
Dines Bjørner

Fredsvej 11, DK-2840 Holte, Danmark

E–Mail: bjorner@gmail.com, URL: www.imm.dtu.dk/˜db

Pipelines∗

October 30, 2009: 13:25

A Technical Note:

Work in progress.

∗This technical note was edited while at The University of Edinburgh.

Contents

1 Pipeline Systems . 5

2 Non-Temporal Aspects of Pipelines . 7
2.1 Nets of Pipes, Valves, Pumps, Forks and Joins . 7
2.2 Unit Identifiers and Unit Type Predicates . 7
2.3 Unit Connections . 8
2.4 Net Observers and Unit Connections . 8
2.5 Well-formed Nets, Actual Connections . 9
2.6 Well-formed Nets, No Circular Nets . 9
2.7 Well-formed Nets, Special Pairs, wfN SP . 10
2.8 Special Routes, I . 10
2.9 Special Routes, II . 11

3 State Attributes of Pipeline Units . 13
3.1 Flow Laws . 13
3.2 Possibly Desirable Properties . 14

4 Pipeline Actions . 17
4.1 Simple Pump and Valve Actions . 17
4.2 Events . 18

4.2.1 Unit Handling Events . 18
4.2.2 Foreseeable Accident Events . 18

4.3 Well-formed Operational Nets . 19
4.4 Orderly Action Sequences . 19

4.4.1 Initial Operational Net . 19
4.4.2 Oil Pipeline Preparation and Engagement . 19

4.5 Emergency Actions . 20

5 Connectors . 21

6 Temporal Aspects of Pipelines . 23

7 A CSP Model of Pipelines . 25

8 A Language of Units and Connectors . 27
8.1 Language Syntax . 27
8.2 Language Semantics . 29
8.3 Language Proof Rules . 29

9 Photos of Pipeline Units and Diagrams of Pipeline Systems . 31 s1

1

Pipeline Systems

s2

Fig. 1.1. The Planned Nabucco Pipeline: http://en.wikipedia.org/wiki/Nabucco Pipeline

s3

• Named after Verdi’s opera
• Gas pipeline
• 3300 kms
• 2011–2014, first gas flow: 2014; 2017–2019, more pipes
• 8 billion Euros
• Max flow: 31 bcmy: billion cubic meters a year
• http://www.nabucco-pipeline.com/

s4

s5

Fig. 1.2. The Planned Nabucco Pipeline: http://en.wikipedia.org/wiki/Nabucco Pipeline

Pump

Valve

Join

Fork

Pipe

Join
Fork
Pump
Valve

Units

Connection

Oil Well

Oil (Depot) Sink

Fig. 1.3. An oil pipeline system

2

Non-Temporal Aspects of Pipelines

s6

Nets and Units: wells, pumps, pipes, valves, joins, forks and sinks. Net and unit attributes.
Units states, but not state changes. We omit, in earlier chapters, consideration of “pigs” and
“pig”-insertion and “pig”-extraction units.

2.1 Nets of Pipes, Valves, Pumps, Forks and Joins s7

1. We focus on nets, n : N , of pipes, π : Π , valves, v : V , pumps, p : P , forks, f : F , joins, j : J ,
wells, w : W and sinks, s : S.

2. Units, u : U , are either pipes, valves, pumps, forks, joins, wells or sinks.
3. Units are explained in terms of disjoint types of PIpes, VAlves, PUmps, FOrks, JOins, WElls

and SKs.1

type
1 N, PI, VA, PU, FO, JO, WE, SK
2 U = Π | V | P | F | J | S| W
2 Π == mkΠ(pi:PI)
2 V == mkV(va:VA)
2 P == mkP(pu:PU)
2 F == mkF(fo:FO)
2 J == mkJ(jo:JO)
2 W == mkW(we:WE)
2 S == mkS(sk:SK)

2.2 Unit Identifiers and Unit Type Predicates s8

4. We associate with each unit a unique identifier, ui : UI.
5. From a unit we can observe its unique identifier.
6. From a unit we can observe whether it is a pipe, a valve, a pump, a fork, a join, a well or a

sink unit.

type
4 UI

value
5 obs UI: U → UI

1This is a mere specification language technicality.

8 Dines Bjørner: Pipelines

6 is Π : U → Bool, is V: U → Bool, ..., is J: U → Bool
is Π(u) ≡ case u of mkPI() → true, → false end
is V(u) ≡ case u of mkV() → true, → false end
...

is S(u) ≡ case u of mkS() → true, → false end

2.3 Unit Connections s9

A connection is a means of juxtaposing units. A connection may connect two units in which case
one can observe the identity of connected units from “the other side”.

7. With a pipe, a valve and a pump we associate exactly one input and one output connection.
8. With a fork we associate a maximum number of output connections, m, larger than one.
9. With a join we associate a maximum number of input connections, m, larger than one.

