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Abstract

We seek foundations for a possible theory of domain descriptions. Sect. 2 infor-
mally outlines what we mean by a domain. Sect. 3 informally outlines the entities
whose description form a description of a domain. Sect. 4 then suggests one way
of formalising such description parts1. There are other ways of formally describing

1The exemplified description approach is model-oriented, specifically the RAISE [23] cum RSL [22] ap-
proach.
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Research Notes 5

domains2, but the one exemplified can be taken as generic for other description ap-
proaches. Sect. ?? outlines a theory of domain mereology. Sect. 5 suggests some
‘domain discoverers’. 3

These research notes reflect our current thinking. Through seminar presentations,
their preparation and post-seminar revisions it is expected that they will be altered
and honed.

2Other model-oriented approaches are those of Alloy [28], Event B [1], VDM [7, 8, 17] and Z [42].
Property-oriented description approaches include CafeOBJ [19], Casl [13] and Maude [32, 12]
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6 Towards a Theory of Domain Descriptions

1 Introduction 4

In this section we shall cover a number of concepts (“Preliminary Notions” and “An On-
tology of Descriptions”, Sects. 1.2–1.4) that lie at the foundation of the theory and practice
of domain science and engineering. These are general issues such as (i) software engineering
as consisting of domain engineering, requirements engineering, and software design, (ii) types
and values, and (iii) algebras. But first we shall put the concept of domain engineering in a
proper perspective.

1.1 Rôles of Domain Engineering 5

By domain engineering we shall understand the engineering3 of domain descriptions, their
study, use and maintenance. In this section (Sect. 1.1) we shall focus on the use of domain
descriptions (i) in the construction of requirements and, from these, in the design of soft-
ware, and (ii) more generally, and independent of requirements engineering and software
design, in the study of man-made domains in a search for possible laws.

1.1.1 Software Development 6

We see domain engineering as a first in a triptych phased software engineering: (I) domain
engineering, (II) requirements engineering and (III) software design. Sections 3–4 cover
some engineering aspects of domain engineering.

7

Requirements Construction As shown elsewhere [3, 4, 5, 6] domain descriptions, D, can
serve as a firm foundation for requirements engineering. This done is by systematically
“deriving” major part of the requirements from the domain description. The ‘deriva-
tion’ is done in steps of refinements and extensions. Typical steps reflect such ‘algebraic
operations’ as projection, instantiation, determination, extension, fitting, etcetera In8

“injecting” a domain description, D, in a requirements prescription, R, the requirements
engineer endeavors to satisfy goals, G, where goals are meta-requirements, that is, are a
kind of higher-order requirements which can be uttered, that is, postulated, but cannot
be formalised in a way from which we can “derive” a software design. For the concept of
‘goal’ we refer to [30, Axel van Lamsweerde].

So, to us, domain engineering becomes an indispensable part of software engineering. In
[6] we go as far as suggesting that current requirements engineering (research and practice)
rests on flawed foundations !

9

Software Design Finally, from the requirements prescription, R, software, S, can be
designed through a series of refinements and transformations such that one can prove

3Engineering is the discipline, art, skill and profession of acquiring and applying scientific, mathematical,
economic, social, and practical knowledge, in order to design and build structures, machines, devices,
systems, materials and processes . . . [http://en.wikipedia.org/wiki/Engineering]
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D,S |= R, that is, the software design, S, models, i.e., is a correct implementation of the
requirements, R, where the proof makes assumptions about the domain, D.

1.1.2 Domain Studies “In Isolation” 10

But one can pursue developments of domain descriptions whether or not one subsequently
wishes to pursue requirements and software design. Just as physicists study “mother
nature” in order just to understand, so domain scientists cum engineers can study, for ex-
ample, man-made domains — just to understand them. Such studies of man-made domains 11

seem worthwhile. Health care systems appear to be quite complex, embodying hundreds or
even thousands of phenomena and concepts: parts, actions, events and behaviours. So do
container lines, manufacturing, financial services (banking, insurance, trading in securities
instruments, etc.), liquid and gaseous material distribution (pipelines), etcetera. Proper
studies of each of these entails many, many years of work.

1.2 Additional Preliminary Notions 12

We first dwell on the “twinned” notions ‘type’ and ‘value’, Sect. 1.2.1. And then we
summarise, Sect. 1.2.2, the notions of (universal, or abstract) algebras, heterogeneous
algebras and ‘behavioural’ algebras. The latter notion, behavioural algebra, is a “home-
cooked” term. (Hence the single quotes.) The algebra section, Sect. 1.2.2, is short on
definitions and long on examples.

1.2.1 Types and Values 13

Values (0, 1, 2, . . .) have types (integer). We observe values (false, true)), but we speak
of them by their types (Boolean); that is: types are abstract concepts whereas (actual)
values are (usually) concrete phenomena. By a type we shall here, simplifying, mean a
way of characterising a set of entities (of similar “kind”). Entity values and types are
related:when we observe an entity we observe its value; and when we say that an entity
is of a given type, then we (usually) mean that the observed entity is but one of several
entities of that type. 14

Example 1 (Types and Values of Parts) Three näıve examples

When we say, or write,
the [or that] net, we
mean

1. an entity, a specific
value, n,

2. of type net, N .

When we say, or write,
the [or that] account,
we mean

3. an entity, a specific
value, a,

4. of type account, A.

When we say, or write,
the [or that] container,
we mean

5. an entity, a specific
value, c,

6. of type container, C.
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8 Towards a Theory of Domain Descriptions

type
2. N
value
1. n:N

type
4. A
value
3. a:A

type
6. C
value
5. c:C

•
15

Example 2 (Types and Values of Actions, Events and Behaviours) We continue the ex-
ample above: A set of actions that all insert hubs in a net have the common signature:

value

insert: H → N
∼
→ N

The type expression H→N
∼
→N demotes an infinite set of functions from Hubs to partial

functions from Nets

to Nets. The value clause insert: H→N
∼
→N names a function value in that infinite set insert

and non-deterministically selects an arbitrary value in that infinite set. The functions are16

partial (
∼
→) since an argument Hub may already “be” in the N in which case the insert

function is not defined. A set of events that all result in a link of a net being broken can
be characterised by the same predicate signature:

value
link disappearance: N × N → Bool

The set of behaviours that focus only on the insertion and removal of hubs and links in a
net have the common signature:

type
Maintain = Insert H | Remove H | Insert L | remove L

value
maintain N: N → Maintain∗ → N
maintain N: N → Maintainω → Unit

If insertions and removals continue ad infinitum, i.e., ω, then the maintenance behaviour
do likewise: Unit.

•

Inquiry: Type and Value

The concept of type and its study in the last 50 years, is, perhaps, the finest contribution
that computer science have made to mathematics. It all seems to have started with
Bertrand Russel who needed to impose a type hierarchy on sets in order to understand
the problem posed by the question: “is the set of all sets a member of itself”. Explicit
types were (one may claim) first introduced into programming languages in Algol 60

[2].
The two concepts: ‘type’ and ‘value’ go hand-in-hand. more to come •
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1.2.2 Algebras 17

Abstract Algebras By an abstract algebra we shall understand a (finite or infinite) set
of parts (e1, e2, . . . ) called the carrier, A (a type), of the algebra, and a (usually finite)
set of functions, f1, f2, . . . , fn, [each] in Ω, over these. Writing fi(ej1 , ej2, . . . , ejm

), where
fi is in Ω of signature:

signatureω : An → A

and each ejℓ
(ℓ : {1..m}) is in A. The operation fi(ej1, ej2, . . . , ejm

) is then meant to
designate either chaos (a totally undefined quantity) or some ek in A.

18

Heterogeneous Algebras A heterogeneous algebra has its carrier set, A, consist of a
number of usually disjoint sets, also referred to as sub-types of A: A1, A2, . . . , An, and a
set of operations, ω:Ω, such that each operation, ω, has a signature:

signature ω : Ai×Aj× · · ·×Ak → Ar

where Ai, Aj, . . . , Ak and Ar are in {A1, A2, . . . , An}. 19

Example 3 (Heterogeneous Algebras: Platoons) We leave it to the reader to fill in miss-
ing narrative and to decipher the following formalisation.

7. There are vehicles.

8. A platoon is a set of one or more vehicles.

type
7. V
8. P = {| p • p:V-set ∧ p6={} |}

9. A vehicle can join a platoon.

10. A vehicle can leave a platoon.

11. Two platoons can be merged into one platoon.

12. A platoon can be split into two platoons.
20

9. join 0: V × P → P
9. join 0(v,p) ≡ p ∪ {v} pre: v 6∈ p

10. leave 0: V × P → P
10. leave 0(v,p) ≡ p\{v} pre: v ∈ p

11. merge 0: P × P → P
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10 Towards a Theory of Domain Descriptions

11. merge 0(p,p′) ≡ p ∪ p′ pre: p 6= {} 6= p′ ∧ p ∩ p′ = {}

12. split 0: P → P-set
12. split 0(p) ≡ let p′,p′′:P • p′ ∪ p′′ = p in {p′,p′′} end pre: card p ≥ 2

The above formulas define a heterogeneous algebra with types V and P and operations (or
actions) join 0, leave 0, merge 0, and split 0.

•

21

Behavioral Algebras An abstract algebra is characterised by the one type, A, of its
parts and by its operations all of whose signatures are of the form A×A× · · ·×A→A. A
heterogeneous algebra is an abstract algebra and is further characterised by two or more
types, A1, A2, . . . , Am, and by a set of operations of usually distinctly typed signatures.
A behavioral algebra is a heterogeneous algebra and is further characterised by a set of
events and by a set of behaviours where events are like actions and behaviours are sets of
sequences of actions, events and behaviours.22

Example 4 (A Behavioural Algebra: A System of Platoons and Vehicles) Our exam-
ple may be a bit contrived. We have yet to unfold, as we do in this paper, enough material
to give more realistic examples.

13. A well-formed platoon/vehicle system consists of a pair:

a convoys which is a varying set of [non-empty] platoons and

b reservoir which is a varying set of vehicles —

c such that the convoys platoons are disjoint, no vehicles in common, and

d such that reservoir have no vehicle in common with any platoon in convoys.
23

14. Platoons are characterised by unique platoon identifiers.

15. These identifiers can be observed from platoons.

16. Vehicles from the reservoir behaviour may join [leave] a platoon whereby they leave
[respectively join] the pool.

17. Two platoons may merge into one, and a platoon may split into two.

18. Finally, vehicles may enter [exit] the system by entering [exiting] reservoir.
24

type
13. S = {| (c,r):C×R•r ∩ ∪ c = {} |}
13a. C = {| c:P-set • wf C(c) |}
value
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13c. wf C: C → Bool
13c. wf C(c) ≡ ∀ p,p′:P•{p,p′}⊆c ⇒ p6={}6=p′ ∧ p ∩ p′ = {}
type
13b. R = V-set
value

16. join 1: S
∼
→ S

16. leave 1: S
∼
→ S

17. merge 1: S
∼
→ S

17. split 1: S
∼
→ S

18. enter 1: S
∼
→ S

18. exit 1: S
∼
→ S

25

19. join 1 selects an arbitrary vehicle in r:R and an arbitrary platoon p in c:C, joins v to
p in c and removes v from r.

20. leave 1 selects a platoon p in c and a vehicle v in p, removes v from p in c and joins
v to r.

21. merge 1 selects two distinct platoons p,p′ in c, removes them from c, takes their union
and adds to c.

22. split 1 selects a platoon p in c, one which has at least to vehicles,

23. and partitions p into p′ and p′′, removes p from c and joins p′ and p′′ to c.

24. enter 1 joins a fresh vehicle v to r.

25. exit 1 removes a vehicle v from a non-empty r.
26

19. join 1(c,r) ≡
19. let v:V•v ∈ r,p:P•p ∈ c in
19. (c\{p} ∪ {join 0(v,p)},r\{v}) end

20. leave 1(c,r) ≡
20. let v:V,p:P•p ∈ c ∧ v ∈ p in
20. (c\{p} ∪ {leave 0(v,p)},r ∪ {v}) end

21. merge 1(c,r) ≡
21. let p,p′:P•p6=p′∧{p,p′}⊆c in
21. (c\{p,p′} ∪ {merge 0(p,p’)},r) end

22. split 1(c,r) ≡
23. let p:P•p ∈ c∧card p≥2 in
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12 Towards a Theory of Domain Descriptions

23. let p′,p′′:P•p ∪ p′ = p in
23. (c\{p} ∪ split 0(p),r) end end

24. enter 1(c,r) ≡ (c,let v:V•v6∈ r ∪ ∪ c in r ∪ {v} end)
25. exit 1()(c,r) ≡ (c,let v:V•v ∈ r in r\{v} end) pre: r 6={}

The r ∪ ∪ c in enter 1(c,r) expresses the union (with the vehicles of r) of all the vehicles in
all the platoons of c, i.e., the distributed union of c (∪ c).27

The above model abstracts an essence of the non-deterministic behaviour of a platoon-
ing system. We make no assumptions about which vehicles are joined to or leave which
platoons, which platoons are merged, which platoon is split nor into which sub-platoons,
and which vehicle enters and exits the reservoir state.28

26. We model the above system as a behaviour which is composed from a pair of con-
current behaviours:

a a convoys behaviour and

b a reservoir behaviour

c where these behaviours interact via a channel cr ch and

d where the entering of “new” and exiting of “old” vehicles occur on a channel
io ch

27. Hence the communications between the reservoir behaviour and the convoys be-
haviour are of three kinds: Joining (moving) a vehicle to a (“magically”4) named
platoon from the reservoir behaviour, Removing [moving] a vehicle from a named
platoon to (mkV(v)) the reservoir behaviour

29

type
27. M == mkJ(v:V) | mkR | mkV(v:V)
channel
26c. cr ch:M
26d. io ch:V
value
26. system: S → Unit
26. system(c,r) ≡ convoys(c) ‖ reservoir(r)

30

28. The convoys behaviour non-deterministically (⌈⌉) chooses either to

a merge platoons, or to

4In this example we skip the somewhat ‘technical’ details as to how the reservoir behaviour obtains
knowledge of platoon names.
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b split platoons, or to

c interact with the reservoir behaviour via channel ct ch

d and based on that interactions

i. to either join a[n arbitrary] vehicle v to a platoon, or

ii. to remove a named vehicle, v, from a platoon

iii. while “moving’ that vehicle to reservoir.
31

28. convoys: C → in,out cr ch Unit
28. convoys(c) ≡ convoys(merge(c)) ⌈⌉ convoys(split(c)) ⌈⌉ convoys(interact(c))

28c. interact: C → in,out cr ch C
28c. interact(c) ≡
28c. let m = cr ch ? in
28d. case m of
28(d)i. mkJ(v) → join vehicle(v,c),
28(d)ii. mkR → let (c′,v)=remove vehicle(c) in
28(d)iii. ct ch!mkV(v) ; c′

28c. end end end

32

29. The merge platoons behaviour

a non-deterministically chooses two platoons of convoys (p,p′),

b removes the two platoons from convoys and adds the merge of these two platoons
to convoys.

c If convoys contain less than two platoons then merge platoons is undefined.

29. merge platoons: C → C
29. merge platoons(c) ≡
29a. let p,p′,p′′:P • p6=p′∧{p,p′}⊆ c in
29b. c\{p,p′} ∪ {merge 0(p,p’)} end
29b. pre: card c ≥ 2

33

30. The split platoons function

a non-deterministically chooses a platoon, p, of two or more vehicles in convoys,

b removes the chosen platoon from convoys and inserts the split platoons into
convoys.

c If there are no platoons in c with two or more vehicles then split platoons is
undefined.
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14 Towards a Theory of Domain Descriptions

30. split platoons: C
∼
→ C

30. split platoons(c) ≡
30a. let p:P • p ∈ c ∧ card p ≥ 2 in
30b. c\{p} ∪ {split 0(p)} end
30c. pre: ∃ p:P • p ∈ c ∧ card p ≥ 2

34

31. The reservoir behaviour interacts with the convoys behaviour and with “an external”,
that is, undefined behaviour through channels ct ch and io ch.
The reservoir behaviour [external] non-deterministically chooses between

a importing a vehicle from “the outside”,

b exporting a vehicle to “the outside”,

c moving a vehicle to the convoys behaviour, and

d moving a vehicle from the convoys behaviour.
35

31. reservoir: R → in,out cr ch, io ch Unit
31. reservoir(r) ≡
31a. (r ∪ {io ch?}),
31b. ⌈⌉⌊⌋ let v:V • v ∈ t in io ch!mkV(v) ; reservoir(r\{v}) end
31c. ⌈⌉⌊⌋ let v:V • v ∈ t in ct ch!mkJ(v) ; reservoir(r\{v}) end
31d. ⌈⌉⌊⌋ let mkV(v) = ct ch? in reservoir(r ∪ {v}) end

We may consider Items 31a–31b as designating events.
This example designates a behavioural algebra.

•

Inquiry: Algebra

Algebra is a mathematical notion. We shall use this notion in seeking to describe domains
as algebras.

more to come

•

1.3 On ‘Method’ and ‘Methodology’ 36

Inquiry: Method and Methodology

We present our characterisation of the concepts of ‘method’ and ‘methodology’. When
we use these terms then our characterisation is what we mean by their use. There are
other characterisations. Be that as it may. •

By a method we shall understanda set of principles, techniques and tools where the
principles help select and apply these techniques and tools such that an artifact, here a
domain description, can be constructed.

