
invisible

D
R

A
FT

Dines Bjørner

A Financial Services Industry

Domain Descriptions

Banking, Stock Brokerage, Credit Cards, Insurance,

Portfolio Management, &c

January 21, 2008, 10:00

Draft Notes — Rough Sketches

Fredssvej 11, DK-2840 Holte, Denmark
bjorner@gmail.com, http://www.imm.dtu/˜db

invisible

D
R

A
FT

VI

Version History

1. 19-Jan-2008: A first version was e-mailed to Mr. Dennis Yap, NOA Ad-
vance Technology Solution Co. Ltd., Suite 1012, Kolon Science Valley II,
Guro-dong, Guro-Gu, Seoul 150-050, Korea; Tel.: +82-2-850-3760, Fax:
+82-2-850-3764

2. 20-Jan-2008: A second version with minor changes, was likewise sent to
Mr. Dennis Yap (in three versions). Changes were:
(a) Draft status was added to every page.
(b) This front matter page, VI, was populated.
(c) Additional Preface text, lower half of Page VII was inserted.
(d) Initial project start phase material moved from Sect. 1.10 to a new

section, Sect. 1.14.1.
(e) Sect. 1.10 text is new.
(f) Additional material on entities, operations, events, and behaviours,

and on UML was added to Volume II’s front pages (Pages 11–12).
(g) Additions made to texts in Sects. 4.1.2 on page 23 to 4.1.3 on page 27.
(h) Provisions made to print two versions of this document:

• One which does not show any formula (Mr. Yap was sent such a
Chap. 4 and was also sent a complete file),

• and one which shows extensively annotated formulas — explaining
the RAISE specification language (RSL) constructs being used in
the particular formula lines (Mr. Yap was sent such a Chap. 4 and
was also sent a complete file).

3. 21-Jan-2008
• New preface framed text inserted, on top of Page VII, before first

itemised three bullets.
• Extensions made to texts in Sect. 4.1.2 on page 23: the command

syntaxes and semantics.
• This version is with formulas. These and their annotations can all be

simply removed.

c© Dines Bjørner, 2008

Permission to use this material
• commercially or
• to copy this material
must first be obtained from the author.

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT Part I

Preface

• This document is “vastly” incomplete.
• It may not illustrate the kind of finance handling issues that the reader

may be looking for.
• But trust me, Dines Bjørner,

⋆ I do have enough enough experience in also this field,
⋆ to know that whatever can be meaningfully described,
⋆ where a meaningful description is something which designates,
⋆ which points to some phenomenon or otherwise well-known banking,

insurance, brogerage, etc., concept,
⋆ that that can also be precisely narrated (and, if need be, formalised).

• But only about a few days of work by a single person has so far been
extended on this report.

• The current status of this document is rough sketch incomplete draft.
• It is being developed during the period 18 January 2008 to (probably)

early February 2008.
• It is intended as a document that might help a Korean software house in

its project/contract discussions with a Korean client.

invisible

D
R

A
FT

VIII

The main objective of releasing this document, at this early and vastly in-
complete stage, is to help NOA, a Korean Software House, showing a Korean
client what a domain description entails.
The document does not show how domain descriptions can be used further.
We refer to [1, to appear] for a 30 page introduction, and to the book [2] for
a comprehensive treatment. We refer to Appendix D (starting Page 201).

In [3, to appear] I give a concise overview of domain engineering; in [1, to ap-
pear] one of domain and requirements engineering as they relate; and in [4, to
appear] I relate domain engineering, requirements engineering and software
design to software management. In [5] I present a number of domain engi-
neering research challenges. In [6, to appear] — which also covers research
challenges of domain engineering — I additionally present a rather large ex-
ample of the container line industry domain.

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

Contents

Part I Preface

Volume I Informal Documents

1 Information . 3
1.1 Project Title . 3
1.2 Name, Place and Date . 3
1.3 Partners . 4
1.4 Current Situation . 4
1.5 Needs and Ideas . 5

1.5.1 The Need . 5
1.5.2 The Idea . 5

1.6 Concepts and Facilities . 5
1.6.1 Concepts . 6
1.6.2 Facilities . 6

1.7 Scope and Span . 6
1.7.1 Scope . 6
1.7.2 Span . 6

1.8 Assumptions and Dependencies . 7
1.8.1 Assumptions . 7
1.8.2 Dependencies . 7

1.9 Implicit/Derivative Goals . 7
1.9.1 Implicit Goals . 7
1.9.2 Derivative Goals . 8

1.10 Synopsis . 8
1.11 Standards Compliance . 8
1.12 Contracts . 8
1.13 The Teams . 9

1.13.1 Management . 9

invisible

D
R

A
FT

X Contents

1.13.2 Developers . 9
1.13.3 Client Staff . 9
1.13.4 Consultants . 9

1.14 Plans . 9
1.14.1 An Upstart Phase . 9
1.14.2 Project Graph . 10
1.14.3 Budget . 10
1.14.4 Funding . 10
1.14.5 Accounts . 10

1.15 Management . 10
1.15.1 Assessment . 10
1.15.2 Improvement . 10

Plans . 10
Actions . 10

Volume II Domain Descriptions

2 Business Processes . 13

Part I Banking

3 Banking: Preamble . 17
3.1 Stakeholders . 17
3.2 The Acquisition Process . 17

3.2.1 Studies . 17
3.2.2 Interviews . 17
3.2.3 Questionnaires . 17
3.2.4 Indexed Description Units . 17

3.3 Terminology . 17

4 Banking: Intrinsics . 19
4.1 Demand/Deposit Banking . 19

4.1.1 The Banking State . 19
Narrative: Accounts . 19
Formalisation: Accounts . 20
Narrative: Bank Registers . 22
Formalisation . 22
Narrative: A Preliminary Bank State 22
Formalisation: A Preliminary Bank State 23

4.1.2 Client Transactions . 23
Narrative: Syntax of the Open Account Command . . 23
Formalisation: Syntax of the Open Account

Command . 24

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

Contents XI

Narrative: Semantics of the Open Account Command 24
Formalisation: Semantics of the Open Account

Command . 24
Narrative: Syntax of the Deposit Command 25
Formalisation: Syntax of the Deposit Command. 26
Narrative: Semantics of the Deposit Command 26
Formalisation: Semantics of the Deposit Command . . 26
Narrative: Syntax of the Withdraw Command 26
Formalisation: Syntax of the Withdraw Command . . 26
Narrative: Semantics of the Withdraw Command . . . 26
Formalisation: Semantics of the Withdraw Command 26
Narrative: Syntax of the Request Statement

Command . 26
Formalisation: Syntax of the Request Statement

Command . 26
Narrative: Semantics of the Request Statement

Command . 27
Formalisation: Semantics of the Request Statement

Command . 27
Narrative: Syntax of the Close Accoount Command . 27
Formalisation: Syntax of the Close Account

Command . 27
Narrative: Semantics of the Close Accoount

Command . 27
Formalisation: Semantics of the Close Accoount

Command . 27
Narrative: Syntax of the Share Account Command . . 27
Formalisation: Syntax of the Share Account

Command . 27
Narrative: Semantics of the Share Account Command 27
Formalisation: Semantics of the Share Account

Command . 27
4.1.3 Bank Transactions . 27

Narrative: Syntax . 28
Formalisation . 28

4.2 Mortgage Banking . 28
4.2.1 The Banking State . 28

Narrative . 28
Formalisation . 28

4.2.2 Customer Transactions . 29
Narrative: Syntax . 29
Formalisation: Syntax . 29

4.2.3 Bank Transactions . 29
Narrative: Syntax . 29
Formalisation: Syntax . 29

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

XII Contents

5 Banking: Support Facilities . 31

6 Banking: Management and Organisation 33

7 Banking: Rules and Regulations . 35

8 Banking: Scripts . 37

9 Banking: Human Behaviour . 39

10 Banking: Conclusion . 41

Part II Stock Brokerage

11 Stock Brokerage: Preamble . 45
11.1 Stakeholders . 45
11.2 The Acquisition Process . 45

11.2.1 Studies . 45
11.2.2 Interviews . 45
11.2.3 Questionnaires . 45
11.2.4 Indexed Description Units . 45

11.3 Terminology . 45

12 Stock Brokerage: Intrinsics . 47

13 Stock Brokerage: Support Facilities . 49

14 Stock Brokerage: Management and Organisation 51

15 Stock Brokerage: Rules and Regulations 53

16 Stock Brokerage: Scripts . 55

17 Stock Brokerage: Human Behaviour . 57

18 Stock Brokerage: Conclusion . 59

Part III Credit Cards

19 Credit Cards: Preamble . 63
19.1 Stakeholders . 63
19.2 The Acquisition Process . 63

19.2.1 Studies . 63
19.2.2 Interviews . 63
19.2.3 Questionnaires . 63

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

Contents XIII

19.2.4 Indexed Description Units . 63
19.3 Terminology . 63

20 Credit Cards: Intrinsics . 65

21 Credit Cards: Support Facilities . 67

22 Credit Cards: Management and Organisation 69

23 Credit Cards: Rules and Regulations . 71

24 Credit Cards: Scripts . 73

25 Credit Cards: Human Behaviour . 75

26 Credit Cards: Conclusion . 77

Part IV Insurance

27 Insurance: Preamble . 81
27.1 Stakeholders . 81
27.2 The Acquisition Process . 81

27.2.1 Studies . 81
27.2.2 Interviews . 81
27.2.3 Questionnaires . 81
27.2.4 Indexed Description Units . 81

27.3 Terminology . 81

28 Insurance: Intrinsics . 83

29 Insurance: Support Facilities . 85

30 Insurance: Management and Organisation 87

31 Insurance: Rules and Regulations . 89

32 Insurance: Scripts . 91

33 Insurance: Human Behaviour . 93

34 Insurance: Conclusion . 95

Part V Portfolio Management

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

XIV Contents

35 Portfolio Management: Preamble . 99
35.1 Stakeholders . 99
35.2 The Acquisition Process . 99

35.2.1 Studies . 99
35.2.2 Interviews . 99
35.2.3 Questionnaires . 99
35.2.4 Indexed Description Units . 99

35.3 Terminology . 99

36 Portfolio Management: Intrinsics . 101

37 Portfolio Management: Support Facilities 103

38 Portfolio Management: Management and Organisation 105

39 Portfolio Management: Rules and Regulations 107

40 Portfolio Management: Scripts . 109

41 Portfolio Management: Human Behaviour 111

42 Portfolio Management: Conclusion . 113

Volume III Analyses

43 Analysis . 117

Volume IV Closing

44 Review, Discussion and Conclusion . 121

Part I Appendices

A Examples of Rough Sketch Descriptions of Financial
Services . 125
A.1 Financial Service Industry Business Processes 125

A.1.1 Some Modelling Comments — An Aside 131
A.1.2 Examples Continued . 132

The Context . 133
The State . 133
A Model . 134

A.2 Bank Scripts . 135
A.2.1 Bank Scripts: A Denotational, Ideal Description 135

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

Contents XV

A.2.2 Bank Scripts: A Customer Language 140
A.2.3 Syntax of Bank Script Language 145

Routine Headers . 145
Example Statements . 146
Example Expressions . 147
Abstract Syntax for Syntactic Types 147

A.2.4 Semantics of Bank Script Language 148
Semantic Types Abstract Syntax 148
Semantic Functions . 149

A.2.5 A Student Exercise . 154
A.3 Financial Service Industry . 155

A.3.1 Banking . 155
Domain Analysis . 155

Account Analysis: . 155
Account Types: . 155
Contract Rules & Regulations: 155
Transactions: . 156
Immediate & Deferred Transaction

Handling: 156
Summary . 157

Abstraction of Immediate and Deferred Transaction
Processing . 158
Account Temporality: 158

Summary: . 158
Modelling . 159

Client Transactions: . 160
Insert One Transaction: 160
Insertion of Arbitrary Number of

Transactions: 160
Merge of Jobs: Client Transactions: 161
The Banking Cycle: . 161
Auxiliary Repository Inspection Functions: 162
Merging the Client and the Bank Cycles: . . 163

A.4 Securities Trading . 164
A.4.1 “What is a Securities Industry ?” 164

Synopsis . 164
A Stock Exchange “Grand” State 164
Observers and State Structure . 165
Main State Generator Signatures 166
A Next State Function . 166
Next State Auxiliary Predicates 167
Next State Auxiliary Function . 168
Auxiliary Generator Functions . 169

A.4.2 Discussion . 169

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

XVI Contents

B Methodology . 171
B.1 On Software Development Processes . 171

B.1.1 Processes, Process Specifications and Process Models 171
B.1.2 Software Development Process Descriptions 172

Domain Engineering . 173
Requirements Engineering . 174
Software Design . 177

B.1.3 Documents . 177
B.2 Software Development Documents . 177

B.2.1 Domain Engineering Documents 178
B.2.2 Requirements Engineering Documents 179
B.2.3 Software Design Engineering Documents 180

B.3 RSL: The RAISE Specification Language 181
B.3.1 [1] RSL Types . 182

[1.1] Type Expressions . 182
[1.2] Type Definitions . 183

[1.2.1] Subtypes: . 183
[1.2.2] Sorts or Abstract Types: 183
[1.2.3] Concrete Types: 183
[1.2.4] BNF Rule Right–hand Sides for

Concrete Type Definitions: 184
B.3.2 [2] The RSL Predicate Calculus 184

[2.1] The RSL Proposional Expressions 184
[2.2] The RSL Predicate Expressions 184

[2.2.1] Simple RSL Predicate Expressions . . 184
[2.2.2] Quantified RSL Expressions 185

B.3.3 [3] RSL Sets, Cartesians, Lists, and Maps 185
[3.1] RSL Set, Cartesian, List, and Map Enumerations185

[3.1.1] Sets: . 185
[3.1.2] Cartesians: . 186
[3.1.3] Lists: . 186
[3.1.4] Maps: . 186

[3.2] RSL Set Operations . 187
[3.3] RSL Cartesian Operations 188
[3.4] RSL List Operations . 188
[3.5] RSL Map Operations . 190

B.3.4 [4] RSL λ–Calculus and Functions 191
[4.1] The λ–Calculus Syntax . 191
[4.2] Free and Bound Variables 192
[4.3] Substitution . 192
[4.4] α–Renaming and β–Reduction 192
[4.6] Function Signatures in RSL 192
[4.7] Function Definitions in RSL 193

B.3.5 [5] Applicative Constructs of RSL 193
[5.1] The RSL letConstructs . 193

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

Contents XVII

[5.1.1] General: . 193
[5.1.2] Predicative lets: 194
[5.1.3] Patterns and Wild Cards: 194

[5.2] The Applicative RSL Conditionals 194
[5.3] Common Operator/Operand RSL Constructs . . . 195

B.3.6 [6] Imperative Constructs of RSL 195
[6.1] Variables, Assignments and the UnitValue 195
[6.2] Statement Sequence and skip 195
[6.3] The Imperative RSL Conditionals 195
[6.4] The Iterative RSL Conditionals 196
[6.5] The Iterative RSL Sequencing 196
[6.6] RSL Variable Expressions . 196

B.3.7 [7] Parallel Constructs of RSL . 196
[7.1] Process Channels . 196
[7.2] Composition of Processes . 196
[7.3] Process Input/Output . 197
[7.4] Process Signatures and Definitions 197

B.3.8 [8] Simple RSL Specifications . 197

C Indexes . 199

D Bibliographical Notes . 201

References . 201

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

invisible

D
R

A
FT Volume I

Informal Documents

This volume only contains one chapter: Information.

invisible

D
R

A
FT

invisible

D
R

A
FT 1

Information

This chapter is rather “thin”. More detail should be given to each item.

1.1 Project Title

The project title is:

FiSeIn: A Domain Description of Segments of the Financial Service Industry

1.2 Name, Place and Date

This document is edited (written) by

• Name: Dines Bjørner,
• Place:

⋆ Fredsvej 11,
⋆ DK-2840 Holte,
⋆ Denmark;
⋆ phone: +45-4542 21 41,
⋆ e-mail:bjorner@gmail.com,
⋆ URL: http://www.imm.edu.dk/˜db

• Date:
⋆ Writing started 18 January 2008.
⋆ Present version was compiled January 21, 2008: 10:00

invisible

D
R

A
FT

4 1 Information

1.3 Partners

Partners may be:

1. DB: Dines Bjørner (as prospective consultant);
2. NOA Advance Technology Solution Co. Ltd. “NOA”

• Address:
⋆ Suite 1012,
⋆ Kolon Science Valley II,
⋆ Guro-dong, Guro-Gu,
⋆ Seoul 150-050,
⋆ Korea;
⋆ Tel.: +82-2-850-3760
⋆ Fax: +82-2-850-3764

• Persons:
(a) Mr. Moon, CEO,
(b) Mr. Dennis Yap;

and
3. Company XXX.

Do we need more on NOA ?

Do we need more on Company XXX ?

1.4 Current Situation

This section is tentative.

At the moment, January 2008, NOA is negotiating with Company XXX a
contract that involves fitting an existing contract around

a documentation framework and a document which is well organized
and applicable to multiple product groups and trading activities in
the capital market business. The document is meant to provide de-
tail guideline for its staff (front, middle and back office) and to set
up standard procedure for processing each financial instrument. The
scope include product definition, market data structure, pricing, deal-
ing, sales, trade work flow, risk analysis, back office processing, com-
pliance and reporting in a bank. The document will be used for gen-
erating a requirements document where our software system will be
used to automatic the process.

Further to the above:

NOA expects to be introducing Dines Bjørner’s expertise into the
NOA and Company XXX consortium. This consortium needs a full
picture of the values of creating these documents.

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

1.6 Concepts and Facilities 5

Moreover:

We are selling the license of a implemented trading and management
system to a financial institute. There are some gap between their
requirement and our solution where we will be extending our system
to meet their requirement.

Summarising:

• The plan is to create a full domain document where our client’s
employee can use to understand their own business process.

• The requirements document that follow will mainly focus on the
gap between our package and their requirement.

1.5 Needs and Ideas

These subsections are tentative.

1.5.1 The Need

There is a need

to understand how a domain description, requirement document and
prescription document can be used, to advantage, in the current
NOA/XXX project.

1.5.2 The Idea

The idea

is to use the TripTych concept of
• informative,
• descriptional and
• analytic
documentation as from (and including)
• domain engineering,
• via requirements engineering to
• software implementation.

1.6 Concepts and Facilities

These subsections are tentative.

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

6 1 Information

1.6.1 Concepts

The concepts of Company XXX are those of the

• multiple product groups and trading activities in the capital mar-
ket business.

Further

• The document is meant to provide detail guideline for its staff
(front, middle and back office) and to set up standard procedure
for processing each financial instrument.

1.6.2 Facilities

• to be written

1.7 Scope and Span

These subsections are tentative.

1.7.1 Scope

The scope of Company XXX’s business is that of the financial service industry:

• banking,
• stock brokerage,
• credit cards,
• insurance, and
• portfolio management.

Banks may offer any subset of the implied services of these five areas.

1.7.2 Span

The span include

• product definition,
• market data structure,
• pricing,
• dealing,
• sales,
• trade work flow,
• risk analysis,
• back office processing,
• compliance and

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

1.9 Implicit/Derivative Goals 7

• reporting
in a bank.

DB needs understand the above 10 bullet (•) itemisation

The present document attempts to sketch domain descriptions of the scope.

1.8 Assumptions and Dependencies

These subsections are tentative.

1.8.1 Assumptions

The assumptions — on which this project (between the partners: Dines
Bjørner (DB), the consultant, NOA and Company XXX) is based — are

• that the business domain of Company XXX can be openly determined;
• that this business domain, at the moment, is stable1;
• that there is the will amongst the partners to provide information to all

partners about the business domain of Company XXX; and
• that all partners will feed back, i.e., report, to all other partners in timely

fashion.

1.8.2 Dependencies

The corresponding dependencies, within the span of the project, are:

• that
•
•

1.9 Implicit/Derivative Goals

These subsections are tentative.

1.9.1 Implicit Goals

• Creating the domain description leads to improved understanding of the
financial service industry.

• Creating and circulating the resulting domain description leads to im-
proved awareness of of the business processes of the financial service in-
dustry.

1 The business domain of Company XXX must be stable, but it can be expected
that its requirements remain in a flux, that is, “change” during the domain de-
scription part of this project.

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

8 1 Information

1.9.2 Derivative Goals

• The domain description of the financial service industry can be used (and
this is not IT work)
⋆ to perform business process re-engineering, and
⋆ to train future and re-train existing staff in the financial service indus-

try .

1.10 Synopsis

This section is tentative.

1.11 Standards Compliance

This section is tentative.

Insofar as it is reasonable2 the project work shall otherwise adhere to the
following standards:

1. IEEE-1058-1998, Standard for Software Project Management Plans
2. IEEE-730-2002, Standard for Software Quality Assurance Plans
3. IEEE-830-1998, Recommended Practice for Software Requirements Spec-

ifications
4. IEEE-1012-1998, Standard for Software Verification and Validation
5. IEEE-1016-1998,Recommended Practice for Software Design Descriptions
6. IEEE-1028-1997, Standard for Software Reviews
7. ISO/IEC 12207 Information Technology-Software Life Cycle Processes,

with amendments
8. ISO/IEC 15288 Systems Engineering — Systems Life Cycle Processes
9. IEEE/EIA 12207.0 1996 Industry Implementation of International Stan-

dard ISO/IEC: 12207:1995 Software life cycle processes.
10. ISO 9001-2000, Quality Management Systems - Requirements.
11. ISO/IEC 15288, Systems Engineering - Systems Life Cycle Processes.
12. Standard ISO/IEC 17799:2005 Information technology — Security tech-

niques — Code of practice for information security management.
13. ISO/IEC 90003:2004, Software Engineering. Guidelines for the application

of ISO 9001:2000 to computer software.

1.12 Contracts

This section will remain “empty”.

2

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

1.14 Plans 9

1.13 The Teams

This section will remain “empty”.

1.13.1 Management

1.13.2 Developers

1.13.3 Client Staff

1.13.4 Consultants

This section will remain “empty”.

1.14 Plans

1.14.1 An Upstart Phase

The FiSeIn project has the following components:

1. Establishing the NOA/Company XXX FiSeIn contract.
2. Establishing a consultancy contract with DB.
3. Establishing the NOA project FiSeIn team.
4. Establishing the Company XXX project FiSeIn team.
5. Possible initial visit of Dines Bjørner (DB) to NOA.

