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Abstract

In [9, Barry Boehm 81] two qualities of software were characterised (30+ years ago): “the
right software” and “software that is right”. The former is software that offers its users
exactly and only what they expect from that software. In this paper we shall take “the
right software” to be software whose data and functions accurately reflect the are of their
work (i.e., the application domain, or just domain). “Software that is right” is software
which correctly implements its requirements (in the context of assumptions about the do-
main). Seminal works [20, 21, M.A. Jackson], [17, David Lorge Parnas] and [28, Axel van
Lamsweerde] have stressed the importance of careful domain analysis in conjunction with
similarly careful requirements analysis and prescription. In this paper we shall “isolate”
domain description (incl. analysis) into a separate phase, which we shall call domain engi-
neering1, ideally preceding requirements engineering.. In the above cited works, where we
especially acknowledge the influence, in our work, from [20, M.A. Jackson 1995], domain
analysis appears to be tightly interwoven with requirements analysis. In this paper we
shall separate the two and “pretend” that software can be developed in three “ideally”
consecutive phases: domain description development2 and requirements prescription de-
velopment3. We shall not cover a third phase of software development: software design.
We shall structure domain modelling into the composed modelling on domain facets such
as (a) intrinsics, (b) support technologies, (c) rules and regulations, (d) scripts (licenses
and contracts), (e) management and organisation and (f) human behaviour. We shall
show that signaificant parts of requirements prescriptions can be systematically “derived”
from a domain descruption, in particular the two parts of requirements that we shall call
domain requirements and interface requirements. We shall structure domain requirements
modelling into the staged modelling of such domain requirements facets as (g) projection,
(h) instantiation, (i) determination, (j) extension and (k) fitting, as well as the staged
modelling of such interface requirements facets as (l) shared simple entities, (m) shared
actions, (n) shared events and (o) shared behaviours. We suggest, but can only point
to empirical observations, that the systematic adherence to the items (a)–(o) contributes

∗This is an evolving draft of an invited, to be refereed paper for a special JTCS issue in honour of NNN’s
KKKth Anniversary. I expect the draft to be completed by August 10, 2010. Currently I have started a
complete rewite of the text. All examples will be renewed. As of July 15, 2010 my rewite ends at the
beginning of Sect. 1.4.

1But domain engineering does not entail the construction, as in ordinary engineering, of a domain. It entails
the construction of a domain description

2colloquially: domain engineering
3colloquially: requirements engineering
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2 From Domains to Requirements:

towards achieving “the right software”, while pursuing all phases using formal techniques
(notably specification, verification) contributes towards achieving “that the software is
right”.
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Domain Engineering, Requirements Engineering, Formal Specification
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1 Introduction

Before we can design software we must have a robust understanding of its requirements. And
before we can prescribe requirements we must have a robust understanding of the environment,
or, as we shall call it, the domain in which the software is to serve – and as it is at the time such
software is first being contemplated.

In consequence we suggest that software, “ideally”4, be developed in three phases.

First a phase of domain engineering. In this phase a reasonably comprehensive de-
scription is constructed from an analysis of the domain. That description, as it evolves, is
analysed with respect to inconsistencies, conflicts and completeness on one hand, and, on the
other hand, in order to achieve pleasing concepts in terms of which to abstractly model the
domain.

Then a phase of requirements engineering. This phase is strongly based, as we shall
see (in Sect. 4), on an available, necessary and sufficient domain description. Guided by the
domain and requirements engineers the requirements stakeholders point out which domain
description parts are to be left (projected) out of the domain requirements, and of those
left what forms of instantiations, determinations and extensions are required. Similarly the
requirements stakeholders, guided by the domain and requirements engineers, inform as to
which domain entities, actions, events and behaviours are shared between the domain and
the machine, that is, the hardware and the software being required. In this paper we shall
only very briefly cover aspects of machine requirements.

And finally a phase of software design. We shall not cover this phase in this paper.

4Section 5.8 will discuss practical renditions of “idealism”!
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4 From Domains to Requirements:

Methodology
The paper is a methodology paper – where a method is seen as a set of principles (ap-

plied by engineers, not machines) for selecting and applying (often with some tool support)
techniques (and tools) for the efficient construction of some artifact – here software.

This paper shall be seen as an adjoint to current research in domain analysis, requirements tech-
niques and specification. We think our techniques go well-in-hand with those of [20, 21, 17, 23].

• • •

We do not claim that our concept of domain engineering is new, only (I) that we have
contributed with a check list (Items (a)–(f) as mentioned in the abstract) which is of help
to the domain engineer; and (II) that the idea of some systematic form of “derivation” of
parts of the requirements prescription from the domain description is reasonably new; we,
in particular suggest that the domain description to requirements prescription “operations”
(Items (g)–(o) as mentioned in the abstract) are new. But, again, much of the inspiration for
these are due to [20, 21, 17, 23].

1.1 What are Domains

By a domain we shall here understand a universe of discourse, an area of nature subject to
laws of physics and studies by physicists, or an area of human activity (subject to its inter-
faces with nature). There are other domains which we shall ignore. We shall focus on the
human-made domains. “Large scale” examples are the financial service industry: banking,
insurance, securities trading, portfolio management, etc., health care: hospitals, clinics, pa-
tients, medical staff, etc., transportation: road, rail/train, sea, and air transport (vehicles,
transport nets, etc.); oil and gas systems: pumps, pipes, valves, refineries, distribution, etc.
“Intermediate scale” examples are automobiles: manufacturing or monitoring and control,
etc.; and heating systems. The above explication was “randomised”: for some domains, to
wit, the financial service industry, we mentioned major functionalities, for others, to wit,
health care, we mentioned major entities. An objection can be raised, namely that the above
characterisation – of what a domain is – is not sufficiently precise. We shall try, in the next
section, to partially meet this objection.

1.2 What is a Domain Description

By a domain description we understand a description of the entities, the actions, the events
and the behaviours of the domain, including its interfaces to other domains. A domain
description describes the domain as it is. A domain description does not contain requirements
let alone references to any software. Michael Jackson, in [20], refers to domain descriptions
as indicative (stating objective fact), requirements prescriptions as optative (expressing wish
or hope) and software specifications as imperative (“do it!”). A description is syntax. The
meaning (semantics) of a domain description is usually a set of domain models. We shall take
domain models to be mathematical structures (theories). The form of domain descriptions
that we shall advocate “come in pairs”: precise, say, English, i.e., narrated text (narratives)
alternates with clearly related formula text.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift July 15, 2010, 11:47
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1.3 Description Languages

Besides using as precise a subset of a national language, as here English, as possible, and
in enumerated expressions and statements, we “pair” such narrative elements with corre-
sponding enumerated clauses of a formal specification language. We shall be using the RAISE

Specification Language, RSL, [12, 13, 3], in our formal texts. But any of the model-oriented
approaches and languages offered by Alloy [19], Event B [1], VDM [7, 8, 11] and Z [29], should
work as well. No single one of the above-mentioned formal specification languages, however,
suffices. Often one has to carefully combine the above with elements of Petri Nets [24],
CSP: Communicating Sequential Processes [16], MSC: Message Sequence Charts [18],
Statecharts [15], and some temporal logic, for example either DC: Duration Calculus

[30] or TLA+ [22]. Research into how such diverse textual and diagrammatic languages can be
meaningfully and proof-theoretically combined is ongoing [2].

