M}$

- We do not describe the clock behaviour by other than stating that it continually offers the current time on channel clkm_ch.
- How often have you not "confused"
\leftrightarrow the perdurant notion of a train process: progressing from railway station to railway station,
\otimes with the endurant notion of the train, say as it appears listed in a train time table, or as it is being serviced in workshops, etc.
- There is a reason for that - as we shall now see:
parts may be considered syntactic quantities denoting semantic quantities.
\otimes We therefore describe a general model of parts of domains \Leftrightarrow and we show that for each instance of such a model
\otimes we can 'compile' that instance into a CSP'program'.
\qquad 206 \qquad
\qquad

59. The whole contains a set of parts.
60. Parts are either atomic or composite.

type

59. W, P, A, C
60. $\mathrm{P}=\mathrm{A} \mid \mathrm{C}$

value

61. obs_Ps: $(W \mid C) \rightarrow$ P-set

A Model of Parts

61. From composite parts one can observe a set of parts.
62. All parts have unique identifiers
63. PI

value

62. uid_П: $\mathrm{P} \rightarrow \Pi$

type

63. From a whole and from any part of that whole we can extract all contained parts.	65. Each part may have a mereology which may be "empty".
64. Similarly one can extract the unique identifiers of all those contained parts.	66. A mereology's unique part identifiers must refer to some oth parts other than the part itself.
value	64. xtr_Пs(wop) \equiv
63. xtr_Ps: $(\mathrm{W} \mid \mathrm{P}) \rightarrow \mathrm{P}$-set	64. \{uid_P $(\mathrm{p}) \mid \mathrm{p} \in \operatorname{xtr}$ _Ps(wop) $\}$
63. $\operatorname{xtr}^{\text {P Ps }}(\mathrm{w}) \equiv$	65. mereo_P: P \rightarrow-set
63. $\quad\left\{\operatorname{xtr}_{-} \mathrm{Ps}(\mathrm{p}) \mid \mathrm{p}: \mathrm{P} \cdot \mathrm{p} \in\right.$ obs_Ps(p) $\}$	axiom
63. pre: is_W(p)	66. \forall w:W
63. \quad xtr_Ps $(\mathrm{p}) \equiv$	66. let $\mathrm{ps}=x \operatorname{tr}_{-} \mathrm{Ps}(\mathrm{w})$ in
63. $\quad\left\{\operatorname{xtr}_{-} \mathrm{Ps}(\mathrm{p}) \mid \mathrm{p}: \mathrm{C} \cdot \mathrm{p} \in\right.$ obs_Ps $\left.(\mathrm{p})\right\} \cup\{\mathrm{p}\}$	66. $\forall \mathrm{p}: \mathrm{P} \cdot \mathrm{p} \in \mathrm{ps}$.
63. pre: is_P(p)	66. $\quad \forall \pi: \Pi \cdot \pi \in$ mereo_P(p) \Rightarrow
64. xtr_Пs: $(\mathrm{W} \mid \mathrm{P}) \rightarrow$ - -set	66. $\pi \in \operatorname{ctr}_{-\Pi \mathrm{l}}(\mathrm{p})$ end

63. From a whole and from any part of 65. Each part may have a mereology that whole we can extract all which may be "empty".

Similarly one can extract the unique
A mereology's unique part parts other than the part itself.

value

63. xtr_Ps: $(\mathrm{W} \mid \mathrm{P}) \rightarrow$ P-set
64. $\quad\{$ uid_P(p) $\mid \mathrm{p} \in \operatorname{xtr}$ _Ps(wop) $\}$
65. $\quad x \operatorname{tr}-\mathrm{Ps}(\mathrm{w}) \equiv$
66. $\quad\left\{x t r _P s(p) \mid p: P \cdot p \in o b s _P s(p)\right\}$
pre: is_W(p)
67. $\forall \mathrm{w}: \mathrm{W}$
68. $x_{t r} \operatorname{Ps}(\mathrm{p}) \equiv$

$$
\begin{aligned}
& \forall \mathrm{p}: \mathrm{P} \cdot \mathrm{p} \in \mathrm{ps} \\
& \forall \pi: \Pi \cdot \pi \in \text { mereo_P } \\
& \quad \pi \in \operatorname{xtr} \text { Пs }(\mathrm{p}) \text { end }
\end{aligned}
$$

67. An attribute map of a part associates with attribute names, i.e., type names, their values, whatever they are.
68. From a part one can extract its attribute map.
69. Two parts share attributes if their

type

67. AttrNm, AttrVAL,
68. AttrMap $=\operatorname{AttrNm} \rightarrow$ AttrVAL

value

68. attr_AttrMap: $\mathrm{P} \rightarrow$ AttrMap
69. share_Attributes: $\mathrm{P} \times \mathrm{P} \rightarrow$ Bool
70. share_Attributes $\left(\mathrm{p}, \mathrm{p}^{\prime}\right) \equiv$
respective attribute maps share attribute names.
71. Two parts share properties if the y
(a) either share attributes
(b) or the unique identifier of one is in the mereology of the other.
72. We can define the set of two element sets of unique identifiers where

- one of these is a unique part identifier and
- the other is in the mereology of some other part.
- We shall call such two element "pairs" of unique identifiers connectors.
- That is, a connector is a two element set, i.e., "pairs", of unique
type

71. $\mathrm{K}=\Pi$-set axiom $\forall \mathrm{k}: \mathrm{K} \cdot \mathbf{c a r d} \mathrm{k}=2$ value
72. xtr_Ks: $(\mathrm{W} \mid \mathrm{P}) \rightarrow$ K-set
73. xtr_Ks(wop) \equiv
74. let $\mathrm{ps}=x \operatorname{tr} \mathrm{Ps}(\mathrm{w})$ in
identifiers
Δ for which the identified parts share properties.
75. Let there be given a 'whole', w:W.
76. To every such "pair" of unique identifiers we associate a channel

- or rather a position in a matrix of channels indexed over the "pair sets" of unique identifiers.
- and communicating messages m:M.

71. $\quad\{\{$ uid_ $\mathrm{P}(\mathrm{p}), \pi\} \mid \mathrm{p}: \mathrm{P}, \pi: \Pi \cdot \mathrm{p} \in \mathrm{ps}$
72. $\wedge \exists \mathrm{p}^{\prime}: \mathrm{P} \cdot \mathrm{p}^{\prime} \neq \mathrm{p} \wedge \pi=$ uid_ $\mathrm{P}\left(\mathrm{p}^{\prime}\right)$
73.
74. w:W
75. channel $\left\{\operatorname{ch}[\mathrm{k}] \mid \mathrm{k}: \operatorname{xtr} _\mathrm{Ks}(\mathrm{w})\right\}: \mathrm{M}$
76. Now the 'whole' behaviour
whole is the parallel
composition of part processes,
one for each of the immediate
parts of the whole.
77. A part process is
78. whole: $\mathrm{W} \rightarrow$ Unit
79. whole (w) \equiv
80. || $\{$ part(uid_P(p))(p)|
81. $\left.\mathrm{p}: \mathrm{P} \cdot \mathrm{p} \in \operatorname{xtr} _\mathrm{Ps}(\mathrm{w})\right\}$
(a) either an atomic part process, atom, if the part is an atomic part,
(b) or it is a composite part process, comp, if the part is a composite part.
82. part: $\pi: \Pi \rightarrow \mathrm{P} \rightarrow$ Unit
83. $\operatorname{part}(\pi)(\mathrm{p}) \equiv$

75(b). is_A $(\mathrm{p}) \rightarrow \operatorname{atom}(\pi)(\mathrm{p})$,
75(b). $\quad-\quad \rightarrow \operatorname{comp}(\pi)(\mathrm{p})$

78. The core behaviours both

(a) update the part properties and
(b) recurses with the updated properties,

value

78. core: $\pi: \Pi \rightarrow \mathrm{p}: \mathrm{P} \rightarrow$
79. in,out $\left\{\operatorname{ch}\left[\left\{\pi, \pi^{\prime}\right\} \mid\left\{\pi^{\prime} \in\right.\right.\right.$ mereo_P $\left.\left.\left.(\mathrm{p})\right\}\right]\right\}$
80. Unit
(c) without changing the part identification.

We leave the update action undefined.

78. $\operatorname{core}(\pi)(\mathrm{p}) \equiv$

78(a). \quad let $\mathrm{p}^{\prime}=\operatorname{update}(\pi)(\mathrm{p})$
78(b). in core (π) (p^{\prime}) end
78(b). assert: uid_ $\mathrm{P}(\mathrm{p})=\pi=$ uid_ $\mathrm{P}\left(\mathrm{p}^{\prime}\right)$

```
value
76. in,out {ch[{\pi,\mp@subsup{\pi}{}{\prime}}|{\mp@subsup{\pi}{}{\prime}\in\mathrm{ mereo_P(p)}]}}}\mp@code{}}
76. Unit
76. }\operatorname{comp}(\pi)(p)
76(a). comp_core(\pi)(p)|
    76(b). || {part(uid_P(p'))(\mp@subsup{p}{}{\prime})
    76(b). p
    77. atom: }\pi:\Pi->\textrm{p}:\textrm{P}
    77. in,out {ch[{\pi,\mp@subsup{\pi}{}{\prime}}|{\mp@subsup{\pi}{}{\prime}\in\mathrm{ mereo_P(p) }]}}
    77. Unit
    77. atom}(\pi)(p)\equiv\operatorname{atom_core}(\pi)(p
value
76. comp: \(\pi: \Pi \rightarrow \mathrm{p}: \mathrm{P} \rightarrow\)
76. in,out \(\left\{\operatorname{ch}\left[\left\{\pi, \pi^{\prime}\right\} \mid\left\{\pi^{\prime} \in\right.\right.\right.\) mereo_P \(\left.\left.\left.(\mathrm{p})\right\}\right]\right\}\)
76. Unit
76. comp \((\pi)(\mathrm{p}) \equiv\)
76(a). comp_core \((\pi)(\mathrm{p}) \|\)
76(a). comp_core \((\pi)(\mathrm{p}) \|\)
77. \(\operatorname{atom}(\pi)(\mathrm{p}) \equiv \operatorname{atom} \_c o r e(\pi)(\mathrm{p})\)
76(b). || \{part(uid_P(p'))(p') |
76(b). \(\quad p^{\prime}: P \cdot p^{\prime} \in\) obs_Ps(p) \(\}\)
77. atom: \(\pi: \Pi \rightarrow \mathrm{p}: \mathrm{P} \rightarrow\)
77. in,out \(\left\{\operatorname{ch}\left[\left\{\pi, \pi^{\prime}\right\} \mid\left\{\pi^{\prime} \in\right.\right.\right.\) mereo_P \(\left.\left.\left.(\mathrm{p})\right\}\right]\right\}\)
```


76. A composite process, part,

 consists of(a) a composite core process, comp_core, and
(b) the parallel composition of
part processes one for each contained part of part.
77. An atomic process consists of just an atomic core process, atom_core.

- The model of parts can be said to be a syntactic model.
\otimes No meaning was "attached" to parts.
- The conversion of parts into CSP programs can be said to be a semantic model of parts,
\otimes one which to every part associates a behaviour
\otimes which evolves "around" a state
\otimes which is that of the properties of the part.

8.4.6. Sharing Properties \equiv Mutual Mereologies

- In the model of the tight relationship between parts and behaviours
\otimes we "equated" two-element set of unique identifiers of parts that share properties
with the concept of connectors, and these again with channels.
- We need secure that this relationship,
\otimes between the two-element connector sets of unique identifiers of parts that share properties
\otimes and the channels
with the following theorem:
\qquad

8.4.7. Behaviour Signatures

- By a behaviour signature we shall understand the combination of three clauses:
\Leftrightarrow a message type clause,
© type M,
ω possibly a channel index type clause,

\odot type Idx,

\otimes a channel declaration clause
\oplus channel ch:M
channel $\{\operatorname{ch}[i] \mid i: I d x \cdot i \in i s\}: M$
where is is a set of Idx values (defined somehow, e.g., value is:Idx-set $=\ldots$
where ... is an expression of Idx values), and, finally,
\Leftrightarrow a behaviour function signature:

```
\(\propto\) value beh: \(\Pi \rightarrow \mathrm{P} \rightarrow\) out ch Unit
value beh: \(\Pi \rightarrow \mathrm{P} \rightarrow\) out ch Unit

\section*{value beh: \(\Pi \rightarrow \mathrm{P} \rightarrow \mathrm{in}\), out ch Unit}
value beh: \(\Pi \rightarrow P \rightarrow\) in, out \(\left\{\operatorname{ch}[i] \mid i: I d x \cdot \in\right.\) is \(\left.^{\prime}\right\}\) Unit
- The Conversion of Parts into CSP Programs "story" gives the general idea:
\(\otimes\) To associate, in principle, with every part an own behaviour.
\(\Leftrightarrow\) (Example ?? (Slides ??-??) did not do that:
\(\propto\) in principle it did, but then it omitted describing
\(\oplus\) behaviours of "un-interesting" parts!)
\(\otimes\) Tentatively each behaviour signature, that is, each part behaviour, is
\(\oplus\) specified having a unique identifier type, respectively \(\otimes\) given a unique identifier argument.
Whether this tentative provision
\(\oplus\) for unique identifiers is necessary
\(\oplus\) will soon be revealed by further domain analysis.
\(\qquad\) 218 \(\qquad\)

\subsection*{8.4.8. Behaviour Definitions}
- We observe from the 'Conversion of Parts into CSP Programs' section, Slide 210,
\(\otimes\) that the "generation" of the core processes was syntax directed, \(\otimes\) yet "delivered" a "flat" structure of parallel processes,
\(\leftrightarrow\) that is, no processes "running", embedded, within other processes.
- We make this remark since parts did not follow that prescription:
\(\leftrightarrow\) parts can, indeed, be embedded within one another.
\(\otimes\) Before defining the behaviour process signatures
\(\oplus\) the domain analyser examines each of the chosen behaviours
\(\oplus\) with respect to its interaction with other chosen behaviours
\(\oplus\) in order to decide on
* interaction message types and
* "dimensionality" of channels,
* whether singular or an array.
\& Then the
\(\oplus\) message types can be defined,
\(\oplus\) the channels declared, and
\(\oplus\) the behaviour function signature can be defined, i.e., the full behaviour signature can be defined.
- So our first "conclusion" 26 , with respect to the structure of domain behaviours, is
\(\otimes\) that we shall model all behaviours of the "whole" domain
\(\otimes\) as a flat structure of concurrent behaviours -
\(\oplus\) one for each part contained in the whole -
\(\otimes\) which, when they need refer to properties of
\(\otimes\) behaviours of parts within which the part
\(\oplus\) on which "their" behaviour
is embedded
\(\otimes\) then they interact with the behaviours of those parts,
\(\Leftrightarrow\) that is, communicate messages.

\footnotetext{
\({ }^{26}\) We put double quotes around the term 'conclusion' (above) since that conclusion was and is a choice, that is, not governed by necessity.
}
- The 'Conversion of Parts into CSP Programs' section, Slide 210,
\(\otimes\) then suggested that there be
\(\oplus\) one atom core behaviour for each atomic part, and \(\oplus\) one composite core behaviour for each composite part of the domain.
- The domain analyser may find that some of these core behaviours \(\otimes\) are not necessary,
\(\otimes\) that is, that they - for the chosen scope of the domain model \(\otimes\) do not play a meaningful rôle.

224
\(\qquad\)
- Then the domain analyser can focus on exploring each individual process behaviour.
- Again the Conversion of Parts into CSP Programs "story" gives the general ideas that motivate the following:
- For each of the parts, p,
a behaviour expression can be "generated":
\(\otimes\) beh_p(uid_P(p))(p).
The idea is
\(\otimes\) that (uid_P(p)) uniquely identifies the part behaviour and * that the part properties of ( p ) serve as the local state for beh p .

Example: 37 "Redundant" Core Behaviours. We refer to the series of examples around the transport net domain.
- Transport nets, \(\mathrm{n}: \mathrm{N}\), consist of
\(\otimes\) sets, hs:HS, of hubs and
\(\otimes\) sets, Is:LS, of links.
- Yet we may decide, for one domain scope,
\(\Delta\) to model only
\(\oplus\) hub,
\(\oplus\) link and
\(\oplus\) © vehicle
behaviours,
- and not 'set of hubs' and 'set of links' behaviours.
\(\qquad\) 223
\(\qquad\)
- Now we present an analysis of part behaviours around three 'alternatives':
\(\otimes\) (i) a part behaviour which basically represents a proactive behaviour;
* (ii) one which basically represents a reactive behaviour; and
\(\otimes\) (iii) one which, so-to-speak alternates between proactive and reactive behaviours.
- What we are doing now is to examine
\(\otimes\) the form of the core behaviours,
\(\otimes\) cf. Item 78 (Slide 213).
- (i) A proactive behaviour is characterised by three facets.
\(\Leftrightarrow\) (i.1) taking the initiative to interact with other part behaviours by offering output,
\(\otimes\) (i.2) internally non-deterministically (П) ranging interactions over several alternatives, and
\(\otimes\) (i.3) externally non-deterministically ([]) selecting which other behaviour to interact with, i.e., to offer output to.
- (i.1) A proactive behaviour takes the initiative to interact by expressing output clauses:
83. \(\mathcal{O}_{P}\) :
ch!val
or
ch[i] ! val
or \(\quad \operatorname{ch}[i, j]\) ! val
etc.
- (i.2) The proactive behaviour interaction request
\(\otimes\) may range over either of a finite number of alternatives,
\(\otimes\) one for each alternative, \(a_{i}\), "kind" of interaction.
\(\otimes\) We may express such a non-deterministic (alternative) choice either as follows:
84. \(\mathcal{N I}_{P}\) : type Choice \(=a_{1} \Pi a_{2} \Pi \ldots \Pi a_{n}\)
value let \(c\) :Choice in
case c of \(\mathrm{a}_{1} \rightarrow \mathcal{E}_{1}, \mathrm{a}_{2} \rightarrow \mathcal{E}_{2}, \ldots, \mathrm{a}_{n} \rightarrow \mathcal{E}_{n}\) end end
\(\Leftrightarrow\) or, which is basically the same,
85. \(\mathcal{N I}_{P}\) : value \(\ldots \mathcal{E}_{1} \Pi \ldots \prod \mathcal{E}_{n} \ldots\)
\(\otimes\) where each \(\mathcal{E}_{i}\) usually contains an input clause, for example, ch ?
\(\qquad\)
- (ii) A reactive behaviour is characterised by three
\(\otimes\) (ii.1) offering to interact with other part behaviours by offering to accept input,
\(\Leftrightarrow\) (ii.2) internally non-deterministically ( \(\Pi\) ) ranging interactions over several alternatives, and
\(\otimes\) (ii.3) externally non-deterministically ( \(\square\) ) selecting which other behaviour to interact with, i.e., to accept input from.
- (ii.1) A reactive behaviour expresses input clauses:
88. \(\mathcal{I}_{R}\) :
ch?
ch[i]?
or
\(\operatorname{ch}[i, j]\) ?
etc.
87. \(\mathcal{N} \mathcal{X}_{P}:[\)...; ch[i]! \(\operatorname{fct}(\mathrm{i}) ; \ldots \mid \mathrm{i}: \operatorname{ldx} \cdot \mathrm{i} \in\) is \(\}\)
- \(\mathcal{O}\) utput clauses \([(\mathrm{i} .1)]\), Item \(84 \mathcal{O}_{P}\),
\(\otimes\) may \([(\mathrm{i} .2)]\) occur in the \(\mathcal{E}_{i}\) clauses of \(\mathcal{N}_{\mathcal{I}_{P}}\), Items 85 and 86 and \(\Leftrightarrow\) must \([(\mathrm{i} .3)]\) occur in each of the \(\mathcal{C}_{i}\) clauses of \(\mathcal{N} \mathcal{X}_{P}\), Item 87 .
- (ii.2) The reactive behaviour
\(\otimes\) may range over either of a finite number of alternatives,
\(\otimes\) one for each alternative, \(\mathrm{a}_{i}\), "kind" of interaction.
\(\otimes\) We may express such a non-deterministic (alternative) choice either as follows:
89. \(\mathcal{N I}_{R}\) : value let \(\mathrm{c}:\) Choice in
case c of \(\mathrm{a}_{1} \rightarrow \mathcal{E}_{1}, \ldots, \mathrm{a}_{n} \rightarrow \mathcal{E}_{n}\) end end
where each of the expressions, \(\mathcal{E}_{i}\), may, and usually contains a input clause ( \(\mathcal{I}\), Item 88 on the preceding page).
\(\leftrightarrow\) Thus the \(\mathcal{N} \mathcal{I}_{R}\) clause is almost identical to the \(\mathcal{N} \mathcal{I}_{P}\) clause, Item 85 on page 227.
\(\leftrightarrow\) Hence another way of expressing external non-deterministic choice is
90. \(\mathcal{N} \mathcal{X}_{R}: \Pi\{\ldots ; \operatorname{ch}[\mathrm{i}]!\mathrm{fct}(\mathrm{i}) ; \ldots \mid \mathrm{i}: \operatorname{ldx} \times \mathrm{i} \in\) is \(\}\).
\(\qquad\)
- Input clauses [(ii.1)], Item \(88 \mathcal{I}_{R}\),
\(\otimes\) may [(ii.2)] occur in the \(\mathcal{E}_{i}\) clauses of \(\mathcal{N} \mathcal{I}_{R}\), Items 89-90 and \(\otimes\) must [(ii.3)] occur in each of the \(\mathcal{C}_{i}\) clauses of \(\mathcal{N} \mathcal{X}_{R}\), Items 91-92.
- (ii.3) The reactive behaviour selection is directed at either of a number of other part behaviours.
\(\otimes\) This external non-deterministic choice is expressed
91. \(\mathcal{N} \mathcal{X}_{R}: \mathcal{C}_{i}\) ] \(\left.\mathcal{C}_{j}\right] \ldots \square \mathcal{C}_{k}\)
\(\oplus\) where each of the \(\mathcal{C}\) lauses
\(\oplus\) express respective input clauses
\(\oplus\) (usually) directed at different part behaviours,
© say ch \([\mathrm{i}]\) ?. ch \([\mathrm{j}]\) ?, etc., ch \([\mathrm{k}]\) ?.
\(\otimes\) Another way of expressing external non-deterministic choice selection is
92. \(\left.\mathcal{N X} \mathcal{X}_{R}:\right]\{\ldots ; \mathrm{ch}[\mathrm{i}] ? ; \ldots \mid \mathrm{i}: \mathrm{Idx} \cdot \mathrm{i} \in \mathrm{is}\}\)
\(\otimes\) Thus the \(\mathcal{N} \mathcal{X}_{R}\) clauses are almost identical to the \(\mathcal{N} \mathcal{X}_{P}\) clauses, Items 86-87.
\(\qquad\)
- (iii) An alternating proactive behaviour and reactive behaviour \(\otimes\) is characterised by expressing both
\(\oplus\) reactive behaviour and
\(\oplus\) proactive behaviours
combined by either
\(\oplus\) non-deterministic internal choice ( \(П\) ) or
\(\oplus\) non-deterministic external choice ( \(\bar{\square}\) ) combinators.
For example:
\[
\text { 93. }\left(\mathcal{N} \mathcal{I}_{P_{i}}[\Pi \operatorname{or} \square] \mathcal{N} \mathcal{X}_{P_{j}}\right)[\Pi \operatorname{or} \Pi]\left(\mathcal{N} \mathcal{I}_{R_{k}}[\Pi \text { or } \square] \mathcal{N} \mathcal{X}_{R_{\ell}}\right) .
\]
- The meta-clause [Пor \(\square]\) stands for either \(\Pi\) or \(\Pi\).
- Here there usually is a disciplined use of input/output clauses.

\section*{Example: 38 A Pipeline System Behaviour.}
- We refer to Examples

15 (Slide 94) and
© 22-24 (Slides
© 121-129)
\(凶\) and especially Examples 25-26 (Slides 131-135).
```

