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Abstract

This divertimento – on the occasion of the 70th anniversary of Prof., Dr Hermann
Maurer – sketches some observations over the concepts of domain, requirements
and modelling – where abstract interpretations of these models cover both a priori,
a posteriori and real-time aspects of the domain as well as 1–1, microscopic and
macroscopic simulations, real-time monitoring and real-time monitoring & con-
trol of that domain. The reference frame for these concepts are domain models:
carefully narrated and formally described domains. I survey more-or-less standard
ideas of verifiable development and conjecture product families of demos, sim-
ulators, monitors and monitors & controllers – but now these “standard ideas”
are recast in the context of core requirements prescriptions being “derived” from
domain descriptions.

A Laudatio: This paper is dedicated to Hermann Maurer and is presented on the occasion
of his 70th birthday. Hermann and I both spent years at the legendary IBM Labor in Vienna,
Austria. Hermann in the 1960s, I in the early 1970s. Hermann went on to do other things
than what the Labor became famous for – and contributed significantly to his chosen, foun-
dational and theoretical science — and then, suddenly, Hermann changed somewhat: into
highly applications-oriented and almost exclusively technology-oriented work. Again with
very significant contributions and now also with decisive industrial and societal impact. I
was deeply influenced – and remain so since my days in the early 1970s – by the Vienna
work: formal semantics, first of languages, later of systems understood through the lan-
guages they exhibit. I take pride and have joy in developing and presenting, to others, the
careful English narration and the formalisation the professional languages, i.e., one, crucial
aspect of the domains of air traffic, banking, commodities exchange, container lines, the
market, railways, etc., etc. Maurer, I am sure, likewise takes pride in the wonderful universes
he and his co-workers create for us inside and on the surface of the computing machine,
interacting in sometimes unforeseen but always exciting ways. Congratulation Hermann.
We never met at Vienna. But I have enjoyed all the many times that we’ve met since
Vienna – across several continents.

1 Introduction

A background setting for this paper is the concern for professionally developing
the right software, i.e., software which satisfies users expectations, and software



2

that is right: i.e., software which is correct with respect to user requirements and
thus has no “bugs”, no “blue screens”.

The present paper must be seen on the background of the main line of experi-
mental research around the topics of domain engineering, requirements engineer-
ing and their relation. For details I refer to (6, Chaps. 9–16: Domain Engineering,
Chaps. 17-24: Requirements Engineering).

The aims of this paper is to present (1) some ideas about software that (1a)
“demo”, (1b) simulate, (1c) monitor and (1d) monitor & control domains; (2)
some ideas about “time scaling”: demo and simulation time versus domain time;
and (3) how these kinds of software relate.

The paper is exploratory. There will be no theorems and therefore there will
be no proofs. We are presenting what might eventually emerge into (α) a theory
of domains, i.e., a domain science (7; 17; 10; 15), and (β) a software development
theory of domain engineering versus requirements engineering (16; 9; 11; 14).

The paper is not a “standard” research paper: it does not compare its claimed
achievements with corresponding or related achievements of other researchers –
simply because we do not claim “achievements” which have been fully, or at
least reasonably well theorised – etcetera. But I would suggest that you might
find some of the ideas of the paper (in Sect. 3) worthwhile publishing. Hence the
“divertimento” suffix to the paper title.

The structure of the paper is as follows.
In Sect. A we discuss what a domain description is. It would consume too

many pages to give a realistic example. Instead we refer to the literature.
In Sect. 3 we then outline a series of interpretations of domain descriptions.

These arise, when developed in an orderly, professional manner, from require-
ments prescriptions which are themselves orderly developed from the domain
description1. The essence of Sect. 3 is (i) the (albeit informal) presentation of
such tightly related notions as demos (Sect. 3.1), simulators (Sect. 3.2), moni-

tors (Sect. 3.3) and monitors & controllers (Sect. 3.3) (these notions can be for-
malised), and (ii) the conjectures on a product family of domain-based software
developments (Sect. 3.5). A notion of script-based simulation extends demos and
is the basis for monitor and controller developments and uses. The script used in
our example here is related to time, but one can define non-temporal scripts – so
the “carrying idea” of Sect. 3 extends to a widest variety of software. We claim
that Sect. 3 thus brings these new ideas: a tightly related software engineering
concept of demo-simulator-monitor-controller machines, and an extended notion
of reference models for requirements and specifications (22).

2 Domain Descriptions

By a domain description we shall mean a combined narrative, that is, precise,
but informal, and a formal description of the application domain as it is: no
reference to any possible requirements let alone software that is desired for that

1 We do not show such orderly “derivations” but outline their basics in Sect. 3.4.
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domain. (Thus a requirements prescription is a likewise combined narrative,
that is, precise, but informal, and a formal prescription of what we expect from
a machine (hardware + software) that is to support simple entities, actions,
events and behaviours of a possibly business process re-engineering application
domain. Requirements expresses a domain as we would like ti to be.)

We bring in Appendix A an example domain description.
We further refer to the literature for examples: (4, railways (2000)), (5, the

’market’ (2000)), (11, public government, IT security, hospitals (2006) chapters
8–10), (9, transport nets (2008)) and (14, pipelines (2010)). On the net you may
find technical reports (8) covering “larger” domain descriptions. Recent papers
on the concept of domain descriptions are (14; 15; 12; 17; 9; 7; 13).

