A Rôle for Mereology in Domain Science and Engineering

– to every mereology there corresponds a λ –expression

Dines Bjørner
China, December 2012

DTU Informatics, November 16, 2012: 08:38

0. Summary

- We give an abstract model of parts and part-hood relations
- of software application domains such as

the financial service industry,
 health care,

railway systems,oil pipelines,

road transport systems,secure [IT] systems,

etcetera.

- We relate this model
 - to axiom systems for mereology, showing satisfiability, and
 - show that for every mereology there corresponds
 a class of Communicating Sequential Processes,
- that is: a λ -expression.

1. Summary 3

1. Introduction

- The term 'mereology' is accredited to the Polish mathematician, philosopher and logician Stansław Leśniewski (1886–1939) who
 - was a nominalist: he rejected axiomatic set theory
 - and devised three formal systems,
 - * Protothetic,
 - * Ontology, and
 - * Mereology

as a concrete alternative to set theory.

- In this seminar I shall be concerned with only
 - certain aspects of mereology,
 - namely those that appears most immediately relevant to domain science
 - (a relatively new part of current computer science).

1.1. Computing Science Mereology

- "Mereology (from the Greek $\mu\epsilon\rho\sigma\varsigma$ 'part') is the theory of parthood relations: of the relations of part to whole and the relations of part to part within a whole".
- In this talk we restrict 'parts' to be those that,
 - firstly, are spatially distinguishable, then,
 - secondly, while "being based" on such spatially distinguishable parts, are conceptually related.
- The relation: "being based", shall be made clear in this talk.

¹Achille Varzi: Mereology, http://plato.stanford.edu/entries/mereology/ 2009 and [CasatiVarzi1999]

- Accordingly two parts, p_x and p_y , (of a same "whole") are
 - are either "adjacent",
 - or are "embedded within" one another
 - as loosely indicated in Fig. 1.

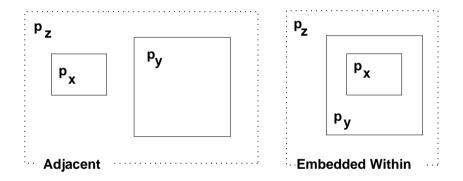


Figure 1: 'Adjacent' and "Embedded Within' parts

- 'Adjacent' parts
 - are direct parts of a same third part, p_z ,
 - -i.e., p_x and p_y are "embedded within" p_z ;
 - or one (p_x) or the other (p_y) or both $(p_x \text{ and } p_y)$ are parts of a same third part, p'_z "embedded within" p_z ;
 - etcetera;
 - as loosely indicated in Fig. 2 on the next slide.
- or one is "embedded within" the other etc. as loosely indicated in Fig. 2 on the facing slide.

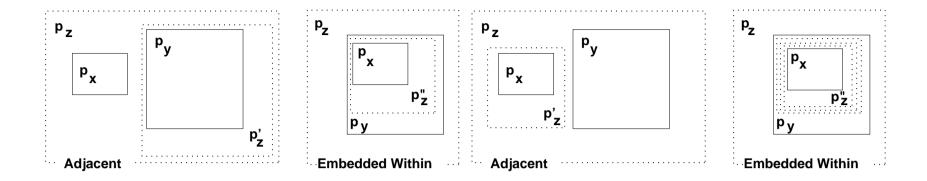


Figure 2: 'Adjacent' and "Embedded Within' parts

- Parts, whether adjacent or embedded within one another, can share properties.
 - For adjacent parts this sharing seems, in the literature, to be diagrammatically expressed by letting the part rectangles "intersect".
 - Usually properties are not spatial hence 'intersection' seems confusing.
 - We refer to Fig. 3 on the next slide.

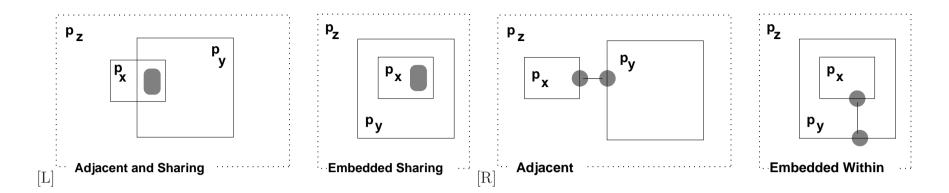


Figure 3: Two models, [L,R], of parts sharing properties

- Instead of depicting parts sharing properties as in Fig. 3[L]eft * where dashed rounded edge rectangles stands for 'sharing',
- we shall (eventually) show parts sharing properties as in Fig. 3[R]ight
 - * where •—• connections connect those parts.

1.2. From Domains via Requirements to Software

- One reason for our interest in mereology is that we find that concept relevant to the modelling of domains.
- A derived reason is that we find the modelling of domains relevant to the development of software.
- Conventionally a first phase of software development is that of requirements engineering.
- To us domain engineering is (also) a prerequisite for requirements engineering [Bjørner: Montanari Festschrift (2008); PSI'09 (2009)].

