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Abstract
s2

This paper is for the academic who is interested in a philosophy of science and a
theory of science. The paper proposes some features of a philosophy of informatics
and a theory of the science of informatics. We approach some such features by first
outlining, in “lay’ terms, concepts of computer and computing science, informatics and
of a triptych of domains, requirements and software. Domains are a new concept in in-
formatics. We briefly illustrate that domains can be described both informally, that is,
using natural (cum national) language, and formally, in mathematics. Then we discuss s3

a number of concepts common to all domains, their simple entities, functions, events
and behaviours. We then go on to examine some derivative concepts of these: discrete
and continuous as well as atomic and composite entities and the mereology of compos-
ite entities, Finally we discuss (i) the problem of description in the context of Bertrand s4

Russell’s ‘Philosophy of Logical Atomism’ and (ii) the problem of describing parts and
wholes in the context of Stanis law Leśhniewsky’s ‘Mereology’ and Individuals’; and
(iii) a possible set of domain description laws. s5

This is our second attempt at discussing aspects of an emerging philosophy of
informatics — some might call it dabbling into such issues. A first attempt was a
paper [14] for the journal of Higher Order and Symbolic Computation, for a fall 2009
issue in honour of the late Peter Landin. The reader should thus bear with us firstly
because of our lack of deeper experience in matters of philosophy, secondly because we
only treat a few facets and then only hint at them. s6

We shall therefore be grateful for any suggestions from readers, and we are likewise
grateful to The University of St Andrews for asking me to compose my thoughts on
this issue.
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A Caveat

This paper has an example. It appears in Appendix A. An oral presentation of (as subset)
of this paper will start with this example. The mathematical notation will not be explained.
The formulas will not be “read”. Instead we shall comment on what the example wishes to
communicate: categories of real domain phenomena and concepts, signatures of predicates over
these, etcetera. The presentation of this example will thus be very cursory. But it will be assumed
that a reader of this paper has had a brief look at the example (thus, please turn to Pages 39–41).

1 Introduction s7

Thinkers, like Bertrand Russel, Sir Karl Popper and others, have reflected on Philosophies of
Mathematics, of Sciences, etc. A new scientific field have emerged in the last 50 years: It is that
of Informatics. It is claimed different from those of the natural sciences. We shall attempt a delin-
eation of this field, and we shall attempt to identify components of a ‘Philosophy of Informatics’
and a ‘Theory of a Science of Informatics’.

1.1 Informatics s8

To us informatics consists of the fields of (i) computer science, (ii) computing science, (iii) software
engineering, (iv) information technology (IT) and (v) applications of (i–iv) to human domains.

Let me first explore, in one small subsection each, each of these five fields.

(In the following we shall assume that you have just a very superficial understanding of what
a computer is and what communication is (C&C).)
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4 1 Introduction

1.1.1 Computer Science s9

By computer science we understand the knowledge and the study of the “things” that can “reside
inside” computers and communication.

We leave formally unexplained what we mean by “things” and “reside inside”
Informally “things” are data, computations and communications.s10

What is this knowledge and this study about ?
Roughly, they are about properties: What is data ? What do we mean by computing device ?

(We many mean such things as a Turing Machine, λ–Calculus reduction rules, an Abstract State
Machine et cetera.) What do we mean by computation ? (We many mean such things as a
terminating process, or a never-ending process, et cetera.) What is an algorithm ? What is
computable ? What do we mean by computational complexity ?

1.1.2 Computing Science s11

By computing science we understand the knowledge and the study of how to construct the “things”
that can “reside inside” computers and communication.s12

What do we mean by “construction” ? We mean the engineering task of understanding the
domain in which the problem resides, prescribing the requirements to what is to be “constructed”,
and designing cum programming the software the algorithm and the data structures that shall be
executed upon and stored by the computer.

• • •

Discussion: The distinction made between (i) knowledge and study of properties of and (ii) how

to construct the “things” that can exist (i.e., “reside”) inside computers, that distinction can be
discussed. In computer science researchers propose new models of computing devices and com-
putation and study these and existing models. In computing science researchers propose aspects
of programming methodology (principles, techniques and tools) and study these and existing pro-
gramming principles, techniques and tools. Computer science can be said to be more theoretical:
the proposed models of computing devices and computation exist independent of the software
engineer. The proposed programming methodology principles, techniques and tools are explicitly
meant to be used by software engineers. In computer science one is interested in theorems about
what has been constructed. In computing science one is interested in the construction process
(which may entail proving properties of intermediate and final results of that process). •

1.1.3 Software Engineering s13

By software engineering we understand an applied form of computing science: the practical aspects
of how people, in groups, effect the principles of, use the techniques for, and apply the tools for
describing the domain, prescribing the requirements, and designing the softwares14

Please observe that the software engineer creates documents: domain descriptions, requirements
prescriptions, software designs, often in several stages of refinement from property-oriented abstrac-
tions via model-oriented specifications to machine code, the latter executable by machine.s15

These documents are texts (and diagrams), that is, syntactic things, but having clear semantics
and, oftentimes also possessing proofs. And the “lowest”, most concrete level of these documents
serve as the basis for computations (and communications).

1.1.4 IT: Information Technology s16

By IT we mean the hardware of computing and communications devices including their in-
put/output devices and the base software upon which end-user applications are based.

Discussion: Our delineation of what IT is can also be debated. We have chosen this definition for
the following reasons: The hardware devices all satisfy laws of physics and are designed according
to electro-mechanical, electrical, electronic, opto-electronic, etc., principles and techniques and

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark Musings on a Philosophy of Informatics and a Theory of Science of Informatics October 2, 2009, 14:12



1.2 Structure of Paper 5

by means of corresponding tools. Concern for IT is “measured” in terms of size (“the-smaller-
the-better”), capacity (“the higher-the-better”), speed (“the-faster-the-better”), and cost (“the
lower-the-better”). Concern for software is, correspondingly, “measured” in terms of “is it the
right software for the user, that is, does it meet customer expectations” and “is the software right,
that is, correct (no ‘bugs’)”. It is for these reasons that we wish to make as clear a distinction
between hardware (‘IT’) and software (‘Applications’). •

1.1.5 Applications s17

By an application (or, more colloquially, an IT application) we understand a machine, that is: an
end-user software system “residing” in a specific domain more-or-less tailored to those end-users’
needs with all of this “running” on some IT.

This characterisation leaves undefined what we mean by (i) ‘residing’, (ii) the ‘specific domain’,
(iii) ‘tailored’ (etc.) and (iv) “running”. To this we turn now. s18

Discussion: Let us restrict, just for the sake of “simplicity” (!) the applications to be more-or-
less tailor-made to the specific customer. Example applications could be: (a) a hospital patient
management system, or (b) an oil pipeline monitoring and control system, or (c) a railway train
traffic, signal and rail track monitoring and control system.

(i) For the application to ‘reside’ means that a sizeable number of application stake-holders are
aware of the computerised application, that is, uses it and/or are affected by it.

(ii) The ‘specific domain’ is that of one of those listed above (a–c) and the stake-holders are
primarily, that is, most of the time that they use IT, using this system — and not also some other
computing systems such as a text-editing system (e.g., MS Word, XLS or other such “of-the-shelf”
mass-software), some Internet browser, or other, to any significant extent.

(iii) The ‘tailoring’ finally means that the computing systems as used is thought of, by its users,
as a system specifically designed for them and not for some other enterprise of the same category.

(iv) By the “running” on IT we mean that there is an application platform consisting of var-
ious forms of IT devices and that these devices provide the ultimate basis for computation and
communication.

• • •

So far, in this ‘discussion’ we have set the stage for what this ‘discussion’ point is to address, namely
that there are two characteristics of many applications, such as their users, mostly unwittingly,
experience these applications:

(α) Anthropomorphisation: Software technology, that is, applications, when being used,
very often, in the interaction between the human users and the technology, the hardware and the
software (i.e., the machine), lead the human users to ascribe human attributes to the machine.
Even programmers say, when explaining computer code or even some abstract specification, “here
the program does so-and-so, et cetera”.

(ω) Intellectual Versus Materiel Universe: Informatics is a universe of intellectual
quality: the right software, that is, allowing pleasing use of the application and fit, “hand-in-
glove”, with the domain; as well as the software being right, that is, correct with respect to
requirements. Classical technology, including now also IT, is a universe of material quantity:
smaller-and-smaller physical size, larger-and-larger (storage) capacity, faster-and-faster computations
and lower-and-lower costs. •

1.2 Structure of Paper s19

We have set the stage. Now let us outline the bulk of this paper. Some of the ‘earlier’ sections
do not themselves contain material in the nature of ‘philosophy’ or ‘theory of science’, but their
contents serve as a necessary, and we think, minimum background for our subsequent “musings”. s20

In Sect. 2 we cover just the domain engineering phase (Sects. 2.3) of software engineering.
The ‘domain engineering’ phase is where we, in particular, in Sect. 3–4, will discover issues of
‘philosophy’ and ‘science of informatics.
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6 2 Software Engineering

In Sect. 3 we cover some descriptional aspects of computing science cum software engineering.
This section proposes a set of meta-types, meta-predicates, meta-observers and meta-axioms that
represent useful principles and techniques for describing domains. We shall, already in this section,
touch upon a number of ‘philosophy and theory of science of informatics’ issues.s21

Section 4 is the main section of this paper — the section in which we discuss but a few issues of
a ‘philosophy and of theory science of informatics’. Notably these are based in Bertrand Russell’s
‘Philosophy of Logical Atomism’ and Stanis law Leśniewski’s ‘Mereology’.

Section 5, in effect, closes this paper by “casting a wider net of ‘philosophy and science of
informatics’: which qualities could characterise such a philosophy and such a theory of science.

2 Software Engineering s22

2.1 Paraphrasing ‘Software Engineering’

By software engineering, to paraphrase Sect. 1.1.3 in the light of its discussion, we understand
the actions of the three phases: domain engineering: describing the domain as it is, requirements
engineering: prescribing the machine as we would like it to be, and software design: specifying the
software as we intend to implement it.

2.2 Documents – Documents – Documents s23

The software engineer produces documents: domain descriptions, requirement prescriptions and soft-
ware specifications.

Both informal: precise, say, English narratives and formal, mathematical/logical texts. Hence
the software engineer must be versant in syntax, semantics and pragmatics.s24

Thus the software engineer expresses precise mathematical properties with no reference to laws
of physics. Other engineers build on laws of physics (as expressed in mathematics), but they do not
express new laws of the natural science.

The most concrete level of software engineering documents “miraculously execute” on computers !
The concrete other engineering documentsusually diagrams, drawings are then the basis for laborious
production processes involving costly tools and salaried labourers before the final result, a technology,
emerges.s25

Discussion: The physical artifacts, i.e., the technologies that derive from the physical sciences,
including chemistry, can be measured: tolerance or accuracy numbers can be established between
the design prescriptions and each actual instantiation of the prescribed technology. And these
instances are subject to statistical variance with respect to these numbers, to production errors
and to wear-and-tear. Not so for software: Either software is correct with respect to requirements
prescriptions or it is not correct. Software does not “age” with use. But new software versions
replace older ones (software doesn’t change !).

Thus one is put in an awkward position when comparing technologies derived from laws of
the natural sciences with respect to software (“technologies”) derived from mathematical logical
domain descriptions and requirements prescriptions. Basically one cannot compare these two kinds
of technologies other than just done !