By methodology we shall understand the knowledge and study of one or more methods.
Languages, whether informal, as English, or formal, as RSL, are tools.
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1.4 An Ontology of Descriptions 37

“By ontology we mean the philosophical study of the nature of being, existence, or reality
as such, as well as the basic categories of being and their relations. Traditionally listed
as a part of the major branch of philosophy known as metaphysics, ontology deals with
questions concerning what entities exist or can be said to exist, and how such entities
can be grouped, related within a hierarchy, and subdivided according to similarities and
differences.”5

1.4.1 Entities and Properties 38

A main stream of philosophers [34, 20, 18] appear to agree that there are two categories
of discourse: entities6 and properties. Once we say that, a number of questions arise: (Q1)
What counts as an entity ? (Q2) What counts as a property ? (Q3) Are properties entities ?
(Q4) Can properties predicate properties ? We shall take no and yes to be answers to Q3 and
Q4. These lecture notes shall answer Q1 and Q2

1.4.2 Categories of Entities 39

We shall promulgate the following classes of entities: parts, and operations. where we
further “sub-divide” operations into actions, events and behaviours That is, we can pred-
icate entities, e, as follows: IS PART(e), IS OPERATION(e), that is, IS ACTION(e),
IS EVENT(e) and IS BEHVAIOUR(e). We shall justify the above categorisation through
these lecture notes. So parts, actions, events and behaviours form an ontology of descrip-
tions.

1.5 Structure of Paper 40

1. Introduction 6–15

2. Domains 16–24

3. Entities 25–38

4. Describing Domain Entities 39–67

a Parts, Actions, Events 39–54

b Behaviours 54–67

5. Discovering Domain Entities 68–88

6. Conclusion 89–89

5http://en.wikipedia.org/wiki/Ontology
6The literature [31, 10, 11, 34, 20, 18, 41] alternatively refer to entities by the term individuals.
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16 Towards a Theory of Domain Descriptions

2 Domains 41

By an observable phenomenon we shall here understand something that can be sensed by
one or more of our five sense organs. By a domain we shall here informally understand an
area of human activity characterised by observable phenomena: entities and their proper-
ties, and abstractions, i.e., concepts, thereof. In Sect. 2.4 we suggest a more formal way
of characterising a domain. But first we give some rough sketch hints as to what domains
are.

Inquiry: Rough-sketching and Rough Sketch

We shall be using the idea of ‘rough-sketching’ descriptions (prescriptions and specifica-
tions) as a means to give the reader a rough, but not yet sufficiently precise idea of what
we are aiming at. Rough-sketching (as a verb) a domain description is a process which
helps the ‘rough-sketcher’ in first discovering the parts, actions, events and behaviours of
a domain. Rough sketch (as a noun) is the result of rough-sketching and serves to help
the rough-sketcher to formulate (not the, but) an essence. •

2.1 Informal Characterisation 42

There are several forms of observable phenomena. There are the entities: endurant7

entities: parts, and perdurant8 entities: actions, events, and behaviours of the domain.
Then there are the properties of these entities: (i) their unique identifications, (ii) the
mereology of parts, that is, how parts are “put together”, parts within, or subparts of
other parts, etcetera, and (iii) the attributes of parts: types and values, whether atomic
or composite, and of actions, events and behaviours: signatures and values. We will just43

examine one of the part properties.

2.2 Mereology

Mereology, to us, is the study and knowledge about how physical and conceptual parts
relate and what it means for a part to be related to another part: being adjacent to, being
contained properly within, being overlapped (i.e., sharing) properly with, etcetera.44

By physical parts we mean such spatial individuals which can be pointed to. Exam-
ples: a road net (consisting of street segments and street intersections); a street segment
(between two intersections); a street intersection; a vehicle; and a platoon (of sequentially
adjacent vehicles).45

By a conceptual part we mean an abstraction with no physical extent, which is either
present or not. Examples: a bus timetable (not as a piece or booklet of paper, or as an
electronic device, but) as an image in the minds of potential bus passengers; and routes of
a pipeline, that is, adjacent sequences of pipes, valves, pumps, forks and joins, for example

7Endurants are those entities that can be observed-perceived as a complete concept, at no matter which
given snapshot of time [Wikipedia].

8Perdurants are those entities for which only a part exists if we look at them at any given point in time.
When we freeze time we can at most see a part of the perdurant. [Wikipedia].
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referred to in discourse: take “such-and-such” a route”. The tricky thing here is that a
route may be thought of as being both a concept or being a physical part — in which case
one ought give them different names: a planned route and an actual route, for example. 46

The mereological notion of subpart, that is: contained within can be illustrated by
examples: the intersections and street segments are subparts of the road net; vehicles are
subparts of a platoon; and pipes, valves, pumps, forks and joins are subparts of pipelines.
The mereological notion of adjacency can be illustrated by examples: the pipes of a
pipeline are adjacent (that is, connected) to other pipes or valves or pumps or forks or
joins, etcetera; two immediately neighbouring vehicles of a platoon are adjacent. We shall
mereologically model adjacency by the mereology notion of overlap. The mereological 47

notion of proper overlap can be illustrated by examples: two routes of a pipelines may
overlap; and two conceptual bus timetables may overlap with some, but not all bus line
entries being the same.

2.3 Rough Sketch Hints of Domains 48

Example 5 (Domains) We present a number of examples:

• Container Line: A container line consists of a number of container vessels capable of
holding (usually thousands of) containers being transported, by the vessels, between
container terminal ports across the seven seas. A container vessel has its containers
ordered in bays, rows, and stacks with container terminal port cranes depositing or
removing (“lifting”) containers onto or from port side stack tops. Container vessels
sail specific routes with a route being designated by a sequence of container terminal
port visits where a container terminal port visit, amongst others, has a container
terminal port name, estimated and actual arrival times, etc. Etcetera. 49

• Financial Service Industry: A financial service industry consists of a number of “high
street” (i.e., deposit/demand) banks, savings & loan institutes, commercial banks,
other forms of banks, insurance companies (of differing specialisations), stock/com-
modity exchanges with their brokers and traders, one or more forms of finance
“watchdog” institutions (SEC, FDIC, etc.), etc. A bank had clients and clients have
one or more accounts having account numbers and account balances with clients
opening and closing accounts, depositing monies into, and withdrawing monies from
accounts, etc. Etcetera. 50

• Health Care System: A health care system consists of a number of private physicians,
hospitals, pharmacies, health insurance companies, a pharmaceutical industry, pa-
tients, etc. A hospital consists of a number or wards (etc.) with each ward consisting
of a number or bedrooms (etc.) with each bedroom consisting of a number of beds
(etc.), etcetera. Etcetera. 51

• Pipeline System: A pipeline system consists of sequences of units: pumps, pipes,
valves, forks and joins such that a fork connects to one pipe at the input and two at
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18 Towards a Theory of Domain Descriptions

the output and a join connects two pipes at the input and one at the output, such
that the first unit is a pump and is connected at the input to a well and the last
unit is a valve and is connected to a sink at the output. A pump, when active (i.e.,
pumping) should be moving a certain volume of gas or liquid from the input to the
put per time unit. A valve when closed prevents flow of gas or liquid from the input
to the put, whereas when open unhindered permits such a flow. Etcetera.52

• Transportation System: Transportation involves, say, three sub-domains: a transport
net, a fleet of vehicles, and a community of vehicle drivers and vehicle passengers.
A transport net consists of hubs and links such that a link is connected to exactly
two distinct hubs and a hub is connected to zero, one or more links. Vehicles are
positioned along the net: at hubs or on links and may be standing still or moving —
while transporting freight, the driver and zero, one or more passengers. Etcetera.

•

In the above, rather informal, “description” of facts about specific domains we primarily
focused on enumerating some of the parts. Later examples will remedy this situation.

2.4 What are Domains ? 53

So what is a domain ? We can answer this in three ways: as above, by giving examples,
or, as we now do, by an informal characterisation, or by a more formal characterisation.

2.4.1 An Informal Characterisation of Domains 54

A domain is a set of observable entities and abstractions of these, that is, of parts (some of
which form states), actions (operation applications causing state changes), events (“spu-
rious” state changes not [intentionally] caused by actions) and behaviours (seen as set of
sequences of sets of actions, events and behaviours). Whereas some entities are manifested55

spatio-physically, that is, we can point to them, others cannot, they are either abstractions
of parts, or they are actions, events and behaviours. These latter can, however, be char-
acterised by function definitions, event predicates and behaviour definitions which [when
applied] denote actions, events and behaviours.

2.4.2 A Formal Characterisation of Domains 56

A domain is a behavioural algebra described as consisting of usually two or more type
descriptions, usually two or more function and event descriptions, and usually one or
more behaviour descriptions, which contain channel descriptions and behaviour process
descriptions.

• • •

Inquiry: Domain
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One person’s domain is another person’s sub-domain (where we have yet to charac-
terise what a sub-domain is). And: the algebra “definition” of what a domain is maybe
unsatisfactory.

more to come

•

2.5 Six Examples 57

2.5.1 Air Traffic

Ground
Control
Tower

Aircraft

Control
Tower

Continental

Control ControlControl

Control Control
Continental

TowerTower

Ground
Control

1..k..t 1..m..r

1..n..c 1..n..c

1..j..a

1..i..g 1..m..r 1..k..t 1..i..g
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Figure 1: An air traffic system

Figure 1 shows nine (9) round edge or rectangular boxes and eighteen (18) lines. To-
gether they form a composite part. Individually boxes and lines represent subparts. The
rounded corner boxes denote buildings. The sharp corner box denote an aircraft. Lines
denote radio telecommunication. Only where lines touch boxes do we have connections.
These are shown as red horisontal or vertical boxes at both ends of the double-headed
arrows, overlapping both the arrows and the boxes. The index ranges shown attached
to, i.e., labelling each unit, shall indicate that there are a multiple of the “single” (thus
representative) unit shown. Notice that the ‘box’ parts are fixed installations and that the
double-headed arrows designate the ether where radio waves may propagate. We could,
for example, assume that each such line is characterised by a combination of location and
(possibly encrypted) radio communication frequency. That would allow us to consider
all lines for not overlapping. And if they were overlapping, then that must have been a
decision of the air traffic system.

2.5.2 Buildings 58

Figure 2 on the next page shows a building plan — as a composite part of two neighbouring,
common wall-sharing buildings, A and H, probably built at different times; with room
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Figure 2: A building plan with installation

sections B, C, D and E contained within A, and room sections I, J and K within H; with
room sections L and M within K, and F and G within C.

Connector γ provides means of a connection between A and B. Connection κ provides
“access” between B and F. Connectors ι and ω enable input, respectively output adaptors
(receptor, resp. outlet) for electricity (or water, or oil), connection ǫ allow electricity (or
water, or oil) to be conducted through a wall. Etcetera.

2.5.3 Financial Service Industry 59

Figure 3 on the facing page shows seven (7) larger boxes [6 of which are shown by
dashed lines] and twelve (12) double-arrowed lines. Where double-arrowed lines touch
upon (dashed) boxes we have connections (also to inner boxes). Six (6) of the boxes, the
dashed line boxes, are composite parts, five (5) of them consisting of a variable number
of atomic parts; five (5) are here shown as having three atomic parts each with bullets
“between” them to designate “variability”. People, not shown, access the outermost (and
hence the “innermost” boxes, but the latter is not shown) through connectors, shown by
bullets, •.

See http://www.imm.dtu.dk/˜db/todai/tse-1.pdf

2.5.4 Machine Assemblies 60

Figure 4 on the next page shows a machine assembly. Square boxes show composite and
atomic parts. Bullets, •, show connectors. Strands of two or three bullets on a thin line,
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Figure 3: A financial service industry
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Figure 4: An air pump, i.e., a physical mechanical system

encircled by a rounded box, show connections. The full, i.e., the level 0, assembly (a
composite part) consists of four parts and three internal and three external connections.
The Pump is an assembly of six (6) parts, five (5) internal connections and three (3)
external connectors. Etcetera. One connector and some connections afford “transmission”
of electrical power. Other connections convey torque. Two connectors convey input air,
respectively output air.

2.5.5 Oil Industry 61

“The” Overall Assembly Figure 5 on the following page shows a composite part
consisting of fourteen (14) composite parts, left-to-right: one oil field, a crude oil pipeline
system, two refineries and one, say, gasoline distribution network, two seaports, an ocean
(with oil and ethanol tankers and their sea lanes), three (more) seaports, and three, say
gasoline and ethanol distribution networks.

Between all of the composite parts there are connections, and from some of these
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Figure 5: A Schematic of an Oil Industry

composite parts there are connectors (to an external environment). The crude oil pipeline
system composite part will be concretised next.

See abstract model: http://www.imm.dtu.dk/˜db/pipeline.pdf
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Figure 6: A Pipeline System

A Concretised Composite parts: Figure 6 shows a pipeline system. It consists of 3262

atomic parts: fifteen (15) pipe units (shown as directed arrows and labelled p1–p15), four
(4) input node units (shown as small circles, ◦, and labelled ini–inℓ), four (4) flow pump
units (shown as small circles, ◦, and labelled fpa–fpd), five (5) valve units (shown as small
circles, ◦, and labelled vx–vw), and four (4) output node units (shown as small circles, ◦,
and labelled onp–ons). In this example the routes through the pipeline system start with
node units and end with node units, alternates between node units and pipe units, and are
connected as shown by fully filled-out red9 disc connections. Input and output nodes have
input, respectively output connectors, one each, and shown with green10

9This paper is most likely not published with colours, so red will be shown as darker colour.
10Shown as lighter coloured connections.
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2.5.6 Railway Nets 63

Turnout / PointTrack / Line / Segment
/ Linear Unit / Switch Unit

/ Rigid Crossing
Switchable Crossover
Unit / Double Slip

Connectors − in−between are Units

Simple Crossover Unit

Figure 7: Four example rail units

Figure 7 diagrams four rail units, each with their two, three or four connectors. Multiple
instances of these rail units can be assembled (i.e., composed) as shown on Fig. 8 into
proper rail nets. 64

Connector Connection

Linear Unit

SwitchTrack

Siding

Station

Switchable Crossover

Line

Station

Crossover

Figure 8: A “model” railway net. An Assembly of four Assemblies:
Two stations and two lines; Lines here consist of linear rail units;
stations of all the kinds of units shown in Fig. 7.
There are 66 connections and four “dangling” connectors

See http://www.railwaydomain.org/
Figure 8 diagrams an example of a proper rail net. It is assembled from the kind of

units shown in Fig. 7. In Fig. 8 consider just the four dashed boxes: The dashed boxes are
assembly units. Two designate stations, two designate lines (tracks) between stations. We
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refer to to the caption four line text of Fig. 7 on the previous page for more “statistics”.
We could have chosen to show, instead, for each of the four “dangling’ connectors, a
composition of a connection, a special “end block” rail unit and a connector.
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3 Entities 65

By a domain entity we mean a fact11 which is either an endurant entity, a part or is a
perdurant entity, that is, an action an event or a behaviour. In contrast to facts we have
concepts, that is, abstractions derived from facts. Concepts can also be considered entities.
Domain entities are the things, the tangible, spatial facts we observe and the concepts we
abstract from these.

Examples: 66

Example 6 (Domain Entities) One example per each of four entity categories:

• part: transport net;

• action: insertion of link;

• event: disappearance of a link segment (that is, fraction of a link); and

• behaviour: movement of vehicles along net. •

Inquiry: Fact

We say that facts are what we can observe as being a part or an action or an event or a
behaviour. And we say that we can observe these.

A part, to a first “approximation”, is a spatial, manifest phenomenon, something that
one can point to. Is a bank a part ? Well, in “ye olde times” [still relevant Anno 2011]
a bank can be presented by one or more buildings by the “books” of various kinds (for
demand/deposit accounts, for mortgage accounts, for savings & loan accounts, etc.), by
the cash registers, by ATMs, etc. Even though some banks may have all of the books
represented electronically, they still have some physical extent: cubic spaces of electronic
memory.

What part concepts may be derived from banks ? more to come

An action seems, at first, to be a concept, but it can be observed by seeing the changes
of the state of physically manifested parts: change of account balance, is an example.

An event also seems, at first, to be a concept, but it can be observed by seeing the
changes of the state of physically manifested parts: the disappearance of a transportation
net link.

A behaviour is likewise manifest observable through its actions, events and other
behaviours. •

Inquiry: Concept

So which concepts appears to be more concepts than phenomena ? An example could
be a timetable. Even though there may not be any form of timetable for some (say
bus) traffic, one may be allowed to say” “the busses appear to run according to some
timetable”. more to come •

11We use the terms ‘fact’, ‘entity’, ‘particular’, ‘thing’ and ‘individual’ synonymously
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3.1 Parts 67

By a part we understand a manifest, an endurant, that is, something we can point to,
inert, possibly dynamic, i.e., animate, phenomenon or a concept thereof, something that
we might (later on) represent as data by a computer.

Examples:68

Example 7 (Parts) Five domain examples:

• Container line: container, container vessel, container terminal port, bill of lading,
etc.

• Financial service industry: bank, bankbook, money (notes, coins), insurance policy,
stock certificate, etc.

• Transportation: net, link, hub, vehicle, driver, etc. 69

• Health care: hospital, ward, bed, patient, medical staff, medical record, medicine,
surgery instruments, health insurance policy, etc.

• Pipeline system: well, pump, pipe, valve, fork, join, sink, pipeline, etc. •

3.1.1 Atomic Parts 70

By an atomic part we shall understand a part which we, as observers, have decided form
an indivisible whole, that is, one for which it is not, in a current context, relevant to speak
of meaningful subparts.

Examples:71

Example 8 (Atomic Parts) Five domain examples:

• Container Line: container, bill of lading, way bill.

• Financial Service Industry: bankbook, money; insurance policy; stock certificate.

• Health Care System: bed, patient, medical record, health insurance policy.

• Pipeline System: well, pump, pipe, valve, fork, join, sink.