To emphasize: domain descriptions describe domains as they are with no
reference to (requirements to) possibly desired software. Domain descriptions do
not necessarily describe computable objects. They relate to the described domain
in a way similar to the way in which mathematical descriptions of physical
phenomena stand to “the physical world”.

3 Interpretations

3.1 What Is a Domain-based Demo?

A domain-based demo is a software system which “present” (1) simple enti-
ties, (2) actions, (3) events and (4) behaviours of a domain. The “presentation”

abstracts these phenomena and their related concepts in various computer gen-
erated forms: visual, acoustic, etc.

Examples A domain description might, as that of Appendix A, be of transport
nets (of hubs [street intersections, train stations, harbours, airports] and links
[road segments, rail tracks, shipping lanes, air-lanes]), their development, traffic
[of vehicles, trains, ships and aircraft], etc. We shall assume such a transport
domain description below.

(1) Simple entities are, for example, presented as follows: (a) transport nets
by two dimensional (2D) road, railway or airline maps, (b) hubs and links by
highlighting parts of 2D maps and by related photos – and their unique identifiers
by labelling hubs and links, (c) routes by highlighting sequences of paths (hubs
and links) on a 2D map, (d) buses by photographs and by dots at hubs or on
links of a 2D map, and (e) bus timetables by, well, indeed, by showing a 2D bus
timetable.

(2) Actions are, for example, presented as follows: (f) The insertion or re-
moval of a hub or a link by showing “instantaneous” triplets of “before”, “during”
and “after” animation sequences. (g) The start or end of a bus ride by showing
flashing animations of the appearance, respectively the flashing disappearance
of a bus (dot) at the origin, respectively the destination bus stops.

(3) Events are, for example, presented as follows: (h) A mudslide [or fire in a
road tunnel, or collapse of a bridge] along a (road) link by showing an animation
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of part of a (road) map with an instantaneous sequence of (α) the present link
, (β) a gap somewhere on the link, (γ) and the appearance of two (“symbolic”)
hubs “on either side of the gap”. (i) The congestion of road traffic “grinding
to a halt” at, for example, a hub, by showing an animation of part of a (road)
map with an instantaneous sequence of the massive accumulation of vehicle dots
moving (instantaneously) from two or more links into a hub.

(4) Behaviours are, for example, presented as follows: (k) A bus tour: from its
start, on time, or “thereabouts”, from its bus stop of origin, via (all) intermediate
stops, with or without delays or advances in times of arrivals and departures,
to the bus stop of destination (ℓ) The composite behaviour of “all bus tours”,
meeting or missing connection times, with sporadic delays, with cancellation of
some bus tours, etc. – by showing the sequence of states of all the buses on the
net.

We say that behaviours (3(j)–4(ℓ)) are script-based in that they (try to)
satisfy a bus timetable (1(e)).

Towards a Theory of Visualisation and Acoustic Manifestation The above
examples shall serve to highlight the general problem of visualisation and acous-
tic manifestation. Just as we need sciences of visualising scientific data and of
diagrammatic logics, so we need more serious studies of visualisation and

acoustic manifestation — so amply, but, this author thinks, inconsis-

tently demonstrated by current uses of interactive computing media.

3.2 Simulations

“Simulation is the imitation of some real thing, state of affairs, or process; the act

of simulating something generally entails representing certain key characteristics

or behaviours of a selected physical or abstract system” [Wikipedia] for the
purposes of testing some hypotheses usually stated in terms of the model being
simulated and pairs of statistical data and expected outcomes.

Explication of Figure 1 Figure 1 attempts to indicate four things: (i) Left top:
the rounded edge rectangle labelled “The Domain” alludes to some specific do-
main (“out there”). (ii) Left middle: the small rounded rectangle labelled “A
Domain Description” alludes to some document which narrates and formalises
a description of “the domain”. (iii) Left bottom: the medium sized rectangle
labelled “A Domain Demo based on the Domain Description” (for short “Demo”)
alludes to a software system that, in some sense (to be made clear later) “simu-
lates” “The Domain.” (iv) Right: the large rectangle (a) shows a horisontal time
axis which basically “divides” that large rectangle into two parts: (b) Above the
time axis the “fat” rounded edge rectangle alludes to the time-wise behaviour,
a domain trace, of “The Domain” (i.e., the actual, or real, domain). (c) Below
the time axis there are eight “thin” rectangles. These are labels S1, S2, S3,
S4, S5, S6, S7 and S8. (d) Each of these denote a “run”, i.e., a time-stamped
“execution”, a program trace, of the “Demo”. Their “relationship” to the time
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axis is this: their execution takes place in the real time as related to that of “The
Domain” behaviour.

A trace (whether a domain or a program execution trace) is a time-stamped
sequence of states: domain states, respectively demo, simulator, monitor and
monitor& control states.

t eb

β ε

based on the
Domain Description

Description
A Domain

The Domain

A Behaviour, a Trace of the Domain

Simulation Traces

Time

S5

S4

S2S1
εβ

S7

S3 S6

S8

Legend: A development; S1, S2, S3, S4, S5, S6, S7, S8: "runs" of the Domain Simulation

Domain Demo/Simulator

Fig. 1. Simulations

From Fig. 1 and the above explication we can conclude that “executions” S4
and S5 each share exactly one time point, t, at which “The Domain” and “The
Simulation” “share” time, that is, the time-stamped execution S4 and S5 reflect
a “Simulation” state which at time t should reflect (some abstraction of) “The
Domain” state.