I think that these differences call for a different approach to a possible philosophy and a theory
of a science of informatics. •s26

2.3 Domain Engineering s27

We shall only consider the main stages of domain acquisition and domain modelling, that is,
finding out about the domain and describing “that” domain.
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2.3 Domain Engineering 7

2.3.1 Domain Acquisition: Domain Models and Their Acceptance s28

Some physicists make experiments and, as a result of their analysis, propose mathematical models
of the phenomena studied; other physicists “massage” such mathematical models and conjecture
new, usually more general and abstract mathematical models.

Domain engineers3 also “experiment”: they read about the domain, they elicit information
about the entities: phenomena and concepts, of the domain, when possible they “immerse” them-
selves in the domain, and they rough sketch formalise fragments of the domain as they find it. s29

Acceptance of the conjectures of physicists emerges as the result of the “socialisation’ process
of other physicists criticizing the conjectures and/or replacing them with other conjectures. and
as the result of other physicists validating the conjectured models by basing own, more specialised
models on these, and by showing that previously unknown properties of physical phenomena can
be verified from these, or new, hitherto undiscovered (properties of physical) phenomena can be
predicted. s30

“Cementation” of physical models takes place as broader acceptance and their ‘entry’ into
monographs and textbooks.

Acceptance of domain models emerges as larger and larger domain descriptions are published
and are referred to in other, published domain descriptions.

Unlike conjectured physics models — whose “behaviour”, that is, whose expression of laws of
physics, can be checked to be in (reasonably approximate) agreement with a perceived actual world
— domain models, since they do not rely on laws of physics, but on more-or-less inexpressible
laws of human behaviour, cannot be “validated” the same way as models of physics.

Discussion: Above we have only very briefly touched upon the processes of acceptance of scientific s31

versus domain engineering models. Basically we suggest the adage of the free interpretation of
Imre Lakatos [58] and Sir Karl Popper [69, 70, 72]: there are no theories, there are no proofs, there
may be bold conjectures, and there will be sad refutations. •

2.3.2 Domains: Descriptions and Models s32

For pragmatics reasons we “sub-divide” the task of constructing a domain deswcription in stages:
intrinsics, support technologies, management & organisation, rules & regulations, scripts: licenses,
contracts, and human behaviour.

Domain Intrinsics By the intrinsics of a domain we shall understand those phenomena and s33

concepts that appear in all other facets and without which these other facets cannot be described.
That is, the intrinsics of a domain are the very basic facts of the domain. s34

Some examples of domain intrinsics are:

• Railway Systems: the (i) railway net [but only] with its (ii) stations and (iii) tracks between
stations, the (iv) trains, the (v) passengers, (xiv) strain start, (xviii) the change of a rail track
signal from stop to go, and (xxi) train journey from one station to the next.

• Health-care: (vi) healthy and (vii) sick people, (viii) medical staff, (ix) medical clinics, (xv) sin-
gular treatment actions of sick people, (xix) death of a patient, and (xxii) a “full” hospitalisation
of a patient.

• Container Lines: (x) containers, (xi) contain vessels, (xii) the ocean, (xiii) container terminal
ports, (xvi) arrival of a container vessel at a container terminal port, (xvii) movement of containers
between container vessels and container terminal ports, (xx) damage to a container, (xxiii)
container “journey” from port of origin to port of destination.

Only “bare-bone” aspects of the above entities are to be considered. Example items (i-xiii) are
of simple entities, (xiv-xvii) are of actions, (xviii-xx) of events, and (xxi-xxiii) of behaviours

3– typically for such domains as air traffic, banking, container lines, (other) financial service institutions, health
care, manufacturing, oil pipeline, railways, etcetera
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8 2 Software Engineering

Domain Support Technologies By the support technologies of a domain we shall understands35

the actors, whether humans or “hard” technology apparatus like mechanical, electro-mechanical,
electronic and IT devices that effect, i.e., represent and/or carry out, the simple entities, actions
and events of the domain.s36

Some examples of domain support technologies are:

• Railway Systems: electro-mechanical or electronic + electro-mechanical (i.e., interlock) switches,
software (or people) for timetable scheduling,

• Health-care: software (or people) for scheduling patient operations, blood pressure measure-
ment instrument, MR scanner.

• Container Lines: software (or people) for (near-optimal) container stowage planning, ship to
quay container crane.

Domain Management and Organisation By domain management we mean people (i) who deter-s37

mine, formulate and thus set standards (cf. rules and regulations, a later lecture topic) concerning
strategic, tactical and operational decisions; (ii) who ensure that these decisions are passed on
to (lower) levels of management, and to floor staff; (iii) who make sure that such orders, as they
were, are indeed carried out; (iv) who handle undesirable deviations in the carrying out of these
orders cum decisions; and (v) who backstop complaints from lower management levels and from
floor staff.s38

By domain organisation we mean (vi) the structuring of management and non-management
staff levels, (vii) the allocation of strategic, tactical and operational concerns to within management
and non-management staff levels, (viii) and hence the “lines of command”: who does what and
who reports to whom — administratively and functionally.s39

Some examples of domain management and organisation are:

• Railway Systems: station masters who, amongst other things, decide when trains have to
depart, area managers who co-ordinate line traffic resources (staff rostering, train maintenance
and service, etc.), engine men who must obey track signals, etc.

• Health-care: national health service directors who monitor and control financial resources to
clinics, hospitals, etc., hospital managers who allocate and schedule medical staff (rostering,
etc.), etc.

• Container Lines: container line directors who monitor and control financial resources, charter
or commission the building of container vessels, container vessel captains who monitor and control
vessel resources and interact with container terminal port management, etc.

Domain Rules and Regulations Human stake-holders act in the domain, whether clients, work-s40

ers, managers, suppliers, regulatory authorities, or other. Their actions, oftentimes aided by
technology, are guided and constrained by rules and regulations.

By a domain rule we mean some text which prescribes how people or equipment are expected
to behave when dispatching their duty, respectively when performing their functions.

By a domain regulation we mean some text which prescribes what remedial actions are to be
taken when it is decided that a rule has not been followed according to its intention.s41

Some examples of domain rules and regulations are:

• Railway Systems. Rule (in China): No two trains to arrive or depart4 from any train station in
any 2 minute interval. Regulation (in China): Dismissal.

4Arrival and departure are behaviours and the two minute interval must be between the time intervals of these
behaviours.
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9

• Health-care. Rule (in Denmark): hospital patient is to give their name and central personal
registration number to the medical whenever that staff performs a hospitalisation related action.
Regulation: some disciplinary action.

• Container Lines: Rule: Containers must be stowed on-board a vessel according to a number of
weight, spread-of-fire and ‘explosives’ constraints. Regulation: some disciplinary action.

Domain Scripts: Licenses and Contracts By a domain license language we mean the definition s42

of a set of rules & regulations where these licenses when issued and actions when performed are bound
by the rules & regulations and have morally obliging power.

By a domain contract language we mean a domain license language whose licenses and actions
have legally binding power, that is, their issuance and their invocation may be contested in a court of
law. s43

Some examples of domain scripts (licenses and contracts) are:

• Railway Systems. License: a timetable. Contract: a ticket.

• Health-care. License: educational and training degrees such as for those of medical doctors,
nurses, etc. Contract: a health insurance.

• Container Lines. License: a voyage schedule. Contract: a bill-of-lading.

Domain Human Behaviour By domain human behaviour we understand any of a quality spectrum s44

of carrying out assigned work: from (i) careful, diligent and accurate, via (ii) sloppy dispatch, and
(iii) delinquent work, to (iv) outright criminal pursuit. s45

Some examples of domain human behaviours are:

• Railway Systems: train engine man when diligent: obeying all signal settings all the time; when
sloppy: missing a signal setting every other year; when delinquent: missing a signal setting every
two weeks; and when criminal: deliberately disregarding a signal setting.

• Health-care: medical nurse, when administering medicine to a patient when diligent: always
remembering to ask for name and CPR number; when sloppy: forgetting to ask one time out
of at least 300 times; when delinquent: forgetting to ask one time out of 20 times; and when
criminal: mostly not asking for this information.

• Container Lines: a container stowage planner when diligent: always, to the the best of their
ability. trying to follow all stowage rules; when sloppy: occasionally, usually not deliberately,
and in one out of around, say, 100 times, skipping such a rule; when delinquent: regularly and
deliberately skipping such a rule; and when criminal: deliberately, and quite more often, skipping
such rules.

2.3.3 Discussion s46

To be written 1/3 page

3 A Description Ontology s47

3.1 Description Ontology Versus Ontology Description

According to Wikipedia: Ontology is the philosophical study of (i) the nature of being, existence or
reality in general, (ii) as well as of the basic categories of being and their relations.

Section 2.3.2 emphasized the need for describing domain phenomena and concepts. This section
puts forward a description ontology: (i) which “natures of being, existence or reality” and (ii) which
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10 3 A Description Ontology

“categories of being and their relations”. which we shall apply in the description of domain phenomena
and concepts. s48

Yes, we do know that the term ‘description ontology’ can easily be confused with ‘ontology descrip-
tion’ — a term used very much in two computing related communities: AI (artificial intelligence) and
WWW (World Wide Web). These communities use the term ‘ontology’ as we use the term ‘domain’
[4, 28, 31, 45, 46, 47, 48, 91].

By [domain] ‘description ontology’ we shall mean a set of notions that are used in describing a
domain. So the ontology is one of the description language not of the domain that is being described.

3.2 Categories, Predicates and Observers for Describing Domains s49

It is not the purpose of this paper to motivate the categories, predicates and observer functions for
describing phenomena and concepts. This is done elsewhere [9, 12, 15, 18, 19]. Instead we shall
more-or-less postulate one approach to the analysis of domains. We do so by postulating a number
of meta-categories, meta-predicates and meta-observer functions. They characterise those non-meta
categories, predicates and observer functions that the domain engineer cum researcher is suggested to
make use of. There may be other approaches [89, John Sowa, 1999] than the one put forward in this
paper.

3.2.1 The Hypothetical Nature of Categories, Predicates and Observers s50

Categories In the following we shall postulate some categories, that is, some meta-types:

categories

ALPHA, BETA, GAMMA

What such a clause as the above means is that we postulate that there are such categories of “things”
(phenomena and concepts) in the world of domains. That is, there is no proof that such “things”s51

exists. It is just our way of modelling domains. If that way is acceptable to other domain science
researchers, fine. In the end, which we shall never reach, those aspects of a, or the domain science,
may “survive”. If not, not !

Predicates and Observers With the categories just introduced we then go on to postulate somes52

predicate and observer functions. For example:

predicate signatures

is ALPHA: “Things” → Bool

is BETA: “Things” → Bool

is GAMMA: “Things” → Bool

observer signatures

obs ALPHA: “Things”
∼

→ ALPHA

obs BETA: ALPHA
∼

→ BETA

obs GAMMA: ALPHA
∼

→ GAMMA

So we are “fixing” a logic !s53

The “Things” clause is a reference to the domain under scrutiny. Some ‘things’ in that domain are of
category ALPHA, or BETA, or GAMMA. Some are not. It is then postulated that from such things
of category ALPHA one can observe things of categories BETA or GAMMA. Whether this is indeed
the case, i.e., that one can observe these things is a matter of conjecture, not of proof.

Meta-Conditions Finally we may sometimes postulate the existence of a meta-axiom:s54

meta condition:

Predicates over ALPHA, BETA and GAMMA
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3.2 Categories, Predicates and Observers for Describing Domains 11

Again, the promulgation of such logical meta-expressions are just conjectures, not the expression of
“eternal” truths.