• Transportation System: link, hub, vehicle, driver. •

Inquiry: Atomicity
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It is the domain describer who decides, sovereignly, which parts are to be abstracted as
being atomic, which parts are to be considered composite. But the domain describer
does so carefully taking into consideration the scope and span of the domain description.
If, for example, the domain is that of the personnel department of a company then a
person may very well be considered atomic. That is, cannot be “taken apart” into head,
limbs, intestinals, etc. If, instead, the domain is that of a hospital department concerned
with donations of, say deceased human organs, then such a deceased may be considered
composite. •

3.1.2 Composite Parts 72

By a composite part we shall understand a part which we, as observers, have decided
consists of one or more proper parts also referred to as subparts.

Examples: 73

Example 9 (Composite Parts and Subparts) Five domain examples:

• Container Line: container vessel and its bays; bay and its rows; row and its stacks,
stack and its containers.

• Financial Service Industry: bank and its accounts.

• Health Care System: hospital and its wards; ward and its bedrooms, bedroom and
its beds.

• Pipeline System: pipeline and its wells, pumps, pipes, valves, forks, joins and sinks.

• Transportation System: net and its hubs and links. •

Inquiry: Composition

The remarks, above, Page 26, on atomicity, applies, inter alia, here: “It is the domain
describer who decides, sovereignly, which parts are to be abstracted as being atomic,
which parts are to be considered composite. But the domain describer does so carefully
taking into consideration the scope and span of the domain description.”

In this section, Sect. 3.1, we consider compositionality of only parts. We shall also
inquire as to the compositionality of actions, events and behaviours, Sects. 3.2–3.4. •

3.1.3 Part Attributes 74

By an attribute we shall mean a pair: a type name and a value (of that type). Earlier we
stated that we consider parts to be values and have types. Now we state that attributes
are pairs of types and values. This must not be construed as attributes being parts. It is
only that we use the concept of ‘type’ for two purposes: to characterise sets of parts, and
to characterise individual properties of parts.
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Atomic Part Attributes By the attributes of an atomic part we mean the set of properties
(type names and values) that we have decided together characterise that atomic part (and
all of the atomic parts of the same type).

Examples:75

Example 10 (Atomic Part Attributes) Five domain examples:

• Container line: container attributes: length, width, height, weight, refrigerated
or not refrigerated, physical location, contents, etc.

• Financial service industry: account attributes: interest rate (on loans), yield (on
deposits), owner(s), maximum credit, current balance, etc.

• Health care: patient attributes: name, central personal registration identifier,
gender, birth date, birth place, nationality, weight, height, insurance policies, medical
record, etc.

• Pipeline system: pipe attributes: circular diameter, length, location, maximum
laminar flow, current flow, guaranteed maximum leak (in volume/second), current
leak, etc.

• Transportation: link attributes: length, location, link state (open in one direction
or the other or open in both or closed in both directions), link type (road, rail, sea,
air), etc. •

76

Composite Part Attributes By the attributes of a composite part we mean the set of
properties (type names and values) (exclusive of all subparts of that composite part) that
we have decided together characterise that composite part (and all of the composite parts
of the same type).

Examples:77

Example 11 (Composite Part Attributes) Five domain examples:

• Container Line Attributes: name of container line, for example maersk, legal
residence (address), incorporated ?, responsible capital, organisational structure (ex-
plicated organigram), subsidiaries, budget, accounts, etcetera.

• Financial Service Industry Attributes, Bank: name of bank, kind of bank [whether a
demand/deposit or a savings & loan or an investment bank or other], legal residence
(address), responsible capital, organisational structure (explicated organigram), sub-
sidiaries, budget, accounts, etcetera.78
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• Health Care System Attributes, Hospital: name, kind of hospital [whether a general
hospital or a specialised hospital, and then its speciality], legal residence (address),
legal owner, organisational structure (explicated organigram), sources of financing,
budget, accounts, etcetera.

• Pipeline System Attributes: name of pipeline system12, legal residence (address),
legal owner, sources of financing, geography, maintenance subcontractors, budget,
accounts, etcetera. 79

• Transportation System Attributes: name of transport system, kind of transport
system13, legal residence (address), legal owner, sources of financing, geography,
maintenance subcontractors, budget, accounts, etcetera. •

• • •

Inquiry: Attribute and Property

We shall use the concept of ‘property’ in a wider sense than that of ‘attribute’. This
broader concept of ‘property’ has been studied by philosophers [18, 20, 34]. more to come

•

80

Static Part Attributes A part attribute is static if that part never changes its value.

Examples

Example 12 (Static Part Attributes) Two examples:

• Patients: name, central personal registration identifier, gender, and birthplace.

• Links: length. •

81

Dynamic Part Attributes A part attribute is dynamic if that part can change its value.

Examples

Example 13 (Dynamic Part Attributes) Three examples:

• The height, weight, blood pressure, blood sugar, temperature, and (hence) patient
medical record of a patient are dynamic attributes. 82

• A hub typically can connect a number of distinct links and thus can attain either one
of number of hub states each hub state being a possibly empty set of pairs, (lij,lik),
of not necessarily distinct link identifiers (li) of the links connected to that hub.

12for example: Nabucco http://en.wikipedia.org/wiki/Nabucco pipeline
13whether a road system or a rail/train system, or an airline, or a shipping company, etc.
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The state of a hub is a dynamic attribute.

• Similarly for link states. •

83

Indivisibility of Attributes Given a part of some kind (i.e., having some set of attributes),
whether atomic or composite, one cannot “remove” an attribute from that entity and still
retain the entity as being of that kind.

Examples

Example 14 (Indivisibility of Attributes) Two examples:

• One cannot remove the attribute ‘height’ from an entity of kind person

• and one cannot remove the attribute ‘kind of transport system’ from an entity of
kind ‘transport system’. •

Inquiry: Atomic Parts and Highly Structured Attributes

Let us analyse an example domain: that of banking. A bank has clients; clients have
accounts; a clients may have zero, one or more accounts; two or more clients may
share accounts (i.e., multiple accounts); and accounts register which transactions (open,
deposit, withdraw, get statements, transfer, close) have been performed on
the account, its balance, its interest rate to be paid by clients if account balance is
negative, its yield accrued to the client when the account balance is positive. Accounts
have account numbers. Etcetera. The terms written in the sans serif font designate parts
(and, as we shall see later, also behaviour — distinct from parts). The terms written in
slanted, italic font denote attributes. The terms written in teletype font designate
actions. Now to an analysis. In a financial service system there are many clients (seen
as behaviours) with contexts and states (also named clients), and many banks (likewise
seen as behaviours etcetera). The fact that a bank may have several branch offices must
not be confused: these branch offices are not separate banks: they all share the same
clients and the same accounts. We shall see a bank as a concept and as a set of one or
more branch offices (including the one located at the head quarters of the bank). The
bank concept is a part and the branch offices are a set of parts. The bank concept has
a number of attributes: customers (“proxies” for, but not to be confused with, clients),
accounts, account sharing, multiple customer accounts, etc., with accounts having sub-
attributes: owners, balance, interest, yield, etcetera. The bank concept part is shared
by all branch offices. The branch offices are usually physically embodied and distinct.
The bank concept ism in principle, not physically embodied: one cannot point to it. It
may be “implemented” physically in terms of “ye olde” ledgers (books), or in terms of a
large, central database or in terms of a set of smaller, distributed databases, say one per
branch office, or in terms of client-held smart cards, etcetera. The branch offices may
be hard to identify physically: they could be physical buildings and offices, or they could
be ATMs: automatic teller machines, or they could be the client-held smart cards. The
essence of the above is that a bank is an atomic entity with highly structured attributes.
A model of these attributes could be:

May 1, 2012: 16:29 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark DTU Informatics. Bergen 8 May 2012 Mini-course Notes



Research Notes 31

1. A bank has as attributes

a a name,

b a set of uniquely identified customers,

c a set of uniquely identified accounts,

d a “book” which records the accounts of each customer,

e a “book” which records the owners of each account.

f etcetera.

2. An account has

a a balance,

b a chronologically identified set of transactions hitherto performed on the ac-
count,

c an interest on negative balances,

d a yield on positive balances,

e etcetera,

type

1. Bank ::
1a. BankName
1b. CustId-set
1c. AccId →m Account
1d. CustId →m AccId-set
1e. AccId →m CustId-set
2. Account ::
2a. Balance
2b. DateTime →m Transaction
2c. Interest
2d. Yield

Truly a highly structured set of attributes and sub-attributes. •

Inquiry: Parts, Behaviours (Agents) and Attributes

There is a commonly misunderstood dichotomy14: parts as possibly dynamic, inert enti-
ties, and behaviours. Take the term ‘train’. We may speak of “the train” as a composite
(or even as an atomic) part — such as it is manifested on the train station platform at
some time; we may speak of “the train” as a behaviour such as it is manifested when it
speeds down the rails. We may even extend this dichotomy beyond two mutually exclu-
sive or contradictory entities to also include part attributes. Thus we may speak of “the
train” as an attribute — such as it is manifested by a specific entry in a timetable, or as
in “she took the 4:50 from Paddington”. Of course, the confusion arises from our use of
the same term ‘train’ in all these cases. (We invite the reader to formulate appropriately
distinct ‘train terms’.) But the message should be clear: That is describing the train
behaviour one needs refer to the train part(s). Thus the catchphrase: to some a “thing”
is a part, to others it is a behaviour. •

14Dichotomy: a division into two mutually exclusive or contradictory entities.
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3.1.4 Subparts Are Parts 84

By a subpart, p′, of a part, p, we thus mean an entity which is not the same as the part,
that is p 6= p′. We say that a part, p′, is a proper part of another part if it is a subpart of
that part. So by proper part of p and subpart of p we mean the same.

Examples

Example 15 (Sets of Hubs and Hubs – Sets of Links and Links) From a net we observe
sets of hubs and sets of links: A set of hubs is a value of the type sets of hubs. A hub is
a value of type hub. A set of links is a value of the type sets of links. A link is a value of
type link. •

3.1.5 Subpart Types Are Not Subtypes 85

Thus, by a subpart type we mean a part type but the type of the subpart cannot be the
same as the type of the part of which it is a subpart.

Examples

Example 16 (Part and Subpart Types) We refer to Example 15. Let a part be a trans-
portation net, n:N. A subpart of a transportation net, n:N, is, for example, the part hs:HS,
which is the set of all hubs of the net, and a hub, h:H, which is a part of hs:HS, is a subpart
of hs:HS. And all these subparts are of different types, to wit: HS and H, and, as we shall
see, LS and L, are not subtypes of type N. •

86

By a ‘union’, A, of disjoint types, say B, C, ..., D, that is: A=B|C|...|D, we mean a type
whose values are either of type B or of type C or ... of type D, and where every type value
is of exactly one of the types B, C, ..., D. These types, B, C, ..., D, are subtypes of A.

Thus subpart types are not the same as subtypes of the part of which the subpart is a
proper part.

To be consistent we rule out the possibility of defining types recursively.

3.1.6 Mereology of Composite Parts 87

By the mereology of a composite part we understand the number of subparts of respective
kinds (types) of that composite entity and how the subparts are related to one another.

88

Examples

Example 17 (Mereology of Composite parts) Five domain examples:

• Container Line System: A container vessel contains a number of uniquely identified
bays, bays consists of a sequentially indexed sequence of (usually several) rows, and
rows consist of a sequentially indexed sequence of (usually several) stacks, and stacks
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consists of a sequence of zero or more containers — such that access to stacks are by
identity of bay, number of row, number of stack and then to the top of this possibly
empty stack. Etcetera.

• Financial Service Industry: A bank consists of (i) a set of uniquely identified de-
mand/deposit accounts, (ii) a set of uniquely identified savings & loan accounts, (iii)
a set of uniquely identified mortgage accounts. Etcetera. 89

• Health Care System: A hospital consists of (1) a set of uniquely identified wards of
kind κ1, (2) a set of uniquely identified wards of kind κ2, ..., and (n) a set of uniquely
identified wards of kind κn. Etcetera.

• Pipeline System: A pipeline system consists of a set of units — where units a ei-
ther wells, pumps, pipes, valves, forks, joins or sinks — and such that (a) a well is
connected to one or more pumps, (b) a pipe is input-connected to either a pipe or a
pump or a valve or a fork or a join and is output-connected to either a pipe or a pump
or a valve or a fork, (c) a pump is input-connected to a pipe and is output-connected
to a pipe, (d) a valve is input-connected to a pipe and is output-connected a pipe or
a sink, (e) a fork is input-connected to a pipe and is output-connected to two pipes,
(f) a join is input-connected to two pipes and is output-connected to a pipe, and (g)
a sink is input-connected to a valve. Etcetera. 90

• Transportation System: A transport net consists of a set of hubs and a set of one
or more links such that links connect exactly two distinct hubs, and thus such that
hubs are connected to zero or more distinct links. Etcetera.

– The mereology of a net can be expressed in terms of unique identifiers associated
with hubs, hij, hik, . . . , him, and links, lia, lib, . . . , lic. •

91

Mereologically two parts, ei, ej, may stand in the following relationships: (a) either ei is
identical to ej, (b) or ei is fully disjoint from ej, (c) or ei is adjacent (i.e., connects) to
(disjoint from, but “touches”) ej, (d) or ei is fully contained within ej , (e) or ei partially
overlaps with ej (that is, there are “areas” of ei which are not overlapping with “areas” of
ej).

3.1.7 Part Descriptions 92

To describe an atomic part (type) it suffices to describe all the atomic part attributes: its
type name, the attributes, and its possible contribution to the mereology of “a whole”:
own unique identification, and how it ‘unique identifier’-relates to other parts.

To describe a composite part (type) it is necessary to describe these things: (i) all the
composite part attributes, (ii) each of the subpart types (i.e., subparts), and (iii) their
mereology.
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93

Examples

Example 18 (Description of An Atomic Part) We continue our example of transport
nets. A link is here considered an atomic part.

Type Name: link.
Attributes: length, location15, current state16 and state space17, etc.
Unique Identification: unique Link identifier.
Mereology: a pair of unique hub identifiers. •

94

Example 19 (Description of A Composite Part) We continue our example of transport
nets. A net is here considered a composite part.

Type Name: net.
Attributes: name, transport kind, legal address, legal owner, sources of financing,

geographical area, maintenance subcontractors, budget, accounts, etc.
Unique Identification: not applicable.

Mereology: not applicable.

Subpart Type[s]: set of links, set of hubs. •

3.1.8 States 95

By a state we understand a specific set of parts such that for each of these parts some
attributes are dynamic.

96

Examples

Example 20 (States) Five domain examples:

• Container line: container, container vessel, container terminal port.

• Financial service industry: bank (as a whole), account (as a subpart).

• Health care: hospital, ward, bed, patient.

• Pipeline system: well, pump, pipe, valve, pipeline.

• Transportation: net, link (open in one direction, open in the opposite direction,
open in both directions; closed in all [two] directions), hub (open between a specific
[possibly empty] set of pairs of links connected to the hub), vehicle. •

15The cartographic and cadestral location of a link may, amongst other components, include, for example,
a Beziér curve description of how that link “traverses” a, or the landscape.

16in terms of sets of pairs of distinct identifiers of connecting hubs
17in terms of sets of possible link states
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Inquiry: State

What is a state and what is not is sometimes an elusive issue. If the outcome of each of
a set of operations on parts is independent, say over long time intervals, say years for a
transport system, then it seems that the arguments of these operations do not contribute
to a state notion. If, however, the time span being considered is such that the outcome
of operations being carried out depend very much on argument values, then these do
indeed contribute to a state notion. So the notion of a state has to do with whether part
values are constant over very long periods or whether they vary quite often. Please note
that we only very roughly referred to a notion of time interval without being specific. •

Inquiry: Environment

In ‘inquiry’ State, above, we alluded to some operations being dependent as to their
varying outcome on a state. In contrast these or other operations may require arguments
whose value remain constant over “large” time intervals. We say that these arguments
for an environment. Other than this mentioning we shall not deal with the notion of
environment in these notes. •

3.2 Actions 97

By an action we understand a state change resulting directly from the expected application
of a specific function (one of several possible), that is, the specific function was performed
deliberately, on purpose.

98

Examples

Example 21 (Actions) We give examples from five domains. The examples are not proper
descriptions of actions. We basically just give their names. These names — and the
familiarity of the domains — are such that the reader is “tricked into” thinking: “oh yes,
I see; but, of course.” Only a proper action description can reveal the action. 99

• Container line:

– loading a container;

– unloading a container;

– moving a container from one location (say on-board a vessel) to another location
(say in a container terminal port).

• Financial service industry:

– open an account,

– deposit money into an account,

– withdraw money from an account,

– obtain account statement,

– close account.
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100

• Health care:

– admitting a person as a patient;

– allocating a bed in a ward to a patient;

– medicating a patient.

• Pipeline system:

– opening a pump (for pumping);

– closing a valve.

• Transport Net:

– inserting a hub;

– inserting a link;

– removing a hub;

– removing a link. •

Inquiry: Action, Operation, Function

We shall, perhaps somewhat arbitrarily, be making a distinction between the concepts of
function, action and operation.

By a function we shall understand something which when applied to something called
its arguments yield something called the result of that function for those arguments.

By invocation we mean the same as application.
By an action we shall mean a function application which potentially changes a state.
By an operation we shall understand a function application which is like an action, or

does not change such a state. •

3.3 Events 101

By an event we understand a state change resulting indirectly from the unexpected appli-
cation of a function, that is, the specific function was performed “surreptitiously”, Events
can be characterised by a pair of (before and after) states, a predicate over these and a
time.