10. With a well we associate zero input connections and exactly one output connection.
11. With a sink we associate exactly one input connection and zero output connections.

s10

value
7 obs InCs,obs OutCs: Π |V|P → {|1:Nat|}
8 obs inCs: F → {|1:Nat|}, obs outCs: F → Nat
9 obs inCs: J → Nat, obs outCs: J → {|1:Nat|}
10 obs inCs: W → {|0:Nat|}, obs outCs: W → {|1:Nat|}
11 obs inCs: S → {|1:Nat|}, obs outCs: S → {|0:Nat|}

axiom
8 ∀ f:F • obs outCs(f) ≥ 2
9 ∀ j:J • obs inCs(j) ≥ 2

s11

If a pipe, valve or pump unit is input-connected [output-connected] to zero (other) units, then
it means that the unit input [output] connector has been sealed. If a fork is input-connected
to zero (other) units, then it means that the fork input connector has been sealed. If a fork is
output-connected to n units less than the maximum fork-connectability, then it means that the
unconnected fork outputs have been sealed. Similarly for joins: “the other way around”.

2.4 Net Observers and Unit Connections s12

12. From a net one can observe all its units.
13. From a unit one can observe the the pairs of disjoint input and output units to which it is

connected:
a) Wells can be connected to zero or one output unit — a pump.
b) Sinks can be connected to zero or one input unit — a pump or a valve.
c) Pipes, valves and pumps can be connected to zero or one input units and to zero or one

output units.
d) Forks, f , can be connected to zero or one input unit and to zero or n, 2 ≤ n ≤obs Cs(f)

output units.
e) Joins, j, can be connected to zero or n, 2 ≤ n ≤obs Cs(j) input units and zero or one

output units.
s13

value
12 obs Us: N → U-set
13 obs cUIs: U → UI-set × UI-set

wf Conns: U → Bool

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark Pipelines October 30, 2009, 13:25

Dines Bjørner: Pipelines 9

wf Conns(u) ≡
let (iuis,ouis) = obs cUIs(u) in iuis ∩ ouis = {} ∧
case u of

13a mkW() → card iuis ∈ {0} ∧ card ouis ∈ {0,1},
13b mkS() → card iuis ∈ {0,1} ∧ card ouis ∈ {0},
13c mkΠ() → card iuis ∈ {0,1} ∧ card ouis ∈ {0,1},
13c mkV() → card iuis ∈ {0,1} ∧ card ouis ∈ {0,1},
13c mkP() → card iuis ∈ {0,1} ∧ card ouis ∈ {0,1},
13d mkF() → card iuis ∈ {0,1} ∧ card ouis ∈ {0}∪{2..obs inCs(j)},
13e mkJ() → card iuis ∈ {0}∪{2..obs inCs(j)} ∧ card ouis ∈ {0,1}

end end

2.5 Well-formed Nets, Actual Connections s14

14. The unit identifiers observed by the obs cUIs observer must be identifiers of units of the net.

axiom
14 ∀ n:N,u:U • u ∈ obs Us(n) ⇒
14 let (iuis,ouis) = obs cUIs(u) in
14 ∀ ui:UI • ui ∈ iuis ∪ ouis ⇒
14 ∃ u′:U • u′ ∈ obs Us(n) ∧ u′6=u ∧ obs UI(u′)=ui end

2.6 Well-formed Nets, No Circular Nets s15

15. By a route we shall understand a sequence of units.
16. Units form routes of the net.

type
15 R = UIω

value
16 routes: N → R-infset
16 routes(n) ≡
16 let us = obs Us(n) in
16 let rs = {〈u〉|u:U•u ∈ us} ∪ {r̂r′|r,r′:R• {r,r′}⊆rs∧adj(r,r′)} in
16 rs end end

s16

17. A route of length two or more can be decomposed into two routes
18. such that the least unit of the first route “connects” to the first unit of the second route.

value
17 adj: R × R → Bool
17 adj(fr,lr) ≡
17 let (lu,fu)=(fr(len fr),hd lr) in
18 let (lui,fui)=(obs UI(lu),obs UI(fu)) in
18 let ((,luis),(fuis,))=(obs cUIs(lu),obs cUIs(fu)) in
18 lui ∈ fuis ∧ fui ∈ luis end end end

19. No route must be circular, that is, the net must be acyclic.

October 30, 2009, 13:25, Pipelines c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark

10 Dines Bjørner: Pipelines

value
19 acyclic: N → Bool
19 let rs = routes(n) in
19 ∼∃ r:R•r ∈ rs⇒∃ i,j:Nat•{i,j}⊆inds r∧i6=j∧r(i)=r(j) end

2.7 Well-formed Nets, Special Pairs, wfN SP s17

20. We define a “special-pairs” well-formedness function.
a) Fork outputs are output-connected to valves.
b) Join inputs are input-connected to valves.
c) Wells are output-connected to pumps.
d) Sinks are input-connected to either pumps or valves.

s18

value
20 wfN SP: N → Bool
20 wfN SP(n) ≡
20 ∀ r:R • r ∈ routes(n) in
20 ∀ i:Nat • {i,i+1}⊆inds r ⇒
20 case r(i) of ∧
20a mkF() → ∀ u:U•adj(〈r(i)〉,〈u〉) ⇒ is V(u), →true end ∧
20 case r(i+1) of
20b mkJ() → ∀ u:U•adj(〈u〉,〈r(i)〉) ⇒ is V(u), →true end ∧
20 case r(1) of
20c mkW() → is P(r(2)), →true end ∧
20 case r(len r) of
20d mkS() → is P(r(len r−1))∨is V(r(len r−1)), →true end

The true clauses may be negated by other case distinctions’ is V or is V clauses.