Discussion So, all in all, we suggest four kinds of meta-notions: s55

• categories,5

• is Category (and later: obs Property), predicates,6

• obs Category (and later: obs Attribute) observers,7 and

• meta-conditions.8
s56

The category [type] A, B, ..., is A, is B, ... obs A, obs B, ... meta-condition [axiom] predicate
notions derive from McCarthy’s analytic syntax [63]. In that paper McCarthy also suggested a synthetic
syntax constructor function: mk A, ....At present, we find no need to introduce this synthetic syntax
constructor function. A basic reason for this is that we are not constructing domain phenomena. The
reason McCarthy (and computing science) needed the synthetic syntax constructor functions is that
software is constructed.

Discussion: Thus the formal specification and the high level programming languages’ use, that is, the
software designers’ use of type clauses, predicate functions and observer (in the form of selector) func-
tions shall be seen in the context of specifications, respectively program code dealing with computable
quantities and decomposing and constructing such quantities.

The proposal here, of suggesting that the domain engineer cum researcher makes us of categories,

predicates, observers and meta-conditions is different. In domain descriptions an existing “uni-
verse of discourse” is being analysed. Perhaps the categories, predicates, observers and meta-

conditions makes sense, perhaps the domain engineer cum researcher can use these descriptional
“devices” to “compose” a consistent and relative complete “picture”, i.e., description, of the domain
under investigation.

Either the software designers’ use of formal specification or programming language constructs is
right or it is wrong, but the domain engineer cum researchers’ use is just an attempt, a conjecture. If
the resulting domain description is inconsistent, then it is wrong. But it can never be proven right.
Right in the sense that it is the right description. As in physics, it is just a conjecture. There may be
refutations of domain models. •

3.2.2 Entities s57

What we shall describe is what we shall refer to as entities. In other words, there is a category and
meta-logical predicate ENTITY, is ENTITY. The is ENTITY predicate applies to “whatever” in the
domain, whether an entity or not, and “decides”, i.e., is postulated to analyse whether that “thing” is
an entity or not:

predicate signature:

is ENTITY: “Thing” → Bool

meta condition:

∀ e:ENTITY • is ENTITY(e)

Discussion: When we say “things”, or entities, others may say ‘individuals’, ‘objects’, or use other
terms.

The meta-predicate is ENTITY provides a rather “sweeping” notion, namely that someone, the do-
main engineer, an oracle or other, can decide whether “something” is to be described as a phenomenon
or concept of the domain. In Sect. 4.2 we shall discuss is ENTITY. • s58

5See the example of Appendix A. Here the categories are now called types — since it is a specific domain
descriptions, and are specified by a clause of the form type A, B, C.

6See the example of Appendix A. Here there is no is A etc. clauses. Instead RSL uses the following clauses let
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12 3 A Description Ontology

• • •

By introducing the predicate is ENTITY we have put the finger on what this section, that is, Sect. 3,
is all about, namely “what exists ?” and “what can be described ?” We are postulating a description
ontology. It may not be an adequate one. It may have flaws. But, for the purposes of raising some
issues of epistemological and ontological nature, it is adequate.

3.2.3 Entity Categories s59

We postulate four entity categories:

category:

SIMPLE ENTITY, ACTION, EVENT, BEHAVIOUR

Simple entities are phenomena or concepts. Simple entity phenomena are the things we can
point to, touch and see. They are manifest. Other phenomena, for example those we can hear, smell,
taste, or measure by physics (including chemistry) apparatus are properties (attributes) of simple entity
phenomena. Concepts are abstractions about phenomena and/or other concepts. A subset of simple
domain entities form a state. Actions are the result of applying functions to simple domain entitiess60

and changing the state. Events are state changes that satisfy a predicate on the ‘before’ and ‘after
states’. Behaviours are sets of sequences (of sets of) actions and events.s61

category:

ENTITY = SIMPLE ENTITY ∪ ACTION ∪ EVENT ∪ BEHAVIOUR

Discussion: The four categories of entities may overlap. •
With each of the four categories there is a predicate:

predicate signature:

is SIMPLE ENTITY “Thing” → Bool

is ACTION “Thing” → Bool

is EVENT “Thing” → Bool

is BEHAVIOUR “Thing” → Bool

Each of the above four predicates require that their argument t:“Thing” satisfies:

is ENTITY(t)

The ∪ “union” is inclusive:

meta condition:

∀ t:̀ T̀hing′′•is ENTITY(t) ⇒
is SIMPLE ENTITY(t) ∨ is ACTION(t) ∨ is EVENT(t) ∨ is BEHAVIOUR(t)

3.2.4 Simple Entities s62

Anticipating the discussion of Sects. 4.2 and 4.3 we postulate that there are atomic simple entities,
that there are [therefrom distinct] composite simple entities, and that a simple entity is indeed either
atomic or composite. That atomic simple entities cannot meaningfully be described as consisting of
proper other simple entities, but that composite simple entities indeed do consist of proper other simple
entities. That is:s63

a:A, b:B, ... in ... end.
7See the example of Appendix A. There are several observer functions defined in that appendix.
8See the example of Appendix A. Here the meta-conditions are “labelled” axioms.
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3.2 Categories, Predicates and Observers for Describing Domains 13

category:

SIMPLE ENTITY = ATOMIC ∪ COMPOSITE

observer signature:

is ATOMIC: SIMPLE ENTITY → Bool

is COMPOSITE: SIMPLE ENTITY → Bool

meta condition:

ATOMIC ∩ COMPOSITE = {}
∀ s: “Things”:SIMPLE ENTITY •

is ATOMIC(s) ≡ ∼is COMPOSITE(s)

Discussion: We put in brackets, in the text paragraph before the above formulas, [therefrom distinct].
One may very well discuss this constraint — are there simple entities that are both atomic and com-
posite ? — and that is done by Bertrand Russell in his ‘Philosophy of Logical Atomism’ [85]. See
Sect. 4.1.2 and Sect. 4.2. •

Discrete and Continuous Entities We postulate two forms of SIMPLE ENTITIES: DISCRETE, s64

such as a railroad net, a bank, a pipeline pump, and a securities instrument, and CONTINUOUS, such
as oil and gas, coal and iron ore, and beer and wine.

category:

SIMPLE ENTITY = DISCRETE SIMPLE ENTITY ∪ CONTINUOUS SIMPLE ENTITY

predicate signatures:

is DISCRETE SIMPLE ENTITY: SIMPLE ENTITY → Bool

is CONTINUOUS SIMPLE ENTITY: SIMPLE ENTITY → Bool

meta condition:

[ is it desirable to impose the following ]
∀ s:SIMPLE ENTITY •

is DISCRETE SIMPLE ENTITY(s) ≡ ∼CONTINUOUS SIMPLE ENTITY(s) ?

Discussion: In the last lines above we raise the question whether it is ontologically possible or desirable
to be able to have simple entities which are both discrete and continuous. Maybe we should, instead,
express an axiom which dictates that every simple entity is at least of one of these two forms. •

Attributes Simple entities are characterised by their attributes: attributes have name, are of type s65

and has some value; no two (otherwise distinct) attributes of a simple entity has the same name.

category:

ATTRIBUTE, NAME, TYPE, VALUE

observer signature:

obs ATTRIBUTEs: SIMPLE ENTITY → ATTRIBUTE-set

obs NAME: ATTRIBUTE → NAME

obs TYPE: ATTRIBUTE × NAME → TYPE

obs VALUE: ATTRIBUTE × NAME → VALUE

meta condition:

∀ s:SIMPLE ENTITY •

∀ a,a′:ATTRIBUTE • {a,a′}⊆obs ATTRIBUTEs(s)
∧ a 6=a′ ⇒ obs NAME(a)6=obs NAME(a′)

s66

Examples of attributes of atomic simple entities are: (i) A pipeline pump usually has the following at-
tributes: maximum pumping capacity, current pumping capacity, whether for oil or gas,

diameter (of pipes to which the valve connects), etc. (ii) Attributes of a person usually
includes name, gender, birth date, central registration number, address, marital state,

nationality, etc. s67
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14 3 A Description Ontology

Examples of attributes of composite simple entities are: (iii) A railway system usually has
the following attributes: name of system, name of geographic areas of location of rail

nets and stations, whether a public or a private company, whether fully, partly or

not electrified, etc. (iv) Attributes of a bank usually includes: name of bank, name of

geographic areas of location of bank branch offices, whether a commercial portfol-

io bank or a high street, i.e., demand/deposit bank, etc.
We do not further define what we mean by attribute names, types and values.

Atomic Simple Entities: Attributes Atomic simple entities are characterised only by their at-s68

tributes.

Discussion: We shall later cover a notion of domain actions, that is functions being applied to
entities, including simple entities. We do not, as some do for programming languages, “lump”
entities and functions (etc.) into what is there called ‘objects’. •

Composite Simple Entities: Attributes, Sub-entities and Mereology Composite simple entities
are characterised by three properties: (i) their attributes, (ii) a proper set of one or more sub-
entities (which are simple entities) and (iii) a mereology of these latter, that is, how they relate
to one another, i.e., how they are composed.

s69

Sub-entities Proper sub-entities, that is simple entities properly contained, as immediate
parts of a composite simple entity, can be observed (i.e., can be postulated to be observable):

observer signature:

obs SIMPLE ENTITIES: COMPOSITE → SIMPLE ENTITY-set

s70

Mereology (I) Mereology is the theory of part-hood relations: of the relations of part to
whole and the relations of part to part within a whole. Sect. 4.3 deals with this subject with quite
a different approach than the one taken here. Suffice it to suggest some mereological structures:

• Set Mereology: The individual sub-entities of a composite entity are “un-ordered” like
elements of a set. The obs SIMPLE ENTITIES function yields the set elements.

predicate signature:

is SET: COMPOSITE → Bool

s71

• Cartesian Mereology: The individual sub-entities of a composite entity are “ordered” like
elements of a Cartesian (grouping). The function obs ARITY yields the arity, 2 or more, of
the simple Cartesian entity. The function obs CARTESIAN yields the Cartesian composite
simple entity.s72

predicate signature:

is CARTESIAN: COMPOSITE → Bool

observer signatures:

obs ARITY: COMPOSITE
∼

→ Nat

pre: obs ARITY(s) is CARTESIAN(s)

obs CARTESIAN: COMPOSITE
∼

→
SIMPLE ENTITY × ... × SIMPLE ENTITY

pre obs CARTESIAN(s): is CARTESIAN(s)
meta condition:

∀ c:SIMPLE ENTITY•

is COMPOSITE(c)∧is CARTESIAN(c) ⇒
obs SIMPLE ENTITIES(c) = elements of obs CARTESIAN(c)

∧ cardinality of obs SIMPLE ENTITIES(c) = obs ARITY(c)
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We also just postulate the elements of and the cardinality of meta-functions. s73

• List Mereology: The individual sub-entities of a composite entity are “ordered” like ele-
ments of a list (i.e., a sequence). Where Cartesians are fixed arity sequences, lists are variable
length sequences.

predicate signature:

is LIST: COMPOSITE → Bool

observer signatures:

obs LIST: COMPOSITE
∼

→ list of SIMPLE ENTITY

pre is LIST(s): is COMPOSITE(s)

obs LENGTH: COMPOSITE
∼

→ Nat

pre is LIST(s): is COMPOSITE(s)
meta condition:

∀ s:SIMPLE ENTITY•

is COMPOSITE(s)∧is LIST(s) ⇒
obs SIMPLE ENTITIES(s) = elements of obs LIST(s)

We also just postulate the list of and the elements of meta-functions. s74

• Map Mereology: The individual sub-entities of a map are “indexed” by unique definition set
elements. Thus we can speak of pairings of unique map definition set element identifications
and their not necessarily distinct range set elements. By a map we shall therefore understand
a function, with a finite definition set, from distinct definition set elements to not necessarily
distinct range elements, such that the pairs of (definition set,range) elements, which are all
simple entities, can be characterised by a predicate. s75

It is this, the finiteness of maps and the (potential, but often un-expressed) predicate, which
‘distinguishes’ maps from functions.