Events are thus like actions: change states, but are usually either caused by “previous”
actions, or caused by “an outside action”.

102

Example

Example 22 (Events) Five domain examples:

• Container line: A container falls overboard.
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• Financial service industry: A bank goes bankrupt.

• Health care: A patient dies.

• Pipeline system: A pipe breaks.

• Transportation: A link disappears. •

Inquiry: Event

The characterisation of ‘event’ given above is far from satisfactory. The event concept
characterisation is pragmatic. A more satisfactory characterisation might be:

An event can be described by a predicate, by a time (point), and a pair
of states (the “before the event” and the “after the event”) such that the
predicate holds for these two states [and the time].

In these notes we do not ascribe time points with the occurrences of actions. That should
be done in subsequent work. Likewise we do not ascribe time points with the occurrences
of events.

The philosophic concept of event is treated by, for example, [15, 39, 33, 24, 38, 9, 14].
•

3.4 Behaviours 103

By a behaviour we understand a set of sequences of actions, events and behaviours.

104

Example

Example 23 (Behaviours) Five domain examples:

• Container line: The transport of a container from it being fetched at the sender, via
a sequence of one or more triplets of loadings onto a vessel, unloading at another
container terminal port and possibly temporary storage at that port, to its final
delivery at a receiver. 105

• Financial service industry, account handling: the opening of an account, a sequence
of deposits, withdrawals and statements to the closing of that account. 106

• Health care, patient hospitalisation: the admission of a patient to a hospital, initial
anamnese, analysis, diagnostics and treatment plan, via an alternating sequence of
treatments (including surgical operations), repeated analyses, evaluations and possi-
ble reformulation of diagnostics and treatment plan, to a final discharge. 107

• Pipeline system, simple, day-to-day operations. The flow of gas (or a liquid) through
a pipeline net: pumped from wells, fed through pipes, valves, forks and joins, to
leaving the net at sinks. 108
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• Transportation: The movement of a vehicle along a transport net:

from positions at hub or link positions via a sequence of zero, one or more hub and
link movements, to a final hub or link position.

Example 4 (Pages 10–14) illustrated a transport behaviour. •

Inquiry: Behaviour

The notion of behaviour is not the same as the notion of process. We shall reserve the
use of the term behaviour for “what goes on in the domain”, and we shall use the term
process for “what goes on ‘inside’ the computer”. •

3.5 Discussion 109

We have dealt, in some detail, with the concept of parts (Sect. 3.1, Pages 26–35). Our
“corresponding” treatment of actions, events and behaviours (Sects. 3.2–3.4, Pages 35–38)
have been far less detailed. The reason for this is the following. Types emerge (Sect. 3.1)
as a means of describing parts. And types are indispensable in the description of action,
event and behaviour signatures (Sects. 3.2–3.4). Types thus form the very basis for the
description of all entities. And we have chosen to let the type concept emerge from our
treatment of parts. There is another reason for Sect. 3.1 being somewhat more detailed than110

Sects. 3.2–3.4. When studying parts we could, relatively easily, introduce such notions as
atomic and composite parts, attributes of these, and mereologies of composite parts. These
notions, under some disguise, can likewise be found for actions, events and behaviours, but
they are not that easily introduced.
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4 Describing Domain Entities 111

4.1 On Describing

The purpose of description is to use for example informal text to present an entity (simple,
action, event or behaviour) so that the reader may “picture” (“envisage”), that which is
being described. The text describing the entity is said to be a syntactic quantity. and
the entity is then said to be a semantic quantity: the syntactic text denotes the semantic
quantity. We also say that the syntactic quantity designates, denotes, indicates, specifies, 112

points out, gives a name or title to, or characterises18 the semantic quantity.

4.1.1 Informal Descriptions

In the many examples19 of Sects. 2–3 we have made several references to quite a few domain
entities. We do not claim that we have described these entities.

113

Domain Instances Versus Domains What we can observe are instances of a specific
domain or fragments (perhaps parts) of a specific domain. What we describe are either
abstractions of these instances or abstractions of a set (i.e., a type) of these instance. If 114

someone describes me as an atomic part with the action(s) and event(s) of my behaviour,
then that someone describes an instance of a person, not the domain of all persons, but
in that description it is expected that many fragments of the description is also valid for
either a lot of persons or all persons. We say that these many fragments describe not an
instances but fragments of abstractions of a domain of persons.

115

Non-uniqueness of Domain Descriptions We say ‘a domain’, not ‘the domain’. Two or
more domain describers may not exactly focus on the same entities and their properties.
A domain description is always an abstraction. Something is left out. Not all entities and
not all properties of those entities included may be deemed worthwhile to be included.

A good domain description, to us, is a domain description that covers what most stake
holders can agree on to be relevamt aspects of the domain, that reveals generally unknown
facets of the domain, and that is terse and precise.

116

A Criterion for Description For us, to informally describe an entity ideally means the
following: Let there be given what we can agree on to be an entity, call it e. Let there be
given what is claimed to be a description of that entity. Let a person read and claim to have
understood that description. Now that person is confronted with some phenomenon e′. Either
that phenomenon is the same or it is of the same kind (type) as e or it is not. If e′ is of the
same kind as e then the person must identify it as such, unequivocally. If e′ is not of the same
kind as e then the person must identify it as not being so, likewise unequivocally. 117

18— eight alternative terms for the same idea!
19Examples 5–23
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If a description does not satisfy the above then it is not a proper description.
The above “criterion” suffers, seriously, from our not having made precise what we

mean by “same” and “same kind”.
These notes are not the place for a much needed investigation of the “sameness” prob-

lem. It is basically a philosophical question. But we should not overlook the fact that it is
the domain describer and the domain stake holders who, finally, decide on “sameness”.

118

Reason for ‘Description’ Failure There can be three reasons for a description to not be
proper:

1. either all phenomena are entities as described — the description is vacuous;

2. or there are entities which were meant to be of the type or not meant to be of the type
described but which “fall outside”, respectively “fall inside” the description;

3. or the description does not make sense, is “gibberish”, ambiguous, or otherwise.

That is: a proper description, when applied to entities, “divides” their world into two
non-empty and disjoint sets: the set of all entities being described by the description, and
the rest !

119

Failure of Description Language But we have a problem ! One cannot give a precise
definition of exactly the denoting language, that is, of exactly, all and only those informal
texts which designate entities. Firstly, we have not given a sufficiently precise informal
text characterisation of entities, Secondly, natural (cum national) languages, like English,
defy such characterisations. We must do our best with informal language descriptions.

120

Guidance But there is help to be gotten! The whole purpose of Sect.3 was to establish
the pointers, i.e., guidelines, as to what must be described, generally: parts, actions, events
and behaviours, and specifically: whether atomic or composite parts, their attributes, and,
optionally, their mereology, and, for composite parts, their subparts; and, as a starter, the
signatures of actions, events and behaviours. This section will continue the line reviewed
just above and provide further hints, pointers, guidelines.

4.1.2 Formal Descriptions 121

We shall, in addition to the description components20, outlined in Sect. 3 now join the
possibility of improved description precision through the use of formal description. We ar-
gue that formal description, while being used in-separately with precise informal narrative.
improves precision while enabling formal proofs of properties of that which is denoted by
the description.122

20parts, actions, events and behaviours; attributes and possibly unique identifiers of parts, and mereology
of composite (atomic) parts; subparts of composite parts; etc.
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We shall here use the term ‘formal’ in the sense of mathematics. A formal description
language is here defined to have a formal syntax, that is, a set of syntax rules which
define precisely and unambiguously, which texts over the alphabet of the language are
indeed sentences of that language21, a formal semantics, , that is, something which to every
syntactically valid sentence of the language, ascribes a meaning in terms of a mathematical
quantity22, and a proof system, that is, a consistent and relative complete set of axioms
and proof rules using which one can prove properties of descriptions.

We shall “unravel” an example formal description language, FDL, in this section. FDL

has similarities to the RAISE [23] Specification Language, RSL [22], but, as our informal
explanation of the meaning of FDL will show, it is not RSL. The similarities are “purely”
syntactical.

4.2 A Formal Description Language 123

4.2.1 Observing and Describing Entities

We make the obvious distinction between observing semantic values but expressing syntac-
tic structures. We observe parts, but first express types and then their properties; actions,
but first express their signatures and then their definitions; events, but first express their
signatures and then their definitions; and behaviours, but first express their signatures and
then their definitions.

4.2.2 Observing and Describing Parts 124

In order to describe a part we use such phrases as: a patient (whom we here consider to
be an atomic part)) is characterised by as set of properties a name. a central personal

registration identifier, a gender, a birth date, a birth place, a nationality,

a weight, a height, a insurance policy, a medical record, etcetera; and a transport 125

net (whom we here consider to be a composite part)) is characterised by a set of properties
a structure of, in this case two subparts, ie., a set of hubs and a set of links, and their
mereology. Thus we take the nouns name, central personal registration identifier, gender,
birth date, birth place, nationality, weight, height, insurance policy, medical record, . . . ,
set of hubs, and set of links as type names. The names ‘patient’ and ‘transport net’ are
also domain names. That is, we go from instance of part to the type of all parts “of the 126

same kind”. One must take great care in not confusing the two: type and value). Later
we shall clarify the distinction between type and domain names.

127

Abstract Types By an abstract type we generally mean some further unexplained set
of mathematical quantities. Abstract types are in contrast to concrete types by which

21that is, the alphabet and sentences can be considered mathematical quantities
22a set, a Cartesian, a list, a function, or some such mathematical item which can be characterised by

a number of properties
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we mean such mathematical quantities as sets, Cartesians, lists, maps and functions (in
general). Abstract types are also referred to as sorts.

The FDL clause:

type A

defines what we shall here, simplifying, take as a set of values said to be of type A. A is
said to be a type name (here, more specifically, a sort name).

128

Concrete Types Borrowing from RSL, and, in general, discrete mathematics, we introduce
FDL clauses for expressing set, Cartesian, list, map and function types. Let A, B, ..., C be
(type or sort) names which denote some (not necessarily distinct) types, then

A-set, (A × B × ... × C), A∗, Aω, A →m B, A→B, A
∼
→B

are type expressions which denote the following (left-to-right) concrete types: set of
sets of type A values; sets of Cartesian values, (a,b,. . . ,c), over types A, B, . . . , C; set of
finite lists of elements of type A values; set of possibly infinite lists of elements of type A
values; set of maps, that is enumerable functions from type A into type B values; set of
total functions from type A into type B values; respectively set of partial functions from
type A into type B values. Choosing to describe a part as a sort rather than a concrete129

type reflects a principle of abstraction. Modelling a concrete type in terms of, for example,
a map type (A →m B) rather than as type of indexed sets ((A×B)-set) reflects a modelling
technique.

130

Type Definitions Besides the sort type definitions, e.g., type A there are the concrete
type definitions.

Let D be some (unused)type name, then

type D = Type Expression

is a concrete type definition where Type Expression is of either of the forms A-set, A-infset,
(A×B×...×C), A∗, Aω, A →m B, A→B, A

∼
→B and A|B|...|C, where A, B, . . . , C are either

type names or, more generally, other such type expressions and where A|B|...|C expresses
the “union” type of the A. B. . . . , and C types.131

Example 24 (Transport Net Types) Let us exemplify the above by starting a series of
examples all focused on a domain of transport nets.
Figure 9 on the facing page shows a net with eight hubs and seven links.132

To be able — here, in this tect — to refer to fragments (here sub-parts), of what
is shown in Fig. 9, we label the parts with names (Fig. 10); these names stand for the
designated parts. They are not properties of the parts, they are the parts. Also: they are
not the unique indentifiers of the parts.133
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Figure 9: A transport net
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l1
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n

obs_Hs(n) = {ha,hb,hc,hd,he,hf,hg,hj,hk}

obs_Ls(n) = {l1,l2,l3,l4,l5,l6,l7,l8,l9}

l6

l7

Figure 10: A transport net

32. We focus on the transport net domain. That domain is “dominated” by the composite
parts of nets, n:N.

32. type N

33. There are two subparts of nets:

a sets, hs:HS, of hubs (seen as one part) and

b sets, ls:LS, of links (also seen as one, but another part).

33a. HS 33b. LS

As part of identifying the composite net type, N, we also identify two observers: obs HS
(observe [set of] hubs) and obs LS (observe [set of] links) That is: 134
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33a. obs HS: N → HS 33b. obs LS: N → LS

34. Hubs subparts of HS (‘sets of hubs’), and

35. links are subparts of respectively LS (‘sets of links’),

and are of types

a H, respectively

b L.

type
35a. H
35b. L

135

We may, for convenience, bypassing a step (i.e., Items 33a–33b) instead express:

type
35a. Hs = H-set
35b. Ls = L-set

value
35a. obs Hs: N → H-set
35b. obs Ls: N → L-set

•

136

Type Properties In the following we shall be introducing a number of functions which
analyse parts with respect to respective properties [18, 35, 21]. There are three kinds of
properties of interest to us: the subparts of composite parts, the mereology of composite
parts, and general attributes of parts (apart from their possible subparts and mereology).
Every entity, whether simple, or an action, or an event, or a behaviour, has a unique identi-137

fication. The mere existence, in time and space, endows a part with a unique identification
as follows. No two spatial parts can occupy overlapping space, so some abstract spatial
location is a form of unique identification. We consider the unique identity of a part of
type A, say AI, as a general attribute. We use the attribute values of AI to formulate
mereologies.138

Thus there are three kinds of property analysis functions.

• Subpart observer functions, obs B, obs C, . . . , obs D, which apply to composite parts
(say of type A), and yield their constituent subparts, say of type B, C, . . . , D:

obs B: A → B, obs C: A → C, ..., obs D: A → D;

• Mereology functions which apply to composite parts (say of type A), and yields
elements of their mereologies.

Let parts of type B, C, ..., D be in some mereology relation to parts of type A. That
is, there are mereology functions
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mereo Ax: B → AIx, mereo Ay: C → AIy, ..., mereo Az: D → AIz

where Ax, Ay and Az are some distinct identifiers and AIx, AIy and Ayz are some type
expressions over type A, typically

AI, AI-set, (AI×...×AI), etc.
139

• Attribute Functions which apply to parts (say of type A) and yield their attributes
(short of the mereologies) (say of types E, F, ..., G:

attr E: A → E, attr F: A → F, ..., attr G: A → G;

Among the general attribute functions are the unique identification functions, say
attr A.

140

Subpart Type Observers Given a composite sort, named, say, A, and postulating that
its values contains subparts of type B, one can observe these type B subparts of A using
the likewise postulated observer function:

obs B: A → B

If A values also contain subparts of types C, . . . , E, then there also exists the additional
observer functions: obs C, . . . , obs E. We say that the observer functions are postulated.
We postulate them. And we endow them with properties so that they “stand out” from
one another. First examples of properties are given by the observer function signatures:
from type A values observer function obs B yields B values. Further properties may be
expressed through axioms. 141

Example 25 (Subpart Type Observers) From nets we observe

36. sets of hubs and

37. sets of links.

in either of two ways:

value
36. obs HS: N → HS
37. obs LS: N → LS

value
35a. obs Hs: N → H-set
35b. obs Ls: N → L-set

•

142

Unique Identifier Functions All parts have unique identifiers. This is a dogma. We may
never need some (or any) of these unique part identifiers. But they are there nevertheless.

Example 26 (Unique Hub and Link Identifiers) From hubs and links we observe their
unique
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38. hub and 39. link

identifier attributes and their ‘observers’:

type
38. HI
39. LI

value
38. uid HI: H → HI
39. uid LI: L → LI

143

Figure 11 shows the labelling of links with unique link identifiers, and of hubs with unique
hub identifiers. It also shows sample unique identifier observer functions.

l1_i

he_i

hc

he

hc_i l4_i

l3_i l5_i
l5

uid_HI(hc) = hc_i

uid_LI(l5) = l5_i

Figure 11: Fragment of a transport net emphasizing unique part identfiers and their ob-
servers

•

144

Mereologies and Their Functions

Example 27 (Transport Net Mereology) To express the mereology of transport nets we
build on the unique identifications of hubs and links.

40. Links connect exactly two distinct hubs, mereo HIs.

41. Hubs are connected to zero, one or more distinct links, mereo LIs.

type
40. HIs = HI-set
axiom
40. ∀ his:HIs•card his=2
type
41. LIs = LI-set
value
40. mereo L: L → HIs
41. mereo H: H → LIs
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l1_i

he_i

hc

he

hc_i l4_i

l3_i l5_i
l5

mereo_LIs(hc) = {l1_i,l3_i,l4_i,l5_i}

mereo_HIs(l5) = {hc_i,he_i}

Figure 12: Fragment of a transport net emphasizing mereology observers

145

Figure 12 illustrates the idea of mereology observer. The above (Items 40–41) form the146

basis for expressing the constraints on how hubs and links are connected.

42. Given a net, its link and hub observers and the derived link and hub identifier ex-
traction functions, the mereology of all nets must satisfy the following:

a All link identifiers observed from hubs must be of links of that net and

b All hub identifiers observed from links must be of hubs of that net.

43. We introduce two auxiliary functions for extracting all hub and link identifiers of a
net.

147

axiom
42. ∀ n:N,
42. let ls=obs LS(n),hs=obs HS(n),
42. lis=xtr LIs(n),his=xtr HIs(n) in
42a. ∀ h:H•h ∈ hs ⇒ mereo H(h)⊆lis ∧
42b. ∀ l:L•l ∈ ls ⇒ mereo L(l)⊆his end
value
43. xtr LIs: N → LI-set, xtr HIs: N → HI-set
43. xtr LIs(n)≡{uid LI(l)|l:L•l ∈ obs LS(n)}
43. xtr HIs(n)≡{uid HI(h)|h:H•h ∈ obs HS(n)}

•

148

General Attributes and Their Functions
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Example 28 (Hub States and Hub State Spaces) In addition to the unique identifiers
and the mereology of parts there are the general attributes. An example are the states of
hubs and links where these states indicate the direction of traffic for which the hubs and
links are open. 149

44. With any hub, h, we thus associate

a a hub state, hσ, consisting of a set of pairs of link identifiers (with (lij , lik) in
hσ expressing that traffic is open from link lj to link lk via hub h), and

b a hub state space, hω, consisting of a set of hub states.