2.8 Special Routes, I s19

21. A pump-pump route is a route of length two or more whose first and last units are pumps and
whose intermediate units are pipes or forks or joins.

22. A simple pump-pump route is a pump-pump route with no forks and joins.
23. A pump-valve route is a route of length two or more whose first unit is a pump, whose last

unit is a valve and whose intermediate units are pipes or forks or joins.
24. A simple pump-valve route is a pump-valve route with no forks and joins.
25. A valve-pump route is a route of length two or more whose first unit is a valve, whose last

unit is a pump and whose intermediate units are pipes or forks or joins.
26. A simple valve-pump route is a valve-pump route with no forks and joins.
27. A valve-valve route is a route of length two or more whose first and last units are valves and

whose intermediate units are pipes or forks or joins.
28. A simple valve-valve route is a valve-valve route with no forks and joins.

s20

value
21-28 ppr,sppr,pvr,spvr,vpr,svpr,vvr,svvr: R → Bool

pre {ppr,sppr,pvr,spvr,vpr,svpr,vvr,svvr}(n): len n≥2

21 ppr(r:〈fu〉̂ℓ̂〈lu〉) ≡ is P(fu) ∧ is P(lu) ∧ is πfjr(ℓ)
22 sppr(r:〈fu〉̂ℓ̂〈lu〉) ≡ ppr(r) ∧ is πr(ℓ)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark Pipelines October 30, 2009, 13:25

23 pvr(r:〈fu〉̂ℓ̂〈lu〉) ≡ is P(fu) ∧ is V(r(len r)) ∧ is πfjr(ℓ)
24 sppr(r:〈fu〉̂ℓ̂〈lu〉) ≡ ppr(r) ∧ is πr(ℓ)
25 vpr(r:〈fu〉̂ℓ̂〈lu〉) ≡ is V(fu) ∧ is P(lu) ∧ is πfjr(ℓ)
26 sppr(r:〈fu〉̂ℓ̂〈lu〉) ≡ ppr(r) ∧ is πr(ℓ)
27 vvr(r:〈fu〉̂ℓ̂〈lu〉) ≡ is V(fu) ∧ is V(lu) ∧ is πfjr(ℓ)
28 sppr(r:〈fu〉̂ℓ̂〈lu〉) ≡ ppr(r) ∧ is πr(ℓ)

is πfjr,is πr: R → Bool
is πfjr(r) ≡ ∀ u:U•u ∈ elems r⇒is Π(u)∨is F(u)∨is J(u)
is πr(r) ≡ ∀ u:U•u ∈ elems r⇒is Π(u)

2.9 Special Routes, II s21

Given a unit of a route,
29. if they exist (∃),
30. find the nearest pump or valve unit,
31. “upstream” and
32. “downstream” from the given unit.

s22

value
29 ∃UpPoV: U × R → Bool
29 ∃DoPoV: U × R → Bool

31 find UpPoV: U × R
∼

→ (P|V), pre find UpPoV(u,r): ∃UpPoV(u,r)

32 find DoPoV: U × R
∼

→ (P|V), pre find DoPoV(u,r): ∃DoPoV(u,r)
29 ∃UpPoV(u,r) ≡
29 ∃ i,j Nat•{i,j}⊆inds r∧i≤j∧{is V|is P}(r(i))∧u=r(j)
29 ∃DoPoV(u,r) ≡
29 ∃ i,j Nat•{i,j}⊆inds r∧i≤j∧u=r(i)∧{is V|is P}(r(j))
31 find UpPoV(u,r) ≡
31 let i,j:Nat•{i,j}⊆indsr∧i≤j∧{is V|is P}(r(i))∧u=r(j) in r(i) end
32 find DoPoV(u,r) ≡
32 let i,j:Nat•{i,j}⊆indsr∧i≤j∧u=r(i)∧{is V|is P}(r(j)) in r(j) end

3

State Attributes of Pipeline Units

s23

By a state attribute of a unit we mean either of the following three kinds: (i) the open/close
states of valves and the pumping/not pumping states of pumps; (ii) the maximum (laminar) oil
flow characteristics of all units; and (iii) the current oil flow and current oil leak states of all units. s24

33. Oil flow, φ : Φ, is measured in volume per time unit.
34. Pumps are either pumping or not pumping, and if not pumping they are closed.
35. Valves are either open or closed.
36. Any unit permits a maximum input flow of oil while maintaining laminar flow. We shall assume

that we need not be concerned with turbulent flows.
37. At any time any unit is sustaining a current input flow of oil (at its input(s)).
38. While sustaining (even a zero) current input flow of oil a unit leaks a current amount of oil