Let us refer to the map as being of category MAP. Let us refer to the definition set elements
of a map as being the DEFINITION SET of the MAP. Let us refer to the range elements
of such a map as being the RANGE of the MAP. No two definition set elements of a map,
to repeat, are the same. Given a definition set element, s, of a map, m, one can obtain its
IMAGE of the RANGE of m. s76

predicate signature:

is MAP: COMPOSITE → Bool

observer signatures:

obs MAP: COMPOSITE
∼

→ MAP

pre obs MAP(c): is MAP(c)
obs DEFINITION SET: MAP → SIMPLE ENTITY-set

pre obs MAP(c): is MAP(c)
obs RANGE: MAP → SIMPLE ENTITY-set

pre obs MAP(c): is MAP(c)

obs IMAGE: MAP × SIMPLE ENTITY
∼

→ SIMPLE ENTITY

pre obs IMAGE(m,d): is MAP(m) ∧ d ∈ obs DEFINITION SET(m)
meta condition:

∀ m:SIMPLE ENTITY•

is COMPOSITE(m)∧is MAP(m) ⇒
obs SIMPLE ENTITIES(m) =

{(d,obs IMAGE(c,d))|d:SIMPLE ENTITY•d ∈ obs DEFINITION SET(m)}

s77

Given that we can postulate “an existence” of the obs DEFINITION SET and the obs RANGE

observer functions we can likewise postulate a category
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16 3 A Description Ontology

category

MAP = map of SIMPLE ENTITY into ENTITY

observer signatures

obs DEF SET: MAP → set of SIMPLE ENTITY

obs RNG: MAP → set of ENTITY

meta condition

∀ m:MAP •

obs DEF SET(m) = obs DEFINITION SET(m)
∧ obs RNG(m) = obs RANGE(m)

Here, again, the map of ... into ... is further unexplained.

We shall not pursue the notions of DEF SET and RNG further.s78

• Graph Mereology: The individual sub-entities of a composite entity are “ordered” like
elements of a graph, i.e., a net, of elements. Trees and lattices are just special cases of
graphs. Any (immediate) sub-entity of a composite simple entity of GRAPH mereology
may be related to any number of (not necessarily other) (immediate) sub-entities of that
same composite simple entity GRAPH in a number of ways:it may immediately PRECEDE,
or immediate SUCCEED or be BIDIRECTIONALLY LINKED with these (immediate) sub-
entities of that same composite simple entity. In the latter case some sub-entities PRECEDE

a SIMPLE ENTITY of the GRAPH, some sub-entities SUCCEED a SIMPLE ENTITY of
the GRAPH, some both.s79

predicate signature:

is GRAPH: COMPOSITE → Bool

observer signatures:

obs GRAPH: COMPOSITE
∼

→ GRAPH

pre obs GRAPH(g): is GRAPH(g)
obs PRECEDING SIMPLE ENTITIES:

COMPOSITE × SIMPLE ENTITY → SIMPLE ENTITY-set

pre obs PRECEDING SIMPLE ENTITIES(c,s):
is GRAPH(c) ∧ s ∈ obs SIMPLE ENTITIES(c)

obs SUCCEEDING SIMPLE ENTITIES:
COMPOSITE × SIMPLE ENTITY → SIMPLE ENTITY-set

pre obs PRECEDING SIMPLE ENTITIES(c,s):
is GRAPH(c) ∧ s ∈ obs SIMPLE ENTITIES(c)

meta condition:

∀ c:SIMPLE ENTITY • is COMPOSITE(c) ∧ is GRAPH(c)
⇒ let ss = SIMPLE ENTITIES(c) in

∀ s′:SIMPLE ENTITY • s′ ∈ ss
⇒ obs PRECEDING SIMPLE ENTITIES(c)(s′) ⊆ ss

∧ obs SUCCEEDING SIMPLE ENTITIES(c)(s′) ⊆ ss
end

s80

In Sect. 4.3 we shall pursue quite another line of inquiry as to what establishes a mereology.

3.2.5 Actions s81

By a STATE we mean a set of one or more SIMPLE ENTITIES. By an ACTION we shall under-
stand the application of a FUNCTION to (a set of, including the state of) SIMPLE ENTITIES

such that a STATE change occurs. We postulate that the domain engineer can indeed decide,
that is, conjecture, whether a “thing”, which is an ENTITY is an ACTION.
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3.2 Categories, Predicates and Observers for Describing Domains 17

category:

ACTION, FUNCTION, STATE

predicate signature:

is ACTION: ENTITY → Bool

s82

Given an ENTITY of category ACTION one can observe, i.e., conjecture the FUNCTION (being
applied), the ARGUMENT CARTESIAN of SIMPLE ENTITIES to which the FUNCTION is
being applied, and the resulting change STATE change. Not all elements of the CARTESIAN

ARGUMENT are SIMPLE STATE ENTITIES. s83

category:

STATE = SIMPLE ENTITY

FUNCTION = SIMPLE ENTITY × STATE → STATE

ARGUMENT = {|s:SIMPLE ENTITY•is CARTESIAN(s)|}
observer signatures:

obs ACTION: ENTITY → ACTION

obs FUNCTION: ACTION → FUNCTION

obs ARGUMENT: ACTION → ARGUMENT

obs INPUT STATE: ACTION → STATE

obs RESULT STATE: ACTION → STATE

s84

Discussion: Some pretty definite assertions were made above: We postulate that the domain en-
gineer can indeed decide whether a “thing”, which is an ENTITY is an ACTION And that one can
observe the FUNCTION, the ARGUMENT and the RESULT of an ACTION. We do not really
have to phrase it that deterministically. It is enough to say: One can speak of actions, functions,
their arguments and their results. Ontologically we can do so. Whether, for any specific simple entity
we can decide whether it is an actions is, in a sense, immaterial: we can always postulate that it is an
action and then our analysis can be based on that hypothesis. This discussion applies inter alia to
all of the entities being introduced here, together with their properties.

The domain engineer cum researcher can make such decisions as to whether an entity is a simple
one, or an action, or an event or a behaviour. And from such a decision that domain engineer cum
researcher can go on to make decisions as to whether a simple entity is discrete or continuous, and
atomic or composite, and then onto a mereology for the composite simple entities. Similarly the domain
engineer cum researcher can make decisions as to the function, arguments and results of an action. All
these decisions does not necessarily represent the “truth”. They hopefully are not “falsities”. At best
they are abstractions and, as such, they are approximations. •

3.2.6 Events s85

By an EVENT we shall understand A pair, (σ, σ′), of STATEs, a STIMULUS, s, (which is like
a FUNCTION of an ACTION), and an EVENT PREDICATE, p : P , such that p(σ, σ′)(s), yields
true.

The difference between an ACTION and an EVENT is two things: the EVENT ACTION need
not originate within the analysed DOMAIN, and the EVENT PREDICATE is trivially satisfied
by most ACTIONs which originate within the analysed DOMAIN. s86

Examples of events, that is, of predicates are: a bank goes “bust” (e.g., looses all its monies,
i.e., bankruptcy), a bank account becomes negative, (unexpected) stop of gas flow and iron ore
mine depleted. Respective stimuli of these events could be: (massive) loan defaults, a bank client
account is overdrawn, pipeline breakage, respectively over-mining. s87

We postulate that the domain engineer from an EVENT can observe the STIMULUS, the
BEFORE STATE, the AFTER STATE and the EVENT PREDICATE. As said before: the domain
engineer cum researcher can decide on these abstractions, these approximations. s88

category:
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18 3 A Description Ontology

STIMULUS = SIMPLE ENTITY × STATE → STATE

P = STATE × STATE → Bool

observer signatures:

obs STIMULUS: EVENT → STIMULUS

obs BEFORE STATE: EVENT → STATE

obs AFTER STATE: EVENT → STATE

obs EVENT PREDICATE: EVENT → P
meta condition:

∀ e:EVENT •

∃ s:STIMULUS •

INPUT STATE(e) = BEFORE STATE(s) ∧
RESULT STATE(e) = AFTER STATE(s) ∧
∃ p:P •p(s)(INPUT STATE(e),RESULT STATE(e))

3.2.7 Behaviours s89

By a BEHAVIOUR we shall understand a set of sequences of ACTIONs and EVENTs such that
some EVENTs in two or more such sequences have their STATEs and PREDICATEs express,
for example, mutually exclusive synchronisation and communication EVENTs between these se-
quences which are each to be considered as simple SEQUENTIAL BEHAVIOURs. Other forms
than mutually exclusive synchronisation and communication EVENTs, that “somehow link” two
or more behaviours, can be identified.s90

We may think of the mutually exclusive synchronisation and communication EVENTs as being
designated simply by their PREDICATEs such as, for example, in CSP [52, 82, 86, 53]:

type A, B, C, D, M
channel ch M
value

f: A → out ch C
g: B → in ch D
f(a) ≡ ... point ℓf :ch!e ...

g(b) ≡ ... point ℓg:ch? ...

Here the zero capacity buffer communication channel, ch, express mutual exclusivity, and the
output/input clauses: ch!e and ch? express synchronisation and communication.s91

The predicate is here, in the CSP schema, “buried” in the simultaneous occurrence behaviour
f having “reached point” point ℓf and behaviour g having “reached point” point ℓg.s92

We abstract from the orderly example of synchronisation and communication given above
and introduce a further un-explained notion of behaviour (synchronisation and communication)
BEHAVIOUR INTERACTION LABELs and allow BEHAVIOURs to now just be sets of sequences
of ACTIONs and BEHAVIOUR INTERACTION LABELs. such that any one simple sequence has
unique labels.s93

We can classify some BEHAVIOURs.
(i) SIMPLE SEQUENTIAL BEHAVIOURs are sequences of ACTIONs.
(ii) SIMPLE CONCURRENT BEHAVIOURs are sets of SIMPLE SEQUENTIAL BEHAVIOURs.
(iii) COMMUNICATING CONCURRENT BEHAVIOURs are sets of sequences of ACTIONs

and BEHAVIOUR INTERACTION LABELs. We say that two or more such COMMUNICATING

CONCURRENT BEHAVIOURs SYNCHRONISE & COMMUNICATE when all distinct BEHA-
VIOURs “sharing” a (same) label have all reached that label.s94

Many other composite behaviours can be observed. For our purposes it suffice with having
just identified the above.

SIMPLE ENTITIES, ACTIONs and EVENTs can be described without reference to time.
BEHAVIOURs, in a sense, take place over time.9 It will bring us into a rather long discourse if wes95

9If it is important that ACTIONs take place over time, that is, are not instantaneous, then we can just consider
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3.3 What Exists and What Can Be Described ? 19

are to present some predicates, observer functions and axioms concerning behaviours — along the
lines such predicates, observer functions and axioms were present, above, for SIMPLE ENTITIES,
ACTIONs and EVENTs. We refer instead to Johan van Benthems seminal work on the The

Logic of Time [94]. In addition, more generally, we refer to A.N. Prior’s [74, 75, 76, 77, 73] and
McTaggart’s works [64, 36, 81]. The paper by Wayne D. Blizard [24] proposes an axiom system
for time-space.