1.4 Contributions of This Paper

We claim that the major contributions of the triptych approach to software engineering as
presented in this paper are the following: (1) the clear identification of domain engineering,
or, for some, its clear separation from requirements engineering (Sects. 3 and 4); (2) the
identification and ‘elaboration’ of the pragmatically determined domain facets of (a) intrinsics,
(b) support technologies, (c) rules and regulations, (d) scripts (licenses and contracts), (e)
management and organisation, and (f) human behaviour whereby ‘elaboration’ we mean that
we provide principles and techniques for the construction of these facet description parts
(Sects. 3.2–3.7); (3) the re-identification and ‘elaboration’ of the concept of business process
reengineering (Sect. 4.1) on the basis of the notion of business processes as first introduced
in Sect. 3.1; (4) the identification and ‘elaboration’ of the technically determined domain
requirements facets of (g) projection, (h) instantiation, (i) determination, (j) extension and (k)
fitting requirements principles and techniques – and, in particular the “discovery” that these
requirements engineering stages are strongly dependent on necessary and sufficient domain
descriptions (Sects. 4.2.1–4.2.5); and (5) the identification and ‘elaboration’ of the technically
determined interface requirements facets of (l) shared simple entity, (m) shared action, (n)
shared event and (o) shared behaviour requirements principles and techniques (Sects. 4.3.1–
4.3.4). We claim that the facets of (2, 3, 4) and (5) are all relatively new. In Sect. 5 we shall
discuss these contributions in relation to the works and contributions of other researchers and
technologists.

1.5 Relation to Other Engineering Disciplines

An aeronautics engineer – to be hired by Boeing to their design team for a next generation
aircraft – must be pretty well versed in applied mathematics and in aerodynamics. A radio
communications engineer – to be hired by Ericsson to their design team for a next generation
mobile telephony antennas – must be likewise pretty well versed in applied mathematics and in
the physics of electromagnetic wave propagation in matter. And so forth. Software engineers
hired for the development of software for hospitals, or for railways, know little, if anything,
about health care, respectively rail transportation (schedulimg, rostering, etc.). The Ericsson
radio communications engineer can be expected to understand Maxwell’s Equations, and to
base the design of antenna characteristics on the transformation and instantiation of these
equations. It is therefore quite reasonable to expect the domain-specific software engineer
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6 From Domains to Requirements:

to understand formalisation of their domains, to wit: railways: www.railwaydomain.org,
and pipelines: pipelines.pdf, logistics: logistics.pdf, transport nets: comet1.pdf, stock
exchanges: tse-2.pdf and container lines: container-paper.pdf – these latter five at www.-
imm.dtu.dk/~db/.

1.6 Structure of Paper

Before going into some details on domain enginering (Sect. 3) and requirements engineering
(Sect. 4) we shall in the next section cover the basic concepts of specifications, whether
domain descriptions or requirements prescriptions. These are: entities, actions, events and
behaviours. Section 5 then discuses the contributions of the triptych approach as covered in
this paper.

1.7 Examples and Formalisation

We bring 23 examples. These examples take up about 50% of the paper space. Most of these
have both narrative, informal (English) text and formal texts. In principle all examples should
have formal texts. But page space concerns dictated their absence.The reader, however,
need not read the formalised parts of the examples ! They are expressed in the RAISE [13]
Specification Language (RSL [12])

2 A Specification Ontology

In order to describe domains we postulate the following related specification components:
entities, actions, events and behaviours.

2.1 Entities

By an entity we shall understand a phenomenon we can point to in the domain or a concept
formed from such phenomena.

Example 1 Entities: The example is that of aspects of a transportation net. You may think
of such a net as being either a road net, a rail net, a shipping net or an air traffic net. Hubs
(or junctions) are then street intersections, train stations, harbours, respectively airports. Links
are then street segments between immediately adjacent intersections, rail tracks between train
stations, sea lanes between harbours, respectively air lanes between airports.

1. There are hubs and links.

2. There are nets, and a net consists of a set of two or more hubs and one or more links.

3. There are hub and link identifiers.

4. Each hub (and each link) has an own, unique hub (respectively link) identifier (which can
be observed (ω) from the hub [respectively link]).

type

1. H, L,
2. N = H-set × L-set

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift July 15, 2010, 11:47
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axiom [ nets−hubs−links−1 ]
2. ∀ (hs,ls):N • card hs≥2 ∧ card ls≥1

type

3. HI, LI
value

4. ωHI: H → HI, ωLI: L → LI
axiom [ nets−hubs−links−2 ]

4. ∀ h,h′:H, l,l′:L • h6=h′ ⇒ ωHI(h)6=ωHI(h′) ∧ l 6=l′⇒ωLI(l)6=ωLI(l′)

In order to model the physical (i.e., domain) fact that links are delimited by two hubs and that
one or more links emanate from and are, at the same time, incident upon a hub we need to be
able to express the following: that we can observe identifiers of hubs connected to a link from
that link, and identifiers of links connected to a hub from that hub.

5. From any link of a net one can observe the two hubs to which the link is connected. We
take this ‘observing’ to mean the following: from any link of a net one can observe the two
distinct identifiers of these hubs.

6. From any hub of a net one can observe the identifiers of one or more links which are
connected to the hub.

7. Extending Item 5.: the observed hub identifiers must be identifiers of hubs of the net to
which the link belongs.

8. Extending Item 6.: the observed link identifiers must be identifiers of links of the net to
which the hub belongs.

value

5. ωHIs: L → HI-set,
6. ωLIs: H → LI-set,

axiom [ net−hub−link−identifiers−1 ]
5. ∀ l:L • card ωHIs(l)=2 ∧
6. ∀ h:H • card ωLIs(h)≥1 ∧
∀ (hs,ls):N •

5. ∀ h:H • h ∈ hs ⇒ ∀ li:LI • li ∈ ωLIs(h)
⇒ ∃ l′:L • l′ ∈ ls ∧ li=ωLI(l′) ∧ ωHI(h) ∈ ωHIs(l′) ∧

6. ∀ l:L • l ∈ ls ⇒ ∃ h′,h′′:H • {h′,h′′}⊆hs ∧ ωHIs(l)={ωHI(h′),ωHI(h′′)}
7. ∀ h:H • h ∈ hs ⇒ ωLIs(h) ⊆ iols(ls)
8. ∀ l:L • l ∈ ls ⇒ ωHIs(h) ⊆ iohs(hs)

value

iohs: H-set → HI-set, iols: L-set → LI-set
iohs(hs) ≡ {ωHI(h)|h:H•h ∈ hs}
iols(ls) ≡ {ωLI(l)|l:L•l ∈ ls}

In the above extensive example we have focused on just five entities: nets, hubs, links and
their identifiers. The nets, hubs and links can be seen as separable phenomena. The hub and link
identifiers are conceptual models of the fact that hubs and links are connected — so the identifiers
are abstract models of ‘connection’, i.e., the mereology of nets, that is, of how nets are composed.
These identifiers are attributes of entities.