channel
$\{$ pls_u_ch[ui]:ui:UI•i $\in \operatorname{UIs}(p l s)\}$ MUPLS
\{ u_u_ch[ui,uj]:ui,uj:UI•\{ui,uj\} $\subseteq U I s(p l s)\} M U U$
type
MUPLS, MUU
value
pipeline_system: PLS \rightarrow in,out \{ pls_u_ch[ui]:ui:UI•i $\in \operatorname{UIs}($ pls $)\}$ Unit
pipeline_system(pls) $\equiv \|\{\operatorname{unit}(\mathrm{u}) \mid \mathrm{u}: \mathrm{U} \cdot \mathrm{u} \in$ obs_Us(pls) $\}$
unit: $\mathrm{U} \rightarrow$ Unit
unit(u) \equiv
$3(\mathrm{c}) . \quad$ is_We $(\mathrm{u}) \rightarrow$ well $\left(\operatorname{uid}_{-} \mathrm{U}(\mathrm{u})\right)(\mathrm{u})$,
3(a). is_Pu(u) \rightarrow pump $\left(\right.$ uid_U $\left.^{(\mathrm{U}}(\mathrm{u})\right)(\mathrm{u})$,
3(a). \quad is_Pi(u) \rightarrow pipe $\left(\operatorname{uid}_{-} U(u)\right)(u)$,
$3(\mathrm{a}) . \quad$ is_Va(u) \rightarrow valve $\left(u i d _U(u)\right)(u)$,
$3(b) . \quad$ is_Fo $(u) \rightarrow$ fork $\left(\operatorname{uid}_{-} U(u)\right)(u)$,
3(b). is_Jo(u) \rightarrow join (uid_U(u)) (u),
$3(\mathrm{~d})$. is_Si $(\mathrm{u}) \rightarrow \operatorname{sink}($ uid_U(u) $)(\mathrm{u})$

```
\(\qquad\)
- We consider (cf. Example 23) the pipeline system units to represent also the following behaviours:
\(\otimes\) pls:PLS, Item 4(a) on page 123, to also represent the system process, pipeline_system, and for each kind of unit,
cf. Example 15, there are the unit processes:
\(\oplus\) unit,
© well (Item 3(c) on page 95),
© pipe (Item 3(a)),
© pump (Item 3(a)),
\(\oplus\) valve (Item 3(a)),
\(\oplus\) fork (Item 3(b)),
© join (Item 3(b)) and
© sink (Item 3(d) on page 95).
- We illustrate essentials of just one of these behaviours

3(b). fork: ui:UI \(\rightarrow\) u:U \(\rightarrow\) out,in pls_u_ch[ui],
in \(\{\) u_u_ch[iui,ui]| iui:UI • iui \(\in\) sel_UIs_in(u) \}
out \(\{\) u_u_ch[ui,oui] | iui:UI •oui \(\in\) sel_UIs_out(u) \(\}\) Unit
3(b). fork(ui)(u) \(\equiv\)
3(b). let \(\mathrm{u}^{\prime}=\) core_fork_behaviour(ui)(u) in
3(b). fork(ui) ( \(u^{\prime}\) ) end
- The core_fork_behaviour(ui)(u) distributes
\(\otimes\) what oil (or gas) in receives,
\(\oplus\) on the one input sel_Uls_in \((u)=\{i u i\}\),
\(\oplus\) along channel u_u_ch[iui]
\(\otimes\) to its two outlets
\(\otimes\) sel_Uls_out \((\mathrm{u})=\left\{\right.\) oui \(_{1}\), oui \(\left._{2}\right\}\),
\(\oplus\) along channels u_u_ch[oui \({ }_{1}\) ], u_u_ch[oui \({ }_{2}\) ].
- The core_fork_behaviour(ui)(u) also communicates with the pipeline_system behaviour.
\(\leftrightarrow\) What we have in mind here is to model a traditional supervisory control and data acquisition, SCADA system.


Figure 1: A supervisory control and data acquisition system
\(\qquad\) 238 \(\qquad\)

240 \(\qquad\)
95. scada non-deterministically (internal choice, \(\rceil\) ), alternates between continually
(a) doing own work,
(b) acquiring data from pipeline units, and
(c) controlling selected such units

\section*{type}
95. Props

\section*{value}
95. scada: Props \(\rightarrow\) in,out \(\{\) pls_ui_ch[ui] | ui:UI-ui \(\in \in\) uis \(\}\) Unit
95. scada(props) \(\equiv\)

95(a). scada(scada_own_work(props))
95(b). П scada(scada_data_acqui_work(props))
95(c). П scada(scada_control_work(props))
- SCADA is then part of the pipeline_system behaviour.
94.
94. pipeline_system: PLS \(\rightarrow\) in,out \(\{\) pls_u_ch[ui]:ui:UI.i \(\in \operatorname{UIs}(p l s)\}\) Unit
94. pipeline_system \((\mathrm{pls}) \equiv \operatorname{scada}(\operatorname{props}(\mathrm{pls}))\|\|\{\) unit(u)|u:U•u \(\in\) obs_Us(pl
- props was defined on Slide 144.
\(\qquad\)
- We leave it to the listeners imagination to describe scada_own_work.
96. The scada_data_acqui_work
(a) non-deterministically, external choice, [], offers to accept data,
(b) and scada_input_updates the scada state -
(c) from any of the pipeline units.

\section*{value}
96. scada_data_acqui_work: Props \(\rightarrow\) in,out \(\{\) pls_ui_ch[ui] | ui:UI•ui \(\in \in u\) 96. scada_data_acqui_work(props) \(\equiv\)

96(a). ■ \{ let (ui,data) \(=\) pls_ui_ch[ui] ? in
96(b). scada_input_update(ui,data)(props) end
96(c). | ui:UI • ui \(\in\) uis \(\}\)
96(b). scada_input_update: UI \(\times\) Data \(\rightarrow\) Props \(\rightarrow\) Props
type
96(a). Data

\section*{97. The scada_control_work}
(a) analyses the scada state (props) thereby selecting a pipeline unit, ui, and the controls, ctrl, that it should be subjected to;
(b) informs the units of this control, and
(c) scada_output_updates the scada state.
97. scada_control_work: Props \(\rightarrow\) in,out \(\{\) pls_ui_ch[ui] \(\mid\) ui:UI-ui \(\in \in\) uis \(\}\)
97. scada_control_work(props) \(\equiv\)

97(a). let (ui,ctrl) \(=\) analyse_scada(ui,props) in
97(b). pls_ui_ch[ui] ! ctrl ;
97(c). scada_output_update(ui,ctrl)(props) end
97(c). scada_output_update UI \(\times\) Ctrl \(\rightarrow\) Props \(\rightarrow\) Props
type
97(a). Ctrl
\(\qquad\)
\(\qquad\)
- The domain describer has decided that an entity is a perdurant and is, or represents a behaviour.
\(\otimes\) The domain describer has further decided that the observed behaviour is of a class of behaviours - of the "same kind" that need be described.
\(\otimes\) By behaviours of the 'same kind' is meant that these can be described by the same channel declarations, function signature and function definition.
\(\qquad\)

\section*{9. Continuous Perdurants}
- By a continuous perdurant we shall understand a continuous behaviour.
- This section serves two purposes:
\(\otimes\) to point out that believable system descriptions must entail both
\(\oplus\) a discrete phenomena domain description and
\(\oplus\) a continuous phenomena mathematical model.
\(\leftrightarrow\) and this poses some semantics problems:
\(\oplus\) the formal semantics of the discrete phenomena description language and
\(\oplus\) the meta-mathematics of, for example, differential equations,
at least as of today, August 10, 2012, are not commensurable!
\(\Leftrightarrow\) That is, we have a problem -
as will be outlined later in this lecture.

\subsection*{9.1. Some Examples}

Example: 39 Continuous Behaviour: The Weather. We give a familiar example of continuous behaviour.
- The weather - understood as the time-wise evolution of a number of attributes of the weather material:
\& temperature,
s sky formation
\(\otimes\) wind direction,
(clear, cloudy, ...),
\(\otimes\) wind force,
\(\otimes\) atmospheric pressure,
* precipitation,
\(\otimes\) humidity,
\(\Leftrightarrow\) etcetera.
- That is, weather is seen as the state of the atmosphere as it evolves over time.

Example: 41 Pipeline Flows. A last example of continuous behaviour.
- We refer to Examples 13, 15, 22-26, 41-45 and 49.
- These examples focused on
\(\otimes\) the atomicparts and the composite parts of pipelines,
\(\otimes\) and dealt with the liquid or gas materials as they related to pipeline units.
- In the present example we shall focus on
\(\leftrightarrow\) the overall material flow "across" a pipeline.
\(\Delta\) in particular the continuity as
\(\otimes\) as contrasted with the pipeline unit discrete
\(\otimes\) aspects of flow.

Example: 40 Continuous Behaviour: Road Traffic. We give another familiar example of continuous behaviour.
- The automobile traffic is the time-wise evolution of cars along a net has the following additional attributes:
\(\Leftrightarrow\) car identity \((\mathrm{Cl})\),
\(\Leftrightarrow\) velocity \((\mathrm{V})\),
\(\Leftrightarrow\) position ( P , on the net),
\(\otimes\) acceleration (A),
\(\otimes\) direction (D),
\(\otimes\) etcetera (...).
- The equation below captures this:
\[
\mathrm{TF}=\mathrm{T} \rightarrow\left(\mathrm{Cl}_{\vec{m}}(\mathrm{P} \times \mathrm{D} \times \mathrm{V} \times \mathrm{A} \times \ldots)\right)
\]
- We refer to Example??
\(\otimes\) specifically the veh, hub and mon behaviours.
\(\infty\) These "mimic" a discretised version of the above:
\[
\mathrm{TF}=\mathrm{T}_{\vec{m}}\left(\mathrm{Cl}_{\vec{m}}(\mathrm{P} \times \mathrm{D} \times \mathrm{V} \times \mathrm{A} \times \ldots)\right)
\]
\(\qquad\) 247 \(\qquad\)
\(\qquad\)
- Which, then, are these pipeline system continuity concerns?
\(\leftrightarrow\) In general we are interested in
1. whether the flow is laminar or turbulent:
(a) within a unit, or
(b) within an entire, possibly intricately networked pipeline;
2. what the shear stresses are;
3. whether there are undesirable pressures;
4. whether there are leaks above normal values; etcetera.
- To answer questions like those posed in
\(\otimes\) Items 1(a) and 2, we need not build up the models sketched in Examples 13, 15, 25, 26, 41-45 and 49.
\(\star\) But for questions like those posed in Items 1(b), 3 and 4 we need such models.
- To answer any of the above questions, and many others, we need establish, in the case of pipelines, fluid dynamics models [Batchelor 1967,Thorley1991,Wendt1992,Coulbeck2010].
- These models involve such mathematical as are based, for example, on
- Newtonian Fluid Behaviours,
\& Bernoulli Equations,
- Navier-Stokes Equations,
\(\otimes\) etcetera.
- Each of these mathematical models
\(\Leftrightarrow\) capture the dynamics of one specific pipeline unit, \(\otimes\) not assemblies of two or more.
\(\qquad\)
\(\qquad\)

252
9. Continuous Perdurants 9.2. Two Kinds of Continuous System Models
© Example 41 on page 248 assumes
© the fluid mechanics domain models
\(\oplus\) to complement the discrete domain model of Example 38 on page 234,
whereas
\(\leftrightarrow\) Example 44 on page 271
© builds on Examples 41 and 38
\(\oplus\) but assumes that automatic monitoring \& control requirements prescriptions
© have been derived, in the usual way from the former fluid mechanics domain models.

\subsection*{9.2. Two Kinds of Continuous System Models}
- There are at least two different kinds of mathematical models for continuous systems.
\(\otimes\) There are the models which are based on physics models mentioned above, for example
© the dynamics of flows in networks,
\(\otimes\) and there are the models which builds on control theory to
express automatic control solutions to the monitoring \& control of pipelines, for example:
\(\oplus\) the opening, closing and setting of pumps, and
\(\oplus\) the opening, closing and setting of valves
depending on monitored values of dynamic well, pipe, pump, valve, fork, join and sink attributes.
\(\qquad\) 251

\subsection*{9.3. Motivation for Consolidated Models}
- By a consolidated model
* we shall understand a formal description
\(\Delta\) that brings together both
\(\oplus\) discrete
* for example TripTych style domain description
and
\(\oplus\) continuous
* for example classical mathematical description
\(\otimes\) models of a system.
- We shall motivate the need for consolidated models, that is for building both
\(\otimes\) the novel domain descriptions,
\(\oplus\) such as this tutorial suggests,
\(\oplus\) with its many aspects of discreteness,
and the
«the classical mathematical models,
\(\oplus\) as this section suggests,
\(\infty\) including, for example, as in the case of Example 41, fluid dynamics mathematics.
\(\qquad\)

256

- The classical mathematical models of, for example, pipelines, model physical phenomena within parts or within materials; \(\otimes\) and also combinations of neighbouring,
© parts with parts and
\(\oplus\) parts with materials.
\(\otimes\) But classical mathematical modelling \(\oplus\) cannot model continuous phenomena
\(\oplus\) for other than definite concrete,
specific combinations of parts and/or materials.
- This motivation really provides the justification for bringing the two disciplines together:
\(\otimes\) discrete system domain modelling with
\(\otimes\) continuous system physics modelling
in this tutorial.
\(\qquad\) 255
- The kind of domain modelling,
\(\otimes\) that is brought forward in this tutorial can,
凶 within one domain description
\(\otimes\) model a whole class,
\(\otimes\) indeed an indefinite,
\(\otimes\) class of systems.

\subsection*{9.4. Generation of Consolidated Models}
- The idea is therefore this
\& create a domain description
for a whole, the indefinite class of "alike" systems, to wit
\(\oplus\) for an indefinite class of pipelines,
\(\oplus\) for an indefinite class of container lines,
\(\oplus\) for an indefinite class of health care systems,
\(\otimes\) and then "adorn" such a description
\(\oplus\) first with classical mathematical models
of simple parts of such systems; and
\(\infty\) then "replicate" these mathematical models across the indefinite class of discrete models
© by "pairing"
* each definite classical concrete mathematical model
* with an, albeit abstract general discrete model.

\subsection*{9.4.1. The Pairing Process}
- The "pairing process" depends on a notion of boundary condition.
\(\otimes\) The boundary conditions for mereology-related parts are, yes, \(\oplus\) expressed by their mereology,
\(\oplus\) that is, by how the parts fit together.
\(\otimes\) The boundary conditions for continuous models are understood as \(\oplus\) the set of conditions specified for the solution
\(\oplus\) to a set of differential equations at the boundary between the parts being individually modelled.
- In pairing we take the "cue", i.e., directives, from
\(\otimes\) the discrete domain model for the generic part and its related material
since it is the more general, and
« "match" its mereology with
\(\otimes\) the continuous mathematics model of a part and its related material

\subsection*{9.4.2. Matching}
- Matching now means the following.
\(\otimes\) Let \(\mathcal{D}_{\mathrm{P}, \mathrm{M}}\)
\(\oplus\) designate a \(\mathcal{D}\) omain \(\mathcal{D}\) escription
\(\oplus\) for a part and/or a material, of type \(P\), respectively \(M\),
\(\oplus\) zero or one part type and zero or one material type(s).
\(\leftrightarrow\) Let \(\mathcal{M}_{\mathrm{P}, \mathrm{M}}\)
© designate a \(\mathcal{M}\) athematical Model
\(\oplus\) for a part and/or a material of type \(P\), respectively \(M\),
\(\oplus\) zero or one part type and zero or one material type(s).

\section*{Example: 42 A Transport Behaviour Consolidation.}
- An example \(\mathcal{D}_{\mathrm{P}, \mathrm{M}}\) could be
\(\otimes\) the one, for vehicles, shown in Example?? (Slides ??-205)
\(\Delta\) as specifically expressed in the two frames:
© 'The Vehicle Behaviour at Hubs' on Slide 201 and
© 'The Vehicle Behaviour along Links' on Slide 203.
- On Slide 201 of Example ?? notice vehicle vi movement at hub in formula line
\& 52(a) - apparently not showing any movement and
\(\leftrightarrow 52((\mathrm{~b}))\) iii - showing movement from hub onto link.
- On Slide 203 notice vehicle vi movements along link in formula lines
\(\Leftrightarrow 53(\mathrm{a})\) - no movement (stopped or parked),
\(\Leftrightarrow 53((\mathrm{c})\) ) i - incremental movement along link, and
\(\Leftrightarrow 53((\mathrm{c}))\) iiB - movement from link into hub.
\(\qquad\)
\(\qquad\)
\(\qquad\)
etcetera. of the driver: as an \(x\)-axis.

Example: 43 A Pipeline Behaviour Consolidation. We continue the line of exemplifying formalisations of pipelines, cf. Examples 15 (Slide 94) and 22-24 (Slides 121-129) and especially Examples 25-26 (Slides 131-135).
- Let the \(\mathcal{D}_{\mathrm{P}, \mathrm{M}}\) model be focused on the flows and leaks of pipeline units, cf. Examples 25 and 26.
- The \(\mathcal{M}_{\mathrm{P}, \mathrm{M}}\) model would then \(\mathcal{M}\) athematically model the fluid dynamics of the pipeline material per pipeline unit: flow and part actions and reactions for any of the corresponding \(\mathcal{D}\) omain models:
\[
\begin{array}{ll}
\Leftrightarrow \text { wells, } \mathcal{D}_{\mathrm{U}, \mathrm{O}}^{\text {well }} \rightarrow \mathcal{M}_{\mathrm{U}, \mathrm{O}}^{\text {well }} & \Leftrightarrow \text { forks, } \mathcal{D}_{\mathrm{U}, \mathrm{O}}^{\text {fork }} \rightarrow \mathcal{M}_{\mathrm{U}, \mathrm{O}}^{\text {fork }}, \\
\Leftrightarrow \text { pipes, } \mathcal{D}_{\mathrm{U}, \mathrm{O}}^{\text {pipe }} \rightarrow \mathcal{M}_{\mathrm{U}, \mathrm{O}}^{\text {pipe }} & \Leftrightarrow \text { joins, } \mathcal{D}_{\mathrm{U}, \mathrm{O}}^{\text {join }} \rightarrow \mathcal{M}_{\mathrm{U}, \mathrm{O}}^{\text {join }} \\
\Leftrightarrow \text { pumps, } \mathcal{D}_{\mathrm{U}, \mathrm{O}}^{\text {pump }} \rightarrow \mathcal{M}_{\mathrm{U}, \mathrm{O}}^{\text {pump }}, & \Leftrightarrow \text { sinks } \mathcal{D}_{\mathrm{U}, \mathrm{O}}^{\text {sink }} \rightarrow \mathcal{M}_{\mathrm{U}, \mathrm{O}}^{\text {sink }}
\end{array}
\]
- This model would need to abstract the non-deterministic behaviour
\(\otimes\) accelerating,
\(\otimes\) decelerating or
\(\otimes\) steady velocity.
- Example ??'s model of vehicles' link position in terms of a fragment \((\delta)\) can be expected to appear in \(\mathcal{M}_{\mathrm{P}, \mathrm{M}}\) as an \(x\), viewing the link
- The corresponding example \(\mathcal{M}_{\mathrm{P}, \mathrm{M}}\) might then be
\(\Leftrightarrow\) modelling these movements and no movements
\(\otimes\) requiring access to such attributes as
\[
\begin{array}{ll}
\oplus \text { link length, } & \oplus \text { vehicle velocity, } \\
\oplus \text { vehicle position, } & \oplus \text { vehicle acceleration, }
\end{array}
\]
annotations,
\(\Delta\) reflecting the match between \(\mathcal{D}_{\mathrm{P}, \mathrm{M}}\) and \(\mathcal{M}_{\mathrm{P}, \mathrm{M}}\),
seem relevant.
\(\Leftrightarrow\) Thus we further subscript \(\mathcal{D}_{\mathrm{P}, \mathrm{M}}\) optionally with
\(\oplus\) a unique identifier variable, \(\pi\), and
\(\oplus\) the properties \(p_{i}, p_{j}, \ldots, p_{k}\) where
* \(p_{i}\) is a property name of part type P or of material type M ,
* and where these property names typically are the distinct attribute names of \(P\) and/or \(M\),
to arrive at \(\mathcal{D}_{\mathrm{P}, \mathrm{M}_{p_{i}, p_{j}, \ldots, p_{k}}^{\pi}}\).
\(\Leftrightarrow\) Here \(\pi\) is a variable name for \(\mathrm{p}: \mathrm{P}\), i.e., \(\pi\) is uid \(\mathrm{P}(\mathrm{p})\).
\(\Leftrightarrow\) Do not confuse property names, \(p_{i}\) etc., with part names, p .
- And we likewise adorn \(\mathcal{M}_{\mathrm{P}, \mathrm{M}}\) optionally with
\(\otimes\) superscripts \(p_{i}, p_{j}, \ldots, p_{k}\) and
\(\otimes\) subscripts \(x_{i}, x_{j}, \ldots, x_{k}\) where
\(\oplus p_{i}, p_{j}, \ldots, p_{k}\) are as for \(\mathcal{D}_{\mathrm{P}, \mathrm{M}}^{p_{i}, p_{j}, \ldots, p_{k}} \boldsymbol{}\) and
\(\oplus x_{i}, x_{j}, \ldots, x_{k}\) are the names of the variables occurring in
\(\mathcal{M}_{\mathrm{P}, \mathrm{M}}\)
* possibly in its partial differential equations,
* possibly in its difference equations,
* possibly in its other mathematical expressions of the \(\mathcal{M}_{\mathrm{P}, \mathrm{M}}\) model.
to arrive at \(\mathcal{M}_{\mathrm{P}, \mathrm{M}_{x_{i}, x_{j}, \ldots, x_{k}}^{p_{i}, p_{j}, \ldots, p_{k}}}^{\pi}\)
\(\qquad\) 266 \(\qquad\)

268

\subsection*{9.4.3. Model Instantiation}
- The above models, \(\mathcal{D}_{\mathrm{P}, \mathrm{M}}\) and \(\mathcal{M}_{\mathrm{P}, \mathrm{M}}\), differ as follows.
\(\otimes\) The \(\mathcal{D}_{\mathrm{P}, \mathrm{M}}\) models (are claimed to) hold for indefinite sets of domains "of the same kind":
\(\oplus\) The axioms and invariants, cf.
* Example 12 on page 86,
* Examples 25-26 (Slides 131-134) and
* Example 28 on page 140,
are universally quantified over all transport nets.
- The \(\mathcal{M}_{\mathrm{P}, \mathrm{M}}\) models express no such logic.
- The "adornments" are the result of an analysis which
\(\otimes\) identifies the variables of \(\mathcal{M}_{\mathrm{P}, \mathrm{M}}\)
\(\otimes\) with the properties of \(\mathcal{D}_{\mathrm{P}, \mathrm{M}}\)
- Common to all conventional mathematical models
\(\Delta\) is that they all operate with a very simple type concept:
\(\oplus\) Reals, Integers,
\(\oplus\) arrays (vectors, matrices, and tensors),
\(\oplus\) sets of the above and sets.
- Common to all domain model descriptions
\(\otimes\) is that they all operate with a rather sophisticated type concept:
\(\oplus\) abstract types and concrete types,
\(\oplus\) union ( \(\mathrm{T}_{i} \mid \mathrm{T}_{j} \ldots\) ) of these,
\(\oplus\) sets, Cartesians, lists, maps, and partial functions and total functions over these, etcetera.
\(\qquad\) 267 \(\qquad\)
- The above difference can, however, be ameliorated.
\(\otimes\) For a given, that is, an instantiated domain,
\(\oplus\) we can "compile" the \(\mathcal{D}_{\mathrm{P}, \mathrm{M}}\) models
\(\oplus\) into a set of models,
\(\oplus\) one per part of that domain;
similarly, with the binding of model \(\mathcal{M}_{\mathrm{P}, \mathrm{M}}\) variables to instantiated model \(\mathcal{D}_{\mathrm{P}, \mathrm{M}}\) attributes,
\(\oplus\) we can "compile" the \(\mathcal{M}_{\mathrm{P}, \mathrm{M}}\) models
\(\oplus\) into as set of - instantiated \(\mathcal{M}_{\mathrm{P}, \mathrm{M}}\) models, \(\oplus\) one per part of that domain.

\footnotetext{
9. Continuous Perdurants 9.4 . Motivation for Consolidated Models9.4.3. Model Instantitition9.4.3.2. Model Instavtiation - in Practice
}

\subsection*{9.4.3.1 Model Instantiation - in Principle}
- Since this partial evaluation compilation can be (almost) automated, \(\otimes\) there is really no reason to actually perform it;
all necessary theorems should be derivable from the annotated models.
\[
\oplus \mathcal{D}_{\mathrm{P}, \mathrm{M}_{p_{i}, p_{j}, \ldots, p_{k}}^{\pi}} \text { and } \quad \oplus \mathcal{M}_{\mathrm{P}, \mathrm{M}_{x_{i}, x_{j}, \ldots, x_{k}}^{p_{i}, p_{j} \ldots, p_{k}}}
\]
- That is, as far as a domain understanding concerns
\(\otimes\) we might, with
\(\oplus\) continuous mathematical modelling and
\(\oplus\) mostly discrete domain modelling
very well have achieved all we can possibly, today, achieve
\(\qquad\) 270 \(\qquad\)

272 \(\qquad\)
- That pipeline system gives rise to the following instantiation.
scada(pro) \|
unit(ua) ||unit(ub) ||unit(uc) ||unit(ud) ||unit(ue) ||unit(uf) ||unit(ug) || unit(uh) \|
unit(ui) ||unit(uj) ||unit(uk)||unit(ul) \|
unit(um) ||unit(un)||...||unit(uo) ||unit(up) ||unit(uq) \| unit(ur)|| unit(us) \|unit(ut) ||unit(uu) \|
unit(uv) \|unit(uw) \|unit(ux) \|unit(uy) \|unit(uz)
- It is in the scada behaviour, that each of the \(\mathcal{M}_{\mathrm{U}, \mathrm{O}}^{\mathrm{uid} \mathrm{U}(\mathrm{u})}\) models are 'instantiated'.
- The above instantiated model
\(\Delta\) is not a domain model of a generic pipeline system
\(\otimes\) but is a requirements model for the monitoring \& control of a specific pipeline system.

\subsection*{9.4.3.2 Model Instantiation - in Practice}
- We continue Example 38 (Slides 234-242).
\(\otimes\) The definition of pipeline_system function (Slide 239) indicates the basis for an instantiation.

\section*{Example: 44 An Instantiated Pipeline System.}
- Figure 2 indicates an instantiation.


> Figure 2: A specific pipeline
\(\qquad\)

\subsection*{9.5. An Aside on Time}
- An important aspect of domain modelling is the description of time phenomena:
\(\otimes\) absolute time (or just time) and
\(\leftrightarrow\) time intervals.
- We shall, regrettably, not cover this facet in this tutorial, but refer to
\& a number of specifications expressed in combined uses of
\(\oplus\) the RAISE [RaiseMethod] combined with
\(\infty\) the DC: Duration Calculus [zcc+mrh2002].
\(\otimes\) We could also express these specifications using TLA+ [Lamport-TLA+02]: Lamport's Temporal Logic of Actions.
- We otherwise refer to [TheSEBook2wo] (Chap. 15.).

\subsection*{9.6. A Research Agenda}
- This section opens two main lines of research problems;
\(\otimes\) methodology problems cum computing science problems and \(\otimes\) computer science cum mathematics problems.
\(\qquad\)

276
- A problem of current programming methodology in
\(\otimes\) that it has for most of its "existence"
\(\otimes\) relied on discrete mathematics
\(\otimes\) and not sufficiently educated and trained
\(\otimes\) its candidates in continuous mathematics.

\subsection*{9.6.1. Computing Science cum Programming Methodology Problems}
- Some of the methodology problems are
\(\otimes\) techniques for developing continuous mathematics models which we leave to the relevant fields of
\(\infty\) physics and
\(\oplus\) control theory
to "deliver";
© contained in this are more detailed techniques for matching
\(\mathcal{D}_{\mathrm{D}, \mathrm{M}}\) and \(\mathcal{M}_{\mathrm{D}, \mathrm{M}}\) models,
\(\oplus\) that is, for identifying and pairing the \(p_{i} \mathrm{~s}\) and \(x_{i}\) s in
\[
* \mathcal{D}_{\mathrm{P}, \mathrm{M}_{p_{i}, p_{j}, \ldots, p_{k}}^{\pi}} \text { and } \quad * \mathcal{M}_{\mathrm{P}, \mathrm{M}_{x_{i}, x_{j}, \ldots, x_{k}}^{p_{i}, p_{j}, \ldots, p_{k}}}^{\pi}
\]
and
\(\oplus\) for instantiating these.
\(\qquad\) 275

\subsection*{9.6.2. Mathematical Modelling Problems}
- Some of the open mathematics problems are
\(\otimes\) the lack of well-understood interfaces between
\(\oplus\) discrete mathematics models and
\(\oplus\) continuous mathematics models;
\(\otimes\) and the lack of proof systems across the two modes of expression.
- By well-understood interfaces between the two modes of expression,
\(\otimes\) the discrete mathematics models and
\(\otimes\) the continuous mathematics models;
we mean that the semantics models of
* the discrete mathematics formal specification languages and
\(\otimes\) the continuous mathematics specification notations,
at this time, August 10, 2012, are not commensurate, that is, do not "carry over":
\(\Delta\) a variable, a of some, even abstract type, say A,
\(\otimes\) cannot easily be related to what it has to be related to, namely \(\otimes\) a variable, x of some concrete, mathematical type, say Real or
Integer, or arrays of these, etc.
\(\qquad\)
\(\qquad\)

\section*{10. Discussion of Entities}
- We have examined the concepts of entities, endurant and perdurant.
- We have not examined those "things" (of a domain)
which "fall outside" this categorisation.
\(\otimes\) That would lead to a rather lengthy discourse.
\(\otimes\) In the interest of "really understanding" what can be described such a computer science study should be made.
\(\leftrightarrow\) Philosophers have clarified the issues in centuries of studies.
\(\oplus\) Their interest is in
* identifying the issues and
* clarifying the questions.
\(\oplus\) Computer scientists are interested in answers.
- Lack of proof systems across the two modes of expression.
\(\leftrightarrow\) the discrete mathematics models and
\(\otimes\) the continuous mathematics models;
we mean,
\(\otimes\) firstly, that the former problem of lack of clear \(a \leftrightarrow x\) relations is taken to prevent such proof systems,
\(\Delta\) secondly, that mathematics essentially does not embody a "formal language".
- But nobody is really looking into, that is, researching possible "solutions" to these problems.
\(\qquad\)
\(\qquad\)
\(\qquad\)
- We see entities as either
\(\otimes\) endurants or
perdurants
or as either
\(\otimes\) discrete or
\(\otimes\) continuous.
- We analyse discrete endurants into atomic and composite parts with
```

\otimes observers, \& mereology and
\otimes unique identifiers, \& attributes.

```
- And we analyse perdurants into actions, events and behaviours.
- This domain ontology is entirely a pragmatic one:
\(\otimes\) it appears to work;
\(\otimes\) it has been used in the description of numerous cases;
\(\otimes\) it leads to descriptions which in a straightforward manner lend \(\oplus\) themselves to the "derivation"
\(\propto\) of significant fragments of requirements;
\(\otimes\) and appears not to stand in the way of obtaining remaining requirements.
\(\qquad\) 282 \(\qquad\)

284

End of Lecture 5: Last Session - Perdurant Entities

Behaviours, Discussion Entities

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012
- Most convincingly to us is that the concepts of our approach
\(\otimes\) endurants and perdurants,
\(\infty\) atomic and composite parts,
\(\otimes\) mereology and attributes,
\(\otimes\) actions, events and behaviours
fit it with major categories of philosophically analyses.


HAVE A GOOD LUNCH - SEE YOU BACK AT 2 PM


\title{
Begin of Lecture 6: First Session - Calculus I
}

\section*{Part and Material Discoverers}

\section*{HAD A GOOD LUNCH?}

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012
\(\qquad\)
11. Discussion of Entities

\section*{11. Towards a Calculus of Domain Discoverers}
- The 'towards' term is significant.
- We are not presenting
a "ready to serve"
\(\otimes\) comprehensive,
\(\otimes\) tested and tried
calculus.
- We hope that the one we show you is interesting.
- It is, we think, the first time such a calculus is presented.

6 A Calculus: Analysers, Parts and Materials
7 A Calculus: Function Signatures and Laws
Slides 285-338
- Lectures 8-9

16:00-16:40 + 16:50-17:30
\[
\begin{array}{r}
\text { Slides 377-423 } \\
\text { Slides 427-459 } \\
\text { Slides 424-426 }+460-471
\end{array}
\]

8 Domain and Interface Requirements
9 Conclusion: Comparison to Other Work
Conclusion: What Have We Achieved
Slides 339-376

Slides 1-35
Slides 36-114
2 Endurant Entities: Parts

Slides 115-146
Slides 147-178
Slides 179-284
4 Perdurant Entities: Actions and Events

12:30-14:00
14:00-14:40 \(+14: 50-15: 30\)
- The meta-operators are referred to as \(\otimes\) either domain analysis meta-functions \(\otimes\) or domain discovery meta-functions.
- The former are carried out by the domain analyser when inquiring (the domain) as to its properties.
- The latter are carried out by the domain describer when deciding upon which descriptions "to go for" !
- The two persons can be the same one domain engineer.
- The operators are referred to as meta-functions,
\(\otimes\) or meta-linguistic functions,
\(\Delta\) since they are
\[
\oplus \text { applied and } \quad \oplus \text { calculated }
\]
\(\otimes\) by humans, i.e., the domain describers.
- They are directives which can be referred to by the domain describers while carrying out their analytic and creative work.


290
11. Towards a Calculus of Domain Discoverers 11.1. Introductory Notions11.1.1. Discovery
- The domain discoverers are applied "mentally".
\(\otimes\) That is, not in a mechanisable way.
\(\oplus\) It is not like when procedure calls
\(\oplus\) invoke computations
\(\oplus\) of a computer.
\(\otimes\) But they are applied by the domain describer.
\(\leftrightarrow\) That person is to follow the ideas laid down for
\(\otimes\) these domain discoverers
\(\oplus\) (as they were in the earlier parts of this talk).
\(\otimes\) They serve to guide the domain engineer
\(\oplus\) to discoverer the desired domain entities
\(\oplus\) and their properties.
- In this section we shall review an ensemble of (so far) nine domain discoverers and (so far) four domain analysers.

We list the nine domain discoverers.
- [ Slide 319] \(\mathbb{P} \mathbb{A} \mathbb{R} T\) _SORTS,

Slide 316] MATEREIAL_SORTS,
Slide 323] \(\mathbb{P A R T} T \mathbb{T} \mathbb{P} \mathbb{E S}\),
Slide 326] UNIQUE IID,
Slide 327] MEREOLOGYY,
Slide 331] ATTRRIBUTES,
Slide 340] ACTION_SIGNATURES,
[ Slide 345] \(\mathbb{E V E N T}\) _SIGNATURES and
Slide 348] \(\mathbb{B E H A} \mathbb{V I O U R}\) _SIGNATURES.

\subsection*{11.1.2. Analysis}
- In order to "apply" these domain discoverers certain conditions must be satisfied.
- Some of these condition inquiries can be represented by (so far) four domain analysers.
\(\otimes[\) Slide 305] \(\mathbb{I S}, M A T E R I A L \mathbb{S}, \mathbb{B A S E D}\),
[Slide 307] IS_ATOM,
[ Slide 307] \(\mathbb{I S}\) _COMIPOSITE and
[ Slide 311] \(\mathbb{H} A \mathbb{S} . \mathbb{A}\) _CONCRETE_TYPE
\(\qquad\)
\(\qquad\)

\subsection*{11.1.3. Domain Indexes}
- In order to discover, the domain describer must decide on "where \& what in the domain" to analyse and describe.
- One can, for this purpose, think of the domain as semi-lattice-structured.
\(\otimes\) The root of the lattice is then labelled \(\Delta\)
\(\otimes\) Let us refer to the domain as \(\Delta\).
\(\otimes\) We say that it has index \(\langle\Delta\rangle\).
\(\leftrightarrow\) Initially we analyse the usually composite \(\Delta\) domain to consist of one or more distinctly typed parts \(\mathrm{p}_{1}: \mathrm{t}_{1}, \mathrm{p}_{2}: \mathrm{t}_{2}, \ldots, \mathrm{p}_{m}: \mathrm{t}_{m}\).
\(\otimes\) Each of these have indexes \(\left\langle\Delta, t_{i}\right\rangle\).
\(\otimes\) So we view \(\Delta\), in the semi-lattice, to be the join of \(m\) sub-semi-lattices whose roots we shall label with \(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{m}\).

294
11. Towards a Calculus of Domain Discoverers 11.1. Introductory Notions11.1.3. Domain Indexes
\(\Delta\) And so forth for any composite part type \(\mathrm{t}_{i}\), etcetera.
\(\leftrightarrow\) It may be that any two or more such sub-semi-lattice root types, \(\mathrm{t}_{i_{j}}, \mathrm{t}_{i_{j}}, \ldots, \mathrm{t}_{i_{k}}\) designate the same, shared type \(\mathrm{t}_{i_{x}}\), that is \(\mathrm{t}_{i_{j}}=\) \(\mathrm{t}_{i_{j}}=\ldots=\mathrm{t}_{i_{k}}=\mathrm{t}_{i_{x}}\).
\(\otimes\) If so then the \(k\) sub-semi-lattices are "collapsed" into one sub-semi-lattice.
\(\otimes\) The building of the semi-lattice terminates when one can no longer analyse part types into further sub-semi-lattices, that is, when these part types are atomic.


Figure 3: Domain indices

295

11. Towards a Calaulus of Domain Discoverers 11.1. Introductory Notions11.1.3. Domain Indexes
- For every domain index, \(\ell \wedge\langle t\rangle\),
that index designates the type t domain type texts.
- These texts consists of several sub-texts.
- There are the texts directly related to the parts, \(\mathrm{p}: P\) :
\(\leftrightarrow\) the observer functions, obs_ \(\cdots\), if type t is composite,
\(\leftrightarrow\) the unique identifier functions, uid_P,
\(\otimes\) the mereology function, mereo_P, and
\(\otimes\) the attribute functions, attr_...
\(\otimes\) To the above "add"
\(\oplus\) possible auxiliary types and auxiliary functions
\(\oplus\) as well as possible axioms.
\(\qquad\)
- That is, the roots of the sub-trees of the \(\Delta\) tree are labelled with type names.
\(\leftrightarrow\) Every point in the semi-lattice can be identified by a domain index.
\(\oplus\) The root is defined to have index \(\langle\Delta\rangle\).
\(\oplus\) The immediate sub-semi-lattices of \(\Delta\) have domain indexes \(\left\langle\Delta, \mathrm{t}_{1}\right\rangle,\left\langle\Delta, \mathrm{t}_{2}\right\rangle, \ldots,\left\langle\Delta, \mathrm{t}_{m}\right\rangle\).
\(\oplus\) And so forth.
\(\oplus\) If \(\ell^{\wedge}\langle\mathrm{t}\rangle\) is a prefix of another domain index, say \(\ell^{\wedge}\left\langle\mathrm{t}, \mathrm{t}^{\prime}\right\rangle\), then t designates a composite type.
- Then there are the texts related to
\(\otimes\) actions,
\(\otimes\) events, and
© behaviours
"based" (primarily) on parts p:P.
- These texts consists of
\(\otimes\) function signatures (for actions, events, and behaviours),
\(\otimes\) function definitions for these, and
\(\otimes\) channel
\(\oplus\) declarations and
\(\oplus\) channel message type definitions
for behaviours.
We shall soon see examples of the above.
- But not all can be "discovered" by just examining the domain from the point of view of a sub-semi-lattice type.
\(\leftrightarrow\) Many interesting action, event and behaviour signatures depend on domain type texts designated by "roots" of disjoint sub-trees of the semi-lattice.
\(\otimes\) Each such root has its own domain index.
\(\otimes\) Together a meet of the semi-lattice is defined by the set of disjoint domain indices: \(\left\{\ell_{i}, \ell_{j}, \cdots, \ell_{k}\right\}\).
- It is thus that we arrive at a proper semi-lattice structure relating the various entities of the domain rooted in \(\Delta\).

\subsection*{11.1.4. The \(\Re\) epository}
- We have yet to give the full signature of the domain discoverers and domain analysers.
\(\leftrightarrow\) One argument of these meta-functions
\(\oplus\) was parts of the actual domain
\(\oplus\) as designated by the domain indices.
\(\otimes\) Another argument
\(\oplus\) is to be the \(\Re\) epository of description texts
\(\oplus\) being inspected (together with the sub-domain) when * analysing that sub-domain and
\(\oplus\) being updated
* when "generating" the "discovered" description texts.
- The domain discoverers are therefore provided with arguments:
\(\otimes\) either a single domain index, \(\mathbb{D O M A I N} \mathbb{F} U N C T I O N(\ell)\),
\(\otimes\) or a pair, \(\mathbb{D O M A} \mathbb{N} \mathbb{F U N C T I O N}(\ell)\left(\left\{\ell_{i}, \ell_{j}, \cdots, \ell_{k}\right\}\right)\),
\(\oplus\) the single domain index \(\ell\) and
\(\oplus\) a set of domain indices, \(\left\{\ell_{i}, \ell_{j}, \cdots, \ell_{k}\right\}\)
where \(\mathbb{D O M A I N} \mathbb{F U N C T I O N}\) is any of the
\(\oplus\) domain discoverers or
\(\oplus\) domain analysers
listed earlier.
\(\otimes\) We can assume, without loss of generality, that © the \(\Re\) epository of description texts \(\infty\) is the description texts discovered so far.
\(\otimes\) The result of domain analysis is either undefined or a truth value. We can assume, without any loss of generality that that result is not recorded.
\(\leftrightarrow\) The result of domain discovery is either undefined or is a description text consisting of two well-defined fragments:
\(\oplus\) a narrative text, and © a formal text.
\(\otimes\) Those well-defined texts are "added" to the text of the凡epository of description texts.
\(\oplus\) For pragmatic reasons,
\(\oplus\) when we explain the positive effect of domain discovery, \(\oplus\) then we show just this "addition" to the Æepository.

\subsection*{11.2. Domain Analysers}
98. The proper type of the discover functions is therefore:
98. \(\mathbb{D I S C O V E R} \_\mathbb{F} U \mathbb{N} \mathbb{C} \mathbb{I} O \mathbb{N}:\) Index \(\rightarrow\) Index-set \(\rightarrow \Re \xrightarrow{\sim} \Re\)
- In the following we shall omit the \(\Re e p o s i t o r y ~ a r g u m e n t ~ a n d ~ r e s u l t . ~\)
99. So, instead of showing the discovery function invocation and result as:
99. \(\mathbb{D} I S C O V E \mathbb{R} \mathbb{F} U N C T I O N(\ell)(\ell \operatorname{set})(\rho)=\rho^{\prime}\)
- where \(\rho^{\prime}\) incorporates a pair of texts and RSL formulas,
100. we shall show the discover function signature, the invocation and the result as:
100. \(\mathbb{D I S C O V E R} \_\mathbb{F U N C T I O N : ~ I n d e x ~} \rightarrow\) Index-set \(\xrightarrow{\sim}(\) Narr_Text \(\times\) RSL_Text \()\)
100. \(\mathbb{D I S C O V E R} \mathbb{F} \mathbb{I} \mathbb{C T I I O N}(\ell)(\ell\) set) \()\) (narr_text,RSL_text)
\(\qquad\)

\subsection*{11.2.1. IS MATERIALS_BASED}
- You are reminded of the Continuous Endurant Modelling frame on Slide 136.

\section*{\(\mathbb{I S} \operatorname{MATERIALS} \mathbb{B} A S E D\)}
- An early decision has to be made as to whether a domain is significantly based on materials or not:
101. IS MAATERIALS \(\mathbb{B} \operatorname{ASED}\left(\left\langle\Delta_{\text {Name }}\right\rangle\right)\).
- If Item 101 holds of a domain \(\Delta_{\text {Name }}\) \(\otimes\) then the domain describer can apply \(\star \operatorname{MATERIAL}\) SORTS (Item 103 on page 316).
- Currently we identify four analysis functions.
- As the discovery calculus evolves
\(\otimes\) (through further practice and research)
\(\otimes\) we expect further analysis functions to be identified.

304
11. Towards a Calculus of Domain Discoverers 11.2. Domain Analysers11.2.1. IS.MATERTIMIS.BASEBD

Example: 45 Pipelines and Transports: Materials or Parts.
- \(\mathbb{I S}\) MATERIALS \(\mathbb{B} A S E D\left(\left\langle\Delta_{\text {Pipeline }}\right\rangle\right)=\) true.
- \(\mathbb{I S} \operatorname{MATERIALS\mathbb {B}} \mathbb{B} \mathbb{S E D}\left(\left\langle\Delta_{\text {Transport }}\right\rangle\right)=\) false.

\subsection*{11.2.2. \(\mathbb{I S}, A T O M, \mathbb{I S}\) _COMIPOSITE}
- During the discovery process
\(\otimes\) discrete part types arise (i.e., the names are yielded)
\(\otimes\) and these may either denote atomic or composite parts.
- The domain describer
\(\otimes\) must now decide as to
\(\otimes\) whether a named, discrete type is atomic or is composite.

\section*{IS ATOM}
- The \(\mathbb{I S} A T O M\) analyser serves that purpose:
value
\(\mathbb{I S}\) _ATOM: Index \(\xrightarrow{\sim}\) Bool
\(\mathbb{I S} \_\mathbb{A} \mathbb{T O M}\left(\ell^{\wedge}\langle t\rangle\right) \equiv\) true \(\mid\) false \(\mid\) chaos
- The analysis is undefined for ill-formed indices.

Example: 46 Transport Nets: Atomic Parts (II). We refer to Example 3 (Slide 16).
```