3.2.8 Mereology (II) s96

Compositionality of Entities Simple entities — when composite — are said to exhibit a mere-
ology. Thus composition of simple entities imply a mereology. We discussed mereologies of be-
haviours: simple sequential, simple concurrent, communicating concurrent, etc. Above we did
not treat actions and events as potentially being composite. But we now relax that seeming
constraint. There is, in principle, nothing that prevents actions and events from exhibiting mere-
ologies. An action, still instantaneous, can, for example, “fork” into a number of concurrent s97

actions, all instantaneous, on “disjoint” parts of a state; or an instantaneous action can “dribble”
(not little-by-little, but one-after-the-other. still instantaneously) into several actions as if a simple
sequential behaviour, but instantaneous. Two or more events can occur simultaneously: two or
more (up to four, usually) people become grandparents when a daughter of theirs give birth to
their first grandchild; or an event can — again a “dribble” (not little-by-little, but instantaneously)
— “rapidly” sequence through a number of instantaneous sub-events (with no intervening time
intervals): A bankruptcy events immediately causes the bankruptcy of several enterprises which
again causes the immediate bankruptcy of several employes, etcetera. s98

The problems of compositionality of entities, whether simple, actions, events or behaviours, is
was studied, initially, in [19, Bjørner and Eir, 2008]

Impossibility of Definite Mereological Analysis of Seemingly Composite Entities It would be s99

nice if there was a more-or-less obvious way of “deciphering” the mereology of an entity. In
the many • (bulleted) items above (cf. Set, Cartesian, List, Map, Graph) we may have left the
impression with the reader that is a more-or-less systematic way of uncovering the mereology of
a composite entity. That is not the case: there is no such obvious way. It is a matter of both
discovery and choice between seemingly alternative mereologies, and it is also a matter of choice of
abstraction. Section 4.3 will approach the question of mereologies of simple entities from another
viewpoint than taken in the present section.

3.3 What Exists and What Can Be Described ? s100

In the previous section we have suggested a number of categories10 of entities, a number of pred-
icate11 and observer12 functions and a number of meta conditions (i.e., axioms). These concepts
and their relations to one-another, suggest an ontology for describing domains. It is now very
important that we understand these categories, predicates, observers and axioms properly.

3.3.1 Description Versus Specification Languages s101

Footnotes 10–12 (Page 19) summarised a number of main concepts of an ontology for describing
domains. The categories and predicate and observer function signatures are not part of a formal
language for descriptions. The identifiers used for these categories are intended to denote the
real thing, classes of entities of a domain. In a philosophical discourse about describability of

ACTIONs as very simple SEQUENTIAL BEHAVIOURs not involving EVENTs.
10Some categories: ENTITY, SIMPLE ENTITY, ACTION, EVENT, BEHAVIOUR, ATOMIC, COMPOSITE, DISCRETE, CONTINUOUS, ATTRIBUTE, NAME, TYPE,

VALUE, SET, CARTESIAN, LIST, MAP, GRAPH, FUNCTION, STATE, ARGUMENT, STIMULUS, EVENT PREDICATE, BEFORE STATE, AFTER STATE, SEQUENTIAL BEHAVIOUR,

BEHAVIOUR INTERACTION LABEL, SIMPLE SEQUENTIAL BEHAVIOUR, SIMPLE CONCURRENT BEHAVIOUR, COMMUNICATING CONCURRENT BEHAVIOUR, etc.
11Some predicates: is ENTITY, is SIMPLE ENTITY, is ACTION, is EVENT, is BEHAVIOUR, is ATOMIC, is COMPOSITE, is DISCRETE SIMPLE ENTITY,

is CONTINUOUS SIMPLE ENTITY, is SET, is CARTESIAN, is LIST, is MAP, is GRAPH, etc.
12Some observers: obs SIMPLE ENTITY, obs ACTION, obs EVENT, obs BEHAVIOUR, obs ATTRIBUTE, obs NAME, obs TYPE, obs VALUE, obs SET, obs CARTESIAN,

obs ARITY, obs LIST, obs LENGTH, obs DEFINITION SET, obs RANGE, obs IMAGE, obs GRAPH, obs PRECEDING SIMPLE ENTITIES, obs SUCCEEDING SIMPLE ENTITIES,

obs MEREOLOGY, obs INPUT STATE, obs ARGUMENT, obs RESULT STATE, obs STIMULUS, obs EVENT PREDICATE, obs BEFORE STATE, obs AFTER STATE, etc.
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20 3 A Description Ontology

domains one refers to the real things. That alone prevents us from devising a formal specification
language for giving (syntax and) semantics to a specification, in that language, of what these
(Footnote 10–12) identifiers mean.

Formal Specification of Specific Domains Once we have decided to describe a specific domains102

then we can avail ourselves of using one or more of a set of formal specification languages. But
such a formal specification does not give meaning to identifiers of the categories and predicate and
observer functions; they give meaning to very specific subsets of such categories and predicate and
observer functions. And the domain specification now ascribes, not the real thing, but usually
some form of mathematical structures as models of the specified domain.

Formal Domain Specification Languages There are, today, 2009, a large number of formal spec-s103

ification languages. Some or textual, some are diagrammatic. The textual specification languages
are like mathematical expressions, that is: linear text, often couched in an abstract “programming
language” notation. The diagrammatic specification languages provide for the specifier to draw
two-dimensional figures composed from primitives. Both forms of specification languages have
precise mathematical meanings, but the linear textual ones additionally provide for proof rules.s104

Examples of textual, formal specification languages are

• Alloy [57]: model-oriented,

• B, Event-B [1, 25, 2]: model-oriented,

• CafeOBJ [40, 35]: property-oriented (algebraic),

• CASL [5, 32, 66]: property-oriented (algebraic),

• DC (Duration Calculus) [101, 102]: temporal logic,

• RAISE, RSL [42, 7, 8, 9, 41]: property and model-oriented,

• TLA+ [59, 65]: temporal logic and sets,

• VDM, VDM-SL [21, 22, 39, 38]: model-oriented and

• Z [99, 51]: model-oriented.

DC and TLA+ are often used in connection with either a model-oriented specification languages or
just plain old discrete mathematics notation !s105

But the model-oriented specification languages mentioned above do not succinctly express
concurrency. The diagrammatic, formal specification languages, listed below, all do that:

• Petri Nets [79, 78, 80],

• Message Sequence Charts (MSC) [54, 55, 56],

• Live Sequence Charts (LSC) [33, 50] and

• Statecharts [49].

Discussion: “Take-it-or-leave-it !” With the formal specification languages, not just those listeds106

above, but with any conceivable formal specification language, the issue is: you can basically only
describe using that language what it was originally intended to specify, and that, usually, was to
specify software ! If, in the real domain you find phenomena or concepts, which it is somewhat
clumsy and certainly not very abstract or, for you, outright impossible, to describe, then, well,
then you cannot formalise them !
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3.3.2 s107

3.3.3 s108

4 Towards An Emerging Science of Domains s109

We focus on two strands of discourse: Bertrand Russell’s Philosophy of Logical Atomism and
Stanis law Leśniewski’s ‘mereology’.13

4.1 Two Brief Accounts

Before going into details let us review the two strands of discourse.

4.1.1 Stanis law Leśniewski’s ‘Mereology’ s110

From ancient time and, perhaps, culminating in the 20th Century, thinkers have speculated on
the logical structure of the world. Aristotle [3, Metaphysics, Book IV, Chapter 2] was perhaps the
first person to consider the part-whole relationship. But it was not until the 1920s that the Polish
mathematician Stanis law Leśniewski gave a formal treatment [61]. Woodger [100] and Tarski [92]
made use of a specific adaptation of Leśniewski’s work as a basis for a formal theory of phys-
ical things and their parts. The term ’calculus of individuals’ was introduced by Leonard and s111

Goodman [60] in their presentation of a system very similar to Tarski’s adaptation of Leśniewski’s
mereology. Slightly earlier than Leśniewski’s development of his mereology, Whitehead [98] and
[97, The Concept of Nature] was developing a theory of extensive abstraction. This system, ac-
cording to Russell [83], was to have been the fourth volume of their Principia Mathematica, the
never-published volume on geometry. Both Leśniewski [61] and Tarski [93, Foundations of the ge-
ometry of solids] have recognized the similarities between Whitehead’s early work and Leśniewski’s
Mereology. Nelson Goodman mediated the Calculus of Individuals in [43, The Structure of Ap- s112

pearance] . Goodman had earlier used the Calculus of Individuals in his Ph.D. dissertation thesis
[44, A Study of Qualities, 1940]. As in his joint paper with Leonard, he used the calculus as an
addition to set theory to solve a problem known as the ‘difficulty of imperfect community’ (Rudolf
Carnaps [26, Der Logische Aufbau der Welt]).

The field of mereology is still active, now part, mostly of computer science. Active researchers
are Barry Smith [88, Mereotopology: A Theory of Parts and Boundaries], Achille C. Varzi [96, Spa-
tial Reasoning in a Holey World14] and [95, On the Boundary between Mereology and Topology],
and others.

4.1.2 Bertrand Russell’s ‘Philosophy of Logical Atomism’ s113

Along a different line Bertrand Russell [85, Philosophy of Logical Atomism] (and [87, Vol. 8, Part
III, Chap. 17, pp 157–244]) expressed a metaphysics which we summarise as:

the world consists of a plurality of independently existing things exhibiting qualities and
standing in relations; all truths are ultimately dependent upon a layer of facts and these
facts consist of either a simple particular exhibiting a quality, or multiple simple particulars
standing in a relation.

s114

Russell also expressed a methodology for doing philosophy:15.
The methodology consists of a two phase process.

The first phase is dubbed the “analytic” phase (although it should be noted that sometimes
Russell used the phrase “analysis” for the whole procedure). One begins with a certain

13We spell mereology with lower case first letter as mereology is a concept that is not unique to its researchers
whereas Bertrand Russell’s ‘Philosophy of Logical Atomism’ is.

14holey: something full of holes
15http://plato.stanford.edu/entries/logical-atomism/
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22 4 Towards An Emerging Science of Domains

theory, doctrine or collection of beliefs which is taken to be more or less correct, but is
taken to be in certain regards vague, imprecise, disunified, overly complex or in some other
way confused or puzzling. The aim in the first phase is to work backwards from these
beliefs, taken as a kind of ”data”, to a certain minimal stock of undefined concepts and
general principles which might be thought to underlie the original body of knowledge.s115

The second phase, which Russell described as the “constructive” or “synthetic” phase,
consists in rebuilding or reconstructing the original body of knowledge in terms of the
results of the first phase. More specifically, in the synthetic phase, one defines those
elements of the original conceptual framework and vocabulary of the discipline in terms of
the “minimum vocabulary” identified in the first phrase, and derives or deduces the main
tenets of the original theory from the basic principles or general truths one arrives at after
analysis.

s116

Together the two, the metaphysics and the methodology expresses an essence of Russell’s ‘Philos-
ophy of Logical Atomism’. We shall relate this philosophy to domain science.

4.2 Bertrand Russell’s ‘Philosophy of Logical Atomism’ s117

4.2.1 A Metaphysics and a Methodology

Russell described his philosophy, which he referred to as ‘Logical Atomism’, as based on both a
metaphysical view and a way (a methodology) of doing philosophy.