45. The relations between

a the link identifiers of the hub,

b the hub states, and

c the hub state spaces

46. must satisfy the following

a wrt. the potential set, hs, which is the “largest possible” hub state for h, one
that allows traffic from any link li incident upon h to any link lj emanent from
h:

b the hub state is any subset of hs, and

c and such hub state is in that hub’s state space.
150

type
44a. HΣ = (LI×LI)-set
44b. HΩ = HΣ-set
value
44a. attr HΣ: H → HΣ
44b. attr HΩ: H → HΩ
axiom
45. ∀ n:N,h:H • h ∈ obs Hs(n) ⇒
41. let hlis = mereo H(h),
44a. hσ = attr HΣ(h),
44b. hω = attr HΩ(h),
43. lis = xtr LIs(n) in
46a. let hs = {(li,lj),(lk,li)|li:LI•li ∈ hlis∧{lj,lk}⊆lis} in
46b. hσ⊆hs ∧
46c. hσ ∈ hω end end

•
151
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Example 29 (Further Atomic Attributes) In addition to the unique link identifier links
also have, for example, lengths, widths, possibly heights, geographic (spatial) locations,
etc.

type
LEN, WID, HEI, LOC, ...

value
attr LEN: L → LEN
+: LEN × LEN → LEN
>: LEN × LEN → Bool
attr WID: L → WID
attr HEI: L → HEI
attr LOC: L → LOC
...

•

4.2.3 Describing Actions 152

Function Names Actions potentially change states. Actions are here considered de-
liberate phenomena in that they are caused by willful applications (by agents within the
domain being described) of functions having a specific, deliberate purpose, i.e., state change
in mind. 153

Example 30 (Transport Net Action Names) Some examples are: create an empty net
(no hubs, no links); insert a (new) hub; insert a (new) link (between a pair of distinct hubs
of the net); delete (existing) hub (having no links into or out from it); and delete (existing)
link.

•

154

Informal Function Descriptions The above examples just listed some actions by their
function names. We did not describe these functions. We now do so, for two of these
functions.

Example 31 (Informal Transport Net Action Descriptions) We detail two informal func-
tion descriptions. The create empty net function

47. applies to nothing and yields a net, n, of no hubs and no links.

The insert link function

48. applies to a net, n, of at least two distinct hubs, as identified, hij , hik, by the function
application arguments, and a new link ℓ not in n, and yields a net, n′. 155

a The inserted link l is to be connected to the two distinct hubs identified by hji

and hki, and these designate hubs of the net.
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b l is not in the original net.

c The mereology of l designate hji and hki.

d The state of these identified hubs do not allow any traffic.

e No new hubs are added, hence the set of hub identifiers of the net is unchanged.

f Only one link is added to the net, hence the set of net link identifiers is changed
by only the addition of the l link identifier.

g Let the hubs identified by hji and hki be hj and hk, respectively, before the
insertion,

h and by hj′ and hk′ after the insertion.

i Now the mereology contributions by the two changed hubs reflect only the ad-
dition of link l.

156

We leave the informal descriptions of

49. delete L

50. insert H

51. delete H

to the reader.
•

157

Formal Function Descriptions We observe actions, but describe the functions which
when applied amount to actions. There are two parts to describe a function: (i) the
function signature, a:A→B: a distinct function name, say f, and a function type, A→B, that
is, type of arguments A and type of results B, and (ii) the function definition, f(a,b)≡C(a):
a symbolic function invocation, f(a,b), and a definition body, C(a). C(a) is a clause, i.e.,
an expression in FDL, whose evaluation yields the function value.158

There are other ways than:

value
f: A → B
f(a,b) ≡ C(a)

in which to define a function. For example:

value
f: A → B
f(a) as b

pre P(a)
post Q(a,b)
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159

Example 32 (Formal Transport Net Action Descriptions) The create net function:

value
47. create N: Unit → N
47. create N() as n
47. post obs HS(n)={} ∧ obs LS(n)={}

160

The insert link function:

value
48. insert L: (HI × HI) × L → N → N
48. insert L((hij,hik),l)(n) as n′

48a. pre hji6=hki ∧ {hji,hki} ⊆ xtr HIs(n) ∧
48b. ∧ l 6∈ obs LS(n)
48c. ∧ mereo L(l) = {hji,hki}
48d. ∧ attr HΣ(get H(hji))(n)={}=attr HΣ(get H(hki))(n)
48e. post xtr HIs(n) = xtr HIs(n′)
48f. ∧ xtr LIs(n′) = xtr LIs(n) ∪ {uid LI(l)}
48g. ∧ let hj=get H(hij)(n), hk=get H(hik)(n),
48h. hj′=get H(hij)(n′),vhk′=get H(hik)(n′) in
48i. ∧ mereo H(hj′) = mereo H(hj) ∪ {uid LI(l)}
48i. ∧ mereo H(hk′) = mereo H(hk) ∪ {uid LI(l)} end

161

52. From the postulated observer and attribute functions one can define the auxiliary
get function:

value

52. get H: HI → N
∼
→ H

52. get H(hi)(n) ≡
52. let h:H•h ∈ obs HS(n)∧uid HI(h)=hi
52. in h end
52. pre hi ∈ xtr HIs(n)

162

We do not narrate the informal description of “remaining” net actions (cf. Items 49– 51
on the preceding page), just their function signatures and pre-conditions.

49. delete L: LI → N
∼
→ N

49. pre delete L(li): li ∈ xtr LIs(n)

50. insert H: H → N
∼
→ N

50. pre insert H(h): h 6∈ obs HS(n)∧mereo H(h)={}∧mereo Ω(h)={{}}
51. delete H: HI → N

∼
→ N

51. pre delete H(hi): hi ∈ xtr HIs(n)∧mereo H(get H(hi))(n)={}
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Given appropriate post-conditions the following theorems must be provable:

theorems:
∀ h:H • pre−conditions are satisfied ⇒ delete H(uid HI(h))(insert H(h)(n))=n
∀ l:L • pre−conditions are satisfied ⇒ delete L(uid LI(l))(insert L(l)(n))=n

•

163

Agents An agent is a behaviour which invokes functions, hence cause actions. So we
simply “equate” agents with behaviours.

4.2.4 Describing Events 164

We observe events. But we describe logical properties characterising classes of “the same
kind” of events.

Deliberate and Inadvertent (Internal and External) Events Events are like actions:
somehow a function was applied either deliberately by an agent outside (that is, external
to) the domain being described, or inadvertently by a behaviour of (that is, internal to)
the domain, but for another purpose than captured by the event.165

Example 33 (A Deliberate [External] Event) We narrate a simple external cause / “in-
ternal” effect example: When one or more bank customers default on their loans and
declare themselves unable to honour these loans then the bank may go bankrupt.

•
166

Example 34 (An Inadvertent [Internal] Action Event) We narrate a simple internal cause
/ “internal” effect example: When a bank customer, the agent, withdraws monies from an
account the balance of that account, if the withdrawal is completed, may go negative, or
may go below the credit limit. In either case we say that, the withdrawal action, as was
intended, succeeded, but that an “exceeded credit limit” event occurred.

•

167

Event Predicates Instead of describing events by directly characterising the deliberate
external, respectively inadvertent internal actions we suggest to describe these events in-
directly, by characterising the logical effects, say, in terms of predicates over before/after
states.168

Example 35 (Formalisation of An External Event) The event is that of a “link segment
disappearance”.

53. Generally we can explain “link segment disappearances”, for example, as follows:

54. A li-identified link, l, between hubs hf and ht (identified in l) is removed.
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55. Two hubs, hf′′ and ht′′, and two links, lf and lt, are inserted — where

a hub values hf and ht (the hubs in the original net) become hub values hf’ and
ht’ in the resulting net, that is, hub values hf and ht have same respective hub
identifiers as hf′ and ht′,

b hubs hf′′ and ht′′ are new,

c links l′ and l′′ are new,

d link lf is inserted between hf′ and hf′′, that is, link lf identifies hubs hf′ and hf′′,
and link lt is inserted between ht′ and ht′′, that is, link lt identifies hubs ht′ and
ht′′, 169

e hub hf′ is, in the resulting net, connected to the links hub hf was connected to
in the original net “minus” link l but “plus” link lf,

f hub ht′ is, in the resulting net, connected to the links it was connected to in the
original net “minus” link l but “plus” link lt,

g hub hf′′ is connected only to link lf
and hub ht′′ is connected only to link lt,

h the state space of hf′ suitably includes all the possibilities of entering link lf 23,

i the state space of ht′ suitably includes all the possibilities of entering link lt24,

j the state spaces of hf′′ and ht′′ both contains just the empty set,

k the states of ht′′ and ht′′ are both the empty set: “dead ends !”,

l the sum of the lengths of links lf and lt is less than the length of link l, and

m all other non-mereology attributes of lf and lt are the same as those of link l.

56. All other links and hubs are unchanged.
170

value
53. link segment disappearance: N × N → Bool
53. link segment disappearance(n,n′) ≡
53. ∃ l:L, hf′′,ht′′:H, lf,lt:L •

54. {l} = obs LS(n) \ \obs LS(n′)
55a. ∧ let hfi=uid HI(hf), hti=uid HI(ht) in
55a. let hf′=get H(hfi)(n′), ht′=get H(hti)(n′) in
55b. {hf′′,ht′′}∩ obs HS(n)={} ∧ {hf′′,ht′′}⊆obs HS(n′)
55c. ∧ {lf,lt}∩ obs LS(n)={} ∧ {lf,lt}⊆obs LS(n′)
55d. ∧ mereo L(l′)={hfi,uid HI(hf′′)} ∧ mereo L(l′′)={hti,uid HI(ht′′)}
55e. ∧ mereo H(hf)=mereo H(hf′)\{uid LI(l)}∪{uid LI(lf)}
55f. ∧ mereo H(ht)=mereo H(ht′)\{uid LI(l)}∪{uid LI(lt)}

23A substitution function replaces all link l identifiers with link lf identifiers.
24A substitution function replaces all link l identifiers with link lt identifiers.
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55g. ∧ mereo H(hf′′)={uid LI(lf)} ∧ mereo H(ht′′)={uid LI(lt)}
55h. ∧ attr HΩ(hf′)=subst(uid LI(l),uid LI(lf),attr HΩ(hf))
55i. ∧ attr HΩ(ht′)=subst(uid LI(l),uid LI(lt),attr HΩ(ht))
55j. ∧ attr HΩ(hf′′)={{}} ∧ attr HΩ(ht′′)={{}}
55k. ∧ attr HΣ(hf′′)={} ∧ attr HΣ(ht′′)={}
55l. ∧ attr LEN(lf)+attr LEN(t)<attr LEN(l)
55m. ∧ ∀ X:non mereo attributes(l)•attr X(lf)=attr X(lt)=attr X(l)25

56. ∧ obs HS(n′)\{hf′,hf′′,ht′,ht′′} = obs HS(n)\{hf,ht}
56. ∧ obs LS(n′)\{lf,lt} = obs LS(n)\{l} end end

171

We can express a theorem relating the above to the remove and insert functions.

theorem: link segment disappearance(n,n′) ⇒
let l:L, hf′′,ht′′:H, lf,lt:L • [ Lines 54–55, 55a–55m, 56 ] in
n′ = ins L(lt)(ins L(lf)(ins H(ht′′)(ins H(hf′′)(rem L(uid LI(l))(n)))))
end

•

4.2.5 Describing Behaviours 172

Behaviour Description Languages As for the description of parts, actions and events26

there exists formal ways of describing behaviours as of sequences of actions, events and
behaviours: some are “textual”27: CSP [26], some are “graphical”, for example: MSC

[Message Sequence Charts] [27], Petri Nets [40] and State Charts [25].

Simple Sequential Behaviours: A simple sequential behaviour is a sequence of actions173

and events.

— Snapshot Description of a Simple Sequential Behaviour: Snapshot of a
behaviour, as it unfolds, could be described:

let σ′ = action 1(arg 1)(σ) ⌈⌉ event 1(σ)(σ′) in
let σ′′ = action 1(arg 1)(σ′) ⌈⌉ event 1(σ′)(σ′′) in
...

let σ′′...′ = action 1(arg 1)(σ′...′) ⌈⌉ event 1(̀ sigm′...′a)(σ′′...′) in
σ′′...′ end ... end end

25The predicate in Line 55m on the preceding page is to be explained.
26 Part, action and event description languages were first mentioned in the ‘Abstract’ footnotes 1– 2 on

page 5: Alloy [28], CafeOBJ [19], Casl [13] Event B [1], Maude [32, 12] RAISE/RSL [23, 22], VDM [7, 8, 17]
and Z [42].

27The languages mentioned in Footnote 26 are textual.
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where the internal non-deterministic operator, ⌈⌉, expresses that either its left side or right
operand is chosen. The seemingly recursive equation:

let σ′ = act(arg)(σ) ⌈⌉ event(arg)(σ)(σ′)

expresses a further non-determinism: any σ′ satisfying the equation is a valid next state.
We can name such simple sequential behaviours, for example: P.

Simple Concurrent Behaviours: A simple concurrent behaviour is a set of two or 174

more simple sequential behaviours.
We describe a simple concurrent behaviour by a list of named behaviour descriptions

separated by the parallel behaviour composition operator ‖, for example, P‖Q‖...‖R. A
variant form is ‖{P(i)|i:Index•predicate(i)} which expresses ‘distribution’ of the behaviour
composition operator (‖) over ‘expanded’ terms, that is, P(ij)‖P(ik)‖. . . ‖P(iℓ).

Communicating Behaviours: A communicating behaviour is a behaviour which ex- 175

presses willingness to engage in a (synchronisation and) communication with another com-
municating behaviour or with the environment.

In order to express ‘communication’ (between behaviours) a notion of an output/input
channel is introduced with behaviours allowed ‘access’ to channel (which are therefore
shared). In CSP channels are typed with the type of the values that can be output on a
channel “between” behaviours. In CSP output of a value (say of expression e) onto channel 176

ch is expressed by the statement ch!e whereas input of a value from channel ch is expressed
by the expression ch?.

type
M

channel
ch:M

value
S: Unit → Unit, S() = P() ‖ Q()
P: Unit → out ch Unit, P() ≡ ... ch!e ...

Q: Unit → in ch Unit, Q() ≡ ... ch? ...

We thus describe a communicating behaviour by allowing one or more clauses: statements
of the kind ch!e and expressions of the kind ch?.

External Non-deterministic Behaviours: A behaviour, P, composed from behaviours 177

Pi,Pj , . . . ,Pk is said to exhibit internal non-determinism if the behaviour is either as is
behaviour Pi, or as is behaviour Pj , . . . , or as is behaviour Pk, and is influenced in being
so by the environment of behaviour P.

We describe such behaviours as follows: P: P i ⌈⌉⌊⌋ P j ⌈⌉⌊⌋ ... ⌈⌉⌊⌋ P k where P i (etcetera)
describes behaviour Pi (etcetera). A variant description of internal non-determinism is
⌈⌉⌊⌋{P(i)|i:Index•predicate(i)}. 178
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External influence is, for example, expressed if behaviour descriptions P i (etcetera)
contain either an output (ch!e) or an input (ch?) clause and the environment offers to
accept input, respectively offers output “along” the name channel.

Internal Non-deterministic Behaviours: A behaviour, P, composed (somehow) from179

behaviours Pi,Pj, . . . ,Pk is said to exhibit internal non-determinism if the behaviour is
either as is behaviour Pi, or as is behaviour Pj , . . . , or as is behaviour Pk, and is not
influenced in being so by the environment of behaviour P.

We describe such behaviours as follows: P: P i ⌈⌉ P j ⌈⌉ ... ⌈⌉ P k where P i (etcetera)
describes behaviour Pi (etcetera). A variant description of internal non-determinism is
⌈⌉{P(i)|i:Index•predicate(i)}.180

For internal non-determinism to work for expressions like the above we must assume
that they do not contain such output (ch!e) or an input (ch?) clauses for which the
environment may accept input, respectively offer output.

General Communicating Behaviours: A general communicating behaviour is a set181

of sequences of actions, events and (simple sequential, simple concurrent, communicating
and non-deterministic) behaviours such that at least two separately identifiable behaviours
of a set share at least one channel and contain respective ch!e and ch? clauses.182

Example 36 (A Road Pricing (Transport) System Behaviour) This example is quite ex-
tensive.

57. A road pricing (transport) system, ∆RPS contains

a a net n — as outlined in earlier examples — of hubs and links,

b a fleet f of vehicles and

c a central road pricing monitor m.

58. From ∆RPS we can observe the

a a net, n:N,

b a fleet of vehicles, f:F, and

c a road pricing monitor, m:M.