July 15, 2010, 11:47, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark



8 From Domains to Requirements:

Links and hubs have been modelled to possess link and hub identifiers. A link’s “own” link
identifier enables us to refer to the link, A link’s two hub identifiers enables us to refer to the
connected hubs. Similarly for the hub and link identifiers of hubs and links.

9. A hub, hi, state, hσ, is a set of hub traversals.

10. A hub traversal is a triple of link, hub and link identifiers (liin , hii , liout) such that liin and
liout can be observed from hub hi and such that hii is the identifier of hub hi.

11. A hub state space is a set of hub states such that all hub states concern the same hub.

type

9. HT = (LI×HI×LI)
10. HΣ = HT-set

11. HΩ = HΣ-set

value

10. ωHΣ: H → HΣ
11. ωHΩ: H → HΩ

axiom [ hub−states ]
∀ n:N,h:H•h ∈ ωHs(n)⇒wf HΣ(h)∧wf HΩ(h)

value

wf HΣ: H → Bool, wf HΩ: H → Bool

wf HΣ(h) ≡ ∀ (li,hi,li′),( ,hi′, ):HT•(li,hi,li′)∈ ωHΣ(h) ⇒
{li,li′}⊆ωLIs(h)∧hi=ωHI(h)∧hi′=hi

wf HΩ(h) ≡ ∀ hσ:HΣ•hσ ∈ ωHΩ(h)⇒ hσ 6={} ⇒
∀ (li,hi,li′):HT•(li,hi,li′)∈ hσ ⇒ hi=ωHI(h)

2.2 Actions

A set of entities form a state. It is the domain engineer which decides on such states. A
function application, one which applies to zero, one or more arguments and a state results in
a state changes, is an action.

Example 2 Deterministic Actions:

12. Our example action is that of setting the state of hub.

13. The setting applies to a hub

14. and a hub state in the hub state space

13. and yields a “new” hub.

15. The before and after hub identifier remains the same.

16. The before and after link identifiers remain the same.

17. The before and after hub state space remains the same.

18. The result hub state is that being set (i.e., the argument hub state).

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift July 15, 2010, 11:47
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value

12. set HΣ: H × HΣ → H
13. set HΣ(h,hσ) as h′

14. pre hσ ∈ ωHΩ(h)
15. post ωHI(h)=ωHI(h′)∧
16. ωLIs(h)=ωLIs(h′)∧
17. ωHΩ(h)=ωHΩ(h′)∧
18. ωHΣ(h′)=hσ

Example 3 Non-deterministic Actions:

19. The result hub state is now a possible hub state:

value

12. set HΣ: H × HΣ → H
13. set HΣ(h,hσ) as h′

14. pre hσ ∈ ωHΩ(h)
15. post ωHI(h)=ωHI(h′)∧
16. ωLIs(h)=ωLIs(h′)∧
17. ωHΩ(h)=ωHΩ(h′)∧
19. ωHΣ(h′) ∈ possible Σs(h)

possible Σs: H → HΣ-set

possible Σs(h) ≡
let hi = ωHI(h), lis = ωLIs(h) in {(li,hi,li′)|li,li′:LI•{li,li′}⊆lis} end

2.3 Events

Any state change is an event. A situation in which a (specific) state change was expected
but none (or another) occurred is an event. Some events are more “interesting” than other
events. Not all state changes are caused by actions of the domain.

Example 4 Events:

20. A hub is in some state, hσ.

21. An action directs it to change to state hσ′ where hσ′ 6= hσ.

22. But after that action the hub remains either in state hσ or is possibly in a third state, hσ′′

where hσ′′ 6∈ {hσ,hσ′}.

23. Thus an “interesting event” has occurred !

∃ n:N,h:H,hσ,hσ′:HΣ•h ∈ ωHs(n)∧
21.–22. {hσ,hσ′}⊆ωHΩ(h)∧card{hσ,hσ′}=2 ∧
20. ωHΣ(h)=hσ ;
21. let h′ = set HΣ(h,hσ′) in

22. ωHΣ(h′)∈ ωHΣ(h′)\{hσ′} ⇒
23. ”interesting event” end

July 15, 2010, 11:47, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark



10 From Domains to Requirements:

It only makes sense to change hub states if there are more than just one single such state.

2.4 Behaviours

A behaviour is a set of zero, one or more sequences of actions, including events.

Example 5 Behaviours:

24. Let h be a hub of a net n.

25. Let hσ and hσ′ be two distinct states of h.

26. Let ti : TI be some time interval.

27. Let h start in an initial state hσ.

28. Now let hub h undergo an ongoing sequence of n changes

(a) from hσ to hσ′ and

(b) then, after a wait of ti seconds,

(c) and then , after another wait of ti seconds, back to hσ.

(d) After n blinks a pause, tp : TI, is made and blinking restarts.

type

TI
value

ti,tp:TI [axiom tp>>ti ]
n:Nat,
28. blinking: H × HΣ × HΣ × Nat → Unit

28. blinking(h,hσ,hσ′,m) in

27. let h′ = set HΣ(h,hσ) in

28c. wait ti ;
28a. let h′′ = set HΣ(h′,hσ′) in

28c. wait ti ;
28. if m=1
28. then skip

28. else blinking(h,hσ,hσ′,m−1) end end end

28. wait tp ;
28d. blinking(h,hσ,hσ′,n)
25. pre {hσ,hσ′}⊆ωHΩ(h)∧hσ 6=hσ′

28. ∧ initial m=n

3 Domain Engineering

We focus on the facet components of a domain description and leave it to other publications,
for ex. [3, Vol. 3, Part IV, Chaps. 8–10], to cover such aspects of domain engineering as
stake-holder identification and liaison, domain acquisition and analysis, terminologisation,
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verification, testing, model-checking, validation and domain theory. By understanding, first,
the facet components the domain engineer is in a better position to effectively establish
the regime of stakeholders, pursue acquisition and analysis, and construct a necessary and
sufficient terminology. The domain description components each cover their domain facet. We
outline six such facets: intrinsics, support technology, rules and regulations, scripts (licenses
and contracts), management and organisation, and human behaviour. But first we cover a
notion of business processes.

3.1 Business Processes

By a business process we understand a set of one or more, possibly interacting behaviours
which fulfill a business objective. We advocate that domain engineers, typically together with
domain stake-holder groups, rough-sketch their individual business processes.