We refer to the indented ‘metaphysics’ and the ‘methodology’ paragraphs of Sect. 4.1.2 (Pages 21–
22) for their characterisation.s118

The reason we are interested in Russell’s ‘Logical Atomism’ is that its metaphysical view and
its methodology — although meant for philosophical inquiry — very much resembles our view of
the metaphysics of domains and the method by which domain analysts analyse.

We refer to [87, Vol. 8, Part III, Chap. 17, pp 157–244, same as [85]]. Russell’s writings on
‘Logical Atomism’ contains several sub-topics. We shall next examine some of these.

4.2.2 A Logically Ideal Language s119

The analysis part of the methodology, Russell claimed, would eventually result in a minimal lan-
guage containing only words for simple particulars and concepts, their simple properties, relations
amongst these and logical constants — a language which could adequately capture all truths; that
is, other particulars and concepts can be defined and the most general and basic principles can
be derived. In the minimal language the simplest of complete sentences, containing just a singles120

predicate or verb representing a quality (i.e., an attribute) or a relation over simple entities, would
be what Russell called atomic propositions. The truth of an atomic proposition then depends
on a single atomic fact. Molecular propositions are then formed by combining atomic proposi-
tions using the logical connectives. Existential or general propositions are formed by replacing
proper constituents of simpler propositions by variables and prefixing a universal or an existential
quantifiers. Hence atomic facts are at the core of Russell’s metaphysics.s121

Instead of first using only informal language to narratively describe domain facts we advocate,
motivated by Russell’s Logical Atomism, both using precise formal language and to couple state-
ments in that formal language to informal narratives — each in their way describing the domain.
In our case we use a partly algebraic, that is a logical language over sorts, partly a model-oriented
language over mathematical structures such as sets, Cartesians, lists, maps (i.e., definite definition
set functions) and functions.

4.2.3 A Monadistic View of Domain Modelling s122

Russell opposed the “doctrine of internal relations” (every relation is grounded in the natures
of the related terms) and instead expressed [84, Page 221] “it is a common opinion . . . that all
propositions ultimately consist of subject and predicate”.
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4.3 Stanis law Leśniewski’s ‘Mereology’ (III) 23

An interpretation of this is: “Given, say, the proposition aRb, where R is some relation, this
monadistic view will analyse this into two propositions, which we may call ar1

and br2
, which give

to a and b respectively, adjectives supposed to be together equivalent to R.” s123

This monadistic view is analysed in [37, J.G. Nilsson: On Reducing Relationships to Property
Ascriptions] where it is “argued that relationships may preferably be represented formally as
property ascriptions.”

In Sect. 3.2.4 the monadistic view was adopted: With atomic and composite simple entities,
a and b, we associated attributes, including the mereological ones of composite attributes. Let
two such simple entities, a and b, be connected by a “possessing” an identifier, ib of b, and b

“possessing” an identifier, ia of a, as in the example of Sect. A. The subjects are a and b, and the
constants of ar1

and br2
are ib, respectively ia. Thus the mereological view supports the monadistic

view when expressing properties of composite entities. (Russell uses the term ‘complex’ where we
use the term ‘composite’.)

4.2.4 Discussion s124

There are other facets to Russell’s work on Logical Atomism. It seems, however, to this author,
that the issues we have covered in this section and which have otherwise been covered in previous
and the next section suffice for now.

Our preliminary conclusions are twofold: (i) whereas mereology has very clear and focused
“uses” in domain science, (ii) the “uses” of Logical Atomism is of a more meta-conceptual nature,
that is, as brought out in Sect. 4.1.2’s two slant font paragraphs on metaphysics and methodology
(Pages 21–22).

4.3 Stanis law Leśniewski’s ‘Mereology’ (III) s125

4.3.1 General

“Mereology (from the Greek µρǫo, ‘part’) is the theory of part-hood relations: of the relations
of part to whole and the relations of part to part within a whole. It is not until Leśniewski’s
Foundations of a General Theory of Manifolds (1916, in Polish) that a pure theory of part-relations
was given an exact formulation. Because Leśniewski’s work [62, 90] was largely inaccessible to
non-readers of Polish, it is only with the publication of Leonard and Goodman’s The Calculus s126

of Individuals ([60, Goodman 1940]) that mereology has become a chapter of central interest for
modern ontologists and meta-physicians.”16

Our interest in mereology was first “awoken” by presentations, in the IFIP Working Group 2.3
in the 1980s and 1990s, by the late Douglas Taylor Ross17.

We shall now present an example which is claimed to capture an essence of the kind of mere-
ologies that are covered in [27, Casati & Varzi 1999].

4.3.2 A Model of Mereology s127

Some General Observations The example is claimed to be generic. When shown as diagrams,
the boxes–within–boxes and the “fat”, black connectors that “criss-cross” boxes, Fig. 1, can be
shown to “mimic” the structure of such infrastructure components as: air traffic, a financial service
industry, a pipeline system, a railway system, etcetera. s128

Similarly the formula parts (for boxes and connectors) thus relate to phenomena of such sys-
tems. For air traffic some boxes are aircraft, others are ground or terminal control towers, yet
others are regional and continental control centers, etc. Connectors of air traffic are the radio-
telephone paths that allow communication between air traffic equipment and staff. For a railway
system some boxes are train stations, others are railway tracks (lines) between stations — with sta-
tions and lines consisting of embedded boxes in the form of rail units: linear, switches, crossovers,
etc. Connectors compose boxes into meaningful track layouts and signalling paths.

16Stanford Encyclopedia of Philosophy / Wikipedia
17http://en.wikipedia.org/wiki/Douglas T. Ross
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24 4 Towards An Emerging Science of Domains

The Model We speak of systems, s:S, as assemblies (below referred to as a:A). From an assemblys129

we can immediately observe, obs Ps, a set of particulars. Particulars are either assemblies or units.
For the time being we do not further define what units are.

type

S = A, U, P = A | U
value

obs Ps: A → P-set

Particulars observed from a assembly are said to be immediately embedded (or within) in that
assembly; and two or more particulars observed from an assembly are said to be immediately
adjacent to one another.s130
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Figure 1: Assemblies and units embedded in an environment

s131

Figure 1 illustrates a hypothetical composite entity18.
Embeddedness and adjacency generalises to transitive relations.
All particulars observable from a system are distinct.
Given obs Ps we can define a function, xtr Ps, which applies to an assembly, a, and which

extracts all particulars properly embedded in a. The functions obs Ps and xtr Ps define the meaning
of proper embeddedness.

value

xtr Ps: A → P-set

xtr Ps(a) ≡
let ps = obs Ps(a) in ps ∪ ∪{xtr Ps(a′)|a′:A•a′ ∈ ps} end

s132

Particulars have unique identifiers, PI.

type

PI

18Figures 1 and 2 on the next page only serve to illustrate the formulas. In a domain description we do not give
instances of figures of simple entities such as the generic ones here. Instead we present sorts (as here, where L, H,

LI, HI, PI, K and KI are sorts, and types (as here, where P is defined in terms of L and H, and where axioms using
observer functions impose an appropriate syntax on how simple entities are composed.
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4.3 Stanis law Leśniewski’s ‘Mereology’ (III) 25

value

obs PI: P → PI
axiom

∀ a:A •

let ps = obs Ps(a) in

∀ p′,p′′:P • {p′,p′′}⊆ps ∧ p′ 6=p′′ ⇒ obs PI(p′)6=obs PI(p′′) ∧
∀ a′,a′′:A • {a′,a′′}⊆ps ∧ a′6=a′′ ⇒ xtr Ps(a′)∩ xtr Ps(a′′)={} end

s133

We shall now add to this a rather general notion of particulars being otherwise related. That
notion is one of connectors, k:K.

Connectors may, and usually do provide for connections — between particulars. A connector
is an ability be be connected. A connection is the actual fulfillment of that ability. Connections
are relations between two particulars. Connections “cut across” the “classical” particulars being
part of the (or a) whole and particulars being related by embeddedness or adjacency. s134
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Figure 2: Assembly and unit connectors

s135

Figure 2 “repeats” Fig. 1 but “adds” connectors. The idea is that connectors allow a assembly to
be connected to any embedded particular, and allow any two (transitively) adjacent particulars
to be connected.

In Fig. 2 assembly A is connected, by K2, (without, as we shall later see, interfering with
assembly B1), to part C11; the “outermost” assembly is connected, by K1 to B1, etcetera. s136

From a system, i.e., an assembly, we can observe, obs Ks, all its connectors. From a connector
we can observe, obs KI, its unique connector identifier, KI, and the set of two (like an unordered pair
of) identifiers, obs PIp, of the particulars that the connector connects, All particular identifiers
of system connectors identify particulars of the system. All observable connector identifiers of
particulars identify connectors of the system. s137

type

K
value

obs Ks: S → K-set

obs KI: K → KI
obs PIp: K → PI-set
obs KIs: P → KI-set
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26 4 Towards An Emerging Science of Domains

axiom

∀ s:S,k:K • k ∈ obs Ks(s) ⇒ ∃ p:P • p ∈ xtr Ps(s) ⇒ obs PI(p) ∈ obs PIp(k),
∀ s:S,p:P • ∀ ki:KI • ki ∈ obs KIs(p) ⇒ ∃! k:K • k ∈ obs Ks(s) ∧ ki=obs KI(k)

This model allows for a rather “free-wheeling” notion of connectors one that allows internal con-
nectors to “cut across” (even transitively) embedded and (transitively) adjacent particulars.s138

We may need to define an auxiliary function. xtr∀KIs(p) applies to a system and yields all its
connector identifiers.

value

xtr∀KIs: S → KI-set
xtr∀Ks(s) ≡ {obs KI(k)|k:K•k ∈ obs Ks(s)}

s139

There is an aspect of assemblies and units that we have not mentioned. You may, “mereologically
speaking”, think of that aspect as the “white space” within the borders of a unit box, and within
the borders of an assembly box exclusive of that assembly box’s embedded assemblies and units.
Let us associate a notion of state, i.e., a state, that is, set of static and dynamic attributes of
assemblies and units, with that “white space” !s140

type

Σ
value

obs Σ: P → Σ

In axiomatic mereology there is a notion of overlap. Overlap, to us, has to do with two “white
spaces” of distinct particulars. Connectors between such particulars can then be interpreted as
also providing for overlaps.

The above model is now claimed to be a model of axiom systems proposed in the literature
[27, Casati & Varzi 1999].

• • •
s141

This ends our model of a concept of mereology. The particulars are those of assemblies and units.
The relations between particulars and the whole are, on one hand, those of embeddedness and
adjacency, and on the other hand, those expressed by connectors: relations between arbitrary
particulars.

4.3.3 Relation to The Casati Varzi Mereology [27] s142

“Classical” Mereology Operators Typically part/whole relations for mereologies in [27, Casati
& Varzi 1999] are:

• Pxy: x is a part of y,

• PPxy: x is a proper part of y,

• Oxy: x and y overlaps and

• Uxy: x and y underlap.

We refer to [27, Casati & Varzi 1999] for axioms over these operators. We now give but one
of many possible interpretations of the above part/whole relations. The interpretation is with
respect to the model given in Sect. 4.3.2. We apologize for the “double” use of the term ‘part’:s143

when we use the slanted sans serif font ‘part’ we refer to a p:P, and when we use the teletype

font ‘part’ we me the relationship designated by P or PP. The mereology operator P is taken
as a primitive. The other mereology operators, PP, O and U are defined in terms of P .s144

• Pxy: x is a part of y.19

19The • (bulleted) statement(s) expresses an informal definition of the mereology operator.
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4.3 Stanis law Leśniewski’s ‘Mereology’ (III) 27

⋆ A part is a part of itself; attributes of a part are parts of that part.20

• PPxy: x is a proper part of y: PPxy ↔ (Pxy∧ ∼ Pxy).