(within the unit).
s25

type
33 Φ

34 PΣ == pumping | not pumping
34 VΣ == open | closed

value
−,+: Φ × Φ → Φ, <,=,>: Φ × Φ → Bool

34 obs PΣ: P → PΣ

35 obs VΣ: V → VΣ

36–38 obs LamiΦ.obs CurrΦ,obs LeakΦ: U → Φ

is Open: U → Bool
case u of

mkΠ()→true,mkF()→true,mkJ()→true,mkW()→true,mkS()→true,
mkP()→obs PΣ(u)=pumping,
mkV()→obs VΣ(u)=open

end
acceptable LeakΦ, excessive LeakΦ: U → Φ

axiom
∀ u:U • excess LeakΦ(u) > accept LeakΦ(u)

3.1 Flow Laws s26

The sum of the current flows into a unit equals the the sum of the current flows out of a unit minus
the (current) leak of that unit. This is the same as the current flows out of a unit equals the current
flows into a unit minus the (current) leak of that unit. The above represents an interpretation which
justifies the below laws. s27

14 Dines Bjørner: Pipelines

39. When, in Item 37, for a unit u, we say that at any time any unit is sustaining a current
input flow of oil, and when we model that by obs CurrΦ(u) then we mean that obs CurrΦ(u)
- obs LeakΦ(u) represents the flow of oil from its outputs.

value
39 obs inΦ: U → Φ

39 obs inΦ(u) ≡ obs CurrΦ(u)
39 obs outΦ: U → Φ

law:
39 ∀ u:U • obs outΦ(u) = obs CurrΦ(u)−obs LeakΦ(u)

s28

40. Two connected units enjoy the following flow relation:
a) If

i. two pipes, or
ii. a pipe and a valve, or
iii. a valve and a pipe, or

iv. a valve and a valve, or
v. a pipe and a pump, or
vi. a pump and a pipe, or

vii. a pump and a pump, or
viii. a pump and a valve, or
ix. a valve and a pump

are immediately connected
b) then

i. the current flow out of the first unit’s connection to the second unit
ii. equals the current flow into the second unit’s connection to the first unit

law:
40a ∀ u,u′:U • {is Π ,is V,is P,is W}(u′|u′′) ∧ adj(〈u〉,〈u′〉)
40a is Π(u)∨is V(u)∨is P(u)∨is W(u) ∧
40a is Π(u′)∨is V(u′)∨is P(u′)∨is S(u′)
40b ⇒ obs outΦ(u)=obs inΦ(u′)

s29

A similar law can be established for forks and joins. For a fork output-connected to, for example,
pipes, valves and pumps, it is the case that for each fork output the out-flow equals the in-flow for
that output-connected unit. For a join input-connected to, for example, pipes, valves and pumps,
it is the case that for each join input the in-flow equals the out-flow for that input-connected unit.
We leave the formalisation as an exercise.

3.2 Possibly Desirable Properties s30

41. Let r be a route of length two or more, whose first unit is a pump, p, whose last unit is a valve,
v and whose intermediate units are all pipes: if the pump, p is pumping, then we expect the
valve, v, to be open.

42. Let r be a route of length two or more, whose first unit is a pump, p, whose last unit is another
pump, p′ and whose intermediate units are all pipes: if the pump, p is pumping, then we expect
pump p′′, to also be pumping.

43. Let r be a route of length two or more, whose first unit is a valve, v, whose last unit is a pump,
p and whose intermediate units are all pipes: if the valve, v is closed, then we expect pump p,
to not be pumping.

44. Let r be a route of length two or more, whose first unit is a valve, v′, whose last unit is a valve,
v′′ and whose intermediate units are all pipes: if the valve, v′ is in some state, then we expect
valve v′′, to also be in the same state.

s31

s32

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark Pipelines October 30, 2009, 13:25

π π πi j k
tfpv pv

open
closed closed

open

Fig. 3.1. pv: Pump or valve, π: pipe

desirable properties:
41 ∀ r:R • spvr(r) ∧
41 spvr prop(r): obs PΣ(hd r)=pumping ⇒ obs PΣ(r(len r))=open

42 ∀ r:R • sppr(r) ∧
42 sppr prop(r): obs PΣ(hd r)=pumping⇒obs PΣ(r(len r))=pumping

43 ∀ r:R • svpr(r) ∧
43 svpr prop(r): obs PΣ(hd r)=open⇒obs PΣ(r(len r))=pumping

44 ∀ r:R • svvr(r) ∧
44 svvr prop(r): obs PΣ(hd r)=obs PΣ(r(len r))

4

Pipeline Actions

s33

4.1 Simple Pump and Valve Actions

45. Pumps may be set to pumping or reset to not pumping irrespective of the pump state.
46. Valves may be set to be open or to be closed irrespective of the valve state.
47. In setting or resetting a pump or a valve a desirable property may be lost.

value
45 pump to pump, pump to not pump: P → N → N
46 valve to open, valve to close: V → N → N

s34

value
45 pump to pump(p)(n) as n′

45 pre p ∈ obs Us(n)
45 post let p′:P•obs UI(p)=obs UI(p′) in
45 obs PΣ(p′)=pumping∧else equal(n,n′)(p,p′) end
45 pump to not pump(p)(n) as n′

45 pre p ∈ obs Us(n)
45 post let p′:P•obs UI(p)=obs UI(p′) in
45 obs PΣ(p′)=not pumping∧else equal(n,n′)(p,p′) end
46 valve to open(v)(n) as n′