Example 6 Some Transport Net Business Processes: With respect to one and the
same underlying road net we suggest some business-processes and invite the reader to further
rough-sketch these.

29. Private citizen automobile transports: Private citizens use the road net for pleasure and
for business, for sightseeing and to get to and from work.

A private citizen automobile transport “business process rough-sketch” might be:

A car owner drives to work: Drives out, onto the street, turns left, goes down
the street, straight through the next three intersections, then turns left, two
blocks straight, etcetera, finally arrives at destination, and finally turns into
a garage.

30. Public bus (&c.) transport: Province and city councils contract bus (&c.) companies to
provide regular passenger transports according to timetables and at cost or free of cost.

A public bus transport “business process rough-sketch” might be:

A bus drive from station of origin to station of final destination: Bus driver
starts from station of origin at the designated time for this drive; drives to
first passenger stop; open doors to let passenger in; leaves stop at timetable-
designated time; drives to next stop adjusting speed to traffic conditions and
to “keep time” as per the timetable; repeats this process: “from stop to stop”,
letting passengers off and on the bus; after having (thus, i.e., in this manner)
completed last stop “turns” bus around to commence a return drive.

31. Road maintenance and repair: Province and city councils hire contractors to monitor
road (link and hub) surface quality, to maintain set standards of surface quality, and to
“emergency” re-establish sudden occurrences of low quality. Now provide your own rough
sketch description.

32. Toll road traffic: State and province governments hire contractors to run toll road nets
with toll booth plazas. Now provide your own rough sketch description.
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12 From Domains to Requirements:

33. Net revision: road (&c.) building: State government and province and city councils
contract road building contractors to extend (or shrink) road nets. Now provide your own
rough sketch description.

The detailed description of the above rough-sketched business process synopses now becomes part
of the domain description as partially exemplified in the previous and the next many examples.

Rough-sketching such business processes helps bootstrap the process of domain acquisition.
We shall return to the notion of business processes in Sect. 4.1 where we introduce the concept
of business process re-engineering.

3.2 Intrinsics

By intrinsics we shall understand the very basics, that without which none of the other facets
can be described, i.e., that which is common to two or more of these other facets.

Example 7 Intrinsics: Most of the descriptions of Sect. 2 model intrinsics. We add a little
more. We wish to describe link traversals.

34. A link traversal is a triple of a (from) hub identifier, an along link identifier, and a (towards)
hub identifier

35. such that these identifiers make sense in any given net.

36. A link state is a set of link traversals.

37. And a link state space is a set of link states.

value

n:N
type

34. LT′ = HI × LI × HI
35. LT = {|lt:LT′

•wfLT(lt)(n)|}
36. LΣ′ = LT-set

36. LΣ = {|lσ:LΣ′•wf LΣ(lσ)(n)|}
37. LΩ′ = LΣ-set

37. LΩ = {|lω:LΩ′•wf LΩ(lω)(n)|}
value

35. wfLT: LT → N → Bool

35. wfLT(hi,li,hi′)(n) ≡
35. ∃ h,h′:H•{h,h′}⊆ωHs(n)∧ωHI(h)=hi∧ωHI(h′)=hi′∧li ∈ ωLIs(h)∧li ∈ ωLIs(h′)

The wf LΣ and wf LΩ can be defined like the corresponding functions for hub states and hub
state spaces.
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3.3 Support Technologies

By support technologies we shall understand the ways and means by which humans and/or
technologies support the representation of entities and the carrying out of actions.

Example 8 Support Technologies: Some road intersections (i.e., hubs) are controlled by
semaphores alternately shining red–yellow–green in carefully interleaved sequences in each of the
in-directions from links incident upon the hubs. Usually these signalings are initiated as a result
of road traffic sensors placed below the surface of these links. We shall model just the signaling:

38. There are three colours: red, yellow and green.

39. Each hub traversal is extended with a colour and so is the hub state.

40. There is a notion of time interval.

41. Signaling is now a sequence, 〈(hσ′, tδ′), (hσ′′, tδ′′), . . . , (hσ′···′, tδ′···′)〉 such that the first
hub state hσ′ is to be set first and followed by a time delay tδ′ whereupon the next state is
set, etc.

42. A semaphore is now abstracted by the signalings that are prescribed for any change from a
hub state hσ to a hub state hσ′.

type

38. Colour == red | yellow | green
39. X = LI×HI×LI×Colour [ crossings of a hub ]
39. HΣ = X-set [ hub states ]
40. TI [ time interval ]
41. Signalling = (HΣ × TI)∗

42. Semaphore = (HΣ × HΣ) →m Signalling

value

39. ωHΣ: H → HΣ
42. ωSemaphore: H → Semaphore
13. chg HΣ: H × HΣ → H
13.–18. chg HΣ(h,hσ) as h′ pre hσ ∈ ωHΩ(h) post ωHΣ(h′)=hσ

41. chg HΣ Seq: H × HΣ → H
41. chg HΣ Seq(h,hσ) ≡
41. let sigseq = (ωSemaphore(h))(ωΣ(h),hσ) in sig seq(h)(sigseq) end

41. sig seq: H → Signalling → H
41. sig seq(h)(sigseq) ≡
41. if sigseq=〈〉 then h else

41. let (hσ,tδ) = hd sigseq in let h′ = chg HΣ(h,hσ) in

41. wait tδ;
41. sig seq(h′)(tl sigseq) end end end
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14 From Domains to Requirements:

3.4 Rules and Regulations

By a rule we shall understand a text which describe how the domain is (i.e., people and
technology are) expected to behave. The meaning of a rule is a predicate over “before/after”
states of actions: if the predicate holds then the rule has been obeyed. By a regulation we
shall understand a text which describes actions to be performed should its corresponding rule
fail to hold. The meaning of a regulation is therefore a state-to-state transition, one that
brings the domain into a rule-holding “after” state.

Example 9 Rules: We give two examples related to railway systems where train stations are
the hubs and the rail tracks between train stations are the links:

43. Trains arriving at or leaving train stations:

(a) (In China:) No two trains

(b) must arrive at or leave a train station

(c) in any two minute time interval.

44. Trains travelling “down” a railway track. We must introduce a notion of links being a
sequence of adjacent sectors.

(a) Trains must travel in the same direction;

(b) and there must be at least one “free-from-trains” sector

(c) between any two such trains.

We omit showing somewhat “lengthy” formalisations.

We omit exemplification of regulations.

3.5 Scripts, Licenses and Contracts

3.5.1 Scripts

By a script we understand a set of pairs of rules and regulations.

Example 10 Timetable Scripts:

45. Time is considered discrete. Bus lines and bus rides have unique names (across any set of
timetables).

46. A TimeTable associates Bus Line Identifiers (blid) to sets of Journies.

47. Journies are designated by a pair of a BusRoute and a set of BusRides.

48. A BusRoute is a triple of the BusStop of origin, a list of zero, one or more intermediate
BusStops and a destination BusStop.