⋆ Parts of an assembly are proper parts of that assembly. Any proper subset of
attributes of a part are proper parts of that part.

s145

• Oxy: x and y overlaps: Oxy ↔ ∃z[Pzx∧ Pzy].

⋆ Two parts that are connected overlap. If two or more attributes of a part are not
(mutually) independent, that is, these dependent attribute values stand in some
relation to one another, then these attributes overlap.

• Uxy: x and y underlap if there exists an object z such that x and y are both parts of z:
Uxy ↔ ∃z[Pxz ∧ Pyz]

⋆ If two or more parts are contained in some assembly, a, then these contained
parts underlap with a.

Discussion of Our Interpretation First we remind the reader that we have given but one of many s146

possible interpretations of the part/whole relations.
We could have given other interpretations; for example: (i) we could have omitted any reference

to part attributes; (ii) we could have restricted overlap to relate to only specifically characterised
connectors; (iii) or both (i–ii).

The scope of our discussion will now be enlarged to cover other kinds of mereologies.

4.3.4 Discussion s147

We have partially covered the mereological system of [27, Casati & Varzi, 1999]. There are other
mereological systems.

In [29, Bowman L. Clarke, 1981] (A Calculus of Individuals Based on ‘Connection’) a mereology
operator, C, for ‘connected’21, is the primitive in terms of which the above operators (P ,PP,O, and
U) can be defined. The intuition behind the Connected operator, however, makes it of less interest
to us: that intuition implies a notion of points which we do not wish to bring into our models of
man-made infrastructure components. Bowman L. Clarke’s system allows definition of external
and internal, as well as tangential connectedness. [30, Bowman L. Clarke, 1985] (Individuals and s148

Points) further elaborates on this, for our purpose, “uninteresting” concept of points.
In [96, Achille C. Varzi, 1993] (Spatial Reasoning in a Holey22 World), in [95, Achille C.

Varzi, 1994], (On the Boundary between Mereology and Topology) and in [88, Barry Smith, 1996]
(Mereo-topology: A Theory of Parts and Boundaries), extensions to the operators covered above
(i.e., (P ,PP,O, and U) are applied to cover topological spaces. It would be interesting to study
these papers further in order to determine their relevance to the modelling of the man-made
infrastructure components in which we are interested. s149

In closing this section on ‘mereology’ we claim (i) that our model of mereology is in line with
main-stream axiom systems for the kind of mereologies that Stanis law Leśniewski studied, (ii) that
that model covers of a large class infrastructure components which we have so far modelled23, and
(iii) that, apparently, we do not need a more sophisticated concept of mereology than covered by
[27].

20The ⋆ (starred) statement(s) interprets the • (bulleted) statement(s) in terms of the model of mereology given
in Sect. 4.3.2.

21The Connected operator is not to be confused with the connectors, k:K, of our model.
22holey: something full of holes
23[6, The Market], [23, Railways], [11, Financial Service Industry], [10, A Container Line Industry], [17, Logistics],

[13, Oil Pipelines], etcetera.
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28 4 Towards An Emerging Science of Domains

4.4 On Laws of Domain Descriptions s150

4.4.1 Preliminaries

A Spatial Phenomenon Some phenomena (p:P) enjoy the meta-linguistic “L property”, L for
Location. Let any phenomenon and its derived concepts be subject to the meta-linguistic predi-
cate, has L, and function, obs L:s151

type

P, C, L, E = P|C
value

∅:L
has L: E → Bool

obs L: E
∼

→ L, pre obs L(e): has L(e)
=,6=: L × L → Bool

⊓,⊔: L × L → L
⊏,⊑: L × L → Bool

axiom

∀ e,e′:E•has L(e)∧has L(e′)∧e 6=e′ ⇒ obs L(e)⊓obs L(e′)=∅

s152

The location point space, L, the empty location, ∅, and the operations =, 6=,⊔,⊓, ⊏ and ⊑ are
defined using standard mathematical topology.

The axiom expresses that two observable, i.e., phenomenological (simple) entities that both
enjoy the has L property, have distinct, non-overlapping locations.s153

We consider L to be an attribute of those phenomena (and concepts) which satisfy the has L
property.24

Universals, that is, attributes of entities (that may enjoy the has L property), do not satisfy
the has L property.

Examples of observable phenomena, that do not enjoy the has L property, are: voltage, a
person’s age, the colour red, etc. �

Suppression of Unique Identification When comparing, for example, two simple entities one iss154

comparing not only their attributes but also, when the entities are composite, their sub-entities.
Concerning unique identifiers of simple entities we have this to say: We can decide to either include
unique identifiers as an entity attribute, or we can decide that such identifiers form a third kind
of observable property of a simple entity the two others being (“other”) attributes — as we see fit
to define and the possible sub-entities of composite entities.s155

Either way, we need to introduce a meta-linguistic operator25, say

SI : Simple observable entity value → Anonymous simple entity value

The concept of an anonymous value is also meta-linguistic. The anonymous value is basically “the
same, i.e., “identical” value as is the simple entity value (from which, through SI , it derives)26 with
the single exception that the simple entity value “possesses” the unique identifier of the observable
entity value and the anonymous entity value does not.

Distinguishability of Simple Entities When we wish to distinguish one simple entity phenomenons156

from another then we say that the two (“the one and the other”) are distinct. To be distinct to
us means that the two phenomena have distinct, that is, unique identifiers. Being simple entity
phenomena, separately observable in the domain, means that their spatial (positional) properties

24For concepts one really should speak of conceptual locations, say ℓ:L, rather than “real” locations.
25The operator SI is meta-linguistic with respect to RSL: it is not part of RSL, but applies to RSL values.
26The S stands for “suppress” and the I for the suppressed unique identifier.
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4.4 On Laws of Domain Descriptions 29

are distinct. That is their anonymous values are distinct. Meta-linguistically, that is, going outside
the RSL framework27, we can “formalise” this: s157

type

E [ A models a type of simple entity phenomena ]
I28 [ I models the type of unique E identifiers ]

value

obs I: E → I

axiom

∀ e,e′:E • obs I(e)6=obs I(e′) ⇒ SI(e)6=SI(e′)

s158

The above applies to any kind of observable simple entity phenomenon A. It does not necessarily
apply to “observable” simple entity concepts. Example: Two uniquely identified timetables may
have their anonymous values be the exact same value. s159

Simple entity phenomena, in our ontology, are closely tied to space/time “co-ordinates” — with
no two simple entity phenomena sharing overlapping space at any one time. Concepts are, in our
ontology, not so constrained, that is, we, conceptually, allow “copies” although uniquely named !
Two seemingly distinct concepts may be the same when “stripped” of their unique names ! s160

• • •

Sections 3, and 4.2–4.3 and the material of Sect. 4.4.1 above, can be summarised by proposing
a number of domain description laws. We shall just bring a few of these laws here. Enough, we
hope, to spur further research into ‘laws of description’.

4.4.2 Space Phenomena Consistency s161

Domain Description Law 1, Space Phenomena Consistency Two otherwise unique, and
hence distinctly observable phenomena can, spatially, not overlap. �

We can express the Space/Time Phenomena Consistency Law meta-linguistically, yet in a proper
mathematical manner: s162

type

E [ E is the type name of a class of observable simple entity phenomena ]
I [ I is the type name of unique E identifiers ]
L [ L is the type name of E locations ]

value

obs I: E → I

obs L: E → L
axiom

∀ e,e′:E • obs I(e)6=obs I(e′) ⇒ obs L(e) ⊓ obs L(e′) = ∅

We can assume that this law always holds for otherwise unique, and hence distinctly observable
phenomena.

4.4.3 Unique Identifiers s163

Domain Description Law 2, Unique Identifiers If two observable simple entities have the
same unique identifier then they are the same simple entity. �

Any domain description must satisfy this law. The domain describer must, typically through
axioms, secure that the domain description satisfy this law. Thus there is a proof obligation to be
dispensed, namely that the unique identifier law holds of a domain description.

27but staying within a proper mathematical framework — once we have understood the mathematical properties
of SI and proper RSL values and ‘anonymous’ values (which, by the way, are also RSL values)

28We have here emphasized I, the type name of the type of unique A identifiers. Elsewhere in this book we
treat types of unique identifiers of different types of observable simple entities as “ordinary” RSL types. Perhaps we
should have “singled” such unique identifier type names out with a special font ? Well, we’ll leave it as is !
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4.4.4 Unique Phenomena s164

Domain Description Law 3, Unique Phenomena If two observable simple entities have dif-
ferent unique identifiers then their values, “stripped” of their unique identifiers are different. �

Any domain description must satisfy this law. The domain describer must, typically through
axioms, secure that the domain description satisfy this law. Thus there is a proof obligation to be
dispensed, namely that the unique phenomena law holds of a domain description.

4.4.5 Space/Time Phenomena Consistency: Monotonicity s165

Domain Description Law 4, Space/Time Phenomena Consistency: Monotonicity If an
entity (that has the location property), at time t is at location ℓ, and at time t′ (larger than t)
is at location ℓ′ (different from ℓ), then it moves monotonically from ℓ to ℓ′ during the interval
(t, t′). �

s166

Specialisations of this law are, for example, that if the movement is of two simple entities, like
two trains, along a single rail track and in the same direction, then where train si is in front of
train sj at time t, train sj cannot be in front of train si at time t′ (where t′ − t is some small time
interval).

4.4.6 Discussion s167

There are more laws. And there are most likely laws that have yet to be “discovered” ! Any set of
laws must be proven consistent. And any domain description must be proven to adhere to these
(and “the” other) laws.

We decided to bring this selection of laws because they are a part of the emerging ‘domain
science’.

Laws of Sects. 4.4.4–4.4.5 are also mentioned, in some other form, in [85].

5 Discussion s168

5.1 Delineations of ‘Philosophy’, ‘Theory’, and ‘Science’

5.1.1 What is Philosophy ? s169

Philosophy can be compartmentalised in a number of ways. We shall only consider the following
three “parts” of philosophy: Metaphysics (or ontology) is the study of reality. Epistemology is
the study of knowledge. Logic is the study of the principles of right reasoning.

Let us examine each of these three in some detail.

Metaphysics To us ’Ontology’ is the same as ‘Metaphysics’. Some of the questions that ‘Meta-s170

physics’ deals with are: (1) What is ultimate reality? (2) Is it one thing or is it many different
things? (3) Can reality be grasped by the senses or is it transcendent? (4) What is the mind and
what is its relation to the body? We shall constrain ourselves to consider only aspects of the first
three.

Epistemology Among the questions that ‘Epistemology’ deals with are: (1) What is knowledge?s171

(2) Is knowledge acquired exclusively through the senses or by some other means? (3) How do we
know that what we perceive through our senses is correct?

Logic ‘Logic’ is the basic tool that philosophers use to investigate reality. Logic is the study ofs172

the principles of right reasoning. Among the questions raised by Logic are: (1) What is truth. (2)
What makes an argument valid or invalid. (3) What is a sound argument?
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5.1.2 Natural Sciences Versus Informatics s173

The natural sciences differ fundamentally from those of informatics: In natural sciences we observe
what can be measured. Empirical denotes information gained by means of observation, experience,
or experiment. A central concept in science and the scientific method is that all evidence must be
empirical, or empirically based, that is, dependent on evidence or consequences that are observable
by the senses. In informatics we construct our artifacts such that they “fit within computer &
communication”. These artifacts: data and programs, obey laws of mathematics and should also
obey laws of the domains in which they serve, s174

So when we try outline a theory, then it is not a natural sciences theory, but an informatics
theory.