(a) Lectures
i. Domain Engineering,
ii. Documentation,
iii. TripTych Software Engineering (SE) in general,
iv. TripTych SE Management.

(b) Initial Project Work:
i. DB to assist NOA (and Company XXX ?) in establishing initial

document library,
ii. DB to assist NOA (and Company XXX ?) in rough sketching the

kind of documents otherwise shown in this report.
(c) Main body of work, phase I

• either NOA & and Company XXX to work 203 weeks “alone”,
• or DB to work with NOA & and Company XXX on initial volumes

and parts of the FiSeIn documentation
(d) DB to return to Denmark for 2-3 weeks
(e) Repeated phases, like Phase I, see Item 5(c).

6. Etcetera.

It may be that DB may be needed for the bulk of the 2nd and 3rd Quarter of
2008.

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

10 1 Information

1.14.2 Project Graph

1.14.3 Budget

1.14.4 Funding

1.14.5 Accounts

1.15 Management

This section will remain “empty”.

1.15.1 Assessment

1.15.2 Improvement

Plans

Actions

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT Volume II

Domain Descriptions

This volume contains one chapter and five parts.
The chapter, Business Processes, is common to four3 of the five parts. The

parts cover main aspects of the domain descriptions of

1. banking,
2. stock brokerage,
3. credit cards,
4. insurance and
5. portfolio management.

These aspects, in the present edition of this book, includes

• stakeholders, acquisition process and terminology
• and the facets of

⋆ intrinsics,
⋆ support facilities,
⋆ management and organisation,
⋆ rules and regulations.
⋆ scripts and
⋆ human behaviour.

Each aspect is (to be) treated according to the following description ontology:

• entities (types and values),
• operations (function and actions),
• events, and
• behaviours.

3 Chapter 2, Business Processes, currently misses the ‘Insurance’ sub-domain.

invisible

D
R

A
FT

12

Relation to UML

By describing and operation signatures we cover, in a more rigid and engineer-
ingly sound manner what is sometimes covered by software engineers using
UML’s Class Diagram construct.

By describing operation definitions we go well beyond what UML covers.
By covering events and behaviours we cover, again in a more rigid and

engineeringly sound manner what is sometimes covered by software engineers
using UML’s use case, state machine, etc. concepts.

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT 2

Business Processes

This chapter need be updated: Insurance is currently not included.

The main business process behaviours of a financial service system are
the following: (i) clients, (ii) banks, (iii) securities instrument brokers and
traders, (iv) portfolio managers, (v) (the, or a, or several) stock exchange(s),
(vi) stock incorporated enterprises and (vii) the financial service industry
“watchdog”. We rough-sketch the behaviour of a number of business processes
of the financial service industry.

Clients

Banks

B[1] B[2] B[b]

P[1] P[2] P[p]

C[c]

C[2]

C[1]

Brokers
Traders

T[1]

T[2]

T[1]

cb/bc[1..c,1..b]:CB|BC

ct/tc[1..c,1..t]:CT|TC

cp/pc[1..c,1..p]:CP|PC

bt/tb[1..b,1..t]:BT|TB

pt/tp[1..p,1..t]:PT|TP

pb
/b

p[
1.

.p
,1

..b
]:P

B
|B

P

Portfolio Managers

T
he

 F
in

an
ce

 In
du

st
ry

 "
W

at
ch

do
g"

wb/bw[1..b]:WB|BW

wt/tw[1..t]:WT|TW

wp/pw[1..p]:WP|PW

ws:WS

sw:SW

SE

Exchange
Stock

I[1]I[1] I[2] I[i]

...

...

...

... ...

is/si[1..i]:IS|SI

Fig. 2.1. A financial behavioural system abstraction

The above figure need be redrawn to include ‘Insurance’

invisible

D
R

A
FT

14 2 Business Processes

(i) Clients engage in a number of business processes: (i.1) they open, de-
posit into, withdraw from, obtain statements about, transfer sums between
and close demand/deposit, mortgage and other accounts; (i.2) they request
brokers to buy or sell, or to withdraw buy/sell orders for securities instruments
(bonds, stocks, futures, etc.); and (i.3) they arrange with portfolio managers
to look after their bank and securities instrument assets, and occasionally they
reinstruct portfolio managers in those respects.

(ii) Banks engage with clients, portfolio managers, and brokers and traders
in exchanges related to client transactions with banks, portfolio managers, and
brokers and traders, as well as with these on their own behalf, as clients.

(iii) Securities instrument brokers and traders engage with clients, portfolio
managers and the stock exchange(s) in exchanges related to client transactions
with brokers and traders, and, for traders, as well as with the stock exchange(s)
on their own behalf, as clients.

(iv) Portfolio managers engage with clients, banks, and brokers and traders
in exchanges related to client portfolios.

(v) Stock exchanges engage with the financial service industry watchdog,
with brokers and traders, and with the stock listed enterprises, reinforcing
trading practices, possibly suspending trading of stocks of enterprises, etc.

(vi) Stock incorporated enterprises engage with the stock exchange: They
send reports, according to law, of possible major acquisitions, business devel-
opments, and quarterly and annual stockholder and other reports.

(vii) The financial industry watchdog engages with banks, portfolio man-
agers, brokers and traders and with the stock exchanges.

The above list need be extended: 1/2 to 1/1 page more, at most

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT Part I

Banking

invisible

D
R

A
FT

invisible

D
R

A
FT 3

Banking: Preamble

3.1 Stakeholders

3.2 The Acquisition Process

3.2.1 Studies

3.2.2 Interviews

3.2.3 Questionnaires

3.2.4 Indexed Description Units

3.3 Terminology

invisible

D
R

A
FT

invisible

D
R

A
FT 4

Banking: Intrinsics

We describe the intrinsics of two main-street set of banking concepts: De-
mand/Deposit banking and Mortgage (or: Savings&Loan) banking.

4.1 Demand/Deposit Banking

In ‘Demand/Deposit Banking’ banks offer clients that they can open de-
mand/deposit accounts, deposit monies into such accounts, withdraw monies
from such accounts, obtain chronologically listed statements of deposit, with-
draw, and statement transactions, and close accounts. Banks can offer credit
limits on a per customer and account basis, and banks usually offer yields
on [positive] deposits and (always) ascribe interests on [negative] deposits
within the credit limits. Banks therefore perform such operations on accounts
as calculation of yields and interests and the update of accounts with these
amounts. Banks may notify clients of account liabilities.

We now describe banking systematically based on the above synopsis.
In this more systematic description we introduce further banking con-
cepts than those mentioned above. The description is first in narrative
form, that is, informal, in English, using only terms from the banking
profession or such terms which are generally understood.
The casual reader may wish to skip the formulas in a first, or in any
reading !

4.1.1 The Banking State

Narrative: Accounts

1. The bank maintains a set of all client demand/deposit accounts.
2. Each account has a distinct account name.
3. Each account has an account balance

invisible

D
R

A
FT

20 4 Banking: Intrinsics

4. To each account is associated two rates: yield and interest.
5. One can, to each account, associate the transactions performed on this

account as a chronologically ordered list of chronologically ordered list of
statements1.

6. From an account one can thus observe its name, balance, yield and interest
rates, and its list of list of statements.

7. A statement is either an open account, a deposit, a withdrawal, a close
account, a calculate interest or yield, or an inform customer statement.
(a) An open account statement records the client name, date and time

of invocation of command, amount of initial deposit, the yield and
interest rate agreed with the bank, and the new account name (e.g. a
numeral) resulting from a successful transaction.

(b) A deposit statement records the client name, account number, date
and time of invocation of command, and amount of deposit.

(c) A withdrawal statement records the client name, account number,
date and time of invocation of command, and amount of withdrawal.

(d) A close account statement records the client name, account number,
date and time of invocation of command, and rest amount of account
balance.

(e) A calculate interest or yield statement records the client name, account
number, date and time of invocation of command, and the amount of
yield or interest of which one of the two is definitely zero.

(f) An inform statement records the client name, account number, date
and time of invocation of command, and the list of statements issued
to the client.

Formalisation: Accounts

type
1. DDA = Anm →m Acct
2. Anm
3. AcctBal
4. Yield, Interest
5. Stmt

value
6. obs Anm: Acct → Anm
6. obs AcctBal: Acct → AcctBal
6. obs Yield: Acct → Yield
6. obs Interest: Acct → Interest

1 We shall operate with to strongly related concepts: statements and commands. A
transaction records the invocation (i.e., execution) of a command, see Sects. 4.1.2–
4.1.3 and Sects. 4.2.2–4.2.3. The statement records the time and date of invoca-
tion, the type and input arguments of the command as well as the results of the
invocation.

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

4.1 Demand/Deposit Banking 21

6. obs StatList: Acct → (Stmt∗)∗

type
7. Stmt = OpenS | DepoS | WithS | ClosS | CalcS | InfoS
7(a). OpenS == mkOpS(cn:CliNm,sh:Shrd,i:Info,r1:Res1,re2:Res2)
7(b). DepoS == mkDeS(an:Anm,sh:Shrd,de:Mon,r:Res1)
7(c). WithS == mkWiS(an:Anm,sh:Shrd,de:Mon,r:Res1)
7(d). ClosS == mkClS(an:Anm,sh:Shrd,de:Mon,r:Res1)
7(e). CalcS == mkCaS(an:Anm,sh:Shrd,ab:InYi,r:Res1)
7(f). InfoS == mkInS(an:Anm,sh:Shrd,sl:Stmt∗,r:Res1)
α Res1 == ok | nok
β Res2 == nil | mkRes2(y:Yld,i:Intrst,an:Anm) [nil if Res1 is nok]
γ Date, Time, Info [information] Yld [yield], Intrst [interest]
δ Shrd = Date × Time [shared info]
ǫ InYi == mkIntrst(m:Mon) | mkYld(m:Mon)

α Every command execution results in either a successful termina-
tion, i.e., ok, or the command is rejected, i.e. nok.

β An ok open demand/deposit account command execution further
results in the client being informed of the yield and interest rates,
and the new account number.

γ When opening an account some information was given (on the
basis of which the open command was conditionally executed).

δ Every transaction records the execution, on a certain date and at
a certain time, of a corresponding command.

RSL Annotations: We use identifiers A, B, C, ... to stand for the type names
occuring in the referenced formulas.

1. “type A = B →m C” defines A to be a concrete type of maps, i.e., finite
definition set, i.e., discrete functions from values of type B into values of
type C.

2.– 5. “type A, B, ...” defines A, B, ... to be abstract types, i.e., an algebraic
sorts, of, in line 2.– 5. further undescribed values.

6. “value obs A: B → A” defines obs A to be a function which when applied
to a value of type B yields a value of type A.

7. “type A = B | ... | C” defines A to be a type of either type B or . . . typeC
values.

7(a).–7(f). “type A == mkA(sx:X,...,sy:Y)” defines A to be a Cartesian type of values,
each one can be thought of as a ‘tree’ with root label mkA and with
sub-tree values (possibly terminal leaves) of type X, . . . , Y; the x, . . . , y
designate selector functions which when applied to a value of type A yield
respective sub-tree.

β, γ, δ, ǫ The bracketed [text] is commentary and has no semantics meaning.
δ “type A = B × C × ... × D” defines type A values to be Cartesian

(groupings) values of B, C, ..., D values, that is, (b,c,...,d) values.

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

22 4 Banking: Intrinsics

ǫ “type A == mkB(...) | mkC(...) | ... | mkD(...)” defines A to be a types of
disjoint types of values, either a mkB(...) value, or a mkC(...) value . . . or
a mkD(...) value. These value types are disjoint sôlely because their “tree
root” labels, mkB, mkC, ..., mkD, are distinct.

√
2

Narrative: Bank Registers

In order to be able to administrate the interface between demand/deposit
accounts and clients, and to be able for two or more clients to share an account
the bank maintains the following registers:

8. There is a client-to-accounts-register: The client-to-accounts-register records
for each client which zero, one or more demand/deposit accounts, by name,
that client has rights to.

9. And there is an accounts-to-client-register:
(a) The accounts-to-client-register records for each account which
The accounts-to-client-register contents can be computed from the client-
to-accounts-register.

10. Thus the two registers must be commensurate: If a client can access an
account then that must be recorded accordingly in both registers. Thus
there can be no discrepancies.

Formalisation

type
8. CtAR
8. CtAR = Cnm →m Anm-set
9. AtCR
9(a). AtCR = Anm →m Cnm-set

value
10. wf CtAR AtCR: CtAR × AtCR → Bool

Narrative: A Preliminary Bank State

11. A bank state includes the demand/deposit accounts, the client-to-accounts
register and the accounts-to-clients register.

12. The bank state must be well-formed:
(a) If the demand/deposit accounts associate an account number (say a)

with some balance, then that account number must be linked to one
or more client names in the accounts-to-clients register,

(b) and for each such name for that account number in the accounts-to-
clients register there must be an association from that client name to
that account number in the client-to-accounts register.

2
√

designates end of RSL annotations.

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

4.1 Demand/Deposit Banking 23

Formalisation: A Preliminary Bank State

type
11. Prel Bank State′ = DDA × CtAR × AtCR × ...
12. Prel Bank State = {| bank:Prel Bank State′ • wf Prel Bank State(bank) |}

value
12. wf Prel Bank State: Prel Bank State′ → Bool
12. wf Prel Bank State(dda,ctar,atcr,...) ≡
12(a). dom dda = dom atcr ∧

∀ a:Anm•a ∈ dom dda ⇒ ∀ c:Cnm•c ∈ atcr(a) ⇒ c ∈ dda(a) ∧
12(b). dom ctar = ∪ rng atcr

RSL Annotations:

11. The primed (′) A′ in type D′ = ... is intended to “signal” that the type
D′ is “overspecified”.

12. The sub-type definition type D = {| d:D′
• wfD(d) |} expresses that D

consists just of those values a of type D′ which are well-formed according
to wfD(d).

12(a). dom map expresses the definition set, the ’domain’, of map map
The universally quantified predicate expression ∀ x:X • P(a) expresses that
“for all x of type X it is the case (•) that the predicate P holds of x.
x ∈ xset ⇒ Q(x) expresses that x is in the set xset implies that the predicate
Q holds of x.

12(b). The expression ∪ rng map expresses the distributed union of the range
elements of map.

4.1.2 Client Transactions

There are, to illustration, six client comands: open, deposit into, withdraw
from, statement of, close and share account. We shall treat these in separate
sub-sections each consisting of four parts: two narratives and two, respective
formalisations of the syntax, respectively the semantics of these commands.

Narrative: Syntax of the Open Account Command

Clients interact with the bank by means of commands.

13. A client command is either an open account, a deposit, a withdraw, a
request statements or a close account or a share account command.
(a) An open command includes a client name and the initial deposit of

(zero, one or more units of) money.

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

24 4 Banking: Intrinsics

Formalisation: Syntax of the Open Account Command

type
13. Cmd = OpeC | DepC | WitC | ReqC | CloC | ShaC
13(a). OpeC = mkOpC(cn:Cnm,i:Info)

Narrative: Semantics of the Open Account Command

14. An open a demand/deposit account command means that the client,
cn:Cnm, is assigned a new, i.e., a fresh, hitherto unused demand/deposit
account number after the bank has negotiated with the client a credit
limit, a yield rate on a positive account balance, an interest rate on a
negative account balance, and aspects not further described here — all
based on prevailing bank policy and client information.

Formalisation: Semantics of the Open Account Command

value
14. int OpeC: OpeC → Prel Bank Bank State

→ Prel Bank Bank State × (nok|(ok×Anm))
int OpeC(mkOpC(cn,info))(β) ≡

0. let (dda,ctas,atcs) = obs Prel Bank State(β) in
1. if is client OK(cn,info)(dda,ctas,atcs)
2. then
3. let a : Anm • a 6∈ dom dda,
4. (y,i) = negotiate Yld Int(cn,info)(dda,ctas,atcs),
5. let s = mkInfoS(a,(date(β),time(β)),〈〉,ok) in
6. dda′ = dda ∪ [a 7→ makeAcct(y,i,0,〈s〉)],
7. atcs′ = atcs ∪ [a 7→ {cn}],
8. as = if cn ∈ dom ctas then ctas(cn) else {} end in
9. let ctas′ = ctas † [cn 7→ as ∪ a] in
10. (merge Prel Bank states((dda′,ctas′,atcs′),β),(ok,a)) end end end
11. else (merge Prel Bank States((dda,ctas,atcs),β),nok)

end end

obs Prel Bank State: Prel Bank State → DDA×CtAR×AtCR
is client OK: (Cnm×Info) → (DDA×CtAR×AtCR) → Bool
negotiate Yld Int: (Cnm×Info) → (DDA×CtAR×AtCR) → (Yld×Intrst)
merge Prel Bank states: (DDA×CtAR×AtCR)×Prel Bank State → Prel Bank State

RSL Annotations: First we explain some of the clauses and operator/-
operand expressions:

0.,4. The clause let (a,b,...,c) = function(args), ... binds a, b, ... and c to the
respective components of the Cartesian result of the function application
function(args).

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

4.1 Demand/Deposit Banking 25

3. The clause let x:X • x 6∈ xset binds the name x to a value of type X such
that (•) x is not in the set xset.

5.–9. The clause let a = expression, ... binds the name a to the result of the
evaluation of expression.

6.,7. The expression map ∪ [a 7→ b] evaluates to a map which is like map
except that it now has a further association (7→) mapping a into b.

6.,7. The expression [a1 7→ b1, a2 7→ b2, ..., an 7→ bn,] designates a map which
associates ai with bi (for i in 1, 2, . . . , n).

6. The expression {a1, a2, . . . , an } designates a set of the listed element
values; {a} designates a singleton set (of just one element); {} designates
the empty set.

7. The expression 〈a1, a2, . . . , an 〉 designates a list of the listed element
values; 〈a〉 designates a singleton list (of just one element); 〈〉 designates
the empty list.

Then we “gently” read the function that gices semantics to an Open Account
command:

1. If the client name and information is OK with the bank
2. then

3. an account number that has not (never ?) been used before is
allocated, and

4. a yield and an interest rate is negotiated for the client, and
5. as a temporary “measure”, the open account statement is com-

piled, and
6. the demand/deposit accounts are updated to record for the new

account its yield and interest, that the initial balance is 0, and the
statement list is the singleton of the open account statement, and

7. the accounts to clients register is updated to reflect that the new
account, at this moment, has just one holder, and

8. as a temporary “measure” the set of account numbers for that
client is calculated, and

9. the client to accounts register is suitably updated to reflect that
this client now has the new account, and

10. a new banking state results from this transaction as does the fact
that the transaction went well,

11. else the banking state is unchanged and a not ok client result is re-
turned.

Narrative: Syntax of the Deposit Command

13. A client command is ... a deposit ... command.

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

26 4 Banking: Intrinsics

13(b). A deposit command includes an account number and the amount of
monies to be deposited.

Formalisation: Syntax of the Deposit Command

type
13. Cmd = OpeC | DepC | WitC | ReqC | CloC | ShaC
13(b). DepC = mkDeC(an:Anm,mo:Money)

Narrative: Semantics of the Deposit Command

15.

Formalisation: Semantics of the Deposit Command

Narrative: Syntax of the Withdraw Command

13. A client command is ... a withdraw ... command.
13(c). A withdraw command includes an account number and the amount

of monies to be withdrawn.

Formalisation: Syntax of the Withdraw Command

type
13. Cmd = OpeC | DepC | WitC | ReqC | CloC | ShaC
13(c). WitC = mkWiC(an:Anm,am:Amount)

Narrative: Semantics of the Withdraw Command

16.

Formalisation: Semantics of the Withdraw Command

Narrative: Syntax of the Request Statement Command

13. A client command is ... a withdraw ... command.
13(d). A request statements command includes an account number.

Formalisation: Syntax of the Request Statement Command

type
13. Cmd = OpeC | DepC | WitC | ReqC | CloC | ShaC
13(d). ReqC = mkReC(an:Anm)

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

4.1 Demand/Deposit Banking 27

Narrative: Semantics of the Request Statement Command

17.

Formalisation: Semantics of the Request Statement Command

Narrative: Syntax of the Close Accoount Command

13. A client command is ... a withdraw ... command.
13(e). A close command includes an account number.

Formalisation: Syntax of the Close Account Command

type
13. Cmd = OpeC | DepC | WitC | ReqC | CloC | ShaC
13(e). CloC = mkClC(an:Anm)

Narrative: Semantics of the Close Accoount Command

18.

Formalisation: Semantics of the Close Accoount Command

Narrative: Syntax of the Share Account Command

13. A client command is ... a share ... command.
13(f). A share command mentions an account and a client (who is “invited”

to share the account).

Formalisation: Syntax of the Share Account Command

type
13. Cmd = OpeC | DepC | WitC | ReqC | CloC | ShaC
13(f). ShaC = mkSha(an:Anm,c:Cnm)

Narrative: Semantics of the Share Account Command

19.

Formalisation: Semantics of the Share Account Command

4.1.3 Bank Transactions

The bank, in order to be able to manage its (trusted and own) resources need
to be able to perform, at is own discretion, some transactions.

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

28 4 Banking: Intrinsics

Narrative: Syntax

20. A bank command is either a
(a)
(b)
(c)

21.
22.
23.
24.

Formalisation

20.
20(a).
20(b).
20(c).
21.
22.
23.
24.

4.2 Mortgage Banking

4.2.1 The Banking State

Narrative

25.
26.
27.
28.
29.
30.
31.

Formalisation

25.
26.
27.
28.
29.
30.
31.

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

4.2 Mortgage Banking 29

4.2.2 Customer Transactions

Narrative: Syntax

32.
33.
34.
35.
36.
37.
38.
39.

Formalisation: Syntax

32.
33.
34.
35.
36.
37.
38.
39.

4.2.3 Bank Transactions

Narrative: Syntax

40.
41.
42.
43.
44.
45.
46.
47.

Formalisation: Syntax

40.
41.
42.
43.
44.
45.

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

30 4 Banking: Intrinsics

46.
47.