IS_ATOM(
Delta,N,HS,Hs,H\rangle),\quad\mathbb{IS_ATOM}(\langle\Delta,N,LS,Ls,L\rangle)
~\mathbb{SS_ATOM}(\langle\Delta,N,HS,Hs\rangle),\quad~\mathbb{IS_ATOM}(\langle\Delta,N,LS,Ls\rangle)

```


308


310
11. Towards a Calculus of Domain Discoverers 11.2. Domain Analysers11.2.2. IS_ATOM, IS_Compositre

Example: 47 Transport Nets: Composite Parts. We refer to Example 3 (Slide 16)
```

IS_COMMPOSITE(\langle\Delta\rangle),
IS_COMIPOSITE (\langle\Delta,N\rangle)
IS_COMPOSITEE(\langle\Delta,N,HS,Hs\rangle),
IS_COMIPOSITE (\langle\Delta,N,LS,Ls\rangle)
~\mathbb{IS_COMIPOSITE}(\langle\Delta,N,HS,Hs,H\rangle),
~IS_COMPOSITE (\langle\Delta,N,LS,Ls,L\rangle)

```

\subsection*{11.2.3. \(\mathbb{H A S} \_\mathbb{A}\) CONCRETE_TYPE}
- Sometimes we find it expedient
\(\otimes\) to endow a "discovered" sort with a concrete type expression, that is,
\(\Delta\) "turn" a sort definition into a concrete type definition.
\(\mathbb{H} \mathbb{A} S_{A} \mathbb{A} \_\mathbb{C O} \mathbb{N} \mathbb{R} E T \mathbb{E}\) _TYPE
102. Thus we introduce the analyser:
\(102 \mathbb{H} \mathbb{A} \mathbb{S}_{1} \mathbb{A}\) _CONCRETE_TYPE: Index \(\xrightarrow{\sim}\) Bool
\(102 \mathbb{H} \mathbb{A}\) _A_CONCR \(\mathbb{E} \mathbb{T} \mathbb{E}, T \mathbb{Y P E}\left(\ell^{\wedge}\langle t\rangle\right)\) : true | false | chaos
\(\qquad\)
11. Towards a Calaulus of Domain Discoverers 11.2. Domain Analysers11.2.3. Has___concrerite_Type
- We remind the listener that
\(\otimes\) it is a decision made by the domain describer
\(\otimes\) as to whether a part type is
\(\oplus\) to be considered a sort or
\(\oplus\) be given a concrete type.
- We shall later cover a domain discoverer related to the positive outcome of the above inquiry.

\section*{Example: 48 Transport Nets: Concrete Types . We refer to} Example 3 (Slide 16) while exemplifying four cases:
```

HAS_A_CONCRETE_T\mathbb{YPEP}(\langle\Delta,N,HS,Hs\rangle)
HMAS_A_CONCRETE_TMPPE(\langle\Delta,N,LS,Ls\rangle)
~ HMAS_A_CONCRETNE_TYYPE(}\langle\Delta,N,HS,Hs,H\rangle
~ \mathbb{HAS_A_CONCRENEE_TYPPE}(\langle\Delta,N,LS,Ls,L\rangle)

```

\subsection*{11.3. Domain Discoverers}
- A domain discoverer is a mental tool.
\(\otimes\) It takes a written form shown earlier.
\(\otimes\) It is to be "applied" by a human, the domain describer.
\(\otimes\) The domain describer applies the domain discoverer to a fragment of the domain, as it is: "out there" !

\subsection*{11.3.1. MATERIAL_SORTS}
- 'Application' means the following.
\(\otimes\) The domain describer examines the domain as directed by the explanation given for the domain discoverer - as here, in these lectures.
\(\leftrightarrow\) As the brain of the domain describer views, examines, analyses, a domain index-designated fragment of the domain, \(\oplus\) ideas as to which domain concepts to capture arise \(\oplus\) and these take the form of pairs of narrative and formal texts.
\(\qquad\)

\section*{MATERIAL_SORTS II/II}
103. \(\operatorname{MATERIAL}\) SORTS: \(\langle\Delta\rangle \rightarrow(\) Text \(\times\) RSL \()\)
103. \(\operatorname{MATERIAL}\) SORTSS \(\left(\left\langle\Delta_{\text {Name }}\right\rangle\right)\) :
104. [ narrative text ;
105. type \(\mathrm{M}_{a}, \mathrm{M}_{b}, \ldots, \mathrm{M}_{c}\) materials
106. comment: related part types: \(\mathrm{P}_{i}, \mathrm{P}_{j}, \ldots, \mathrm{P}_{k}\)
106.
obs_M \(\left.\mathrm{M}_{n}: \mathrm{P}_{m} \rightarrow \mathrm{M}_{n}, \ldots\right]\)
pre: \(\mathbb{I S} \_\operatorname{MATERIALS} \mathbb{B} A S E D\left(\left\langle\Delta_{\text {Name }}\right\rangle\right)\)

\section*{MATERIAL_SORTS - I/II}
03. The \(\operatorname{MATERIAL}\) _SORTS discovery function applies to a domain, usually designated by \(\left\langle\Delta_{\text {Name }}\right\rangle\)
where Name is a pragmatic hinting at the domain by name.
04. The result of the domain discoverer applying this meta-function is some narrative text
105. and the types of the discovered materials
106. usually affixed a comment
(a) which lists the "somehow related" part types
(b) and their related materials observers.

\(\qquad\)

318
11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.1. matrerial Sorra

\section*{Example: 49 Pipelines: Material.}
- \(\operatorname{MATERIALL} \mathbb{S O R T S}\left(\left\langle\Delta_{\text {Oil }}\right.\right.\) Pipeline System \(\left.\rangle\right)\) :
[ The oil pipeline system is focused on oil ; type \(O\) material
comment related part type: U , obs_O: \(\mathrm{U} \rightarrow \mathrm{O}\) ]

\subsection*{11.3.2. \(\mathbb{P A R T} \mathbb{R} O \mathbb{R} T \mathbb{S}\)}

\section*{PART_SORTS I/II}
. The part type discoverer \(\mathbb{P A R T} \mathbb{S O R T S}\)
(a) applies to a simply indexed domain, \(\ell^{\wedge}\langle t\rangle\),
(b) where t denotes a composite type, and yields a pair
i. of narrative text and
ii. formal text which itself consists of a pair:
A. a set of type names
B. each paired with a part (sort) observer.
\(\qquad\)

Example: 50 Transport: Part Sorts. We apply a concrete version of the above sort discoverer to the road traffic system domain \(\Delta\). See Example 36.
- \(\mathbb{P A R T} \mathbb{R} \mathbb{S} \mathbb{R} \mathbb{T}(\langle\Delta\rangle)\) :
[ the vehicle monitoring domain contains three sub-parts:
net, fleet and monitor ;
type N, F, M,
value obs_N: \(\Delta \rightarrow \mathrm{N}\), obs_F: \(\Delta \rightarrow \mathrm{F}\), obs_M: \(\Delta \rightarrow \mathrm{M}]\)
- \(\mathbb{P A R T} \mathbb{S O R T S}(\langle\Delta, N\rangle)\) :
[ the net domain contains two sub-parts:
sets of hubs and sets of link ;
type HS, LS,
value obs_HS: \(N \rightarrow\) HS, obs_LS: \(N \rightarrow\) LS ]

\section*{\(\mathbb{P A R T}\) SORTS II/II}

\section*{value}
107. \(\quad \mathbb{P A R T}\) SORTS: Index \(\xrightarrow{\sim}(\) Text \(\times\) RSL \()\)

107(a). \(\mathbb{P A R T} \mathbb{S O R T S}\left(\ell^{\wedge}\langle\mathrm{t}\rangle\right)\) :
107((b))i. [ narrative, possibly enumerated texts ;
107((b)) iiA. type \(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{m}\),
107((b))iiB. value obs_ \(\mathrm{t}_{1}: \mathrm{t} \rightarrow \mathrm{t}_{1}\),obs_ \(\mathrm{t}_{2}: \mathrm{t} \rightarrow \mathrm{t}_{2}, \ldots\), obs_ \(\mathrm{t}_{m}: \mathrm{t} \rightarrow \mathrm{t}_{m}\) 107(b). pre: \(\mathbb{I S}\) _COMPOSITE \((\ell \wedge\langle t\rangle)]\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline
\end{tabular}

322
11. Towards a Calalulus of Domain Discoverers 11.3. Domain Discoverers11.3.2. PARTSORTS
- \(\mathbb{P A R T} \mathbb{R} \mathbb{S} \mathbb{R} \mathbb{T}(\langle\Delta, \mathrm{F}\rangle)\) :
[ the fleet domain consists of one sub-domain:
set of vehicles;
type VS,
value obs_VS: \(F \rightarrow\) VS ]

\subsection*{11.3.3. \(\mathbb{P A R T} T \mathbb{T} \mathbb{P E S}\)}

\section*{PART_TYPPES I/II}
108. The \(\mathbb{P A R T} \mathbb{T} \mathbb{T} \mathbb{P E S}\) discoverer applies to a composite sort, \(t\), and yields a pair
(a) of narrative, possibly enumerated texts [omitted], and
(b) some formal text:
i. a type definition, \(\mathrm{t}_{c}=\mathrm{te}\),
ii. together with the sort definitions of so far undefined type names of te.
iii. An observer function observes \(t_{c}\) from \(t\).
iv. The \(\mathbb{P A R} \mathbb{R}, \mathbb{T} \mathbb{P E S}\) discoverer is not defined if the designated sort is judged to not warrant a concrete type definition.
\(\qquad\) 323

Example: 51 Transport: Concrete Part Types. Continuing Examples ??-50 and Example 3 - we omit narrative informal texts.
\[
\mathbb{P A R T} \mathbb{T} \mathbb{Y} \mathbb{P E S}(\langle\Delta, F, V S\rangle):
\]
type \(\mathrm{V}, \mathrm{V}_{\mathrm{s}}=\mathrm{V}\)-set, value obs_ V s: \(\mathrm{VS} \rightarrow \mathrm{V}_{\mathrm{s}}\)
\(\mathbb{P A R T} \mathbb{T Y P E S}(\langle\Delta, \mathrm{N}, \mathrm{HS}\rangle)\) :
type \(\mathrm{H}, \mathrm{Hs}=\mathrm{H}\)-set, value obs_Hs: \(\mathrm{HS} \rightarrow \mathrm{Hs}\)

\section*{\(\mathbb{P A R T}, \mathbb{T} \mathbb{P E S}(\langle\Delta, N, L S\rangle):\)}
type L , \(\mathrm{Ls}=\mathrm{L}\)-set, value obs_Ls: \(\mathrm{LS} \rightarrow \mathrm{Ls}\)

\section*{\(\mathbb{P A R T} T \mathbb{T} \mathbb{P E S}\) II/II}
```

108. PART_TYPES: Index }\xrightarrow{}{~}(\mathrm{ Text }\times\mathrm{ RSL }
109. PARRT_TYPESS(\ell`}\langlet\rangle) 108(a). [narrative, possibly enumerated texts ; 108((b))i. type t}\mp@subsup{\textrm{t}}{c}{}=\mathrm{ te, 108((b))ii. }\quad\mp@subsup{\textrm{t}}{\alpha}{},\mp@subsup{\textrm{t}}{\beta}{},\ldots,\mp@subsup{\textrm{t}}{\gamma}{} 108((b))iii. value obs_tc: }\textrm{t}->\mp@subsup{\textrm{t}}{c}{ 108((b))iv. pre: HHAS_CONCRETE_TYPPE (\ell`\langlet\rangle)]
108((b))ii. where: type expression te contains
108((b))ii. type names }\mp@subsup{\textrm{t}}{\alpha}{},\mp@subsup{\textrm{t}}{\beta}{},···,\mp@subsup{\textrm{t}}{\gamma}{
```

326
11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.4. unrous.ID

\subsection*{11.3.4. UNIQUE IID}

\section*{\(\mathbb{U N I Q U E \_ I I D}\)}
\(\qquad\)
```

9. For every part type t we postulate a unique identity analyser function uid_t.
value
10. UNIQUE\&IDD: Index }->(\mathrm{ Text }\times\mathrm{ RSL }
11. UNNI\mathbb{UE}\mathbb{ID}(\ell`}\langlet\rangle)
12. [narrative, possibly enumerated text ;
13. type ti
14. value uid_t: t }->\textrm{ti}
```

Example: 52 Transport Nets: Unique Identifiers. Continuing Example 3:
\(\mathbb{U N I} \mathbb{Q} \mathbb{E} \mathbb{I D}(\langle\Delta, \mathrm{HS}, \mathrm{Hs}, \mathrm{H}\rangle)\) : type \(\mathrm{H}, \mathrm{HI}\), value uid_H \(\rightarrow \mathrm{HI}\)
\(\mathbb{U N I Q U E} \mathbb{I D}(\langle\Delta, \mathrm{LS}, \mathrm{Ls}, \mathrm{L}\rangle)\) : type \(\mathrm{L}, \mathrm{LI}\), value uid \(\mathrm{L} \rightarrow \mathrm{LI}\)
11.3.5. MIEREOLOGY
- Given a part, p , of type t , the mereology, \(\mathbb{M E R E O L O G Y}\), of that part
\(\otimes\) is the set of all the unique identifiers
of the other parts to which part p is part-ship-related
\(\otimes\) as "revealed" by the mereo_titi functions applied to \(p\).
- Henceforth we omit the otherwise necessary narrative texts.

\section*{type}
110. \(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{n}\)
111. \(\mathrm{t}_{\text {idx }}=\mathrm{ti}_{1}\left|\mathrm{ti}_{2}\right| \ldots \mid \mathrm{ti}_{n}\)
112. \(\mathbb{M} \mathbb{M} \mathbb{R E O L O G Y : ~ I n d e x ~} \xrightarrow{\sim}\) Index-set \(\xrightarrow{\sim}(\) Text \(\times\) RSL \()\)
112. \(\mathbb{M} \mathbb{E} \mathbb{R} \mathbb{O L O G} \mathbb{Y}\left(\ell^{\wedge}\langle\mathrm{t}\rangle\right)\left(\left\{\ell_{i} \hat{}\left\langle\mathrm{t}_{j}\right\rangle, \ldots, \ell_{k} \widehat{\wedge}\left\langle\mathrm{t}_{l}\right\rangle\right\}\right)\) :
112. [ narrative, possibly enumerated texts ;
112. either: \(\}\)
112. or: \(\quad\) value mereo_t: \(\mathrm{t} \rightarrow \mathrm{ti}_{x}\)
112. or: \(\quad\) value mereo_t: \(\mathrm{t} \rightarrow \mathrm{ti}_{x}\)-set \(\times \mathrm{ti}_{y}\)-set \(\times \ldots \times \mathrm{ti}_{x}\)-set 113. axiom \(\mathcal{P}\) redicate over values of \(\mathrm{t}^{\prime}\) and \(\mathrm{t}_{i d x}\) ]
where none of the \(\mathrm{ti}_{x}, \mathrm{ti}_{y}, \ldots, \mathrm{ti}_{z}\) are equal to ti .

\section*{MIEREOLOGY \(\mathrm{I} / \mathrm{I}\)}
110. Let type names \(t_{1}, t_{2}, \ldots, t_{n}\) denote the types of all parts of a domain.
111. Let type names \(\mathrm{ti}_{1}, \mathrm{ti}_{2}, \ldots, \mathrm{ti}_{n}{ }^{27}\), be the corresponding type names of the unique identifiers of all parts of that domain.
112. The mereology analyser \(\mathbb{M E R E O L O G Y}\) is a generic function which applies to a pair of an index and an index set and yields some structure of unique identifiers.
We suggest two possibilities,
but otherwise leave it to the domain analyser to formulate the mereology function.
113. Together with the "discovery" of the mereology function there usually follows some axioms.
\(\qquad\) 328

330
11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.5. Mrereology

Example: 53 Transport Net Mereology. Examples:
\(\bullet \mathbb{M} \mathbb{R E O L O G}(\langle\Delta, N, H S, H s, H\rangle)(\{\langle\Delta, N, L S, L s, L\rangle\}):\) value mereo_H \(\rightarrow\) Ll-set
- \(\mathbb{M E R E D L O G Y}(\langle\Delta, N, L S, L s, L\rangle)(\{\langle\Delta, N, H S, H s, H\rangle\}):\) value mereo_L \(\rightarrow\) HI-set axiom see Example 11 Slide 87.

\subsection*{11.3.6. ATTRIIBUTES}
- A general attribute analyser analyses parts beyond their unique identities and possible mereologies.
\(\otimes\) Part attributes have names.
\(\otimes\) We consider these names to also abstractly name the corresponding attribute types.
\(\qquad\)

\section*{ATTRIIBUTES II/II}
```

type
114. at =at, |at2 | .. |at n
value
115. ATTTRIIBUTTES: Index }->(\mathrm{ Text }\times\mathrm{ RSL }
115. ATTTRIBUUTES(\ell }\langlet\rangle)
115(a). [narrative, possibly enumerated texts;
115((b))i. type at

```

- where \(\mathrm{m} \leq \mathrm{n}\)

\section*{ATTRIBUTES I/II}
114. Attributes have types.

We assume attribute type names to be distict from part type names.
115. ATTRTIBUTES applies to parts of type \(t\) and yields a pair of
(a) narrative text and
(b) formal text, here in the form of a pair
i. a set of one or more attribute types, and
ii. a set of corresponding attribute observer functions attr_at, one for each attribute sort at of \(t\).

Example: 54 Transport Nets: Part Attributes. We exemplify attributes of composite and of atomic parts - omitting narrative texts:
```

ATTTRIBUTES(\langle\Delta\rangle):
type Domain_Name, ...
value attr_Domain_Name: }\Delta->\mathrm{ Domain_Name, ...

```
- where
\(\otimes\) Domain_Name could include State Roads or Rail Net.
* etcetera.
```

ATTRIIBUTES(\langle\Delta,N\rangle):
type
Sub_Domain_Name ex.: State Roads
Sub_Domain_Location ex.: Denmark
Sub_Domain_Owner ex.: The Danish Road Directorate
Length
ex.: 3.786 Kms.
value
attr_Sub_Domain_Name: N }->\mathrm{ Sub_Domain_Name
attr_Sub_Domain_Location: N }->\mathrm{ Sub_Domain_Location
attr_Sub_Domain_Owner: N }->\mathrm{ Sub_Domain_Owner
attr_Length: N }->\mathrm{ Length

```
\(\qquad\)
- where
\& LOC might reveal some Bézier curve \({ }^{28}\) representation of the possibly curved three dimensional location of the link in question,
\(\otimes\) LEN might designate length in meters,
\(\otimes L \Sigma\) designates the state of the link,
\(\leftrightarrow \Omega\) designates the space of all allowed states of the link.
```

ATTR\mathbb{RIBUTES(\langle\Delta,N,LS,Ls,L\rangle):}
type LOC, LEN, ...
value attr_LOC: L }->\mathrm{ LOC, attr_LEN: L }->\mathrm{ LEN, ...
ATTRRIIBUTES(<\Delta,N,LS,Ls,L\rangle)({,\langle\Delta,N,HS,Hs,H\rangle}):
type
L\Sigma=HI-set
L}\Omega=\textrm{L}\Sigma\mathrm{ -set
value
attr_L\Sigma:L}->\textrm{L}
attr_L\Omega:L}->\textrm{L}

```

End of Lecture 6: First Session - Calculus I

\section*{Part and Material Discoverers}

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012


338


HELLO THERE!

\section*{都}


\section*{SHORT BREAK}

\section*{Tutorial Schedule}
- Lectures 1-2

1 Introduction
2 Endurant Entities: Parts
- Lectures 3-5

3 Endurant Entities: Materials, States
4 Perdurant Entities: Actions and Events
5 Perdurant Entities: Behaviours

\section*{Lunch}
- Lecture 6-7

6 A Calculus: Analysers, Parts and Materials
\(\sqrt{ } 7\) A Calculus: Function Signatures and Laws
- Lecture 8-9

8 Domain and Interface Requirements
9 Conclusion: Comparison to Other Work
Conclusion: What Have We Achieved

Begin of Lecture 7: Last Session - Calculus II

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012


Slides 1-35
Slides 36-114
\(1: 00-11: 15+11: 20-11: 45+11: 50-12: 30\)
Slides 115-146 Slides 147-178
Slides 179-284
12:30-14:00
14:00-14:40 \(+14: 50-15: 30\)
Slides 285-338
9:00-9:40 + 9:50-10:30

Slides 339-376
\(\begin{aligned} 16: 00-16: 40+16: 50-17: 30 & \\ & \text { Slides 377-423 }\end{aligned}\)
Slides 427-459
Slides 424-426 + 460-471

\subsection*{11.3.7. ACTION_SIGNATURES}
- We really should discover actions, but actually analyse function definitions.
- And we focus, in this tutorial, on just "discovering" the function signatures of these actions.
- By a function signature, to repeat, we understand
\(\otimes\) a functions name, say fct, and
\(\otimes\) a function type expression (te), say dte \(\xrightarrow{\sim}\) rte where
\(\oplus\) dte defines the type of the function's definition set
\(\oplus\) and red defines the type of the function's image, or range set.
\(\qquad\)
\(\qquad\)

\section*{ACTION_SIGNATURES I/II}
116. The \(\mathbb{A} \mathbb{C T I O N}\) SIGNATURES meta-function, besides narrative texts, yields
(a) a set of auxiliary sort or concrete type definitions and
(b) a set of action signatures each consisting of an action name and
a pair of definition set and range type expressions where
(c) the type names that occur in these type expressions are defined by in the domains indexed by the index set.
- We use the term 'functions' to cover actions, events and behaviours.
- We shall in general find that the signatures of actions, events and behaviours depend on types of more than one domain.
\(\otimes\) Hence the schematic index set \(\left\{\ell_{1} \wedge\left\langle\mathrm{t}_{1}\right\rangle, \ell_{2}{ }^{\wedge}\left\langle\mathrm{t}_{2}\right\rangle, \ldots, \ell_{n}{ }^{\wedge}\left\langle\mathrm{t}_{n}\right\rangle\right\}\)
\(\otimes\) is used in all action, event and behaviour discoverers.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{\(\mathbb{A} \mathbb{C T I O N} S \mathbb{S} \mathbb{G} \mathbb{N} \mathbb{T} U R \mathbb{E S}\) II/II} \\
\hline 116 & ACTION_SIGNATURES: Index \(\rightarrow\) Index-set \(\xrightarrow{\sim}(\) Text \(\times\) RSL \()\) \\
\hline 116 & \(\mathbb{A C T I O N} S \mathbb{S I G N A T U R E S}\left(\ell^{\wedge}\langle\mathrm{t}\rangle\right)\left(\left\{\ell_{1} \wedge\left\langle\mathrm{t}_{1}\right\rangle, \ell_{2}{ }^{\wedge}\left\langle\mathrm{t}_{2}\right\rangle, \ldots, \ell_{n} \uparrow\left\langle\mathrm{t}_{n}\right\rangle\right\}\right)\) : \\
\hline 116 & [ narrative, possibly enumerated texts ; \\
\hline 116 & type \(\mathrm{t}_{a}, \mathrm{t}_{b}, \ldots \mathrm{t}_{c}\) \\
\hline 116(b) & value \\
\hline 116(b) & \(\mathrm{act}_{i}: \mathrm{te}_{i_{d}} \xrightarrow{\sim} \mathrm{te}_{i_{r}}, \mathrm{act}_{j}: \mathrm{te}_{j_{d}} \xrightarrow{\sim} \mathrm{te}_{j_{r}}, \ldots\), act \(_{k}: \mathrm{te}_{k_{d}} \xrightarrow{\sim} \mathrm{te}_{k_{r}}\) \\
\hline 116(c) & where: \\
\hline 116(c) & type names in \(\mathrm{te}_{(i|j| \ldots \mid k)_{d}}\) and in \(\mathrm{te}_{(i|j| \ldots \mid k)_{r}}\) are either \\
\hline 116(c) & type names \(\mathrm{t}_{a}, \mathrm{t}_{b}, \ldots \mathrm{t}_{c}\) or are type names defined by the \\
\hline 116(c) & indices which are prefixes of \(\ell_{m}{ }^{\wedge}\left\langle T_{m}\right\rangle\) and where \(\mathbf{T}_{m}\) is \\
\hline 116(c) & in some signature act \({ }_{i|j| \ldots \mid k]}\) \\
\hline
\end{tabular}

\section*{Example: 55 Transport Nets: Action Signatures.}
- \(\mathbb{A C T I O N}\) SIGNATURES \((\langle\Delta, N, H S, H s, H\rangle)(\{\langle\Delta, N, L S, L s, L\rangle\rangle\}):\)
insert_H: \(\mathrm{N} \rightarrow \mathrm{H} \xrightarrow{\sim} \mathrm{N}\)
remove_H: \(\mathrm{N} \rightarrow \mathrm{HI} \xrightarrow{\sim} \mathrm{N}\)
- ACTION_SIGNATURES \((\langle\Delta, N, L S, L s, L\rangle)(\{\langle\Delta, N, H S, H s, H\rangle\rangle\}):\)
insert_L: \(N \rightarrow L \xrightarrow{\sim} N\)
remove_L: \(\mathrm{N} \rightarrow \mathrm{LI} \xrightarrow{\sim} \mathrm{N}\)
- where \(\cdots\) refer to the possibility of discovering further action signatures "rooted" in
```

$\otimes\langle\Delta, N, H S, H s, H\rangle$, respectively
$\otimes\langle\Delta, N, L S, L s, L\rangle$.

```

\subsection*{11.3.8. \(\mathbb{E V E N T} \mathbb{S I G N A T U R E S}\)}

\section*{EVENT_SIGNATURES I/II}
117. The \(\mathbb{E V E N T}\) SIG \(\mathbb{A} A T U R \mathbb{E}\) ( meta-function, besides narrative texts, yields
(a) a set of auxiliary event sorts or concrete type definitions and
(b) a set of event signatures each consisting of
- an event name and
- a pair of definition set and range type expressions where
(c) the type names that occur in these type expressions are defined either in the domains indexed by the indices or by the auxiliary event sorts or types.
\(\qquad\)

346

\section*{EVENT_SIGNATURES II/II}
```