Only if the domain behaviour (i.e., trace) fully “surrounds” that of the sim-
ulation trace, or, vice-versa (cf. Fig. 1[S4,S5]), is there a “shared” time. Only if
the ‘begin’ and ‘end’ times of the domain behaviour are identical to the ‘start’
and ‘finish’ times of the simulation trace, is there an infinity of shared 1–1 times.

In Fig 2 we show “the same” “Domain Behaviour” (three times) and a (1) sim-
ulation, a (2) monitoring and a (3) monitoring & control, all of whose ‘begin/start’
(b/β) and ‘end/finish’ (e/ǫ) times coincide. In such cases the “Demo/Simulation”
takes place in real-time throughout the ‘begin· · · · · · end’ interval.

Let β and ǫ be the ‘start’ and ‘finish’ times of either S4 or S5. Then the

relationship between t, β, ǫ, b and e is t−b
e-t = t−β

ǫ−t
— which leads to a second

degree polynomial in t which can then be solved in the usual, high school manner.

Script-based Simulation A script-based simulation is the behaviour, i.e., an
execution, of, basically, a demo which, step-by-step, follows a script: that is a
prescription for highlighting simple entities, actions, events and behaviours.

Script-based simulations where the script embodies a notion of time, like a
bus timetable, and unlike a route, can be thought of as the execution of a demos
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where “chunks” of demo operations take place in accordance with “chunks”2

of script prescriptions. The latter (i.e., the script prescriptions) can be said to
represent simulated (i.e., domain) time in contrast to “actual computer” time.
The actual times in which the script-based simulation takes place relate to do-
main times as shown in Simulations S1 to S8 in Fig. 1 and in Fig. 2(1–3). Traces
Fig. 2(1–3) and S8 Fig. 1 are said to be real-time: there is a one-to-one mapping
between computer time and domain time. S1 and S4 Fig. 1 are said to be micro-

scopic: disjoint computer time intervals map into distinct domain times. S2, S3,
S5, S6 and S7 are said to be macroscopic: disjoint domain time intervals map
into distinct computer times.

In order to concretise the above “vague” statements let us take the exam-
ple of simulating bus traffic as based on a bus timetable script. A simulation
scenario could be as follows. Initially, not relating to any domain time, the sim-
ulation “demos” a net, available buses and a bus timetable. The person(s) who
are requesting the simulation are asked to decide on the ratio of the domain time
interval to simulation time interval. If the ratio is 1 a real-time simulation has
been requested. If the ratio is less than 1 a microscopic simulation has been re-
quested. If the ratio is larger than 1 a microscopic simulation has been requested.
A chosen ratio of, say 48 to 1 means that a 24 hour bus traffic is to be simulated
in 30 minutes of elapsed simulation time. Then the person(s) who are requesting
the simulation are asked to decide on the starting domain time, say 6:00am, and
the domain time interval of simulation, say 4 hours – in which case the simula-
tion of bus traffic from 6am till 10am is to be shown in 5 minutes (300 seconds)
of elapsed simulation time. The person(s) who are requesting the simulation
are then asked to decide on the “sampling times” or “time intervals”: If ‘sam-

pling times’ 6:00 am, 6:30 am, 7:00 am, 8:00 am, 9:00 am, 9:30 am and 10:00 am
are chosen, then the simulation is stopped at corresponding simulation times:
0 sec., 37.5 sec., 75 sec., 150 sec., 225 sec., 262.5 sec. and 300 sec. The simulation
then shows the state of selected entities and actions at these domain times. If
‘sampling time interval’ is chosen and is set to every 5min., then the simulation
shows the state of selected entities and actions at corresponding domain times.
The simulation is resumed when the person(s) who are requesting the simulation
so indicates, say by a “resume” icon click. The time interval between adjacent
simulation stops and resumptions contribute with 0 time to elapsed simulation
time – which in this case was set to 5 minutes. Finally the requestor provides
some statistical data such as numbers of potential and actual bus passengers,
etc.

Then two clocks are started: a domain time clock and a simulation time
clock. The simulation proceeds as driven by, in this case, the bus time table. To
include “unforeseen” events, such as the wreckage of a bus (which is then unable
to complete a bus tour), we allow any number of such events to be randomly
scheduled. Actually scheduled events “interrupts” the “programmed” simulation

2 We deliberately leave the notion of chunk vague so as to allow as wide an spectrum
of simulations.
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and leads to thus unscheduled stops (and resumptions) where the unscheduled
stop now focuses on showing the event.

The Development Arrow The arrow, , between a pair of boxes (of Fig. 1)
denote a step of development: (i) from the domain box to the domain description
box it denotes the development of a domain description based on studies and
analyses of the domain; (ii) from the domain description box to the domain demo
box it denotes the development of a software system — where that development
assumes an intermediate requirements box which has not been show; (iii) from
the domain demo box to either of a simulation traces it denotes the development
of a simulator as the related demo software system, again depending on whichever
special requirements have been put to the simulator.