49. A set of BusRides associates, to each of a number of Bus Identifiers (bid) a BusSchedule.

50. A BusSchedule is a triple of the initial departure T ime, a list of zero, one or more interme-
diate bus stop T imes and a destination arrival T ime.
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51. A BusStop (i.e., its position) is a Fraction of the distance along a link (identified by a Link
Identifier) f rom an identified hub to an identified hub.

52. A Fraction is a Real, properly between 0 and 1 (incl.).

53. The Journies must be well f ormed in the context of some net.

54. A set of journies is well-formed if

(a) the bus stops are all different,

(b) a bus line is embedded in some line of the net, and

(c) all defined bus trips of a bus line are equivalent.

type

45. T, BLId, BId
46. TT = BLId →m Journies
47. Journies′ = BusRoute × BusRides
48. BusRoute = BusStop × BusStop∗ × BusStop
49. BusRides = BId →m BusSched
50. BusSched = T × T∗ × T
51. BusStop == mkBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
52. Frac = {|r:Real•0<r<1|}
53. Journies = {|j:Journies′•∃ n:N • wf Journies(j)(n)|}

value

54. wf Journies: Journies → N → Bool

54. wf Journies((bs1,bsl,bsn),js)(hs,ls) ≡
54a. diff bus stops(bs1,bsl,bsn) ∧
54b. is net embedded bus line(〈bs1〉̂bsl̂〈bsn〉)(hs,ls) ∧
54c. commensurable bus trips((bs1,bsl,bsn),js)(hs,ls)

Timetables are used in the next example.

3.5.2 Licenses and Contracts

By a license (a contract) language we understand a pair of languages of licenses and of the
set of actions allowed by the license – such that non-allowable actions incur moral obligations
whereas, for contracts, they incur legal responsibilities.

Example 11 Contracts: An example contract can be ‘schematised’:

55. cid: contractor cor contracts sub-contractor cee
to perform operations
{"conduct","cancel","insert","subcontract"}

with respect to timetable tt.

We assume a context (a global state) in which all contract actions (including contracting) takes
place and in which the implicit net is defined.

We bring only abstractions of actions. That is, we hint at "conduct", "cancel", "insert",

and "subcontract" such actions. For specific deployments of this bus transport contract lan-
guage we need to be more specific.
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56. Concrete examples of actions can be schematised:

(a) conduct bus ride (blid,bid) to start at time t

(b) cancel bus ride (blid,bid) at time t

(c) insert bus ride like (blid,bid) at time t

The schematised license shown earlier is almost like an action; here is the action form:

57. contractor cnm′ is granted a contract cid′

to perform operations
{”conduct”,”cancel”,”insert”,sublicense”}

with respect to timetable tt′.

All actions are being performed by a sub-contractor in a context which defines that sub-contractor
cnm, the relevant net, say n, the base contract, referred here to by cid (from which this is a
sublicense), and a timetable tt of which tt′ is a subset. contract name cnm′ is new and is to be
unique. The subcontracting action can (thus) be simply transformed into a contract as shown on
Page 15.

type

56. Action = CNm × CId × (SubCon | SmpAct) × Time
56. SmpAct = Conduct | Cancel | Insert
56a. Conduct == µConduct(s blid:BLId,s bid:BId)
56b. Cancel == µCancel(s blid:BLId,s bid:BId)
56c. Insert = µInsert(s blid:BLId,s bid:BId)
57. SubCon == µSubCon(s cid:CId,s cnm:CNm,s body:(s ops:Op-set,s tt:TT))

We omit formalising the semantics of these syntaxes. A formalisation could be expressed (in CSP

[16]) with each bus, each licensee (and licensor), time and the road net bus traffic being processes,
etc.

3.6 Management and Organisation

By management we shall understand the set of behaviours which perform strategic, tactical
and operational actions. By organisation we shall understand the decomposition of these
behaviours into, for example, clearly separate strategic, tactical and operational “areas”, pos-
sibly further decomposed by geographical and/or “subject matter” concerns. To explain dif-
ferences between strategic, tactical and operational issues we introduce a notion of Strategic,
T actical and Operational Funds, FS,T ,O, and other resources, R, a notion of contexts, C,
and a notion of states, S. Contexts bind resources to bindings from locations to disjoint time
intervals (allocation and scheduling), states bind resource identifiers to maps from resource
attribute names to resource values. Simplified types of the strategic, tactical and operational
actions are now:

type

R,RID,RAN ,RVAL,FS ,FT ,FO

C = R→m ((T × T ) →m L)
S = RID→m (RAN →m RVAL)
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value

ωRID: R → RID
ωRVALs: R → (RAN →m RVAL)
Executive functions: C × S × FS,T ,O → FS,T ,O

Strategic functions: C × FS → FS ×R× C × S
Tactic functions: R× C × S × FT → C ×FT

Operational functions: C × S × FO → S ×FO

where we have omitted arguments pertinent to specific functions. Executive functions redis-
tribute financial assets. The above can be the basis for a worthwhile study of a theory of
executive, strategic, tactical and operational management.

Example 12 Management: We relate to Example 11:

58. The conduct, cancel and insert bus ride actions are operational functions.

59. The actual subcontract actions are tactical functions;

60. but the decision to carry out such a tactical function may very well be a strategic function
as would be the acquisition or disposal of busses.

61. Forming new timetables, in consort with the contractor, is a strategic function.

We omit formalisations.

3.7 Human Behaviour

By human behaviour we shall understand those aspects of the behaviour of domain stake-
holders which have a direct bearing on the “functioning” of the domain, in a spectrum from
diligent via sloppy to delinquent and outright criminal neglect in the observance of maintaining
entities, carrying out actions and responding to events.

Example 13 Human Behaviour: Cf. Examples 11–12. Under the assumption that there is
no technical reasons for not conducting a, or some bus rides, and then with respect to any one
specific bus driver:

62. Conducting all bus rides must be classified as diligent;

63. rare failures to conduct a bus ride must be classified as sloppy;

64. occasional failures · · · as delinquent;

65. repeated patterns of failures · · · as criminal.

We omit showing somewhat “lengthy” formalisations.
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3.8 Discussion

We have ever so briefly outlined six domain facet concepts and we have exemplified each of
these. Real-scale domain descriptions are, of course, much larger than what we can show.
Typically, say for the domain of logistics, a description is 30 pages; for “small” parts of railway
systems we easily get up to 100–200 pages of the kind shown here. The reader should now have
gotten a reasonably clear idea as to what constitutes a domain description. As mentioned,
in the introduction to Sect. 3, we shall not cover post-modelling activities such a validation
and domain theory formation. The latter is usually part of the verification (theorem proving,
model checking and formal testing) of the formal domain description. Final validation of a
domain description is with respect to the narrative part of the narrative/formalisation pairs
of descriptions. The reader should also be able to form a technical opinion about what can
be formalised, and that not all can be formalised within the framework of a single formal
specification language, cf. Sect. 1.3.