117 E\mathbb{ENNT}S\mathbb{I}\mathbb{GNATUPRES:}\mathrm{ Index }->\mathrm{ Index-set }\xrightarrow{}{~}(\mathrm{ Text }\times\mathrm{ RSL)}
117 \mathbb{EVENT}\mathbb{SIGNATUUR\mathbb{ES}(\ell`}\langlet\rangle)({\mp@subsup{\ell}{1}{\widehat{<}}\langle\mp@subsup{t}{1}{}\rangle,\mp@subsup{\ell}{2}{}\widehat{~}\langle\mp@subsup{t}{2}{}\rangle,···,\mp@subsup{\ell}{n}{}\widehat{<}\langle\mp@subsup{t}{n}{}\rangle}):
117(a) [narrative, possibly enumerated texts omitted;
117(a) type }\mp@subsup{\textrm{t}}{a}{},\mp@subsup{\textrm{t}}{b}{},···\mp@subsup{\textrm{t}}{c}{}\mathrm{ ,
117(b) value
117(b) evt_pred}\mp@subsup{i}{i}{}:\mp@subsup{\mathrm{ te }}{\mp@subsup{d}{i}{}}{}\times\mp@subsup{\mathrm{ te }}{\mp@subsup{r}{i}{}}{}->\mathrm{ Bool
117(b) evt_pred j}:\mp@subsup{\mathrm{ te }}{\mp@subsup{d}{j}{}}{}\times\mp@subsup{\mathrm{ te }}{\mp@subsup{r}{j}{}}{}->\mathrm{ Bool
117(b) ...
117(b) evt_pred}\mp@subsup{\mp@code{k}}{k}{:}\mp@subsup{\mathrm{ te }}{\mp@subsup{d}{k}{}}{}\times\mp@subsup{\mathrm{ te }}{\mp@subsup{r}{k}{}}{}->\mathrm{ Bool

```

117(c) where: t is any of \(\mathrm{t}_{a}, \mathrm{t}_{b}, \ldots, \mathrm{t}_{c}\) or type names listed in in indices; type names of the ' \(d\) 'efinition set and ' \(r\) 'ange set type expressions \(\mathrm{te}_{d}\) and \(\mathrm{te}_{r}\) are type names listed in domain indices or are in \(\mathrm{t}_{a}, \mathrm{t}_{b}, \ldots, \mathrm{t}_{c}\), the auxiliary discovered event types.

\subsection*{11.3.9. \(\mathbb{B E H A V I O U R}\) SIGNATURES}
- We choose, in this tutorial, to model behaviours in CSP \({ }^{29}\).
- This means that we model (synchronisation and) communication between behaviours by means of messages \(m\) of type \(M\), CSP channels (channel ch:M) and CSP
\(\otimes\) output: ch!e [offer to deliver value of e on channel ch], and \(\otimes\) input: ch? [offer to accept a value on channel ch].
\({ }^{25}\) Other behaviour modelling languages are Petri Nets, MSCs: Message Sequence Charts, Statechart etc.
\(\qquad\)
- A behaviour usually involves two or more distinct sub-domains.

Example: 57 Vehicle Behaviour. Let us illustrate that behaviours usually involve two or more distinct sub-domains.
- A vehicle behaviour, for example, involves
\(\otimes\) the vehicle sub-domain,
* the hub sub-domain (as vehicles pass through hubs),
\(\otimes\) the link sub-domain (as vehicles pass along links) and,
\(\otimes\) for the road pricing system, also the monitor sub-domain.
- We allow for the declaration of single channels as well as of one, two, \(\ldots, n\) dimensional arrays of channels with indexes ranging over channel index types
\(\Leftrightarrow\) type Idx, Cldx, RIdx ... :
\(\otimes\) channel ch:M, \(\{\) ch_v[vi]:M'|vi:Idx \}, \{ ch_m[ci,ri]:M"|ci:Cldx,ri:RIdx \}, ...
etcetera.
- We assume some familiarity with CSP [Hoare85+2004] (or even RSL/CSP [TheSEBook1wo] [Chapter 21]).
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
119. It applies to a set of indices and results in a pair, \\
(a) a narrative text and \\
(b) a formal text: \\
i. a set of one or more message types, \\
ii. a set of zero, one or more channel index types, \\
iii. a set of one or more channel declarations, \\
iv. a set of one or more process signatures with each signature containing a behaviour name, an argument type expression, a result type expression, usually just Unit, and \\
v. an input/output clause which refers to channels over which the signatured behaviour may interact with its environment.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{\(\mathbb{B E H A V I O U R}\) _SIGNATURES II/II} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{118. \(\mathbb{B E H A V I O U R}\)-SIGNATURES: Index \(\rightarrow\) Index-set \(\xrightarrow{\sim}(\) Text \(\times\) RSL \()\) 118. \(\mathbb{B E H A V I O U R} \operatorname{SIGNATURES}\left(\ell^{\wedge}\langle\mathrm{t}\rangle\right)\left(\left\{\ell_{1} \wedge\left\langle\mathrm{t}_{1}\right\rangle, \ell_{2}{ }^{\wedge}\left\langle\mathrm{t}_{2}\right\rangle, \ldots, \ell_{n} \wedge\left\langle\mathrm{t}_{n}\right\rangle\right\}\right)\) :}} \\
\hline & \\
\hline 119(a). [n & narrative, possibly enumerated texts \\
\hline 119((b)) i. ty & type \(\quad \mathrm{m}=\mathrm{m}_{1}\left|\mathrm{~m}_{2}\right| \ldots \mid \mathrm{m}_{\mu}, \mu \geq 1\) \\
\hline 119(b) ii i. & \(\mathrm{i}=\mathrm{i}_{1}\left|\mathrm{i}_{2}\right| \ldots \mid \mathrm{i}_{n}, n \geq 0\) \\
\hline 119(b) )iii. c & channel c:m, \(\left\{\mathrm{vc}[\mathrm{x}] \mid \mathrm{x}: \mathrm{i}_{a}\right\}\) :m, \(\left\{\mathrm{mc}[\mathrm{x}, \mathrm{y}] \mid \mathrm{x}: \mathrm{i}_{6}, \mathrm{y}: \mathrm{i}_{c}\right\}\) :m,... \\
\hline 119(b))iv. v & value \\
\hline 119(b) )iv. & bhv \(_{1}\) : ate \(_{1} \rightarrow\) inout \(_{1}\) rte \(_{1}\), \\
\hline 119(b) )iv. & ..., \\
\hline \(119(\) (b) iv. & bhv \(_{m}:\) ate \(_{m} \rightarrow\) inout \(\left._{m} \mathrm{rte}_{m}.\right]\) \\
\hline 119((b))iv. where & e type expressions atei \(i_{i}\) and \(\mathrm{rte}_{i}\) for all \(i\) involve at least \\
\hline 119((b)) iv. & two types \(t_{i}^{\prime}, t_{j}^{\prime \prime}\) of respective indexes \(\ell_{i}{ }^{\wedge}\left\langle t_{i}\right\rangle, \ell_{j}{ }^{\wedge}\left\langle\mathrm{t}_{j}\right\rangle\), \\
\hline \(119(\) (b))v. where & e Unit may appear in either ate \({ }_{i}\) or \(\mathrm{rte}_{j}\) or both. \\
\hline \(119(\) (b)) v. where & e inout \(_{i}\) : in \(\mathrm{k} \mid\) out \(\mathrm{k} \mid\) in,out k \\
\hline \(119(\) (b))v. where & e k: cor vc[ x\(]\) or \(\{\mathrm{vc}[\mathrm{x}] \mid \mathrm{x} \cdot \mathrm{i} \cdot \mathrm{x} \cdot \mathrm{x} \in \mathrm{xs}\}\) or \\
\hline \(119(\) b) \() \mathrm{v}\). & \(\left\{\mathrm{mc}[\mathrm{x}, \mathrm{y}]\right.\) |x: \(\left.\mathrm{i}_{6}, \mathrm{y}: \mathrm{i}_{c} \cdot \mathrm{x} \in \mathrm{xs} \wedge \mathrm{y} \in \mathrm{ys}\right\}\) or ... \\
\hline
\end{tabular}
\(\qquad\) 352
11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.9. mehaviour Sicnaturres

\section*{\(\mathbb{B E H A V I O U R} \operatorname{SIGNATURES}(\langle\Delta, \mathrm{M}\rangle)(\{\langle\Delta, \mathrm{F}, \mathrm{VS}, \mathrm{Vs}, \mathrm{V}\rangle\}):\)}
[ With the monitor part we associate a behaviour with the monitor part as only argument. The monitor accepts communications from vehicle behaviours ... ;

\section*{value}
mon: \(\mathrm{M} \rightarrow\) in \(\{\mathrm{vm}[\mathrm{vi}] \mid \mathrm{vi}: V I \cdot v i \in \operatorname{vis}\}\), clkm_ch Unit \(]\)
- The "discovery" of vehicle positions into positions
\(\leftrightarrow\) on a link, some fraction down that link, or
\(\otimes\) at a hub,
that "discovery", is left for further analysis.
We refer to Slide 197 (Items 47(a)-47((a))iii).

Example: 58 Vehicle Transport: Behaviour Signatures. We refer to Example 36.
```

$\mathbb{B E} \mathbb{H} \mathbb{A} \mathbb{V} \mathbb{O} U \mathbb{R} \quad \operatorname{SIGNATUR\mathbb {E}}(\langle\Delta, \mathrm{~F}, \mathrm{VS}, \mathrm{Vs}, \mathrm{V}\rangle)(\{\langle\Delta, \mathrm{M}\rangle\}):$
[With each vehicle we associate behaviour with the following
arguments: the vehicle identifier, the vehicle parts, and
the vehicle position. The vehicle communicates with
the monitor process over a vehicle to monitor array of
channels, one for each vehicle ... ;
type
VP
channel
$\{\mathrm{vm}[$ vi $] \mid \mathrm{vi}: V I \cdot v i \in \operatorname{vis}\}: V P$
value
veh: vi:VI $\rightarrow \mathrm{v}: V \rightarrow \mathrm{vp}: V \mathrm{VP} \rightarrow$ out vm[vi] Unit]

```
\(\qquad\)

\subsection*{11.4. Order of Analysis and "Discovery"}
- Analysis and "discovery", that is, the "application" of
* the analysis meta-functions and
\(\Delta\) the "discovery" meta-functions
- has to follow some order:
\(\otimes\) starts at the "root", that is with index \(\langle\Delta\rangle\),
\(\otimes\) and proceeds with indices appending part domain type names already discovered.

\subsection*{11.5. Analysis and "Discovery" of "Leftovers"}
- The analysis and discovery meta-functions focus on types, that is, the types
\(\otimes\) of abstract parts, i.e., sorts,
\(\otimes\) of concrete parts, i.e., concrete types,
\(\otimes\) of unique identifiers,
\(\otimes\) of mereologies, and of
\(\otimes\) attributes - where the latter has been largely left as sorts.
\(\qquad\)

\subsection*{11.6. Laws of Domain Descriptions}
- By a domain description law we shall understand
\(\otimes\) some desirable property
\(\Delta\) that we expect (the 'human') results of
\(\leftrightarrow\) the (the 'human') use of the domain description calculus
\& to satisfy.
- We may think of these laws as axioms
\(\otimes\) which an ideal domain description ought satisfy,
\(\otimes\) something that domain describers should strive for.
- In this tutorial we do not suggest any meta-functions for such analyses that may lead to
© concrete types from non-part sorts, or to
\(\otimes\) action, event and behaviour definitions
\(\oplus\) say in terms of pre/post-conditions,
\(\oplus\) etcetera.
\(\leftrightarrow\) So, for the time, we suggest, as a remedy for the absence of such "helpers", good "old-fashioned" domain engineer ingenuity.
\(\qquad\)

\section*{Notational Shorthands:}
11. Towards a Calculus of Demain Discoverers 11.6 Lers of Domin Descritions
- \((f ; g ; h)(\Re)=h(g(f(\Re)))\)
- \(\left(f_{1} ; f_{2} ; \ldots ; f_{m}\right)(\Re) \simeq\left(g_{1} ; g_{2} ; \ldots ; g_{n}\right)(\Re)\)
means that the two "end" states are equivalent modulo appropriate renamings of types, functions, predicates, channels and behaviours.
- \([f ; g ; \ldots ; h ; \alpha]\)
stands for the Boolean value yielded by \(\alpha\) (in state \(\Re\) ).

\subsection*{11.6.1. 1st Law of Commutativity}
- We make a number of assumptions:
\(\otimes\) the following two are well-formed indices of a domain:
\[
\oplus \ell^{\prime}:\langle\Delta\rangle \uparrow \ell^{\prime \wedge}\langle\mathrm{A}\rangle, \quad \oplus \iota^{\prime \prime}:\langle\Delta\rangle \uparrow \ell^{\prime \prime \wedge}\langle\mathrm{B}\rangle
\]
where \(\ell^{\prime}\) and \(\ell^{\prime \prime}\) may be different or empty \((\rangle)\) and \(A\) and \(B\) are distinct;
\(\otimes\) that \(\mathcal{F}\) and \(\mathcal{G}\) are two, not necessarily distinct discovery functions; and
\(\Delta\) that the domain at \(\iota^{\prime}\) and at \(\iota^{\prime \prime}\) have not yet been explored.

\section*{362}
11. т

\subsection*{11.6.2. 2nd Law of Commutativity}
- Let us assume
\(\otimes\) that we are exploring the sub-domain at index
\(\otimes l:\langle\Delta\rangle^{\wedge} \ell^{\wedge}\langle A\rangle\).
- Whether we
\(\otimes\) first "discover" \(\mathcal{A}\) ttributes
\(\otimes\) and then \(\mathcal{M e r e o l o g y}\) (including \(\mathcal{U}\) nique identifiers)
or
\(\otimes\) first "discover" \(\mathcal{M e r e o l o g y}\) (including \(\mathcal{U}\) nique identifiers)
\(\Leftrightarrow\) and then \(\mathcal{A}\) ttributes
should not matter.
- We wish to express,
\(\otimes\) as a desirable property of domain description development
\(\otimes\) that exploring domain \(\Delta\) at
\(\infty\) either \(\iota^{\prime}\) first and then \(\iota^{\prime \prime}\)
\(\oplus\) or at \(\iota^{\prime \prime}\) first and then \(\iota^{\prime}\),
\(\otimes\) the one right after the other (hence the ";"),
\(\otimes\) ought yield the same partial description fragment:
120. \(\left(\mathcal{G}\left(\iota^{\prime \prime}\right) ;\left(\mathcal{F}\left(\iota^{\prime}\right)\right)\right)(\Re) \simeq\left(\mathcal{F}\left(\iota^{\prime}\right) ;\left(\mathcal{G}\left(\iota^{\prime \prime}\right)\right)\right)(\Re)\)

When a domain description development satisfies Law 120., under the above assumptions,
\(\Leftrightarrow\) then we say that the development,
\(\leftrightarrow\) modulo type, action, event and behaviour name "assignments",
\(\otimes\) satisfies a mild form of commutativity.
\(\qquad\) 361
- We make some abbreviations:
\(\otimes \mathcal{A}\) stand for the \(\mathbb{A} T T \mathbb{R I I B U T E S}\),
\(\leftrightarrow \mathcal{U}\) stand for the \(\mathbb{U N I Q U E \_ I D E N T I F I E R}\),
\(\Delta \mathcal{M}\) stand for the \(\mathbb{M E R E O L O G Y}\),
\(\otimes \iota\) for index \(\langle\Delta\rangle^{\wedge} \ell^{\wedge}\langle\mathrm{A}\rangle\), and
\(\Delta \iota\) for a suitable set of indices.
- Thus we wish the following law to hold:
121. \((\mathcal{A}(\iota) ; \mathcal{U}(\iota) ; \mathcal{M}(\iota)(\iota s))(\Re) \simeq\) \((\mathcal{U}(\iota) ; \mathcal{M}(\iota)(\iota s) ; \mathcal{A}(\iota))(\Re) \simeq\) \((\mathcal{U}(\iota) ; \mathcal{A}(\iota) ; \mathcal{M}(\iota)(\iota s))(\Re)\).
\(\otimes\) here modulo attribute and unique identifier type name renaming.

\subsection*{11.6.3. 3rd Law of Commutativity}
- Let us again assume
\(\Leftrightarrow\) that we are exploring the sub-domain at index
\(\otimes l:\langle\Delta\rangle{ }^{\wedge} \ell^{\wedge}\langle\mathrm{A}\rangle\)
\(\otimes\) where \(\iota\) s is a suitable set of indices.
- Whether we are
\(\otimes\) exploring actions, events or behaviours at that domain index
\(\Leftrightarrow\) in that order,
\(\Leftrightarrow\) or some other order
ought be immaterial.

\subsection*{11.6.4. 1st Law of Stability}
- Re-performing
\(\Leftrightarrow\) the same discovery function \(\Leftrightarrow\) that is with identical indices,
\(\leftrightarrow\) over the same sub-domain, \(\leftrightarrow\) one or more times,
ought not produce any new description texts.
- That is:
123. \((\mathcal{D}(\iota)(\iota s) ; \mathcal{A}\) _and_ \(\mathcal{D}\) _seq \()(\Re) \simeq\)
\[
\left(\mathcal{D}(\iota)(\iota \mathbf{s}) ; \mathcal{A} \_ \text {and } \_\mathcal{D} \_ \text {seq } ; \mathcal{D}(\iota)(\iota \mathrm{s})\right)(\Re)
\]
- where
\(\otimes \mathcal{D}\) is any discovery function,
\(\leftrightarrow \mathcal{A}\) _and_ \(\mathcal{D} \_\)seq is any specific sequence of intermediate analyses and discoveries, and where
\(\Delta \iota\) and \(\iota\) s are suitable indices, respectively sets of indices.
- Hence with
\(\leftrightarrow \mathcal{A}\) now standing for the \(\mathbb{A C T I O N}\) SIGNATURES,
\(\otimes \mathcal{E}\) standing for the \(\mathbb{E V E N T}\) SIGNATURES,
\(\leftrightarrow \mathcal{B}\) standing for the \(\mathbb{B E H A V I O U R}\) SIGNATURES,
- discoverers, we wish the following law to hold:
122. \((\mathcal{A}(\iota)(\iota s) ; \mathcal{E}(\iota)(\iota s) ; \mathcal{B}(\iota)(\iota s))(\Re) \simeq\) \((\mathcal{A}(\iota)(\iota s) ; \mathcal{B}(\iota)(\iota s) ; \mathcal{E}(\iota)(\iota s))(\Re) \simeq\) \((\mathcal{E}(\iota)(\iota s) ; \mathcal{A}(\iota)(\iota s) ; \mathcal{B}(\iota)(\iota s))(\Re) \simeq\) \((\mathcal{E}(\iota)(\iota s) ; \mathcal{B}(\iota)(\iota s) ; \mathcal{A}(\iota)(\iota s))(\Re) \simeq\) \((\mathcal{B}(\iota)(\iota s) ; \mathcal{A}(\iota)(\iota s) ; \mathcal{E}(\iota)(\iota s))(\Re) \simeq\) \((\mathcal{B}(\iota)(\iota s) ; \mathcal{E}(\iota)(\iota s) ; \mathcal{A}(\iota)(\iota s))(\Re)\).
« here modulo action function, event predicate, channel, message type and behaviour (and all associated, auxiliary type) renamings.
\(\qquad\) 365

\subsection*{11.6.5. 2nd Law of Stability}
- Re-performing
* the same analysis functions
\(\otimes\) over the same sub-domain,
\(\otimes\) that is with identical indices, \(\star\) one or more times,
ought not produce any new analysis results.
- That is:
124. \([\mathcal{A}(\iota)]=[\mathcal{A}(\iota) ; \ldots ; \mathcal{A}(\iota)]\)
- where
\(\otimes \mathcal{A}\) is any analysis function,
* "..." is any sequence of intermediate analyses and discoveries, and where
\(\leftrightarrow \iota\) is any suitable index.

\subsection*{11.6.6. Law of Non-interference}
- When performing a discovery meta-operation, \(\mathcal{D}\)
\(\otimes\) on any index, \(\iota\), and possibly index set, \(\iota \boldsymbol{s}\), and
\(\otimes\) on a repository state, \(\Re\),
\(\otimes\) then using the \([\mathcal{D}(\iota)(\iota s)]\) notation
\(\otimes\) expresses a pair of a narrative text and some formulas, [txt,rsl],
\(\otimes\) whereas using the \((\mathcal{D}(\iota)(\iota s))(\Re)\) notation
\(凶\) expresses a next repository state, \(\Re^{\prime}\).
- What is the "difference"?
- Informally and simplifying we can say that the relation between the two expressions is:
```

125.
 (\mathcal{D}(\iota)(\iotas))(\Re)=\mp@subsup{\Re}{}{\prime}
 where }\mp@subsup{\Re}{}{\prime}=\Re\cup{[txt,rsl]
    ```
\(\qquad\)
\(\qquad\)

\subsection*{11.7. Discussion}
- The above is just a hint at domain development laws that we might wish orderly developments to satisfy.
- We invite the audience to suggest other laws.
- The laws of the analysis and discovery calculus
\(\Delta\) forms an ideal set of expectations
\(\otimes\) that we have of not only one domain describer
but from a domain describer team
\(\otimes\) of two or more domain describers
\(\star\) whom we expect to work, i.e., loosely collaborate,
\(\star\) based on "near"-identical domain development principles.
- We say that when 125 . is satisfied
\(\otimes\) for any discovery meta-function \(\mathcal{D}\),
\(\otimes\) for any indices \(\iota\) and \(\iota\) s
\(\otimes\) and for any repository state \(\Re\),
then the repository is not interfered with,
\(\otimes\) that is, "what you see is what you get:"
and therefore that
\(\otimes\) the discovery process satisfies the law on non-interference.
- These are quite some expectations.
\(\otimes\) But the whole point of
\(\oplus\) a highest-level
\(\oplus\) academic scientific education and
\(\oplus\) engineering training
\(\otimes\) is that one should expect commensurate development results.
- Now, since the ingenuity and creativity in the analysis and discovery process does differ between domain developers \(\otimes\) we expect that a daily process of "buddy checking", \(\otimes\) where individual team members present their findings \(\otimes\) and where these are discussed by the team \(\Delta\) will result in adherence to the laws of the calculus.
- The laws of the analysis and discovery calculus
\(\leftrightarrow\) expressed some properties that we wish the repository to exhibit.
\(\qquad\) 372 \(\qquad\)

374
11. Towards a Calculus of Domain Discoverers 11.7. Discussion
- In the analysis and discovery calculus
\(\otimes\) such as we have presented it
- we have emphasised
\(\otimes\) the types of parts, sorts and immediate part concrete types, and \(\otimes\) the signatures of actions, events and behaviours -
\(\otimes\) as these predominantly featured type expressions.
- We have deliberately abstained from "over-defining"
\(\otimes\) the structure of repositories and
\(\otimes\) the "hidden" operations (i.e., 'update', etc.)
repositories.
- We expect further
\(\otimes\) research into,
\(\otimes\) possible changes to
\(\otimes\) development of,
of the calculus to yield such insight as to lead to
\& a firmer understanding of
\(\otimes\) the nature of repositories.
\(\qquad\)
\(\qquad\)
- We have therefore, in this tutorial, not investigated, for example,
\(\otimes\) pre/post conditions of action function,
\(\otimes\) form of event predicates, or
\(\otimes\) behaviour process expressions.
- We leave that, substantially more demanding issue, for future explorative and experimental research.

End of Lecture 7: Last Session - Calculus II

Function Signature Discoverers and Laws

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012


\section*{LONG BREAK}

\(\qquad\)

Begin of Lecture 8: First Session - Requirements Engineering

Domain and Interface Requirements

DRAWING TO A CLOSE

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

\section*{Tutorial Schedule}
- Lectures 1-2

9:00-9:40 + 9:50-10:30
1 Introduction
2 Endurant Entities: Parts
- Lectures 3-5
\(11: 00-11: 15+11: 20-11: 45+11: 50-12: 30\)
3 Endurant Entities: Materials, States
4 Perdurant Entities: Actions and Events
5 Perdurant Entities: Behaviours

\section*{Lunch}
- Lectures 6-7

6 A Calculus: Analysers, Parts and Materials
4:00-14:40 + 14:50

Slides 285-338
Slides 339-376
16:00-16:40 \(+16: 50-17: 30\)
Slides 377-423
8 Requirements Domain \& I/F Reqs.
9 Conclusion: Comparison to Other Work

\section*{Conclusion: What Have We Achieved}

Slides 427-459
Slides 424-426 + 460-471
\(\qquad\) 377

\subsection*{12.1. The Transport Domain - a Resumé 12.1.1. Nets, Hubs and Links}
126. From a transport net one can observe sets of hubs and links.
```

type
126. N,HS,Hs = H-set, H, LS, Ls = L-set, L
127. HI, LI
15. L\Sigma=HI-set, H\Sigma=(LI\timesLI)-set
16. L
value
126. obs_HS: N }->\mathrm{ HS, obs_LS: N }->\mathrm{ LS
126. obs_Hs: N }->\mathrm{ H-set, obs_Ls: N }->\mathrm{ L-set

```

```

16. attr_L\Omega:L}->L\Omega,\mathrm{ attr_H}\Omega:H->H
```

\section*{12. Requirements Engineering}
- We shall present a terse overview of
© how one can "derive" essential fragments of requirements prescriptions
\(\Delta\) from a domain description.
- First we give,
\(\otimes\) in the next section,
\(\otimes\) a summary of the net domain, N ,
\(\otimes\) as developed in earlier sections.

\(\qquad\)

380
12. Requirements Engineering 12.1. The Transort Domain \(-a\) Resumé12.1.2. Mereology

\subsection*{12.1.2. Mereology}
127. From hubs and links one can observe their unique hub, respectively link identifiers and their respective mereologies.
128. The mereology of a link identifies exactly two distinct hubs.
129. The mereologies of hubs and links must identify actual links and hubs of the net

\subsection*{12.2. A Requirements "Derivation"}

\subsection*{12.2.1. Definition of Requirements}

\section*{IEEE Definition of 'Requirements’}
- By a requirements we understand
(cf. IEEE Standard 610.12 [ieee-610.12]):
" "A condition or capability needed by a user to solve a problem or achieve an objective".
129. \(\wedge \forall\) hi:HI.hi \(\in\) mereo_L(l)
129. \(\quad \Rightarrow \exists\) h:h.h \(\in\) obs_Hs(n) \(\wedge\) uid_H(h) \(=\) hi
129. \(\wedge \forall \mathrm{h}: \mathrm{H} \cdot \mathrm{h} \in\) obs_Hs(n) \(\Rightarrow\)
129. \(\quad \forall\) li:LI \(\cdot l i \in\) mereo_H(h)
129. \(\quad \Rightarrow \exists \mathrm{l}: \mathrm{L} \cdot \mathrm{l} \in\) obs_Ls(n) \(\wedge\) uid_L( 1 ) \(=\) li

\section*{value}
127. uid_H: \(\mathrm{H} \rightarrow \mathrm{HI}\), uid_L: \(\mathrm{L} \rightarrow \mathrm{LI}\)
127. mereo_H: H \(\rightarrow\) LI-set, mereo_L: L \(\rightarrow\) HI-set
axiom
128. \(\forall\) l:L-card mereo_L \((1)=2\)
129. \(\forall \mathrm{n}: \mathrm{N}, \mathrm{l}: \mathrm{L} \cdot \mathrm{l} \in\) obs_Ls \((\mathrm{n}) \Rightarrow\)

\(\qquad\)

\subsection*{12.2.2. The Machine \(=\) Hardware + Software}
- By 'the machine' we shall understand the
\(\otimes\) software to be developed and
\(\otimes\) hardware (equipment + base software) to be configured
for the domain application.
\(\qquad\)

\subsection*{12.2.3. Requirements Prescription}
- The core part of the requirements engineering of a computing application is the requirements prescription.
\(\otimes\) A requirements prescription tells us which parts of the domain are to be supported by 'the machine'.
\(\Delta\) A requirements is to satisfy some goals
\(\leftrightarrow\) Usually the goals cannot be prescribed in such a manner that they can serve directly as a basis for software design.
\(\leftrightarrow\) Instead we derive the requirements from the domain descriptions and then argue
(incl. prove) that the goals satisfy the requirements.
\(\otimes\) In this colloquium we shall not show the latter but shall show the former.

\subsection*{12.2.4. Some Requirements Principles}

\section*{The "Golden Rule" of Requirements Engineering}
- Prescribe only such requirements
\(\Delta\) that can be objectively shown to hold
\(\Delta\) for the designed software.

\section*{An "Ideal Rule" of Requirements Engineering}
- When prescribing (including formalising) requirements,
\(\otimes\) also formulate tests (theorems, properties for model checking) \(\otimes\) whose actualisation should show adherence to the requirements.
- We shall not show adherence to the above rules.
\(\qquad\)

\subsection*{12.2.6. An Aside on Our Example}
- We shall continue our "ongoing" example.
- Our requirements is for a tollway system.
- By a requirements goal we mean
\[
\otimes \text { an objective }
\]
\(\otimes\) the system under consideration
\(\otimes\) should achieve
- The goals of having a tollway system are:
\(\otimes\) to decrease transport times
between selected hubs of a general net; and
\(\otimes\) to decrease traffic accidents and fatalities
while moving on the tollway net
as compared to comparable movements on the general net.

\subsection*{12.2.5. A Decomposition of Requirements Prescription}
- We consider three forms of requirements prescription:
\(\Delta\) the domain requirements,
\(\otimes\) the interface requirements and
\(\otimes\) the machine requirements.
- Recall that the machine is the hardware and software (to be required).
\(\otimes\) Domain requirements are those whose technical terms are from the domain only.
\(\otimes\) Machine requirements are those whose technical terms are from the machine only.
\(\otimes\) Interface requirements are those whose technical terms are from both.
- The tollway net, however, must be paid for by its users.
\(\otimes\) Therefore tollway net entries and exits occur at tollway plazas
\(\otimes\) with these plazas containing entry and exit toll collectors
\(\otimes\) where tickets can be issued,
respectively collected and
travel paid for.
- We shall very briefly touch upon these toll collectors, in the Extension part (as from Slide 404) below.
- So all the other parts of the next section serve to build up to the Extension section.

\subsection*{12.3. Domain Requirements}
- Domain requirements cover all those aspects of the domain -
\(\otimes\) parts and materials,
\(\Delta\) actions,
\(\leftrightarrow\) events and
\(\otimes\) behaviours -
- which are to be supported by 'the machine'.
- Thus
\(\otimes\) projection
\(\Leftrightarrow\) instantiation,
\(\leftrightarrow\) determination and
\& extension
are the basic engineering tasks of domain requirements engineering.
- Thus domain requirements are developed by systematically "revising" cum "editing" the domain description:
\(\otimes\) which parts are to be projected: left in or out;
\(\otimes\) which general descriptions are to be instantiated into more specific ones;
\(\otimes\) which non-deterministic properties are to be made more determinate; and \(\otimes\) which parts are to be extended with such computable domain description parts which are not feasible without IT.
- An example may best illustrate what is at stake.
- The example is that of a tollway system -
\(\otimes\) in contrast to the general nets covered by description Items 126-129
\(\otimes\) (Slides 379-380).
\(\otimes\) See Fig. 4 on the next page.

\subsection*{12.3.1. Projection}

We keep what is needed to prescribe the tollway system and leave out the rest.
130. We keep the description, narrative and type
\begin{tabular}{ll} 
formalisation, & \(130(a) . \mathrm{N}, \mathrm{H}, \mathrm{L}\) \\
(a) nets, hubs, links, & \(130(\mathrm{~b}) . \mathrm{HI}, \mathrm{LI}\) \\
(b) hub and link identifiers, & \(130(\mathrm{c}) \mathrm{H}, \mathrm{L} \Sigma\) \\
(c) & value
\end{tabular}
(b) hub and link identifiers,
value
(c) hub and link states,
131. obs_Hs,obs_Ls,obs_HI,obs_LI,
131. as well as related observer functions.
131. obs_Hls,obs_Lls,obs_H \(\Sigma\),obs_L \(\Sigma\)
- We omit bringing the composite part concepts
- of HS, LS, Hs and Ls
- into the requirements.


396
12. Requirements Engineering 12.3. Domain Requirements12.3.2. Instantiation
- From the general net model of earlier formalisations we instantiate, that is, make more concrete, the tollway net model now described.
132. The net is now concretely modelled as a pair of sequences.
133. One sequence models the plaza hubs, their plaza-to-tollway link and the connected tollway hub.
134. The other sequence models the pairs of "twinned" tollway links
135. From plaza hubs one can observe their hubs and the identifiers of these hubs.
136. The former sequence is of \(m\) such plaza "complexes" where \(m \geq 2\); the latter sequence is of \(m-1\) "twinned" links.
137. From a tollway net one can abstract a proper net.
138. One can show that the posited abstraction function yields well-formed nets, i.e., nets which satisfy previously stated axioms.

\subsection*{12.3.2.1 Model Well-formedness wrt. Instantiation}
- Instantiation restricts general nets to tollway nets.
- Well-formedness deals with proper mereology:
that observed identifier references are proper.
- The well-formedness of instantiation of the tollway system model can be defined as follows:
139. The \(i\) 'plaza complex, \(\left(p_{i}, l_{i}, h_{i}\right)\), is instantiation-well-formed if
(a) link \(l_{i}\) identifies hubs \(p_{i}\) and \(h_{i}\), and
(b) hub \(p_{i}\) and hub \(h_{i}\) both identifies link \(l_{i}\); and if
140. the \(i\) 'th pair of twinned links, \(t l_{i}, t l_{i}^{\prime}\),
(a) has these links identify the tollway hubs of the \(i\) 'th and \(i+1\) 'st plaza complexes \(\left(\left(p_{i}, l_{i}, h_{i}\right)\right.\) respectively \(\left.\left(p_{i+1}, l_{i+1}, h_{i_{1}}\right)\right)\).
Figure 6: General and tollway Nets

12. Requirements Engineering 12.3. Domain Requirements12.3.2. Instantiation 12.3 .2 .1. Model Wellformedness wrt. Instantiation
```

value
Instantiation_wf_TWN: TWN \rightarrow Bool
Instantiation_wf_TWN(pcl,tll) \equiv
139. $\forall \mathrm{i}:$ Nat $\cdot \mathrm{i} \in$ inds pcl \Rightarrow
139. let (pi,li,hi)=pcl(i) in
139(a). obs_LIs(li)=\{obs_HI(pi),obs_HI(hi) $\}$
139(b). \wedge obs_Ll(li) \in obs_Lls(pi) \cap obs_LIs(hi)
140. \wedge let $\left(l^{\prime}, i^{\prime \prime}\right)=\operatorname{tll}(i)$ in
140. $\quad \mathrm{i}<$ len $\mathrm{pcl} \Rightarrow$
140. let $\left(\mathrm{pi}^{\prime}, \mathrm{li}^{\prime \prime}, \mathrm{hi}^{\prime}\right)=\operatorname{pcl}(\mathrm{i}+1)$ in
140(a). obs_HIs(li) = obs_HIs(li')
140(a). $=\{$ obs_HI(hi),obs_HI(hi) $\}$
end end end

```

\subsection*{12.3.3. Determination}
- Determination, in this example, fixes states of hubs and links.
- The state sets contain only one set.
\(\otimes\) Twinned tollway links allow traffic only in opposite directions.
\(\otimes\) Plaza to tollway hubs allow traffic in both directions.
tollway hubs allow traffic to flow freely from
© plaza to tollway links
\(\oplus\) and from incoming tollway links
\(\oplus\) to outgoing tollway links
\(\oplus\) and tollway to plaza links.
- The determination-well-formedness of the tollway system model can be defined as follows \({ }^{30}\) :
\({ }^{\text {so }} i\) ranges over the length of the sequences of twinned tollway links, that is, one less than the length of the sequences of plaza complexes. This "discrepancy" is reflected in out having to basically repeat formalisation of both Items 142(a) and 142(b).

\subsection*{12.3.3.1 Model Well-formedness wrt. Determination}
- We need define well-formedness wrt. determination.
- Please study Fig. 7.