45 pre v ∈ obs Us(n)
46 post let v′:V•obs UI(v)=obs UI(v′) in
45 obs VΣ(v′)=open∧else equal(n,n′)(v,v′) end
46 valve to close(v)(n) as n′

45 pre v ∈ obs Us(n)
46 post let v′:V•obs UI(v)=obs UI(v′) in
45 obs VΣ(v′)=close∧else equal(n,n′)(v,v′) end

s35

value
else equal: (N×N) → (U×U) → Bool
else equal(n,n′)(u,u′) ≡

obs UI(u)=obs UI(u′)
∧ u ∈ obs Us(n)∧u′ ∈ obs Us(n′)
∧ omit Σ(u)=omit Σ(u′)
∧ obs Us(n)\{u}=obs Us(n)\{u′}
∧ ∀ u′′:U•u′′ ∈ obs Us(n)\{u} ≡ u′′ ∈ obs Us(n′)\{u′}

18 Dines Bjørner: Pipelines

omit Σ: U → Uno state −−− ′′magic′′ function

=: Uno state × Uno state → Bool

axiom
∀ u,u′:U•omit Σ(u)=omit Σ(u′) ≡ obs UI(u)=obs UI(u′)

4.2 Events s36

4.2.1 Unit Handling Events

48. Let n be any acyclic net.
48. If there exists p, p′, v, v′, pairs of distinct pumps and distinct valves of the net,
48. and if there exists a route, r, of length two or more of the net such that
49. all units, u, of the route, except its first and last unit, are pipes, then
50. if the route “spans” between p and p′ and the simple desirable property, sppr(r), does not hold

for the route, then we have a possibly undesirable event — that occurred as soon as sppr(r)
did not hold;

51. if the route “spans” between p and v and the simple desirable property, spvr(r), does not hold
for the route, then we have a possibly undesirable event;

52. if the route “spans” between v and p and the simple desirable property, svpr(r), does not hold
for the route, then we have a possibly undesirable event; and

53. if the route “spans” between v and v′ and the simple desirable property, svvr(r), does not hold
for the route, then we have a possibly undesirable event.

s37

events:
48 ∀ n:N • acyclic(n) ∧
48 ∃ p,p′:P,v,v′:V • {p,p′,v,v′}⊆obs Us(n)⇒
48 ∧ ∃ r:R • routes(n) ∧
49 ∀ u:U • u ∈ elems(r)\{hd r,r(len r)} ⇒ is Π(i) ⇒
50 p=hd r∧p′=r(len r) ⇒ ∼sppr prop(r) ∧
51 p=hd r∧v=r(len r) ⇒ ∼spvr prop(r) ∧
52 v=hd r∧p=r(len r) ⇒ ∼svpr prop(r) ∧
53 v=hd r∧v′=r(len r) ⇒ ∼svvr prop(r)

4.2.2 Foreseeable Accident Events s38

A number of foreseeable accidents may occur.

54. A unit ceases to function, that is,
a) a unit is clogged,
b) a valve does not open or close,
c) a pump does not pump or stop pumping.

55. A unit gives rise to excessive leakage.
56. A well becomes empty or a sunk becomes full.
57. A unit, or a connected net of units gets on fire.
58. Or a number of other such “accident”.

s39

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark Pipelines October 30, 2009, 13:25

Dines Bjørner: Pipelines 19

54
55
56
57
58

4.3 Well-formed Operational Nets s40

59. A well-formed operational net
60. is a well-formed net

a) with at least one well, w, and at least one sink, s,
b) and such that there is a route in the net between w and s.

value
59 wf OpN: N → Bool
59 wf OpN(n) ≡
60 satisfies axiom 14 on page 9 ∧ acyclic(n): Item 19 on page 9 ∧
60 wfN SP(n): Item 20 on page 10 ∧
60 satisfies flow laws, 39 on page 14 and 40 on page 14 ∧
60a ∃ w:W,s:S • {w,s}⊆obs Us(n) ⇒
60b ∃ r:R• 〈w〉̂r̂〈s〉 ∈ routes(n)

4.4 Orderly Action Sequences s41

4.4.1 Initial Operational Net

61. Let us assume a notion of an initial operational net.
62. Its pump and valve units are in the following states

a) all pumps are not pumping, and
b) all valves are closed.

value
61 initial OpN: N → Bool
62 initial OpN(n) ≡ wf OpN(n) ∧
62a ∀ p:P • p ∈ obs Us(n) ⇒ obs PΣ(p)=not pumping ∧
62b ∀ v:V • v ∈ obs Us(n) ⇒ obs VΣ(p)=closed

4.4.2 Oil Pipeline Preparation and Engagement s42

63. We now wish to prepare a pipeline from some well, w : W , to some sink, s : S, for flow.
a) We assume that the underlying net is operational wrt. w and s, that is, that there is a

route, r, from w to s.
b) Now, an orderly action sequence for engaging route r is to “work backwards”, from s to w

c) setting encountered pumps to pumping and valves to open.