4 Requirements Engineering

Whereas a domain description presents a domain as it is, a requirements prescription presents
a domain as it would be if some required machine was implemented (from these require-
ments). The machine is the hardware plus software to be designed from the requirements.
That is, the machine is what the requirements are about. We distinguish between three kinds
of requirements: (Sect. 4.2) the domain requirements are those requirements which can be
expressed solely using terms of the domain; (Sect. 4.4) the machine requirements are those
requirements which can be expressed solely using terms of the machine and (Sect. 4.3) the
interface requirement are those requirements which must use terms from both the domain
and the machine in order to be expressed.

4.1 Business Process Re-engineering

In Sect. 3.1 we very briefly covered a notion of business processes. These were the business
processes of the domain before installation of possible computing systems. The potential of
installing computing systems invariably requires revision of established business processes.
Business process re-engineering (BPR) is a development of new business processes – whether
or not complemented by computing and communication. BPR, such as we advocate it, pro-
ceeds on the basis of an existing domain description and outlines needed changes (additions,
deletions, modifications) to entities, actions, events and behaviours following the six domain
facets outlined in Sects. 3.2–3.7.

Example 14 Rough-sketching a Re-engineered Road Net: Our sketch centers around
a toll road net with toll booth plazas. The BPR focuses first on entities, actions, events and
behaviours (Sect. 2), then on the six domain facets (Sects. 3.2–3.7).

66. Re-engineered Entities: We shall focus on a linear sequence of toll road intersections (i.e.,
hubs) connected by pairs of one-way (opposite direction) toll roads (i.e., links). Each toll
road intersection is connected by a two way road to a toll plaza. Each toll plaza contains a
pair of sets of entry and exit toll booths. (Example 16 brings more details.)
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67. Re-engineered Actions: Cars enter and leave the toll road net through one of the toll
plazas. Upon entering, car drivers receive, from the entry booth, a plastic/paper/electronic
ticket which they place in a special holder in the front window. Cars arriving at intermediate
toll road intersections choose, on their own, to turn either “up” the toll road or “down” the
toll road — with that choice being registered by the electronic ticket. Cars arriving at a
toll road intersection may choose to “circle” around that intersection one or more times —
with that choice being registered by the electronic ticket. Upon leaving, car drivers “return”
their electronic ticket to the exit booth and pay the amount “asked” for.

68. Re-engineered Events: A car entering the toll road net at a toll both plaza entry booth
constitutes an event. A car leaving the toll road net at a toll both plaza entry booth
constitutes an event. A car entering a toll road hub constitutes an event. A car entering a
toll road link constitutes an event.

69. Re-engineered Behaviours: The journey of a car,from entering the toll road net at a toll
booth plaza, via repeated visits to toll road intersections interleaved with repeated visits to
toll road links to leaving the toll road net at a toll booth plaza, constitutes a behaviour —
withreceipt of tickets, return of tickets and payment of fees being part of these behaviours.
Notice that a toll road visitor is allowed to cruise “up” and “down” the linear toll road net
– while (probably) paying for that pleasure (through the recordings of “repeated” hub and
link entries).

70. Re-engineered Intrinsics: Toll plazas and abstracted booths are added to domain
intrinsics.

71. Re-engineered Support Technologies: There is a definite need for domain-describing
the failure-prone toll plaza entry and exit booths.

72. Re-engineered Rules and Regulations: Rules for entering and leaving toll booth
entry and exit booths must be described as must related regulations. Rules and regu-
lations for driving around the toll road net must be likewise be described.

73. Re-engineered Scripts: No need.

74. Re-engineered Management and Organisation: There is a definite need for do-
main describing the management and possibly distributed organisation of toll booth
plazas.

75. Re-engineered Human Behaviour: Humans, in this case car drivers, may not
change their behaviour in the spectrum from diligent and accurate via sloppy and delin-
quent to outright traffic-law breaking – so we see no need for any “re-engineering”.

4.2 Domain Requirements

For the phase of domain requirements the requirements stake-holders “sit together” with the
domain cum requirements engineers and read the domain description, line-by-line, in order
to “derive” the domain requirements. They do so in five rounds (in which the BPR rough
sketch is both regularly referred to and most likely regularly updated). Domain requirements
are “derived” from the domain description as covered in Sect. 4.2.1–4.2.5.
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4.2.1 Projection

By domain projection we understand an operation that applies to a domain description and
yields a domain requirements prescription. The latter represents a projection of the former
in which only those parts of the domain are present that shall be of interest in the ongoing
requirements development.

Example 15 Projection: Our requirements is for a simple toll road: a linear sequence of links
and hubs outlined in Example 14: see Items 1.–11. of Example 1 and Items 34.–37. of Example 7.

4.2.2 Instantiation

By domain instantiation we understand an operation that applies to a (projected) domain
description, i.e., a requirements prescription, and yields a domain requirements prescription,
where the latter has been made more specific, usually by constraining a domain description

Example 16 Instantiation: Here the toll road net topology as outlined in Example 14 is intro-
duced: a straight sequence of toll road hubs pairwise connected with pairs of one way links and
with each hub two way link connected to a toll road plaza.

type

H, L, P = H
N′ = (H × L) × H × ((L × L) × H × (H × L))∗

N′′ = {|n:N′
•wf(n)|}

value

wf N′′: N′ → Bool

wf N′′((h,l),h′,llhpl) ≡ ... 6 lines ... !
αN: N′′ → N
αN((h,l),h′,llhpl) ≡ ... 2 lines ... !

wf N′′ secures linearity; αN allows abstraction from more concrete N′′ to more abstract N.

4.2.3 Determination

By domain determination we understand an operation that applies to a (projected and pos-
sibly instantiated) domain description, i.e., a requirements prescription, and yields a domain
requirements prescription, where (attributes of) entities, actions, events and behaviours have
been made less indeterminate.

Example 17 Determination: Pairs of links between toll way hubs are open in opposite di-
rections; all hubs are open in all directions; links between toll way hubs and toll plazas are open
in both directions.

type

LΣ = (HI×HI)-set, LΩ = LΣ-set

HΣ = (LI×LI)-set, HΩ = HΣ-set

N′ = (H × L) × H × ((L × L) × H × (H × L))∗

value

ωLΣ: L → LΣ, ωLΩ: L → LΩ
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ωHΣ: H → HΣ, ωHΩ: H → HΩ
axiom

∀ ((h,l),h′,llhhl:〈(l′,l′′),h′′,(h′′′,l′′′)〉̂llhhl′):N′′
•

ωLΣ(l)={(ωHI(h),ωHI(h′)),(ωHI(h′),ωHI(h))}∧
ωLΣ(l′′′)={(ωHI(h′′),ωHI(h′′′)),(ωHI(h′′′),ωHI(h′′))}∧
∀ i,i+1:Nat • {i,i+1}⊆inds llhhl ⇒

let ((li,li′),hi,(hi′′,li′′))=llhhl(i), ( ,hj,(hj′′,lj′′))=llhhl(i+1) in

ωLΩ(li)= {{(ωHI(hi),ωHI(hj))}}∧ωLΩ(li′)={{(ωHI(hj),ωHI(hi))}}∧
ωHΩ(hi)= { ... } ... 3 lines end

4.2.4 Extension

By domain extension we understand an operation that applies to a (projected and possibly
determined and instantiated) domain description, i.e., a (domain) requirements prescription,
and yields a (domain) requirements prescription. The latter prescribes that a software system
is to support, partially or fully, entities, operations, events and/or behaviours that were not
feasible (or not computable in reasonable time) in a domain without computing support, but
which now are not only feasible but also computable in reasonable time.