Figure 7: Hubs and Links

401

12. Requirements Engineering 12.3. Domain Requirements12.3.3. Determination 12.3 .3 .1 . Model Well-formedness wrt. Determination
value
142. Determination_wf_TWN: TWN \(\rightarrow\) Bool
14. Determination_wf_TWN(pcl,tll) \(\forall\)
142. \(\quad\) i:Nat• \(\mathrm{i} \in\) inds tll \(\Rightarrow\)
\(\operatorname{let}(p i, l i, h i)=\operatorname{pc}(i)\),

\(\left(\mathrm{ri}^{\prime}, \mathrm{li}^{\prime \prime}\right)=\) tll(i) in
obs_H \(\mathrm{H}(\) pi \()=\{\) obs_H

\(\wedge\) obs_LR( (ili) \(=\left\{\right.\) obs \(\_L \Sigma\left(\right.\) li' \(\left.\left.^{\prime \prime}\right)\right\}\)
\(\wedge\) obs_LE(li)

\(=\{(\) obs_HI(npi),obs_HI (nhi) ),(obs_HI(nhi),obs_HII(npi) \()\}\)
\(\wedge\{(\) obs_Ll(ili),obs_Ll(ii) \()\}\) ©obs_HE(pi)
\(\wedge\{\) (obs \(L L(\) nli) obs \(L L(\) nli) \()\} \subseteq\) obs \(H \Sigma(\) npi \()\)
\(\wedge\) obs_LE(li'i) \(=\{(\) obs_Hl (hi) obs_Hl(nhi) \()\}\)

case i+1 of
 (obs \(L \Sigma\left(I^{\prime \prime}-1\right)\),obs \(\left.\_L \Sigma(1-1)\right)\), (obs \(L \Sigma\left(I^{\prime \prime}-1\right)\),obs \(\left.\left.\_L \Sigma\left(I^{\prime}-1\right)\right)\right\}\),
len pcl \(\rightarrow\) obs_H \(\Sigma\left(h_{\text {_ }}+1\right)=\)



\(\ldots\) obs_HE(hi) \(=\)
\(\left\{\right.\) (obs_LL(II),obs_LE(I-i)), (obs_LL(I-i),obs_LL(I \(I^{\prime}\) i)),

end end
141. All hub and link state spaces contain just one hub, respectively link state.
142. The \(i\) 'th plaza complex, \(\operatorname{pcl}(\mathrm{i}):\left(p_{i}, l_{i}, h_{i}\right)\) is determination-well-formed if
(a) \(l_{i}\) is open for traffic in both directions and
(b) \(p_{i}\) allows traffic from \(h_{i}\) to "revert"; and if
143. the \(i^{\prime}\) th pair of twinned links \(\left(l i^{\prime}, l i^{\prime \prime}\right)\) (in the context of the \(i+1\) st plaza complex, \(\left.\mathrm{pcl}(\mathrm{i}+1):\left(p_{i+1}, l_{i+1}, h_{i+1}\right)\right)\) are determination-well-formed if
(a) link \(l_{i}^{\prime}\) is open only from \(h_{i}\) to \(h_{i+1}\) and
(b) link \(l_{i}^{\prime \prime}\) is open only from \(h_{i+1}\) to \(h_{i}\); and if
144. the \(j\) th tollway hub, \(h_{j}\) (for \(1 \leq j \leq\) len pcl) is determination-well-formed if, depending on whether \(j\) is the first, or the last, or any "in-between" plaza complex positions,
(a) [the first:] hub \(i=1\) allows traffic in from \(l_{1}\) and \(l_{1}^{\prime \prime}\), and onto \(l_{1}\) and \(l_{1}^{\prime}\).
(b) [the last:] hub \(j=i+1=\) len pcl allows traffic in from \(l_{\text {len } t \mid l}\) and \(l_{\text {len } t \mid l}^{\prime \prime}\), and onto \({ }^{l}\) lentll \({ }^{\text {and }} l_{\text {lentll-1 }}^{\prime}\)
(c) [in-between:] hub \(j=i\) allows traffic in from \(l_{i}, l_{i}^{\prime \prime}\) and \(l_{i}^{\prime}\) and onto \(l_{i}, l_{i-1}^{\prime}\) and \(l_{i}^{\prime \prime}\).
 \(\qquad\)

404
12. Requirements Engineering 12.3. Domain Requirements12.3.4. Extension

\subsection*{12.3.4. Extension}
- By domain extension we understand the
\(\otimes\) introduction of domain entities, actions, events and behaviours that were not feasible in the original domain, \(\otimes\) but for which, with computing and communication,
\(\otimes\) there is the possibility of feasible implementations,
\(\otimes\) and such that what is introduced become part of the emerging domain requirements prescription.

\subsection*{12.3.4.1 Narrative}
- The domain extension is that of the controlled access of vehicles to and departure from the tollway net:
\(\otimes\) the entry to (and departure from) tollgates from (respectively to) an "an external" net - which we do not describe;
\(\otimes\) the new entities of tollgates with all their machinery;
\(\otimes\) the user/machine functions:
\(\oplus\) upon entry:
* driver pressing entry button,
* tollgate delivering ticket;
© upon exit:
* driver presenting ticket,
* tollgate requesting payment,
* driver providing payment, etc.
- One added (extended) domain requirements:
\(\otimes\) as vehicles are allowed to cruise the entire net
\(\otimes\) payment is a function of the totality of links traversed, possibly multiple times.
- This requires, in our case,
\(\Leftrightarrow\) that tickets be made such as to be sensed somewhat remotely, \(\Leftrightarrow\) and that hubs be equipped with sensors which can record \(\otimes\) and transmit information about vehicle hub crossings.
\(\oplus\) (When exiting, the tollgate machine can then access the exiting vehicles' sequence of hub crossings - based on which a payment fee calculation can be done.)
\(\oplus\) All this to be described in detail - including all the things that can go wrong (in the domain) and how drivers and tollgates are expected to react.


Figure 8: Entry and Exit Tollbooths
\(\qquad\)

408
12. Requirements Engineering 12.3. Domain Requirements12.3.4. Extension12.3.4.1. Narrative
- We omit details of narration and formalisation.
\(\otimes\) In this case the extension description would entail a number of formalisations:
\(\oplus\) An initial one which relies significantly on the use of RSL/CSP [CARH:Electronic,TheSEBook1wo].
It basically models tollbooth and vehicle behaviours.
\(\oplus\) A "derived" one which models temporal properties.
It is expressed, for example, in the Duration Calculus, DC [zcc+mrh2002].
\(\oplus\) And finally a timed-automata [AluDil:94,olderogdirks2008] model which "implements" the DC model.

\subsection*{12.4. Interface Requirements Prescription}
- A systematic reading of the domain requirements shall
\(\otimes\) result in an identification of all shared
\(\oplus\) parts and materials,
\(\oplus\) actions,
\(\oplus\) events and
\(\oplus\) behaviours.
- An entity is said to be a shared entity if it is mentioned in both
\(\otimes\) the domain description and
© the requirements prescription.
- That is, if the entity
\(\otimes\) is present in the domain and
\(\otimes\) is to be present in the machine.
\(\qquad\)

\subsection*{12.4.1. Shared Parts}
- The main shared parts of the main example of this section are \(\otimes\) the net, hence the hubs and the links.
- As domain parts they repeatedly undergo changes with respect to the values of a great number of attributes and otherwise possess attributes - most of which have not been mentioned so far:
\(\otimes\) length, cadestral information, namings,
\(\otimes\) wear and tear (where-ever applicable),
\(\otimes\) last/next scheduled maintenance (where-ever applicable),
state and state space, and
\(\otimes\) many others.
- Each such shared phenomenon shall then be individually dealt with:
\(\otimes\) part and materials sharing shall lead to interface requirements for data initialisation and refreshment;
\(\otimes\) action sharing shall lead to interface requirements for interactive dialogues between the machine and its environment;
\(\otimes\) event sharing shall lead to interface requirements for how events are communicated between the environment of the machine and the machine.
\(\otimes\) behaviour sharing shall lead to interface requirements for action and event dialogues between the machine and its environment.
- We "split" our interface requirements development into two separate steps:
\(\otimes\) the development of \(d_{r . n e t}\)
\(\oplus\) (the common domain requirements for the shared hubs and links),
\(\otimes\) and the co-development of \(d_{r . d b: i / f}\)
\(\oplus\) (the common domain requirements for the interface between \(d_{r \text {.net }}\) and \(D B_{\text {rel }}\) -
- under the assumption of an available
relational database system \(D B_{\text {rel }}\)
- When planning the common domain requirements for the net, i.e., the hubs and links,
* we enlarge our scope of requirements concerns
beyond the two so far treated \(\left(d_{r . t o l l}, d_{r . m a i n t .}\right)\)
\(\otimes\) in order to make sure that
the shared relational database of nets, their hubs and links, may be useful beyond those requirements.

\subsection*{12.4.1.1 Data Initialisation}
- As part of \(d_{r . n e t}\) one must prescribe data initialisation, that is provision for
\(\otimes\) an interactive user interface dialogue
with a set of proper display screens,
\(\oplus\) one for establishing net, hub or link attributes (names) and their types and,
\(\oplus\) for example, two for the input of hub and link attribute values.
\(\leftrightarrow\) Interaction prompts may be prescribed:
\(\oplus\) next input,
\(\oplus\) on-line vetting and
\(\oplus\) display of evolving net, etc.
\(\leftrightarrow\) These and many other aspects may therefore need prescriptions.
- Essentially these prescriptions concretise the insert link action.
- We then come up with something like
\(\otimes\) hubs and links are to be represented as tuples of relations;
\(\otimes\) each net will be represented by a pair of relations
\(\oplus\) a hubs relation and a links relation;
\(\oplus\) each hub and each link may or will
be represented by several tuples;
\(\Delta\) etcetera.
- In this database modelling effort
it must be secured that "standard" actions on nets, hubs and links can be supported by the chosen relational database system \(D B_{\text {rel }}\).

\subsection*{12.4.1.2 Data Refreshment}
- As part of \(d_{r . n e t}\) one must also prescribe data refreshment:
* an interactive user interface dialogue
with a set of proper display screens
\(\oplus\) one for updating net, hub or link attributes (names) and their types and,
\(\oplus\) for example, two for the update of hub and link attribute values.
\(\leftrightarrow\) Interaction prompts may be prescribed:
\(\oplus\) next update,
\(\oplus\) on-line vetting and
\(\oplus\) display of revised net, etc.
\(\leftrightarrow\) These and many other aspects may therefore need prescriptions.
- These prescriptions concretise remove and insert link actions.

\subsection*{12.4.2. Shared Actions}
- The main shared actions are related to
\(\otimes\) the entry of a vehicle into the tollway system and \(\otimes\) the exit of a vehicle from the tollway system.

\subsection*{12.4.2.1 Interactive Action Execution}
- As part of \(d_{r . t o l l}\) we must therefore prescribe
\(\otimes\) the varieties of successful and less successful sequences \(\otimes\) of interactions between vehicles (or their drivers) and the toll gate machines.
- The prescription of the above necessitates determination of a number of external events, see below.
- (Again, this is an area of embedded, real-time safety-critical system prescription.)
\(\qquad\) 417


\subsection*{12.4.4. Shared Behaviours}
- The main shared behaviours are therefore related to
\(\otimes\) the journey of a vehicle through the tollway system and \(\Delta\) the functioning of a toll gate machine during "its lifetime".
- Others can be thought of, but are omitted here.
- In consequence of considering, for example, the journey of a vehicle behaviour, we may "add" some further, extended requirements: \(\otimes\) requirements for a vehicle statistics "package"; \& requirements for tracing supposedly "lost" vehicles; \(\otimes\) requirements limiting tollway system access in case of traffic congestion; etcetera.

\subsection*{12.4.3. Shared Events}
- The main shared external events are related to
\(\otimes\) the entry of a vehicle into the tollway system,
\(\otimes\) the crossing of a vehicle through a tollway hub and
\(\Delta\) the exit of a vehicle from the tollway system.
- As part of \(d_{r . t o l l}\) we must therefore prescribe
\(\Delta\) the varieties of these events,
\(\Delta\) the failure of all appropriate sensors and
\(\Delta\) the failure of related controllers:
\(\oplus\) gate opener and closer (with sensors and actuators),
\(\oplus\) ticket "emitter" and "reader" (with sensors and actuators),
\(\infty\) etcetera.
- The prescription of the above necessitates extensive fault analysis.
\(\qquad\)
418

420
12. Requirements Engineering 12.5. Machine Requirements

\subsection*{12.5. Machine Requirements}
- The machine requirements
make hardly any concrete reference to the domain description; \(\otimes\) so we omit its treatment altogether.

\subsection*{12.6. Discussion of Requirements "Derivation"}
- We have indicated
\(\leftrightarrow\) how the domain engineer
\(\otimes\) and the requirements engineer
© can work together
\(\otimes\) to "derive" significant fragments
\(\otimes\) of a requirements prescription.
\(\qquad\) 421

End of Lecture 8: First Session - Requirements Engineering

\section*{Domain and Interface Requirements}

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012
- This puts requirements engineering in a new light.
\(\otimes\) Without a previously existing domain descriptions
\(\otimes\) the requirements engineer has to do double work: \(\oplus\) both domain engineering \(\oplus\) and requirements engineering
\(\leftrightarrow\) but without the principles of domain description \(\oplus\) as laid down in this tutorial
\(\otimes\) that job would not be so straightforward as we now suggest.


\section*{SHORT BREAK}


\title{
Begin of Lecture 9: Last Session - Conclusion
}

\section*{Comparisons and What Have We Achieved}

\section*{FINAL LAST HAUL!}

\section*{423}

24

\section*{13. Conclusion}
- This document,
\(\Delta\) meant as the basis for my tutorial
\(\otimes\) at FM 2012 (CNAM, Paris, August 28),
* "grew" from a paper being written for possible journal publication.
© Sections 2-3 possibly represent two publishable journal papers.
© Section 4 has been "added" to the 'tutorial' notes.

6 A Calculus: Analysers, Parts and Materials
7 A Calculus: Function Signatures and Laws
- Lectures 8-9

8 Domain and Interface Requirements
/ 9 Conclusion: Comparison to Other Work
\(\sqrt{ }\) Conclusion: What Have We Achieved

Slides 1-35
Slides 36-114
2 Endurant Entities: Parts

Slides 115-146
Slides 147-178
Slides 179-284

\section*{12:30-14:00}

14:00-14:40 + 14:50-15:30
Slides 285-338
Slides 339-376
\(16: 00-16: 40+16: 50-17: 30\)
Slides 377-423
Slides 427-459
Slides 424-426 + 460-471
- The style of the two tutorial "parts",
\(\leftrightarrow\) Sects. 2-3 and
\(\otimes\) Sect. 4
\(\otimes\) are, necessarily, different:
\(\oplus\) Sects. 2-3 are in the form of research notes,
\(\oplus\) whereas Sect. 4 is in the form of "lecture notes" on methodology.
\(\otimes\) Be that as it may. Just so that you are properly notified !
\(\qquad\)

\subsection*{13.1. Comparison to Other Work}
- In this section we shall only compare
\(\otimes\) our contribution to domain engineering as presented in the section on domain entities
\(\otimes\) to that found in the broader literature with respect to the software engineering term 'domain'.
- We shall not compare
\(\otimes\) our contribution to requirements engineering
\(\otimes\) as surveyed in the section on requirements engineering.
\(\otimes\) to that, also, found in the broader requirements engineering literature.
- Finally we shall also not compare
\(\leftrightarrow\) our work on a description calculus
\(\otimes\) as we find no comparable literature!
\(\qquad\) 427
\(\qquad\)
- There does not seem to be a concern for "deriving" such ontologies into requirements for software.
- Usually ontology presentations
\(\otimes\) either start with the presentation
\(\otimes\) or makes reference to its reliance
of an upper ontology.
- Instead the ontology databases
\(\otimes\) appear to be used for the computerised
\(\otimes\) discovery and analysis
\(\otimes\) of relations between ontologies.
- The TripTych form of domain science \& engineering differs from conventional ontological engineering in the following, essential ways:
\(\otimes\) The TripTych domain descriptions rely essentially on a "built-in" upper ontology:
\(\oplus\) types, abstract as well as model-oriented (i.e., concrete) and \(\oplus\) actions, events and behaviours.
\(\otimes\) Domain science \& engineering is not, to a first degree, concerned with modalities, and hence do not focus on the modelling of \(\oplus\) knowledge and belief, \(\oplus\) necessity and possibility, i.e., alethic modalities,
\(\oplus\) epistemic modality (certainty),
\(\oplus\) promise and obligation (deontic modalities),
\(\oplus\) etcetera.
\(\qquad\) 430 \(\qquad\)

432
13. Conclusion 13.1. Comparison to Other Work13.1.2. Knowledge and Knowiedge Engineering.
- The aim of knowledge engineering was formulated, in 1983, by an originator of the concept, Edward A. Feigenbaum [Feigenbaum83]:
\(\Leftrightarrow\) knowledge engineering is an engineering discipline
\(\otimes\) that involves integrating knowledge into computer systems
\(\otimes\) in order to solve complex problems
\(\Delta\) normally requiring a high level of human expertise.

\subsection*{13.1.2. Knowledge and Knowledge Engineering:}
- The concept of knowledge has occupied philosophers since Plato.
\(\otimes\) No common agreement on what 'knowledge' is has been reached.
\(\otimes\) From Wikipedia we may learn that
\(\oplus\) knowledge is a familiarity with someone or something;
* it can include facts, information, descriptions, or skills acquired through experience or education;
* it can refer to the theoretical or practical understanding of a subject;
\(\oplus\) knowledge is produced by socio-cognitive aggregates
* (mainly humans)
* and is structured according to our understanding of how human reasoning and logic works.
\(\qquad\) 431 \(\qquad\)
- Knowledge engineering focuses on
\(\otimes\) continually building up (acquire) large,
shared data bases (i.e., knowledge bases),
\(\otimes\) their continued maintenance,
\(\Delta\) testing the validity of the stored 'knowledge',
\(\otimes\) continued experiments with respect to knowledge representation,
\(凶\) etcetera.
- Knowledge engineering can, perhaps, best be understood in contrast to algorithmic engineering:
\(\Leftrightarrow\) In the latter we seek more-or-less conventional, usually imperative programming language expressions of algorithms
\(\oplus\) whose algorithmic structure embodies the knowledge
\(\oplus\) required to solve the problem being solved by the algorithm.
\(\otimes\) The former seeks to solve problems based on an interpreter inferring possible solutions from logical data. This logical data has three parts:
\(\oplus\) a collection that "mimics" the semantics of, say, the imperative programming language,
\(\oplus\) a collection that formulates the problem, and
\(\oplus\) a collection that constitutes the knowledge particular to the problem.
- We refer to [BjornerNilsson1992].

\subsection*{13.1.3. Domain Analysis:}
- There are different "schools of domain analysis".
\& Domain analysis, or product line analysis (see below), as it was first conceived in the early 1980s by James Neighbors
\(\infty\) is the analysis of related software systems in a domain
\(\oplus\) to find their common and variable parts.
\(\oplus\) It is a model of wider business context for the system.
\(\Leftrightarrow\) This form of domain analysis turns matters "upside-down":
\(\oplus\) it is the set of software "systems" (or packages)
\(\oplus\) that is subject to some form of inquiry,
\(\oplus\) albeit having some domain in mind,
\(\oplus\) in order to find common features of the software
\(\oplus\) that can be said to represent a named domain.
- The concerns of TripTych domain science \& engineering is based on that of algorithmic engineering.
\(\otimes\) Domain science \& engineering is not aimed at
\(\oplus\) letting the computer solve problems based on
\(\oplus\) the knowledge it may have stored.
\(\otimes\) Instead it builds models based on knowledge of the domain.
- Further references to seminal exposés of knowledge engineering are [Studer1998,Kendal2007].

- In this section we shall mainly be comparing the TripTych approach to domain analysis to that of Reubén Prieto-Dĩaz's approach [Prieto-Diaz:1987,Prieto-Diaz:1990,Prieto-Diaz:1991].
- Firstly, the two meanings of domain analysis basically coincide.
- Secondly, in, for example, [Prieto-Diaz:1987], Prieto-Dĩaz's domain analysis is focused on the very important stages that precede the kind of domain modelling that we have described:
\(\otimes\) major concerns are
© selection of what appears to be similar, but specific entities,
\(\oplus\) identification of common features,
\(\oplus\) abstraction of entities and
\(\oplus\) classification.
\(\otimes\) Selection and identification is assumed in our approach, but we suggest to follow the ideas of Prieto-Dĩaz.
\(\otimes\) Abstraction (from values to types and signatures) and classification into parts, materials, actions, events and behaviours is what we have focused on.
- All-in-all we find Prieto-Dĩaz's work very relevant to our work:
\(\otimes\) relating to it by providing guidance to pre-modelling steps,
\(\otimes\) thereby emphasising issues that are necessarily informal,
\(\otimes\) yet difficult to get started on by most software engineers.
- Where we might differ is on the following:
\(\otimes\) although Prieto-Dĩaz does mention a need for domain specific languages,
\(\Leftrightarrow\) he does not show examples of domain descriptions in such DSLs
\(\otimes\) We, of course, basically use mathematics as the DSL.
- In the TripTych approach to domain analysis
\(\otimes\) we provide a full ontology - cf. Sects. 2.-10. and
\(\Leftrightarrow\) suggest a domain description calculus.
- In our approach
\(\otimes\) we do not consider requirements, let alone software components,
\(\otimes\) as do Prieto-Dĩaz,
but we find that that is not an important issue.
\(\qquad\)
\(\qquad\)
 \(\qquad\)
- Software product line engineering, earlier known as domain engineering,
\(\otimes\) is the entire process of reusing domain knowledge in the production of new software systems.
- Key concerns of software product line engineering are
\(\Leftrightarrow\) reuse,
\(\leftrightarrow\) the building of repositories of reusable software components, and
\(\otimes\) domain specific languages with which to, more-or-less automatically build software based on reusable software components.

440
13. Conclusion 13.1. Comparison to Other Work13.1.4. Soffware Product Line Engineering
- These are not the primary concerns of TripTych domain science \& engineering.
\(\leftrightarrow\) But they do become concerns as we move from domain descriptions to requirements prescriptions.
\(\otimes\) But it strongly seems that software product line engineering is not really focused on the concerns of domain description - such as is TripTych domain engineering.
\(\otimes\) It seems that software product line engineering is primarily based, as is, for example, FODA: Feature-oriented Domain Analysis, on analysing features of software systems.
\(\otimes\) Our [dines-maurer] puts the ideas of software product lines and model-oriented software development in the context of the TripTych approach.
- Notable sources on software product line engineering are [dom:Bayer:1999,dom:Weiss:1999,dom:Ardis:2000,dom:Thiel:2000,dom:Haנ
13. Conclusion 13.1. Comparison to Other Work13.1.5. Problem Frames:

\subsection*{13.1.5. Problem Frames:}
- The concept of problem frames is covered in [mja2001a].
- Jackson's prescription for software development focuses on the "triple development" of descriptions of
\(\otimes\) the problem world,
\(\otimes\) the requirements and
\(\Delta\) the machine (i.e., the hardware and software) to be built.
- Here domain analysis means, the same as for us, the problem world analysis.
- In the problem frame approach the software developer plays three, that is, all the TripTych rôles:
\(\otimes\) domain engineer,
\& requirements engineer and
© software engineer
"all at the same time",
- well, iterating between these rôles repeatedly.
- So, perhaps belabouring the point,
\(\otimes\) domain engineering is done only to the extent needed by the prescription of requirements and the design of software.
- These, really are minor points.
\(\qquad\) 442 \(\qquad\)

444
13. Concusion 13.1. Comparison to Other Work13.1.6. Domain Specific Software Architectures (DSSA):

\subsection*{13.1.6. Domain Specific Software Architectures (DSSA):}
- It seems that the concept of DSSA
\(\otimes\) was formulated by a group of ARPA \({ }^{31}\) project "seekers"
\(\otimes\) who also performed a year long study
(from around early-mid 1990s);
* key members of the DSSA project were Will Tracz, Bob Balzer,

Rick Hayes-Roth and Richard Platek [dom:Trasz:1994].
- The [dom:Trasz:1994] definition of domain engineering is"the process of creating a DSSA:
\(\otimes\) domain analysis and domain modelling
\(\otimes\) followed by creating a software architecture
\(\otimes\) and populating it with software components."
13. Conclusion 13.1. Comparison to Other Work13.1.6. Domain Specific Soffware Architectures (DSSA):
- But in "restricting" oneself to consider
\(\otimes\) only those aspects of the domain which are mandated by the requirements prescription
\(\otimes\) and software design
one is considering a potentially smaller fragment [Jackson2010Facs] of the domain than is suggested by the TripTych approach.
- At the same time one is, however, sure to
\(\otimes\) consider aspects of the domain
\(\Leftrightarrow\) that might have been overlooked when pursuing domain description development
\(\otimes\) the TripTych, "more general", approach.
\(\qquad\) 443
\(\qquad\)
- This definition is basically followed also by
[Mettala+Graham:1992,Shaw+Garlan:1996,Medvidovic+Colbert:2004].
- Defined and pursued this way, DSSA appears,
\(\otimes\) notably in these latter references, to start with the
\(\otimes\) with the analysis of software components, "per domain",
\& to identify commonalities within application software,
\(\otimes\) and to then base the idea of software architecture
\(\otimes\) on these findings.
- Thus DSSA turns matter "upside-down" with respect to TripTych requirements development
\(\otimes\) by starting with software components,
* assuming that these satisfy some requirements,
\(\otimes\) and then suggesting domain specific software
\(\otimes\) built using these components.
- This is not what we are doing:
\(\otimes\) We suggest that requirements \(\oplus\) can be "derived" systematically from,
\(\oplus\) and related back, formally to domain descriptionss
\(\oplus\) without, in principle, considering software components,
\(\oplus\) whether already existing, or being subsequently developed.
\(\qquad\) 446 \(\qquad\)
- It seems to this author that had the DSSA promoters
\(\leftrightarrow\) based their studies and practice on also using formal specifications,
\(\otimes\) at all levels of their study and practice,
\(\otimes\) then some very interesting insights might have arisen.
\(\qquad\) 447
\(\otimes\) Of course, given a domain descriptions
\(\oplus\) it is obvious that one can develop, from it, any number of requirements prescriptions
\(\infty\) and that these may strongly hint at shared, (to be) implemented software components;
\(\leftrightarrow\) but it may also, as well, be the case
\(\oplus\) two or more requirements prescriptions
© "derived" from the same domain description
© may share no software components whatsoever !
\(\leftrightarrow\) So that puts a "damper" of my "enthusiasm" for DSSA.

\subsection*{13.1.7. Domain Driven Design (DDD)}
- Domain-driven design (DDD) \({ }^{32}\)
© "is an approach to developing software for complex needs
\(\otimes\) by deeply connecting the implementation to an evolving model of the core business concepts;
\(\otimes\) the premise of domain-driven design is the following: \(\oplus\) placing the project's primary focus on the core domain and domain logic;
\(\oplus\) basing complex designs on a model;
\(\oplus\) initiating a creative collaboration between technical and domain experts to iteratively cut ever closer to the conceptual heart of the problem."33

\footnotetext{
\({ }_{32}\) Eric Evans: http://www.domaindrivendesign.org/
\({ }^{33} h t t p: / / e n . w i k i p e d i a . o r g / w i k i / D o m a i n-d r i v e n \_d e s i g n ~\)
}
- We have studied some of the DDD literature,
\(\otimes\) mostly only accessible on The Internet, but see also [Haywood2009],
\(\otimes\) and find that it really does not contribute to new insight into domains such as wee see them:
\(\otimes\) it is just "plain, good old software engineering cooked up with a new jargon.
\(\qquad\)
\(\qquad\)
13. Conclusion 13.1. Comparison to Other Work13.1.8. Featureoriented Domain Analysis (Fond)
- To the extent that
\(\Leftrightarrow\) TripTych domain engineering
\(\otimes\) with its subsequent requirements engineering
indeed encourages reuse at all levels:
\(\otimes\) domain descriptions and
\(\leftrightarrow\) requirements prescription,
we can only agree.
- Another source on FODA is [Czarnecki2000]
- Since FODA "leans" quite heavily on "Software Product Line Engineering' our remarks in that section, above, apply equally well here.
\(\qquad\)
- Feature oriented domain analysis (FODA)
\(\Leftrightarrow\) is a domain analysis method
\(\otimes\) which introduced feature modelling to domain engineering
\(\leftrightarrow\) FODA was developed in 1990 following several U.S. Government research projects.
\(\otimes\) Its concepts have been regarded as critically advancing software engineering and software reuse.
- The US Government supported report [KyoKang+et.al.:1990]
states: "FODA is a necessary first step" for software reuse. states: "FODA is a necessary first step" for software reuse.
13. Conclusion 13.1. Comparison to other Work13.1.9. Unified Modedling Language (UNL)

\subsection*{13.1.8. Feature-oriented Domain Analysis (FODA):}

\subsection*{13.1.9. Unified Modelling Language (UML)}
- Three books representative of UML are
[Booch98,Rumbaugh98,Jacobson99].
- The term domain analysis appears numerous times in these books,
\(\otimes\) yet there is no clear, definitive understanding
\(\otimes\) of whether it, the domain, stands for entities in the domain such as we understand it,
\(\Leftrightarrow\) or whether it is wrought up, as in several of the 'approaches' treated in this section, to wit, Items [3, 4, 6, 7, 8], with \(\oplus\) either software design (as it most often is), \(\oplus\) or requirements prescription.
- Certainly, in UML,
\& in [Booch98,Rumbaugh98,Jacobson99] as well as
© in most published papers claiming "adherence" to UML,
\(\Leftrightarrow\) that domain analysis usually
\(\oplus\) is manifested in some UML text
\(\oplus\) which "models" some requirements facet.
\(\otimes\) Nothing is necessarily wrong with that;
\(\otimes\) but it is therefore not really the TripTych form of domain analysis
\(\oplus\) with its concepts of abstract representations of endurant and perdurants, and
\(\oplus\) with its distinctions between domain and requirements, and
\(\oplus\) with its possibility of "deriving"
* requirements prescriptions from
* domain descriptions.
\(\qquad\)

\subsection*{13.1.10. Requirements Engineering:}
- There are in-numerous books and published papers on requirements engineering.
\(\Leftrightarrow\) A seminal one is [AvanLamsweerde2009].
\(\leftrightarrow\) I, myself, find [SorenLauesen2002] full of very useful, non-trivial insight.
\(*\) [Dorfman+Thayer:1997:IEEEComp.Soc.Press] is seminal in that it brings a number or early contributions and views on requirements engineering.
- There is, however, some important notions of UML
\(\otimes\) and that is the notions of
\(\oplus\) class diagrams,
\(\oplus\) objects, etc.
\(\otimes\) How these notions relate to the discovery
\(\oplus\) of part types, unique part identifiers, mereology and attributes, as well as
\(\oplus\) action, event and behaviour signatures and channels,
* as discovered at a particular domain index,
\(\otimes\) is not yet clear to me.
\(\otimes\) That there must be some relation seems obvious.
- We leave that as an interesting, but not too difficult, research topic.
\(\qquad\) 455

\(\qquad\)
- Conventional text books, notably
[Pfleeger2001,Pressman2001,Sommerville2006] all have their "mandatory", yet conventional coverage of requirements engineering.
\(\otimes\) None of them "derive" requirements from domain descriptions, \(\oplus\) yes, OK, from domains,
\(\oplus\) but since their description is not mandated
\(\oplus\) it is unclear what "the domain" is.
\(\otimes\) Most of them repeatedly refer to domain analysis \(\oplus\) but since a written record of that domain analysis is not mandated
\(\oplus\) it is unclear what "domain analysis" really amounts to.
- Axel van Laamsweerde's book [AvanLamsweerde2009] is remarkable.
\(\otimes\) Although also it does not mandate descriptions of domains
\(\otimes\) it is quite precise as to the relationships between domains and requirements.
\(\otimes\) Besides, it has a fine treatment of the distinction between goals and requirements,
\(\otimes\) also formally.
- Most of the advices given in [SorenLauesen2002]
\(\otimes\) can beneficially be followed also in
\(\Delta\) TripTych requirements development.
- Neither [AvanLamsweerde2009] nor [SorenLauesen2002] preempts TripTych requirements development.
\(\qquad\) 458 \(\qquad\)

460

\subsection*{13.2. What Have We Achieved and Future Work}
- Sect. 13.1 has already touched upon, or implied,
\(\otimes\) a number of 'achievement' points and
\(\otimes\) issues for future work.
- Here is a summary of 'achievement' and future work items.