In this way the system is well-formed wrt. the desirable sppr, spvr, svpr and svvr properties. Finally,
setting the pump adjacent to the (preceding) well starts the system. s43

October 30, 2009, 13:25, Pipelines c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark

value

63 prepare and engage: W × S → N
∼

→ N
63 prepare and engage(w,s)(n) ≡
63a let r:R • 〈w〉̂r̂〈s〉 ∈ routes(n) in
63b action sequence(〈w〉̂r̂〈s〉)(len〈w〉̂r̂〈s〉)(n) end
63 pre ∃ r:R • 〈w〉̂r̂〈s〉 ∈ routes(n)

63c action sequence: R → Nat → N → N
63c action sequence(r)(i)(n) ≡
63c if i=1 then n else
63c case r(i) of
63c mkV() → action sequence(r)(i−1)(valve to open(r(i))(n)),
63c mkP() → action sequence(r)(i−1)(pump to pump(r(i))(n)),
63c → action sequence(r)(i−1)(n)
63c end end

4.5 Emergency Actions s44

64. If a unit starts leaking excessive oil
a) then nearest up-stream valve(s) must be closed,
b) and any pumps in-between this (these) valves and the leaking unit must be set to

not pumping — following an orderly sequence.
65. If, as a result, for example, of the above remedial actions, any of the desirable properties cease

to hold
a) then — a ha !
b) Left as an exercise.

5

Connectors

s45

The interface , that is, the possible “openings”, between adjacent units have not been explored.
Likewise the for the possible “openings” of “begin” or “end” units, that is, units not having
their input(s), respectively their “output(s)” connected to anything, but left “exposed” to the
environment. We now introduce a notion of connectors: abstractly you may think of connectors
as concepts, and concretely as “fittings” with bolts and nuts, or “weldings”, or “plates” inserted
onto “begin” or “end” units. s46

66. There are connectors and connectors have unique connector identifiers.
67. From a connector one can observe its uniwue connector identifier.
68. From a net one can observe all its connectors
69. and hence one can extract all its connector identifiers.
70. From a connector one can observe a pair of “optional” (distinct) unit identifiers:

a) An optional unit identifier is
b) either a unit identifier of some unit of the net
c) or a ‘‘nil’’ “identifier”.

71. In an observed pair of “optional” (distinct) unit identifiers
• there can not be two ‘‘nil’’ “identifiers”.
• or the possibly two unit identifiers must be distinct

s47

type
66 K, KI

value
67 obs KI: K → KI
68 obs Ks: N → K-set
69 xtr KIS: N → KI-set
69 xtr KIs(n) ≡ {obs KI(k)|k:K•k ∈ obs Ks(n)}

type
70 oUIp′ = (UI|{|nil|})×(UI|{|nil|})
70 oUIp = {|ouip:oUIp′

•wf oUIp(ouip)|}
value

70 obs oUIp: K → oUIp
71 wf oUIp: oUIp′ → Bool
71 wf oUIp(uon,uon′) ≡
71 uon=nil⇒uon′6=nil∨uon′=nil⇒uon6=nil∨uon6=uon′

s48

72. Under the assumption that a fork unit cannot be adjacent to a join unit
73. we impose the constraint thet no two distinct connectors feature the same pair of actual

(distinct) unit identifiers.

74. The first proper unit identifier of a pair of “optional” (distinct) unit identifiers must identify
a unit of the net.

75. The second proper unit identifier of a pair of “optional” (distinct) unit identifiers must identify
a unit of the net.

s49

axiom
72 ∀ n:N,u,u′:U•{u.u′}⊆obs Us(n)∧adj(u,u′)⇒ ∼(is F(u)∧is J(u′))

73 ∀ k,k′:K•obs KI(k)6=obs KI(k′)⇒
case (obs oUIp(k),obs oUIp(k′)) of

((nil,ui),(nil,ui′)) → ui6=ui′,
((nil,ui),(ui′,nil)) → false,
((ui,nil),(nil,ui′)) → false,
((ui,nil),(ui′,nil)) → ui6=ui′,

→ false
end

s50

∀ n:N,k:K•k ∈ obs Ks(n) ⇒
case obs oUIp(k) of

74 (ui,nil) → ∃UI(ui)(n)
75 (nil,ui) → ∃UI(ui)(n)
74-75 (ui,ui′) → ∃UI(ui)(n)∧∃UI(ui′)(n)

end
value

∃UI: UI → N → Bool
∃UI(ui)(n) ≡ ∃ u:U•u ∈ obs Us(n)∧obs UI(u)=ui

6

Temporal Aspects of Pipelines

s51

The else qual(u,u′)(n,n′) function definition represents a gross simplification. It ignores the actual
flow which changes as a result of setting alternate states, and hence the net state. We now wish
to capture the dynamics of flow. We shall do so using the Duration Calculus — a continuous time,
integral temporal logic that is semantically and proof system “integrated” with RSL:

Zhou ChaoChen and Michael Reichhardt Hansen
Duration Calculus: A Formal Approach to Real-time Systems
Monographs in Theoretical Computer Science
The EATCS Series
Springer 2004

more to come

7

A CSP Model of Pipelines

s52

We recapitulate Sect. 5 — now adding connectors to our model:

76. From an oil pipeline system one can observe units and connectors.
77. Units are either well, or pipe, or pump, or valve, or join, or fork or sink units.
78. Units and connectors have unique identifiers.
79. From a connector one can observe the ordered pair of the identity of the two from-, respectively

to-units that the connector connects.
s53

type
77 OPLS, U, K
79 UI, KI
value
77 obs Us: OPLS → U-set, obs Ks: OPLS → K-set
78 is WeU, is PiU, is PuU, is VaU, is JoU, is FoU, is SiU: U → Bool [mutually exclusive]
79 obs UI: U → UI, obs KI: K → KI
80 obs UIp: K → (UI|{nil}) × (UI|{nil})

s54

Above, we think of the types OPLS, U, K, UI and KI as denoting semantic entities. Below, in the
next section, we shall consider exactly the same types as denoting syntactic entities ! s55

80. There is given an oil pipeline system, opls.
81. To every unit we associate a CSP behaviour.
82. Units are indexed by their unique unit identifiers.
83. To every connector we associate a CSP channel.

Channels are indexed by their unique ”k”onnector identifiers.
84. Unit behaviours are cyclic and over the state of their (static and dynamic) attributes, repre-

sented by u.
85. Channels, in this model, have no state.
86. Unit behaviours communicate with neighbouring units — those with which they are connected.
87. Unit functions, Ui, change the unit state.
88. The pipeline system is now the parallel composition of all the unit behaviours.

s56

Editorial Remark: Our use of the term unit and the RSL literal Unit may seem confusing, and
we apologise. The former, unit, is the generic name of a well, pipe, or pump, or valve, or join, or
fork, or sink. The literal Unit, in a function signature, before the → “announces” that the function
takes no argument.1 The literal Unit, in a function signature, after the → “announces”, as used
here, that the function never terminates. s57

1Unit is a type name; () is the only value of type Unit.

value
81 opls:OPLS
channel
84 {ch[ki]|k:KI,k:K•k ∈ obs Ks(opls)∧ki=obs KI(k)} M
value
89 pipeline system: Unit → Unit
89 pipeline system() ≡
82 ‖ {unit(ui)(u)|u:U•u ∈ obs Us(opls)∧ui=obs UI(u)}

83 unit: ui:UI → U →
87 in,out {ch[ki]|k:K,ki:KI•k ∈ obs Ks(opls)∧ki=obs KI(k)∧
87 let (ui′,ui′′)=obs UIp(k) in ui ∈{ui′,ui′′}\{nil} end} Unit
85 unit(ui)(u) ≡ let u′ = Ui(ui)(u) in unit(ui)(u′) end

88 Ui: ui:UI → U →
88 in,out {ch[ki]|k:K,ki:KI•k ∈ obs Ks(opls)∧ki=obs KI(k)∧
88 let (ui′,ui′′)=obs UIp(k) in ui ∈{ui′,ui′′}\{nil} end} U

more to come

8

A Language of Units and Connectors

s58

We extend our variety of pipeline system units with a “pig” insertion and extraction unit. A
“pig” is a cylindrical devise that “just” pits within a pipe and can “travel”, in the direction of oil
flow, from one “pig” insertionunit to another “pig” extraction unit. “Pig” insertion and extrac-
tion units can only be infixed between pipe units. They have four connectors, two conventional s59

connectors that only connect to pipes: one from an input, the other to an output pipe. and two
“pig” insertion and extraction “connectors” one at which to insert a “pig”, the other at which to
extract a “pig”. At most one “pig” may be “travelling” along any number of otherwise connected
pipe units.

8.1 Language Syntax s60

We refer to Fig. 8.1.

Pipe Valve Pump

"Pig" insertion & extraction PointsConnection Point

Fork Join "Pig"Port

Well

Sink

Fig. 8.1. A Diagrammatic Rendition of Pipeline System Units

s61

These units, including the “pig” insertion and extraction unit, and these connectors are syntactic
entities; that is in constrast to the units and connectors of the model of Sects. 2–4 — they were
semantic entities. Also the model U’s, UI’s, K’s and KI’s of Sect. 7 was “purely” syntactic.

s62

89. There are (syntactic renditions of) wells, pipes, valves, pumps, forks, joins, “pig” insertion and
extraction and sink units and of connectors and “pig” insertion and extraction points.

28 Dines Bjørner: Pipelines

90. These are the language units: well units, pipe units, valve units, pump units, fork units, join
units, “pig” nsertion and extraction units and sink units.

91. A syntactic well unit has one syntactic pipewell and one syntactic output connector.
92. A syntactic pipe unit has one syntactic input connector, one syntactic pipe and one syntactic

output connector.
93. A syntactic valve unit has one syntactic input connector, one syntactic valvr and one syntactic

output connector.
94. A syntactic pump unit has one syntactic input connector, one syntactic pump and one syntactic

output connector.s63

95. A syntactic fork unit has two or more named syntactic input connectors, one syntactic fork
and one syntactic output connector.

96. A syntactic join unit has one syntactic input connector, one syntactic join and two or more
named syntactic output connector.