Example 18 Extension: We extend the domain by introducing toll road entry and exit booths
as well as electronic ticket hub sensors and actuators. There should now follow a careful narrative
and formalisation of these three machines: the car driver/machine “dialogues” upon entry and
exit as well as the sensor/car/actuator machine “dialogues” when cars enter hubs. The description
should first, we suggest, be ideal; then it should take into account failures of booth equipment,
electronic tickets, car drivers, and of sensors and actuators.

4.2.5 Fitting

By domain requirements fitting we understand an operation which takes n domain require-
ments prescriptions, dri

, that are claimed to share m independent sets of tightly related sets
of entities, actions, events and/or behaviours and map these into n+m domain requirements
prescriptions, δrj

, where m of these, δrn+k
capture the shared phenomena and concepts and

the other n prescriptions, δrℓ
, are like the n “input” domain requirements prescriptions, dri

,
except that they now, instead of the “more-or-less” shared prescriptions, that are now con-
solidated in δrn+k

, prescribe interfaces between δri
and δrn+k

for i : {1..n}.

Example 19 Fitting: We assume three ongoing requirements development projects, all focused
around road transport net software systems: (i) road maintenance, (ii) toll road car monitoring
and (iii) bus services on ordinary plus toll road nets. The main shared phenomenon is the road net,
i.e., the links and the hubs. The consolidated, shared road net domain requirements prescription,
δrn+1

, is to become a prescription for the domain requirements for shared hubs and links. Tuples of
these relations then prescribe representation of all hub, respectively all link attributes – common to
the three applications. Functions (including actions) on hubs and links become database queries
and updates. Etc.
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4.2.6 Discussion

The last page or so have very briefly surveyed and illustrated domain requirements. The
reader should take cognizance of the fact that these are indeed “derived” from the domain
description. They are not domain descriptions, but, once the business process re-engineering
has been adopted and the required software has been installed, then the domain requirements
become part of a revised domain description !

4.3 Interface Requirements

By interface requirements we understand such requirements which are concerned with the
phenomena and concepts shared between the domain and the machine. Thus such require-
ments can only be expressed using terms from both the domain and the machine. We tackle
the problem of “deriving”, i.e., constructing interface requirements by tackling four “smaller”
problems: those of “deriving” interface requirements for entities, actions, events and be-
haviours.

4.3.1 Entity Interfaces

Entities that are shared between the domain and the machine must initially be input to
the machine. Dynamically arising entities must likewise be input and all such machine enti-
ties must have their attributes updated, when need arise. Requirements for shared entities
thus entail requirements for their representation and for their human/machine and/or ma-
chine/machine transfer dialogue.

Example 20 Shared Entities: Main shared entities are those of hubs and links. We suggest
that eventually a relational database be used for representing hubs links in relations. As for human
input, some man/machine dialogue based around a set of visual display unit screens with fields
for the input of hub, respectively link attributes can then be devised. Etc.

4.3.2 Action Interfaces

By a shared action we mean an action that can only be partly computed by the machine.
That is, the machine, in order to complete an action, may have to inquire with the domain
(some measurable, time-varying entity attribute value, or some domain stake-holder) in order
to proceed in its computation.

Example 21 Shared Actions: In order for a car driver to leave an exit toll both the following
component actions must take place: the driver inserts the electronic pass in the exit toll booth
machine; the machine scans and accepts the ticket and calculates the fee for the car journey from
entry booth via the toll road net to the exit booth; the driver is alerted to the cost and is requested
to pay this amount; once paid the exit booth toll gate is raised. Notice that a number of details
of the new support technology is left out. It could either be elaborated upon here, or be part
of the system design.

4.3.3 Event Interfaces

By a shared event we mean an event whose occurrence in the domain need be communi-
cated to the machine – and, vice-versa, an event whose occurrence in the machine need be
communicated to the domain.
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Example 22 Shared Events: The arrival of a car at a toll plaza entry booth is an event that
must be communicated to the machine so that the entry booth may issue a proper pass (ticket).
Similarly for the arrival at a toll plaza exit booth so that the machine may request the return of
the pass and compute the fee. The end of that computation is an event that is communicated to
the driver (in the domain) requesting that person to pay a certain fee after which the exit gate is
opened.

4.3.4 Behaviour Interfaces

By a shared behaviour we understand a sequence of zero, one or more shared actions and
events.

Example 23 Shared Behaviour: A typical toll road net use behaviour is as follows: Entry at
some toll plaza: receipt of electronic ticket, placement of ticket in special ticket “pocket” in front
window, the raising of the entry booth toll gate; drive up to [first] toll road hub (with electronic
registration of time of occurrence), drive down a selected link (with electronic registration of time
of occurrence of entry to and exit from link), then a repeated number of zero, one or moretoll
road hub and link visits – some of which may be “repeats” – ending with a drive down from a toll
road hub to a toll plaza with the return of the electronic ticket, etc. – cf. Example 22.

4.3.5 Discussion

The discussion of Sect. 4.2.6 carries over to this section. That is, once the machine has been
installed it, the machine, is part of the new domain !

4.4 Machine Requirements

Domains, other than the introspective machine domain itself, has no bearing on machine
requirements we shall not cover this stage of requirements development other than saying
that it consists of the following concerns: performance requirements (storage, speed, other
resources), dependability requirements (availability, accessibility, integrity, reliability, safety,
security), maintainability requirements (adaptive, extensional, corrective, perfective, preven-
tive), portability requirements (development platform, execution platform, maintenance plat-
form, demo platform) and documentation requirements. Only performance and dependabil-
ity seems to be subjectable to rigorous, formal treatment. We refer to [3, Vol. 3, Part V,
Chap. 19, Sect. 19.6] for an extensive (30 page) survey.

The discussions of Sects. 4.2.6 and 4.3.5 carry over to this paragraph. That is, once the
machine has been installed it, the machine, is part of the new domain !

5 Discussion

5.1 What Have We Achieved – and What Not

Item 4. of Sect. 1.4 made some claims. We think we have substantiated them all, albeit
ever so briefly. Each of the domain facets (intrinsics, support technologies, management
and organisation, rules and regulations, scrips [licenses and contracts] and human behaviour)
and each of the requirements facets (projection, instantiation, determination, extension and
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fitting) provide rich grounds for both specification methodology studies and and for more
theoretical studies [4].

5.2 What Have We Omitted

Our coverage of domain and requirements engineering has focused on modelling techniques for
domain and requirements facets. We have omitted the important software engineering tasks
of stake-holder identification and liaison, domain and, to some extents also requirements
acquisition and analysis, terminologisation, and techniques for domain and requirements val-
idation and verification. We refer, instead, to [3, Vol.3, Part IV (Chaps. 9, 12–14) and Part V
(Chaps. 18, 20–23)].

5.3 Domain Engineering Can Be Pursued Just By Itself

One can pursue domain engineering just for the sake of understanding a domain. As for
physics.

5.4 Domain Descriptions Are Not Normative

The description of, for example, “the” domain of the New York Stock Exchange would describe
the set of rules and regulations governing the submission of sell offers and buy bids as well as
those of clearing (‘matching’) sell offers and buy bids. These rules and regulations appears to
be quite different from those of the Tokyo Stock Exchange [27]. A normative description of
stock exchanges would abstract these rules so as to be rather un-informative. And, anyway,
rules and regulations changes and business process re-engineering changes entities, actions,
events and behaviours. For any given software development one may thus have to rewrite
parts of existing domain descriptions, or construct an entirely new such description.

5.5 “Requirements Always Change”

This claim is often used as a hidden excuse for not doing a proper, professional job of re-
quirements prescription, let alone “deriving” them, as we advocate, from domain descriptions.
Instead we now make the following counterclaims [1] “domains are far more stable than require-
ments” and [2] “requirements changes arise more as a result of business process re-engineering
than as a result of changing stake-holder ideas”. Cases (1), where it seems that domains are
changing, are most often examples of business process re-engineering. Closer studies of a
number of domain descriptions, for example of a financial service industry, reveals that the
domain in terms of which an “ever expanding” variety of financial products are offered, are,
in effect. based on a small set of very basic domain functions which have been offered for
well-nigh centuries ! We claim that thoroughly developed domain descriptions and thoroughly
“derived” requirements prescriptions tend to stabilise the requirements re-design, but never
alleviate it.

5.6 What Can Be Described and Prescribed

The issue of “what can be described” has been a constant challenge to philosophers. In [26]
Russell covers his first Theory of Descriptions (stemming from the early 1900s), and in [25]
a revision, as The Philosophy of Logical Atomism. The issue is not that straightforward. In
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[5, 6] we try to broach the topic from the point of view of the kind of domain engineering
presented in this paper. Our approach is simple; perhaps too simple ! We can describe what
can be observed. We do so, first by postulating types of observable phenomena and of derived
concepts; then by introducing observer functions and axioms over these, that is, over values
of postulated types and observers. To this we add defined functions – usually described by
pre/post-conditions. The narratives refer to the “real” phenomena whereas the formalisations
refer to related phenomenological concepts. The narrative/formalisation problem is that one
can ‘describe’ phenomena without always knowing how to formalise them.

5.7 Relation to Other Works

The most obvious ‘other’ work is that of [21, M.A.Jackson: Problem Frames]. In [21], Jack-
son, like is done here, departs radically from conventional requirements engineering. In his
approach understandings of the domain, the requirements and possible software designs are
arrived at, not hierarchically, but in parallel, interacting streams of decomposition. Thus the
‘Problem Frame’ development approach iterates between concerns of domains, requirements
and software design. “Ideally” our approach pursues domain engineering prior to requirements
engineering, and, the latter, prior to software design. But see next.

The recent book [23, Axel van Lamsweerde] appears to represent the most definite work on
Requirements Engineering today. It covers goal modelling, time-based descriptions of system
behaviour, scenarios, and requirements analysis. Much of this “carries” over, inter alia, to
both domain and (“our”) requirements acquisition.

5.8 “Ideal” Versus Real Developments

The term ‘ideal’ has been used in connection with ‘ideal development’ from domain to require-
ments. We now discuss that usage. Ideally software development could proceed from devel-
oping domain descriptions via “deriving” requirements prescriptions to software design, each
phase involving extensive formal specifications, verifications (formal testing, model checking
and theorem proving) and validation. More realistically, less comprehensive domain descrip-
tion development (D) may alternate with both requirements development (R) work and with
software design (S) – in some hopefully controlled, contained “spiralling” manner and such
that it is, at all times, clear which D, R or S development step is taken.

5.9 A Reference Model for Domains, Goals, Requirements and Software

In [14] Gunter, Gunter, Jackson and Zave suggests a reference model of requirements and
specifications. In this section we shall present a simplified version of that model while also
covering cases not covered in [14].

D |= P expresses that one can derive properties from a formal domain description.
Whether they are also properties of the “actual” domain now depends on experimental evi-
dence.

D,R |= G expresses that one can argue that the requirements, in the context of the
domain, entails the goals.

D,S |= R expresses that in a proof of correctness of Software design with respect to
Requirements prescriptions one often has to refer to assumptions about the Domain. For-
malising our understandings of the Domain, the Requirements and the Software design en-
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ables proofs that the software is right and the Domain formalisation of the “derivation” of
Requirements from Domain specifications help ensure that it is the right software [9].

Our triptych treatment of software development differs from that of [14] in the following:

more to come

5.10 Domain Versus Ontology Engineering

In the information science community an ontology is a “formal, explicit specification of a
shared conceptualisation”. Most of the information science ontology work seems aimed pri-
marily at axiomatisations of properties of entities. Apart from that there are many issues of
“ontological engineering” that are similar to “our kind” of domain engineering; but then, we
claim, that domain engineering goes well beyond ontological engineering and makes free use
of whatever formal specification languages are needed, cf. Item [3] of Sect. 1.3.

6 Conclusion

We have put forward the methodological steps of another approach to requirements engineer-
ing than currently ‘en vogue’. We claim that our approach, as it follows from the dogma

expressed at the opening of Sect. 1, is logical, that is, follows as a necessity. The ‘triptych’
approach has been in partial use since the early 1990s, notably at the United Nations Uni-
versity’s International Institute for Software Technology (www.iist.unu.edu). This paper
presents this triptych in a clearer form than presented in [3]. The (six) domain, the (five)
domain requirements and the (4) interface requirements facets each have nice theories and
each has a simple set of methodological principles and techniques – some covered in [3, 4, 5, 6]
others to be further researched.
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7 Bibliographical Notes

Section 1.3 gives most relevant references to formal specification languages (techniques and
tools) that cover the spectrum of domain and requirements specification, refinement and ver-
ification. The recent book on Logics of Specification Languages [10] covers ASM, B/event B,

CafeObj, CASL, DC, RAISE, TLA+, VDM and Z.
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