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Abstract
2

In this paper we wish to advocate (i) that schools, institutes and departments of
computer science, software engineering, informatics, cybernetics, and the like, re-

orient themselves along two lines: (i.1) more emphasis on teaching programming
and software engineering based on formal methods; and (i.2) more emphasis on re-

search into formal methods for the trustworthy development of software that meets
customers’ expectations and is correct, that is, the right software and that the soft-
ware is right. We also wish to advocate (ii) that the concepts of domain science 3

and domain engineering become an indispensable part of the science of informatics

and of software engineering. And we finally wish to advocate (iii) that informatics 4

research centers embark on path-finder projects which research and experimentally

develop domain models for infra-structure components, for example, (iii.1) financial

service industries (banks, stock exchanges, etc.), (iii.2) health-care (hospitals, clin-
ics, private physicians, etc.) (iii.3) pipeline systems (oil, gas), (iii.4) transportation

(such as railways, shipping, air traffic, etc.).
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1 Introduction 5

The background postulates of this paper are the following: (i) half a century of computer
science research may very well have improved our understanding of computing devices (au-
tomata etc.), but it has yet to contribute significantly to the quality of software products;
(ii) our students, the future leading software engineers, those of them who go into industry
rather than “remaining” in academia, are being mislead by too many foundational courses
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From Computer Science to The Sciences of Informatics 3

to believe that these are relevant for the practice of software engineering; (iii) a significant 6

re-orientation of university teaching and research into both ‘computer science’ and software
engineering must occur if we are to improve the relevance of ‘computer science’ to software
engineering. In this paper we shall, unabashedly, suggest the kind of re-orientation that
we think will rectify the situation alluded to in Items (i–iii).

1.1 Some Definitions of Informatics Topics 7

Let us first delineate our field of study. It first focuses on computer science, computing

science, software and software engineering. 8

Definition 1 – Computer Science: By computer science we shall understand the study
and knowledge of the properties of the ‘things’ that can ‘exist’ inside computers: data and
processes.

Examples of computer science disciplines are: automata theory (studying automata [finite
or otherwise] and state machines [without or with stacks]), formal languages (studying,
mostly the syntactic the “foundations” and “recognisability” of abstractions of of computer
programming and other “such” languages), complexity theory, type theory, etc. 9

Some may take exception to the term ‘things’1 used in the above and below definition.
They will say that it is imprecise. That using the germ conjures some form of reliance on
Plato’s Idealism, on his Theory of Forms. That is, “that it is of Platonic style, and thus,

is disputable. One could avoid this by saying that these definitions are just informal rough

explanations of the field of study and further considerations will lead to more exact defi-

nitions.”2 Well, it may be so. It is at least a conscious attempt, from this very beginning,
to call into dispute and discuss “those things”. Section 2 of this paper (“A Specification
Ontology and Epistemology”) has as one of its purposes to encircle the problem. 10

Definition 2 – Computing Science: By computing science we shall understand the
study and knowledge of the how to construct the ‘things’ that can ‘exist’ inside computers:
the software and its data.

Conventional examples of computing science disciplines are: algorithm design, imperative
programming, functional programming, logic programming, parallel programming, etc. To
these we shall add a few in this paper. 11

Definition 3 – Software: By software we shall understand not only the code intended for
computer execution, but also its use, i.e., programmer manuals: installation, education, user
and other guidance documents, as well all as its development documents: domain models,
requirements models, software designs, tests suites, etc. “zillions upon zillions” of documents.

12

The fragment description of the example Pipeline System of this paper exhibits, but a tiny
part of a domain model.

1and also to the term ‘exist’.
2Cf. personal communication, 12 Feb., 2010, with Prof. Mikula Nikitchenko, Head of the Chair of

Programming Theory of Shevchenko Kyiv National University, Ukraine
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4 Domain Science & Engineering

Definition 4 – Software Engineering: By software engineering we shall understand the
methods (analysis and construction principles, techniques and tools) needed to carry out, man-
age and evaluate software development projects as well as software product marketing, sales
and service — whether these includes only domain engineering, or requirements engineering, or
software design, or the first two, the last two or all three of these phases. Software engineering,
besides documents for all of the above, also includes all auxiliary project information, stake-
holder notes, acquisition units, analysis, terminology, verification, model-checking, testing, etc.
documents

1.2 The Triptych Dogma 13

Dogma 1 – Triptych: By the triptych dogma we shall understand a dogma which insists
on the following: Before software can be designed one must have a robust understanding of its
requirements; and before requirements can be prescribed one must have a robust understanding
of their domain.

14

Dogma 2 – Triptych Development: By triptych development we shall understand a
software development process which starts with one or more stages of domain engineering

whose objective it is to construct a domain description, which proceeds to one or more stages
of requirements engineering whose objective it is to construct a requirements prescription, and
which ends with one or more stages of software design whose aim it is to construct the software.

1.3 Structure of This Paper 15

In Sect. ?? we present a non-trivial example. It shall serve to illustrate the new concepts
of domain engineering, domain description and domain model. In Sect. ?? we shall then
discuss ramifications of the triptych dogma. Then we shall follow-up, Sect. 2, on what we
have advocated above, namely a beginning discussion of our logical and linguistic means
for description, of “the kind of ‘things’ that can ‘exists’ or the things (say in the domain,
i.e., “real world”) that they reflect”.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Ukraine May 2010 March 13, 2010, 00:00



From Computer Science to The Sciences of Informatics 5

2 A Specification Ontology and Epistemology3

2.1 A Twofold Problem

The twofold problem is the following. (1) There is a dichotomy between what an informal
description, a narrative, and what a formal description, a formalisation, refers to. (2) And
which are our means of description? 16

Narrative"The" Domain Formalisation Model

Mathematical
Semantics

DenotationDesignation Designation

is_a_model_of

Pragmatics

Linguistics

Figure 1: Formal and Informal Relations

Problem (1) is indicated in Fig. 1. A narrative, which is expressed in some national, that
is, informal language, designates some (i.e., “the”) domain. A formalisation (supposedly
of some (i.e., “the”) domain) denotes a mathematical model. One can claim, as we shall,
that a formalisation designates a number of narratives, including “the one” given. One can
“narrate” a formalisation. The “beauty” of a formalisation, if any, is its ability to “inspire”
designated formalisations that are worth reading, that exhibit clear a clear, didactic un-
derstanding of the domain, and is pedagogical, that is, introduces domain phenomena and
notions, gently, one-by-one. (1.1) In Sect. ?? on page ?? we presented a pair of descriptions 17

— purportedly — of a domain of (a class of) pipeline systems. In the narrative part of
the pair such terms as type, value, entity, function and behaviour were intended to “point
to”, to refer to phenomena and concepts of the domain, that is, to sets of such phenomena
and concepts formed, basically, from these phenomena. (1.2) In the formal part of the 18

pair of domain descriptions the corresponding, formal textual phrases, i.e., the syntactic
sentences of the formulas, have a semantics, and that semantics, as in RSL, is usually, for
formal specifications, some mathematical structures. Therein, in (1.1–1.2), lies the first 19

3Webster Collegiate Dictionary explanation of philosophical terms:

(i–ii) Ontology: (i) a branch of metaphysics concerned with the nature and relations of being; (ii) a
particular theory about the nature of being or the kinds of things that have.

(iii) Epistemology: the study or a theory of the nature and grounds of knowledge especially with
reference to its limits and validity

March 13, 2010, 00:00, Ukraine May 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark



6 Domain Science & Engineering

problem: The relation between narrative texts and the domain, “the real world”, can only
be an informal one. The relation between the formal texts and their semantics is a formal
one. “And never the twain shall meet!”4 One can not establish a formal relation between
the informal world of domains and the formal world of mathematical specifications. The

above is an essence of abstract models.20

(2.) Then we outline the “describability” problem. What, of actual domains, can be

modelled ? That is, what, of a[ny] domain, on one hand, can be narrated, all or some ?
and on the other hand, can be formalised, all or some ? This double question is one of
ontology and of epistemology. This section shall discuss issues related to Item (i–ii) of
Footnote 3 on the preceding page.

2.1.1 Russell’s Problem 21

Bertrand Russell, in [?] and in several other writings, brought the following example (ab-
breviated): “The present King of France”. At present there is no designation in any domain
of such a person. Thus the sentence does not make sense. In a formalisation we would
express this as:

type

DOMAIN, DESIGNATION
value

obs DESIGNATIONs: DOMAIN → DESIGNATION-infset

designation: Sentence → DOMAIN
∼
→ DESIGNATION

existance: Sentence → DOMANI → Bool

designation(s)(ω) ≡ if existance(s)(ω) then ... else chaos end

I claim that Russell’s “problem” lies in the green dashed [rounded edge] box of the left side
of Fig. 1 on the previous page. The simpler-minded computer/computing science problem
of syntax and semantics is then that of (the brown rectangular box of) the right side of
Fig. 1 on the preceding page.

2.1.2 The Problem of This Paper 22

The problem of this paper should now be a little more clear: It is that of “reconciling”
of what is indicated by the two “boxes” of Fig. 1 on the previous page: the classical
epistemological universe of discourse of the left side of that figure, and the domain science
universe of discourse of the right side of that figure.

Put in different terms: We would somehow like to establish that the horisontal, non-
dashed double arrows expresses that the model (to the extreme right) “is a model” of the
domain (to the extreme left).

4Rudyard Kipling, Barrack-room Ballads, 1892: “Oh, East is East, and West is West, and never the

twain shall meet.”

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Ukraine May 2010 March 13, 2010, 00:00



From Computer Science to The Sciences of Informatics 7

2.2 What Is An Ontology ? 23

2.2.1 Some Remarks

By a specification ontology we shall understand a set of mathematical concepts to be used
in specifying “something”. By a domain description ontology we shall understand a set
of concepts to be used in describing a domain. We shall choose a textual, rather than a
diagrammatic (graphical) form for expressing descriptions. The description ontology there-
fore hinges on a number of textual (i.e., non-diagrammatic) syntactic constructs. These
will be covered in Sects. 2.3–2.6 and 2.8–2.9. The pragmatics of description designations 24

(using these syntactic constructs) are, of course, phenomena of the domain. The seman-
tics of description designations are, of course, mathematical constructs. Thus we have
a duality here: On one hand we have that the pragmatics, that is, the intention of our
use of descriptions, is that they designate phenomena of an actual world, whereas, on the
other hand, the semantics, that is, the formal meaning of descriptions, is that they denote
mathematical concepts.

Is there a problem here ?
And: what can we describe ? 25

Yes, there is a “slight problem”? We cannot, in fact never, establish a formal relation-
ship between the pragmatics and the semantics.

And: On one hand there is a world, that is, a set of domains, to be described. And,
on the other hand, there are some syntactic constructs that can be used in providing such
descriptions. Are the latter sufficient to describe all that we wish to describe? Well, we
shall never know. So it is a conjecture, not a theory of description ontologies. 26

The above remarks, naturally, influence the rest of this more “theoretical/philosophical”
part of the paper.

That is, we thus hint at, but do not present, a more thorough philosophy of science
reasoning, arguments that should support our description ontology.

2.2.2 Description Ontology Versus Ontology Description 27

According to Wikipedia: Ontology is the philosophical study of (i) the nature of being,

existence or reality in general, (ii) as well as of the basic categories of being and their

relations.

Section ?? emphasized the need for describing domain phenomena and concepts. This
section puts forward a description ontology — (i) which “natures of being, existence or

reality” and (ii) which “categories of being and their relations” — that we shall apply in
the description of domain phenomena and concepts. 28

Yes, we do know that the term ‘description ontology’ can easily be confused with
‘ontology description’ — a term used very much in two computing related communities:
AI (artificial intelligence) and WWW (World Wide Web). These communities use the term
‘ontology’ as we use the term ‘domain’ [?, ?, ?, ?, ?, ?, ?, ?].

By [domain] ‘description ontology’ we shall mean a set of notions that are used in
describing a domain. So the ontology is one of the description language not of the domain

March 13, 2010, 00:00, Ukraine May 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark



8 Domain Science & Engineering

that is being described.

2.3 Categories, Predicates and Observers for Describing Domains 29

It is not the purpose of this paper to motivate the categories, predicates and observer
functions for describing phenomena and concepts. This is done elsewhere [?, ?, ?, ?, ?].
Instead we shall more-or-less postulate one approach to the analysis of domains. We
do so by postulating a number of meta-categories, meta-predicates and meta-observer
functions. They characterise those non-meta categories, predicates and observer functions
that the domain engineer cum researcher is suggested to make use of. There may be other
approaches [?, John Sowa, 1999] than the one put forward in this paper.

2.3.1 An Aside on Notation 30

In this entire section we shall be using two kinds of notation. Both may look like uses of
RSL, but they are not. A notation which involves the use of THIS FONT. And a notation
which, in some form of mathematics, explain the former.

Please note that these meta-functions, those “partially spelled” with THIS FONT are
not RSL functions but are mental functions applied by the domain modeller in the analysis
of domains.

2.3.2 The Hypothetical Nature of Categories, Predicates and Observers 31

In the following we shall postulate some categories of phenomena5, that is, some meta-
types:

categories

ALPHA, BETA, GAMMA

What such a clause as the above means is that we postulate that there are the categories
ALPHA, BETA, GAMMA of “things” (phenomena and concepts) in the world of domains.
That is, there is no proof that such “things” exists. It is just our way of modelling domains.32

If that way is acceptable to other domain science researchers or domain engineers, fine.
In the end, which we shall never reach, those aspects of a, or the domain science, may
“survive”. If not, well, then they will not ”survive” !

2.3.3 Predicates and Observers 33

With the categories just introduced we then go on to postulate some predicate and observer
functions. For example:

5These observable phenomena or abstract concepts are, in general, entities, more specifically either
simple entities, actions, events or behaviours.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Ukraine May 2010 March 13, 2010, 00:00



From Computer Science to The Sciences of Informatics 9

predicate signatures

is ALPHA: “Things” → Bool

is BETA: “Things” → Bool

is GAMMA: “Things” → Bool

observer signatures

obs ALPHA: “Things”
∼
→ ALPHA

obs BETA: ALPHA
∼
→ BETA

obs GAMMA: ALPHA
∼
→ GAMMA

So we are “fixing” a logic ! 34

The “Things” clause is a reference to the domain under scrutiny. Some ‘things’ in
that domain are of category6 ALPHA, or BETA, or GAMMA. Some are not. It is then
postulated that from such things of category ALPHA one can observe things of categories
BETA or GAMMA. Whether this is indeed the case, i.e., that one can observe these things
is a matter of conjecture, not of proof.

2.3.4 Uncertainty 35

The function signature:

value

fct: A
ℜ
→B

expresses a relation, fctℜ, which one may think of as:

type

FCTℜ = (A × B)-infset.

Applying fct to an argument a, that is, f(a), may then either “always” result in some
specific b, in which case fct is a function; or result in chaos, that is, fct is not defined for
that argument a, that is: a 6∈fctℜ; or sometimes result in some b, sometimes in another b′,
etc., that is, fctℜ={(a,b), (a,b′), (a,b′′), . . . }.

2.3.5 Meta-Conditions 36

Finally we may sometimes postulate the existence of a meta-axiom:

meta condition:

Predicates over ALPHA, BETA and GAMMA

Again, the promulgation of such logical meta-expressions are just conjectures, not the
expression of “eternal” truths.

6We use the term ‘category’ in lieu of either of the term ‘type’, ‘class’, ‘set’. By here using the term
‘category’ we do not mean category in the mathematical sense of category theory.
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2.3.6 Discussion 37

So, all in all, we suggest four kinds of meta-notions:

• categories,

• is Category and obs Property predicates,

• obs Category and obs Attribute observers, and

• meta-conditions, i.e., axioms.

The category [type] A, B, ..., is A, is B, ... obs A, obs B, ... meta-condition [axiom]
predicate notions derive from McCarthy’s analytic syntax [?].

Discussion: Thus the formal specification and the high level programming languages’
use, that is, the software designers’ use of type clauses, predicate functions and observer
(in the form of selector) functions shall be seen in the context of specifications, respectively
program code dealing with computable quantities and decomposing and constructing such
quantities.

The proposal here, of suggesting that the domain engineer cum researcher makes us of
categories, predicates, observers and meta-conditions is different. In domain de-
scriptions an existing “universe of discourse” is being analysed. Perhaps the categories,

predicates, observers and meta-conditions makes sense, perhaps the domain engineer
cum researcher can use these descriptional “devices” to “compose” a consistent and rela-
tive complete “picture”, i.e., description, of the domain under investigation.

Either the software designers’ use of formal specification or programming language con-
structs is right or it is wrong, but the domain engineer cum researchers’ use is just an
attempt, a conjecture. If the resulting domain description is inconsistent, then it is wrong.
But it can never be proven right. Right in the sense that it is the right description. As in
physics, it is just a conjecture. There may be refutations of domain models.

2.4 Entities 38

What we shall describe is what we shall refer to as entities. In other words, there is a
category and meta-logical predicate ENTITY, is ENTITY. The is ENTITY predicate
applies to “whatever” in the domain, whether an entity or not, and “decides”, i.e., is
postulated to analyse whether that “thing” is an entity or not:

predicate signature:

is ENTITY: “Thing” → Bool

meta condition:

∀ e:ENTITY • is ENTITY(e)

Discussion: When we say “things”, or entities, others may say ‘individuals’, ‘objects’, or
use other terms.
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The meta-predicate is ENTITY provides a rather “sweeping” notion, namely that some-
one, the domain engineer, an oracle or other, can decide whether “something” is to be
described as a phenomenon or concept of the domain. 39

• • •

By introducing the predicate is ENTITY we have put the finger on what this section is
all about, namely “what exists ?” and “what can be described ?” We are postulating a
description ontology. It may not be an adequate one. It may have flaws. But, for the
purposes of raising some issues of epistemological and ontological nature, it is adequate.

2.4.1 Entity Categories 40

We postulate four entity categories:

category:

SIMPLE ENTITY, ACTION, EVENT, BEHAVIOUR

Some phenomena or concepts are simple entities. Simple entity phenomena are the
things we can point to, touch and see. They are manifest. Other phenomena, for example
those we can hear, smell, taste, or measure by physics (including chemistry) apparatus
are properties (attributes) of simple entity phenomena. Concepts are abstractions about
phenomena and/or other concepts. 41

A subset of simple domain entities form a state. Actions are the result of applying
functions to simple domain entities and changing the state. What is changed are the
attribute values of simple (state) entities. Actions are observable through the observation
of the occurrence of the ‘before’ and ‘after’ states. The functions or relations that relate
before and after states are not observable. They are our way of “explaining” the actions.
If you wish to consider them as simple entities then they are atomic have no name, but do
have a type, the function signature. Actions are caused by domain behaviours. 42

Events are state changes that satisfy a predicate on the ‘before’ and ‘after states’.
Events are observable through their “taking place”, that is, by observing, as if they were
actions, their ‘before’ and ‘after states’. but also by, somehow, observing that they are not
caused by domain behaviours, well, possibly then by behaviours “outside” the domain being
considered. The above represents a “narrow” concept of events. A less narrow concept
would characterise some domain actions as events; we might call them “interesting” action
events. 43

Behaviours are sets of sequences (of sets of) actions and events. Behaviours are ob-
servable — through the observation of the constituent actions and events.

Below we shall have “much more” to say about these four categories of entities. 44

category:

ENTITY = SIMPLE ENTITY ∪ ACTION ∪ EVENT ∪ BEHAVIOUR
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Discussion: The four categories of entities may overlap.
With each of the four categories there is a predicate:

predicate signature:

is SIMPLE ENTITY “Thing”
ℜ
→ Bool

is ACTION “Thing”
ℜ
→ Bool

is EVENT “Thing”
ℜ
→ Bool

is BEHAVIOUR “Thing”
ℜ
→ Bool

Each of the above four predicates require that their argument t:“Thing” satisfies:

is ENTITY(t)

The use of
ℜ
→ shall illustrate the uncertainty that may befell the domain modeller. We

shall henceforth “boldly” postulate functionality, i.e., →, of the is SIMPLE ENTITY,
is ACTION, is EVENT and is BEHAVIOUR functions.45

The ∪ “union” is inclusive:

meta condition:

∀ t:̀ T̀hing′′•is ENTITY(t) ⇒
is SIMPLE ENTITY(t) ∨ is ACTION(t) ∨ is EVENT(t) ∨ is BEHAVIOUR(t)

2.5 Simple Entities 46

We postulate that there are atomic simple entities, that there are [therefrom distinct]
composite simple entities, and that a simple entity is indeed either atomic or composite.
That atomic simple entities cannot meaningfully be described as consisting of proper other
simple entities, but that composite simple entities indeed do consist of proper other simple
entities. It is us, the observers, who decide to abstract a simple entity as either being
atomic or as being composite.47

That is:

category:

SIMPLE ENTITY = ATOMIC ∪ COMPOSITE

observer signature:

is ATOMIC: SIMPLE ENTITY → Bool

is COMPOSITE: SIMPLE ENTITY → Bool

meta condition:

ATOMIC ∩ COMPOSITE = {}
∀ s: “Things”:SIMPLE ENTITY •

is ATOMIC(s) ≡ ∼is COMPOSITE(s)
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Discussion: We put in brackets, in the text paragraph before the above formulas, [there-
from distinct]. One may very well discuss this constraint — are there simple entities that are
both atomic and composite ? — and that is done by Bertrand Russell in his ‘Philosophy of
Logical Atomism’ [?].

2.5.1 Discrete and Continuous Entities 48

We postulate two forms of SIMPLE ENTITIES: DISCRETE, such as a railroad net, a
bank, a pipeline pump, and a securities instrument, and CONTINUOUS, such as oil and
gas, coal and iron ore, and beer and wine.

category:

SIMPLE ENTITY = DISCRETE SIMPLE ENTITY ∪ CONTINUOUS SIMPLE ENTITY

predicate signatures:

is DISCRETE SIMPLE ENTITY: SIMPLE ENTITY → Bool

is CONTINUOUS SIMPLE ENTITY: SIMPLE ENTITY → Bool

meta condition:

[ is it desirable to impose the following ]
∀ s:SIMPLE ENTITY •

is DISCRETE SIMPLE ENTITY(s) ≡ ∼CONTINUOUS SIMPLE ENTITY(s) ?

Discussion: In the last lines above we raise the question whether it is ontologically possible
or desirable to be able to have simple entities which are both discrete and continuous.
Maybe we should, instead, express an axiom which dictates that every simple entity is at
least of one of these two forms.

2.5.2 Attributes 49

Simple entities are characterised by their attributes: attributes have name, are of type
and has some value; no two (otherwise distinct) attributes of a simple entity has the same
name.

category:

ATTRIBUTE, NAME, TYPE, VALUE

observer signature:

obs ATTRIBUTEs: SIMPLE ENTITY → ATTRIBUTE-set

obs NAME: ATTRIBUTE → NAME

obs TYPE: ATTRIBUTE → TYPE

obs VALUE: ATTRIBUTE → VALUE

meta condition:

∀ s:SIMPLE ENTITY •

∀ a,a′:ATTRIBUTE • {a,a′}⊆obs ATTRIBUTEs(s)
∧ a 6=a′ ⇒ obs NAME(a) 6=obs NAME(a′)
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50

Examples of attributes of atomic simple entities are: (i) A pipeline pump usually has the fol-
lowing attributes: maximum pumping capacity, current pumping capacity, whether

for oil or gas, diameter (of pipes to which the valve connects), etc. (ii) At-
tributes of a person usually includes name, gender, birth date, central registration

number, address, marital state, nationality, etc.51

Examples of attributes of composite simple entities are: (iii) A railway system usually
has the following attributes: name of system, name of geographic areas of location

of rail nets and stations, whether a public or a private company, whether fully,

partly or not electrified, etc. (iv) Attributes of a bank usually includes: name of

bank, name of geographic areas of location of bank branch offices, whether a

commercial portfolio bank or a high street, i.e., demand/deposit bank, etc.
We do not further define what we mean by attribute names, types and values. In-

stead we refer to [?, Properties] and [?, Properties, Types and Meaning] for philosophical
discourses on attributes.

2.5.3 Atomic Simple Entities: Attributes 52

Atomic simple entities are characterised only by their attributes.
Discussion: We shall later cover a notion of domain actions, that is functions being
applied to entities, including simple entities. We do not, as some do for programming
languages, “lump” entities and functions (etc.) into what is there called ‘objects’.

2.5.4 Composite Simple Entities: Attributes, Sub-entities and Mereology

Composite simple entities are characterised by three properties: (i) their attributes, (ii) a
proper set of one or more sub-entities (which are simple entities) and (iii) a mereology of
these latter, that is, how they relate to one another, i.e., how they are composed.

Sub-entities 53

Proper sub-entities, that is simple entities properly contained, as immediate parts of a
composite simple entity, can be observed (i.e., can be postulated to be observable):

observer signature:

obs SIMPLE ENTITIES: COMPOSITE → SIMPLE ENTITY-set

Mereology 54

Mereology is the theory of part-hood relations: of the relations of part to whole and the
relations of part to part within a whole. Suffice it to suggest some mereological structures:

• Set Mereology: The individual sub-entities of a composite entity are “un-ordered”
like elements of a set. The obs SIMPLE ENTITIES function yields the set elements.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Ukraine May 2010 March 13, 2010, 00:00



From Computer Science to The Sciences of Informatics 15

predicate signature:

is SET: COMPOSITE → Bool

55

• Cartesian Mereology: The individual sub-entities of a composite entity are “or-
dered” like elements of a Cartesian (grouping). The function obs ARITY yields the
arity, 2 or more, of the simple Cartesian entity. The function obs CARTESIAN yields
the Cartesian composite simple entity.

predicate signature:

is CARTESIAN: COMPOSITE → Bool

observer signatures:

obs ARITY: COMPOSITE
∼
→ Nat

pre: obs ARITY(s): is CARTESIAN(s)

obs CARTESIAN: COMPOSITE
∼
→

SIMPLE ENTITY × ... × SIMPLE ENTITY

pre obs CARTESIAN(s): is CARTESIAN(s)

56

meta condition:

∀ c:SIMPLE ENTITY•

is COMPOSITE(c)∧is CARTESIAN(c) ⇒
obs SIMPLE ENTITIES(c) = elements of obs CARTESIAN(c)

∧ cardinality of obs SIMPLE ENTITIES(c) = obs ARITY(c)

We just postulate the elements of and the cardinality of meta-functions. Although
one may have that distinct(ly positioned) elements of a Cartesian to be of the same
type and even the same value, they will be distinct — with distinctness “deriving”
from their distinct positions. 57

• List Mereology: The individual sub-entities of a composite entity are “ordered”
like elements of a list (i.e., a sequence). Where Cartesians are fixed arity sequences,
lists are variable length sequences.

predicate signature:

is LIST: COMPOSITE → Bool

observer signatures:

obs LIST: COMPOSITE
∼
→ list of SIMPLE ENTITY

pre obs LIST(s): is LIST(s)

obs LENGTH: COMPOSITE
∼
→ Nat

pre obs LENGTH(s): is LIST(s)

58
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meta condition: ∧
∀ s:SIMPLE ENTITY•

is COMPOSITE(s)∧is LIST(s) ⇒
obs SIMPLE ENTITIES(s) = elements of obs LIST(s) ∧
cardinality of elements of obs LIST(s) = LENGTH(s) ∧
∀ e,e′ • {e,e′} ⊆ elements of ⇒

obs LIST(s) ⇒ obs TYPE(e)=obs TYPE(e′)

We also just postulate the list of, elements of and the cardinality of meta-
functions. Again, as for Cartesians, we shall postulate that although distinct elements
of a list (which are all of the same type) may have the same value — they are
distinct due to their distinct position in the list, that is, their adjacency to a possible
immediately previous and to a possibly immediately following element.59

• Graph Mereology: The individual sub-entities of a composite entity are “or-
dered” like elements of a graph, i.e., a net, of elements. Trees, lattices, cycles
and other structures are just special cases of graphs. Any (immediate) sub-entity
of a composite simple entity of GRAPH mereology may be related to any number
of (not necessarily other) (immediate) sub-entities of that same composite simple
entity GRAPH in a number of ways:it may immediately PRECEDE, or immedi-
ate SUCCEED or be BIDIRECTIONALLY LINKED with these (immediate) sub-
entities of that same composite simple entity. In the latter case some sub-entities
PRECEDE a SIMPLE ENTITY of the GRAPH, some sub-entities SUCCEED a
SIMPLE ENTITY of the GRAPH, some both.60

predicate signature:

is GRAPH: COMPOSITE → Bool

observer signatures:

obs GRAPH: COMPOSITE
∼
→ GRAPH

pre obs GRAPH(g): is GRAPH(g)
obs PRECEEDING SIMPLE ENTITIES:

COMPOSITE × SIMPLE ENTITY → SIMPLE ENTITY-set

pre obs PRECEEDING SIMPLE ENTITIES(c,s):
is GRAPH(c) ∧ s ∈ obs SIMPLE ENTITIES(c)

obs SUCCEEDING SIMPLE ENTITIES:
COMPOSITE × SIMPLE ENTITY → SIMPLE ENTITY-set

pre obs PRECEEDING SIMPLE ENTITIES(c,s):
is GRAPH(c) ∧ s ∈ obs SIMPLE ENTITIES(c)

meta condition:

∀ c:SIMPLE ENTITY • is COMPOSITE(c) ∧ is GRAPH(c)
⇒ let ss = SIMPLE ENTITIES(c) in

∀ s′:SIMPLE ENTITY • s′ ∈ ss
⇒ obs PRECEEDING SIMPLE ENTITIES(c)(s′) ⊆ ss
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∧ obs SUCCEEDING SIMPLE ENTITIES(c)(s′) ⊆ ss
end

61

2.5.5 Discussion

Given a “thing”, s, which satisfies is SIMPLE ENTITY(s), the domain engineer can now
systematically analyse this “thing” using any of the is ATOMIC(s), is COMPOSITE(s),
is SET(s), is CARTESIAN(s), is LIST(s), is GRAPH(s), etcetera. predicates and using
also the observer functions sketched above. 62

Given any SIMPLE ENTITY the domain engineer can now analyse it to find out
whether it is an ATOMIC or a COMPOSITE entity. An, in either case, the domain
engineer can analyse it to find out about its ATTRIBUTES. If the SIMPLE ENTITY

is COMPOSITE then its SIMPLE ENTITIES and their MEREOLOGY can be addi-
tionally ascertained. In summery: If ATOMIC then ATTRIBUTES can be analysed. 63

If COMPOSITE then ATTRIBUTES, SIMPLE ENTITIES and MEREOLOGY can be
analysed.

Please note that these meta-functions, those “partially spelled” with THIS FONT, are
not RSL functions but are mental functions applied, conceptually, i.e., “by the brain” of
the domain modeller in the analysis of domains.

2.5.6 Practice 64

How do we interpret this section, Sect. 2.5, on simple entities? We practice it by analysing
the domain according to the principles laid down in this section, Sect. 2.5, by discovering sim-
ple entities of the domain, by discovering and writing down, for example in RSL, their sorts (i.e.,
abstract types) or their concrete types, by possibly also discovering (postulating, conjecturing)
and writing down constraints, that is axioms or well-formedness predicates over these sorts and
types. That is, we are not using these “funny” names, such as SIMPLE ENTITY, ATOMIC, 65

COMPOSITE, DISCRETE SIMPLE ENTITY, CONTINUOUS SIMPLE ENTITY, ATTRIBUTE,
NAME, TYPE, VALUE, CARTESIAN, ARITY, LIST, LENGTH, GRAPH, PRECEDING SIMPLE ENTITIES

SUCCEEDING SIMPLE ENTITIES, etc., nor their is or obs forms. The example of
Sect. ?? has given several examples of sort and type definitions as well as of constraint defini-
tions.

2.6 Actions 66

2.6.1 Definition

By a STATE we mean a set of one or more SIMPLE ENTITIES. By an ACTION we
shall understand the application of a FUNCT ION to (a set of, including the state of)
SIMPLE ENTITIES such that a STATE change occurs.
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2.6.2 Non-Observables 67

The mathematical concept of a function, explained as “that thing which when applied to
something(s) called its arguments yields (i.e., results) in something called its results that
concept is an elusive one. No-one has ever “seen”, “touched”, “heard” or otherwise sensed
a function. Functions are purely a mathematical construction, possessing a number of
properties and introduced here in order to explain what is going on in a(ny) domain. We
shall not be able to observe functions. To highlight this point we use this SPELLING
OF FUNCT IONS.

2.6.3 Observers &c. 68

We postulate that the domain engineer can indeed decide, that is, conjecture, whether a
“thing”, which is an ENTITY is an ACTION.

category:

ACTION, FUNCT ION , STATE

predicate signature:

is ACTION: ENTITY → Bool

69

Given an ENTITY of category ACTION one can observe, i.e., conjecture the FUNCT ION
(being applied), the ARGUMENT CARTESIAN of SIMPLE ENTITIES to which the
FUNCT ION is being applied, and the resulting change STATE change. Not all elements
of the CARTESIAN ARGUMENT are SIMPLE STATE ENTITIES.70

category:

STATE = SIMPLE ENTITY

FUNCT ION = SIMPLE ENTITY × STATE → STATE

ARGUMENT = {|s:SIMPLE ENTITY•is CARTESIAN(s)|}
observer signatures:

obs ACTION: ENTITY → ACTION

obs ARGUMENT: ACTION → ARGUMENT

obs INPUT STATE: ACTION → STATE

obs RESULT STATE: ACTION → STATE

2.6.4 Practice 71

How do we interpret this section, Sect. 2.6, on actions? We practice it by analysing the
domain according to the principles laid down in this section, Sect. 2.6, by discovering actions
of the domain, by discovering and writing down, for example in RSL, their signatures, by possibly
also discovering (postulating, conjecturing) and writing down their definitions. That is, we are
not using these “funny” names, such as ACTION, STATE, ARGUMENT, INPUT STATE,
RESULTSTATE nor their is or obs forms. The earlier example of Sect. ?? has given several
examples of action signatures and definitions.
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2.7 “Half-way” Discussion7
72

Some pretty definite assertions were made above: We postulate that the domain engineer
can indeed decide whether a “thing”, which is an ENTITY is an ACTION And that one can
observe the FUNCT ION , the ARGUMENT and the RESULT of an ACTION. We do
not really have to phrase it that deterministically. It is enough to say: One can speak of
actions, functions, their arguments and their results. Ontologically we can do so. Whether,
for any specific simple entity we can decide whether it is an actions is, in a sense, immaterial:
we can always postulate that it is an action and then our analysis can be based on that
hypothesis. This discussion applies inter alia to all of the entities being introduced here,
together with their properties.

The domain engineer cum researcher can make such decisions as to whether an entity
is a simple one, or an action, or an event or a behaviour. And from such a decision
that domain engineer cum researcher can go on to make decisions as to whether a simple
entity is discrete or continuous, and atomic or composite, and then onto a mereology for
the composite simple entities. Similarly the domain engineer cum researcher can make
decisions as to the function, arguments and results of an action. All these decisions does
not necessarily represent the “truth”. They hopefully are not “falsities”. At best they are
abstractions and, as such, they are approximations.

2.8 Events 73

Like we did for simple entities we distinguish between atomic composite events

2.8.1 Definition of Atomic Events 74

By an EVENT we shall understand A pair, (σ, σ
′), of STATEs, a STIMULUS, s, (which

is like a FUNCT ION of an ACTION), and an EVENT PREDICATE, p : P, such that
p(σ, σ

′)(s), yields true.

The difference between an ACTION and an EVENT is two things: the EVENT ACTION

need not originate within the analysed DOMAIN, and the EVENT PREDICATE is triv-
ially satisfied by most ACTIONs which originate within the analysed DOMAIN.

2.8.2 Examples of Atomic Events 75

Examples of atomic events, that is, of predicates are: a bank goes “bust” (e.g., looses all its
monies, i.e., bankruptcy), a bank account becomes negative, (unexpected) stop of gas flow
and iron ore mine depleted. Respective stimuli of these events could be: (massive) loan
defaults, a bank client account is overdrawn, pipeline breakage, respectively over-mining.

7“Halfway”: after simple entities and actions and before events and behaviours.
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2.8.3 Composite Events 76

Definition

A Composite event is composed from a sequence of two or more events: The ‘after’ state
of one event becomes the ‘before’ event of the immediately subsequent event We

Examples of Composite Events 77

2.8.4 Observers &c. 78

We postulate that the domain engineer from an EVENT can observe the STIMULUS, the
BEFORE STATE, the AFTER STATE and the EVENT PREDICATE. As said before:
the domain engineer cum researcher can decide on these abstractions, these approximations.79

category:

STIMULUS = SIMPLE ENTITY × STATE → STATE

P = STATE × STATE → Bool

observer signatures:

obs STIMULUS: EVENT → STIMULUS

obs BEFORE STATE: EVENT → STATE

obs AFTER STATE: EVENT → STATE

obs EVENT PREDICATE: EVENT → P
meta condition:

∀ e:EVENT •

∃ s:STIMULUS •

INPUT STATE(e) = BEFORE STATE(s) ∧
RESULT STATE(e) = AFTER STATE(s) ∧
∃ p:P •p(s)(INPUT STATE(e),RESULT STATE(e))

2.8.5 Practice 80

How do we interpret this section, Sect. 2.8, on events? We practice it by analysing the
domain according to the principles laid down in this section, Sect. 2.8, by discovering events
of the domain, that is, by discovering and writing down, for example in RSL, the “defining”
pre/post condition predicates, by discovering and writing down, for example in RSL, their signa-
tures (as if they were domain actions), by possibly also discovering (postulating, conjecturing)
and writing down their definitions (as if they were domain actions). That is, we are not using81

these “funny” names, such as EVENT, STIMULUS, EVENT PREDICATE, BEFORE -
STATE AFTER STATE nor their is or obs forms. The example of Sect. ?? has not given
very many examples.

So we give some narrative examples, that is, without formalisations: an oil well runs
dry (atomic event); a valve gets stuck in closed position, causing further events; a gas pipe
breaks causing a fire causing gas to flow, etc. (composite event); etcetera.
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2.9 Behaviours 82

2.9.1 A Loose Characterisation

By a BEHAVIOUR we shall understand a set of sequences of ACTIONs and EVENTs
one sequence of which designates the behaviour of the environment the remaining se-
quences designate behaviours of different “overlapping” or “disjoint” parts of the domain.
It may now be so that some EVENTs in two or more such sequences have their STATEs 83

and PREDICATEs express, for example, mutually exclusive synchronisation and com-
munication EVENTs between these sequences which are each to be considered as simple
SEQUENTIAL BEHAVIOURs. Other forms than mutually exclusive synchronisation and
communication EVENTs, that “somehow link” two or more behaviours, can be identified.

2.9.2 Observers &c. 84

We abstract from the orderly example of synchronisation and communication given above
and introduce a further un-explained notion of behaviour (synchronisation and communi-
cation) BEHAVIOUR INTERACTION LABELs and allow BEHAVIOURs to now just be
sets of sequences of ACTIONs and BEHAVIOUR INTERACTION LABELs. such that
any one simple sequence has unique labels. 85

We can classify some BEHAVIOURs.

(i) SIMPLE SEQUENTIAL BEHAVIOURs are sequences of ACTIONs.

(ii) SIMPLE CONCURRENT BEHAVIOURs are sets of SIMPLE SEQUENTIAL BE-
HAVIOURs.

(iii) COMMUNICATING CONCURRENT BEHAVIOURs are sets of sequences of
ACTIONs and BEHAVIOUR INTERACTION LABELs. We say that two or more such
COMMUNICATING CONCURRENT BEHAVIOURs SYNCHRONISE & COMMUNI-
CATE when all distinct BEHAVIOURs “sharing” a (same) label have all reached that
label. 86

Many other composite behaviours can be observed. For our purposes it suffice with
having just identified the above.

SIMPLE ENTITIES, ACTIONs and EVENTs can be described without reference to
time. BEHAVIOURs, in a sense, take place over time.8 It will bring us into a rather long 87

discourse if we are to present some predicates, observer functions and axioms concerning
behaviours — along the lines such predicates, observer functions and axioms were present,
above, for SIMPLE ENTITIES, ACTIONs and EVENTs. We refer instead to Johan van
Benthem’s seminal work on the The Logic of Time [?]. In addition, more generally, we
refer to A.N. Prior’s [?, ?, ?, ?, ?] and McTaggart’s works [?, ?, ?]. The paper by Wayne
D. Blizard [?] proposes an axiom system for time-space.

8If it is important that ACTIONs take place over time, that is, are not instantaneous, then we can just
consider ACTIONs as very simple SEQUENTIAL BEHAVIOURs not involving EVENTs.
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2.9.3 Practice 88

How do we interpret this section, Sect. 2.9, on behaviours? We practice it by analysing
the domain according to the principles laid down in this section, Sect. 2.9, by discovering
behaviours of the domain, that is, by discovering and writing down, for example in RSL, the
signatures of these behaviours (e.g., as CSP processes), by possibly also discovering (postu-
lating, conjecturing) and writing down their definitions (as sequences of domain actions and
events — the latter modelled as CSP communications between behaviours). That is, we are89

not using all these “funny” names such as: BEHAVIOUR, SEQUENTIAL BEHAVIOUR,
SIMPLE SEQUENTIAL BEHAVIOUR, CONCURRENT BEHAVIOUR, COMMUNICA-
TING CONCURRENT BEHAVIOUR, BEHAVIOUR INTERACTION LABELs, etcetera.

2.10 Mereology 90

Simple entities — when composite — are said to exhibit a mereology. Thus composition of
simple entities imply a mereology. We discussed mereologies of behaviours: simple sequen-
tial, simple concurrent, communicating concurrent, etc. Above we did not treat actions and
events as potentially being composite. But we now relax that seeming constraint. There
is, in principle, nothing that prevents actions and events from exhibiting mereologies. An91

action, still instantaneous, can, for example, “fork” into a number of concurrent actions,
all instantaneous, on “disjoint” parts of a state; or an instantaneous action can “dribble”
(not little-by-little, but one-after-the-other. still instantaneously) into several actions as if
a simple sequential behaviour, but instantaneous. Two or more events can occur simulta-92

neously: two or more (up to four, usually) people become grandparents when a daughter
of theirs give birth to their first grandchild; or an event can — again a “dribble” (not
little-by-little, but instantaneously) — “rapidly” sequence through a number of instanta-
neous sub-events (with no intervening time intervals): A bankruptcy events immediately
causes the bankruptcy of several enterprises which again causes the immediate bankruptcy
of several employes, etcetera.93

The problems of compositionality of entities, whether simple, actions, events or be-
haviours, is was studied, initially, in [?, Bjørner and Eir, 2008]

2.11 Impossibility of Definite Mereological Analysis of Seemingly Com-

posite Entities 94

It would be nice if there was a more-or-less obvious way of “deciphering” the mereology
of an entity. In the many • (bulleted) items above (cf. Set, Cartesian, List, Map, Graph)
we may have left the impression with the reader that is a more-or-less systematic way of
uncovering the mereology of a composite entity. That is not the case: there is no such
obvious way. It is a matter of both discovery and choice between seemingly alternative
mereologies, and it is also a matter of choice of abstraction.
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2.12 What Exists and What Can Be Described ? 95

In the previous section we have suggested a number of categories9 of entities, a number of
predicate10 and observer11 functions and a number of meta conditions (i.e., axioms). These
concepts and their relations to one-another, suggest an ontology for describing domains. It
is now very important that we understand these categories, predicates, observers and axioms
properly.

3 Description Versus Specification Languages 96

Footnotes 9–11 (Page 23) summarised a number of main concepts of an ontology for de-
scribing domains. The categories and predicate and observer function signatures are not
part of a formal language for descriptions. The identifiers used for these categories are
intended to denote the real thing, classes of entities of a domain. In a philosophical dis-
course about describability of domains one refers to the real things. That alone prevents
us from devising a formal specification language for giving (syntax and) semantics to a
specification, in that language, of what these (Footnote 9–11) identifiers mean.

3.1 Formal Specification of Specific Domains 97

Once we have decided to describe a specific domain then we can avail ourselves of using
one or more of a set of formal specification languages. But such a formal specification
does not give meaning to identifiers of the categories and predicate and observer functions;
they give meaning to very specific subsets of such categories and predicate and observer
functions. And the domain specification now ascribes, not the real thing, but usually some
form of mathematical structures as models of the specified domain.

3.2 Formal Domain Specification Languages 98

There are, today, 2010, a large number of formal specification languages. Some or tex-
tual, some are diagrammatic. The textual specification languages are like mathematical
expressions, that is: linear text, often couched in an abstract “programming language”
notation. The diagrammatic specification languages provide for the specifier to draw two-
dimensional figures composed from primitives. Both forms of specification languages have
precise mathematical meanings, but the linear textual ones additionally provide for proof
rules. 99

Examples of textual, formal specification languages are

9Some categories: ENTITY, SIMPLE ENTITY, ACTION, EVENT, BEHAVIOUR, ATOMIC, COMPOSITE, DISCRETE, CONTINUOUS, ATTRIBUTE,

NAME, TYPE, VALUE, SET, CARTESIAN, LIST, MAP, GRAPH, FUNCT ION , STATE, ARGUMENT, STIMULUS, EVENT PREDICATE, BEFORE STATE,

AFTER STATE, SEQUENTIAL BEHAVIOUR, BEHAVIOUR INTERACTION LABEL, SIMPLE SEQUENTIAL BEHAVIOUR, SIMPLE CONCURRENT BEHAVIOUR,

COMMUNICATING CONCURRENT BEHAVIOUR, etc.

10Some predicates: is ENTITY, is SIMPLE ENTITY, is ACTION, is EVENT, is BEHAVIOUR, is ATOMIC, is COMPOSITE,

is DISCRETE SIMPLE ENTITY, is CONTINUOUS SIMPLE ENTITY, is SET, is CARTESIAN, is LIST, is MAP, is GRAPH, etc.

11Some observers: obs SIMPLE ENTITY, obs ACTION, obs EVENT, obs BEHAVIOUR, obs ATTRIBUTE, obs NAME, obs TYPE, obs VALUE,

obs SET, obs CARTESIAN, obs ARITY, obs LIST, obs LENGTH, obs DEFINITION SET, obs RANGE, obs IMAGE, obs GRAPH, obs PRECEDING SIMPLE ENTITIES,

obs SUCCEEDING SIMPLE ENTITIES, obs MEREOLOGY, obs INPUT STATE, obs ARGUMENT, obs RESULT STATE, obs STIMULUS, obs EVENT PREDICATE,

obs BEFORE STATE, obs AFTER STATE, etc.
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• Alloy [?]: model-oriented,

• B, Event-B [?]: model-oriented,

• CafeOBJ [?]: property-oriented (algebraic),

• CASL [?]: property-oriented (algebraic),

• CSP [?]: communicating sequential processes,

• DC (Duration Calculus) [?]: temporal logic,

• Maude [?, ?, ?]: property-oriented (algebraic),

• RAISE, RSL [?]: property and model-oriented,

• TLA+ [?]: temporal logic and sets,

• VDM, VDM-SL [?]: model-oriented and

• Z [?]: model-oriented.

DC and TLA+ are often used in connection with either a model-oriented specification lan-
guages or just plain old discrete mathematics notation !100

But the model-oriented specification languages mentioned above do not succinctly ex-
press concurrency. CSP does. The diagrammatic, formal specification languages, listed
below, all do that:

• Petri Nets [?],

• Message Sequence Charts (MSC) [?],

• Live Sequence Charts (LSC) [?] and

• Statecharts [?].

3.3 Discussion: “Take-it-or-leave-it !” 101

With the formal specification languages, not just those listed above, but with any con-
ceivable formal specification language, the issue is: you can basically only describe using
that language what it was originally intended to specify, and that, usually, was to specify
software ! If, in the real domain you find phenomena or concepts, which it is somewhat
clumsy and certainly not very abstract or, for you, outright impossible, to describe, then,
well, then you cannot formalise them !
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4 Conclusion 102

4.1 What Have We Done ?

4.2 What Need to Be Done ?
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