\subsection*{13.1.11. Summary of Comparisons}
- It should now be clear from the above that
\& basically only Jackson's problem frames really take
\(\oplus\) the same view of domains and,
\(\oplus\) in essence, basically maintain similar relations between
* requirements prescription and
* domain description.
© So potential sources of, we should claim, mutual inspiration
© ought be found in one-another's work -
© with, for example, [ggjz2000,Jackson2010Facs],
\(\oplus\) and the present document,
\(\oplus\) being a good starting point.
\(\qquad\)
\(\qquad\)
- We claim that there are three major contributions being reported upon:
\(\Delta\) (i) the separation of domain engineering from requirements engineering,
(ii) the separate treatment of domain science \& engineering: \(\infty\) as "free-standing" with respect, ultimately, to computer science,
\(\oplus\) and endowed with quite a number of domain analysis principles and domain description principles; and
\(\otimes\) (iii) the identification of a number of techniques \(\oplus\) for "deriving" significant fragments of requirements prescriptions from domain descriptions -
\(\oplus\) where we consider this whole relation between domain engineering and requirements engineering to be novel.
- Yes, we really do consider the possibility of a systematic
© 'derivation' of significant fragments of requirements prescriptions from domain descriptions
\(\otimes\) to cast a different light on requirements engineering
- What we have not shown in this tutorial is
\(\otimes\) the concept of domain facets;
\(\otimes\) this concept is dealt with in [dines:facs:2008] -
\(\otimes\) but more work has to be done to give a firm theoretical understanding of domain facets of
```

\otimes domain intrinsics,
@ domain support technology,
\otimes domain scripts,
\infty}\mathrm{ domain rules and regulations,
\oplus domain management and organisation, and
\oplus human domainbehaviour. \oplus domain rules and regulations,

```
\(\qquad\) 462 \(\qquad\)

464
13. Conclusion 13.3. General Remarks
- Just like it is deemed useful
that we study "Mother Nature",
\(\otimes\) the physical world around us,
\(\otimes\) given before humans "arrived";
- so we think that
\(\otimes\) there should be concerted efforts to study and create domain models,
\(\Delta\) for use in
© studying "our man-made domains of discourses";
\(\oplus\) possibly proving laws about these domains;
\(\oplus\) teaching, from early on, in middle-school, the domains in which the middle-school students are to be surrounded by; \(\oplus\) etcetera
13. Conclusion 13.3. General Remars

\subsection*{13.3. General Remarks}
- Perhaps belaboring the point:
\(\otimes\) one can pursue creating and studying domain descriptions
\(\otimes\) without subsequently aiming at requirements development,
\(\otimes\) let alone software design.
- That is, domain descriptions
\(\otimes\) can be seen as
๑ "free-standing",
\(\propto\) of their "own right",
\(\odot\) useful in simply just understanding
\(\odot\) domains in which humans act.


- How far must one formalise such domain descriptions ?
\(\otimes\) Well, enough, so that possible laws can be mathematically proved.
Recall that domain descriptions usually will or must be developed by domain researchers - not necessarily domain engineers -
\(\oplus\) in research centres, say universities,
\(\oplus\) where one also studies physics.

\section*{\(\star\) And, when we base requirements development on domain descriptions,}
© as we indeed advocate,
\(\oplus\) © then the requirements engineers
\(\oplus\) must understand the formal domain descriptions,
\(\oplus\) that is, be able to perform formal
* domain projection, * domain determination,
* domain instantiation, \(\quad\) domain extension,
etcetera.
\(\qquad\) 466 \(\qquad\)
\(\qquad\) 467
\(\otimes\) were developed by physicists and mathematicians,
\(\otimes\) but are used, daily, by engineers:
\(\oplus\) read and understood,
\(\oplus\) massaged into further differential equations, etcetera,
\(\oplus\) in order to calculate (predict, determine values), etc.
- This is similar to the situation in classical engineering
\(\otimes\) which rely on the sciences of physics,
\(\otimes\) and where, for example,
© Maxwell's equations,
\(\oplus\) Navier-Stokes equations, \(\oplus\) etcetera
© Bernoulli's equations,
\(\qquad\)
- Nobody would hire non-skilled labour
\(\otimes\) for the engineering development of airplane designs \(\oplus\) unless that "labourer" was skilled in Navier-Stokes equations, or
\(\otimes\) for the design of mobile telephony transmission towers \(\oplus\) unless that person was skilled in Maxwell's equations.
- So we must expect a future, we predict,
\(\otimes\) where a subset of the software engineering candidates from universities
\(\oplus\) are highly skilled in the development of
* formal domain descriptions
* formal requirements prescriptions
\(\otimes\) in at least one domain, such as
© transportation, for example,
* air traffic,
* road traffic and
* railway systems,
* shipping;
or
\(\oplus\) manufacturing,
\(\oplus\) services (health care, public administration, etc.),
\(\oplus\) financial industries, or the like.

\subsection*{13.4. Acknowledgements}
- I thank the tutorial organisers of the FM 2012 event for accepting my Dec. 31. 2011 tutorial proposal.
- I thank that part of participants
\(\otimes\) who first met up for this tutorial this morning (Tuesday 28 August, 2012)
\(\otimes\) to have remained in this room for most, if not all of the time.
- I thank colleagues and PhD students around Europe
\(\otimes\) for having listened to previous,
\(\Leftrightarrow\) somewhat less polished versions of this tutorial
\(\otimes\) I in particular thank Drs. Magne Haveraaen and Marc Bezem of the
University of Bergen for providing an important step in the development of the present material.
- And I thank my wife
\(\Leftrightarrow\) for her patience during the spring and summer of 2012
\(\otimes\) where I ought to have been tending to the garden, etc. !


THANKS AGAIN - HAVE A NICE CONFERENCE
14.1. Some Pictures
- Nets can either be
* rail nets,
shipping lanes, or
© road nets,
\(\otimes\) air traffic nets.
- The following pictures illustrate some of these nets.


A rail net; a traffic light

14. On A Theory of Transport Nets 14.1. Some Pictures


Another freeway hub


A freeway hub

474 \(\qquad\)

476
14. On A Theory of Transport Nets 14.1. Some Pictures
- The left side of the road roundabout below is rather special.
\(\leftrightarrow\) Its traffic lights are also located in the inner circle of the roundabout.
\(\leftrightarrow\) One drives in,
© at green light,
\(\oplus\) and may be guided by striping,
\(\oplus\) depending on where one is driving,
\(\oplus\) either directly to an outgoing link,
\(\oplus\) or is queued up against a red light
\(\oplus\) awaiting permission to continue.


A roundabout

477 \(\qquad\)
14. On A Theory of Transport Nets 14.2. Parts

\subsection*{14.2. Parts}

\subsection*{14.2.1. Nets, Hubs and Links}
145. From a transport net one can observe sets of hubs and links.

\section*{type}
145. N, H, L

\section*{value}
145. obs_Hs: \(\mathrm{N} \rightarrow\) H-set, obs_Ls: \(\mathrm{N} \rightarrow\) L-set
- The map below left is for a container line serving one route between Liverpool (UK), Chester (PA, USA), Wilmington (NC, USA) and Antwerp (Belgium), an so forth, circularly.
- The map below right is an "around Africa" Mitsui O.S.K. Line.


Two shipping line nets
\(\qquad\) 178

\section*{14. On A Theory of Transport Nets 14.2. Parts14.2.2. Mereology}

\subsection*{14.2.2. Mereology}
146. From hubs and links one can observe their unique hub, respectively link identifiers and their respective mereologies.
147. The mereology of a link identifies exactly two distinct hubs.
148. The mereologies of hubs and links must identify actual links and hubs of the net
type
146. HI, LI
value
146. uid_H: \(\mathrm{H} \rightarrow \mathrm{HI}\), uid_L: \(\mathrm{L} \rightarrow \mathrm{LI}\)
146. mereo_H: H \(\rightarrow\) LI-set, mereo_L: L \(\rightarrow\) HI-set
axiom
147. \(\forall \mathrm{l}: \mathrm{L} \cdot \mathbf{c a r d}\) mereo_L \((\mathrm{l})=2\)
148. \(\forall \mathrm{n}: \mathrm{N}, \mathrm{l}: \mathrm{L} \cdot \mathrm{l} \in\) obs_Ls(n) \(\Rightarrow\)
148. \(\wedge \forall\) hi:HI•hi \(\in\) mereo_L(l)
148. \(\quad \Rightarrow \exists\) h:h \(\cdot h \in\) obs_Hs(n) ^uid_H(h) \(=\) hi
148. \(\wedge \forall \mathrm{h}: \mathrm{H} \cdot \mathrm{h} \in\) obs_Hs(n) \(\Rightarrow\)
148. \(\quad \forall\) li:LI \(l\) li \(\in\) mereo_H(h)
148. \(\quad \Rightarrow \exists \mathrm{l}: \mathrm{L} \cdot \mathrm{l} \in\) obs_Ls(n) \(\wedge\) uid_L(l)=li

\subsection*{14.2.4. Retrieving Hubs and Links}
150. We can also define functions which
(a) given a net and a hub identifier obtains the designated hub, respectively
(b) given a net and a link identifier obtains the designated link.

\section*{value}
```

150(a). get_H: $\mathrm{N} \rightarrow \mathrm{HI} \xrightarrow{\sim} \mathrm{H}$
150(a). get_H(n)(hi) as h
150(a). pre hi $\in \operatorname{xtr} _H I s(n)$
150(a). post $\mathrm{h} \in$ obs_Hs $(\mathrm{n}) \wedge$ hi $=$ uid_H (h)
150(b). get_L: $\mathrm{N} \rightarrow \mathrm{LI} \xrightarrow{\sim} \mathrm{L}$
150(b). pre li $\in \operatorname{xtr}$ _LIs(n)
150(b). post $\mathrm{l} \in$ obs_Ls(n) \wedge li=uid_L(l)

```


484
14. On \(A\) Theory of Transport Nets 14.2. Parts14.2.5. Invariants over Link and Hub States and State Spaces
```

type
151(a). L\Sigma = (HI\timesHI)-set axiom }\forall\textrm{l}\sigma:\textrm{L}\Sigma\cdot\mathrm{ card l }\sigma\leq
151(b). L }\Omega=\textrm{L}\Sigma\mathrm{ -set
value
151(a). attr_L\Sigma: L }->\mathrm{ Lइ
151(b). attr_L\Omega: L }->\textrm{L}
axiom
152. \forall l:L,l l ' :L\Sigma | l | ' G attr_L }\Omega(1
152. }=>l\mp@subsup{\sigma}{}{\prime}\subseteq{(hi,hi')|hi,h\mp@subsup{h}{}{\prime}:HI\cdot{hi,hi'}\subseteqmereo_L(l)
152. }\wedge\mathrm{ attr_L }\Sigma(1)\in\operatorname{attr

```

\subsection*{14.2.5. Invariants over Link and Hub States and State Spaces}
151. Links include two attributes:
(a) Link states. These are sets of pairs of the identifiers of the hubs to which the links are connected.
(b) Link state spaces. These are the sets of link states that a link may attain.
152. The link states must mention only those hub identifiers of the two hubs to which the link is connected.
153. The link state spaces must likewise mention only such link states as are defined in Items 151(a) and 152.

\subsection*{14.2.3. An Auxiliary Function}
149. For every net we can define functions which
(a) extracts all its link identifiers,
(b) and all its hub identifiers.

\section*{value}
```

149(a). xtr_HIs: N }->\mathrm{ HI-set
149(a). xtr_HIs(n) \equiv{uid_H(h)|h:H·h \in obs_Hs(n)}
149(b). xtr_LIs: N }->\mathrm{ LI-set
149(b). xtr_LIs(n) \equiv{uid_L(l)|l:L·l \in obs_Ls(n)}

```
154. Hubs include two attributes:
(a) Hub states. These are sets of pairs of identifiers of the links to which the hubs are connected.
(b) Hub state spaces. These are the sets of hub states that a hub may attain.
155. The hub states must mention only those link identifiers of the links to which the hub is connected.
156. The hub state spaces must likewise mention only such hub states as are defined in Items 154(a) and 155.
\(\qquad\)

\subsection*{14.2.6. Maps}
- A map is an abstraction of a net.
\(\otimes\) The map just shows the hub and link identifiers of the net, and hence its mereology.
```

type
Map' = HI m
Map = {|m:Map'wf_Map(m)|

```
value
    wf_Map: Map' \(\rightarrow\) Bool
    wf_Map \((\mathrm{m}) \equiv\) dom \(m=\cup\left\{\mathbf{r n g} \operatorname{lhm} \mid \operatorname{lhm}:\left(\mathrm{LI}_{\vec{m}} \mathrm{HI}\right) \cdot \operatorname{lhm} \in \mathbf{r n g} \mathrm{m}\right\}\)

\section*{type}

154(a). \(\mathrm{H} \Sigma=(\mathrm{LI} \times \mathrm{LI})\)-set
154(b). \(\mathrm{H} \Omega=\mathrm{H} \Sigma\)-set
value
154(a). attr_Hट: \(\mathrm{H} \rightarrow \mathrm{H} \Sigma\)
154(b). attr_H \(\Omega: \mathrm{H} \rightarrow \mathrm{H} \Omega\)
axiom
155. \(\forall \mathrm{h}: \mathrm{H}, \mathrm{h} \sigma^{\prime}: \mathrm{H} \Sigma \cdot \mathrm{h} \sigma^{\prime} \in \operatorname{attr} H \Omega(\mathrm{~h})\)
155. \(\Rightarrow \mathrm{h} \sigma^{\prime} \subseteq\left\{(\mathrm{li}, \mathrm{li}) \mid \mathrm{li}, \mathrm{li}^{\prime}: \mathrm{LI} \cdot\left\{\mathrm{li}, \mathrm{li}^{\prime}\right\} \subseteq\right.\) mereo_H \(\left.(\mathrm{h})\right\}\)
155. \(\wedge\) attr_H \(\Sigma(\mathrm{h}) \in \operatorname{attr} \_\mathrm{H} \Omega(\mathrm{h})\)

488 14. On A Theory of Transport Nets 14.2. Parts14.2.6. Maps
- Let \(m\) be a map.
- The definition set of the map is domm.
- Let hi be in the definition set of map \(m\).
- Then \(m(h i)\) is the image of hi in \(m\).
- Let li be in the image of \(m(h i)\), that is, liISINdom \((m(h i))\), then \(h i^{\prime}=(m(h i))(\mathrm{li})\) is the target of li in \(\mathrm{m}(\mathrm{hi})\).
- Given a net which satisfies the axiom concerning mereology
- one can extract from that net a corresponding map.
```

value
xtr_Map: $\mathrm{N} \rightarrow$ Map
xtr_Map(n) \equiv
$[$ hi $\mapsto[$ li \mapsto uid_H $($ retr_H(n)(hi)(li))
| li:LI • li \in mere_H(get_H(n)(hi))]
| h:H,hi:HI $\cdot \mathrm{h} \in$ obs_Hs(n) \wedge hi $=$ uid_H(h)]

```
\(\qquad\)

\subsection*{14.2.7. Routes}
157. A route is an alternating sequence of hub and link identifiers.
```

157. $\mathrm{R}^{\prime}=(\mathrm{HI} \mid \mathrm{LI})^{\omega}, \mathrm{R}=\left\{\mid \mathrm{r}: \mathrm{R}^{\prime} \cdot \mathrm{wf}\right.$ _R(r)|\}
value
158. wf_R: R' \rightarrow Bool
159. wf_R(r) \equiv
160. \forall i:Nat $\cdot\{\mathrm{i}, \mathrm{i}+1\} \subseteq$ inds $\mathrm{r} \Rightarrow$
161. is_HI(r(i)) \wedge is_LI $(r(i+1)) \vee$ is_ $L I(r(i)) \wedge$ is_ $H I(r(i+1))$
```
- The retrieve hub function
\(\otimes\) retrieve the "second" hub, i.e., "at the other end", of © a link wrt. a "first" hub.
\[
\text { retr_H: } \mathrm{N} \rightarrow \mathrm{HI} \rightarrow \mathrm{LI} \rightarrow \mathrm{H}
\]
\[
\operatorname{retr} \mathrm{H}(\mathrm{n})(\mathrm{hi})(\mathrm{li}) \equiv
\]
\[
\text { let } h=\text { get_H(n)(hi) in }
\]
\[
\text { let } \mathrm{l}=\text { get_L(n)(li) in }
\]
\[
\text { let }\left\{\mathrm{hi}^{\prime \prime}\right\}=\text { mereo_L(l) } \backslash\{\text { hi }\} \text { in }
\]
get_H(n)(hi") end end end
\[
\text { pre: hi } \in \text { mereo_L(get_L(n)(li)) }
\]
xtr_LIs: Map \(\rightarrow\) LI-set

14. On A Theory of Transport Nets 14.2. Parts 14.2.7. Routes
158. A route of a map, \(m\), is a route as follows:
(a) An empty sequence is a route.
(b) A sequence of just a single hub identifier or of hubs of the map is a route.
(c) A sequence of just a single link identifier of links of the map is a route.
(d) If \(r^{\wedge}\langle h i\rangle\) and \(\langle l i\rangle \wedge r^{\prime}\) are routes of the map and li is in the definition set of \(m(h i)\) then \(r \wedge\langle h i, l i\rangle \wedge r^{\prime}\) is a route of the map.
(e) If \(r^{\wedge}\langle l i\rangle\) and \(\langle h i\rangle{ }^{\prime} r^{\prime}\) are routes of the map and hi is the target of \(\left(m\left(h i^{\prime}\right)\right)(\mathrm{li})\) then \(r^{\wedge}\langle\mathrm{li}, \mathrm{hi}\rangle \wedge r^{\prime}\) is a route of the map.
(f) Only such routes are routes of a net if they result from a finite [possibly infinite] set of uses of Items 158(a)-158(e).
```

type
type
158. $M R^{\prime}=R, M R=\left\{r: M R^{\prime} \cdot \exists \mathrm{m}: \operatorname{Map} \cdot \mathrm{r} \in \operatorname{routes}(\mathrm{m}) \mid\right\}$
value
158. routes: $\mathrm{N} \rightarrow$ MR-infset
158. routes $(\mathrm{n}) \equiv \operatorname{routes}\left(\right.$ xtr_Map $\left.^{\text {(n) }}\right)$
158. routes: Map \rightarrow MR-infset
158. routes $(\mathrm{m}) \equiv$
158(a). let rs $=\{\langle \rangle\}$
158(b). $\cup \cup\{\langle h i\rangle \mid h i: H I \cdot h i \in \operatorname{dom} m\}$
158(c). $\cup \cup\left\{\langle l i\rangle \mid l i: L I, h i: H I \cdot l i \in x t r _L I s(m)\right\}$
158(d). $\cup \cup\left\{\mathrm{r}^{\wedge}\langle\right.$ hi, li $\rangle \mathrm{r}^{\prime} \mid \mathrm{r}, \mathrm{r}^{\prime}: \mathrm{MR}, \mathrm{hi}: \mathrm{HI}, \mathrm{li}: \mathrm{LI} \cdot\left\{\mathrm{r}, \mathrm{r}^{\prime}\right\} \subseteq \mathrm{rs} \wedge$ li $\left.\in \operatorname{dom} m(\mathrm{hi})\right\}$
158(e). $\cup \cup\left\{\mathrm{r}^{\wedge}\langle\mathrm{li}, \text { hi }\rangle^{\wedge}\right.$ tl $\mathrm{r}^{\prime} \mid \mathrm{r}, \mathrm{r}^{\prime}: \mathrm{MR}, \mathrm{li}: L I, h i: H I \cdot\left\{\mathrm{r}, \mathrm{r}^{\prime}\right\} \subseteq \mathrm{rs} \wedge$ is_target(m)(hi)(li) $\}$
158(f). in rs end
158(e). is_target: Map $\rightarrow \mathrm{HI} \times \mathrm{LI}$
158(e). is_target(m)(hi)(li) \equiv
158(e). $\exists \mathrm{h}^{\prime \prime}: \mathrm{HI} \cdot \mathrm{h}^{\prime \prime} \in \operatorname{dom} \mathrm{m} \wedge \mathrm{li} \in \operatorname{dom} \mathrm{m}\left(\mathrm{hi}^{\prime \prime}\right) \wedge \mathrm{hi}=\left(\mathrm{m}\left(\mathrm{hi}^{\prime \prime}\right)\right)(\mathrm{li})$

```
\(\qquad\)

\subsection*{14.2.8.3 Routes Between Hubs}
161. Let there be given two distinct hub identifiers of a route map. Find the set of acyclic routes between them, including zero if no routes.

\section*{value}
```

161. find_MR: $\mathrm{Map} \rightarrow(\mathrm{HI} \times \mathrm{HI}) \xrightarrow{\sim}$ MR-set
162. find_MR(m)(hi,hi') \equiv
163. let rs $=\operatorname{routes}(\mathrm{m})$ in
164. $\left\{\mathrm{mr} \mid \mathrm{mr}^{\prime}, \mathrm{mr}^{\prime}: \mathrm{MR} \cdot \mathrm{mr} \in \mathrm{rs}\right.$
165. $\wedge \mathrm{mr} \in \mathrm{mr}=\langle\mathrm{hi}\rangle{ }^{\wedge} \mathrm{mr}^{\prime}\left\langle\mathrm{hi}^{\prime}\right\rangle \wedge$ is_Acyclic $\left.(\mathrm{mr})(\mathrm{m})\right\}$
166. end
167. pre: $\{$ hi,hi' $\} \subseteq$ dom m
```

\subsection*{14.2.8. Special Routes 14.2.8.1 Acyclic Routes}
159. A route of a map is acyclic if no hub identifier appears twice or more.

\section*{value}
159. is_Acyclic: \(\mathrm{MR} \rightarrow\) Map \(\xrightarrow{\sim}\) Bool
159. is_Acyclic \((\mathrm{mr})(\mathrm{m}) \equiv \sim \exists\) hi:HI,i,j:Nat. \(\cdot\{\mathrm{i}, \mathrm{j}\} \subseteq\) inds \(\mathrm{mr} \wedge \mathrm{i} \neq \mathrm{j} \Rightarrow \mathrm{mr}(\mathrm{i})=\mathrm{hi}=\mathrm{mr}(\mathrm{j})\)
159. pre \(\mathrm{mr} \in \operatorname{routes}(\mathrm{m})\)

\subsection*{14.2.8.2 Direct Routes}
160. A route, \(\mathbf{r}\), of a map (from hub hi or linkli to hub hi' or linkli') is a direct route if \(r\) is acyclic.
160. direct_route: \(\mathrm{MR} \rightarrow\) Map \(\xrightarrow{\sim}\) Bool
160. direct_route( mr ) \(\equiv\) is_Acyclic ( mr )
160. pre \(\mathrm{mr} \in \operatorname{routes}(\mathrm{m})\)

14. On A Theory of Transport Nets 14.2. Parts14.2.9. Special Maps
14.2.9. Special Maps

\subsection*{14.2.9.1 Isolated Hubs}
162. A net, n , consists of two or more isolated hubs
(a) if there exists two hub identifiers, \(\mathrm{hi}_{1}, \mathrm{hi}_{2}\), of the map of the net
(b) such that there is no route from \(h \mathrm{i}_{1}\) to \(\mathrm{hi}_{2}\).

\section*{value}
162. are_isolated_hubs: Map \(\rightarrow \mathbf{B o o l}\)
162. are_isolated_hubs \((\mathrm{m}) \equiv\)

162(a). \(\exists\) hi \(_{1}\), hi \(_{2}: \mathrm{HI} \cdot\left\{\mathrm{hi}_{1}, \mathrm{hi}_{2}\right\} \subseteq\) dom \(m \Rightarrow\)
162(b). \(\quad \sim \exists \mathrm{mr}, \mathrm{mr}_{i}: \mathrm{MR} \cdot \mathrm{mr} \in \operatorname{routes}(\mathrm{m}) \Rightarrow \mathrm{mr}=\left\langle\mathrm{hi}_{1}\right\rangle{ }^{\wedge} \mathrm{mr}_{i}{ }^{\wedge}\left\langle\mathrm{hi}_{2}\right\rangle\)

\subsection*{14.2.9.2 Isolated Maps}
163. If there are isolated hubs in a net then the net can be seen as two or more isolated nets.

\section*{value}
163. are_isolated_nets: Map \(\rightarrow\) Bool
163. are_isolated_nets(m) \(\equiv\) are_isolated_hubs(m)

\subsection*{14.2.9.3 Sub_Maps}
164. Given a map one can identify the set of all sub_maps which which contains a given hub identifier.
165. Given a map one can identify the sub_map which contains a given hub identifier.
```

value
164. sub_maps: Map \rightarrow Map-set
164. sub_maps(m) as ms
164. $\{$ xtr_Map(m)(hi)| hi:HI \cdot hi $\in \operatorname{dom} m\}$
165. sub_Map: Map $\rightarrow \mathrm{HI} \xrightarrow{\sim}$ Map
165. sub_Map(m)(hi) \equiv
165. let his $=\left\{\right.$ hi' $^{\prime} \mid$ hi' $^{\prime}: \mathrm{HI} \wedge$ hi' $^{\prime} \in \operatorname{dom} \mathrm{m} \wedge$ find_MRs $(\mathrm{m})($ hi, hi' $\left.) \neq\{ \}\right\}$ in
165. $\quad\left[\mathrm{hi}^{\prime \prime} \mapsto \mathrm{m}\left(\mathrm{hi}^{\prime \prime}\right) \mid \mathrm{hi}^{\prime \prime} \in\right.$ his $]$ end

```
theorem: are_isolated_nets \((\mathrm{m}) \Rightarrow\) sub_maps \((\mathrm{m}) \neq\{\mathrm{m}\}\)

\section*{value}
166. insert_H: \(\mathrm{N} \rightarrow \mathrm{H} \xrightarrow{\sim} \mathrm{N}\)

166(a). insert_H(n)(h) as \(n^{\prime}\)
166(a). pre: pre_insert_H(n)(h)
166(a). post: post_insert_H(n)(h)(n')

166(b). pre_insert_H(n)(h) \(\equiv\)
166(b). \(\sim \exists \mathrm{h}^{\prime}: \mathrm{H} \cdot \mathrm{h}^{\prime} \in \mathrm{obs}\) _Hs(n) \(\wedge\) uid_H(h)=uid_H( \(\left.\mathrm{h}^{\prime}\right)\)
166(c). \(\wedge\) mereo_H(h) \(=\{ \}\)
166(d). post_insert_H(n)(h)(n') \(\equiv\)
166(d). obs_Hs \((\mathrm{n}) \cup\{\mathrm{h}\}=\) obs_Hs \(\left(\mathrm{n}^{\prime}\right)\)
166(e). \(\wedge\) obs_Ls \((\mathrm{n})=\) obs_Ls \(\left(\mathrm{n}^{\prime}\right)\)

\subsection*{14.3. Actions}

\subsection*{14.3.1. Insert Hub}
166. The insert action
(a) applies to a net and a hub and conditionally yields an updated net.
(b) The condition is that there must not be a hub in the initial net with the same unique hub identifier as that of the hub to be inserted and
(c) the hub to be inserted does not initially designate links with which it is to be connected.
(d) The updated net contains all the hubs of the initial net "plus" the new hub.
(e) and the same links.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & \\
\hline & \\
\hline
\end{tabular}

498
14. On A Theory of Transport Nets 14.3. Actions14.3.2. Insert Link

\subsection*{14.3.2. Insert Link}
167. The insert link action
(a) is given a "fresh" link
that is, one not in the net (before the action)
(b) but where the two distinct hub identifiers of the mereology of the inserted link are of hubs in the net
(c) The link is inserted.
(d) These two hubs
(e) have their mereologies updated to reflect the new link
(f) and nothing else;
all other links and hubs of the net are unchanged.

\section*{value}
167. insert_L: \(\mathrm{N} \rightarrow \mathrm{L} \xrightarrow{\sim} \mathrm{N}\)
167. insert_L(n)(1) as \(\mathrm{n}^{\prime}\)
167. \(\exists \mathrm{l}: \mathrm{L} \cdot\) pre_insert_L \((\mathrm{n})(\mathrm{l}) \Rightarrow\) pre_insert_L \((\mathrm{n})(\mathrm{l}) \wedge\) post_insert_L \(\left(\mathrm{n}, \mathrm{n}^{\prime}\right)(\mathrm{l})\)
167. pre_insert_L: \(\mathrm{N} \rightarrow \mathrm{L} \rightarrow\) Bool
167. pre_insert_L(n)(1) \(\equiv\)

167(a). uid_L(l) \(\notin \operatorname{xtr}\) _LIs(n)
167(b). ^ mereo_L(l) \(\subseteq x\) xtr_HIs(n)
167. post_insert_L: \(\mathrm{N} \times \mathrm{N} \rightarrow \mathrm{L} \rightarrow\) Bool
167. post_insert_L(n, \(\left.\mathrm{n}^{\prime}\right)(1) \equiv\)
```

167(c). obs_Ls(n) $\cup\{1\}=o b s _L s\left(n^{\prime}\right)$
167(d). \wedge let $\{$ hi1,hi2 $\}=$ mereo_L(l) in
167(d). let $($ h1,h2 $)=($ get_H $(n)(h i 1)$, get_H $(n)(h i 2))$,
167(d). $\quad\left(\mathrm{h1}^{\prime}, \mathrm{h} 2^{\prime}\right)=\left(\right.$ get_H $\left.\mathrm{n}^{\prime}\right)($ hi1 $)$, get_H(n' $\left.\mathrm{n}^{\prime}\right)($ hi2 $\left.)\right)$ in
167(e). mereo_H(h) $\cup\{$ uid_L(l) $\}=$ mereo_H(h')
167(f). \wedge obs_Hs(n) $\backslash\{\mathrm{h} 1, \mathrm{~h} 2\}=$ obs_Hs(n' $\left.{ }^{\prime}\right) \backslash\left\{\mathrm{h} 1^{\prime}, \mathrm{h} 2^{\prime}\right\}$
167(f). \wedge [all other properties of h1 and h2 unchanged]
167(f). [that is, same as h1 ${ }^{\prime}$ and h2 ${ }^{\prime}$
167. end end

```


\subsection*{14.3.3. Remove Hub}

\section*{168. remove hub}
(a) where a hub, known by its hub identifier, is given,
(b) where the [to be] removed hub is indeed in the net (before the action),
(c) where the removed hub's mereology is empty (that is, the [to be] removed hub) is not connected to any links in the net (before the action)).
(d) All other links and hubs of the net are unchanged.

\section*{value}
168. remove_H: \(\mathrm{N} \rightarrow \mathrm{HI} \xrightarrow{\sim} \mathrm{N}\)

168(a). remove_H(n)(hi) as \(\mathrm{n}^{\prime}\)
168(b). \(\quad \exists \mathrm{h}: \mathrm{H} \cdot\) uid_H(h) \(=\) hi \(\wedge \mathrm{h} \in\) obs_Hs(n) \(\Rightarrow\)
168(c). pre_remove_H(n)(hi) \(\wedge\) post_remove_H(n, \(\left.\mathrm{n}^{\prime}\right)(\mathrm{hi})\)
- We leave the definitions of the pre/post conditions of this and the next action function to the listener.
- The insert link post-condition has too many lines.
- I will instead compose the post-condition
\(\otimes\) from the conjunction of a number of invocations
\(\otimes\) of predicates with "telling" names.
- For these action function definitions
such "small" predicates
\(\Delta\) amount to building a nicer theory.


\subsection*{14.3.4. Remove Link}

\section*{169. remove link}
(a) where a link, known by its link identifier, is given,
(b) where that link is indeed in the net (before the action),
(c) where hubs to which the link is connected after the action has the only change to their mereologies changed be that they do not list the [to be] removed link.
(d) All other links and hubs of the net are unchanged.

\section*{value}
169. remove_L: \(\mathrm{N} \rightarrow \mathrm{LI} \xrightarrow{\sim} \mathrm{N}\)

169(a). remove_L(n)(li) as \(\mathrm{n}^{\prime}\)
169(b). \(\quad \exists \mathrm{l}: \mathrm{L} \cdot\) uid_L(l)=li \(\wedge \mathrm{l} \in\) obs_Ls(n) \(\Rightarrow\)
169(c). pre_remove_L(n)(li) \(\wedge\) post_remove_L(n, n' \()(\) li \()\)

\section*{15. On A Theory of Container Stowage}
- This section is under development.
\(\otimes\) The idea of this section is
\(\oplus\) not so much to present a container domain description,
© but rather to present fragments, "bits and pieces", of a theory of such a domain.
- The purpose of having a theory
© is to "draw" upon the 'bits and pieces'
\(\otimes\) when expressing
\(\oplus\) properties of endurants and
\(\oplus\) definitions of
\[
\text { * actions, } \quad * \text { events and } \quad * \text { behaviours. }
\]
- Again: this section is very much in embryo.
\(\qquad\) 505


Bay numbers. Ship stowage cross section
- Down along the vessel, horisontally,
© from front to aft,
\(\otimes\) containers are grouped, in numbered bays.

\subsection*{15.1. Some Pictures}


A container vessel with 'bay' numbering
- Container vessels ply the seven seas and in-numerous other waters.
- They carry containers from port to port.
- The history of containers goes back to the late 1930s.
- The first container vessels made their first transports in 1956.
- Malcolm P. McLean is credited to have invented the container.
- To prove the concept of container transport he founded the container line Sea-Land Inc. which was sold to Maersk Lines at the end of the 1990s.

```

56

```

508
15. On A Theory of Container Stowage 15.1. Some Pictures


Row and tier numbers
- Bays are composed from rows, horisontally, across the vessel.
- Rows are composed from stacks, horisontally, along the vessel.
- And stacks are composed, vertically, from [tiers of] containers

\subsection*{15.2. Parts}

\subsection*{15.2.1. A Basis}
170. From a container vessel (cv:CV) and from a container terminal port (ctp:CTP) one can observe their bays (bays:BAYS).