Well, yes, we do observe a reality. But is is not a natural sciences reality. It is the reality of a
human-made domain: an air traffic system, a container line industry, a financial service industry
or a railway transport system. s175

The phenomena researched by the natural sciences remain stable, i.e., are independent of who
researches them (or are they ?). The human domain phenomena researched by domain engineers
are more subjective, less stable, may change over time, and thus domain models cannot be used
for prediction.

5.1.3 What is a Theory ? s176

Therefore, when we have to look at the term ‘theory’, we have to recall that a natural science
theory is different from a domain (or, broader, an informatics) theory.

Some Conventional Definitions of ‘Theory’ In natural sciences, a theory is a coherent set of
propositions that explain a class of phenomena that are supported by extensive factual evidence
and that may be used for prediction of future observations.29 A natural science theory is a
scientific account of phenomena. At a minimum theory is a strategy for handling data in research,
providing a conceptual system for describing and explaining. A natural science theory is a set s177

of statements,30 including some law-like generalizations, systematically and logically related such
that the set implies something about reality. It is an argument that purports to provide a necessary
and sufficient explanation for a range of phenomena. It must be capable of corrigibility - that is,
it must be possible to dis-confirm or jeopardize it by making observations. A theory is valuable
to the extent that it reduces the uncertainty about the outcome of a specific set of conditions.

An Informatics Theory s178

5.1.4 “The” Scientific Method in Natural Sciences s179

Conventionally scientists pursue their science inquieries along basically the following lines:

1. Existing theories: Pose the question in the context of existing knowledge (theory & ob-
servations). (It can be a new question that old theories are capable of answering (usually
the case), or the question that calls for formulation of a new preliminary theory.) Go to 2.

2. Hypothesis: Formulate a hypothesis as a tentative answer. Go to 3.

3. Predictions and observations: Deduce consequences and make predictions. Go to 4.

4. Tests and new observations: Test the hypothesis in a specific new experiment/theory
field. The new hypothesis must prove to fit in the existing world-view (1, “normal science”,
according to Kuhn). In case the hypothesis leads to contradictions and demands a radical
change in the existing theoretical background, it has to be tested particularly carefully. The
new hypothesis has to prove fruitful and offer considerable advantages, in order to replace

29John A. Cagle, Theories of Human Communication, Littlejohn & Foss Publ.
30Darnell
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the existing scientific paradigm. This is called “scientific revolution” (Kuhn) and it happens
very rarely. Repeat stages 2–3–4 with modified hypothesis until agreement is obtained. This
leads to stage 5. Else start from stage 1.

5. Old theory confirmed or new theory proposed: When consistency is obtained the hy-
pothesis becomes a theory and provides a coherent set of propositions that define a new class
of phenomena or a new theoretical concept. A theory is then becoming a framework within
which observations/theoretical facts are explained and predictions are made. The process
can start from the beginning, but stage 1 has changed to include the new theory/improved
old theory.

6. Selection among competing theories: Theory at that stage is subject of process of
natural selection among competing theories.

5.2 What is A Philosophy of Informatics ? s180

5.2.1 Ontology of Informatics s181

Some issues of meta-physics are: (1) What is ultimate reality? (2) Is it one thing or is it many
different things? (3) Can reality be grasped by the senses or is it transcendent?s182

(1) What is ultimate reality?

more to come

s183

(2) Is reality one thing or is it many different things?

more to come

s184

(3) Can reality be grasped by the senses or is it transcendent?

more to come

5.2.2 Epistemology of Informatics s185

Some issues of epistemology are: (1) What is knowledge? (2) Is knowledge acquired exclusively
through the senses or by some other means? (3) How do we know that what we perceive through
our senses is correct?s186

(1) What is knowledge?

more to come

s187

(2) Is knowledge acquired exclusively through the senses or by some other means?

more to come

s188

(3) How do we know that what we perceive through our senses is correct?

more to come

5.2.3 Wider Perspectives s189

Topics of study within a philosophy of informatics would most likely start in the sub-fields of
computer and computing science and might include such topics as:what are the sources of computer
science subject matter, is Church’s Thesis adequate for the understanding of computing, cf. [34],
what is the ontological status of domain entities, what is the rôle of hermeneutics in computer
science, what kinds of inquiry play a rôle in computer science, what are the objectives of computer
science inquiry, what gives computer science its hold on experience, what are the human traits
behind computer science, what is computer science beauty, what is the relationship between the
abstract world of computer science and the material universe, and how do we know whether a
computer science proof is correct?
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5.3 What is a Theory of The Science of Informatics ? s190

6 Closing s191

This end my sketches, musings and ruminations. From a characterisation of the “sub-fields”, the
‘disciplines’, of informatics, viz.: computer science, computing sciences and software engineering
being some such fields, we moved on to briefly sketch software engineering aspects of domain engi-
neering, requirements engineering, and software design. With the above topics as background we s192

could then focus on a description ontology of simple entities, actions, events and behaviours, and
two facets with a[n even more] philosophical bent: Bertrand Russell’s Philosophy of Logical Atom-
ism with its clear relations to “our” description ontology, and Stanis law Leśhnieksi’s mereology
with its focus on atomic versus composite parts and and their relations. There are many aspects s193

we have not covered: atomic “versus” composite actions, events and behaviours; description laws,
uniqueness of descriptions: when can we claim that a description is normative ? et cetera; And, of
course, we really have not said anything about what would constitute a Philosophy of Informatics,
nor what would constitute a Theory of a Science Informatics. But hopefully there are some “bits s194

& pieces”, maybe even some “nuggets” to be drawn from this talk ? Thanks for your patience !
Any questions ?

7 Bibliographical Notes

The present draft paper is the fourth in our attempt to analyse what can be described and how
such descriptions structure their presentation of domains [19, 16, 14].
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A An Example Domain Description: Railway Nets s-10

1. A railway net consists of one or more lines and two or more stations.

type

1. RN, LI, ST
value

1. obs LIs: RN → LI-set
1. obs STs: RN → ST-set

axiom

1. ∀ n:RN • card obs LIs(n) ≥ 1 ∧ card obs STs(n) ≥ 2
s-9

2. A railway net consists of rail units.

type

2. U
value

2. obs Us: RN → U-set

3. A line is a linear sequence of one or more linear rail units.

axiom

3. ∀ n:RN, l:LI • l ∈ obs LIs(n) ⇒ lin seq(l)
s-8

4. The rail units of a line must be rail units of the railway net of the line.

value

3. obs Us: LI → U-set

axiom

4. ∀ n:RN, l:LI • l ∈ obs LIs(n) ⇒ obs Us(l) ⊆ obs Us(n)

5. A station is a set of one or more rail units.

value

5. obs Us: ST → U-set

axiom

5. ∀ n:RN, s:ST • s ∈ obs STs(n) ⇒ card obs Us(s) ≥ 1
s-7

6. The rail units of a station must be rail units of the railway net of the station.

axiom

6. ∀ n:RN, s:ST • s ∈ obs STs(n) ⇒ obs Us(s) ⊆ obs Us(n)

7. No two distinct lines and/or stations of a railway net share rail units.

axiom

7. ∀ n:RN,l,l′:LI•{l,l′}⊆obs LIs(n)∧l6=l′⇒obs Us(l)∩ obs Us(l′)={}
7. ∀ n:RN,l:LI,s:ST•l ∈ obs LIs(n)∧s ∈ obs STs(n)⇒obs Us(l)∩ obs Us(s)={}
7. ∀ n:RN,s,s′:ST•{s,s′}⊆obs STs(n)∧s6=s′⇒obs Us(s)∩ obs Us(s′)={}

s-6

8. A station consists of one or more tracks.

type

8. Tr
value

8. obs Trs: ST → Tr-set
axiom

8. ∀ s:ST•card obs Trs(s)≥1
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9. A track is a linear sequence of one or more linear rail units.

axiom

9. ∀ n:RN,s:ST,t:Tr•s ∈ obs STs(n)∧t ∈ obs Trs(s)⇒lin seq(t)
s-5

10. No two distinct tracks share rail units.

axiom

10. ∀ n:RN,s:ST,t,t′:Tr•s ∈ obs STs(n)∧{t,t′}⊆obs Trs(s)∧t 6=t′⇒obs Us(t) ∩ obs Us(t′)={}

11. The rail units of a track must be rail units of the station (of that track).

value

11. obs Us: Tr → U-set

axiom

11. ∀ rn:RN,st:ST,tr:TR •

st ∈ obs STs(rn)∧tr ∈ obs Trs(st)⇒obs Us(tr)⊆obs Us(st)
s-4

12. A rail unit is either a linear, or is a switch, or is a simple crossover, or is a switchable crossover, etc., rail
unit.

value

12. is Linear: U → Bool

12. is Switch: U → Bool

12. is Simple Crossover: U → Bool

12. is Switchable Crossover: U → Bool

13. A rail unit has one or more connectors.

type

13. K
value

13. obs Ks: U → K-set

s-3

14. A linear rail unit has two distinct connectors. A switch (a point) rail unit has three distinct connectors.
Crossover rail units have four distinct connectors (whether simple or switchable), etc.

axiom

∀ u:U •

is Linear(u) ⇒ card obs Ks(u)=2∧
is Switch(u) ⇒ card obs Ks(u)=3∧
is Simple Crossover(u) ⇒ card obs Ks(u)=4∧
is Switchable Crossover(u) ⇒ card obs Ks(u)=4

15. For every connector there are at most two rail units which have that connector in common.

axiom

15. ∀ n:RN • ∀ k:K • k ∈ ∪{obs Ks(u)|u:U•u ∈ obs Us(n)}
⇒card{u|u:U•u ∈ obs Us(n)∧k ∈ obs Ks(u)}≤2

s-2

16. Every line of a railway net is connected to exactly two distinct stations of that railway net.

axiom

16. ∀ n:RN,l:LI • l ∈ obs LIs(n) ⇒
∃ s,s′:ST • {s,s′} ⊆ obs STs(n) ∧ s6=s′ ⇒

let sus=obs Us(s),sus′=obs Us(s′),lus=obs Us(l) in

∃ u,u′,u′′,u′′′:U • u ∈ sus ∧
u′ ∈ sus′ ∧ {u′′,u′′′} ⊆ lus ⇒
let sks = obs Ks(u), sks′ = obs Ks(u′),

lks = obs Ks(u′′), lks′ = obs Ks(u′′′) in

∃!k,k′:K•k 6=k′∧sks ∩ lks={k}∧sks′ ∩ lks′={k′}
end end
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s-1

17. A linear sequence of (linear) rail units is an acyclic sequence of linear units such that neighbouring units
share connectors.

value

17. lin seq: U-set → Bool

lin seq(us) ≡
∀ u:U • u ∈ us ⇒ is Linear(u) ∧

∃ q:U∗ • len q = card us ∧ elems q = us ∧
∀ i:Nat • {i,i+1} ⊆ inds q ⇒

∃ k:K • obs Ks(q(i)) ∩ obs Ks(q(i+1)) = {k} ∧
len q > 1 ⇒ obs Ks(q(i)) ∩ obs Ks(q(len q)) = {}
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