3.3 Monitoring & Control

Figure 2 shows three different kinds of uses of software systems (where (2)
[Monitoring] and (3) [Monitoring & Control] represent further) developments from
the demo or simulation software system mentioned in Sect. 3.1 and Sect. 3.2.

q

p p

q

mi mj mi mj mk

r r

cx cy

mk

p
q
r

Real−time
Simulation

(1)

p

q
r

p
r
q

Real−time
Monitoring

(2) Real−time
Monitoring & Control

(3)

Legend: mi,mj,...,mk: monitorings; cx,...,cy: controls

Fig. 2. Simulation, Monitoring and Monitoring & Control

We have added some (three) horisontal and labelled (p, q and r) lines to Fig. 2(1,-
2,3) (with respect to the traces of Fig. 1). They each denote a trace of a simple
entity, an action or an event, that is, they are traces of values of these phe-
nomena or concepts. A (named) action value could, for example, be the pair
of the before and after states of the action and some description of the function
(“insertion of a link”, “start of a bus tour”) involved in the action. A (named)
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event value could, for example, be a pair of the before and after states of the
entities causing, respectively being effected by the event and some description of
the predicate (“mudslide”, “break-down of a bus”) involved in the event. A cross
section, such as designated by the vertical lines (one for the domain trace, one
for the “corresponding” program trace) of Fig. 2(1) denotes a state: a domain,
respectively a program state.

Figure 2(1) attempts to show a real-time demo or simulation for the chosen
domain. Figure 2(2) purports to show the deployment of real-time software for
monitoring (chosen aspects of) the chosen domain. Figure 2(3) purports to show
the deployment of real-time software for monitoring as well as controlling (chosen
aspects of) the chosen domain.

Monitoring By domain monitoring we mean “to be aware of the state of a

domain”, its simple entities, actions, events and behaviour. Domain monitoring
is thus a process, typically within a distributed system for collecting and storing
state data. In this process “observation” points — i.e., simple entities, actions
and where events may occur — are identified in the domain, cf. points p, q and r
of Fig. 2. Sensors are inserted at these points. The “downward” pointing vertical
arrows of Figs. 2(2–3), from “the domain behaviour” to the “monitoring” and the
“monitoring & control” traces express communication of what has been sensed
(measured, photographed, etc.) [as directed by and] as input data (etc.) to these
monitors. The monitor (being “executed”) may store these “sensings” for future
analysis.

Control By domain control we mean “the ability to change the value” of simple
entities and the course of actions and hence behaviours, including prevention
of events of the domain. Domain control is thus based on domain monitoring.
Actuators are inserted in the domain “at or near” monitoring points or at points
related to these, viz. points p and r of Fig. 2(3). The “upward” pointing vertical
arrows of Fig. 2(3), from the “monitoring & control” traces to the “domain
behaviour” express communication, to the domain, of what has been computed
by the controller as a proper control reaction in response to the monitoring.

3.4 Machine Development

Machines By a machine we shall understand a combination of hardware and
software. For demos and simulators the machine is “mostly” software with the
hardware typically being graphic display units with tactile instruments. For mon-
itors the “main” machine, besides the hardware and software of demos and sim-
ulators, additionally includes sensors distributed throughout the domain and
the technological machine means of communicating monitored signals from the
sensors to the “main” machine and the processing of these signals by the main
machine. For monitors & controllers the machine, besides the monitor machine,
further includes actuators placed in the domain and the machine means of com-
puting and communicating control signals to the actuators.
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Requirements Development Essential parts of Requirements to a Machine can
be systematically “derived” from a Domain description. These essential parts
are the domain requirements and the interface requirements. Domain require-
ments are those requirements which can be expressed, say in narrative form,
by mentioning technical terms only of the domain. These technical terms cover
only phenomena and concepts (simple entities, actions, events and behaviours) of
the domain. Some domain requirements are projected, instantiated, made more
deterministic and extended3.

(a) By domain projection we mean a sub-setting of the domain description:
parts are left out which the requirements stake-holders, collaborating with the
requirements engineer, decide is of no relevance to the requirements. For our
example it could be that our domain description had contained models of road
net attributes such as “the wear & tear” of road surfaces, the length of links,
states of hubs and links (that is, [dis]allowable directions of traffic through hubs
and along links), etc. Projection might then omit these attributes.

(b) By domain instantiation we mean a specialisation of entities (simple,
actions, events and behaviours), refining them from abstract simple entities to
more concrete such, etc. For our example it could be that we only model freeways
or only model road-pricing nets – or any one or more other aspects.

(c) By domain determination we mean that of making the domain description
cum domain requirements prescription less non-deterministic, i.e., more deter-
ministic (or even the other way around !). For our example it could be that we
had domain-described states of street intersections as not controlled by traffic
signals – where the determination is now that of introducing an abstract notion
of traffic signals which allow only certain states (of red, yellow and green).

(d) By domain extension we basically mean that of extending the domain
with phenomena and concepts that were not feasible without information tech-
nology. For our examples we could extend the domain with bus mounted GPS
gadgets that record and communicate (to, say a central bus traffic computer)
the more-or-less exact positions of buses – thereby enabling the observation of
bus traffic.

Interface requirements are those requirements which can be expressed, say
in narrative form, by mentioning technical terms both of the domain and of the
machine. These technical terms thus cover shared phenomena and concepts, that
is, phenomena and concepts of the domain which are, in some sense, also (to be)
represented by the machine. Interface requirements represent (i) the initialisa-
tion and “on-the-fly” update of simple machine entities on the basis of shared

domain entities; (ii) the interaction between the machine and the domain while
the machine is carrying out a (previous domain) action; (iii) machine responses,
if any, to domain events — or domain responses, if any, to machine events cum
“outputs”; and (iv) machine monitoring and machine control of domain phe-
nomena. Each of these four (i–iv) interface requirement facets themselves involve
projection, instantiation, determination, extension and fitting.

3 We omit consideration of fitting.
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Machine requirements are those requirements which can be expressed, say in
narrative form, by mentioning technical terms only of the machine. (An example
is: visual display units.)

3.5 Verifiable Software Development

An Example Set of Conjectures (A) From a domain, D, one can develop a
domain description D. D cannot be verified. It can at most be validated. Indi-
vidual properties, PD, of the domain description D and hence, purportedly, of
the domain, D, can be expressed and possibly proved

D |= PD

and these may be validated to be properties of D by observations in (or of) that
domain.

(B) From a domain description, D, one can develop requirements, Rde, for,
and from Rde one can develop a domain demo machine specification Mde such
that

D, Mde |= Rde.

The formula D, M |= R can be read as follows: in order to prove that the
Machine satisfies the Requirements, assumptions about the Domain must often
be made explicit in steps of the proof.

(C) From a domain description, D, and a domain demo machine specification,
Sde, one can develop requirements, Rsi, for, and from such a Rsi one can develop
a domain simulator machine specification Msi such that

(D; Mde), Msi |= Rsi.

We have “lumped” (D; Mde) as the two constitute the extended domain for which
we, in this case of development, suggest the next stage requirements and machine
development to take place.

(D) From a domain description, D, and a domain simulator machine speci-
fication, Msi, one can develop requirements, Rmo, for, and from such a Rmo one
can develop a domain monitor machine specification Mmo such that

(D; Msi), Mmo |= Rmo.

(E) From a domain description, D, and a domain monitor machine specifi-
cation, Mmo, one can develop requirements, Rmc, for, and from such a Rmc one
can develop a domain monitor & controller machine specification Mmc such that

(D; Mmo), Mmc |= Rmc.
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Fig. 3. Chains of Verifiable Developments

Chains of Verifiable Developments The above illustrated just one chain of
development. There are others. All are shown in Fig. 3. The above development
is shown as the longest horisontal chain (third row).
Figure 3 can also be interpreted as prescribing a widest possible range of machine
cum software products (18; 25) for a given domain. One domain may give rise
to many different kinds of demo machines, simulators, monitors and monitor
& controllers (the unprimed versions of the Mt machines (where t ranges over
de, si, mo, mc)). For each of these there are similarly, “exponentially” many
variants of successor machines (the primed versions of the Mt machines).

What does it mean that a machine is a primed version? Well, here it means,
for example, that M

′

si embodies facets of the demo machine Mde, and that M
′′′

mc

embodies facets of the demo machine Mde, of the simulator M
′

si, and the monitor
M

′′

mo. Whether such requirements are desirable is left to product customers and
their software providers (18; 25) to decide.

4 Conclusion

Our divertimento is almost over. It is time to conclude.

4.1 Discussion

The D, M |= R (‘correctness’ of) development relation appears to have been first
indicated in the Computational Logic Inc. Stack (1; 21) and the EU ESPRIT
ProCoS (2; 3) projects; (22) presents this same idea with a purpose much like
ours, but with more technical details and full discussion.

The term ‘domain engineering’ appears to have at least two meanings: the
one used here (7; 13) and one (23; 20; 19) emerging out of the Software Engi-
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neering Institute at CMU where it is also called product line engineering4. Our
meaning, is, in a sense, more narrow, but then it seems to also be more highly spe-
cialised (with detailed description and formalisation principles and techniques).
Fig. 3 illustrates, in capsule form, what we think is the CMU/SEI meaning. The
relationship between, say Fig. 3 and model-based software development seems
obvious but need be explored.

What Have We Achieved We have characterised a spectrum of strongly domain-
related as well as strongly inter-related (cf. Fig. 3) software product families:
demos, simulators, monitors and monitor & controllers. We have indicated vari-
eties of these: simulators based on demos, monitors based on simulators, monitor
& controllers based on monitors, in fact any of the latter ones in the software
product family list as based on any of the earlier ones. We have sketched tem-
poral relations between simulation traces and domain behaviours: a priori, a

posteriori, macroscopic and microscopic, and we have identified the real-time
cases which lead on to monitors and monitor & controllers.

What Have We Not Achieved — Some Conjectures We have not charac-
terised the software product family relations other than by the D, M |= R and
(D; Mxyz), M |= R clauses. That is, we should like to prove conjectured type
theoretic inclusion relations like:

℘([[Mxmod ext.
]]) ⊒ ℘([[M

′...′

xmod ext.
]]), ℘([[M

′...′

xmod ext.
]]) ⊒ ℘([[M

′′....′

xmod ext.
]])

where x and y range appropriately, where [[M]] expresses the meaning of M,
where ℘([[M]]) denote the space of all machine meanings and where ℘([[Mxmod ext.

]])
is intended to denote that space modulo (“free of”) the y facet (here ext., for
extension).

That is, it is conjectured that the set of more specialised, i.e., n primed,
machines of kind x is type theoretically “contained” in the set of m primed
(unprimed) x machines (0 ≤ m < n).

There are undoubtedly many such interesting relations between the demo,

simulator, monitor and monitor & controller machines, unprimed and
primed.

What Should We Do Next This paper has the subtitle: A Divertimento of Ideas

and Suggestions. It is not a proper theoretical paper. It tries to throw some light
on families and varieties of software, i.e., their relations, and. It focuses, in partic-
ular, on so-called demo, simulator, monitor and monitor & controller

software and their relation to the “originating” domain, i.e., that in which such
software is to serve, and hence that which is being extended by such software, cf.
the compounded ‘domain’ (D; Mi) of in (D; Mi), Mj |= D. These notions should

4 http://en.wikipedia.org/wiki/Domain engineering.



be studied formally. All of these notions: requirements projection, instantiation,
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A An Example Domain

Description

A domain description is a specification of the domain as it is, without any
reference to requirements, let alone required software.

A.1 Nets
We first describe abstraction of nets, hubs (street intersections, train
stations, airports, harbours) and links (street segments, rail tracks, air
lanes, sea lanes):

Hubs and Links
1. There are nets, hubs and links.
2. A net contains zero, one or more hubs.
3. A net contains zero, one or more links.

type

1. N, H, L
value

2. obs Hs: N → H-set

3. obs Ls: N → L-set
axiom

2. ∀ n:N • card obs Hs(n) ≥ 0
3. ∀ n:N • card obs Ls(n) ≥ 0

Hub and Link Identifiers
To express the mereology (12): how parts compose into a whole, the
connections of hubs and links, we introduce the abstract concepts of hub
and link identifiers.

4. There are hub identifiers and there are link identifiers.
5. Hubs of a net have unique hub identifiers.
6. Links of a net have unique link identifiers.

type

4. HI, LI
value

5. obs HI: H → HI
6. obs LI: H → LI

axiom

5. ∀ n:N, h,h′:H • {h,h′}⊆obs Hs(n) ∧ h 6=h′ ⇒
obs HI(h)6=obs HI(h′)

6. ∀ n:N, l,l′:L • {l,l′}⊆obs Ls(n) ∧ l 6=l′ ⇒
obs LI(l)6=obs LI(l′)

Observability of Hub and Link
Identifiers

We postulate reasonable observer functions: such which a person with a
reasonably good sight could “implement”.

7. From every hub (of a net) we can observe the identifiers of the zero,
one or more distinct links (of that net) that the hub is connected to.

8. From every link (of a net) we can observe the identifiers of the
exactly two (distinct) hubs (of that net) that the link is connected
to.

value

7. obs LIs: H → LI-set
axiom

7. ∀ n:N,h:H•h ∈ obs Hs(n) ⇒ ∀ li:LI•li ∈ obs HIs(l) ⇒ L exists(li)(n)
value

8. obs HIs: L → HI-set
axiom

8. ∀ n:N,l:L•l ∈ obs Ls(n) ⇒
8. card obs HIs(l)=2 ∧ ∀ hi:HI•hi ∈ obs HIs(l) ⇒ H exists(hi)(n)

value

L exists: LI → N → Bool

L exists(li)(n) ≡ ∃ l:L•l ∈ obs Ls(n)∧obs LI(l)=li
H exists: HI → N → Bool

H exists(hi)(n) ≡ ∃ h:H•h ∈ obs Hs(n)∧obs HI(h)=hi

If we had chosen an ability to observe from a hub its connected links and
from a link it connected hubs, then it would follow that from any hub (or
any link), without “moving” one could observe the entire net; we find that
kind of “observability” to be problematic and to, potentially leading to
inconsistencies.
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Net Descriptors

9. A net descriptor, ND, associates to each hub identifier
10. a possibly empty link-to-hub identifier map, LHIM, from the

identifier of a link emanating from a hub to the identifier of the
connected hub.

type

9. ND = HI →m LHIM
10. LHIM = LI →m HI

The hub identifiers of the definition set of net descriptors are called the
defining occurrences of hub identifiers. The hub identifiers of the range of
link-to-hub identifier map are called the using occurrences of hub identifiers.

11. Wellformedness of a net descriptor is simple.
a) The set of using occurrences of hub identifiers must be a

subset of he set of defining occurrences of hub identifiers.
b) If in nd:ND an hi maps into some li which in turn maps into

hi′ , then in nd:ND hi′ , amongst other link identifiers maps
into li which in turn maps into hi.

value

11. wf ND: ND > Bool

11. wf ND(nd) ≡
11a. {(nd(hi))(li)|hi:HI,li:LI•hi ∈ dom nd∧li ∈ dom nd(hi)}⊆dom nd
11b. ∧ ∀ hi,hi′:HI,li:LI • hi ∈ dom nd ∧ nd(hi)=li ⇒
11b. (nd(hi))(li)=hi′ ⇒ (nd(hi′))(li)=hi

12. From a net one can extract its net descriptor.

value

12. xtr ND: N → ND
12. xtr ND(n) ≡
12. [ hi 7→[ li 7→hi′ ]|l:L,li,li′:LI,hi,hi′:HI•

12. l ∈ obs Ls(n)∧li=obs LI(l)∧{hi,hi′}=obs HIs(l) ]
12. ∪ [ hi 7→[ ]|h:H•h ∈ obs Hs(n)∧obs LIs(h)={} ]

Routes
We first define a concept of paths.

13. A path is a triple:
a) a hub identifier, hi , a link identifier, lj , and another hub

identifier, hk , distinct from hi ,
b) such that there is a link ℓ with identifier lj in a net n such

that {hi, hk} are the hub identifiers that can be
observed from ℓ.

type

13. Pth = HI × LI × HI
axiom

13a. ∀ (hi,li,hi′):Pth • ∃ n:N,l:L • l ∈ obs Ls(n) ⇒
13b. obs LI(l)=li ∧ obs HIs(l)={hi,hi′}

14. From a net one can extract all its paths:
a) if l is a link of the net,
b) lj its identifier and

c) {hi, hk} the identifiers of its connected hubs,
d) then (hi, lj , hk) and (hk, lj , hj ) are paths of the

net.

value

14. paths: N → Pth-set
14a. paths(n) ≡
14d. {(hi,lj,hk),(hk,lj,hi)|l:L,lj:LI,hi,hk:HI•l ∈ obs Ls(n) ∧
14b. lj=obs LI(l) ∧
14c. {hi,hk}=obs HIs(l)}

15. From a net descriptor one can (likewise) extract all its paths:
a) Let hi, hk be any two distinct hub identifiers of the net

descriptor (definition set),
b) such that they both map into a link identifier lj ,

c) then (hi, lj , hk) and (hk, lj , hj) are paths of the
net.

value

14. paths: ND → Pth-set
14. paths(nd) ≡
15a. {(hi,lj,hk),(hk,lj,hi)|hi,hk:HI,lj:LI • hi 6=hk ∧ {hi,hk}⊆dom nd ⇒
15b. lj ∈ dom nd(hi)∩ dom nd(hk)}

Now we can define routes.

16. A route of a net is a sequence of zero, one or more paths such that
a) all paths of a route are paths of the net and
b) adjacent paths in the sequence “share” hub identifiers.

type

16. R = Pth∗

axiom

16. ∀ r:R, ∃ n:N •

16a. elems r ⊆ paths(n) ∧
16b. ∀ i:Nat • {i,i+1}⊆inds r ⇒
16b. let ( , ,hi)=r(i), (hi′, , )=r(i+1) in hi=hi′ end

17. From a net, n, we can generate the possibly infinite set of finite
and possibly infinite routes:

a) <> is a route (basis clause 1);
b) if p is a path of n then < p > is a route of n (basis

clause 2);

c) if r and r′ are non-empty routes of n

d) and the last hi of r is the same as the first hj of r′ then

the concatenation of r and r′ is a route (induction clause).
e) Only such routes which can be formed by a (finite,

respectively infinite) application of basis clauses Items 17a
and 17b and induction clause Items 17c–17d are routes
(extremal clause).

value

17. routes: N|ND → R-infset

17. routes(nond) ≡
17a. let rs = {〈〉} ∪
17b. {〈p〉|p:Pth•p ∈ paths(nond)} ∪
17c. {rb r′|r,r′:R•{r,r′}⊆rs ∧
17d. ∃ hi,hi′,hi′′,hi′′′:H,li:LI,r′′,r′′′:R • {r′′,r′′′}⊆rs ∧
17d. r=r′′b〈(hi,li,hi′)〉∧r′=〈(hi′′,li′,hi′′′)〉b r′′′ ∧ hi′=hi′′} in

17e. rs end

A.2 Buses, Bus Stops and Bus

Schedules

Buses
We now consider buses and routes and schedules related to buses.

18. Buses have unique identifiers and are further undefined.
19. Bus identifiers can be observed from buses.

type

18. B, BI
value

19. obs BI: B → BI

Bus Stops

20. A link bus stop indicates the link (by its identifier), the from and to
hub identifiers of the link,

21. and the fraction “down the link” (from the hub of the from to the
hub of the to hub identifiers) of the bus stop position.

type

20. BS = mkL BS(sel fhi:HI,sel li:LI,sel f:F,sel thi:HI)
20. F = {|f:Real•0<f<1|}
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Bus Stop Lists and Routes

22. A bus stop list is a sequence of two or more bus stops, bsl.
23. A bus route, br, is a pair of a net route, r, and a bus stop list,

bsl, such that route r is a route of n and such that bsl is
embedded in r.

24. bsl is embedded in r if
a) there exists an index list, il, of ascending indices of the

route r and of the length of bsl

b) such that the ith path of r

c) share from and to hub identifiers and link identifier with the
il(i)th bus stop of bsl.

25. We must allow for two or more stops along a bus route to be
adjacent on the same link — in which case the corresponding
fractions must likewise be ascending.

value

n:N
type

22. BSL = {|bsl:BS∗•len bsl≥2|}
23. BR = {|(r,bsl):(R×BSL)•r ∈ routes(n)∧is embedded in(r,bsl)|}
value

24. is embedded in: BR → Bool

24. is embedded in(r,bsl)(n) ≡
24a. ∃ il:Nat∗ • len il=len bsl ∧
24a. inds il⊆inds r ∧ ascending(il) ⇒
24b. ∀ i:Nat • i ∈ inds il ⇒
24b. let (hi,lj,hk) = r(il(i)),
24c. (hi′,lj′,f,hk′) = bsl(i) in

24c. hi=hi′ ∧ lj=lj′ ∧ hk=hk′ end ∧
25. ∀ i:Nat • {i,i+1}⊆inds il ⇒
25. let (hi,lj,f,hk)=bsl(i), (hi′,lj′,f′,hk′)=bsl(i+1) in
25. hi=hi′ ∧ lj=lj′ ∧ hk=hk′ ⇒ f<f′ end

24a. ascending: Nat∗ → Bool

24a. ascending(il) ≡ ∀ i:Nat•{i,i+1}⊆inds il ⇒ il(i)<il(i+1)

Bus Schedules

26. Let us introduce a net. It is referred to in some subsequent
wellformedness predicates.

27. A timed bus stop is a pair of a time and a bus stop.
28. A timed bus stop list is a sequence of timed bus stops.
29. A bus schedule is a pair of a route and an embedded timed bus stop

list where
30. position-wise “earlier” bus stops occur at earlier times that

Position-wise “later” bus stops.

value

26. n:N
type

27. TBS :: sel T:T sel bs:BS
28. TBSL = TBS∗

29. BusSched = {|(r,tbsl):(R×TBSL)•r ∈ routes(n)∧wf BusSched(r,tbsl)|}
30. SimBusSched = {|tbsl:TBSL•wf TBSL(tbsl)|}
value

29. wf BusSched: BusSched → Bool

29. wf BusSched(r,tbsl) ≡
29. is embedded in(r,〈sel BS(tbsl(i))|i:[ 1..len tbsl ]〉) ∧
30. wf SimpleBusSched(tbsl)

30. wf SimpleBusSched: TBSL → Bool

30. wf SimpleBusSched(tbsl) ≡
30. ∀ i:Nat•{i,i+1}⊆inds tbsl ⇒ sel T(tbsl(i))<sel T(tbsl(i+1))

A.3 Timetables

31. A bus b that plies a bus schedule starting at time t has a unique
bus number, bt; colloquially it is bus b at departure time t, or,
even more colloquially: the t o’clock bus b — but henceforth we do
not “encode” such bus “numbers”.

32. A [time]table maps bus numbers to bus schedules.
33. A bus timetable is a pair of a net descriptor and a table.

type

31. BNo
32. TBL = BNo →m BusSched
33. BTT = ND × TBL

Denotations
What are routes and bus timetables scripting (i.e., prescribing)? Routes
(lists of connected link traversal designations) script that one may transport
people or freight along the sequence of designated links. Bus timetable
scripts denote (at least) two things: the set of bus traffics on the net which
satisfy the bus timetable, and information that potential and actual bus
passengers may, within some measure of statistics (and probability), rely
upon for their bus transport. Here, we shall now develop the idea of bus
timetables denoting certain traffics.

A.4 Bus Traffic

34. Bus traffic is here considered a discrete function from time into bus
positions on the net.

35. From (such) a bus we can observe its bus number.
36. A bus is at any time positioned either at a hub or a fraction of a

distance along a link.
37. Fractions are reals in the open interval between 0 and 1.
38. We shall not define necessary bus traffic wellformedness conditions.

type

34. BTF = T →m (B →m BP)
35. BP == atH(hi:HI) | onL(li:LI,f:F,li′:LI)
37. F = {|f:Real•0<f<1|}
value

36. obs BNo: B → BNo
38. wf BTF: BTF → Bool

Bus Traffic versus Bus Timetable
In expressing generation of bus traffics and whether a bus traffic satisfies a
bus timetable, we shall make the following assumptions: buses must not
depart from a bus stop earlier than its scheduled time; and buses, when
“late” must not be “too late”, that is, must not be further away than the
nearest previous hub or approaching the bus stop along its link. These
assumptions are encoded by the “multiplier” and “fraction increment”
constants m and δ introduced now.

39. Let m be a positive natural number (a time interval multiplier, say,
of value 2,3,4).

40. Let δ be a “tiny” (position) fraction increment.
41. Satisfaction of a bus traffic with respect to a bus timetable is

expressed in terms of

a) a predicate over buses, represented by their bus numbers
bn;

b) we consider only the timed bus schedule;
c) for all bus stops we express a predicate over bus traffic

positions;
d) namely that there exists a time, t′ , of the traffic which is

equal to or some small time interval before the time of the
scheduled stop,

e) at which time (t′) some buses have traffic positions bp

such that
f) the bus being considered, namely bn, is recorded in the

traffic,
g) among those bus positions as having
h) being either at the previous hub or

i) on the appropriate link, either at the bus stop (f′ = f) or

shortly before that bus stop (f′ − δ).

value

39. m:Nat, axiom 0<m≤5
40. δ:Real, axiom 0<δ≪1
41. satisfy: BTF × BTT → Bool

41. satisfy(btf,btt:(nd,tbl)) ≡
41a. ∀ bn:BNo•bn ∈ dom tbl ⇒
41b. let ( ,tbsl) = tbl(bn) in

41c. ∀ (t,bs:mkL BS(hi′,li′,f′,hi′′)):TBS•(t,bs)∈ elems tbsl ⇒
41d. ∃ t′:T•t′ ∈ dom btf∧t−m∗ti<t′≤t∧
41e. let bp = btf(t′) in

41f. bn ∈ dom bp ∧
41g. case bp(bn) of

41h. atH(hi) → hi=hi′,
41i. onL(hi,li,f,li′) → li=li′∧hi=hi′∧f′−δ≤f≤f′

41. end end end

In the above satisfaction relation we do not consider where the buses are at
times properly “between” bus stop times (other than when very “close” –
as expressed by the proposition t−m∗ti<t′≤t).