\section*{type}
170. CV, CTP, BAYS
value
170. obs_BAYS: \((\mathrm{CV} \mid \mathrm{CTP}) \rightarrow \mathrm{BAYS}\)
\(\qquad\) 509

15. On A Theory of Container Stowage 15.2. Parts15.2.1. A Basis
172. From a bay, b:B, one can observe its rows, rs:ROWS.
173. The rows, rs:RS, (of a bay) are mereologically structured as an (RId) indexed set of individual rows \((r: R)\).

\section*{type}
172. ROWS, RId, R
173. \(\mathrm{RS}=\mathrm{RId} \pi \mathrm{R}\)

\section*{value}
172. obs_ROWS: \(\mathrm{B} \rightarrow\) ROWS
173. obs_RS: ROWS \(\rightarrow\) RS (i.e., RId \(\underset{m \mathrm{r}}{\mathrm{R}}\) )
171. The bays, bs:BS, (of a container vessel or a container terminal port) are mereologically structured as an (BId) indexed set of individual bays (b:B).

\section*{type}
171. BId, B
171. \(\mathrm{BS}=\mathrm{BId} \pi \mathrm{B}\)
value
171. obs_BS: BAYS \(\rightarrow\) BS (i.e., BId \({ }_{m \mathrm{~m}}\) B)

\(\qquad\)

512
15. On A Theory of Container Stowage 15.2. Pars151.2.1. A Basis
174. From a row, \(r: R\), one can observe its stacks, STACKS.
175. The stacks, ss:SS (of a row) are mereologically structured as an (SId) indexed set of individual stacks ( \(s: S\) ).

\section*{type}
174. STACKS, SId, S
175. \(\mathrm{SS}=\) SId \(\pi \mathrm{S}\)
value
174. obs_STACKS: \(\mathrm{R} \rightarrow\) STACKS
175. obs_SS: STACKS \(\rightarrow\) SS (i.e., SId \(\vec{m}\) S)
176. A stack ( \(\mathrm{s}: \mathrm{S}\) ) is mereologically structured as a linear sequence of containers ( \(\mathrm{c}: \mathrm{C}\) ).

\section*{type}
176. C
176. \(\mathrm{S}=\mathrm{C}^{*}\)
- The containers of the same stack index across stacks are called the tier at that index, cf. photo on Page 508..
\(\qquad\)

\section*{type}
177. C, K, F, P
value
177(a). obs_K: \(\mathrm{C} \rightarrow \mathrm{K}\)
177(b). obs_F: \(\mathrm{C} \rightarrow \mathrm{F}\)
178(a). obs_Ps: F \(\rightarrow\) P-set
type
178(b). PI
178(c). CI
value
178(b). uid_P: \(\mathrm{P} \rightarrow \mathrm{PI}\)
178(c). uid_C: C \(\rightarrow\) CI
177. A container is here considered a composite part
(a) of the container box, \(\mathrm{k}: \mathrm{K}\)
(b) and freight, f:F.
178. Freight is considered composite
(a) and consists of zero, one or more colli (package, indivisible unit of freight),
(b) each having a unique colli identifier (over all colli of the entire world !).
(c) Container boxes likewise have unique container identifiers.

\(\qquad\)

516

\section*{15. On A Theory of Container Stowage 15.2. Parts15.2.2. Mereological Constraints}

\subsection*{15.2.2. Mereological Constraints}
179. For any bay of a vessel the index sets of its rows are identical.
180. For a bay of a vessel the index sets of its stacks are identical.
```

axiom
179. }\forall\textrm{cv}:CV
179. }\forall\mathrm{ b:B}\cdot\textrm{b}\in\mathbf{rng}\mathrm{ obs_BS(obs_BAYS(cv))}
179. let rws=obs_ROWS(b) in
179. }\quad\forall r,\mp@subsup{r}{}{\prime}:R.{r,\mp@subsup{r}{}{\prime}}\subseteq\mathrm{ rng obs_RS(b) \#dom r=dom r'
180. ^dom obs_SS(r) = dom obs_SS(r') end

```

\subsection*{15.2.3. Stack Indexes}
181. A container stack (and a container) is designated by an index triple: a bay index, a row index and a stack index.
182. A container index triple is valid, for a vessel, if its indices are valid indices.
```

type
181. StackId = BId }\times\mathrm{ RId }\times\mathrm{ SId
value
182. valid_address: BS }->\mathrm{ StackId }->\mathrm{ Bool
182. valid_address(bs)(bid,rid,sid) }
182. bid }\in\mathrm{ dom bs
182. ^ rid \in dom (obs_RS(bs))(bid)
182. }\wedge sid \in dom (obs_SS((obs_RS(bs))(bid)))(rid

```
\(\qquad\)
182. get_R: \(V \rightarrow\) RowId \(\xrightarrow{\sim} R\)
182. get_R(v)(bid,rid) \(\equiv\) get_R(obs_BS(v))(bid,rid) pre: valid_RowId(v)(bid
182. get_R: BS \(\rightarrow\) RowId \(\xrightarrow{\sim} R\)
182. get_R(bs)(bid,rid) \(\equiv(\) obs_RS(get_RS(bs(bid) \()))(\) rid \()\)
182. pre: valid_RowId(v)(bid,rid)
182. valid_RowId: \(V \rightarrow\) RowId \(\rightarrow\) Bool
182. valid_RowId(v)(bid,rid) \(\equiv\) rid \(\in\) dom obs_RS(get_B(v)(bid))
182. pre: valid_BayId(v)(bid)
182. get_S: \(V \rightarrow\) StackId \(\xrightarrow{\sim} S\)
182. get_S \((\mathrm{v})(\) bid,rid,sid \() \equiv(\) obs_SS \((\) get_R \((\) get_B \(B(\mathrm{v})(\) bid,rid \())))(\) sid \()\)
182. pre: valid_address(v)(bid,rid,sid)
- The above can be defined in terms of the below.

\section*{type}

BayId \(=\) BId
RowId \(=\) BId \(\times\) RId
value
182. valid_BayId: V \(\rightarrow\) BayId \(\rightarrow\) Bool
182. valid_BayId(v)(bid) \(\equiv\) bid \(\in\) dom obs_BS(obs_BAYS(v))
182. get_B: \(\mathrm{V} \rightarrow\) BayId \(\xrightarrow{\sim} \mathrm{B}\)
182. get_B \((\mathrm{v})(\) bid \() \equiv(\) get_B \((\mathrm{bs}))(\) bid \()\) pre: valid_BId \((\mathrm{v})(\) bid \()\)
182. get_B: \(\mathrm{BS} \rightarrow\) BayId \(\xrightarrow{\sim} \mathrm{B}\)
182. get_B(bs)(bid) \(\equiv(\) obs_BS(obs_BAYS(v)))(bid) pre: bid \(\in\) dom bs

18 \(\qquad\)
\(\qquad\)
```

182. get_C: $\mathrm{V} \rightarrow$ StackId $\xrightarrow{\sim} \mathrm{C}$
183. get_C(v)(stid) \equiv get_C(obs_BS(v))(stid) pre: get_S(v) $($ bid,rid,sid $) \neq\langle \rangle$
184. get_C: BS \rightarrow StackId $\xrightarrow{\sim} \mathrm{C}$
185. get_C(bs)(bid,rid,sid $) \equiv \mathbf{h d}($ obs_SS $($ get_R $(($ bs $($ bid $))($ rid $))))($ sid $)$
186. pre: get_S(bs)(bid,rid,sid) $\neq\langle \rangle$
187. valid_addresses: $\mathrm{V} \rightarrow$ StackId-set
188. valid_addresses(v) $\equiv\{$ adr|adr:StackId•valid_address(adr)(v) $\}$
```
\(\qquad\)
185. The designated stack, \(s^{\prime}\), of a vessel, \(\mathrm{v}^{\prime}\) is popped with respect the "same designated" stack, s , of a vessel, v
(a) if the ordered sequence of the containers of \(s^{\prime}\) are identical to the ordered sequence of containers of all but the first container of \(\mathbf{s}\).
185. popped_designated_stack: \(\mathrm{BS} \times \mathrm{BS} \rightarrow\) StackId \(\rightarrow\) Bool
185. popped_designated_stack \(\left(\mathrm{bs}, \mathrm{bs} \mathrm{s}^{\prime}\right)(\) stid \() \equiv\)

185(a). tl get_S \((\mathrm{v})(\) stid \()=\) get_S \(\left(\mathrm{bs}^{\prime}\right)(\) stid \()\)

\subsection*{15.2.4. Stowage Schemas}
187. By a stowage schema of a vessel we understand a "table"
(a) which for every bay identifier of that vessel records a bay schema
(b) which for every row identifier of an identified bay records a row schema
(c) which for every stack identifier of an identified row records a stack schema
(d) which for every identified stack records its tier schema.
(e) A stack schema records for every tier index (which is a natural number) the type of container (contents) that may be stowed at that position.
(f) The tier indexes of a stack schema form a set of natural numbers from one to the maximum number in the index set.
\(\qquad\) 526 \(\qquad\)

528
15. On A Theory of Container Stowage 15.2. Parts15.2.4. Stowage Schemas
188. One can define a function which from an actual vessel "derives" its "current stowage schema".
188. cur_sto_schema: V \(\rightarrow\) StoSchema
188. cur_sto_schema(v) \(\equiv\)
```

188. [bid \mapsto let rws = obs_RS(obs_ROWS(bs(bid))) in
189. $\quad[$ rid \mapsto let ss $=$ obs_SS(obs_STACKS(rws)(rid)) in
190.
191.
192.
193. | bid:BId•bid \in dom ds] end
```
188. analyse_container: C \(\rightarrow\) C_Type
189. Given a stowage schema and a current stowage schema one can check the latter for conformance wrt. the former.
189. conformance: StoSchema \(\times\) StoSchema \(\rightarrow\) Bool
189. conformance(stosch,cur_stosch) \(\equiv\)
189. dom cur_stosch \(=\) dom stosch
189. \(\wedge \forall\) bid:BId \(\cdot\) bid \(\in\) dom stosch \(\Rightarrow\)
189. dom cur_stosch(bid) \(=\) domstosch(bid)
189. \(\wedge \forall\) rid:RId \(\cdot\) rid \(\in \operatorname{dom}(\) stosch \((\) bid \())(\) rid \() \Rightarrow\)
189. \(\operatorname{dom}(\) cur_stosch \((\) bid \())(\) rid \()=\operatorname{dom}(\) stosch \((\) bid \())(\) rid \()\)
189. \(\wedge \forall\) sid:SId \(\cdot\) sid \(\in \operatorname{dom}(\) cur_stosch (bid))(rid)
189.
189.
189.
\(\forall \mathrm{i}:\) Nat \(\cdot \mathrm{i} \in \operatorname{inds}((\) cur_stosch(bid) \()(\) rid \())(\) sid \() \Rightarrow\) conform \(((((\) cur_stosch \((\) bid \())(\) rid \())(\) sid \())(\) (i), \((((\) stosch \((\) bid \())(\) rid \())(\) sid \())(\) i \())\)
189. conform: C_Type \(\times\) C_Type \(\rightarrow\) Bool
\(\qquad\)

\subsection*{15.3. Actions}

\subsection*{15.3.1. Remove Container from Vessel}
20. The remove_Container_from_Vessel action applies to a vessel and a stack address and conditionally yields an updated vessel and a container.
\(20(a)\). We express the 'remove from vessel' function primarily by means of an auxiliary function remove_C_from_BS, remove_C_from_BS(obs_BS(v))(stid) and some further post-condition on the before and after vessel states (cf. Item 20(d)).
20(b). The remove_C_from_BS function yields a pair: an updated set of bays and a container.
20(c). When obs_erving the BayS from the updated vessel, \(\mathbf{v}^{\prime}\), and pairing that with what is assumed to be a vessel, then one shall obtain the result of remove_C_from_BS(obs_BS(v))(stid).
20(d). Updating, by means of remove_C_from_BS(obs_BS(v))(stid), the bays of a vessel must leave all other properties of the vessel unchanged.
190. From a vessel one can observe its mandated stowage schema.
191. The current stowage schema of a vessel must always conform to its mandated stowage schema.

\section*{value}
190. obs_StoSchema: V \(\rightarrow\) StoSchema
191. stowage_conformance: V \(\rightarrow\) Bool
191. stowage_conformance(v) \(\equiv\)
191. let mandated \(=\) obs_StoSchema(v),
191. current = cur_sto_schema(v) in
191. conformance(mandated,current) end
\(\qquad\) 530

532
15. On A Theory of Container Stowage 15.3. Actions15.3.1. Remove Container from Vessel
21. The pre-condition for remove_C_from_BS(bs)(stid) is

21(a). that stid is a valid_address in bs, and
21(b). that the stack in bs designated by stid is non empty.
22. The post-condition for remove_C_from_BS(bs)(stid) wrt. the updated bays, bs', is
22(a). that the yielded container, i.e., c, is obtained, get_C(bs)(stid), from the top of the non-empty, designated stack,
\(22(\mathrm{~b})\). that the mereology of \(\mathrm{bs}^{\prime}\) is unchanged, unchanged_mereology (bs,bs'). wrt. bs. ,
22(c). that the stack designated by stid in the "input" state, bs, is popped, popped_designated_stack(bs,bs')(stid), and
\(22(d)\). that all other stacks are unchanged in bs' wrt. bs, unchanged_non_designated_stacks(bs,bs')(stid).

\subsection*{15.3.2. Remove Container from CTP}
- We define a remove action similar to that of the previous section.
192. Instead of vessel bays we are now dealing with the bays of container terminal ports.

We omit the narrative - which is very much like that of narrative Items 20(c) and 20(d).

\section*{value}
192. remove_C_from_CTP: CTP \(\rightarrow\) StackId \(\xrightarrow{\sim}(\mathrm{CTP} \times \mathrm{C})\)
192. remove_C_from_CTP(ctp)(stid) as (ctp', c)

20(c). (obs_BS (ctp'), c) \(=\) remove_C_from_BS(obs_BS(ctp))(stid)
20(d). \(\wedge \operatorname{props}(c t p)=\operatorname{props}\left(\operatorname{ctp}^{\prime \prime}\right)\)

\subsection*{15.3.3. Stack Container on Vessel}
193. Stacking a container at a vessel bay stack location
(a)
(b)
(c)

\section*{value}
193. stack_C_on_vessel: \(\mathrm{BS} \rightarrow\) StackId \(\xrightarrow{\sim} \mathrm{C} \xrightarrow{\sim} \mathrm{BS}\)

193(a). stack_C_on_vessel(bs)(stid)(c) as bs'
193(a). comment: bs is bays of a v:V, i.e., bs \(=\) obs_BS(v)
193(b). pre:
193(c). post:
15. On A Theory of Container Stowage 15.3. Actions15.3.4. Stack Container in CTP

\subsection*{15.3.4. Stack Container in CTP}
194.
195.
196.
197.

\section*{value}
194. stack_C_in_CTP: CTP \(\rightarrow\) StackId \(\rightarrow\) C \(\xrightarrow{\sim}\) CTP
195. stack_C_in_CTP(ctp)(stid)(c) as ctp'
196. pre:
197. post:

\subsection*{15.3.5. Transfer Container from Vessel to CTP}
```

198.
199.
200.
201.

value
198. transfer_C_from_V_to_CTP: V }->\mathrm{ StackId }\xrightarrow{~}{~}\textrm{CTP}->\textrm{StackId}\xrightarrow{}{~}(\textrm{V}\times\textrm{CTP}
199. transfer_C_from_V_to_CTP(v)(v_stid)(ctp)(ctp_stid) \equiv
200. let (c,v') = remove_C_from_V(v)(v_stid) in
200. (v',stack_C_in_CTP(ctp)(ctp_stid)(c)) end

```
\(\qquad\)

538


Software Engineering 1
\(4+2+2\)

B4the
value
202. transfer_C_from_CTP_to_V: CTP \(\rightarrow\) StackId \(\xrightarrow{\sim} \mathrm{V} \rightarrow\) StackId \(\xrightarrow{\sim}(\mathrm{CTP} \times \mathrm{V})\)
203. transfer_C_from_CTP_to_V(ctp)(ctp_stid)(v)(v_stid) \(\equiv\)
204. let \(\left(\mathrm{c}, \mathrm{ctp}^{\prime}\right)=\) remove_C_from_CTP \((c t p)\left(c t p \_s t i d\right)\) in
204. (ctp',stack_C_in_CTP(ctp)(ctp_stid)(c)) end

\subsection*{15.3.6. Transfer Container from CTP to Vessel}
203.

16. On A Theory of Container Stowage

\section*{16. RSL: The Raise Specification Language 16.1. Type Expressions}
- Type expressions are expressions whose value are type, that is,
- possibly infinite sets of values (of "that" type).

\subsection*{16.1.1. Atomic Types}
- Atomic types have (atomic) values
- That is, values which we consider to have no proper constituent (sub-)values,
- i.e., cannot, to us, be meaningfully "taken apart".

\section*{Any Questions?}

\section*{type}
\(\qquad\)

542 16. RSL: The Raise Specification Language 16.1. Type Expressions16.1.2. Composite Types16.1.2.1. Concrete Composite Types \(\qquad\)

\subsection*{16.1.2.1 Concrete Composite Types}
```

[7] A-set
[8] A-infset
[9] A }\times\mathrm{ B }\times···\times
[10] A*
[11] A '
[|\alpha]AA
[14] A }~->
[15] (A)
[16] A | B | .. | C
[17] mk_id(sel_a:A,...,sel_b:B)
18] sel_a:A ... sel_b:B

```

\subsection*{16.1.2. Composite Types}
- Composite types have composite values.
\(\otimes\) That is, values which we consider to have proper constituent (sub-)values,
\(凶\) i.e., can be meaningfully "taken apart".
- There are two ways of expressing composite types:
\(\otimes\) either explicitly, using concrete type expressions,
\(\otimes\) or implicitly, using sorts (i.e., abstract types) and observer functions.
\(\qquad\)

\subsection*{16.1.2.2 Sorts and Observer Functions}

\section*{type}
\[
\mathrm{A}, \mathrm{~B}, \mathrm{C}, \ldots, \mathrm{D}
\]
value
obs_B: A \(\rightarrow\) B, obs_C: A \(\rightarrow\) C, ..., obs_D: A \(\rightarrow\) D
- The above expresses
\(\otimes\) that values of type A
\(\Leftrightarrow\) are composed from at least three values -
\(\otimes\) and these are of type \(B, C, \ldots\), and \(D\).
- A concrete type definition corresponding to the above \(\Leftrightarrow\) presupposing material of the next section

> type \(\begin{aligned} & \mathrm{B}, \mathrm{C}, \ldots, \mathrm{D} \\ & \mathrm{A}=\mathrm{B} \times \mathrm{C} \times \ldots \times \mathrm{D}\end{aligned}\)

\subsection*{16.2. Type Definitions}

\subsection*{16.2.1. Concrete Types}
- Types can be concrete
- in which case the structure of the type is specified by type expressions

\section*{type}

A = Type_expr
- Schematic type definitions:
[1] Type_name \(=\) Type_expr \(/ *\) without \(\mid\) s or subtypes \(* /\)
[2] Type_name \(=\) Type_expr_1 \(\mid\) Type_expr_2 \(|\ldots|\) Type_expr_n
[3] Type_name ==
mk_id_1(s_a1:Type_name_a1,...s_ai:Type_name_ai) |
..
mk_id_n(s_z1:Type_name_z1,...,s_zk:Type_name_zk)
4] Type_name :: sel_a:Type_name_a ... sel_z:Type_name_z
[5] Type_name \(=\{\mid\) v:Type_name' \(\cdot \mathcal{P}(\mathrm{v}) \mid\}\)
\begin{tabular}{|c|}
\hline \\
\hline
\end{tabular}
\[
544
\]
\(\qquad\)

\subsection*{16.2.2. Subtypes}
- In RSL, each type represents a set of values. Such a set can be delimited by means of predicates.
- The set of values \(b\) which have type \(B\) and which satisfy the predicate \(\mathcal{P}\), constitute the subtype \(A\) :

\section*{type \\ \[
\mathrm{A}=\{|\mathrm{b}: \mathrm{B} \cdot \mathcal{P}(\mathrm{~b})|\}
\]}
- where a form of \([2-3]\) is provided by combining the types:
```

Type_name $=\mathrm{A}|\mathrm{B}| \ldots \mid \mathrm{Z}$
$\mathrm{A}==$ mk_id_1(s_a1:A_1,...,s_ai:A_i)
$B==$ mk_id_2(s_b1:B_1,...,s_bj:B_j)
$\mathrm{Z}==$ mk_id_n(s_z1:Z_1,...,s_zk:Z_k)

```

\section*{axiom}
\(\forall\) a1:A_1, a2:A_2, ..., ai:Ai
s_a1(mk_id_1(a1,a2,...,ai) \()=a 1 \wedge\) s_a2(mk_id_1(a1,a2,...,ai) \()=a 2 \wedge\)
\(\ldots \wedge\) s_ai(mk_id_1(a1,a2,...,ai))=ai \(\wedge\)
\(\forall \mathrm{a}: \mathrm{A} \cdot\) let mk_id_1(a1', a2', \(\left.\ldots, \mathrm{ai})^{\prime}\right)=\mathrm{a}\) in
a1' \(=\) s_a1 \((a) \wedge a 2^{\prime}=\) s_a2(a) \(\wedge \ldots \wedge\) ai' \(=\) s_ai(a) end

\subsection*{16.2.3. Sorts - Abstract Types}
- Types can be (abstract) sorts
- in which case their structure is not specified:

\section*{type}

A, B, ..., C

\subsection*{16.3. The RSL Predicate Calculus}
16.3.1. Propositional Expressions
- Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values (true or false [or chaos]).
- Then:
false, true
\(a, b, \ldots, c \sim a, a \wedge b, a \vee b, a \Rightarrow b, a=b, a \neq b\)
- are propositional expressions having Boolean values.
\(\bullet \sim, \wedge, \vee, \Rightarrow,=\) and \(\neq\) are Boolean connectives (i.e., operators).
- They can be read as: not, and, or, if then (or implies), equal and not equal.
\(\qquad\)
\(\qquad\)

\subsection*{16.3.3. Quantified Expressions}
- Let X, Y, ..., C be type names or type expressions,
- and let \(\mathcal{P}(x), \mathcal{Q}(y)\) and \(\mathcal{R}(z)\) designate predicate expressions in which \(x, y\) and \(z\) are free.
- Then:
\(\forall \mathrm{x}: \mathrm{X} \cdot \mathcal{P}(x)\)
\(\exists\) y:Y• \(\mathcal{Q}(y)\)
\(\exists\) !z:Z• \(\mathcal{R}(z)\)
- are quantified expressions - also being predicate expressions.

\subsection*{16.3.2. Simple Predicate Expressions}
- Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values,
- let \(\mathbf{x}, \mathrm{y}, \ldots, \mathrm{z}\) (or term expressions) designate non-Boolean values
- and let \(\mathrm{i}, \mathrm{j}, \ldots, \mathrm{k}\) designate number values,
- then:
false, true
a, b, ..., c
\(\sim a, a \wedge b, a \vee b, a \Rightarrow b, a=b, a \neq b\)
\(\mathrm{x}=\mathrm{y}, \mathrm{x} \neq \mathrm{y}\),
\(i<j, i \leq j, i \geq j, i \neq j, i \geq j, i>j\)
- are simple predicate expressions.
\(\qquad\)

\subsection*{16.4. Concrete RSL Types: Values and Operations 16.4.1. Arithmetic}

\section*{type}

\section*{Nat, Int, Real}
value
```

+,-,*: Nat }\times\mathrm{ Nat }->\mathrm{ Nat | Int }\times\mathrm{ Int }->\mathrm{ Int | Real }\times\mathrm{ Real }->\mathrm{ Real
/: Nat }\times\mathrm{ Nat }\xrightarrow{~}{~}\mathrm{ Nat | Int }\times\mathrm{ Int }\xrightarrow{}{~}\mathrm{ Int | Real }\times\mathrm{ Real }\xrightarrow{}{~}\mathrm{ Real
<,\leq,=,\not=,\geq,> (Nat|Int|Real) }->\mathrm{ (Nat|Int|Real)

```

\subsection*{16.4.2. Set Expressions}

\subsection*{16.4.2.1 Set Enumerations}

Let the below \(a\) 's denote values of type \(A\), then the below designate simple set enumerations:
\[
\begin{aligned}
& \left\{\left\},\{\mathrm{a}\},\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{n}\right\}, \ldots\right\} \in \mathrm{A}\right. \text {-set } \\
& \left\{\left\},\{\mathrm{a}\},\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{n}\right\}, \ldots,\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots\right\}\right\} \in \mathrm{A}\right. \text {-infset }
\end{aligned}
\]

\subsection*{16.4.3. Cartesian Expressions}

\subsection*{16.4.3.1 Cartesian Enumerations}
- Let \(e\) range over values of Cartesian types involving \(A, B, \ldots, C\),
- then the below expressions are simple Cartesian enumerations:

\section*{type}

\section*{A, B, ..., C}
\(A \times B \times \ldots \times C\)

\section*{value}
(e1,e2,...,en)

\subsection*{16.4.2.2 Set Comprehension}
- The expression, last line below, to the right of the \(\equiv\), expresses set comprehension.
- The expression "builds" the set of values satisfying the given predicate.
- It is abstract in the sense that it does not do so by following a concrete algorithm.
```

type
A, B
P}=\textrm{A}->\textrm{Bool
Q = A \xrightarrow{ ~ B}{~}
value
comprehend: A-infset }\times\textrm{P}\times\textrm{Q}->\textrm{B}\mathrm{ -infset
comprehend(s,P,Q) \equiv{Q(a)| a:A a a cs^P(a)}

```
\(\qquad\)

\subsection*{16.4.4. List Expressions \\ 16.4.4.1 List Enumerations}
- Let \(a\) range over values of type \(A\),
- then the below expressions are simple list enumerations:
\(\left\{\rangle,\langle\mathrm{e}\rangle, \ldots,\langle\mathrm{e} 1, \mathrm{e} 2, \ldots, \mathrm{en}\rangle, \ldots\} \in\right.\) A \(^{*}\)
\(\left\{\rangle,\langle\mathrm{e}\rangle, \ldots,\langle\mathrm{e} 1, \mathrm{e} 2, \ldots, \mathrm{en}\rangle, \ldots,\langle\mathrm{e} 1, \mathrm{e} 2, \ldots, \mathrm{en}, \ldots\rangle, \ldots\} \in \mathrm{A}^{\omega}\right.\)
\(\left\langle\mathrm{a} \_i . . \mathrm{a}-j\right\rangle\)
- The last line above assumes \(a_{i}\) and \(a_{j}\) to be integer-valued expressions.
- It then expresses the set of integers from the value of \(e_{i}\) to and including the value of \(e_{j}\).
- If the latter is smaller than the former, then the list is empty.

\subsection*{16.4.4.2 List Comprehension}
- The last line below expresses list comprehension.

\section*{type}
\(\mathrm{A}, \mathrm{B}, \mathrm{P}=\mathrm{A} \rightarrow\) Bool, \(\mathrm{Q}=\mathrm{A} \xrightarrow{\sim} \mathrm{B}\)
value
comprehend: \(\mathrm{A}^{\omega} \times \mathrm{P} \times \mathrm{Q} \xrightarrow{\sim} \mathrm{B}^{\omega}\)
comprehend \((1, \mathrm{P}, \mathrm{Q}) \equiv\)
\(\langle\mathrm{Q}(1(\mathrm{i}))| \mathrm{i}\) in \(\langle 1\)..len l\(\rangle \cdot \mathrm{P}(\mathrm{l}(\mathrm{i}))\rangle\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline
\end{tabular}

\subsection*{16.4.5.2 Map Comprehension}
- The last line below expresses map comprehension:
\[
\begin{aligned}
& \text { type } \\
& \begin{array}{l}
\mathrm{U}, \mathrm{~V}, \mathrm{X}, \mathrm{Y} \\
\mathrm{M}=\mathrm{U} \underset{\sim}{m} \mathrm{~V} \\
\mathrm{~F}=\mathrm{U} \xrightarrow{\rightarrow} \mathrm{X} \\
\mathrm{G}=\mathrm{V} \xrightarrow{\sim} \mathrm{Y} \\
\mathrm{P}=\mathrm{U} \rightarrow \text { Bool }
\end{array}
\end{aligned}
\]

\section*{value}
\[
\text { comprehend: } \mathrm{M} \times \mathrm{F} \times \mathrm{G} \times \mathrm{P} \rightarrow(\mathrm{X} \quad \vec{m} \mathrm{Y})
\]
\[
\text { comprehend }(\mathrm{m}, \mathrm{~F}, \mathrm{G}, \mathrm{P}) \equiv
\]
\[
[\mathrm{F}(\mathrm{u}) \mapsto \mathrm{G}(\mathrm{~m}(\mathrm{u})) \mid \mathrm{u}: \mathrm{U} \cdot \mathrm{u} \in \operatorname{dom} \mathrm{~m} \wedge \mathrm{P}(\mathrm{u})]
\]

\subsection*{16.4.5. Map Expressions}

\subsection*{16.4.5.1 Map Enumerations}
- Let (possibly indexed) \(u\) and \(v\) range over values of type \(T 1\) and \(T 2\), respectively,
- then the below expressions are simple map enumerations:
```

type
T1, T2
$\mathrm{M}=\mathrm{T} 1 \vec{m} \mathrm{~T} 2$
value
u,u1,u2,.., un:T1, v,v1,v2,...,vn:T2
[]$,[\mathrm{u} \mapsto \mathrm{v}], \ldots,[\mathrm{u} 1 \mapsto \mathrm{v} 1, \mathrm{u} 2 \mapsto \mathrm{v} 2, \ldots, \mathrm{un} \mapsto \mathrm{vn}] \forall \in \mathrm{M}$

```


\subsection*{16.4.6. Set Operations}

\subsection*{16.4.6.1 Set Operator Signatures}
```

value
205 \in: A \times A-infset }->\mathrm{ Bool

```

```

 207 U: A-infset \times A-infset }->\mathrm{ A-infset
 208 U: (A-infset)-infset }->\mathrm{ A-infset
 209 \cap: A-infset \times A-infset }->\mathrm{ A-infset
 210 \cap: (A-infset)-infset }->\mathrm{ A-infset
 211 \: A-infset > A-infset }->\mathrm{ A-infset
 2 1 2 \subset : A - i n f s e t ~ \times ~ A - i n f s e t ~ \rightarrow ~ B o o l
 213 \subseteq: A-infset \times A-infset }->\mathrm{ Bool
 214 =: A-infset \times A-infset }->\mathrm{ Bool
 215 #: A-infset \times A-infset }->\mathrm{ Bool
 216 card: A-infset }\xrightarrow{}{~}Na
    ```
16.4.6.2 Set Examples

\section*{examples}
\[
\begin{aligned}
& \mathrm{a} \in\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\} \\
& \mathrm{a} \notin\}, \mathrm{a} \notin\{\mathrm{~b}, \mathrm{c}\} \\
& \{\mathrm{a}, \mathrm{~b}, \mathrm{c}\} \cup\{\mathrm{a}, \mathrm{~b}, \mathrm{~d}, \mathrm{e}\}=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}\} \\
& \cup\{\{\mathrm{a}\},\{\mathrm{a}, \mathrm{~b}\},\{\mathrm{a}, \mathrm{~d}\}\}=\{\mathrm{a}, \mathrm{~b}, \mathrm{~d}\} \\
& \{\mathrm{a}, \mathrm{~b}, \mathrm{c}\} \cap\{\mathrm{c}, \mathrm{~d}, \mathrm{e}\}=\{\mathrm{c}\} \\
& \cap\{\{\mathrm{a}\},\{\mathrm{a}, \mathrm{~b}\},\{\mathrm{a}, \mathrm{~d}\}\}=\{\mathrm{a}\} \\
& \{\mathrm{a}, \mathrm{~b}, \mathrm{c}\} \backslash\{\mathrm{c}, \mathrm{~d}\}=\{\mathrm{a}, \mathrm{~b}\} \\
& \{\mathrm{a}, \mathrm{~b}\} \subset\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\} \\
& \{\mathrm{a}, \mathrm{~b}, \mathrm{c}\} \subseteq\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\} \\
& \{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\} \\
& \{\mathrm{a}, \mathrm{~b}, \mathrm{c}\} \neq\{\mathrm{a}, \mathrm{~b}\} \\
& \text { card }\}=0, \text { card }\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}=3
\end{aligned}
\]

\subsection*{16.4.6.3 Informal Explication}
205. \(\in\) : The membership operator expresses that an element is a member of a set.
206. \(\notin\) : The nonmembership operator expresses that an element is not a member of a set.
207. U: The infix union operator. When applied to two sets, the operator gives the set whose members are in either or both of the two operand sets.
208. U: The distributed prefix union operator. When applied to a set of sets, the operator gives the set whose members are in some of the operand sets.
209. \(\cap\) : The infix intersection operator. When applied to two sets, the operator gives the set whose members are in both of the two operand sets.
210. \(\cap\) : The prefix distributed intersection operator. When applied to a set of sets, the operator gives the set whose members are in some of the operand sets.
\(\qquad\) 561
211. \: The set complement (or set subtraction) operator. When applied to two sets, the operator gives the set whose members are those of the left operand set which are not in the right operand set.
212. \(\subseteq\) : The proper subset operator expresses that all members of the left operand set are also in the right operand set.
213. \(\subset\) : The proper subset operator expresses that all members of the left operand set are also in the right operand set, and that the two sets are not identical.
214. \(=\) : The equal operator expresses that the two operand sets are identical.
215. \(\neq\) : The nonequal operator expresses that the two operand sets are not identical.
216. card: The cardinality operator gives the number of elements in a finite set.

\subsection*{16.4.6.4 Set Operator Definitions}

\section*{value}
```