97. A syntactic pig unit has one syntactic input connector, one syntactic “pig” insertion point, one
syntactic “pig” insertion and extraction unit, one syntactic output connector and one syntactic
“pig” extraction point.

98. A syntactic sink unit has one syntactic input connector and one syntactic sink.
s64

type
90 Well,Pipe,Valve,Pump,Fork,Join,PigIE,Sink,Co,PK
91 LU = WelU | PipU | VaU | PuU | FoU | JoU | PigU | SnkU
92 WelU == mkWeU(we:Well,oc:(ok:KI,oco:Co))
93 PipU == mkPiU(ic:(ik:KI,ico:Co),pi:Pipe,oc:(ok:KI,oco:Co))
94 VaU == mkVaU(ic:(ik:KI,ico:Co),v:Valve,oc:(ok:KI,oco:Co))
95 PuU == mkPuU(ic:(ik:KI,ico:Co),pu:Pump,oc:(ok:KI,oco:Co))
96 FoU == mkFoU(ic:(ik:KI,ico:Co),f:Fork,oc:(KI→m Co))
97 JoU == mkJoU(ic:(KI →m Co),j:Join,oc:(ok:KI,oco:Co))
98 PigU == mkVaU(i:(ic:Co,ipc:PK),pigie:PigIE,o:(oc:C,opc:PK))
99 SnkU == mkSnU(i:(ik:KI,ico:Co),sn:Sink)

s65

99. A syntactic pipeline system (specification) is a composition of one or more units,
100. where syntactic non-pipe units are composed with syntactic pipe units such that the connection

points “agree”.
101. For all language units,
102. u let us identify all

a) input connectors, ikis, (one or more), and
b) output connectors, okis, (one or more).s66

101. “Agreement” is now defined; for all language units:
a) For all input connector identifiers, ki,
b) there exists a unique and different unit, u′, such that ki is in its set of output connector

identifiers.
103. and — vice versa:

a) for all output connector identifiers, ki,
b) there exists a unique and different unit, u′, such that ki is in its set of input connector

identifiers.
s67

type
100 SPLS′ = LU-set
100 SPLS = {| spls:SPLS′

• card spls≥1 ∧ wf SPLS(spls) |}
value

101 wf SPLS: SPLS′ → Bool
101 wf SPLS(spls) ≡
102 ∀ u:LU • u ∈ spls ⇒

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark Pipelines October 30, 2009, 13:25

103 let (ikis,okis) = identify KIs(u) in
103a ∀ ki:KI•ki ∈ ikis ⇒
103b ∃! u′:LU • u6=u′ ⇒
103b let (,okis′) = identify KIs(u′) in ki ∈ okis′ end
104 ∧
104a ∀ ki:KI•ki ∈ okis ⇒
104b ∃! u′:LU • u6=u′ ⇒
104b let (ikis′,) = identify KIs(u′) in ki ∈ ikis′ end end

s68

value
103 identify KIs: U → KI-set×KI-set
103 identify KIs(u) ≡
103 case u of
103 mkWelU(, ,(ok,)) → ({},{ok}),
103 mkPipU((ik,), ,(ok,)) → ({ik},{ok}),
103 mkVaU((ik,), ,(ok,)) → ({ik},{ok}),
103 mkPuU((ik,), ,(ok,)) → ({ik},{ok}),
103 mkFoU((ik,), ,okim) → ({ik},dom okim),
103 mkJoU(ikim, ,(ok,)) → (dom ikim,{ok}),
103 mkPigU((ik,), ,(ok,)) → ({ik},{ok}),
103 mkSnkU((ik,),) → ({ik},{})
103 end
103 post let (ikis,okis)=identify KIs(u) in ikis 6={}∧okis 6={} end

8.2 Language Semantics s69

We shall follow the semantics suggested in Sect. 7.

104.
105.
106.
107.
108.

8.3 Language Proof Rules s70

109.
110.
111.
112.
113.

more to come

9

Photos of Pipeline Units and Diagrams of Pipeline Systems

s71

Fig. 9.1. Pipes

s72

s73

s74
When combining joins and forks we can construct sitches. Figure 9.4 on page 33 shows some actual
switches.

s75
Figure 9.5 on page 34 diagrams a generic switch. s76

s77

0See http://en.wikipedia.org/wiki/Nabucco Pipeline

32 Dines Bjørner: Pipelines

Fig. 9.2. Valves

Fig. 9.3. Oil Pumps and Gas Compressors

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark Pipelines October 30, 2009, 13:25

Dines Bjørner: Pipelines 33

Fig. 9.4. Oil and Gas Switches

October 30, 2009, 13:25, Pipelines c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark

34 Dines Bjørner: Pipelines

...
...

...

a

b

c

d

x

y

z

u

v

w

e

f

u

v

...

y

{ c,d }

{ d }

{ a,c,f }

output
connectors

input
connectors

Fig. 9.5. A Switch Diagram

Fig. 9.6. To be treated in a later version of this report: Pig Launcher, Receiver and New and Old Pigs

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark Pipelines October 30, 2009, 13:25

Dines Bjørner: Pipelines 35

Fig. 9.7. Pipeline Diagrams

October 30, 2009, 13:25, Pipelines c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark