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT 5

Banking: Support Facilities

We describe the support facilties that enable the intrinsics, the management
& organisation, the rules & regulations, the scripts and that support dili-
gent or cause slopy, neglient, or outright crimilal bahaviour of the main-street
set of banking concepts of Demand/Deposit banking and Mortgage (or: Sav-
ings& Loan) banking.

invisible

D
R

A
FT

invisible

D
R

A
FT 6

Banking: Management and Organisation

invisible

D
R

A
FT

invisible

D
R

A
FT 7

Banking: Rules and Regulations

We describe the rules and regulations that pertain to client use of banking
and the banks obligations to clients and national, regional and international
banking.

invisible

D
R

A
FT

invisible

D
R

A
FT 8

Banking: Scripts

We describe the scripts that pertain to the use of demand/deposit and savings
& loan (mortgage) accounts.

invisible

D
R

A
FT

invisible

D
R

A
FT 9

Banking: Human Behaviour

invisible

D
R

A
FT

invisible

D
R

A
FT 10

Banking: Conclusion

invisible

D
R

A
FT

invisible

D
R

A
FT Part II

Stock Brokerage

invisible

D
R

A
FT

invisible

D
R

A
FT 11

Stock Brokerage: Preamble

11.1 Stakeholders

11.2 The Acquisition Process

11.2.1 Studies

11.2.2 Interviews

11.2.3 Questionnaires

11.2.4 Indexed Description Units

11.3 Terminology

invisible

D
R

A
FT

invisible

D
R

A
FT 12

Stock Brokerage: Intrinsics

invisible

D
R

A
FT

invisible

D
R

A
FT 13

Stock Brokerage: Support Facilities

invisible

D
R

A
FT

invisible

D
R

A
FT 14

Stock Brokerage: Management and
Organisation

invisible

D
R

A
FT

invisible

D
R

A
FT 15

Stock Brokerage: Rules and Regulations

invisible

D
R

A
FT

invisible

D
R

A
FT 16

Stock Brokerage: Scripts

invisible

D
R

A
FT

invisible

D
R

A
FT 17

Stock Brokerage: Human Behaviour

invisible

D
R

A
FT

invisible

D
R

A
FT 18

Stock Brokerage: Conclusion

invisible

D
R

A
FT

invisible

D
R

A
FT Part III

Credit Cards

invisible

D
R

A
FT

invisible

D
R

A
FT 19

Credit Cards: Preamble

19.1 Stakeholders

19.2 The Acquisition Process

19.2.1 Studies

19.2.2 Interviews

19.2.3 Questionnaires

19.2.4 Indexed Description Units

19.3 Terminology

invisible

D
R

A
FT

invisible

D
R

A
FT 20

Credit Cards: Intrinsics

invisible

D
R

A
FT

invisible

D
R

A
FT 21

Credit Cards: Support Facilities

invisible

D
R

A
FT

invisible

D
R

A
FT 22

Credit Cards: Management and Organisation

invisible

D
R

A
FT

invisible

D
R

A
FT 23

Credit Cards: Rules and Regulations

invisible

D
R

A
FT

invisible

D
R

A
FT 24

Credit Cards: Scripts

invisible

D
R

A
FT

invisible

D
R

A
FT 25

Credit Cards: Human Behaviour

invisible

D
R

A
FT

invisible

D
R

A
FT 26

Credit Cards: Conclusion

invisible

D
R

A
FT

invisible

D
R

A
FT Part IV

Insurance

invisible

D
R

A
FT

invisible

D
R

A
FT 27

Insurance: Preamble

27.1 Stakeholders

27.2 The Acquisition Process

27.2.1 Studies

27.2.2 Interviews

27.2.3 Questionnaires

27.2.4 Indexed Description Units

27.3 Terminology

invisible

D
R

A
FT

invisible

D
R

A
FT 28

Insurance: Intrinsics

invisible

D
R

A
FT

invisible

D
R

A
FT 29

Insurance: Support Facilities

invisible

D
R

A
FT

invisible

D
R

A
FT 30

Insurance: Management and Organisation

invisible

D
R

A
FT

invisible

D
R

A
FT 31

Insurance: Rules and Regulations

invisible

D
R

A
FT

invisible

D
R

A
FT 32

Insurance: Scripts

invisible

D
R

A
FT

invisible

D
R

A
FT 33

Insurance: Human Behaviour

invisible

D
R

A
FT

invisible

D
R

A
FT 34

Insurance: Conclusion

invisible

D
R

A
FT

invisible

D
R

A
FT Part V

Portfolio Management

invisible

D
R

A
FT

invisible

D
R

A
FT 35

Portfolio Management: Preamble

35.1 Stakeholders

35.2 The Acquisition Process

35.2.1 Studies

35.2.2 Interviews

35.2.3 Questionnaires

35.2.4 Indexed Description Units

35.3 Terminology

invisible

D
R

A
FT

invisible

D
R

A
FT 36

Portfolio Management: Intrinsics

invisible

D
R

A
FT

invisible

D
R

A
FT 37

Portfolio Management: Support Facilities

invisible

D
R

A
FT

invisible

D
R

A
FT 38

Portfolio Management: Management and
Organisation

invisible

D
R

A
FT

invisible

D
R

A
FT 39

Portfolio Management: Rules and Regulations

invisible

D
R

A
FT

invisible

D
R

A
FT 40

Portfolio Management: Scripts

invisible

D
R

A
FT

invisible

D
R

A
FT 41

Portfolio Management: Human Behaviour

invisible

D
R

A
FT

invisible

D
R

A
FT 42

Portfolio Management: Conclusion

invisible

D
R

A
FT

invisible

D
R

A
FT Volume III

Analyses

This volume contains only one chapter: Analyses.

invisible

D
R

A
FT

invisible

D
R

A
FT 43

Analysis

invisible

D
R

A
FT

invisible

D
R

A
FT Volume IV

Closing

This volume contains one chapter:

• Review, Discussion and Conclusion.

And then it contains the appendices:

• Examples of Rough Sketch Descriptions of Financial Services,
• Methodology,
• Indexes, and
• Bibliographical Notes

invisible

D
R

A
FT

invisible

D
R

A
FT 44

Review, Discussion and Conclusion

invisible

D
R

A
FT

invisible

D
R

A
FT Part I

Appendices

invisible

D
R

A
FT

invisible

D
R

A
FT A

Examples of Rough Sketch Descriptions of
Financial Services

A.1 Financial Service Industry Business Processes

Example A.1 Financial Service Industry Business Processes: The main busi-
ness process behaviours of a financial service system are the following: (i)
clients, (ii) banks, (iii) securities instrument brokers and traders, (iv) portfo-
lio managers, (v) (the, or a, or several) stock exchange(s), (vi) stock incor-
porated enterprises and (vii) the financial service industry “watchdog”. We
rough-sketch the behaviour of a number of business processes of the financial
service industry.

(i) Clients engage in a number of business processes: (i.1) they open, de-
posit into, withdraw from, obtain statements about, transfer sums between
and close demand/deposit, mortgage and other accounts; (i.2) they request
brokers to buy or sell, or to withdraw buy/sell orders for securities instruments
(bonds, stocks, futures, etc.); and (i.3) they arrange with portfolio managers
to look after their bank and securities instrument assets, and occasionally they
reinstruct portfolio managers in those respects.

(ii) Banks engage with clients, portfolio managers, and brokers and traders
in exchanges related to client transactions with banks, portfolio managers, and
brokers and traders, as well as with these on their own behalf, as clients.

(iii) Securities instrument brokers and traders engage with clients, portfolio
managers and the stock exchange(s) in exchanges related to client transactions
with brokers and traders, and, for traders, as well as with the stock exchange(s)
on their own behalf, as clients.

(iv) Portfolio managers engage with clients, banks, and brokers and traders
in exchanges related to client portfolios.

(v) Stock exchanges engage with the financial service industry watchdog,
with brokers and traders, and with the stock listed enterprises, reinforcing
trading practices, possibly suspending trading of stocks of enterprises, etc.

(vi) Stock incorporated enterprises engage with the stock exchange: They
send reports, according to law, of possible major acquisitions, business devel-
opments, and quarterly and annual stockholder and other reports.

invisible

D
R

A
FT

126 A Examples of Rough Sketch Descriptions of Financial Services

(vii) The financial industry watchdog engages with banks, portfolio man-
agers, brokers and traders and with the stock exchanges.

Clients

Banks

B[1] B[2] B[b]

P[1] P[2] P[p]

C[c]

C[2]

C[1]

Brokers
Traders

T[1]

T[2]

T[1]

cb/bc[1..c,1..b]:CB|BC

ct/tc[1..c,1..t]:CT|TC

cp/pc[1..c,1..p]:CP|PC

bt/tb[1..b,1..t]:BT|TB

pt/tp[1..p,1..t]:PT|TP

pb
/b

p[
1.

.p
,1

..b
]:P

B
|B

P

Portfolio Managers

T
he

 F
in

an
ce

 In
du

st
ry

 "
W

at
ch

do
g"

wb/bw[1..b]:WB|BW

wt/tw[1..t]:WT|TW

wp/pw[1..p]:WP|PW

ws:WS

sw:SW

SE

Exchange
Stock

I[1]I[1] I[2] I[i]

...

...

...

... ...

is/si[1..i]:IS|SI

Fig. A.1. A financial behavioural system abstraction

Example A.2 Atomic Component — A Bank Account: When we informally
speak of the phenomena that can be observed in connection with a bank
account, we may first bring up such things as: (i) The balance (or cash, a
noun), the credit limit (noun), the interest rate (noun), the yield (noun); and
(ii) the opening (verb) of, the deposit (verb) into, the withdrawal (verb) from
and the closing (verb) of an account. Then we may identify (iii) the events
that trigger the opening, deposit, withdrawal and closing actions. We may
thus consider a bank account — with this structure of (i) values, (ii) actions
(predicates, functions, operations), and (iii) ability to respond to external
events (to open, to deposit, etc.) — to be a component, i.e., a process.

Example A.3 Composite Component — A Bank: Likewise, continuing the
above example, we can speak of a bank as consisting of any number of bank
accounts, i.e., as a composite component of proper constituent bank account
components. Other proper constituent components are: the customers (who
own the accounts), the bank tellers (whether humans or machines) who ser-
vices the accounts as instructed by customers, etc.

In the above we have stressed the “internals” of the atomic components. When
considering the composite components we may wish to emphasise the inter-
action between components.

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

A.1 Financial Service Industry Business Processes 127

...

Clients Accounts

...

m n

......

Bank

A1

A2

An
C1

C2

Cm

ba
[1

..n
]

cb
[1

..m
]

...

...

B

external choices
nondeterministic
m, respectively n,

Fig. A.2. A fifth schematic “rendezvous” class

Example A.4 One-Way Composite Component Interaction: We illustrate a
simple one-way client-to-account deposit. A customer may instruct a bank
teller to deposit monies handed over from the customer to the bank teller into
an appropriate account, and we see an interaction between three “atomic”
components: the client(s), the bank teller(s) and the account(s).
Figure A.2 shows a set of distinct client processes. A client may have one or
more accounts and clients may share accounts. For each distinct account there
is an account process. The bank (i.e., the bank teller) is a process. It is at
any one time willing to input a cash-to-account (a,d) request from any client
(c). There are as many channels into (out from) the bank process as there are
distinct clients (resp. accounts).

Using formal notation we can expand on the informal picture of Fig. A.2.

type
Cash, Cash, Cidx, Aidx

channel
{ cb[c]:(Aidx×Cash) | c:Cidx }
{ ba[a]:Cash | a:Aidx }

value
S5: Unit → Unit
S5() ≡ Clients() ‖ B() ‖ Accounts()

Clients: Unit → out { cb[c] | c:Cidx } Unit
Clients() ≡ ‖ { C(c) | c:Cidx }

C: c:Cidx → out cp[c] Unit

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

128 A Examples of Rough Sketch Descriptions of Financial Services

C(c) ≡ let (a,d):(Aidx×Cash) = ... in cb[c] ! (a,d) end ; C(c)

type
A Bals = Aindex →m Cash

value
abals: A Bals

Accounts: Unit → in { ba[a] | a:AIndex } Unit
Accounts() ≡ ‖ { A(a,abals(a)) | a:AIndex }

A: a:Aindex × Balance → in ba[a] Unit
A(a,d) ≡ let d′ = ba[a] ? in A(a,d+d′) end

B: Unit → in { cb[c] | c:Cidx } out { ba[a] | a:Aidx } Unit
B() ≡ ⌈⌉⌊⌋ {let (a,d) = cb[c] ? in ba[a] ! d end | c:Cidx} ; B()

We comment on the deposit example. With respect to the use of notation
above, there are Cindex client-to-bank channels, and Aindex bank-to-account
channels. The banking system (S5) consists of a number of concurrent pro-
cesses: Cindex clients, Aindex accounts and one bank. From each client process
there is one output channel, and into each account process there is one in-
put channel. Each client and each account process cycles around depositing,
respectively cashing monies. The bank process is nondeterministically willing
(⌈⌉⌊⌋) to engage in a rendezvous with any client process, and passes any such
input onto the appropriate account.

Generally speaking, we illustrated a banking system of many clients and
many accounts. We only modelled the deposit behaviour from the client via
the bank teller to the account. We did not model any reverse behaviour, for
example, informing the client as to the new balance of the account. So the
two bundles of channels were both one-way channels. We shall later show an
example with two-way channels.

Example A.5 Multiple, Diverse Component Interaction: We illustrate com-
posite component interaction. At regular intervals, as instructed by some ser-
vice scripts associated with several distinct kinds of accounts, transfers of
monies may take place between these. For example, a regular repayment of a
loan may involve the following components, operations and interactions: An
appropriate repayment amount, p, is communicated from client k to the bank’s
script servicing component se (3).1Based on the loan debt and its interest rate
(d,ir) (4), and this repayment (p), a distribution of annuity (a), fee (f) and
interest (i) is calculated.2The loan repayment sum total, p, is subtracted from
the balance, b, of the demand/deposit account, dd a, of the client (5). A loan
service fee, f, is added to the (loan service) fee account, f a, of the bank (7).
The interest on the balance of the loan since the last repayment is added to
the interest account, i a, of the bank (8), and the difference, a, (the effective

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

A.1 Financial Service Industry Business Processes 129

repayment), between the repayment, p, and the sum of the fee and the inter-
est is subtracted from the principal, p, of the mortgage account, m a, of the
client (6).

In process modelling the above we are stressing the communications. As
we shall see, the above can be formally modelled as below.

Bank Service: se

Client: k

cd

cp

1

3

7

8

2

4

3

dd_a

Demand

Client

Accounts

Bank

Accounts

Fee: f_a

Interest: i_a

m_a

cddp

cmi

cm

cf

ci

6

7

8

1

2,5

4

6

5

sys() = k() || se() || dd_a() || m_a() || f_a() || i_a()

Mortgage

Deposit

Fig. A.3. A loan repayment scenario

type
Monies,Deposit,Loan,
Interest Income,Fee Income = Int,
Interest = Rat

channel
cp,cd,cddp,cm,cf,ci:Monies, cmi:Interest

value
sys: Unit → Unit,
sys() ≡ se() ‖ k() ‖ dd a(b) ‖ m a(p) ‖ f a(f) ‖ i a(i)

1 For references (3–8) we refer to Fig. A.3.
2 See line four of the body of the definition of the se process below.

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

130 A Examples of Rough Sketch Descriptions of Financial Services

k: Unit → out cp,cd Unit
k() ≡

(let p:Nat • /∗ p is some repayment, 1 ∗/ in cp ! p end
⌈⌉

let d:Nat • /∗ d is some deposit, 2 ∗/ in cd ! d end)
; k()

se: Unit → in cd,cp,cmi out cddp,cm,cf,ci Unit
se() ≡

((let d = cd ? in cddp ! d end) /∗ 1,2 ∗/
⌈⌉⌊⌋

(let (p,(ir,ℓ)) = (cp ?,cmi ?) in /∗ 3,4 ∗/
let (a,f,iv) = o(p,ℓ,ir) in
(cddp ! (−p) ‖ cm ! a ‖ cf ! f ‖ ci ! iv) end end)) /∗ 5,6,7,8 ∗/

; se()

dd a: Deposit → in cddp Unit
dd a(b) ≡ dd a(b + cddp ?) /∗ 2,5 ∗/

m a: Interest × Loan → out cmi in cm Unit
m a(ir,ℓ) ≡ cmi ! (ir,ℓ) ; m a(ir,ℓ− cm ?) /∗ 4;6 ∗/

f a: Fee Income → in cf Unit
f a(f) ≡ f a(f + cf ?) /∗ 7 ∗/

i a: Interest Income → in ci Unit
i a(i) ≡ i a(i + ci ?) /∗ 8 ∗/

The formulas above express:

• The composite component, a bank, consists of:
⋆ a customer, k, connected to the bank (service), se, via channels cd, cp
⋆ that customer’s demand/deposit account, dd a, connected to the bank

(service) via channels cdb, cddp
⋆ that customer’s mortgage account, m a, connected to the bank (ser-

vice) via channel cm
⋆ a bank fees income account, f a, connected to the bank (service) via

channel cf
⋆ a bank interest income account, i a, connected to the bank (service)

via channel ci
• The customer demand/deposit account is willing, at any time, to nonde-

terministically engage in communication with the service: either accepting
(?) a deposit or loan repayment (2 or 5), or delivering (!) information about
the loan balance and interest rate (4).

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

A.1 Financial Service Industry Business Processes 131

• We model this “externally inflicted” behaviour by (what is called) the
external nondeterministic choice, ⌈⌉⌊⌋3, operation.

• The service component, in a nondeterministic external choice, ⌈⌉⌊⌋, either
accepts a customer deposit (cd?) or a mortgage payment (cp?).

• The deposit is communicated (cddp!d) to the demand/deposit account
component.

• The fee, interest and annuity payments are communicated in parallel (‖)
to each of the respective accounts: bank fees income (cf!f), bank interest
income (ci!i) and client mortgage (cm!a) account components.

• The customer is unpredictable, may issue either a deposit or a repayment
interaction with the bank.

• We model this “self-inflicted” behaviour by (what is called) the internal
nondeterministic choice, ⌈⌉4, operation.

Characterisation. By a nondeterministic external choice we mean a non-
deterministic decision which is effected, not by actions prescribed by the text
in which the ⌈⌉⌊⌋ operator occurs, but by actions in other processes. That is,
speaking operationally, the process honouring the ⌈⌉⌊⌋ operation does so by
“listening” to the environment.

Characterisation. By nondeterministic internal choice we mean a nondeter-
ministic decision that is implied by the text in which the ⌈⌉ operator occurs.
Speaking operationally, the decision is taken locally by the process itself, not
as the result of any event in its surroundings.

A.1.1 Some Modelling Comments — An Aside

Examples A.4 and A.5 illustrated one-way communication, from clients via
the bank to accounts. Example A.4 illustrated bank “multiplexing” between
several (m) clients and several (n) accounts. Example A.5 illustrated a bank
with just one client and one pair of client demand/deposit and mortgage
accounts. Needless to say, a more realistic banking system would combine the
above. Also, we have here chosen to model each account as a process. It is
reasonable to model each client as a separate process, in that the collection
of all clients can be seen as a set of independently and concurrently operating
components. To model the large set of all accounts as a similarly large set of
seemingly independent and concurrent processes can perhaps be considered a
“trick”: It makes, we believe, the banking system operation more transparent.

3 See the definition of what is meant by nondeterministic external choice right after
this example.

4 See the definition of what is meant by nondeterministic internal choice right after
this example.

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

132 A Examples of Rough Sketch Descriptions of Financial Services

In the next — and final — example of this introductory section we augment
the first example with an account balance response being sent back from the
account via the bank to the client.

A.1.2 Examples Continued

...

B

cq[1..n]cp[1..m]C

C

A

A

A

C

1

2

m

1

2

n

Clients Accounts

Bank

cp[j]

cp[j] cq[k]

cq[k]
cp[j]!(a,m)

(a,m,j)=cq[k]?

cq[k]!(j,r)

(a,m)=cp[j]?

Cj Ak

B

Client Account

Bank

(j,r)=cq[k]?

cp[j]!r

r=cp[j]?

cq[k]!(a,m,j)

These "channels"

are really bundles

(i.e., arrays) of such,

as illustrated below:

Fig. A.4. Two-way component interaction

Example A.6 Two-Way Component Interaction: The present example “con-
tains” that of the one-way component interaction of Example A.4. Each of
the client, bank and account process definitions are to be augmented as shown
in Fig. A.4 and in the formulas that follow (cf. Fig. A.2 and the formulas in
Example A.4).

type
Cash, Balance, CIndex, AIndex
CtoB = AIndex × Cash,
BtoC = Balance,
BtoA = Cindex × Cash,
AtoB = Cindex × Balance

channel
cb[1..m] CtoB|BtoC, ba[1..n] BtoA|AtoB

value

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

A.1 Financial Service Industry Business Processes 133

S6: Unit → Unit
S6() ≡

‖ { C(c) | c:CIndex } ‖ B() ‖
‖ { A(a,b,r) | a:AIndex, b:Balance, r:Response • ... }

C: c:CIndex → out cp[c] Unit
C(c) ≡

let (a,d):(AIndex×Cash) = ... in
cb[c] ! (d,a) end let r = cb[c] ? in C(c) end

B: Unit → in,out {cb[c]|c:CIndex} in,out {ba[a]|a:AIndex} Unit
B() ≡ ⌈⌉⌊⌋ {let (d,a) = cb[c] ? in ba[a] ! (c,d) end | c:Cindex} ⌈⌉⌊⌋

⌈⌉⌊⌋ {let (c,b) = ba[a] ? in bc[c] ! b end | a:Aindex} ; B()

A: a:Aindex × Balance → in,out ba[a] Unit
A(a,b) ≡ let (c,m) = ba[a] ? in ba[a] ! (m+b) ; A(a,m+b) end

We explain the formulas above. Both the C and the A definitions specify pairs
of communications: deposit output followed by a response input, respectively
a deposit input followed by a balance response output. Since many client de-
posits may occur while account deposit registrations take place, client identity
is passed on to the account, which “returns” this identity to the bank — thus
removing a need for the bank to keep track of client-to-account associations.
The bank is thus willing, at any moment, to engage in any deposit and in any
response communication from clients, respectively accounts. This is expressed
using the nondeterministic external choice combinator ⌈⌉⌊⌋.
Example A.7 A Bank System Context and State:

The Context

We focus in this example on the demand/deposit aspects of an ordinary bank.
The bank has clients k:K. Clients have one or more numbered accounts c:C.
Accounts, a:A, may be shared between two or more clients. Each account
is established and “governed” by an initial contract, ℓ:L (‘L’ for legal).The
account contract specifies a number of parameters: the yield, by rate (i.e.,
percentage), y:Y, due the client on positive deposits; the interest, by rate
(i.e., percentage), i:I, due the bank on negative deposits less than a normal
credit limit, n:N; the period (frequency), f:F, between (of) interest and yield
calculations; the number of days, d:D, between bank statements sent to the
client; and personal client information, p:P (name, address, phone number,
etc.).

The State

Above we focused on the “syntactic” notion of a client/account contract and
what it prescribed. We now focus on the “semantic” notion of the client ac-

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

134 A Examples of Rough Sketch Descriptions of Financial Services

count. The client account a:A contains the following information: the balance,
b:B (of monies in the account, whether debit or credit, i.e., whether positive or
negative), a list of time-stamped transactions “against” the account: estab-
lishment, deposits, withdrawals, transfers, interest/yield calculation, whether
the account is frozen (due to its exceeding the credit limit), or (again) freed
(due to restoration of balance within credit limits), issue of statement, and
closing of account. Each transaction records the transaction type, and if de-
posit, withdrawal or transfer and the amount involved, as well as possibly
some other information.

A Model

We consider contract information a contextual part of the bank configuration,
while the account part is considered a state part of the bank configuration.
We may then model the bank as follows:

type
K, C, Y, I, N, D, P, B, T
[Bank: Configuration]
Bank = Γ × Σ
[Γ : Context]
Γ = (K →m C-set) × (C →m L)
L == mkL(y:Y,i:I,n:N,f:F,d:D,p:P)
[Σ: State]
Σ = C →m A
A = {free|frozen} × B × (T × Trans)∗

Trans = Est|Dep|Wth|Xfr|Int|Yie|Frz|Fre|Stm|Sha|Clo
Dep == deposit(m:Nat)
Wth == withdraw(m:Nat)
Xfr == toxfer(to:C,m:Nat) | fmxfer(fm:C,m:Nat)
Sha == share(new:C,old:C)

Bank is here the configuration.5 Γ is the context. Σ is the state.

The banking system so far outlined is primarily a dynamic, programmable
system: Most transactions, when obeyed, change the (account) state σ:Σ. A
few (to wit: establish, share) change the context γ:Γ . Establishment occurs
exactly once in the lifetime of an account. Initially contracts, from which the
γ:Γ configuration component is built, are thought of as specifying only one
client. Hence the share transaction, which “joins” new clients to an account,
could as well be thought of as an action: one changing the state, rather than
the context. We have arbitrarily chosen to model it as a context changing
“action”! All this to show that the borderline between context and state is
“soft”: It is a matter of choice.
5 But, the bank configuration could, in more realistic situations, include many other

components not related directly to the client/account “business”.

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

A.2 Bank Scripts 135

Notice that, although time enters into the banking model, we did not
model time flow explicitly. Here, in the man-made system model, it is consid-
ered “outside” the model. We claim that the concepts of context and state
enter, in complementary ways, into both physical systems and man-made sys-
tems. Before proceeding with more detailed analysis of the configuration (cum
context ⊕ state) ideas, let us recall that these concepts are pragmatic.

48. No money printing: Financial transactions between financial institutions
(transfers of monies between banks, or to or from insurance compa-
nies, stockbrokers, portfolio managers, etc.) do not themselves “generate
monies”: The sum total of monies within the system is unchanged —
money is only “moved”.

49. Life is like a sewer, what you put into it is what you get out of it (II): The
only changes in the sum total of monies of a financial system (of banks,
insurance companies, stockbrokers, funds managers, etc.) is when clients
residing outside this system deposits or withdraws funds.

50. Financial services:
The system of banks (including a national or federal, etc., bank), insurance
companies, stockbrokers and traders, stock exchanges, portfolio managers,
and the external clients of these “components” (bank account holders,
insurance holders, buyers and sellers of securities instruments, etc.), as
well as the externally observable events within as well as between these
“system” components and between these and their clients, could form a
domain. Some of these events trigger actions, such as: opening an account,
depositing monies, withdrawing monies, transferring monies, buying or
selling stocks, etc.

A.2 Bank Scripts

A.2.1 Bank Scripts: A Denotational, Ideal Description

Example A.8 Bank Scripts, I: Without much informal explanation, i.e., nar-
rative, we define a small bank, small in the sense of offering but a few services.
One can open and close demand/deposit accounts. One can obtain and close
mortgage loans, i.e., obtain loans. One can deposit into and withdraw from
demand/deposit accounts. And one can make payments on the loan. In this ex-
ample we illustrate informal rough-sketch scripts while also formalising these
scripts.

In the following we first give the formal specification, then a rough-sketch
script. You may prefer to read the pairs, formal specification and rough-sketch
script, in the reverse order.

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

136 A Examples of Rough Sketch Descriptions of Financial Services

Bank State

Formal Presentation: Bank State

type
C, A, M
AY′ = Real, AY = {| ay:AY′

• 0<ay≤10 |}
MI′ = Real, MI = {| mi:MI′ • 0<mi≤10 |}
Bank′ = A Register × Accounts × M Register × Loans
Bank = {| β:Bank′

• wf Bank(β)|}
A Register = C →m A-set
Accounts = A →m Balance
M Register = C →m M-set
Loans = M →m (Loan × Date)
Loan,Balance = P
P = Nat

There are clients (c:C), account numbers (a:A), mortgage number
(m:M), account yields (ay:AY), and mortgage interest rates (mi:MI). The
bank registers, by client, all accounts (ρ:A Register) and all mortgages
(µ:M Register). To each account number there is a balance (α:Accounts).
To each mortgage number there is a loan (ℓ:Loans). To each loan is attached
the last date that interest was paid on the loan.

State Well-formedness

Formal Presentation: State Well-formedness

value
ay:AY, mi:MI

wf Bank: Bank → Bool
wf Bank(ρ,α,µ,ℓ) ≡ ∪ rng ρ = dom α ∧ ∪ rng µ = dom ℓ

axiom
ai<mi

We assume a fixed yield, ai, on demand/deposit accounts, and a fixed in-
terest, mi, on loans. A bank is well-formed if all accounts named in the
accounts register are indeed accounts, and all loans named in the mortgage
register are indeed mortgages. No accounts and no loans exist unless they
are registered.

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

A.2 Bank Scripts 137

Client Transactions

Formal Presentation: Syntax of Client Transactions

type
Cmd = OpA | CloA | Dep | Wdr | OpM | CloM | Pay
OpA == mkOA(c:C)
CloA == mkCA(c:C,a:A)
Dep == mkD(c:C,a:A,p:P)
Wdr == mkW(c:C,a:A,p:P)
OpM == mkOM(c:C,p:P)
Pay == mkPM(c:C,a:A,m:M,p:P)
CloM == mkCM(c:C,m:M,p:P)
Reply = A | M | P | OkNok
OkNok == ok | notok

The client can issue the following commands: Open Account, Close Account,
Deposit monies (p:P), Withdraw monies (p:P), Obtain loans (of size p:P)
and Pay installations on loans (by transferring monies from an account).
Loans can be Closed when paid down.

Open Account Transaction

Formal Presentation: Semantics of Open Account Transaction

value
int Cmd: Cmd → Bank → Bank × Reply

int Cmd(mkOA(c))(ρ,α,µ,ℓ) ≡
let a:A • a 6∈ dom α in
let as = if c ∈ dom ρ then ρ(c) else {} end ∪ {a} in
let ρ′ = ρ † [c 7→as],

α′ = α ∪ [a 7→0] in
((ρ′,α′,µ,ℓ),a) end end end

When opening an account the new account number is registered and the
new account set to 0. The client obtains the account number.

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

138 A Examples of Rough Sketch Descriptions of Financial Services

Close Account Transaction

Formal Presentation: Semantics of Close Account Transaction

int Cmd(mkCA(c,a))(ρ,α,µ,ℓ) ≡
let ρ′ = ρ † [c 7→ρ(c)\{a}],

α′ = α \ {a} in
((ρ′,α′,µ,ℓ),α(a)) end
pre c ∈ dom ρ ∧ a ∈ ρ(c)

When closing an account the account number is deregistered, the account
is deleted, and its balance is paid to the client. It is checked that the client
is a bona fide client and presents a bona fide account number. The well-
formedness condition on banks secures that if an account number is regis-
tered then there is also an account of that number.

Deposit Transaction

Formal Presentation: Semantics of Deposit Transaction

int Cmd(mkD(c,a,p))(ρ,α,µ,ℓ) ≡
let α′ = α † [a 7→α(a)+p] in
((ρ,α′,µ,ℓ),ok) end
pre c ∈ dom ρ ∧ a ∈ ρ(c)

When depositing into an account that account is increased by the amount
deposited. It is checked that the client is a bona fide client and presents a
bona fide account number.

Withdraw Transaction
Withdrawing monies can only occur if the amount is not larger than that
deposited in the named account. Otherwise the amount, p:P, is subtracted
from the named account. It is checked that the client is a bona fide client
and presents a bona fide account number.

Formal Presentation: Semantics of Withdraw Transaction

int Cmd(mkW(c,a,p))(ρ,α,µ,ℓ) ≡
if α(a)≥p

then
let α′ = α † [a 7→α(a)−p] in
((ρ,α′,µ,ℓ),p) end

else
((ρ,α,µ,ℓ),nok)

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

A.2 Bank Scripts 139

end
pre c ∈ dom ρ ∧ a ∈ dom α

Open Mortgage Account Transaction

Formal Presentation: Semantics of Open Mortgage Account Transaction

int Cmd(mkOM(c,p))(ρ,α,µ,ℓ) ≡
let m:M • m 6∈ dom ℓin
let ms = if c ∈ dom µ then µ(c) else {} end ∪ {m} in
let mu′ = µ † [c 7→ms],

α′ = α † [aℓ 7→α(aℓ)−p],
ℓ′ = ℓ ∪ [m7→p] in

((ρ,α′,µ′,ℓ′),m) end end end

To obtain a loan, p:P, is to open a new mortgage account with that loan
(p:P) as its initial balance. The mortgage number is registered and given to
the client. The loan amount, p, is taken from a specially designated bank
capital acount, aℓ. The bank well-formedness condition should be made to
reflect the existence of this account.

Close Mortgage Account Transaction

Formal Presentation: Semantics of Close Mortgage Account Transaction

int Cmd(mkCM(c,m))(ρ,α,µ,ℓ) ≡
if ℓ(m) = 0

then
let µ′ = ρ † [c 7→µ(c) \ {m}],

ℓ′ = ℓ \ {m} in
((ρ,α,µ′,ℓ′),ok) end

else
((ρ,α,µ,ℓ),nok)

end
pre c ∈ dom µ ∧ m ∈ µ(c)

One can only close a mortgage account if it has been paid down (to 0 bal-
ance). If so, the loan is deregistered, the account removed and the client
given an OK. If not paid down the bank state does not change, but the
client is given a NOT OK. It is checked that the client is a bona fide loan
client and presents a bona fide mortgage account number.

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

140 A Examples of Rough Sketch Descriptions of Financial Services

Loan Payment Transaction

Formal Presentation: Semantics of Loan Payment Transaction

To pay off a loan is to pay the interest on the loan since the last time
interest was paid. That is, interest, i, is calculated on the balance, b, of the
loan for the period d′−d, at the rate of mi. (We omit defining the interest
computation.) The payment, p, is taken from the client’s demand/deposit
account, a; i is paid into a bank (interest earning account) ai and the loan
is diminished with the difference p−i. It is checked that the client is a bona
fide loan client and presents a bona fide mortgage account number. The
bank well-formedness condition should be made to reflect the existence of
account ai.

int Cmd(mkPM(c,a,m,p,d′))(ρ,α,µ,ℓ) ≡
let (b,d) = ℓ(m) in
if α(a)≥p

then
let i = interest(mi,b,d′−d),

ℓ′ = ℓ † [m7→ℓ(m)−(p−i)]
α′ = α † [a 7→α(a)−p,ai 7→α(ai)+i] in

((ρ,α′,µ,ℓ′),ok) end
else

((ρ,α′,µ,ℓ),nok)
end end
pre c ∈ dom µ ∧ m ∈ µ(c)

This ends the first stage of the development of a script language.

A.2.2 Bank Scripts: A Customer Language

Example A.9 Bank Scripts, II: From each of the informal/formal bank script
descriptions we systematically “derive” a script in a possible bank script lan-
guage. The derivation, for example, for how we get from the formal descrip-
tions of the individual transactions to the scripts in the “formal” bank script
language is not formalised. In this example we simply propose possible scripts
in the formal bank script language.

Open Account Transaction

Formal Presentation: Open Account Transaction

value
int Cmd(mkOA(c))(ρ,α,µ,ℓ) ≡

let a:A • a 6∈ dom α in

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

A.2 Bank Scripts 141

let as = if c ∈ dom ρ then ρ(c) else {} end ∪ {a} in
let ρ′ = ρ † [c 7→as],

α′ = α ∪ [a 7→0] in
((ρ′,α′,µ,ℓ),a) end end end

Derived Bank Script: Open Account Transaction

routine open account(c in ′′
client

′′,a out ′′
account

′′) ≡
do

register c with new account a ;
return account number a to client c

end

Close Account Transaction

Formal Presentation: Close Account Transaction

int Cmd(mkCA(c,a))(ρ,α,µ,ℓ) ≡
let ρ′ = ρ † [c 7→ρ(c)\{a}],

α′ = α \ {a} in
((ρ′,α′,µ,ℓ),α(a)) end
pre c ∈ dom ρ ∧ a ∈ ρ(c)

Derived Bank Script: Close Account Transaction

routine close account(c in ′′
client

′′,a in ′′
account

′′ out ′′
monies

′′) ≡
do

check that account client c is registered ;
check that account a is registered with client c ;
if

checks fail

then

return NOT OK to client c
else

do

return account balance a to client c ;
delete account a

end

fi

end

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

142 A Examples of Rough Sketch Descriptions of Financial Services

Deposit Transaction

Formal Presentation: Deposit Transaction

int Cmd(mkD(c,a,p))(ρ,α,µ,ℓ) ≡
let α′ = α † [a 7→α(a)+p] in
((ρ,α′,µ,ℓ),ok) end
pre c ∈ dom ρ ∧ a ∈ ρ(c)

Derived Bank Script: Deposit Transaction

routine deposit(c in ′′
client

′′,a in ′′
account

′′,ma in ′′
monies

′′) ≡
do

check that account client c is registered ;
check that account a is registered with client c ;
if

checks fail

then

return NOT OK to client c
else

do

add ma to account a ;
return OK to client c

end

fi

end

Withdraw Transaction

Formal Presentation: Withdraw Transaction

int Cmd(mkW(c,a,p))(ρ,α,µ,ℓ) ≡
if α(a)≥p

then
let α′ = α † [a 7→α(a)−p] in
((ρ,α′,µ,ℓ),p) end

else
((ρ,α,µ,ℓ),nok)

end
pre c ∈ dom ρ ∧ a ∈ dom α

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

A.2 Bank Scripts 143

Derived Bank Script: Withdraw Transaction

routine withdraw(c in ′′
client

′′,a in ′′
account

′′,
ma in ′′

amount
′′ out ′′

monies
′′) ≡

do

check that account client c is registered ;
check that account a is registered with client c ;
check that account a has ma or more balance;
if

checks fail

then

return NOT OK to client c
else

do

subtract ma from account a ;
return ma to client c

end

fi

end

Obtain Loan Transaction

Formal Presentation: Obtain Loan Transaction

int Cmd(mkOM(c,p))(ρ,α,µ,ℓ) ≡
let m:M • m 6∈ dom ℓin
let ms = if c ∈ dom µ then µ(c) else {} end ∪ {m} in
let mu′ = µ † [c 7→ms],

α′ = α † [aℓ 7→α(aℓ)−p],
ℓ′ = ℓ ∪ [m7→p] in

((ρ,α′,µ′,ℓ′),m) end end end

Derived Bank Script: Obtain Loan Transaction

routine get loan(c in ′′
client

′′,p in ′′
amount

′′,m out ′′
loan number

′′) ≡
do

register c with loan m amount p;
subtract p from account bank’s loan capital

return loan number m to client c
end

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

144 A Examples of Rough Sketch Descriptions of Financial Services

Close Loan Transaction

Formal Presentation: Close Loan Transaction

int Cmd(mkCM(c,m))(ρ,α,µ,ℓ) ≡
if ℓ(m) = 0

then
let µ′ = ρ † [c 7→µ(c)\{m}],

ℓ′ = ℓ \ {m} in
((ρ,α,µ′,ℓ′),ok) end

else
((ρ,α,µ,ℓ),nok)

end
pre c ∈ dom µ ∧ m ∈ µ(c)

Derived Bank Script: Close Loan Transaction

routine close loan(c in ′′client′′,m in ′′loan number′′) ≡
do

check that loan client c is registered ;
check that loan m is registered with client c ;
check that loan m has 0 balance;
if

checks fail

then

return NOT OK to client c
else

do

close loan m
return OK to client c

end

fi

end

Loan Payment Transaction

Formal Presentation: Loan Payment Transaction

int Cmd(mkPM(c,a,m,p,d′))(ρ,α,µ,ℓ) ≡
let (b,d) = ℓ(m) in
if α(a)≥p

then
let i = interest(mi,b,d′−d),

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

A.2 Bank Scripts 145

ℓ′ = ℓ † [m7→ℓ(m)−(p−i)]
α′ = α † [a 7→α(a)−p,ai 7→α(ai)+i] in

((ρ,α′,µ,ℓ′),ok) end
else

((ρ,α′,µ,ℓ),nok)
end end
pre c ∈ dom µ ∧ m ∈ µ(c)

Derived Bank Script: Loan Payment Transaction

routine pay loan(c in ′′client′′,m in ′′loan number′′,p in ′′amount′′) ≡
do

check that loan client c is registered ;
check that loan m is registered with client c ;
check that account a is registered with client c ;
check that account a has p or more balance ;
if

checks fail

then

return NOT OK to client c
else

do

compute interest i for loan m on date d ;
subtract p−i from loan m ;
subtract p from account a ;
add i to account bank’s interest

return OK to client c ;
end

fi

end

This ends the second stage of the development of a script language.

A.2.3 Syntax of Bank Script Language

Example A.10 Bank Scripts, III: We now examine the proposed scripts. Our
objective is to design a syntax for the language of bank scripts. First, we list
the statements as they appear in Example A.9 on page 140, except for the
first two statements.

Routine Headers

We first list all routine “headers”:

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

146 A Examples of Rough Sketch Descriptions of Financial Services

open account(c in ′′client′′,a out ′′account′′)
close account(c in ′′

client
′′,a in ′′

account
′′ out ′′

monies
′′)

deposit(c in ′′
client

′′,a in ′′
account

′′,ma in ′′
monies

′′)
withdraw(c in ′′

client
′′,a in ′′

account
′′,ma in ′′

amount
′′ out ′′

monies
′′)

get loan(c in ′′
client

′′,p in ′′
amount

′′,m out ′′
loan number

′′)
close loan(c in ′′client′′,m in ′′loan number′′)
pay loan(c in ′′

client
′′,m in ′′

loan number
′′,p in ′′

amount
′′)

We then schematise a routine “header”:

routine name(v1 io ′′
t
′′,v2 io ′′

t2
′′,...,vn io ′′

tn
′′) ≡

where:

io = in | out

and:

ti is any text

Example Statements

do stmt list end

if test expr then stmt else stmt fi

register c with new account a
register c with loan m amount p

add p to account a
subtract p from account a
subtract p−i from loan m
add i to account bank’s interest

subtract p from account bank’s loan capital

add p to account bank’s loan capital

compute interest i for loan m on date d

delete account a
close loan m

return ret expr to client c
check that check expr

The interest variable i is a local variable. The date variable d is an “oracle”
(see below), but will be treated as a local variable.

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

A.2 Bank Scripts 147

Example Expressions

test expr:

checks fail

ret expr:

account number a
account balance a
NOT OK
OK
p
loan number m

check expr:

account client c is registered

account a is registered with client c
account a has p or more balance

loan client c is registered

loan m is registered with client c
loan m has 0 balance

Abstract Syntax for Syntactic Types

We analyse the above concrete schemas (i.e., examples). Our aim is to find a
reasonably simple syntax that allows the generation of the scripts of Exam-
ple A.9. After some experimentation we settle on the syntax shown next.

Formal Presentation: Bank Script Language Syntax

type
RN, V, C, A, M, P, I, D

Routine = Header × Clause

Header == mkH(rn:RN,vdm:(V →m (IOL × Text)))
IOL == in | out | local

Clause = DoEnd | IfThEl | Return | RegA | RegL | Check
| Add | Sub | 2Sub | DelA | DelM | ComI | RetE |

DoEnd == mkDE(cl:Clause∗)

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

148 A Examples of Rough Sketch Descriptions of Financial Services

IfThEl == mkITE(tex:Test Expr,cl:Clause,cl:Clause)

Return == mkR(rex:Ret Expr,c:V)
RegA == mkRA(c:V,a:V)
RegL == mkRL(c:V,m:V,p:V)
Chk = mkC(cex:Chk Expr)
Add == mkA(p:V,t:(V|BA))
Sub == mkS(p:V,t:(V|BA))
2Sub == mk2S(p:V,i:V,t:(AN|MN|BA))

AN == mkAN(a:V)
MN == mkMN(m:V)
BA == bank i | bank c

DelA == mkDA(c:V,a:V)
DelM == mkDM(c:V,m:V)
Comp == mkCP(m:V,fn:Fn,argl:(V|D)∗)

Fn == interest | ...

Test Expr = mkTE()

Chk Expr == CisAReg(c:V) | AisReg(a:V,c:V) | AhasP(a:V,p:V)
| CisMReg(c:V) | MisReg(m:V,c:V) | Mhas0(m:V)

RetE == mkAN(a:V)|mkAB(a:V)|ok|nok|mkP(p:V)|mkMN(m:V)

A.2.4 Semantics of Bank Script Language

Example A.11 Bank Scripts, IV:

Formal Presentation: Semantics of Bank Script Language

We now give semantics to the bank script language of Example A.10 on
page 145.

Semantic Types Abstract Syntax

type
V, C, A, M, P, I

type
AY′ = Real, AY = {| ay:AY′

• 0<ay≤10 |}
MI′ = Real, MI = {| mi:MI′ • 0<mi≤10 |}
Bank′ = A Register × Accounts × M Register × Loans
Bank = {| β:Bank′

• wf Bank(β)|}

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

A.2 Bank Scripts 149

A Register = C →m A-set
Accounts = A →m Balance
M Register = C →m M-set
Loans = M →m (Loan × Date)
Loan,Balance = P
P = Nat
Σ = (V →m (C|A|M|P|I)) ⋃

(Fn →m FCT)
FCT = (...|Date)∗ → Bank → (P|...)

value
aℓ,ai:A

axiom
∀ (ρ,α,µ,ℓ):B {aℓ,ai} ⊆ dom α

The only difference between the above semantics types and those of Exam-
ple A.9 is the Σ state. The purpose of this auxiliary bank state component is
to provide (i) a binding between the (always fixed) formal parameters of the
script routines and the actual arguments given by the bank client or bank
clerk when invoking any one of the routines, and (ii) a binding of a variety
of “primitive”, fixed, banking functions, FCT, named Fn, like computing the
interest on loans, etc.

Semantic Functions

channel
k:(C|A|M|P|Text), d:Date

There is, in this simplifying example, one channel, k, between the bank and
the client. It transfers text messages from the bank to the client, and client
names (c:C), client account numbers (a:A), client mortgage numbers (m:M),
and amount requests and monies (p:P) from the client to the bank. There
is also a “magic”, a demonic channel, d, which connects the bank to a date
“oracle”.

value
date: Date → out d Unit
date(da) ≡ (d!da ; date(da+∆))

Each routine has a header and a clause. The purpose of the header is to
initialise the auxiliary state component σ to appropriate bindings of formal
routine parameters to actual, client-provided arguments. Once initialised,
interpretation of the routine clause can take place.

int Routine: Routine → Bank → out k Bank×Σ
int Routine(hdr,cla)(β) ≡

let σ = initialise(hdr)([]) in

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

150 A Examples of Rough Sketch Descriptions of Financial Services

Int Clause(cla)(σ)(true)(β) end

For each formal parameter used in the body, i.e., in the clause, of the routine,
there is a formal parameter definition in the header, and only for such. We
have not expressed the syntactic well-formedness condition — but leave it as
an exercise to the reader. And for each such formal parameter of the header
a binding has now to be initially established. Some define input arguments,
some define local variables and the rest define, i.e., name, output results.
For each input argument the meaning of the header therefore specifies that
an interaction is to take place, with the environment, as here designated by
channel k, in order to obtain the actual value of that argument.

initialise: Header → Σ → out,in k Σ
initialise(hdr)(σ) ≡

if hdr = []
then σ
else

let v:V • v ∈ dom hdr in
let (iol,txt) = hdr(v) in
let σ′ =

case iol of
in → k!txt ; σ ∪ [v 7→ k?],

→ σ ∪ [v 7→ undefined]
end in

initialise(hdr\{v})(σ′)
end end end end

In general, a clause is interpreted in a configuration consisting of three parts:
(i) the local, auxiliary state, σ : Σ, which binds routine formal parameters to
their values; (ii) the current ‘check’ state, tf:Check, which records the “sum
total”, i.e., the conjunction status of the check commands so far interpreted,
i.e., initially tf = true; and (iii) the proper bank state, β:Bank, exactly as
also defined and used in Example A.9. The result of interpreting a clause is
a configuration: (Σ×Check×Bank).

type
Check = Bool

value
Int Clause: Clause→Σ→Check→Bank→out k,in d (Σ×Check×Bank)

A do ... end clause is interpreted by interpreting each of the clauses within
the clauses in the do ... end clause list, and in their order of appearance.
The result of a check clause is “anded” (conjoined) to the current tf:Check
status.

Int Clause(mkDE(cll))(σ)(tf)(β) ≡

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

A.2 Bank Scripts 151

if cll = 〈〉
then (σ,tf,β)
else

let (σ′,tf′,β′) = Int Clause(hd cl)(σ)(tf)(β) in
Int Clause(mkDE(tl cll))(σ′)(tf∧tf′)(β′)

end end

if ... then ... else fi clauses only test the current check status (and propa-
gate this status).

Int Clause(mkITE(tex,ccl,acl))(σ)(tf)(β) ≡
if tf

then
Int Clause(ccl)(σ)(true)(β)

else
Int Clause(acl)(σ)(false)(β)

end

Interpretation of a return clause does not change the configuration “state”.
It only leads to an output, to the environment, via channel k, of a return
value, and as otherwise directed by any of the six return expressions (rex).

Int Clause(mkRet(rex))(σ)(tf)(ρ,α,µ,ℓ) ≡
k!(case rex of

mkAN(a)
→ ′′Your new account number:′′ σ(a),

mkAB(a)
→ ′′

Your account balance paid out:
′′ α(a),

mkP(p)
→ ′′

Monies withdrawn:
′′ σ(p),

mkMN(m)
→ ′′

Your loan number:
′′ σ(m),

OK
→ ′′Transaction was successful′′,

NOK
→ ′′

Transaction was not successful
′′

end);
(σ,true,(ρ,α,µ,ℓ))

Interpretation of a register account clause is as you would expect from
Example A.9 — anything else would “destroy” the whole purpose of having
a bank script. That purpose is, of course, to effect basically the same as the
not yet “script-ised” semantics of Example A.9.

Int Clause(mkRA(c,a))(σ)(tf)(ρ,α,µ,ℓ) ≡
let av:A • av 6∈ dom α in

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

152 A Examples of Rough Sketch Descriptions of Financial Services

let σ′ = σ † [a 7→ av],
as = if c ∈ dom ρ then ρ(c) else {} end,
ρ′ = ρ † [c 7→ as ∪ {av}],
α′ = α ∪ [av 7→ 0] in

(σ′,tf,(ρ′,α′,µ,ℓ))
end end

The same holds for the register loan clause (as for the register account
clause).

Int Clause(mkRL(c,m,p))(σ)(tf)(ρ,α,µ,ℓ) ≡
let mv:M • mv 6∈ dom ℓin
let σ′ = σ † [m 7→ mv],

ms = if c ∈ dom µ then µ(c) else {} end,
µ′ = µ † [c 7→ ms ∪ {mv}],
ℓ′ = ℓ ∪ [mv 7→ p] in

(σ′,tf,(ρ,α,µ′,ℓ′))
end end

It can be a bit hard to remember the “meaning” of the mnemonics, so we
repeat them here in another form:

• CisAReg: Client named in c is registered:
σ(c) ∈ dom ρ.

• AisReg: Client named in c has account named in a:
σ(c) ∈ domρ∧σ(σ(a)) ∈ρ(σ(c)).

• AhasP: Account named in a has at least the balance given in p:
α(σ(a))≥σ(p).

• CisMReg: Client named in c has a mortgage:
σ(c) ∈ dom µ.

• MisReg: Client named in c has mortgage named in m:
σ(c) ∈ domµ∧σ(m) ∈µ(σ(c)).

• Mhas0: Mortgage named in m is paid up fully:
ℓ(σ(m))=0.

Then it should be easier to “decipher” the logics:

Int Clause(mkChk(cex))(σ)(tf)(ρ,α,µ,ℓ) ≡
(σ,case cex of

CisAReg(c) → σ(c) ∈ dom ρ,
AisReg(a,c) → σ(c) ∈ domρ∧σ(σ(a)) ∈ρ(σ(c)),
AhasP(a,p) → α(σ(a))≥σ(p),
CisMReg(c) → σ(c) ∈ dom µ,
MisReg(m,c) → σ(c) ∈ domµ∧σ(m) ∈µ(σ(c)),
Mhas0(m) → ℓ(σ(m))=0

end,(ρ,α,µ,ℓ))

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

A.2 Bank Scripts 153

There are a number of ways of adding amounts, designated in p, to accounts
and mortgages:

• mkAN(a): to account named in a
• mkMN(m): to mortgage named in m
• bank i: to the bank’s own interest account
• bank c: to the bank’s own capital account

Int Clause(mkA(p,t))(σ)(tf)(ρ,α,µ,ℓ) ≡
case t of

mkAN(a) → (σ,true,(ρ,α†[a 7→α(σ(a))+σ(p)],µ,ℓ))
mkMN(m) → (σ,true,(ρ,α,µ,ℓ†[σ(m)7→ℓ(σ(m))+σ(p)]))
bank i → (σ,true,(ρ,α†[ai 7→α(ai)+σ(p)],µ,ℓ))
bank c → (σ,true,(ρ,α†[aℓ 7→α(aℓ)+σ(p)],µ,ℓ))

end

The case, as above for adding, also holds for subtraction.

Int Clause(mkS(p,t))(σ)(tf)(ρ,α,µ,ℓ) ≡
case t of

mkAN(a) → (σ,true,(ρ,α†[σ(a)7→α(σ(a))−σ(p)],µ,ℓ))
mkMN(m) → (σ,true,(ρ,α,µ,ℓ†[σ(m)7→ℓ(σ(m))−σ(p)]))
bank i → (σ,true,(ρ,α†[ai 7→α(ai)−σ(p)],µ,ℓ))
bank c → (σ,true,(ρ,α†[aℓ 7→α(aℓ)−σ(p)],µ,ℓ))

end

And it holds as for subtraction, but subtracting two amounts, of values
designated in p and i.

Int Clause(mk2S(p,i,t))(σ)(tf)(ρ,α,µ,ℓ) ≡
let pi = σ(p)−σ(i) in
case t of

mkAN(a) → (σ,true,(ρ,α†[σ(a)7→α(σ(a))−pi],µ,ℓ))
mkMN(m) → (σ,true,(ρ,α,µ,ℓ†[σ(m)7→ℓ(σ(m))−pi]))
bank i → (σ,true,(ρ,α†[ai 7→α(ai)−pi],µ,ℓ))
bank c → (σ,true,(ρ,α†[aℓ 7→α(aℓ)−pi],µ,ℓ))

end end

To delete an account is to remove it from both the account register and the
accounts.

Int Clause(mkDA(c,a))(σ)(tf)(ρ,α,µ,ℓ) ≡
(σ\{a},true,(ρ†[σ(c)7→α(σ(c))\{σ(a)}],α\{σ(a)},µ,))

Similarly, to delete a mortgage is to remove it from both the mortgage
register and the mortgages.

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

154 A Examples of Rough Sketch Descriptions of Financial Services

Int Clause(mkDM(c,m))(σ)(tf)(ρ,α,µ,ℓ) ≡
(σ\{m},true,(ρ,α,µ†σ(c)[7→µ(σ(c))\{σ(m)}],ℓ\{β(m)}))

To compute a special function requires a place, i, to put, i.e., to store, the
resulting, the yielded, value. It also requires the name, fn, of the function,
and the actual argument list, aal, i.e., the list of values to be applied to the
named function, fct. As an example we illustrate the “built-in” function of
computing the interest on a loan, a mortgage.

Int Clause(mkCP(i,fn,aal))(σ)(tf)(ρ,α,µ,ℓ) ≡
let fct = σ(fn) in
let val = case fn of

′′
interest

′′ →
let 〈m,d〉 = aal in fct(〈µ(σ(m)),d?〉) end

... → ...
end in

(σ†[σ(i)7→val],true,(ρ,α,µ,ℓ)) end end

This ends the last stage of the development of a script language.

Example A.12 Script Reengineering: We refer to Examples A.8–A.11. They
illustrated the description of a perceived bank script language. One that was
used, for example, to explain to bank clients how demand/deposit and mort-
gage accounts, and hence loans, “worked”.

With the given set of “schematised” and “user-friendly” script commands,
such as they were identified in the referenced examples, only some banking
transactions can be described. Some obvious ones cannot, for example, merge
two mortgage accounts, transfer money between accounts in two different
banks, pay monthly and quarterly credit card bills, send and receive funds
from stockbrokers, etc.

A reengineering is therefore called for, one that is really first to be done in
the basic business processes of a bank offering these services to its customers.
We leave the rest as an exercise, cf. Exercise A.1.

A.2.5 A Student Exercise

Exercise A.1 Banking Script Language. We refer to Example A.12 — and all
of the examples referenced initially in Example A.12. Redefine, as suggested
there, the banking script language to allow such transactions as: (i) merge
two mortgage accounts, (ii) transfer money between accounts in two different
banks, (iii) pay monthly and quarterly credit card bills, (iv) send and receive
funds from stockbrokers, etc.

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

A.3 Financial Service Industry 155

A.3 Financial Service Industry

• We model only two of the players in the financial services market:
⋆ Banks and
⋆ securities (typically stock and bond) exchanges.

• Also: We do not model their interaction, that is, transfers of securities
between banks and stock exchanges.

• Such as was done in earlier examples.
• The models presented now lend themselves to such extensions rather easily.

A.3.1 Banking

Domain Analysis

We start out with a major analysis cum domain narrative!

Account Analysis:

We choose a simple, ordinary person oriented banking domain.
(This is in contrast to for example an import/export, or an investment, or

a portfolio bank domain. And it is in contrast to the many other perspectives
that one could model: securities and portfolio management, foreign currency
trading, customer development, etc.)

On one hand there are the s, k:K, and on the other hand there is the .
(We initially assume that the is perceived, by the s, as a single, “monolithic
thing” — although it may have a geographically widely distributed net of
branch offices.) Each person or other legal entity, who is a , may have several
s.

Each has an identity, c:C, and is an otherwise complex quantity, a:A,
whose properties will be unfolded slowly. A , k:K, may have more than one
, but has at least one — otherwise there would be no need to talk about “a
” (but perhaps about a prospective). (So the ing domain includes all the
accounts and the .) Two or more may share .

Account Types:

have : Some are ; and some are ; yet other are (or) ; salary/earnings , etc.
With each we associate a which is set up when the is first established.

Contract Rules & Regulations:

The establishes that determine several properties.
Example are The account (in question)(i) s y% , and (ii) has a of

ℓ currency units. (iii) When the is between 0 and the (negative) , then
the owed the is j%; (iv) s carry from the day after ; (v) on a is

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

156 A Examples of Rough Sketch Descriptions of Financial Services

otherwise calculated as follows: . . . ,6 (vi) the client is sent a of s every d
days (typically every month, or every quarter, or for every d transactions, or
some such arrangement), . . . the lists, in chronological order, all as well as
initiated s involving this and as from (ie. since) the last time a was issued.
(vii) s for handling certain (or any) s could be as follows: ment e, s, i,
ing (overdraw) oℓ, t, etc. The , also called the s (of the), for any specific
of , may differ from to , and may change over time.

The are set up when the is ed. Some may be changed by the , and some
by the — giving to the . ing an , its s and an are examples of joint / or
just s.

Transactions:

Depending on the a number of different kinds of s can be issued “against”,
ie. concerning (primarily) a specifically named, c:C, , a:A.

• s:
can (i) monies into and (ii) monies from a (rather freely — and the

may stipulate so); (iii) can money in a (and the contract may stipulate
minimum monthly savings); (iv) clients can money from their (and the
will undoubtedly state frequency and size limits on such s).
(v) may obtain a large loan whereafter one regularly, as stipulated in the
, (vi) repays the by ing — for example — three kinds of monies: (vi.1)
on the (these are monies that go to a of the), (vi.2) on the (this is a
quantity which is deducted from the s’) and (vi.3) s (again monies that
go to some [other]). (vii) And a may produce a () of a .
A is a list of summaries of s. The listed s give the and of the s, its
nature7, the amounts involved (and, in cases according to which they
were calculated), the resulting (current) , etc., etc. ! A also lists the
“executed against” the but by the . See next.

• Bank Transactions:
The bank regularly performs s “against” several accounts: (viii) calculation
of s due the s (say on demand/deposit and), and (ix) calculation of s due
the (say on n and on loan accounts). The may regularly inform as to
the of their : (x) , (xi) s of s (s, , s), (xii) warnings on overdue payments,
information on or s (say of salary) into (salary) accounts, etc. (xiii)
Finally the may the rules & regulations of s, and (xiv) may transactions
on (ie.) an .

Immediate & Deferred Transaction Handling:

When a is issued, say at time t, some of its implications are “immediately”,
some are red. Examples are: installation of , and s on a is expected to

6 . . . : here follows a detailed (pseudo-algorithmic) explanation on how is calculated.
7 , , (al from a), ation of , and s on a (ment), between , including salary and

other payment deposits as well as s on for example s of other , on credit cards,
etc.

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

A.3 Financial Service Industry 157

immediately lead to the on and s, while a , to be issued by the , namely for
a to be issued, say, some period prior to a quarter later, to that (concerning
amounts of next s), is deferred. Other s are also red in relation to this example.
A red will be if the has not responded — as assumed — to a by providing
a . That red will be ed if a proper takes place. The , if eventually , as its
time “comes up”, will lead to further s as well as of rates, etc. s concerning
these s and s, etc., are also contained in the .

Thus we see, on one hand, that the is a serious and complex document.
In effect its rule & regulation conditions define a number of named s that
are applied when relevant s are handled (executed). These s, in the domain,
are handled either manually, semi-automatically or (almost fully) automated.
The staff (or, in cases, perhaps even s) who handle the manual parts of these
s may and will make mistakes. And the semi or fully automated s may be
incorrect !

Summary

We can summarise the analysis as follows:

• Transactions are initiated by:
⋆ Clients:

· Establishment and closing of accounts
· demand (withdrawal) and deposits of monies
· borrowing and repayment of loans
· transfer of monies into or out of accounts
· request for (instantaneous or regular) statements
· &c.

⋆ and the bank:
· Regular calculation of yield and interest
· regular payment of bills
· regular issue of statements
· reminder of loan repayments
· warning on overdue payments
· annual account reports
· change in (and advice about) account conditions
· &c.

• Transactions are handled by the bank:
⋆ immediately: certain parts of f.ex. als, s, s, etc.
⋆ overnight:8 remaining parts of f.ex. above
⋆ deferred: issue of s and preparation for s, of s, s, and s. etc.
⋆ conditionally:9 issue of s, etc.

• In the domain this handling may be by any combination of human and
machine (incl. computer) labour.

8 We will treat overnight transactions as deferred transactions.
9 We will treat conditional transactions as deferred transactions.

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

158 A Examples of Rough Sketch Descriptions of Financial Services

• Support technology is here seen as the various means whereby transac-
tions are processed and their effect recorded.

• Examples of support technology are: The paper forms, including (pa-
per) books, used during transaction and kept as records; mechanical,
electro-mechanical and electronic, hand-operated calculators; chops (used
in authentication on paper forms); typewriters; computers (and hence data
communication equipment).

Abstraction of Immediate and Deferred Transaction Processing

We proceed by first giving — again — a rather lengthy analysis, cum narrative,
of transaction processing related concepts of a bank.

We have a situation where s are either “immediately” handled, or are red.
For the domain we choose to model this seeming “distinction” by obliterating
it ! Each is instead red and affixed the time interval when it should be . If
a is issued at time t and if parts or all of it is to be handled “immediately”
then it is red to the time interval (t, t). There is therefore, as part of the ,
a of time interval marked transaction requests. The (staff, computers, etc.)
now is expected to repeatedly, ie. at any time t′, inspect the . Any s that
remain in the such that t′ falls in the interval of requests are then to be
handled “immediately”. In the model we assume that the handling time is
0, but that requests that are eligible for “immediate” handling are chosen
non-deterministically. This models the reality of a domain, but perhaps not a
desirable one!

Account Temporality:

Time is a crucial concept in banking: s are calculated over time during which
the changes and so do the rates — with no synchronisation between for
example these two. Because of that temporality, we shall — in the domain
model — “stack” all s (initialisations and updates) to the ual s () such that
all such s are remembered and with a time-stamp of their occurrence.

Likewise most other account components will be time-stamped and past
component values kept, likewise time-stamped.

Summary:

We shall subsequently repeat and expand on the above while making it more
precise and while also providing an emerging formal specification of a domain
model.

Before we do so we will, however, summarise the above:

• There are s, k:K, and s may have more than one , and s are identified, c:C.
• With each there is a . The lists the , including all the that shall govern

the handling of any “against” the .

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

A.3 Financial Service Industry 159

• are either client initiated such as , , , , s, etc., or are bank initiated such
as interest s, s, s, issuance of requested regular s, etc.

• are expected handled within a certain time-interval — which may be
“now” or later. For simplicity we treat all as red (till now or later!).

• So there are requests and processing. The latter corresponds to the actual,
possibly piecemeal, handling of requests.

• And there are . This term — which is also a computing science and software
engineering term — has here a purely banking connotation.

• And there are commands. The actual handling of a is decribed by means
of a program in a hypothetical , BaPL. Programs in BaPL are commands,
and commands may be composite and consist of other commands !

• So please keep the five concepts separate: Transaction requests, trans-
action processing, statements, routines and commands. Their relations
are simple: Transaction requests lead to the eventual execution of one or
more routines, each as described by means of commands. The excution
of transaction request related routines constitute the transaction (ie. the
transaction processing). One kind of transaction request may be that of
“printing” a client account statement.

We have given a normative overview of the structure and the logic of some
base operations of typical banks.

That is: We have mentioned a number of important bank state components
and hinted at their inter-relation. But we have not detailed what actions ac-
tually occur when a transaction is “executed”: what specific arithmetic is per-
formed on account balances, what specific logic applies to conditional actions
on account components, etc.

We shy away from this as it is normally not a normative property, but
highly specialised: differs from bank to bank, from account to account, etc.
These arithmetics and logics are properties of instantiated banks and accounts.
With repect to the latter the arithmetic and logic transpire from the bank rules
& regulations.

Modelling

The essence of the above analysis is the notion of deferred action. The conse-
quence of this modelling decision is twofold: (i) First we are able to separate
the possibly human (inter)action between clients and tellers, or between clients
and ‘automatic teller machines’ (ATMs) from the actual “backroom” (action)
processing; (ii) and then we are able to abstract this latter considerably wrt.
for example the not so abstract model we shall later give of bank accounts.

There are client, k:K, account identifiers, c:C, accounts a:A, and trans-
actions, tr:Trans. And there is the repository r:R. The repository contains
for different time intervals (t,t′) [where t may be equal to t′] and for differ-
ent client account identifiers zero, one or more “deferred” transactions (to be
executed).

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

160 A Examples of Rough Sketch Descriptions of Financial Services

Each transaction is modelled as a pair: a transaction routine name, rn:Rn,
and a list of arguments (values) to be processed by the routine.

We assume that (for example) client accounts, a:A, contain routine de-
scriptions (scripts).

type
K, C, A
B = ({} →m (K →m C-set))⋃

({} →m (C →m A))⋃
({} →m R)⋃
({conditions} →m (C →m (Rn →m Routine-set)))

R = (T × T) →m Jobs
Jobs = C →m Trans-set
Trans == mk Trans(rn:Rn,vl:VAL∗)
Routine = /∗ BaPL Program ∗/

Client Transactions:

A client may issue a transaction, tr:Trans, w.r.t. to an account, c:C, and
at time t:T. Honouring that request for a transaction the banking system
defers the transaction by repositing it for execution in the (instantaneous)
time interval (t,t). The client may already, for some reason or another, have
a set of such reposited transactions.

Insert One Transaction:

value
client: C × Trans → T → B → B
client(c,trans)(t)(b) ≡ insert([(t,t) 7→ [c 7→ {trans}]])(b)

We can safely assume that no two identical:

[(t,t) 7→ [c 7→ tsk]]

can be submitted to the bank since time passes for every one client or bank
transaction.

Insertion of Arbitrary Number of Transactions:

You may wish to skip the next two function definitions. They show that one
can indeed express the insertion and merge of deferred transactions into the
bank repository.

value

insert: R
∼→ B

∼→ B
insert(r)(β) ≡

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

A.3 Financial Service Industry 161

if r = []
then beta
else

let r′ = β(), (t,t′):(T×T) • (t,t′) ∈ dom r in
let r′′ =

if (t,t′) ∈ dom r′

then
let bjobs = r′(t,t′), cjobs = r(t,t′) in
r′ † [(t,t′) 7→ merge(bjobs,cjobs)] end

else
r′ ∪ [(t,t′) 7→ cjobs] end

insert(r \ {(t,t′)})(β † [7→ r′])
end end end

Merge of Jobs: Client Transactions:

value

merge: Jobs × Jobs
∼→ Jobs

merge(bjobs,cjobs) ≡
if cjobs=[]

then bjobs
else

let c:C • c ∈ dom cjobs in
let jobs =

if c ∈ dom bjobs
then [c 7→ cjobs(c) ∪ bjobs(c)]
else [c 7→ cjobs(c)] end in

merge(bjobs † jobs,cjobs \ {c}) end end
end

The Banking Cycle:

The bank at any time t:T investigates whether a transaction is (“defer”)
scheduled [ie. “deferred” for handling] at, or around, that time. If not, nothing
happens — and the bank is expected to repeat this investigation at the next
time click ! If there is a transaction, tr:Trans, then it is fetched from the
repository together with the time interval (t′,t′′) for which it was scheduled
and the identity, c:C, of the client account. (c may be the identity of an
account of the bank itself!)

value

bank: B → T
∼→ B

bank(β)(t) ≡
if β() = [] then β else

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

162 A Examples of Rough Sketch Descriptions of Financial Services

if is ready Task(β)(t)
then

let (((t′,t′′),c,mk Task(rn,al)),β′) = sel rmv Task(β)(t) in
let rout:Routine • rout ∈ ((β′(conditions))(c))(rn) in
let (β′,r) = E(c,rout)(al)(t,t′,t′′)(β′) in
bank(insert(r)(β′′))(t) end end end

else
let t′′′:T • t′′′ = t + ∆τ in bank(β)(t′′′) end

end end

E: C × Routine
∼→ VAL∗

∼→ (T×T×T)
∼→ B

∼→ B × R

The expression ∆τ yields a minimal time step value.

Auxiliary Repository Inspection Functions:

value

is ready Task: B → T
∼→ Bool

is ready Task(β)(t) ≡
∃ (t′,t′′):T×T • (t′,t′′) ∈ dom β() ∧ t′ ≤ t ∧ t ≤ t′′

sel rmv Task: B → T
∼→ (((T×T) × C × Task) × B)

sel rmv Task(β)(t) ≡
let r = β() in
let (t′,t′′):T×T • (t′,t′′) ∈ dom r ∧ t′ ≤ t ∧ t ≤ t′′ in
let jobs = r(t′,t′′) in
let c:C • c ∈ dom jobs in
let tasks = jobs(c) in
let task:Task • task ∈ tasks in
let jobs′ = if tasks\{task} = {}

then jobs\{c} else jobs † [c 7→ tasks\{task}] end in
let r′ = if jobs′ = []

then r\{(t′,t′′)} else r † [(t′,t′′) 7→ jobs′] end in
(((t′,t′′),c,task),β † [7→ r′])
end end end end end end end end

• Performing the execution as prescribed by the transaction, tr:Trans, besides
a changed bank — except for “new” deferred transactions — results in
zero, one or more new deferred transactions, trs.

• These are inserted in the bank repository.
• And the bank is expected to “re-cycle”: ie. to search for, ie. select new,

pending transactions “at that time”!
• That is: the bank is expected to handle, ie. execute all its deferred trans-

actions before advancing the clock!

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

A.3 Financial Service Industry 163

Merging the Client and the Bank Cycles:

• On one hand clients keep coming and going: submitting transactions at
irregular, unpredictable times.

• On the other hand the bank keeps inspecting its repository for “outstand-
ing” tasks.

• These two “processes” intertwine.
• The client step function extends the client function.
• The bank step function “rewrites” the (former) bank function:

value

cycle: B
∼→ B

cycle(β) ≡ let β′ = client step(β) ⌈⌉ bank step(β) in cycle(β′) end

client step: B
∼→ B

client step(β) ≡
let (c,tr) = client ch?, t = clock ch? in client(c,tr)(t)(β) end

bank step: B
∼→ B

bank(β) ≡
if β() = []

then β
else

let t = clock ch? in
if is ready Task(β)(t)

then
let (((t′,t′′),c,mk Task(rn,al)),β′) = sel rmv Task(β)(t) in
let rout:Routine • rout ∈ ((β′(conditions))(c))(rn) in
let (β′,r) = E(c,rout)(al)(t,t′,t′′)(β′) in
insert(r)(β′′) end end end

else β end
end end

• The cycle function (internal choice) non–deterministically chooses between
either a client step or a bank step.

• The client step inputs a transaction at time t from some client.
• This is modelled by a channel communication.
• Both the client and the bank steps “gets to know what time it is” from

the system clock.

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

164 A Examples of Rough Sketch Descriptions of Financial Services

A.4 Securities Trading

A.4.1 “What is a Securities Industry ?”

In line with our approach, we again ask a question — see the section title line
just above! And we give a synopsis answer.

Synopsis

The securities industry consists of:

• the following components:
⋆ one or more stock exchanges,
⋆ one or more commodities exchanges,
⋆ &c.
⋆ one or more brokers,
⋆ one or more traders,
⋆ &c.
⋆ and associated regulatory agencies,

• together with all their:
⋆ stake-holders,
⋆ states,
⋆ events that may and do occur,
⋆ actions (operations) that change or predicates that inspect these states,
⋆ intra and inter behaviours and
⋆ properties of the above!

A Stock Exchange “Grand” State

• Domain-wise we will just model a simple stock exchange — and from that
model “derive” domain models of simple brokers and traders.

• Technically we model the “grand” state space as a sort, and name a few
additional sorts whose values are observable in states.

• To help your intuition we “suggest” some concrete types for all sorts, but
they are only suggestions.

type
S, O, T, Q, P, R
SE = (Buy × Sell) × ClRm
Buy, Sell = S →m Ofrs
Ofrs = O →m Ofr !
Ofr = (T×T) →m (Q × (lo:P×hi:P) × ...)
ClRm = O →m Clrd | Rmvd
Clrd = S × P × T × Ofrs × Ofrs
Rmvd = S × T × O × Ofr
Market = T → SE

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

A.4 Securities Trading 165

Sell

Buy

.....

.....

many buy

few sell offers

many sell

few buy offers

The ... low - high ... price ranges

for several buy, resp. sell offers

of one particular stock

Fig. A.5. A “Snapshot” Stock Exchange View of Current Offers of a Single Stock

• The main (state) components of a stock exchange — reflecting, as it were,
‘the market’ — are the current state of stocks offered

⋆ ie. placed)
⋆ for buying Buy,
⋆ respectively selling Sell,
⋆ and a summary of those cleared (that is bought & sold)
⋆ and those removed.

• The placement of an offer of a stock, s:S, results, r:R, in the offer being
marked by a unique offer identification, o:O.

• The offer otherwise is associated with information about the time interval,
(bt,et):T×T, during which the offer is valid — an offer that has not been
cleared during that time interval is to be removed from buy or sell status,
or it can be withdrawn by the placing broker — the quantity offered and
the low to high price range of the offer. (There may be other information
(. . .).)

Observers and State Structure

• Having defined abstract types (ie. sorts) we must now define a number of
observers. Which one we define we find out, successively, as we later sketch
signatures of functions as well as sketching their definition.

• As we do the latter we discover that it would “come in handy” if one had
“such and such an observer”!

• Given the suggested concrete types for the correspondingly named abstract
ones we can also postulate any larger number of observers — most of which
it turns out we will (rather: up to this moment has) not had a need for!

value
obs Buy: SE → Buy, obs Sell: SE → Sell,
obs ClRm: SE → ClRm
obs Ss: (Buy|Sell) → S-set

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

166 A Examples of Rough Sketch Descriptions of Financial Services

obs Ofrs: S × (Buy|Sell)
∼→ Ofrs

obs Q: Ofr → Q
obs Qs: Ofrs → Q
obs lohi: Ofr → P×P
obs TT: Ofr → T×T
obs O: R → O
obs OK: R → {ok|nok}

Main State Generator Signatures

The following three generators seems to be the major ones:

• place: expresses the placement of either a buy or a sell offer, by a broker
for a quantity of stocks to be bought or sold at some price suggested by
some guiding price interval (lo,hi), such that the offer is valid in some time
(bt,et) interval.10

value
place: {buy|sell}×B×Q×S×(lo:P×hi:P)×(bt:T×et:T)×... → SE

∼→ SE × R

• wthdrw: expresses the withdrawal of an offer o:O (by a broker who has the
offer identification).

• next: expresses a state transition — afforded just by inspecting the state
and effecting either of two kinds of state changes or none!

value

wthdrw: O × T → SE
∼→ SE × R

next: T × SE → SE

A Next State Function

• At any time, but time is a “hidden state” component,
• the stock exchange either clears (fclr) a batch of stocks —
• if some can be cleared (pclr) —
• or removes (frmv) elapsed (prmv) offers,
• or does nothing!

10 We shall [probably] understand the buy (lo,hi) interval as indicating: buy as low
as possible, do not buy at a pricer higher than hi, but you may buy when it is lo
or as soon after it goes below lo. Similarly for sell (lo,hi): sell as high as possible,
do not sell at a pricer lower than lo, but you may sell when it is hi or as soon after
it goes above hi; the place action is expected to return a response which includes
giving a unique offer identification o:O.

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

A.4 Securities Trading 167

value
next: T × SE → SE
next(t,se) ≡

if pclr(t,se)
then fclr(t,se)
else

if prmv(t,se)
then frmv(t,se)
else se

end end

pclr: T × SE → Bool, fclr: T × SE → SE
prm: T × SE → Bool, frm: T × SE → SE

Next State Auxiliary Predicates

• A batch (bs,ss) of (buy, sell) offered stocks of one specific kind(s) can be
cleared if a price (p) can be arrived at,

• one that satisfies the low to high interval buy, respectively sell criterion —
• and such that the batch quantities of buy, resp. sell offers
• either are equal or their difference is such that the stock exchange is itself

willing to place a buy,
• respectively a sell offer for the difference.

value
pclr(t,se) ≡ ∃ s:S,ss:Ofrs,bs:Ofrs,p:P • aplcr(s,ss,bs,p)(t,se)

apclr: S×Ofrs×Ofrs×P → T×SE → Bool
apclr(s,bs,ss,p)(t,se) ≡

let buy = obs Buy(se), sell = obs Sell(se) in
s ∈ obs Ss(buy) ∩ obs Ss(sell)
∧ bs ⊆ obs Ofrs(s,buy) ∧ ss ⊆ obs Ofrs(s,sell)
∧ buysell(p,bs,ss)(t)
∧ let (bq,sq) = (obs Qs(bs),obs Qs(ss)) in

acceptable difference(bq,sq,s,se) end end

buysell: P×Ofrs×Ofrs → T → Bool
buysell(p,bs,ss)(t) ≡

∀ ofr:Ofr • ofr ∈ bs ⇒
let (lo,hi) = obs lohi(ofr) in p ≤ hi end
let (bt,et) = obs TT(ofr) in bt ≤ t ≤ et end

∧ ∀ ofr:Ofr • ofr ∈ ss ⇒
let (lo,hi) = obs lohi(ofr) in p ≥ lo end
let (bt,et) = obs TT(ofr) in bt ≤ t ≤ et end

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

168 A Examples of Rough Sketch Descriptions of Financial Services

Next State Auxiliary Function

• We describe the result of a clearing of buy, respectively sell offered stocks
by the properties of the stock exchange before and after the clearing.

• Before the clearing the stock exchange must have suitable batches of buy
(bs), respectively sell (ss) offered stocks (of identity s) for which a common
price (p) can be negotiated (apclr).

• After the clearing the stock exchange will “be in a different state”.
• We choose to characterise here this “different state” buy first expressing

that the cleared stocks must be removed as offers (rm Ofrs).
• If the buy batch contained more stocks for offer than the sell batch then

the stock exchange becomes a trader and places a new buy offer in order
to make up for the difference.

• Similarly if there were more sell stocks than buy stocks. A
• t the same time the clearing is recorded (updClRm).

fclr(t,se) as se′

pre pclr(t,se)
post

let s:S,bs:Ofrs,ss:Ofrs,p:P•apclr(s,ss,bs,p)(t,se) in
let (bq,sq) = (obs Qs(bs),obs Qs(ss)),

buy = obs Buy(se), sell = obs Sell(se) in
let buy′ = rm Ofrs(s,bs,buy), sell′ = rm Ofrs(s,ss,sell) in
obs Buy(se′) = if bq > sq

then updbs(buy′,s,bq−sq,tt buy(s,bq−sq)(t,se))
else buy′ end ∧

obs Sell(se′) = if bq < sq
then updss(sell′,s,sq−bq,tt sell(s,bq−sq)(t,se))
else sell′ end ∧

let clrm = obs ClRm(se) in
obs ClRm(se′) = updClRm(s,p,t,bs,ss,clrm) end
end end end

Many comments can be attached to the above predicate for clearability,
respectively the clearing function:

• First we must recall that we are trying to model the domain.
• That is: we can not present too concrete a model of stock exchanges,

neither what concerns its components, nor what concerns its actions.
• The condition, ie. the predicate for clearable batches of buy and sell stocks

must necessarily be loosely defined — as many such batches can be found,
and as the “final clinch”, ie. the selection of exactly which batches are
cleared and their (common) prices is a matter for “negotiation on the
floor”.

• We express this looseness in several ways:

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

A.4 Securities Trading 169

⋆ the batches are any subsets of those which could be cleared such that
any possible difference in their two batch quantites is acceptable for
the stock exchange itself to take the risk of obtaining a now guaranteed
price (and if not, to take the loss — or profit!);

⋆ the batch price should satisfy the lower/upper bound (buysell) criterion,
and it is again loosely specified;

⋆ and finally: Which stock (s) is selected, and that only exactly one
stock is selected, again expresses some looseness, but does not prevent
another stock (s 6=s′) from being selected in a next “transition”.

• There is no guarantee that the stock s buy and sell batches bs and ss and
at the price p for which the clearable condition pclr holds, is also exactly
the ones chosen — by apclr — for clearing (fclr), but that only could be
said to reflect the “fickleness” of the “market”!

• Time was not a parameter in the clearing part of the next function.
• It is assumed that whatever the time is all stocks offered have valid time

intervals that “surround” this time, ie. the current time is in their intervals.
• Then we must recall that we are modelling a number of stake-holder per-

spectives:
⋆ buyers and sellers of stocks,
⋆ their brokers and traders,
⋆ the stock exchange and the securities commission.

• In the present model there is no clear expression, for example in the form
of distinct formulas (distinct functions or lines) that reflect the concerns
of precisely one subset of these stake-holders as contrasted with other
formulas which then reflect the concerns of a therefrom distinct other
subset of stake-holders.

• Now we have, at least, some overall “feel” for the domain of a stock ex-
change.

• We can now rewrite the formulas so as to reflect distinct sets of stake-
holder concerns. We presently leave that as an exercise!

Auxiliary Generator Functions

value

rm Ofrs: S × Ofrs × (Buy|Sell)
∼→ (Buy|Sell)

rm Ofrs(s,os,busl) as busl′

pre s ∈ obs Ss(busl) ∧ subseteq(os,obs Ofrs(s,busl))
post if s ∈ obs Ss(busl) then ∼∃ ... else ... end

A.4.2 Discussion

• We have detailed two “narrow” aspects of a financial industry: How banks
may choose to process client (and own) transactions, and how securities
are traded.

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

170 A Examples of Rough Sketch Descriptions of Financial Services

• The former model is chosen so as to reflect all possibilities as they may
occur in the domain, ie. in actual situations.

• The latter model is sufficiently “loose” to allow a widest range of inter-
pretations, yet it is also sufficiently precise in that it casts light on key
aspects of securities trading.

• In this section of the talk we have not shown, as we did in several other
sections, how the two infrastructure stake–holders: Banks and securities
traders interact.

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT B

Methodology

We bring “condensed” excerpts of TripTych methodological issues.

• Software Development Documents 177–181
• RSL: The RAISE Specification Language 197–197

B.1 On Software Development Processes

B.1.1 Processes, Process Specifications and Process Models

By a process we mean a set of related sequences (i.e., traces) where each
sequence (trace) in the set is an ordered list of actions and events. Actions
change a state. Events are like process inputs or outputs. A sequence, pi, of ac-
tions, aik

, and events, eiℓ
, may relate to another such sequence, pj, by sharing

an event, e, in the form of the shared event being identical to one of the events,
eim

(i.e., eim
≡ e), in pi and one of the events, ejn

(i.e., ejn
≡ e), in pj such

that this event designates the communication between the two processes, that
is, their synchronisation and the simultaneous exchange of a resource (or a
possibly empty set of resources) between them. (Simple “assignment” actions
may then bind these resources to appropriate names of the input process.) A
simple process is just a single sequence whose events, if any, communicates
with a further undefined environment. A single process is either a simple pro-
cess or is a single sequence whose events communicates with other processes.
Thus processes are, in general, composed from several processes.

Operations management is thus about the detailed monitoring and con-
trol of processes: development processes, marketing processes, sales processes,
service processes, training processes, etcetera.

In order to manage in a meaningful way, including in a manner where
‘management’ can itself be monitored and controlled, that is, be evaluated
and improved, the managed processes must be well understood. We take that
as meaning that there must be a reasonably precise specification, that is, a
model of the processes to be managed.

invisible

D
R

A
FT

172 B Methodology

By a process specification we mean a syntactic entity: some text and/or
diagram(s) that name and specify the actions to be performed and the events
that may relate two (or more) processes, including a naming and specification
of the resources being, or to be communicated.

By a process model we mean a semantic entity: the meaning of a process
specification — with that meaning being a possibly infinite set of sets of
processes (i.e., set of sets of traces).

By a process specification-based software development we mean either one
of the process sets denoted by the process specification.

B.1.2 Software Development Process Descriptions

We have argued earlier that software development consists of three phases. As
we shall soon see, carrying out these phases each result in quite distinct sets
of documents. Figure B.1 shows the three phases as connected by directed DO
and REDO labelled edges, i.e., arrows.

Domain Engineering

Software Design

Requirements Engineering

REDO

REDO

REDO

DO

DO

External Event

External Event

External Event

Software Engineering

= Software Development

Fig. B.1. The TripTych phases of software development

The boxes (i.e., the phases) denote processes. DO labelled edges infix two
boxes, the from and the to box as designated by the edge direction. The
DO labelled arrows shall ideally mean that no activities of the processes of
the to box can commence before all activities of the processes of the from
box have completed. The DO labelled arrows thus designate “internal” events
that synchronise the infixed process and which communicate the documents
resulting from the ‘from box’ to the ‘to box’. The REDO labelled edges can
be said to infix one ‘from box’ with one or two ‘to boxes’, now in the reverse
order of the DO labelled edge infixed boxes. The REDO labelled arrows (i.e.,
“internal events”) shall ideally mean that all activities of the ‘from box’ must
halt once one such activity requires that earlier work be redone. We do not
here detail which ‘to box’ is selected nor how the development then proceeds.

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

B.1 On Software Development Processes 173

The “dangling”, but bi-directed (“external event”) edges designate that
box processes require input from or delivers output to an external world (an
external process) — typically the human developers.

All directed or bi-directed edges also designate the communication of doc-
uments. We do not here detail how these documents are otherwise produced
or consumed.

Phases consists of stages and stages of steps. The phases are logically
well distinguished. “Boundaries” between stages or steps are pragmatically
justified. Next we shall cover the stage and step concepts.

Domain Engineering

The top-left box of Fig. B.1 on the facing page is shown in detail in Fig. B.2.
External edges designate the input of document information (including an-
swers to clarifying question) from stakeholders and output of documents and
questions to stakeholders including software development management.

Preparation, Presentation

DOMAIN

Domain Modelling

Scripts

Domain

Concept Formation

Domain Theory R&D

DOMAIN MODELLING

Support Technologies

Human Behaviour

DOMAIN
DEVELOPMENT

Analysis and

Rules and Regulations

Business Processes

Intrinsics

Organisation
Management and

Questionnaire

Fill−out, and Return

Domain
Validation and
Verification

ACQUISITION

(a)

(b)

(c)

(j)

(i)

(h)

(g)

(d)

(e)

[7]

[6]

[5]

[4]

[3]

[2]

[1]

Stakeholder Identification

Elicitation Studies

Stakeholder Enquiries

Elicitation Interviews

Description Unit Indexing(f)

Fig. B.2. Stages and steps of the domain engineering phase

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

174 B Methodology

Figure B.2 on the preceding page expresses that domain engineering consists
of many stages and that (some of) these stages consists of many steps. We
now explain these stages. We cover the left part of Fig. B.2 on the previous
page first. (a) First the stakeholders of the domain are identified and arrange-
ments made for future liaison. (b–f) Knowledge about the domain is acquired
in five steps; (b) by studying existing literature, the Web, observations in
the domain, etc.; (c) contacts with the stakeholders; (d) talks with these; (e)
helping them filling out questionnaires, that is, collecting domain description
units; (f) and sorting these out. (g) Domain description units are then anal-
ysed and preliminary concepts may be formed. (h) Based on this analysis the
major work on domain description is carried out. (i) The domain description
is then analysed, verified and validated. (j) Finally, where relevant, proper-
ties not explicitly formulated in the domain description are established. [1–7]
The major stage, (h), of engineering a domain description (that is, of domain
modelling, right part of Fig. B.2 on the preceding page) consists of six steps
[2–7], each covering a facet of the domain. [1] But first rough sketches are
made of all the most pertinent business processes (that is, the entities, the
set of functions and events over entities, and the behaviours) of the domain.
[2] Based on such sketches the very basics, the entities, functions, events and
behaviours that are common to all subsequent facets are described. [3] Then
the support technologies of the domain, those which support entities, func-
tions, events and behaviours of the domain are described. [4] The management
functions and organisational structures are described. [5] And so are the rules
and regulations which (ought) “govern” human behaviour in the domain. [6]
Some specific structures (somehow ordered sets) of rules and regulations qual-
ify as scripts, that is, as pseudo-programs, and these are described. [7] Finally
the spectrum of possible or actual human behaviours are described: diligent,
sloppy, negligent as well as near- or outright criminal behaviours.
Describing these facets usually involves trial-and-error descriptions, that is,
iterations between steps. These iterations must be managed. Figure B.3 illus-
trates the possibilities of “endless thrashing” within just the domain modelling
stage.

Requirements Engineering

We consider requirements to be analysable into three categories: domain, in-
terface and machine requirements. Domain requirements are those require-
ments which can be expressed solely using terms from (or allowed in) the
domain description. Machine requirements are those requirements which can
be expressed without using terms from the domain description; instead terms
are used from the machine (the hardware and the software to be designed).
Interface requirements are those requirements which can be expressed using
terms both from (or allowed in) the domain description and from (or allowed
in) the machine specification. Where domain descriptions express what there

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

B.1 On Software Development Processes 175

DO

DO

DO

DO

DOREDO

REDO

REDO

REDO

REDO

Support Technologies

Intrinsics

Business Processes

Management and Organisation

Rules and Regulations

Human Behaviour

Fig. B.3. The domain modelling stage

is in the domain, the requirements prescriptions express what there shall or
must be in the machine.

Once a domain description is considered complete work on requirements
can commence. Figure B.4 on the next page records the six stages of require-
ments development. The major stage, requirements modelling, is detailed in
Fig. B.5 on the following page. That figure shows domain requirements en-
gineering actions in the top-left quadrant, interface requirements engineering
actions in the lower-left quadrant, and machine requirements engineering ac-
tions in the right half of the diagram.

One aspect of domain requirements modelling stage (box 4 of Fig. B.4
on the next page) can be summarised as follows: the requirements engineer
works with the requirements stakeholders and as follows: First the domain re-
quirements are constructed illustratively by asking the stakeholders to identify
(b) which parts of the domain description should be “carried over” into, i.e.,
projected onto the requirements prescription while (c) possibly instantiating
these (now) prescriptions into special cases, and/or (d) making the prescrip-
tions more deterministic, and/or (e) extending the domain description with
descriptions of entities, functions, events and behaviours that were not feasible
in the domain but are feasible with (the advent of) computing, and (f) finally
fitting the emerging domain requirements prescriptions to those of related,
other software development projects, if any. Step (a) deals with those require-
ments, business process re-engineering (BPR), which are not “implemented”
as computing, but are relied upon in the correct functioning of the emerging
software, that is, which reflect assumptions that must be made about the en-
vironment (humans and equipment, including other computing systems). The
BPR must also be implemented and adhered to, but by the management and
the staff of the user of the required software.

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

176 B Methodology

Requirements Analysis
& Concept Formation

Satisfiability
& Feasibility

Liaison

Acquisition
Requirements

Validation
& Verification

Requirements Modelling

Stakeholder(1)

(2)

(3)

(4)

(5)

(6)

Fig. B.4. The requirements engineering phase. The modelling stage is detailed in
Fig. B.5

Domain Requirements Machine Requirements

Dependability

Interface Requirements

Performance

Availability

Reliability

Safety

Security

Maintainability

Perfective

Adaptive

Corrective

Preventive

Portability

Documentation

Demo Platform

Maintenance Platform

Execution Platform

Development Platform

Accessibility

Requirements Modelling

(e)

(f)

(d)

(c)

(b)

(a)

Machine−Machine
Dialogue

Physiological Dialogue

Man−Machine Dialogue

Shared Data Refreshment

Shared Data Initialisation

Shared Phenomena
Identification

BPR

Projection

Determination

Instantiation

Extension

Fitting

Fig. B.5. The requirements modelling stages

Figure B.5 also shows details of the interface and machine requirements steps
— for which we refer the reader to [2, Sects. 19.5–.6].

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

B.1 On Software Development Processes 177

Figure B.6 on the next page intends to indicate that a number of the ma-
chine requirements modelling steps can take place independent of one another,
i.e., in parallel.

P
er

fo
rm

an
ce

D
ep

en
da

bi
lit

y

M
ai

nt
ai

na
bi

lit
y

P
la

tfo
rm

D
oc

um
en

ta
tio

n

Fig. B.6. The machine requirements modelling stage: five concurrent steps

Software Design

Once a complete requirements prescription has been achieved one can start
the software design. Figure B.7 on the following page shows a generic, sum-
mary process description for all three phases of software development while
emphasising, in its lower three-quarter, the stages and steps of software design:
from a possibly stepwise software architecture design via a stage of stepwise
refinement of the software components identified by the architecture design,
to the final coding step.
The i “stacks” of cij component boxes shall indicate that the software com-
ponents may be stepwise refined ending up with executable code ki. The
component part of Fig. B.7 on the next page is rather idealised. One usually
experiences that components can be shared across the software design, thus
the component part of Fig. B.7 on the following page should be shown more
realistically as a lattice of refinement steps.

B.1.3 Documents

Work within each step, stage and phase results in documents. Some are nec-
essarily informal, others can both be formulated informally and formally. To
each phase we can therefore attach a number of documents. Section B.21 give
an overview of these phase documents. Bearing in mind the span and wealth
of software related documents we can almost say: “All we do, in software
development, is writing documents — and a few can serve as the basis for
computations by machines.”.

1 Sects. B.2.1–B.2.3

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

178 B Methodology

SA1

SA2

SAm

C11 Cn1

C12 C22 C2n

C21

C1L C2M CnN

K1 K2 Kn

.....

.....

.....

+

.....

++

+ + +

V:MC:T

V:MC:T V:MC:T V:MC:T

V:MC:T

V:MC:T

V:MC:T

V:MC:T V:MC:T

V:MC:TV:MC:T

V:MC:T

V:MC:T V:MC:T

V:MC:T

V:MC:T

V:MC:T

V:MC:T

V:MC:T

V:MC:T

DOMAIN DESCRIPTION DEVELOPMENT

COMPONENT

CODING

SOFTWARE

Domain

Requirements

Software Architecture

Software Components

"Stack" 1 "Stack" 2 "Stack" n

and Requirements

Prior Developments: Domain

Software Component Design

Coding

and

Software Architecture Design,

Software Design:

DESIGN

SOFTWARE ARCHITECTURE DESIGN

REQUIREMENTS PRESCRIPTION DEVELOPMENT

Fig. B.7. The software design phase

B.2 Software Development Documents

There are three kinds of documents: informative (Items 1. in the documents
listings of Sects. B.2.1–B.2.3.), specificational (Items 2. in the documents list-
ings of Sects. B.2.1–B.2.3.) and analytic (Items 3. in the documents listings
of Sects. B.2.1–B.2.3.). Informative documents view software development
projects as values. Analytic documents view specificational (description, pre-
scription and specification) documents as values.

B.2.1 Domain Engineering Documents

We refer to Fig. B.2 on page 173.

1. Information
(a) Name, Place and Date
(b) Partners
(c) Current Situation
(d) Needs and Ideas

(e) Concepts and Facilities
(f) Scope and Span
(g) Assumptions and Dependencies
(h) Implicit/Derivative Goals
(i) Synopsis

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

B.2 Software Development Documents 179

(j) Standards Compliance
(k) Contracts
(l) The Teams

i. Management
ii. Developers
iii. Client Staff
iv. Consultants

(m) Plans
i. Project Graph
ii. Budget
iii. Funding
iv. Accounts

(n) Management
i. Assessment
ii. Improvement

A. Plans
B. Actions

2. Descriptions
(a) Stakeholders
(b) The Acquisition Process

i. Studies
ii. Interviews
iii. Questionnaires
iv. Indexed Description Units

(c) Terminology

(d) Business Processes
(e) Facets:

i. Intrinsics
ii. Support Technologies
iii. Management and Organisa-

tion
iv. Rules and Regulations
v. Scripts
vi. Human Behaviour

(f) Consolidated Description
3. Analyses

(a) Domain Analysis and Concept
Formation

i. Inconsistencies
ii. Conflicts
iii. Incompleteness
iv. Resolutions

(b) Domain Validation
i. Stakeholder Walk-throughs
ii. Resolutions

(c) Domain Verification
i. Theorems and Proofs
ii. Model Checking
iii. Test Cases and Tests

(d) (Towards a) Domain Theory

B.2.2 Requirements Engineering Documents

We refer to Figs. B.4 and B.5 on page 176.

1. Information

(a) Name, Place and Date

(b) Partners

(c) Current Situation

(d) Needs and Ideas (Eurekas, I)

(e) Concepts & Facilities (Eurekas,
II)

(f) Scope & Span

(g) Assumptions & Dependencies

(h) Implicit/Derivative Goals

(i) Synopsis (Eurekas, III)

(j) Standards Compliance

(k) Contracts, with Design Brief

(l) The Teams

i. Management

ii. Developers

iii. Client Staff
iv. Consultants

(m) Plans
i. Project Graph
ii. Budget
iii. Funding
iv. Accounts

(n) Management
i. Assessment
ii. Improvement

A. Plans
B. Actions

2. Prescriptions
(a) Stakeholders
(b) The Acquisition Process

i. Studies
ii. Interviews
iii. Questionnaires
iv. Indexed Description Units

(c) Rough Sketches (Eurekas, IV)
(d) Terminology
(e) Facets:

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

180 B Methodology

i. Business Process Re-
engineering
• Sanctity of the Intrin-

sics
• Support Technology
• Management and Or-

ganisation
• Rules and Regulation
• Human Behaviour
• Scripting

ii. Domain Requirements
• Projection
• Determination
• Instantiation
• Extension
• Fitting

iii. Interface Requirements
• Shared Phenomena and

Concept Identification
• Shared Data Initialisa-

tion
• Shared Data Refresh-

ment
• Man-Machine Dialogue
• Physiological Interface
• Machine-Machine Dia-

logue
iv. Machine Requirements

• Performance
⋆ Storage
⋆ Time
⋆ Software Size

• Dependability
⋆ Accessibility
⋆ Availability
⋆ Reliability
⋆ Robustness
⋆ Safety
⋆ Security

• Maintenance
⋆ Adaptive

⋆ Corrective
⋆ Perfective

⋆ Preventive
• Platform

⋆ Development Plat-
form

⋆ Demonstration Plat-
form

⋆ Execution Platform
⋆ Maintenance Plat-

form

• Documentation Re-
quirements

• Other Requirements
v. Full Reqs. Facets Doc.

3. Analyses

(a) Requirements Analysis and
Concept Formation

i. Inconsistencies
ii. Conflicts
iii. Incompleteness

iv. Resolutions
(b) Requirements Validation

i. Stakeholder Walk-through
and Reports

ii. Resolutions

(c) Requirements Verification
i. Theorem Proofs
ii. Model Checking
iii. Test Cases and Tests

(d) Requirements Theory
(e) Satisfaction and Feasibility

Studies
i. Satisfaction: Correctness,

unambiguity, completeness,
consistency, stability, verifi-
ability, modifiability, trace-
ability

ii. Feasibility: Technical, eco-
nomic, BPR

B.2.3 Software Design Engineering Documents

We refer to Fig. B.7 on page 178.

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

B.3 RSL: The RAISE Specification Language 181

1. Information
(a) Name, Place and Date
(b) Partners
(c) Current Situation
(d) Needs and Ideas
(e) Concepts and Facilities and Facil-

ities
(f) Scope and Span
(g) Assumptions and Dependencies
(h) Implicit/Derivative Goals
(i) Synopsis
(j) Standards Compliance
(k) Contracts
(l) The Teams

i. Management,
ii. Developers,
iii. Consultants

(m) Plans
i. Project Graph
ii. Budget, Funding, Accounts

(n) Management
i. Assessment Plans & Actions
ii. Improvement Plans & Ac-

tions
2. Software Specifications

(a) Architecture Design (Sa1 . . . San)
(b) Component Design (Sc1i

. . . Scnj
)

(c) Module Design (Sm1 . . . Smm)
(d) Program Coding (Sk1

, . . . , Skn)
3. Analyses

(a) Analysis Objectives and Strate-
gies

(b) Verification (Sip , Si ⊒Li Si+1)
i. Theorems and Lemmas Li

ii. Proof Scripts ℘i

iii. Proofs Πi

(c) Model Checking (Si ⊒ Pi−1)
i. Model Checkers
ii. Propositions Pi

iii. Model Checks Mi

(d) Testing (Si ⊒ Ti)
i. Manual Testing

• Manual Tests MS1 . . . MSµ

ii. Computerised Testing
A. Unit (or Module) Tests

Cu

B. Component Tests Cc

C. Integration Tests Ci

D. System Tests Cs . . . Csits

(e) Evaluation of Adequacy of Analy-
sis

Legend:
S Specification
L Theorem or Lemma
℘i Proof Scripts
Πi Proof Listings
P Proposition
M Model Check (run, report)
T Test Formulation
M Manual Check Report
C Computerised Check (run, report)
⊒ “is correct with respect to (wrt.)”
⊒ℓ “is correct, modulo ℓ, wrt.”

Items 3(b)–3(d) above have been detailed (i–iii, i–iii, i–ii, respectively) more
than the corresponding Items 3((c))i–3((c))iii (Page 179, Sect. B.2.1) and
Items 3((c))i–3((c))iii (Page 180, Sect. B.2.2). Naturally, also actions implied
by these items need be pursued and documented as diligently as for software
design.

B.3 RSL: The RAISE Specification Language

We bring an ultra–short introduction to RSL, the predominant formal speci-
fication language of these notes.

The survey is, alas, just an overview of the syntax of main aspects of RSL
and an overview of some abstraction, i.e., model choices made possible by, for
example, RSL.

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

182 B Methodology

A Section Table–of–Contents

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

B.3 RSL: The RAISE Specification Language 183

1. RSL Types Sect. B.3.1: 182
(a) Type Expressions 182
(b) Type Definitions 183

i. Subtypes 183
ii. Sorts or Abstract Types 183
iii. Concrete Types 183
iv. Concrete Type Definitions 184

2. The RSL Predicate Calculus Sect. B.3.2: 184
(a) The RSL Proposional Expressions 184
(b) The RSL Predicate Expressions 184

i. Simple RSL Predicate Expressions
184

ii. Quantified RSL Expressions 185
3. RSL Data Types Sect. B.3.3: 185

(a) RSL Enumerations 185
i. Sets 185
ii. Cartesians 186
iii. Lists 186
iv. Maps 186

(b) RSL Set Operations 187
(c) RSL Cartesian Operations 188
(d) RSL List Operations 188
(e) RSL Map Operations 190

4. RSL λ-Calculus and Functions Sect. B.3.4: 191
(a) The λ-Calculus Syntax 191
(b) Free and Bound Variables 192

(c) Substitution 192
(d) α-Renaming and β-Reduction 192
(e) The RSL λ-Notation 191
(f) Function Signatures in RSL 192
(g) Function Definitions in RSL 193

5. Applicative Constructs of RSL Sect. B.3.5: 193
(a) The RSL let Constructs 193

i. General 193
ii. Predicative lets 194
iii. Patterns and Wild Cards 194

(b) The Applicative RSL Conditionals 194
(c) Operator/Operand Expressions 195

6. Imperative Constructs of RSL Sect. B.3.6: 195
(a) Variables, Assignments and Units 195
(b) Statement Sequence and skip 195

(c) The Imperative RSL Conditionals 195
(d) The Iterative RSL Conditionals 196
(e) The Iterative RSL Sequencing 196
(f) RSL Variable Expressions 196

7. Parallel Constructs of RSL Sect. B.3.7: 196
(a) Process Channels 196
(b) Composition of Processes 196
(c) Process Input/Output 197
(d) Process Signatures and Definitions 197

8. Simple RSL Specifications Sect. B.3.8: 197

B.3.1 [1] RSL Types

[1.1] Type Expressions

Let A, B, and C be any type names or type expressions, then:

type
[1] Bool
[2] Int
[3] Nat
[4] Real
[5] Char
[6] Text
[7] A-set
[8] A-infset
[9] A × B × ... × C

[10] A∗

[11] Aω

[12] A →m B
[13] A → B

[14] A
∼→ B

[15] (A)
[16] A | B | ... | C
[17] mk id(sel a:A,...,sel b:B)
[18] sel a:A ... sel b:B

(save the [i] line numbers) exemply generic type expressions:

1. The Boolean type of truth values false and true.
2. The integer type on integers ..., -2, -1, 0, 1, 2, ...
3. The natural number type of positive integer values o, 1, 2, ...
4. The real number type of real values, i.e., valuse whose numerals can be

written as an integer, followed by a priod (“.”), followed by a natural
number (the fraction).

5. The character type of character values ”a”, ”b”, ...
6. The text type of character string values ”aa”, ”aaa”, ..., ”abc”, ...

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

184 B Methodology

7. The set type of finite set values, see below.
8. The set type of infinite set values.
9. The Cartesian type of Cartesian values, see below.

10. The list type of finite list values, see below.
11. The list type of infinite list values.
12. The map type of finite map values, see below.
13. The function type of total function values, see below.
14. The function type of partial function values.
15. In (A) A is constrained to be

• either a Cartesian B × C × ... × D, in which case it is identical to type
expression kind 9,

• or not to be the name of a built–in type (cf., 1–6) or of a type, in
which case the parentheses serve as simple delimiters, eg.: (A →m B),
or (A∗)-set, or (A-set)list, or (A|B) →m (C|D|(E →m F)), etc.

16. The (postulated disjoint) union of types A, B, . . . , and C.
17. The record type of mk id–named record values mk id(av,...,bv), where av,

. . . , and bv, are values of respective types. The distinct identifiers sel a,
etc., designate selector functions.

18. The record type of unnamed record values (av,...,bv), where av, . . . , and bv,
are values of respective types. The distinct identifiers sel a, etc., designate
selector functions.

[1.2] Type Definitions

[1.2.1] Subtypes:

The set of elements b of type B which satisfy the predicate P is a sub–type
(of type B):

type
A = {| b:B • P(b) |}

[1.2.2] Sorts or Abstract Types:

Sorts (i.e., abstract types) A, B, ..., C are introduced when specifying:

type
A, B, ..., C

[1.2.3] Concrete Types:

Concrete types are introduced when specifying:

type
A = Type expr

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

B.3 RSL: The RAISE Specification Language 185

[1.2.4] BNF Rule Right–hand Sides for Concrete Type Definitions:

[1] Type name =
Type expr /∗ without | s or sub−types ∗/

[2] Type name =
Type expr 1 | Type expr 2 | ... | Type expr n

[3] Type name ==
mk id 1(s a1:Type name a1,...,s ai:Type name ai) |
... |
mk id n(s z1:Type name z1,...,s zk:Type name zk)

[4] Type name :: sel a:Type name a ... sel z:Type name z
[5] Type name = {| v:Type name′ • P(v) |}

where a form of [2–3] is provided by the combination:

Type name = A | B | ... | Z
A == mk id 1(s a1:A 1,...,s ai:A i)
B == mk id 2(s b1:B 1,...,s bj:B j)
...
Z == mk id n(s z1:Z 1,...,s zk:Z k)

B.3.2 [2] The RSL Predicate Calculus

[2.1] The RSL Proposional Expressions

Let identifiers (or propositional espressions) a, b, ..., c designate Boolean val-
ues. Then:

false, true
a, b, ..., c
∼a, a∧b, a∨b, a⇒b, a=b, a 6=b

are propositional expressions, all having a Boolean value. ∼, ∧, ∨, ⇒, and =
are Boolean connectives (i.e., operators) and “read” as not, and, or, if-then
(or implies), equal and not-equal.

[2.2] The RSL Predicate Expressions

[2.2.1] Simple RSL Predicate Expressions

Let identifiers (or propositional espressions) a, b, ..., c designate Boolean val-
ues, and let x, y, ..., z (or term expressions) designate other than Boolean
values, and let i, j, ..., k designate number values, then:

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

186 B Methodology

false, true
a, b, ..., c
∼a, a∧b, a∨b, a⇒b, a=b, a 6=b
x=y, x 6=y,
i<j, i≤j, i≥j, i>j, ...

are simple predicate expressions.

[2.2.2] Quantified RSL Expressions

Let X, Y, ..., C be type names or type expressions, and let P(x), Q(y) and
R(z) designate predicate expressions in which z, y, and z are free. Then:

∀ x:X • P(x)
∃ y:Y • Q(y)
∃ ! z:Z • R(z)

are quantified expressions, are also predicate expressions, and are “read” as:
For all x (values in type X) the predicate P(x) holds; there exists (at least)
one y (value in type Y) such that the predicate Q(y) holds; and: there exists
a unique z (value in type Z) such that the predicate R(z) holds.

B.3.3 [3] RSL Sets, Cartesians, Lists, and Maps

[3.1] RSL Set, Cartesian, List, and Map Enumerations

[3.1.1] Sets:

Let the below as denote values of type A, then the below designate simple set
enumerations:

{{}, {a}, {a1,a2,...,am}, ...} ∈ A-set
{{}, {a}, {a1,a2,...,am}, ..., {a1,a2,...}} ∈ A-infset

The expression, last line below, to the right of the ≡, expresses set compre-
hension.

type
A, B
P = A → Bool

Q = A
∼→ B

value
comprehend: A-infset × P × Q → B-infset
comprehend(s,P ,Q) ≡ { Q(a) | a:A • a ∈ s ∧ P(a) }

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

B.3 RSL: The RAISE Specification Language 187

[3.1.2] Cartesians:

type
A, B, ..., C
A × B × ... × C

value
... (e1,e2,...,en) ...

[3.1.3] Lists:

Simple enumerations:

{〈〉, 〈a〉, ..., 〈a1,a2,...,am〉, ...} ∈ A∗

{〈〉, 〈a〉, ..., 〈a1,a2,...,am〉, ..., 〈a1,a2,...,am,... 〉, ...} ∈ Aω

〈 ei .. ej 〉

The last line above assumes ei and ej to be integer valued expressions. It then
expresses the set of intergers from the value of ei to and including the value
of ej. If the latter is smaller than the former then the list is empty.

The last line below expresses list comprehension.

type

A, B, P = A → Bool, Q = A
∼→ B

value

comprehend: Aω × P × Q
∼→ Bω

comprehend(lst,P ,Q) ≡
〈 Q(lst(i)) | i in 〈1..len lst〉 • P(lst(i)) 〉

[3.1.4] Maps:

Simple map enumerations:

type
A, B
M = A →m B

value
a,a1,a2,...,a3:A, b,b1,b2,...,b3:B

[], [a 7→b], ..., [a1 7→b1,a2 7→b2,...,a3 7→b3] ∀ ∈ M

The last line below expresses map comprehension:

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

188 B Methodology

type
A, B, C, D
M = A →m B

F = A
∼→ C

G = B
∼→ D

P = A → Bool
value

comprehend: M×F×G×P → (C →m D)
comprehend(m,F ,G,P) ≡

[F(a) 7→ G(m(a)) | a:A • a ∈ dom m ∧ P(a)]

[3.2] RSL Set Operations

value

∈: A × A-infset → Bool

6∈: A × A-infset → Bool

∪: A-infset × A-infset → A-infset

∪: (A-infset)-infset → A-infset

∩: A-infset × A-infset → A-infset

∩: (A-infset)-infset → A-infset

\: A-infset × A-infset → A-infset

⊂: A-infset × A-infset → Bool

⊆: A-infset × A-infset → Bool

=: A-infset × A-infset → Bool

6=: A-infset × A-infset → Bool

card: A-infset
∼→ Nat

examples

a ∈ {a,b,c}
a 6∈ {}, a 6∈ {b,c}
{a,b,c} ∪ {a,b,d,e} = {a,b,c,d,e}
∪{{a},{a,b},{a,d}} = {a,b,d}
{a,b,c} ∩ {c,d,e} = {c}
∩{{a},{a,b},{a,d}} = {a}
{a,b,c} \ {c,d} = {a,b}
{a,b} ⊂ {a,b,c}
{a,b,c} ⊆ {a,b,c}
{a,b,c} = {a,b,c}
{a,b,c} 6= {a,b}
card {} = 0, card {a,b,c} = 3

• ∈: The membership operator (is an element member of a set, true or
false?);

• 6∈: The non-membership operator (is an element not a member of a set,
true or false?);

• ∪: The infix union operator (when applied to two sets expresses the set
whose members are in either or both of the two operand sets);

• ∪: The distributed prefix union operator (when applied to a set of sets
expresses the set whose members are in some of the sets of the operand
set);

• ∩: The infix intersection operator (expresses the set whose members are
in both of the two operand sets);

• ∩: The distributed prefix intersection operator (when applied to a set of
sets expresses the set whose members are in all of the sets of the operand
set);

• \: The set complement (or set subtraction) operator (expresses the set
whose members are those of the first operand set which are not in the
second operand set);

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

B.3 RSL: The RAISE Specification Language 189

• ⊂: The proper subset operator (are the members of the first operand set all
members of the second operand set, and are there members of the second
operand set which are not in the first operands set, true or false?);

• ⊆: The subset operator (as for proper subset, but allows equality of the
two operand set to be true);

• =(6=): The equal operator (are the two operand sets the same (different),
true or false?); and

• card: The cardinality operator (“counts” the number of elements in the
presumed finite operand set).

value
s′ ∪ s′′ ≡ { a | a:A • a ∈ s′ ∨ a ∈ s′′ }
∪ ss ≡ { a | a:A • ∃ s:A-set • s ∈ ss ⇒ a ∈ s }
s′ ∩ s′′ ≡ { a | a:A • a ∈ s′ ∧ a ∈ s′′ }
∩ ss ≡ { a | a:A • ∀ s:A-set • s ∈ ss ⇒ a ∈ s }
s′ \ s′′ ≡ { a | a:A • a ∈ s′ ∧ a 6∈ s′′ }
s′ ⊆ s′′ ≡ ∀ a:A • a ∈ s′ ⇒ a ∈ s′′

s′ ⊂ s′′ ≡ s′ ⊆ s′′ ∧ ∃ a:A • a ∈ s′′ ∧ a 6∈ s′

s′ = s′′ ≡ ∀ a:A • a ∈ s′ ≡ a ∈ s′′ ≡ s⊆s′ ∧ s′⊆s
s′ 6= s′′ ≡ s′ ∩ s′′ 6= {}
card s ≡

if s = {} then 0 else
let a:A • a ∈ s in 1 + card (s \ {a}) end end
pre s /∗ is a finite set ∗/

card s ≡ chaos /∗ tests for infinity of s ∗/

[3.3] RSL Cartesian Operations

type
A, B, C
g0: G0 = A × B × C
g1: G1 = (A × B × C)
g2: G2 = (A × B) × C
g3: G3 = A × (B × C)

value
va:A, vb:B, vc:C, vd:D

(va,vb,vc):G0,

(va,vb,vc):G1
((va,vb),vc):G2
(va3,(vb3,vc3)):G3

decompostion expressions
let (a1,b1,c1) = g0,

(a1′,b1′,c1′) = g1 in .. end

let ((a2,b2),c2) = g2 in .. end
let (a3,(b3,c3)) = g3 in .. end

[3.4] RSL List Operations

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

190 B Methodology

value

hd: Aω ∼→ A

tl: Aω ∼→ Aω

len: Aω ∼→ Nat
inds: Aω → Nat-infset
elems: Aω → A-infset

.(.): Aω × Nat
∼→ A

̂: A∗ × Aω → Aω

=: Aω × Aω → Bool
6=: Aω × Aω → Bool

examples /∗ the a, b, c, d: are values ∗/
hd〈a1,a2,...,am〉=a1
tl〈a1,a2,...,am〉=〈a2,...,am〉
len〈a1,a2,...,am〉=m
inds〈a1,a2,...,am〉={1,2,...,m}
elems〈a1,a2,...,am〉={a1,a2,...,am}
〈a1,a2,...,am〉(i)=ai
〈a,b,c〉̂〈a,b,d〉 = 〈a,b,c,a,b,d〉
〈a,b,c〉=〈a,b,c〉
〈a,b,c〉 6= 〈a,b,d〉

• hd: Head: Yield the head (i.e., first) element of non–empty lists.
• tl: Tail: Yield the list of list elements other than the head of the argument

list (also only of non–empty lists) .
• len: Length: the length of a finite list.
• inds: Indices, or index set: Yield the index set, from 1 to the length of

the list (which may be empty in which case the index set is also empty, or
may be infinite, in which case the result is chaos).

• elems: Elements: Yield the possibly infinite set of all distinct elements of
the list.

• ℓ(i): Indexing with a natural number, i, larger than 0 into a list ℓ larger
than or equal to i yields its i’th element.

• ̂: Concatenate two operand lists into one list, first the elements of the first,
finite length operand list, and then the elements of the second, possibly
infinite length operand list, and in their respective order.

• = and 6=: Compare two operand lists for equality, element–by–element,
respectively for the occurrence of at least one deviation!

value
is finite list: Aω → Bool

len q ≡
case is finite list(q) of

true → if q = 〈〉 then 0 else 1 + len tl q end,
false → chaos end

inds q ≡
case is finite list(q) of

true → { i | i:Nat • 1 ≤ i ≤ len q },
false → { i | i:Nat • i6=0 } end

elems q ≡ { q(i) | i:Nat • i ∈ inds q }

q(i) ≡
if i=1

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

B.3 RSL: The RAISE Specification Language 191

then if q 6=〈〉 then let a:A,q′:Q • q=〈a〉̂q′ in a end else chaos end
else q(i−1) end

fq ̂ iq ≡
〈 if 1 ≤ i ≤ len fq then fq(i) else iq(i − len fq) end
| i:Nat • if len iq 6=chaos then i ≤ len fq+len end 〉

pre is finite list(fq)

iq′ = iq′′ ≡ inds iq′ = inds iq′′ ∧ ∀ i:Nat • i ∈ inds iq′ ⇒ iq′(i) = iq′′(i)

iq′ 6= iq′′ ≡ ∼(iq′ = iq′′)

[3.5] RSL Map Operations

value
• (•): M → A

∼→ B, m(ai) = bi
dom: M → A-infset [domain of map]

dom [a1 7→b1,a2 7→b2,...,an7→bn] = {a1,a2,...,an}
rng: M → B-infset [range of map]

rng [a1 7→b1,a2 7→b2,...,an7→bn] = {b1,b2,...,bn}
†: M × M → M [override extension]

[a 7→b,a′7→b′,a′′ 7→b′′] † [a′7→b′′,a′′7→b′] = [a 7→b,a′7→b′′,a′′7→b′]
∪: M × M → M [merge ∪]

[a 7→b,a′7→b′,a′′ 7→b′′] ∪ [a′′′7→b′′′] = [a 7→b,a′7→b′,a′′7→b′′,a′′′7→b′′′]
\: M × A-infset → M [restriction by]

[a 7→b,a′7→b′,a′′ 7→b′′]\{a} = [a′7→b′,a′′ 7→b′′]
/: M × A-infset → M [restriction to]

[a 7→b,a′7→b′,a′′ 7→b′′]/{a′,a′′} = [a′7→b′,a′′ 7→b′′]
=,6=: M × M → Bool
◦: (A →m B) × (B →m C) → (A →m C) [composition]

[a 7→b,a′7→b′] ◦ [b7→c,b′7→c′,b′′7→c′′] = [a 7→c,a′7→c′]

• •(•): Application: expresses that functions and maps can be applied to
arguments.

• dom: Domain/Definition Set: denote “taking” the definition set values of
a map (the a values for which the map is defined).

• rng: Range/Image: denote “taking” the range of a map (the corresponding
b values for which the map is defined).

• †: Override/Extend: when applied to two operands denote the map which
is like an override of the first operand map by all or some “pairings” of
the second operand map,

• ∪: Merege: when applied to two operands denote the map which is the
merge of two such maps,

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

192 B Methodology

• \: Restriction: the map which is a restriction of the first operand map to
the elements that are not in the second operand set

• /: Restriction: the map which is a restriction of the first operand map to
the elements of the second operand set.

• =, 6=: Equal, Not–Equal: when applied to two maps, compares these for
equality, respectively inequality.

• ◦: Composition: The map from definition set elements of the first, left–
operand map, m1, to the range elements of the second, right–operand
map, m2, such that if a, in the definition set of m1 and maps into b, and if
b is in the definition set of m2 and maps into c, then a, in the composition,
maps into c.

value
rng m ≡ { m(a) | a:A • a ∈ dom m }

m1 † m2 ≡
[a 7→b | a:A,b:B •

a ∈ dom m1 \ dom m2 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a)]

m1 ∪ m2 ≡ [a 7→b | a:A,b:B •

a ∈ dom m1 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a)]

m \ s ≡ [a 7→m(a) | a:A • a ∈ dom m \ s]
m / s ≡ [a 7→m(a) | a:A • a ∈ dom m ∩ s]

m1 = m2 ≡
dom m1 = dom m2 ∧ ∀ a:A • a ∈ dom m1 ⇒ m1(a) = m2(a)

m1 6= m2 ≡ ∼(m1 = m2)

m◦n ≡
[a 7→c | a:A,c:C • a ∈ dom m ∧ c = n(m(a))]
pre rng m ⊆ dom n

B.3.4 [4] RSL λ–Calculus and Functions

[4.1] The λ–Calculus Syntax

type /∗ A BNF Syntax: ∗/
〈L〉 ::= 〈V〉 | 〈F〉 | 〈A〉 | (〈A〉)
〈V〉 ::= /∗ variables, i.e., identifiers ∗/
〈F〉 ::= λ〈V〉 • 〈L〉
〈A〉 ::= (〈L〉〈L〉)

value /∗ Examples ∗/
〈L〉: e, f, a, ...
〈V〉: x, ...
〈F〉: λ x • e, ...
〈A〉: f a, (f a), f(a), (f)(a), ...

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

B.3 RSL: The RAISE Specification Language 193

[4.2] Free and Bound Variables

Let x, y be variable names and e, f be λ-expressions.

• 〈V〉: Variable x is free in x
• 〈F〉: x is free in λy •e if x 6= y and x is free in e.
• 〈A〉: x is free in f(e) if it is free in either f or e (i.e., also in both).

[4.3] Substitution

• subst([N/x]x) ≡ N
• subst([N/x]a) ≡ a

for all variables a 6=x.
• subst([N/x](P Q)) ≡ (subst([N/x]P) subst([N/x]Q)).
• subst([N/x](λx•P)) ≡ λy•P.
• subst([N/x](λy•P)) ≡ λy•subst([N/x]P)

if x 6= y and y is not free in N or x is not free in P.
• subst([N/x](λy•P)) ≡λz•subst([N/z]subst([z/y]P))

if y 6= x and y is free in N and x is free in P
(where z is not free in (N P)).

[4.4] α–Renaming and β–Reduction

• α–renaming: λx•M
If x, y are distinct variables then replacing x by y in λx•M results in
λy•subst([y/x]M): We can rename the formal parameter of a λ-function
expression provided that no free variables of its body M thereby become
bound.

• β–reduction: (λx•M)(N)
All free occurrences of x in M are replaced by the expression N provided
that no free variables of N thereby become bound in the result.
(λx•M)(N) ≡ subst([N/x]M)

[4.6] Function Signatures in RSL

For sorts we may want to postulate some functions:

type
A, B, C

value
obs B: A → B,
obs C: A → C,
gen A: B×C → A

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

194 B Methodology

[4.7] Function Definitions in RSL

Functions can be defined explicitly:

value
f: A × B × C → D
f(a,b,c) ≡ Value Expr

g: B-infset × (D →m C-set)
∼→ A∗

g(bs,dm) ≡ Value Expr
pre P(bs,dm)

comment: a, b, c, bs and dm are parameters of appropriate types

or implicitly:

value
f: A × B × C → D
f(a,b,c) as d
post P1(a,b,c,d)

g: B-infset × (D →m C-set)
∼→ A∗

g(bs,dm) as al
pre P2(bs,dm)
post P3(bs,dm,al)

comment: a, b, c, bs and dm are parameters of appropriate types

The symbol
∼→ indicates that the function is partial and thus not defined for

all arguments. Partial functions should be assisted by preconditions stating
the criteria for arguments to be meaningful to the function.

B.3.5 [5] Applicative Constructs of RSL

[5.1] The RSL let Constructs

[5.1.1] General:

Simple (i.e., non–recursive) let:

let a = Ed in Eb(a) end

is an “expanded” form of:

(λa.Eb(a))(Ed)

Recursive let:

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

B.3 RSL: The RAISE Specification Language 195

let f = λa:A • E(f) in B(f,a) end

≡ `̀the same′′ as:

let f = YF in B(f,a) end

where:

F ≡ λg•λa•(E(g)) and YF = F(YF)

[5.1.2] Predicative lets:

let a:A • P(a) in B(a) end

expresses the selection of an a value of type A which satisfies a predicate P(a)
for evaluation in the body B(a).

[5.1.3] Patterns and Wild Cards:

Some indicative examples:

let {a} ∪ s = set in ... end
let {a, } ∪ s = set in ... end

let (a,b,...,c) = cart in ... end
let (a, ,...,c) = cart in ... end

let 〈a〉̂ℓ = list in ... end
let 〈a, ,b〉̂ℓ = list in ... end

let [a 7→b] ∪ m = map in ... end
let [a 7→b,] ∪ m = map in ... end

[5.2] The Applicative RSL Conditionals

if b expr then c expr else a expr end

if b expr then c expr end ≡ /∗ same as: ∗/
if b expr then c expr else skip end

if b expr 1 then c expr 1
elsif b expr 2 then c expr 2
elsif b expr 3 then c expr 3
...

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

196 B Methodology

elsif b exprt n then c expr n end

case expr of
choice pattern 1 → expr 1,
choice pattern 2 → expr 2,
...
choice pattern n or wild card → expr n

end

[5.3] Common Operator/Operand RSL Constructs

〈Expr〉 ::=
〈Prefix Op〉 〈Expr〉
| 〈Expr〉 〈Infix Op〉 〈Expr〉
| 〈Expr〉 〈Suffix Op〉
| ...

〈Prefix Op〉 ::=
− | ∼ | ∪ | ∩ | card | len | inds | elems | hd | tl | dom | rng

〈Infix Op〉 ::=
= | 6= | ≡ | + | − | ∗ | ↑ | / | < | ≤ | ≥ | > | ∧ | ∨ | ⇒
| ∈ | 6∈ | ∪ | ∩ | \ | ⊂ | ⊆ | ⊇ | ⊃ | ̂ | † | ◦

〈Suffix Op〉 ::= !

B.3.6 [6] Imperative Constructs of RSL

[6.1] Variables, Assignments and the Unit Value

0. variable v:Type := expression
1. v := expr

[6.2] Statement Sequence and skip

2. skip
3. stm 1;stm 2;...;stm n

[6.3] The Imperative RSL Conditionals

4. if expr then stm c else stm a end
5. case e of: p 1→S 1(p 1),...,p n→S n(p n) end

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT

B.3 RSL: The RAISE Specification Language 197

[6.4] The Iterative RSL Conditionals

6. while expr do stm end
7. do stmt until expr end

[6.5] The Iterative RSL Sequencing

8. for b in list expr • P(b) do S(b) end

[6.6] RSL Variable Expressions

9. v

B.3.7 [7] Parallel Constructs of RSL

[7.1] Process Channels

Let A, B and KIdx stand for a type of (channel) messages, respectively a
(sort–like) index set over channels, then:

channel c:A
channel { k[i]:B • i:KIdx }

declare a channel, c, and a set of channels, k[i], which can communicate values
of the designated types.

[7.2] Composition of Processes

Let P and Q stand for names of process functions, i.e., of functions which
express willingness to engage in input and/or output events, i.e., in commu-
nication over channels.

Let P() and Q(i) stand for process expressions, then:

P() ‖ Q(i) Parallel composition
P() ⌈⌉⌊⌋ Q(i) Non−−deterministic External Choice (either/or)
P() ⌈⌉ Q(i) Non−−deterministic Internal Choice (either/or)

express the parallel of two processes, respectively the non–deterministic choice
between two processes: Either external or internal.

January 21, 2008, 10:00, Financial Services c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark

invisible

D
R

A
FT

198 B Methodology

[7.3] Process Input/Output

Let c, k[i] and e designate a channel, a channel and a type A, resp., type B
valued expression. Then:

c ?, k[i] ? Input
c ! e, k[i] ! e Output

expresses the willing of a process to engage in an event that reads an input,
respectively that writes an output.

[7.4] Process Signatures and Definitions

The below signatures are just examples. They emphasise that process func-
tions must somehow express, in their signatyure via which channels they wish
to engage in input and output events.

value
P: Unit → in c out k[i] Unit
Q: i:KIdx → out c in k[i] Unit

P() ≡ ... c ? ... k[i] ! e ...
Q(i) ≡ ... k[i] ? ... c ! e ...

The process function definitions (i.e., their bodies) express possible events.

B.3.8 [8] Simple RSL Specifications

Not using schemes, classes and objects an RSL specification is some sequence
one or more below type, zero, one or more variable, zero, one or more
channel, one or more value, and zero, one or more axiom clauses.

type
...

variable
...

channel
...

value
...

axiom
...

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

invisible

D
R

A
FT C

Indexes

invisible

D
R

A
FT

invisible

D
R

A
FT D

Bibliographical Notes

[3, to appear] gives a concise overview of domain engineering; [1, to appear]
relates domain and requirements engineering; [5] presents a number of domain
engineering research challenges; [6, to appear] additionally presents a rather
large example of the container line industry domain. [7, to appear] shows a
generic, i.e., abstract domain model of road, rail, air and ship transport.

Finally [2, 8, 9], except for this, the management aspects of software engi-
neering, present all the other issues of this Software Engineering Encyclopedia
entry in “excruciating” details!

References

1. Dines Bjørner. From Domains to Requirements. In Ugo’65 [tentative] Festschrift
for Prof. Ugo Montanari, volume ???? of Lecture Notes in Computer Science
(eds. Rocco de Nicola), pages 1–30, Heidelberg, May 2008. Springer.

2. Dines Bjørner. Software Engineering, Vol. 3: Domains, Requirements and Soft-
ware Design. Texts in Theoretical Computer Science, the EATCS Series.
Springer, 2006.

3. Dines Bjørner. Domain Engineering. In BCS FACS Seminars, Lecture Notes in
Computer Science, the BCS FAC Series (eds. Paul Boca and Jonathan Bowen),
pages 1–42, London, UK, 2008. Springer. To appear.

4. Dines Bjørner. Believable Software Management. Encyclopedia of Software Engi-
neering, 1(1):1–32, 2008. (This is a new journal, published by Taylor & Francis,
New York and London, edited by Philip Laplante).

5. Dines Bjørner. Domain Theory: Practice and Theories, Discussion of Possible
Research Topics. In ICTAC’2007, volume 4701 of Lecture Notes in Computer
Science (eds. J.C.P. Woodcock et al.), pages 1–17, Heidelberg, September 2007.
Springer.

6. Dines Bjørner. Domain Engineering. In The 2007 Lipari PhD Summer School,
volume ???? of Lecture Notes in Computer Science (eds. E. Börger and A. Ferro),
pages 1–102, Heidelberg, Germany, 2008. Springer. To appear.

7. Dines Bjørner. Development of Transportation Systems. In 2007 ISoLA Work-
shop On Leveraging Applications of Formal Methods, Verification and Validation;

invisible

D
R

A
FT

202 References

Special Workshop Theme: Formal Methods in Avionics, Space and Transport, EN-
SMA, Futuroscope, France, December 12–14 2007.

8. Dines Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling. Texts
in Theoretical Computer Science, the EATCS Series. Springer, 2006.

9. Dines Bjørner. Software Engineering, Vol. 2: Specification of Systems and Lan-
guages. Texts in Theoretical Computer Science, the EATCS Series. Springer,
2006. Chapters 12–14 are primarily authored by Christian Krog Madsen.

c© D. Bjørner 2008; Fredsvej 11, DK–2840 Holte, Denmark Financial Services, January 21, 2008, 10:00