59. From the net, n:N, we observe

a a set of hubs and

b a set of links

60. From the fleet, f:F, we observe

a a set of vehicles.
183
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type
57. ∆ RPS, N, F, M
value
57a. obs N: ∆ RPS → N
57b. obs F: ∆ RPS → F
57c. obs M: ∆ RPS → M
59a. obs Hs: N → H-set
59b. obs Ls: N → L-set
60a. obs Vs: F → V-set

We need “prepare” some part names:

type
57a. n:N
57b. f:F
57c. m:M

59a. hs:Hs=obs Hs(n)
59b. ls:Ls=obs Ls(n)
60a. vs:Vs=obs VSs(f)

184

61. With the road pricing behaviour we associate separate behaviours,

a one for the net which is seen as the parallel composition of

i. a set of hub behaviours

ii. a set of link behaviours;

b one for the fleet of vehicles which is seen as the parallel composition of

i. a set of vehicle behaviours;

c and a central road pricing monitor behaviour.
185

61. road pricing system: Unit → Unit
61. road pricing system() ≡ net()‖fleet()‖monitor(...)

61a. net() ≡
61(a)i. ‖ {hub(uid HI(h))(h)(vis)|h:H•h ∈ hs} ‖
61(a)ii. ‖ {link(uid LI(l))(l)(vis)|l:L•l ∈ ls}

61b. fleet() ≡
61(b)i. ‖ {vehicle(obs VI(v))(v)(vp)|v:V•v ∈ vs}

61c. monitor(...) ≡ ...

186

The vis arguments of the hub and link behaviours “carry” the identifiers of current vehicles
currently at the hub or on the link. The vp argument of the vehicle behaviour “carries” the
current vehicle position. The (. . . ) argument of the monitor behaviour records the history
status of all vehicles on the net. We omit details of how these arguments are initialised. 187
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62. We associate channels as follows:

a one for each pair of vehicles and hubs,

b one for each pair of vehicles and links and

c one for monitor (connected to vehicles).

62. channel
62a. {vh ch[ uid VI(v),uid HI(h) ]|v:V,h:H•v ∈ vd∧h ∈ hs}:VH Msg
62b. {vl ch[ uid VI(v),uid LI(h) ]|v:V,l:L•v ∈ vs∧h ∈ ls}:VL Msg
62c. mon:VM Msg

We omit detailing the channel message types.188

63. Vehicles are positioned

a either on a link, in direction from one hub to a next, some fraction down that
link,

b or at a hub, in direction from one link to a next where

c the fraction is a real between 0 and 1.

type
63. VP = onL | atH
63a. onL == mk onL(li:LI,fhi:HI,f:FRA,thi:HI)
63b. atH == mk atH(hi:HI,fli:LI,tli:LI)
63c. FRA = Real axiom ∀ fra:FRA•0≤fra≤1

189

64. The vehicle behaviour is modelled as a CSP process which communicates with hubs,
links and the monitor.

65. The vehicle behaviour is a relation over its position.
If on a link, at some position,

a then the vehicle may “remain” at that position,

b chosen so internally non-deterministically,

c or, if the vehicle position is not “infinitesimally” close to the “next” hub,

d then the vehicle will move further on along the link,

e some small fraction δ,

f else the vehicle moves into the next hub in direction of the link named li′

g where li′ is in the set of links connected to that hub —

h while notifying the link, the hub and the monitor of its entering the link and
entering the hub.
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190

value
65e. δ:Real axiom 0<δ ≪ 1vehc6
64. vehicle: VI → V → VP →
64. out,in {vl ch[ vi,li ]|li:LI•li ∈ xtr LIs(ls)} out m ch Unit
65. vehicle(vi)(v)(vp:mk onL(li,fhi,f,thi)) ≡
65a. vehicle(vi)(v)(vp)
65b. ⌈⌉
65c. if f + δ<1
65d. then vehicle(vi)(v)(mk onL(li,fhi,f+δ,thi))
65e. else let li′:LI•li′ ∈ mereo H(get H(thi)(n)) in
65g. vh ch[ vi,thi ]!enterH ‖ vl ch[ vi,li ]!leaveL ‖ m ch!leaveL enterH(vi,li,thi);
65h. vehicle(vi)(v)(mk atH(thi,li,li′)) end end

191

66. If the vehicle is at a hub,

a then the vehicle may “remain” at that same position,

b chosen so internally non-deterministically,

c or move on to the next link,

d in direction of a next hub,

e while notifying the hub and monitor of leaving the hub and the link and the
monitor of entering the link.

66. vehicle(vi)(v)(vp:mk atH(hi,fli,tli)) ≡
66a. vehicle(vi)(v)(vp)
66b. ⌈⌉
66d. let {hi′,thi}=mereo L(getL(tli)(n)) in assert: hi′=hi
66e. vh ch[ vi,hi ]!leaveH ‖ vl ch[ vi,tli ]!enterL ‖ m ch!leaveH enterL(vi,hi,tli);
66c. vehicle(vi)(v)(ml onL(tli,hi,0,thi)) end

192

67. The monitor behaviour records the (dynamic) history of all vehicles on the net:
alternating sequences of hub and link identifiers.

68. The monitor contains a price table which to every link and hub records the fee for
moving along that link or hub.

type
67. VW′ = VI →m (HI|LI)∗

67. VW = {|vw:VW′
•wf VW(vh)|}

68. Fee, PT = (LI|HI) →m Fee
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value
67. wf VW(vh) ≡
67. ∀ hll:(HI|LI)∗ • hll ∈ rng vh
67. ∀ i:Nat•{i,i+1}⊆inds hll ⇒
67. is HI(hll(i))∧is LI(hll(i+1))∨is LI(hll(i))∧is HI(hll(i+1))

193

69. The monitor behaviour non-deterministically externally alternates between

a input of messages from vehicles

i. either when entering a link in which case the vehicle history is updated with
that link’s identifier (for that vehicle),

ii. or when entering a hub in which case the vehicle history is updated with
that hub’s identifier (for that vehicle).

b and accepting inquiries and requests relating vehicle histories and fees (desig-
nated by (. . . ) below).

194

value
69. monitor: PT → VH → in m ch Unit
69. monitor(pt)(vh) ≡
69a. (case m ch? of
69(a)i. leaveH enterL(vi,hi,li) → monitor(pt)(vh † [ vi 7→ vh(vi)̂〈li〉 ])
69(a)ii. leaveL enterH(vi,li,hi) → monitor(pt)(vh † [ vi 7→ vh(vi)̂〈hi〉 ])
69a. end)
69b. ⌈⌉⌊⌋ (...)

We omit description of other monitor actions (Line 69b).195

70. Link behaviours maintain a state which records the set of vehicles “currently” on the
link.

71. The link behaviour expresses willingness to

a accept messages from vehicles

b entering links in which case the “vehicle vi on link” state has vi added, or

c leaving links in which case the “vehicle vi on link” state has vi removed,

d where these vehicles range over all fleet vehicles.
196

type
70. VIS = VI-set
value
71. link: li:LI → L → VIS → in cl Unitlink1
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71. link(li)(l)(vis) ≡
71a. ⌈⌉⌊⌋ {let m = cl vl[ vi,li′ ]? in assert: li′=li
71a. case m of
71b. enterL → link(li)(l)(vis ∪ {vi})
71c. leaveL → link(li)(l)(vis \ {vi})
71d. end | vi:V•v ∈ xtr VIs(vs) end}

We leave it to the reader to suggest a hub behaviour description.
•

4.3 Temporal Issues 197

4.3.1 Three Abstract Time Concepts

We shall briefly examine three aspects of time: time, t:T, absolute time intervals, ati:(ft:T,tt:T):ATI
and relative (non-zero) time intervals, rti:RTI (where rti is some time interval from any time
tf:T to some time tt:T “later”).

type
T
ATI = T × T axiom ∀ (ft,tt):ATI • tt>ft
TI, RTI

value
+: T × RTI → T

−: T × T
∼
→ RTI pre t−t′: t>t′

>,=: T × T → Bool
absolute to relative TI: ATI → RTI
absolute to relative TI(ta,tb) ≡ tb−ta

198

The concept of time has at least two variants: the time process for which time continually
increases, and a time descriptor which is a name for time. When we, colloquially say the
time is now we mean to refer to the process notion; and when we say the train departs at
time so-and-so we mean to refer to the time descriptor notion.

We model the time process notion as a behaviour; and the timenotion descriptor notion
as an attribute.

Absolute and relative time intervals are descriptors (i.e., attributes).

4.3.2 Concrete Time Concepts 199

Usually, when speaking of time, we say such things as: the time is 12:34 o’clock but mean
to say the more correct 12:34 pm, May 1, 2012. An absolute time interval, (t, t′), starts
at some time, t, and ends some time, t′, thereafter. The time interval t′ − t only make
sense is t′ > t. We may include the zero time interval: t − t. Several different absolute
time intervals may represent the same relative time interval. Two absolute time intervals,
(ta, tb) and (tc, td), define the same relative time interval iff tb − ta = td − te.
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4.3.3 Some Interval Relations 200

Two absolute time intervals, (ta, tb) and (tc, td), enjoy either of the following relations:

value
=: ATI × ATI → Bool
(ta,tb) = (tc,td) ≡ ta=tc ∧ tb=td

prefix: ATI × ATI → Bool
prefix((ta,tb),(tc,td)) ≡ ta=tc ∧ tb<td

suffix: ATI × ATI → Bool
suffix((ta,tb),(tc,td)) ≡ ta>tc ∧ tb=td

embed: ATI × ATI → Bool
embed((ta,tb),(tc,td)) ≡ ta<tc ∧ tb>td

etcetera.

4.3.4 Time Phenomena 201

Parts and Time Time descriptors may occur (as components of attributes) in parts.

Example 37 (Train Time Tables) Our example shows a classical use of time descriptors.

72. Trains and stations have names.

73. A train system time table maps train names into train ride descriptions.

74. Train ride descriptions are sequences of two or more station visits

a such that “later” station visits succeed, in time, those of earlier station visits,
and

b such that station arrival times precede those of same station, same visit depar-
ture times.

75. A station visit is a triple: an arrival time, a station name and a departure time.
202

type
72. TN, SN
73. TSTT = TN →m TRD
74. TRD′ = SV∗, TRD = {|trd•wf TRD(trd)|}
75. SV′ = T × SN × T, SV = {|sv•wf SV(sv)|}
value
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74a. wf TRD: TRD′ → Bool
74a. wf TRD(trd) ≡
74a. len trd≥2 ∧
74a. ∀ i:Nat•{i,i+1}⊆inds trd ⇒
74a. let ( ,sn,dt)=trd(i), (at,sn′, )=trd(i+1) in
74a. sn6=sn′ ∧ dt<at end
74b. wf SV: SV′ → Bool
74b. wf SV(at, ,dt) ≡ at<dt

The occurrences of time in the part time table are as part of static attributes of that table.
•

203

Actions and Time Actions, “in actual life”, takes time. That is, over a(n absolute) time
interval. But we abstract from this fact. When such an abstractions becomes unreasonable,
that is, when the abstraction distorts a factual representation of the domain, then we shall
model the action as a behaviour, typically composed from a sequence of “smaller”, i.e.,
constituent “actions”. 204

Still, actions do take place at specific times. So we could decide to represent this
temporal aspect of action by respective time stamps. Here we must distinguish between
the action itself, i.e., its state change and the description of this action. The former can be
represented by a pair of (before,after) states. The latter by a description of the function,
the non-state arguments when applied, and the state “in” which it was applied. 205

We decide, for the moment, to not be too specific about this issue. The reason for this
is pragmatics: The actions that we do describe (informally and formally) usually represent
planned, deliberate phenomena. The fact that they are then “performed” at a certain time
is therefore of less importance than is the desired state change. Should the time at which
the action is performed influence the result (including state change) then we decide to let
that time be an explicit argument of the function invocation that leads to the action. But
not all actions are deliberate. Actions that are not planned and deliberate phenomena then
represent erroneous actions, that is, actions which the agent has provided with erroneous
arguments. For such actions time stamps can be very useful.

Time arguments are then obtained from a separate, you can call it a global, time
behaviour, one that is always active.

206

Events and Time There are two pragmatic aspects which separate actions from events.
Firstly, in contrast to actions, the times at which events occur appear to be important.Event
occurrences are basically spontaneous: not planned for. Therefore it may be important to
record the time of their occurrence. Secondly, we take the view that actions are primarily
characterised by their effect on the state, that is, we emphasise an explicit description
of the state change, whereas events appears to be primarily characterisable in terms of
properties of the event, that is, we emphasise a predicate description of the state change.
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207

Behaviours and Time It can be relevant to record time in connection with behaviours.

Example 38 (Timed Monitor Behaviour) We modify our monitor behaviour.

76. Vehicle histories now record the time at which vehicles enter and leave hubs and
links.

type
76. Time
76. VH′ = VI →m (Time×(HI|LI))∗

76. VH = {|vh:VH′
•wf WH(wh)|}

value
76. wf VH: VH′ → Bool
76. ∀ hll:(T×(HI|LI))∗ • hll ∈ rng vh
76. ∀ i:Nat•{i,i+1,i+2}⊆inds hll ⇒
76. let (t,hl)=hll(i), (t′,hl′)=hll(i+1), (t′′,hl′′)=hll(i+2) in
76. t<t′<t′′

76. ∧ (is HI(hll(i))∧is HI(hll(i+1))∧is LI(hll(i+2))
76. ∨ is LI(hll(i))∧is HI(hll(i+1))∧is HI(hll(i+2))
76. ∨ is LI(hll(i))∧is LI(hll(i+1))∧is HI(hll(i+2)))
76. end

208

77. The monitor behaviour now, additionally,

a interacts with a (global) clock behaviour

b over a channel clock ch.

c The clock internally non-deterministically issues the current time or skips that
point while similarly internally non-deterministically either not stepping the
clock, or stepping it

d with an “infinitisimal” time interval.

78. With the introduction of a clock we need redefine the system context.
209

channel
77b. channel clock ch: T
value
77. monitor: PT → VH → in m ch; in,out clock ch Unit

77a. clock: Unit → out clock ch Unit
77c. clock(t) ≡ (skip ⌈⌉ clock ch!t) ; (clock(t ⌈⌉ (t+ti)))

77d. ti:TI axiom: ti is a tiny time interval

78. timed system() = road pricing system() ‖ clock(t)
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210

79. When accepting messages from a link or a hub the monitor inquires with the clock
as to “what time is it?” by expressing willingness to input that time.

80. That time is recorded both as the time the vehicle leaves the hub and as the time it
enters the link.

81. Similar for leaving links and entering hubs.

value
77. monitor(pt)(vh) ≡
69a. (case m ch? of
79. let t = clock ch? in
80. leaveH enterL(vi,hi,li) → monitor(pt)(vh † [ vi 7→ vh(vi)̂〈(t,hi),(t,li)〉 ])
81. leaveL enterH(vi,li,hi) → monitor(pt)(vh † [ vi 7→ vh(vi)̂〈(t,li),(t,hi)〉 ])
69a. end end)
69b. ⌈⌉⌊⌋ (...)

The timed behaviour implied in the Road Pricing Transport System Behaviour with the
Timed Monitor Behaviour can be made more explicit. •

211

Example 39 (Traffic Behaviours) We abstract further.

82. Traffic can be abstracted as a

a continuous or

b discrete)

function from time to pairs of nets28 and vehicle positions.

c Vehicles are positioned either at hubs or on links.

d Vehicle hub positions, in principle, need only be represented by the hub identi-
fier.

e Vehicle link positions can be represented by the link identifier and a pair of the
fraction “down” the link from a hub, here identified by that hub’s hub identifier.

212

type
82a. cTF = T → (N × (V →m VP))
82b. dTF = T →m (N × (V →m VP))
82c. VP = atH | onL
82d. atH :: HI
82e. onL :: LI × (FRA × HI)

28As nets may change due, for example, to insertion and removal of hubs and links.
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Instead of modelling vehicle positions in terms of actual vehicles, v:V, we can model vehicle
positions in terms of vehicle identifiers, vi:VI. (It all depends on the use of the traffic
abstracts, cTF and dTF.) Similarly for choosing continuous or discrete time models. •

213

Example 40 (Traffic Abstraction) We can introduce a behaviour, traffic, which, based
on communications with a modified vehicle behaviour, “builds” a discrete traffic. We start
by redefining the vehicle behaviour shown on Page 59.

83. The traffic behaviour accepts inputs from the vehicle behaviour over a shared channel
trf ch.

84. Whenever the vehicle is invoked a message is communicated to the traffic behaviour
with the current vehicle position.

214

channel
83. trf ch:(VI×VP)
value
64. vehicle: VI → V → VP →
83. out,in {vl ch[ vi,li ]|li:LI•li ∈ xtr LIs(ls)} out m ch,trf ch Unit
65. vehicle(vi)(v)(vp:mk onL(li,fhi,f,thi)) ≡
84. (trf ch!(vi,vp);
65a. vehicle(vi)(v)(vp))
65b. ⌈⌉
65c. if f + δ<1
84. then (trf ch!(vi,mk onL(li,fhi,f+δ,thi)) ;
65d. vehicle(vi)(v)(mk onL(li,fhi,f+δ,thi)))
65e. else let li′:LI•li′ ∈ mereo LIs(get H(thi)(n)) in
65g. vh ch[ vi,thi ]!enterH ‖ vl ch[ vi,li ]!leaveL ‖ m ch!leaveL enterH(vi,li,thi)
84. ‖ trf ch!(vi,mk atH(thi,li,li’));
65h. vehicle(vi)(v)(mk atH(thi,li,li′)) end end

215

value
64. vehicle: VI → V → VP →
83. out,in {vh ch[ vi,hi ]|hi:HI•hi ∈ xtr HIs(hs)} out m ch,trf ch Unit
66. vehicle(vi)(v)(vp:mk atH(hi,fli,tli)) ≡
84. (trf ch!(vi,vp);
66a. vehicle(vi)(v)(vp))
66b. ⌈⌉
66d. let {hi′,thi}=mereo HIs(getL(tli)(n)) in assert: hi′=hi
66e. vh ch[ vi,hi ]!leaveH ‖ vl ch[ vi,tli ]!enterL ‖ m ch!leaveH enterL(vi,hi,tli)
84. ‖ trf ch!(vi,ml onL(tli,hi,0,thi));
66c. vehicle(vi)(v)(ml onL(tli,hi,0,thi)) end
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216

85. Traffic is simplied in not considering the otherwise possibly dynamically changing
net.

86. The traffic behaviour, when accepting input from some vehcile, vi, as to its position,
vp, obtains, the current time, t, from the clock behaviour.

87. A technicality: if there are recordings for some vehicles in the traffic, trf, at that tine,

88. then trf is modified in one way,

89. otherwise it is modified in another way.

217

type
85. TRF = T →m (VI →m VP)
value
83. traffic: TRF → in trf ch, clock ch Unit
83. traffic(trf) ≡
86. let (vi,vp) = trf ch?, t = clock ch? in
87. if t ∈ dom trf
88. then trf † [ t 7→ trf(t) † [ vi 7→ vp ] ]
89. else trf ∪ [ t 7→ [ vi 7→ vp ] ] end end

4.3.5 Temporal Descriptions 218

more to come

Examples of temporal description languages are: the Interval Temporal Logic (ITL)

[36, 16, 37], the Duration Calculus (DC) [43], and the Temporal Logic of Actions+

(TLA+) [29].

more to come
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5 Discovering Domain Entities 219

Section 2 briefly characterised, informally and also a bit more formally, what we mean
by a domain. Section 3 informally and systematically characterised the four categories of
entities: parts, actions, events and behaviours. Section 4 more-or-less “repeated” Sect. 3’s
material but by now giving more terse narratives (that is, informal descriptions) and, for
the fist time, also formalisations. Section 4 did not hint at how one discovers domain parts
(i.e., their types), actions, events and behaviours. In this section we try unravel a set of
techniques and tools — so-called ‘discoverers’ and ‘analysers’ — using which the domain
describer (scientist and/or engineer) can more-or-less systematically discover, analyse and
describe a domain, informally and formally.

5.1 Preliminaries 220

Before we present the discoverers and analysers we need establish some concepts.

5.1.1 Part Signatures 221

Let us consider a part p : P . Let p : P , by definition, be the principal part of a domain.
Now we need to identify (i) the type, P, of that part; (ii) the types, S1, . . . , Sm, of its proper
sub-parts (if p is composite); (iii) the type, PI, of its unique identifier; (iv) the possible
types, MI1, . . . , MIn, of its mereology; and (v) the types, A1, . . . , Ao, of its attributes.
We shall name that cluster of type identifications the part signature. We refer to P as
identifying the part signature. Each of the Si (for i : {1..m}) identifies sub-parts and hence
sub-part, i.e., part signatures.222

Example 41 (Net Domain and Sub-domain Part Signatures) The part signature of the
hubs and the links are here chosen to be those of(i) the (root) net type, N, (ii) the (sub-
domain) set of hubs type Hs, (ii) the (sub-domain) set of links type Ls and (v) the type
of net attributes Net name, Net owner, etc. The part signatures Hs and Ls are (ii) Hs =
H-set, H (iii,iv) HI, LI-set (v) Hub Nm, Location, HΣ, HΩ, ... (ii) Ls = L-set, L (iii,iv) LI,
HI-set (v) Link Nm, LΣ, LΩ, LEN, etc. •

5.1.2 Domain Indices 223

By a domain index we mean a list of part type names that identify a sequence of part
signatures. More specifically The domain ∆ has index 〈∆〉. The sub-domains of ∆, with
part types A, B, ..., C, has indices 〈∆,A〉, 〈∆,B〉, . . . , 〈∆,C〉. The sub-domains of sub-
domain with index ℓ and with part types A, B, ..., C has indices ℓ̂〈A〉, ℓ̂〈B〉, . . . , ℓ̂〈C〉.

224

Example 42 (Indices of a Road Pricing Domain) We refer to the the Road-pricing Trans-
port Domain, cf. Example 36 on page 56.
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The sub-domain indices of the road-pricing transport domain, ∆, are: 〈∆〉, 〈∆,N〉,
〈∆,F〉, 〈∆,M〉, 〈∆,N,Vs〉, 〈∆,N,Ls〉, 〈∆,N,H〉, 〈∆,N,L〉 and 〈∆,F,V〉. •

5.1.3 Inherited Domain Signatures 225

Let 〈∆,A,B,C,D〉 be some domain index. Then 〈∆,A,B,C〉 〈∆,A,B〉 〈∆,A〉 〈∆〉 are the
inherited domain indices of 〈∆,A,B,C,D〉.

5.1.4 Domain and Sub-domain Categories 226

By the domain category of the domain indexed by ℓ̂〈D〉 we shall mean the domain signa-
ture of D, and the action, event and behaviour definitions whose signatures involves just
the types given in the domain signature of D or in inherited domain signatures. 227

Example 43 (The Road-pricing Domain Category) The road-pricing domain category
consist of the types N, F and M, the create Net create Fleet and create M actions, and
corresponding Net, Fleet and M behaviours •

228

By a sub-domain category, of index ℓ, we shall mean the sub-domain types of the sub-
domain designated by index ℓ, and the actions, events and behaviours whose signatures
involves just the types of the ℓ indexed sub-domain or of any prefix of ℓ indexed sub-domain
or of the root domain. 229

Example 44 (A Hub Category of a Road-pricing Transport Domain) The ancestor sub-
domain types of the hub sub-domain are: HS, N and ∆. The hub category thus includes
the part (etc.) types H, HI, ..., the insert Hub and the delete Hub actions, perhaps some
saturated hub (and/or other) event(s), but probably no hub behaviour as it would involve
at least the type LI which is not in an ancestor sub-domain of the Hub sub-domain. •

5.1.5 Simple and Compound Indexes 230

By a simple index we mean a domain or a sub-domain index. By a compound index
we mean a set of two or more distinct indices of a domain ∆. Compound indices, cidx :
{ℓi, ℓj, . . . , ℓk}, designate parts, actions, events and behaviours each of whose types and
signatures involve types defined by all of the simple indexes of cidx.

Example 45 (Compound Indices of the Road-pricing System) We show just one com-
pound index: {〈∆,N,HS,H〉,〈∆,N,LS,L〉}. •
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5.1.6 Simple and Compound Domain Categories 231

By a simple domain category we shall mean any ℓ-indexed [sub-]domain category. By the
compound domain category of compound index cidx : {ℓi, ℓj, . . . , ℓk}, we shall mean the set
of types, actions, events and behaviours as induced by compound index cidx, that is, parts,
actions, events and behaviours each of whose types and signatures involve types defined
by all of the simple indexes of cidx. 232

Example 46 (The Compound Domain Category of Hubs and Links) The compound do-
main category designated by {〈∆,N,HS,H〉,〈∆,N,LS,L〉} includes:

type
HIs = HI-set

axiom ∀ his:HIs•cardhis=2
LIs = LI-set
HΣ = (LI×LI)-set
LΣ = (HI×HI)-set
HΩ = HΣ-set
LΩ = LΣ-set

value

mereo L: L → HIs,
mereo H: H → LIs
attr HΣ: H → HΣ
attr LΣ: L → LΣ
attr HΩ: H → HΩ
attr LΩ: L → LΩ

axiom
∀ h:H•attr HΣ(h)⊆attr HΩ(h)
∀ l:L•attr LΣ(l)⊆attr LΩ(l)

•

5.1.7 Examples 233

We repeat some examples, but now “formalised”.

Example 47 (The Root Domain Category) We start at the root, ∆, of the Road Pricing
Domain. See Fig. 13.

∆

<  >∆

Figure 13: The 〈∆〉 Root

At the root we ‘discover’ the net, fleet and road pricing monitor. See Fig. 14 on the
facing page.234

235 When observing the very essence of the road pricing domain “at the 〈∆〉 level” one
observes:
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N F M

∆ ∆

∆

New indices: {<  ,N>,<  ,F>,<  ,M>}∆

Figure 14: Exploring the root index 〈∆〉 Index

type
N, F, M

value
obs N: ∆ → N
obs F: ∆ → F
obs M: ∆ → M
attr ...: ∆ → ...

where ... stands for types of road pricing domain attributes.
•

236

Example 48 (The Net Domain Category) We then proceed to explore the domain at
index 〈∆,N〉. See Fig. 15.

F M

Hs Ls ∆ ∆

∆

N

New indices: {<  ,N,Hs>,<  ,N,Ls>}

Figure 15: Exploring the 〈∆,N〉 Index
237

When observing the very essence of the Net domain, “at the 〈∆, N〉 level” one observes:

type
Hs = H-set
Ls = L-set
H
L
...

value
obs Hs: N → Hs
obs Ls: N → Ls
attr Hs: Hs → ...

attr Ls: Ls → ...
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where ... stand for attributes of the Hs and the Ls parts of N.
•

238

Example 49 (The Fleet Domain Category) We then proceed to explore the domain at
index 〈∆,F〉. See Fig. 16.

N

Hs Ls Vs New index: <  ,F,Vs>∆

∆

F

Figure 16: Exploring the 〈∆,F〉 Index

239

When observing the very essence of the Fleet domain, “at the 〈∆, F〉 level” one observes:

type
Vs = V-set
V
...

value
obs Vs: F → Vs
attr ... Vs → ...

where ... stand for attributes that we may wish to associate with Fleets of vehicles.
•

240

Example 50 (The Hub Domain Category) We now switch “back” to explore the domain
at index 〈∆,N,Hs〉. See Fig. 17 on the next page.241

When observing the very essence of the Fleet domain, “at the 〈∆, N,Hs,H〉 level” one
observes:

type
HI
...

value
uid HI: H → HI
attr ...: H → ...

where ... stand for LOCation, etc.
•
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F M

Ls

H New index: <  ,N,Hs,H>∆

∆

N

Hs

Figure 17: Exploring the 〈∆, N,Hs,H〉 Index

N F M

Hs Ls

H H

New index: <  ,N,Ls,L>∆

∆

Figure 18: Exloring the 〈∆, N,Ls,L〉 Index

242

Example 51 (The Link Domain Category) Next we explore the link domain. See Fig. 18.243

When observing the very essence of the Fleet domain, “at the 〈∆, N,Ls,L〉 level” one
observes:

type
LI
...

value
uid LI: L → LI
attr ...: L → ...

where ... stand for LOCation, LENgth, etc.
•

244

Example 52 (The Compound Hub and Link Domain Category) We next explore a com-
pound domain. See Fig. 19 on the next page. 245

When observing the very essence of the Fleet domain, at the {〈∆, N,Hs,H〉, 〈∆, N,Ls,L〉}
level one observes:
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F M

Exploring composite index:

∆

N

Hs Ls

H L
{<  ,N,Hs,H>,<  ,N,Ls,L>}∆∆

Figure 19: Exploring composite index {〈∆, N,Hs,H〉, 〈N,Ls,L〉}

type
HΣ = (LI×LI)-set, HΩ = HΣ-set,
LΣ = (HI×HI)-set, LΩ = LΣ-set

value
attr HΣ: H → HΣ, attr HΩ: H → HΩ
attr LΣ: L → LΣ, attr LΩ: L → LΩ
mereo L: L → HI-set axiom ∀ l:L:card mereo L(l)=2
mereo H: H → LI-set (= LI-set)

remove H: HI → N
∼
→ N

insert L: L → N
∼
→ N

remove L: LI → N
∼
→ N

...

axiom
∀ hσ:HΣ ..., ∀ hω:HΩ ...

∀ lσ:HΣ ..., ∀ lω:HΩ ...

•

5.1.8 Discussion 246

The previous examples (47–52), especially the last one (52), illustrates the complexity of
a domain category; from just observing sub-part types and attributes (as in Examples 47–
49), Example 52 observations grow to intricate mereologies etcetera. The ‘discoverers’
that we shall propose aim at structuring the discovery process by focusing, in turn, on part
sorts, concrete part types, unique identifier types of parts, part mereology, part attributes,
action signatures, event signatures, etc.
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5.2 Proposed Type and Signature ‘Discoverers’ 247

By a ‘domain discoverer’ we shall understand a tool and a set of principles and techniques
for using this tool in the discovery of the entities of a domain.

In this section we shall put forward a set of type and signature discoverers. Each
discoverer is indexed by a simple or a compound domain index. And each discoverer is
dedicated to some aspect of some entities. Together the proposed discoverers should cover
the most salient aspects of domains. Our presentation of type and signature discoverer
does not claim to help analyse “all” of a domain. 248

We need formally define what an index is.

type
Index = Smpl Idx | Cmpd Idx
Smpl Idx = {| 〈∆〉̂idx | idx:Type Name∗ |}
Cmpd Idx′ = Smpl Idx-set
Cmpd Idx = {| sis:Cmpd Idx′

• wf Cmpd Idx(sis) |}
value

wf Cmpd Idx: Cmpd Idx′ → Bool
wf Cmpd Idx(sis) ≡ ∀ si,si′:Smpl Idx • {si,si′}⊆sis ∧ si6=si′

DISCOVERER KIND: Index → Text
DISCOVER KIND(ℓ̂〈t〉) as text

pre: ℓ̂〈t〉 is a valid index beginning with ∆
post: text is some, in our case, RSL text

The idea of the ℓ̂〈t〉 index is that it identifies a sub-domain, t, of ∆ where DISCOVERER- 249

KIND is any of the several different “kinds” of domain forms:

[90 (Page 76)] PART SORTS,

[91 (Page 77)] HAS A CONCRETE TYPE,

[92 (Page 78)] PART TYPES,

[93 (Page 79)] UNIQUE ID,

[96 (Page 79)] MEREOLOGY,

[98 (Page 80)] ATTRIBUTES,

[100 (Page 82)] ACTION SIGNATURES,

[101 (Page 83)] EVENT SIGNATURES and

[103 (Page 84)] BEHAVIOUR SIGNATURES.

In a domain analysis (i.e., discovery) the domain description emerges “bit-by-bit”. Initially
types are discovered and hence texts which define unique identifier types and functions,
mereology types and functions, and attribute types and functions. Then the signatures of
actions, events and behaviours.
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You may consider these “piece-wise” texts as being “added” to a (hence) growing
reservoir of (RSL) texts with this reservoir being continually inspected by the domain
analyser.

5.2.1 Analysing Domain Parts 250

The two most important aspects of an algebra are those of its parts and its operations.
Rather than identifying, that is, discovering or analysing individual parts we focus on
discovering their types — initially by defining these as sorts. And rather than focusing on
defining what the operations achieve we concentrate on the signature, i.e., the types of the
operations.251

It (therefore) seems wise to start with the discovery of parts, and hence of their types.
Part types are present in the signatures of all actions, events and behaviours. When observ-
ing part types we also observe a variety of part type analysers: possible unique identities
of parts, the possible mereologies of composite parts, and the types of the attributes of
these parts.

252

Domain Part Sorts and Their Observers Initially we “discover” parts — by deciding
upon their types, in the form, first of sorts, subsequently and possibly in the form of
concrete types.

A Domain Sort Discoverer:253

90. A part type discoverer applies to a simply indexed domain, index, and yields

a a set of type names

b each paired with a part (sort) observer.

value

90. PART SORTS: Index
∼
→ Text

90. PART SORTS(ℓ̂〈T〉):
90a. tns:{T1,T2,...,Tm}:TN-set ×
90b. { obs Tj : T → Tj | Tj :tns}

254

Example 53 (Some Part Sort Discoveries) We apply a concrete version of the above
sort discoverer to the road-pricing transport domain ∆:

PART SORTS(〈∆〉):
type

N, F, M
value

obs N: ∆ → N
obs F: ∆ → F
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obs M: ∆ → M

PART SORTS(〈∆,N〉):
type

Hs, Ls
value

obs Hs: N → Hs
obs Ls: N → Ls

PART SORTS(〈∆,F〉):
type

Vs
value

obs Cs: F → Vs

•

255

Domain Part Types and Their Observers

Do a Sort Have a Concrete Type ? Sometimes we find it expedient to endow a
“discovered” sort with a concrete type expression, that is, “turn” a sort definition into a
concrete type definition.

91. Thus we introduce the “discoverer”:

91 HAS A CONCRETE TYPE: Index → Bool
91 HAS A CONCRETE TYPE(ℓ̂〈t〉):true|false

256

Example 54 (Some Type Definition Discoveries) We exemplify two true expressions:

HAS A CONCRETE TYPE(〈∆,N,Hs〉)
HAS A CONCRETE TYPE(〈∆,N,Ls〉)
∼ HAS A CONCRETE TYPE(〈∆,N,Hs,H〉)
∼ HAS A CONCRETE TYPE(〈∆,N,Ls,L〉)

•
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A Domain Part Type Observer: The PART TYPES(ℓ̂〈t〉) invocation yields one or 257

more sort definitions of part types together with their observer functions. The domain
analyser can decide that some parts can be immediately analysed into concrete types.
Thus, together with yielding a type name, the PART TYPES can be expected to yield
also a type definition, that is, a type expression (paired with the type name). Not all type
expressions make sense. We suggest that only some make sense. 258

92. The PART TYPES discoverer applies to a composite type, t, and yields

a a type definition, T = TE,

b together with the sort and/or type definitions of so far undefined type names of
TE.

c The PART TYPES discoverer is not defined if the designated sort is judged to
not warrant a concrete type definition.

92. PART TYPES: Index
∼
→ Text

92. PART TYPES(ℓ̂〈t〉):
92a. type t = te,
92b. T1 or T1 = TE1

92b. T2 or T2 = TE2

92b. ...

92b. Tn or Tn = TEn

92c. pre: HAS A CONCRETE TYPE(ℓ̂〈t〉)

259

Example 55 (Some Part Type Discoveries) We exemplify two discoveries:

PART TYPES(〈∆,N,Hs〉):
type

H
Hs = H-set

PART TYPES(〈∆,N,Ls〉):
type

L
Ls = L-set

PART TYPES(〈∆,F〉):
type

V
Vs = V-set

•
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Concrete Part Types: In Example 55 on the facing page we illustrated one kind of260

concrete part type: sets. Practice shows that sorts often can be analysed into sets. Other
analyses of part sorts are Cartesians, list, and simple maps:

90b. te: tn1 × tn2 × ... × tnm
90b. te: tn∗

90b. te: Token →m tn

where tn’s are part type – usually sort – names some of which may have already been
defined, and where Token is some simple atomic (non-part) type.

261

Part Type Analysers There are three kinds of analysers: unique identity analysers, mere-
ology analysers and general attribute analysers. and

Unique Identity Analysers: We associate with every part type T, a unique identity 262

type TI.

93. So, for every part type T we postulate a unique identity analyser function uid TI.

value
93. UNIQUE ID: Index → Text
93. UNIQUE ID(ℓ̂〈T〉):
93. type
93. TI
93. value
93. uid TI: T → TI

Mereology Analysers: We remind the reader of Sects. 3.1.6 on page 32. Given a 263

part, p, of type T , the mereology, MEREOLOGY, of that part is the set of all the unique
identifiers of the other parts to which part p is partship-related as “revealed” by the
mereo TIi functions applied to p.

94. Let types T1, T2, . . . , Tn be the types of all parts of a domain.

95. Let types TI1, TI2, . . . , TIn
29, be the types of the unique identifiers of all parts of

that domain.

96. The mereology analyser MEREOLOGY is a generic function which applies to an
index and yields the set of

a zero,

29We here assume that all parts have unique identifications.
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b one or

c more

mereology observers.
264

type
94. T = T1 | T2 | ... | Tn

95. Tidx = TI1 | TI2 | ... | TIn
96. MEREOLOGY: Index → Text
96. MEREOLOGY({ℓî〈Tj〉,...,ℓk̂〈Tl〉}):
96a. either: {}
96b. or: mereo TIx: T → (TIx|TIx-set)
96c. or: { mereo TIx: T → (TIx|TIx-set),
96c. mereo TIy: T → (TIy|TIy-set),
96c. ...,
96c. mereo TIz: T → (TIz|TIz-set) }

where none of TIx, TIy, . . . , TIz are equal to TI and each is some Tidx.

General Attribute Analysers: A general attribute analyser analyses parts beyond265

their unique identities and possible mereologies.

97. Part attributes have names. We consider these names to also abstractly name the
corresponding attribute types, that is, the names function both as attribute names
and sort names. Finally we allow attributes of two or more otherwise distinct part
types to be the same.

98. ATTRIBUTES applies to parts of any part type t and yields

99. the set of attribute observer functions attr at, one for each attribute sort at of t.
266

type
97. AT = AT1 | AT2 | ... | ATn

value
98. ATTRIBUTES: Index → Text
98. ATTRIBUTES(ℓ̂〈T〉):
99. type
99. AT1, AT2, ..., ATm

99. value
99. attr AT1: T → AT1

99. attr AT2: T → AT2

99. ...,
99. attr ATm: T → ATm, m≤n
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267

Example 56 (Example Part Attributes) We exemplify attributes of composite and of
atomic parts:

ATTRIBUTES(〈∆〉):
type

Domain Name, ...

value
attr Name: ∆ → Domain Name
...

where Domain Name could include State Roads or Rail Net. etcetera. 268

ATTRIBUTES(〈∆,N〉):
type

Sub Domain Location, Sub Domain Owner, Kms, ...

value
attr Location: N → Sub Domain Location
attr Owner: N → Sub−Domain Owner
attr Length: N → Kms
...

where Sub Domain Location could include Denmark, Sub Domain Owner could include The
Danish Road Directorate30, respectively BaneDanmark31, etcetera. 269

ATTRIBUTES(〈∆,N,Hs,L〉):
type

LOC, LEN, ...

value
attr LOC: L → LOC
attr LEN: L → LEN
...

ATTRIBUTES({〈∆,N,Hs,L〉.〈∆,N,Hs,H〉}):
type

LΣ = HI-set, LΩ − LΣ-set
HΣ = LI-set, HΩ − HΣ-set

value
attr LΣ: L → LΣ

30http://www.vejdirektoratet.dk/roaddirectorate.asp?page=dept&objno=1024
31http://uk.bane.dk/default eng.asp?artikelID=931
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attr LΩ: L → LΩ
attr HΣ: H → HΣ
attr HΩ: H → HΩ

where LOC might reveal some Bezier curve32 representation of the possibly curved three
dimensional location of the link in question, LEN might designate length in meters, LΣ
[HΣ] designates the state of the link [hub], LΩ [HΩ] designates the space of all allowed
states of the link [hub], etcetera.

•

— Attribute Sort Exploration: Once the attribute sorts of a part type have been270

determined there remains to be “discovered” the concrete types of these sorts. We omit
treatment of this point in the present version of these these research notes.

5.2.2 Discovering Action Signatures 271

General We really should discover actions, but actually analyse function definitions. And
we focus, in these research notes, on just “discovering” the function signatures of these
actions. By a function signature, to repeat, we understand a functions name, say fct, and
a function type expression (te), say dte

∼
→rte where dte defines the type of the function’s

definition set and rte defines the type of the function’s image, or range set.

272

Function Signatures Usually Depend on Compound Domains We use the term ‘func-
tions’ to cover actions, events and behaviours.

We shall in general find that the signatures of actions, events and behaviours depend on
types of more than one domain. Hence the schematic index set {ℓ1̂〈t1〉,ℓ2̂〈t2〉,...,ℓn̂〈tn〉}
is used in all actions, events and behaviours discoverers.

273

The ACTION SIGNATURES Discoverer

100. The ACTION SIGNATURES meta-function applies to an index set and yields

a a set of action signatures each consisting of an action name and a pair of defi-
nition set and range type expressions where

b the type names that occur in these type expressions are defined by in the do-
mains indexed by the index set.

100 ACTION SIGNATURES: Index
∼
→ Text

100 ACTION SIGNATURES({ℓ1̂〈T1〉,ℓ2̂〈T2〉,...,ℓn̂〈Tn〉}):

100a act fcti: teid

∼
→ teir ,

100a act fctj : tejd

∼
→ tejr

,

32http://en.wikipedia.org/wiki/Bézier curve
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100a ... ,

100a act fctk: tekd

∼
→ tekr

100b where:
100b type names in (te(i|j|...|k)d

) and in (te(i|j|...|k)r
) are

100b type names defined by the indices which are prefixes of
100b ℓm̂〈Tm〉 and where Tm is in some signature act fcti|j|...|k.

5.2.3 Discovering Event Signature 274

Events are from the point of view of signatures very much like actions.

101. The EVENT SIGNATURES meta-function applies to an index set and yields

a a set of action signatures each consisting of an action name and a pair of defi-
nition set and range type expressions where

b the type names that occur in these type expressions are defined either in the
domains indexed by the index set or by the environment (i.e., “outside” the
domain ∆).

275

101 EVENT SIGNATURES: Index
∼
→ Text

101 EVENT SIGNATURES({ℓ1̂〈T1〉,ℓ2̂〈T2〉,...,ℓn̂〈Tn〉}):
101a evt fcti: teid

∼
→ teir ,

101a evt fctj: tejd

∼
→ tejr

,
101a ... ,

101a evt fctk: tekd

∼
→ tekr

101b where:
101b type names of te(i|j|...|k)d

and te(i|j|...|k)r
are type names

101b defined by the indices which are prefixes of ℓm̂〈tm〉
101b and where tm is in some signature act fcti|j|...|k or may
101b refer to types definable only “outside” ∆

5.2.4 Discovering Behaviour Signatures 276

We choose, in these research notes, to model behaviours in CSP33. This means that we
model (synchronisation and) communication between behaviours by means of messages m
of type M, CSP channels (channel ch:M) and CSP

output: ch!e [offer to deliver value of expression e on channel ch], and
input: ch? [offer to accept a value on channel ch].

33Other behaviour modelling languages are Petri Nets, MSCs: Message Sequence Charts, Statechart
etc. We invite the reader to suggest corresponding ‘discovery’ techniques and tools.
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We allow for the declaration of single channels as well as of one, two, ..., n dimensional
arrays of channels with indexes ranging over channel index types

type Idx, CIdx, RIdx . . . :
channel ch:M, { ch v[vi]:M′|vi:Idx }, { ch m[ci,ri]:M′′|ci:CIdx,ri:RIdx }, . . .

etcetera. We assume some familiarity with RSL/CSP.277

A behaviour usually involves two or more distinct sub-domains.

Example 57 (The Involved Subdomains of a Vehicle Behaviour) Let us illustrate that
behaviours usually involve two or more distinct sub-domains. A vehicle behaviour, for
example, involves the vehicle subdomain, the hub subdomain (as vehicles pass through
hubs), the link subdomain (as vehicles pass along links) and, for the road pricing system,
also the monitor subdomain. •

278

102. The BEHAVIOUR SIGNATURES is a meta function.

103. It applies to a set of indices and results in a text,

104. The text contains

a a set of zero, one or more message types,

b a set of zero, one or more channel index types,

c a set of zero, one or more channel declarations,

d a set of one or more process signatures with each signature containing a be-
haviour name, an argument type expression, a result type expression, usually
just Unit, and

e an input/output clause which refers to channels over which the signatured be-
haviour may interact with its environment.

279

103. BEHAVIOUR SIGNATURES: Index
∼
→ Text

103. BEHAVIOUR SIGNATURES({ℓ1̂〈T1〉,ℓ2̂〈T2〉,...,ℓn̂〈Tn〉}):
104a. type M = M1 | M 2| ... | Mm, m≥0
104b. I = I1 | I2 | ... | In, n≥0
104c. channel ch,vch[ i ],{vch[ i ]:M|i:Ia},{mch[ j,k ]:M|j:Ib,k:Ic},...
104d. value
104d. bhv1: ate1 → inout1 rte1,
104d. bhv2: ate2 → inout2 rte2,
104d. ... ,
104d. bhvm: atem → inoutm rtem,
104d. where type expressions ateii and rtei for all i involve at least two
104d. types t′i and t′′j of respective indexes ℓî〈ti〉 and ℓĵ〈tj〉
104e. where inouti: in k | out k | in,out k
104e. where k: ch | ch[ i ] | {ch[ i ]|i ∈ Ia} | {mch[ j,k ]:M|i:Ib,j:Ic} | ...
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280

Example 58 (A Vehicle Behaviour Signature Discovery) We refer, for example, to Ex-
amples 36 (Pages 56–61) and 40 (Pages 66–67).

let ih=〈∆.N.LS,H〉,il=〈∆.N.HS,L〉,iv=〈∆,F,V〉,im=〈∆,Monitor〉 in
BEHAVIOUR SIGNATURES({iv,ih,iv,im}) as text

let n:N, hs=obs HS(n), ls=obs LS(n), vs=obs F(PART SORTS)(〈∆〉) in
where text:

type
VL Msg, VH Msg, VM Msg

channel
62a. {vh ch[ attr VI(v),attr HI(h) ]|v:V,h:H•v ∈ vd∧h ∈ hs}:VH Msg
62b. {vl ch[ attr VI(v),attr LI(h) ]|v:V,l:L•v ∈ vs∧h ∈ ls}:VL Msg
62c. m ch:VM Msg

value
64. vehicle: VI → V → VP →
83. out,in {vl ch[ vi,li ]|li:LI•li ∈ xtr LIs(ls)}
83. {vh ch[ vi,hi ]|hi:HI•hi ∈ xtr HIs(hs)} out m ch,... Unit

end end

•

5.3 What Does Application Mean ? 281

Now what does it actually mean “to apply” a discover function ? We repeat our list of
discoverers.

[90 (Page 76)] PART SORTS,

[91 (Page 77)] HAS A CONCRETE TYPE,

[92 (Page 78)] PART TYPES,

[93 (Page 79)] UNIQUE ID,

[96 (Page 79)] MEREOLOGY,

[98 (Page 80)] ATTRIBUTES,

[100 (Page 82)] ACTION SIGNATURES,

[101 (Page 83)] EVENT SIGNATURES and

[103 (Page 84)] BEHAVIOUR SIGNATURES.
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It is the domain engineer cum scientist34 who “issues” the “commands”. The first “formal” 282

domain inquiry is that of PART SORTS(〈∆〉). We refer to Item 90 on page 76, for example as captured
by the formulas, Items 90–90b (Page 86).

For the domain engineer to ‘issue’ one of the ‘discovery commands’ means that that person has (i) pre-
pared his mind to study the domain and is open to impressions, (ii) decided which DISCOVERER KIND
to focus on, and (iii) studied the “rules of engagement” of that command, that is which pre-requisite dis-
coverers must first have been applied, with which index, that is, in which context the command invocation
should be placed, and which results the invocation is generally expected to yield.

5.3.1 PART SORTS 283

Let us review the PART SORTS discoverer:

value

90. PART SORTS: Index
∼

→ Text

90. PART SORTS(ℓ̂〈T〉):
90a. tns:{T1,T2,...,Tm}:TN-set ×
90b. { obs Tj : T → Tj | Tj :tns}

The domain analyser35 has decided to “position” the search at domain index ℓ̂〈T〉 where T = ∆ if ℓ = 〈〉
and where T is some “previously discovered part type.284

From Item 90a the domain analyser is guided (i.e., advised) to analyse the domain “at position ℓ̂〈T〉:
is the domain type T a composite type of one or more subpart types ? If so then decide which they are,
that is: T1,T2,...,Tm, that is, the “generation” of the text type T1,T2,...,Tm, if not then tns={} and no
text is “generated”.

Item 90b, and given the domain analyser’s resolution of Item 90a, then directs the “generation” of m

observers obs Tj : T → Tj (for j : {1..m}).

5.3.2 HAS A CONCRETE TYPE 285

Let us review the HAS A CONCRETE TYPE analyser:

91 HAS A CONCRETE TYPE: Index → Bool

91 HAS A CONCRETE TYPE(ℓ̂〈T〉):true|false

Item 91 directs the domain analyser to decide whether the domain type T at “position” ℓ̂〈t〉 should be
given a concrete type definition. It is a decision sôlely at the discretion of the domain analyser whether
domain type T should be given a concrete type definition, and, as we shall see next, which concrete type
it should then be “given”, that is, how it should be “concretely abstractly” modelled.

5.3.3 PART TYPES 286

Let us review the PART TYPES analyser:

92. PART TYPES: Index
∼

→ Text

92. PART TYPES(ℓ̂〈t〉):
92a. type T = TE,

34When we write: domain engineer cum scientist we mean to say that the domain engineer really is
performing a scientific inquiry.

35We use the alternative, synonymous terms: ‘domain engineer’, ‘domain describer’. ‘domain scientist’.
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92b. T1 or T1 = TE1

92b. T2 or T2 = TE2

92b. ...

92b. Tn or Tn = TEn

92c. pre: HAS A CONCRETE TYPE(ℓ̂〈t〉)

287
The domain analyser has decided to “position” the search at domain index ℓ̂〈T〉 where T = ∆ if ℓ = 〈〉
and where T is some “previously discovered part type.

From Item 92 the domain analyser is guided (i.e., advised) to analyse the domain “at position ℓ̂〈T〉:
can a reasonably abstract, yet concrete type definion be given for T ? If so then decide which it should be,
that is, should it be an atomic type a number type, Intg, Rat, Real, a Boolean type, Bool, or a token
type, f.ex. TOKENA token type is a further undefined atomic type — typically used to model identifiers.;
or should it be a composite type either a set type: TE: Ts-set of te: Ts-infset, or a Cartesian type: TE: 288

T1×T2×...Tm, or a list type: TE: T⋆
ℓ or te: Tω

ℓ or a map type: TE: Td →m Tt ? In either case the text type T

= TE, T1 or T1=TE1, T2 or T1=TE2, ..., Tn or Tn=TEn is generated where TE (TEx) is a type expression
whose so far undefined type names T1, T2, ..., Tn must be defined, either as sorts, or a concrete types.

5.3.4 UNIQUE ID 289

Let us review the UNIQUE ID analyser:

value

93. UNIQUE ID: Index → Text

93.a UNIQUE ID(ℓ̂〈T〉):
93.b type

93.c TI
93.d value

93.e uid TI: T → TI

Item 93.a inquires as to the Line 93.b type name Line 93.c of the inquired part type’s unique identifiers
Line 93.d and the function signature value Line 93.e of the observer, uid TI, name, the definition set type
(T, of course) and the range set type (TI — obviously). Thus, the only real “new” “discovery” here is the
name, TI, of the unique identifier type. 290

Etcetera, etcetera.

5.4 Discussion

We have presented a set of discoverers:

[90 (Page 76)] PART SORTS,

[91 (Page 77)] HAS A CONCRETE TYPE,

[92 (Page 78)] PART TYPES,

[93 (Page 79)] UNIQUE ID,

[96 (Page 79)] MEREOLOGY,

[98 (Page 80)] ATTRIBUTES,

[100 (Page 82)] ACTION SIGNATURES,

[101 (Page 83)] EVENT SIGNATURES and
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[103 (Page 84)] BEHAVIOUR SIGNATURES.
291

There is much more to be said: About a meta-state component in which is kept the “text” so far generated.
A component from which one can see which indices and hence which type names have so far been “gen-
erated”, and on the basis of which one can perform tests of well-formedness of generated text, etcetera,
etcetera,
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