$s^{\prime} \cup s^{\prime \prime} \equiv\left\{a \mid a: A \cdot a \in s^{\prime} \vee a \in s^{\prime \prime}\right\}$
$s^{\prime} \cap s^{\prime \prime} \equiv\left\{a \mid a: A \cdot a \in s^{\prime} \wedge a \in s^{\prime \prime}\right\}$
$s^{\prime} \backslash s^{\prime \prime} \equiv\left\{\mathrm{a} \mid \mathrm{a}: \mathrm{A} \cdot \mathrm{a} \in \mathrm{s}^{\prime} \wedge \mathrm{a} \notin \mathrm{s}^{\prime \prime}\right\}$
$s^{\prime} \subseteq s^{\prime \prime} \equiv \forall a: A \cdot a \in s^{\prime} \Rightarrow a \in s^{\prime \prime}$
$s^{\prime} \subset s^{\prime \prime} \equiv s^{\prime} \subseteq s^{\prime \prime} \wedge \exists a: A \cdot a \in s^{\prime \prime} \wedge a \notin s^{\prime}$
$s^{\prime}=s^{\prime \prime} \equiv \forall \mathrm{a}: \mathrm{A} \cdot \mathrm{a} \in \mathrm{s}^{\prime} \equiv \mathrm{a} \in \mathrm{s}^{\prime \prime} \equiv \mathrm{s} \subseteq \mathrm{s}^{\prime} \wedge \mathrm{s}^{\prime} \subseteq \mathrm{s}$
$s^{\prime} \neq s^{\prime \prime} \equiv s^{\prime} \cap s^{\prime \prime} \neq\{ \}$
card $\mathrm{s} \equiv$
if $s=\{ \}$ then 0 else
let $\mathrm{a}: \mathrm{A} \cdot \mathrm{a} \in \mathrm{s}$ in $1+\operatorname{card}(\mathrm{s} \backslash\{\mathrm{a}\})$ end end
pre s / $*$ is a finite set */
card $\mathrm{s} \equiv$ chaos $/ *$ tests for infinity of $\mathrm{s} * /$

```

\subsection*{16.4.7. Cartesian Operations}

\section*{type}

A, B, C
g0: G0 \(=\mathrm{A} \times \mathrm{B} \times \mathrm{C}\)
g1: G1 \(=(\mathrm{A} \times \mathrm{B} \times \mathrm{C})\)
g2: \(\mathrm{G} 2=(\mathrm{A} \times \mathrm{B}) \times \mathrm{C}\)
g3: G3 \(=A \times(B \times C)\)

\section*{value}
va:A, vb:B, vc:C, vd:D
(va,vb,vc):G0,
(va,vb,vc):G1
((va,vb),vc):G2
(va3,(vb3,vc3)):G3

\section*{decomposition expressions}
let \((\mathrm{a} 1, \mathrm{~b} 1, \mathrm{c} 1)=\mathrm{g} 0\),
\(\left(\mathrm{al}^{\prime}, \mathrm{b} 1^{\prime}, \mathrm{c} 1^{\prime}\right)=\mathrm{g} 1 \mathrm{in} .\). end
let \(((a 2, b 2), c 2)=\mathrm{g} 2\) in .. end
let \((a 3,(b 3, c 3))=g 3\) in.. end

\subsection*{16.4.8. List Operations}
16.4.8.1 List Operator Signatures

\section*{value}
hd: \(\mathrm{A}^{\omega} \xrightarrow{\sim} \mathrm{A}\)
tl: \(A^{\omega} \xrightarrow{\sim} A^{\omega}\)
len: \(A^{\omega} \xrightarrow{\sim}\) Nat
inds: \(\mathrm{A}^{\omega} \rightarrow\) Nat-infset
elems: \(\mathrm{A}^{\omega} \rightarrow \mathrm{A}\)-infset
(.) \() \mathrm{A}^{\omega} \times \mathrm{Nat} \xrightarrow{\sim} \mathrm{A}\)
- A*

\subsection*{16.4.8.2 List Operation Examples}

\section*{examples}
\[
\begin{aligned}
& \text { hd }\langle\mathrm{a} 1, \mathrm{a} 2, \ldots, \mathrm{am}\rangle=\mathrm{a} 1 \\
& \mathrm{tl}\langle\mathrm{a} 1, \mathrm{a} 2, \ldots, \mathrm{am}\rangle=\langle\mathrm{a} 2, \ldots, \mathrm{am}\rangle \\
& \text { len }\langle\mathrm{a} 1, \mathrm{a} 2, \ldots, \mathrm{am}\rangle=\mathrm{m} \\
& \text { inds }\langle\mathrm{a} 1, \mathrm{a} 2, \ldots, \mathrm{am}\rangle=\{1,2, \ldots, \mathrm{~m}\} \\
& \text { elems }\langle\mathrm{a} 1, \mathrm{a} 2, \ldots, \mathrm{am}\rangle=\{\mathrm{a} 1, \mathrm{a} 2, \ldots, \mathrm{am}\} \\
& \langle\mathrm{a} 1, \mathrm{a} 2, \ldots, \mathrm{am}\rangle(\mathrm{i})=\mathrm{ai} \\
& \langle\mathrm{a}, \mathrm{~b}, \mathrm{c}\rangle \wedge\langle\mathrm{a}, \mathrm{~b}, \mathrm{~d}\rangle=\langle\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{a}, \mathrm{~b}, \mathrm{~d}\rangle \\
& \langle\mathrm{a}, \mathrm{~b}, \mathrm{c}\rangle=\langle\mathrm{a}, \mathrm{~b}, \mathrm{c}\rangle \\
& \langle\mathrm{a}, \mathrm{~b}, \mathrm{c}\rangle \neq\langle\mathrm{a}, \mathrm{~b}, \mathrm{~d}\rangle
\end{aligned}
\]

\subsection*{16.4.8.3 Informal Explication}
- hd: Head gives the first element in a nonempty list.
- tl: Tail gives the remaining list of a nonempty list when Head is removed.
- len: Length gives the number of elements in a finite list.
- inds: Indices give the set of indices from 1 to the length of a nonempty list. For empty lists, this set is the empty set as well.
- elems: Elements gives the possibly infinite set of all distinct elements in a list.
- \(\ell(i)\) : Indexing with a natural number, \(i\) larger than 0 , into a list \(\ell\) having a number of elements larger than or equal to \(i\), gives the \(i\) th element of the list.
- : Concatenates two operand lists into one. The elements of the left operand list are followed by the elements of the right. The order with respect to each list is maintained.
- =: The equal operator expresses that the two operand lists are identical.
- \(\neq\) : The nonequal operator expresses that the two operand lists are not identical.

The operations can also be defined as follows:

570 16. RSL: The Raise Specification Language 16.4. Concrete RsL Types: Values and Operations16.4.8. List Operations16.4.8.4. List Operator Definitions \(\qquad\)
\[
\begin{aligned}
& \text { q(i) } \equiv \\
& \text { if } \mathrm{i}=1 \\
& \text { then } \\
& \text { if } q \neq\langle \rangle \\
& \text { then let } \mathrm{a}: \mathrm{A}, \mathrm{q}^{\prime}: \mathrm{Q} \cdot \mathrm{q}=\langle\mathrm{a}\rangle \wedge \mathrm{q}^{\prime} \text { in a end } \\
& \text { else chaos end } \\
& \text { else } q(i-1) \text { end } \\
& \text { fq }{ }^{\wedge} \text { iq } \equiv \\
& \text { < if } 1 \leq i \leq \text { len } f q \text { then } f q(i) \text { else } i q(i-\text { len } f q) \text { end } \\
& \text { | i:Nat } \cdot \text { if len } \mathrm{iq} \neq \text { chaos then } \mathrm{i} \leq \text { len } \mathrm{fq}+\text { len end }\rangle \\
& \text { pre is finite list ( } \mathrm{fq} \text { ) } \\
& \text { iq }{ }^{\prime}=i q^{\prime \prime} \equiv \\
& \text { inds iq }{ }^{\prime}=\text { inds iq" } \wedge \forall \mathrm{i}: \mathrm{Nat} \cdot \mathrm{i} \in \text { inds } \mathrm{iq}{ }^{\prime} \Rightarrow \mathrm{iq} \mathrm{q}^{\prime}(\mathrm{i})=\mathrm{iq}{ }^{\prime \prime}(\mathrm{i})
\end{aligned}
\]
\(\mathrm{iq} \mathrm{q}^{\prime} \neq \mathrm{iq} \mathrm{q}^{\prime \prime} \equiv \sim\left(\mathrm{iq} q^{\prime}=\mathrm{iq} \mathrm{q}^{\prime}\right)\)

\subsection*{16.4.8.4 List Operator Definitions}

\section*{value \\ is_finite_list: \(\mathrm{A}^{\omega} \rightarrow \mathrm{Bool}\)}
len \(q \equiv\)
case is_finite list(q) of
true \(\rightarrow\) if \(q=\langle \rangle\) then 0 else \(1+\) len \(\mathrm{tl} q\) end,
false \(\rightarrow\) chaos end
inds \(\mathrm{q} \equiv\)
case is finite list(q) of
true \(\rightarrow\{\mathrm{i} \mid \mathrm{i}:\) Nat \(\cdot 1 \leq \mathrm{i} \leq \operatorname{len} \mathrm{q}\}\),
false \(\rightarrow\{i \mid i:\) Nat \(\cdot \mathrm{i} \neq 0\}\) end
elems \(q \equiv\{q(i) \mid i: N a t \cdot i \in \operatorname{inds} q\}\)
\(\qquad\)

\subsection*{16.4.9. Map Operations}
16.4.9.1 Map Operator Signatures and Map Operation Examples value
```

$\mathrm{m}(\mathrm{a}): \mathrm{M} \rightarrow \mathrm{A} \xrightarrow{\sim} \mathrm{B}, \mathrm{m}(\mathrm{a})=\mathrm{b}$
dom: $\mathrm{M} \rightarrow \mathrm{A}$-infset [domain of map]
$\operatorname{dom}[\mathrm{a} 1 \mapsto \mathrm{~b} 1, \mathrm{a} 2 \mapsto \mathrm{~b} 2, \ldots, \mathrm{an} \mapsto \mathrm{bn}]=\{\mathrm{a} 1, \mathrm{a} 2, \ldots, \mathrm{an}\}$
rng: $\mathrm{M} \rightarrow \mathrm{B}$-infset [range of map]
rng $[\mathrm{a} 1 \mapsto \mathrm{~b} 1, \mathrm{a} 2 \mapsto \mathrm{~b} 2, \ldots, \mathrm{an} \mapsto \mathrm{bn}]=\{\mathrm{b} 1, \mathrm{~b} 2, \ldots, \mathrm{bn}\}$
$\dagger: \mathrm{M} \times \mathrm{M} \rightarrow \mathrm{M}$ [override extension]
$\left[\mathrm{a} \mapsto \mathrm{b}, \mathrm{a}^{\prime} \mapsto \mathrm{b}^{\prime}, \mathrm{a}^{\prime \prime} \mapsto \mathrm{b}^{\prime \prime}\right] \dagger\left[\mathrm{a}^{\prime} \mapsto \mathrm{b}^{\prime \prime}, \mathrm{a}^{\prime \prime} \mapsto \mathrm{b}^{\prime}\right]=\left[\mathrm{a} \mapsto \mathrm{b}, \mathrm{a}^{\prime} \mapsto \mathrm{b}^{\prime \prime}, \mathrm{a}^{\prime \prime} \mapsto \mathrm{b}^{\prime}\right]$

```
\[
\begin{aligned}
& \cup: M \times M \rightarrow M[\text { merge } \cup] \\
& {\left[\mathrm{a} \mapsto \mathrm{~b}, \mathrm{a}^{\prime} \mapsto \mathrm{b}^{\prime}, \mathrm{a}^{\prime \prime} \mapsto \mathrm{b}^{\prime \prime}\right] \cup\left[\mathrm{a}^{\prime \prime} \mapsto \mathrm{b}^{\prime \prime \prime}\right]=\left[\mathrm{a} \mapsto \mathrm{~b}, \mathrm{a}^{\prime} \mapsto \mathrm{b}^{\prime}, \mathrm{a}^{\prime \prime} \mapsto \mathrm{b}^{\prime \prime}, \mathrm{a}^{\prime \prime} \mapsto \mathrm{b}^{\prime \prime}\right]} \\
& \backslash: \mathrm{M} \times \mathrm{A} \text {-infset } \rightarrow \mathrm{M} \text { [restriction by] } \\
& {\left[\mathrm{a} \mapsto \mathrm{~b}, \mathrm{a}^{\prime} \mapsto \mathrm{b}^{\prime}, \mathrm{a}^{\prime \prime} \mapsto \mathrm{b}^{\prime \prime}\right] \backslash\{\mathrm{a}\}=\left[\mathrm{a}^{\prime} \mapsto \mathrm{b}^{\prime}, \mathrm{a}^{\prime \prime} \mapsto \mathrm{b}^{\prime \prime}\right]} \\
& /: \mathrm{M} \times \text { A-infset } \rightarrow \mathrm{M}[\text { restriction to }] \\
& {\left[\mathrm{a} \mapsto \mathrm{~b}, \mathrm{a}^{\prime} \mapsto \mathrm{b}^{\prime}, \mathrm{a}^{\prime \prime} \mapsto \mathrm{b}^{\prime \prime}\right] /\left\{\mathrm{a}^{\prime}, \mathrm{a}^{\prime \prime}\right\}=\left[\mathrm{a}^{\prime} \mapsto \mathrm{b}^{\prime}, \mathrm{a}^{\prime \prime} \mapsto \mathrm{b}^{\prime \prime}\right]} \\
& =, \neq: \mathrm{M} \times \mathrm{M} \rightarrow \text { Bool } \\
& { }^{\circ}:(\mathrm{A} \rightarrow \mathrm{~B}) \times(\mathrm{B} \rightarrow \mathrm{C}) \rightarrow(\mathrm{A} \rightarrow \mathrm{C})[\text { composition }] \\
& {\left[\mathrm{a} \mapsto \mathrm{~b}, \mathrm{a}^{\prime} \mapsto \mathrm{b}^{\prime}\right]^{\circ}\left[b \mapsto \mathrm{c}, \mathrm{~b}^{\prime} \mapsto \mathrm{c}^{\prime}, \mathrm{b}^{\prime \prime} \mapsto \mathrm{c}^{\prime \prime}\right]=\left[\mathrm{a} \mapsto \mathrm{c}, \mathrm{a}^{\prime} \mapsto \mathrm{c}^{\prime}\right]}
\end{aligned}
\]

574
\(\qquad\)

\subsection*{16.4.9.2 Map Operation Explication}
- \(m(a)\) : Application gives the element that \(a\) maps to in the map \(m\).
- dom: Domain/Definition Set gives the set of values which maps to in a map.
- rng: Range/Image Set gives the set of values which are mapped to in a map.
- \(\dagger\) : Override/Extend. When applied to two operand maps, it gives the map which is like an override of the left operand map by all or some "pairings" of the right operand map.
\(\bullet \cup\) : Merge. When applied to two operand maps, it gives a merge of these maps.
- \(\backslash\) : Restriction. When applied to two operand maps, it gives the map which is a restriction of the left operand map to the elements that are not in the right operand set.
\(\qquad\) 573
- /: Restriction. When applied to two operand maps, it gives the map which is a restriction of the left operand map to the elements of the right operand set.
- =: The equal operator expresses that the two operand maps are identical.
- \(\neq\) : The nonequal operator expresses that the two operand maps are not identical.
- : Composition. When applied to two operand maps, it gives the map from definition set elements of the left operand map, \(m_{1}\), to the range elements of the right operand map, \(m_{2}\), such that if \(a\) is in the definition set of \(m_{1}\) and maps into \(b\), and if \(b\) is in the definition set of \(m_{2}\) and maps into \(c\), then \(a\), in the composition, maps into \(c\).
16. RSL: The Raise Specification Language 16.4. Concrete RSL Types: Values and Operations16.4.9. Map Operations16.4.9.3. Map Operation Redeffinitions 57

\subsection*{16.4.9.3 Map Operation Redefinitions}
value
rng \(m \equiv\{m(a) \mid a: A \cdot a \in \operatorname{dom} m\}\)
\(\mathrm{m} 1 \dagger \mathrm{~m} 2 \equiv\)
\([\mathrm{a} \mapsto \mathrm{b} \mid \mathrm{a}: \mathrm{A}, \mathrm{b}: \mathrm{B}\).
\(\mathrm{a} \in \operatorname{dom} \mathrm{m} 1 \backslash \operatorname{dom} \mathrm{~m} 2 \wedge \mathrm{~b}=\mathrm{m} 1(\mathrm{a}) \vee \mathrm{a} \in \operatorname{dom} \mathrm{m} 2 \wedge \mathrm{~b}=\mathrm{m} 2(\mathrm{a})]\)
\(\mathrm{m} 1 \cup \mathrm{~m} 2 \equiv[\mathrm{a} \mapsto \mathrm{b} \mid \mathrm{a}: \mathrm{A}, \mathrm{b}: \mathrm{B} \cdot\)
\(\mathrm{a} \in \operatorname{dom} \mathrm{m} 1 \wedge \mathrm{~b}=\mathrm{m} 1(\mathrm{a}) \vee \mathrm{a} \in \operatorname{dom} \mathrm{m} 2 \wedge \mathrm{~b}=\mathrm{m} 2(\mathrm{a})]\)
\(\mathrm{m} \backslash \mathrm{s} \equiv[\mathrm{a} \mapsto \mathrm{m}(\mathrm{a}) \mid \mathrm{a}: \mathrm{A} \cdot \mathrm{a} \in \operatorname{dom} \mathrm{m} \backslash \mathrm{s}]\)
\(\mathrm{m} / \mathrm{s} \equiv[\mathrm{a} \mapsto \mathrm{m}(\mathrm{a}) \mid \mathrm{a}: \mathrm{A} \cdot \mathrm{a} \in \operatorname{dom} \mathrm{m} \cap \mathrm{s}]\)
\(\mathrm{m} 1=\mathrm{m} 2 \equiv\)
\(\operatorname{dom} \mathrm{m} 1=\operatorname{dom} \mathrm{m} 2 \wedge \forall \mathrm{a}: \mathrm{A} \cdot \mathrm{a} \in \operatorname{dom} \mathrm{m} 1 \Rightarrow \mathrm{~m} 1(\mathrm{a})=\mathrm{m} 2(\mathrm{a})\)
\(\mathrm{m} 1 \neq \mathrm{m} 2 \equiv \sim(\mathrm{~m} 1=\mathrm{m} 2)\)
\(\mathrm{m}^{\circ} \mathrm{n} \equiv\)
\([\mathrm{a} \mapsto \mathrm{c} \mid \mathrm{a}: \mathrm{A}, \mathrm{c}: \mathrm{C} \cdot \mathrm{a} \in \operatorname{dom} \mathrm{m} \wedge \mathrm{c}=\mathrm{n}(\mathrm{m}(\mathrm{a}))]\)
pre rng \(\mathrm{m} \subseteq\) dom n

\section*{16.5. \(\lambda\)-Calculus + Functions}

\subsection*{16.5.1. The \(\lambda\)-Calculus Syntax}
type /* A BNF Syntax: */
\(\langle\mathrm{L}\rangle::=\langle\mathrm{V}\rangle|\langle\mathrm{F}\rangle|\langle\mathrm{A}\rangle \mid(\langle\mathrm{A}\rangle)\)
\(\langle\mathrm{V}\rangle::=/ *\) variables, i.e. identifiers */
\(\langle\mathrm{F}\rangle::=\lambda\langle\mathrm{V}\rangle \cdot\langle\mathrm{L}\rangle\)
\(\langle\mathrm{A}\rangle::=(\langle\mathrm{L}\rangle\langle\mathrm{L}\rangle)\)
value /* Examples */
\(\langle L\rangle:\) e, f, a, ...
\(\langle\mathrm{V}\rangle: \mathrm{x}, \ldots\)
\(\langle F\rangle: \lambda x \cdot e, \ldots\)
\(\langle A\rangle: f a,(f a), f(a),(f)(a), \ldots\)
\(\qquad\)
\(\qquad\)

\subsection*{16.5.3. Substitution}
- \(\boldsymbol{\operatorname { s u b s t }}([\mathrm{N} / \mathrm{x}] \mathrm{x}) \equiv \mathrm{N}\)
- \(\boldsymbol{\operatorname { s u b s t }}([\mathrm{N} / \mathrm{x}] \mathrm{a}) \equiv \mathrm{a}\)
for all variables \(a \neq x\);
- \(\boldsymbol{\operatorname { s u b s t }}([\mathrm{N} / \mathrm{x}](\mathrm{P} Q)) \equiv(\boldsymbol{\operatorname { s u b s t }}([\mathrm{N} / \mathrm{x}] \mathrm{P}) \boldsymbol{\operatorname { s u b s t }}([\mathrm{N} / \mathrm{x}] \mathrm{Q}))\);
- \(\boldsymbol{\operatorname { s u b }} \boldsymbol{\operatorname { s i n }}([\mathrm{N} / \mathrm{x}](\lambda x \cdot P)) \equiv \lambda \mathrm{y} \cdot \mathrm{P}\);
- \(\boldsymbol{\operatorname { s u b s t }}([\mathrm{N} / \mathrm{x}](\lambda \mathrm{y} \cdot \mathrm{P})) \equiv \lambda y \cdot \boldsymbol{\operatorname { s u b s t }}([\mathrm{~N} / \mathrm{x}] \mathrm{P})\),
if \(\mathbf{x} \neq \mathbf{y}\) and y is not free in N or x is not free in P ;
- \(\boldsymbol{\operatorname { s u b }} \boldsymbol{\operatorname { s i n }}([\mathrm{N} / \mathrm{x}](\lambda y \cdot P)) \equiv \lambda z \cdot \boldsymbol{s u b s t}([\mathrm{~N} / \mathrm{z}] \boldsymbol{\operatorname { s u b }} \boldsymbol{\operatorname { c o s }}([\mathrm{z} / \mathrm{y}] \mathrm{P}))\),
if \(y \neq x\) and \(y\) is free in \(N\) and \(x\) is free in \(P\) (where \(\mathbf{z}\) is not free in (NP)).

\subsection*{16.5.2. Free and Bound Variables}

Let \(x, y\) be variable names and \(e, f\) be \(\lambda\)-expressions.
- \(\langle\mathrm{V}\rangle\) : Variable \(x\) is free in \(x\).
- \(\langle\mathrm{F}\rangle: x\) is free in \(\lambda y \cdot e\) if \(x \neq y\) and \(x\) is free in \(e\).
- \(\langle\mathrm{A}\rangle: x\) is free in \(f(e)\) if it is free in either \(f\) or \(e\) (i.e., also in both).
\(\qquad\)

\subsection*{16.5.4. \(\alpha\)-Renaming and \(\beta\)-Reduction}
- \(\alpha\)-renaming: \(\lambda x \cdot \mathrm{M}\)

If \(\mathrm{x}, \mathrm{y}\) are distinct variables then replacing x by y in \(\lambda \mathrm{x} \cdot \mathrm{M}\) results in \(\lambda y\)-subst \(([y / x] M)\). We can rename the formal parameter of a
\(\lambda\)-function expression provided that no free variables of its body M thereby become bound.
- \(\beta\)-reduction: \((\lambda x \cdot M)(N)\)

All free occurrences of x in M are replaced by the expression N provided that no free variables of N thereby become bound in the result. \((\lambda x \cdot M)(N) \equiv \boldsymbol{\operatorname { s u b s t }}([\mathrm{N} / \mathrm{x}] \mathrm{M})\)

\subsection*{16.5.5. Function Signatures}

For sorts we may want to postulate some functions:

\section*{type}

A, B, C
value
obs_B: A \(\rightarrow\) B,
obs_C: \(\mathrm{A} \rightarrow \mathrm{C}\),
gen_A: \(\mathrm{B} \times \mathrm{C} \rightarrow \mathrm{A}\)

Or functions can be defined implicitly:

\section*{value}
f: Arguments \(\rightarrow\) Result
f (args) as result
post P1(args,result)
g: Arguments \(\xrightarrow{\sim}\) Result
g (args) as result
pre P2(args)
post P3(args,result)
\(\qquad\)

\subsection*{16.5.6. Function Definitions}

Functions can be defined explicitly:

\section*{value}
f: Arguments \(\rightarrow\) Result
\(\mathrm{f}(\operatorname{args}) \equiv\) DValueExpr
g: Arguments \(\xrightarrow{\sim}\) Result
\(\mathrm{g}(\operatorname{args}) \equiv\) ValueAndStateChangeClause pre P (args)
16. RSL: The Raise Specification Language 16.6. Other Applicative Expressions

\subsection*{16.6. Other Applicative Expressions}

\subsection*{16.6.1. Simple let Expressions}

Simple (i.e., nonrecursive) let expressions:
let \(\mathrm{a}=\mathcal{E}_{d}\) in \(\mathcal{E}_{b}(\mathrm{a})\) end
is an "expanded" form of:
\(\left(\lambda \mathrm{a} . \mathcal{E}_{b}(\mathrm{a})\right)\left(\mathcal{E}_{d}\right)\)

\subsection*{16.6.2. Recursive let Expressions}

Recursive let expressions are written as:
\[
\text { let } f=\lambda a: A \cdot E(f) \text { in } B(f, a) \text { end }
\]
is "the same" as:
\[
\text { let } f=Y F \text { in } B(f, a) \text { end }
\]
where:
\[
\mathrm{F} \equiv \lambda \mathrm{~g} \cdot \lambda \mathrm{a} \cdot(\mathrm{E}(\mathrm{~g})) \text { and } \mathrm{YF}=\mathrm{F}(\mathrm{YF})
\]

\(\qquad\)
\(\qquad\)

\subsection*{16.6.5. Conditionals}

\footnotetext{
if b_expr then c_expr else a_expr
end
if b_expr then c_expr end \(\equiv / *\) same as: \(* /\) if b_expr then c_expr else skip end
if b_expr_1 then c_expr_1
elsif b_expr_2 then c_expr_2
elsif b_expr_3 then c_expr_3
elsif b_expr_n then c_expr_n end
case expr of
choice_pattern_1 \(\rightarrow\) expr_1,
choice_pattern_2 \(\rightarrow\) expr_2,
.
choice_pattern_n_or_wild_card \(\rightarrow\) expr_n end
}

\subsection*{16.6.6. Operator/Operand Expressions}
```

<Expr> ::=
\langlePrefix_Op\rangle \Expr>
| \langleExpr\rangle \langleInfix_Op\rangle \langleExpr\rangle
| \Expr\rangle \Suffix_Op\rangle
| ...
Prefix_Op\rangle ::=
- |~ | | | \cap | card | len | inds | elems | hd | tl | dom | rng
\Infix_Op\rangle ::=
= | | | \equiv|+|-|*| \ | | | | \leq|\geq |> | ^| \vee | =>
|\in|\not\in|\cup|\cap|\|\subset|\subseteq|\supseteq|
^| | |
\langleSuffix_Op\rangle::=!

```

\subsection*{16.7.2. Variables and Assignment}

0 . variable v :Type \(:=\) expression
1. \(\mathrm{v}:=\operatorname{expr}\)
\(\qquad\)
16. RSL: The Raise Specification Language 16.7. Imperative Constructs16.7.3. Statement Sequences and skip

\subsection*{16.7. Imperative Constructs}
16.7.1. Statements and State Changes

Unit
value
stmt: Unit \(\rightarrow\) Unit
stmt()
- Statements accept no arguments.
- Statement execution changes the state (of declared variables).
- Unit \(\rightarrow\) Unit designates a function from states to states.
- Statements, stmt, denote state-to-state changing functions.
- Writing () as "only" arguments to a function "means" that () is an argument of type Unit.
16.7.3. Statement Sequences and skip
2. skip
3. stm_1;stm_2;...;stm_n

\subsection*{16.7.4. Imperative Conditionals}
4. if expr then stm_c else stm_a end
5. case e of: p_1 \(\rightarrow\) S_1 (p_1), ..,p_n \(\rightarrow\) S_n(p_n) end

\subsection*{16.7.5. Iterative Conditionals}
6. while expr do stm end
7. do stmt until expr end
16. RSL: The Raise Specification Language 16.7. Imperative Constructs16.7.6. Iterative Sequencing
16.7.6. Iterative Sequencing
8. for e in list_expr \(\cdot P(b)\) do \(S(b)\) end

594
16. RS
-

\[
\ldots
\]
16. RSL: The Raise Specification Language 16.8. Process Constructs

\subsection*{16.8. Process Constructs}

\subsection*{16.8.1. Process Channels}

Let A and B stand for two types of (channel) messages and i:Kldx for channel array indexes, then:
```

channel c:A
channel { k[i]:B | i:KIdx }

```

\subsection*{16.8.2. Process Composition}
- Let P and Q stand for names of process functions,
- i.e., of functions which express willingness to engage in input and/or output events,
- thereby communicating over declared channels.
- Let \(P()\) and \(Q\) stand for process expressions, then:

P || Q Parallel composition
P ] Q Nondeterministic external choice (either/or)
\(\mathrm{P}\rceil \mathrm{Q}\) Nondeterministic internal choice (either/or)
PHQ Interlock parallel composition

\(\qquad\)
\(\qquad\)

Let \(\mathrm{c}, \mathrm{k}[\mathrm{i}]\) and e designate channels of type A and B , then:
c ?, \(\mathrm{k}[\mathrm{i}]\) ? Input
\(\mathrm{c}!\mathrm{e}, \mathrm{k}[\mathrm{i}]\) ! e Output
- expresses the willingness of a process to engage in an event that
© "reads" an input, respectively
© "writes" an output.

\subsection*{16.8.3. Input/Output Events}
- "Wits"

\subsection*{16.8.4. Process Definitions}

The below signatures are just examples. They emphasise that process functions must somehow express, in their signature, via which channels they wish to engage in input and output events.
value
P: Unit \(\rightarrow\) in cout \(\mathrm{k}[\mathrm{i}]\)
Unit
Q: i:KIdx \(\rightarrow\) out c in \(\mathrm{k}[\mathrm{i}]\) Unit
P()\(\equiv \ldots \mathrm{c} ? \ldots \mathrm{k}[\mathrm{i}]!\) e \(\ldots\)
\(\mathrm{Q}(\mathrm{i}) \equiv \ldots \mathrm{k}[\mathrm{i}] ? \ldots \mathrm{c}!\mathrm{e} . \ldots\)
The process function definitions (i.e., their bodies) express possible events.

\subsection*{16.9. Simple RSL Specifications}

\section*{type}
variable
channel
...
alue
axiom
...
value
...```


[^0]:    ${ }^{2}$ usually, say a hundred pages
    ${ }^{3}$ usually a finely sectioned document of may subsub. . . subsections
    ${ }^{4}$ having many cross-references between subsub • • subsections

[^1]:    ${ }^{5}$ Or maybe just: have a reasonably firm grasp of ${ }^{6}$ See previous footnote!

[^2]:    ${ }^{7}$ When we put ' $\&$ ' between two terms that the compound term forms a whole concept
    sendurants [manifest entities henceforth called parts and materials] and perdurants [actions, events, behaviours]
    ${ }^{\text {a atomic }}$ and composite, unique identifiers, mereology, attributes
    ${ }^{10}$ intrinsics, support technology, rules \& regulations, organisation \& management, human behaviour etc.
    ${ }^{11}$ the study and knowledge of parts and relations of parts to other parts and a "whole"

[^3]:    ${ }^{13}$ Ontology languages: KIF http://www.ksl.stanford.edu/knowledge-sharing/kif/\#manual, OWL [Ontology Web Language] [OWL:2009], ISO Common Logic [ISO:CL:2007]

[^4]:    ${ }^{15}$ Design: simple crossing, freeway "cloverleaf" interchange, etc
    ${ }^{16} \mathrm{~A}$ hub traffic state is (for example) a set of pairs of link identifiers where each such pair designates that traffic can move from the first designated link to the second.
    ${ }^{17} \mathrm{~A}$ hub state space is (for example) the set of all hub traffic states that a hub may range over.
    ${ }^{18} \mathrm{~A}$ link traffic state is (for example) a set of zero to two distinct pairs of the hub identifiers of the link mereology.
    ${ }^{19} \mathrm{~A}$ link traffic state space is (for example) the set of all link traffic states that a link may range over

[^5]:    ${ }_{22}$ And we see no need for describing such type-changes. Crude oil does not "morph" into fuel oil, diesel oil, kerosene and petroleum. Crude oil is consumed and the fractions result from distillation, for example, in an oil refinery.