- Thus
 - to properly
 - * design Software we need to
 - * understand its or their Requirements;
 - and to properly
 - * prescribe Requirements one must
 - * understand its Domain.
- To argue
 - correctness of Software
 - with respect to Requirements
 - one must usually **make assumptions** about the **D**omain:
 - $-\mathbb{D}, \mathbb{S} \models \mathbb{R}.$
- Thus **description** of **D**omains become an indispensable part of **S**oftware development.

1.3. Domains: Science and Engineering

- **Domain science** is the study and knowledge of domains.
- **Domain engineering** is the practice of "walking the bridge" from domain science to domain descriptions:
 - to create domain descriptions on the background of scientific knowledge of domains,
 - * the specific domain "at hand", or
 - * domains in general; and
 - to study domain descriptions with a view
 to broaden and deepen scientific results about domain descriptions.
- This talk is based on the engineering and study of many descriptions, of

```
    air traffic,
    container lines,
    pipelines,
    systems,
```

banking,
 health care,
 railway systems,
 stock

- commerce 2 , - logistics, - secure [IT] exchanges,

etcetera.

²the consumer/retailer/wholesaler/producer supply chain

1.4. Contributions of This Talk

- A general contribution is that of providing elements of a domain science.
- Three specific contributions are those of
 - (i) giving a model that satisfies published formal, axiomatic characterisations of mereology;
 - (ii) showing that to every (such modelled) mereology there corresponds a CSP program and to conjecture the reverse; and, related to (ii),
- (iii) suggesting complementing **syntactic** and **semantic** theories of mereology.

1.5. Structure of This Talk

We briefly overview the structure of this contribution.

- First, on Slides 15–31, we loosely characterise how we look at mereologies: "what they are to us!".
- Then, on Slides 32–55, we give an abstract, model-oriented specification of a class of mereologies in the form of composite parts and composite and atomic subparts and their possible connections.
 - The abstract model as well as the axiom system (Sect. 5.) focuses on the **syntax of mereologies**.

- Following that (Slides 56–69), we indicate how the model of the previous section satisfies the axiom system of that section.
- In preparation for the next section Slides 70–92 presents characterisations of attributes of parts, whether atomic or composite.
- Finally Slides 93–102 presents a semantic model of mereologies, one of a wide variety of such possible models.
 - This one emphasize the possibility of considering parts and subparts as processes and
 - hence a mereology as a system of processes.
- Lastly, Slides 103–106, concludes with some remarks on what we have achieved.

2. Our Concept of Mereology

2.1. Informal Characterisation

- Mereology, to us, is the study and knowledge
 - about how physical and conceptual parts relate and
 - what it means for a part to be related to another part:
 - * being disjoint,
 - * being adjacent,
 - * being neighbours,
 - * being contained properly within,
 - * being properly overlapped with,
 - * etcetera.

- By physical parts we mean
 - such spatial individuals
 - which can be pointed to.

• Examples:

- a road net(consisting of street segments and street intersections);
- a street segment (between two intersections);
- a street intersection;
- a road (of sequentially neighbouring street segments of the same name)
- -a vehicle; and
- a platoon (of sequentially neighbouring vehicles).

- By a conceptual part we mean
 - an abstraction with no physical extent,
 - which is either present or not.

• Examples:

- a bus timetable
 - * (not as a piece or booklet of paper,
 - * or as an electronic device, but)
 - * as an image in the minds of potential bus passengers; and
- routes of a pipeline, that is, neighbouring sequences of pipes, valves, pumps, forks and joins, for example referred to in discourse: the gas flows through "such-and-such" a route".

- The mereological notion of **subpart**, that is: *contained within* can be illustrated by **examples**:
 - the intersections and street segments are subparts of the road net;
 - vehicles are subparts of a platoon; and
 - pipes, valves, pumps, forks and joins are subparts of pipelines.

- The mereological notion of adjacency can be illustrated by examples. We consider
 - the various controls of an air traffic system, cf. Fig. 4 on Slide 23, as well as its aircrafts as adjacent within the air traffic system;
 - the pipes, valves, forks, joins and pumps of a pipeline, cf. Fig. 9 on Slide 28, as adjacent within the pipeline system;
 - two or more banks of a banking system, cf. Fig. 6 on Slide 25, as being adjacent.

- The mereo-topological notion of **neighbouring** can be illustrated by **examples:**
 - Some adjacent pipes of a pipeline are neighbouring (connected) to other pipes or valves or pumps or forks or joins, etcetera;
 - two immediately adjacent vehicles of a platoon are neighbouring.

- The mereological notion of proper overlap can be illustrated by examples
 - some of which are of a general kind:
 - * two routes of a pipelines may overlap; and
 - * two conceptual bus timetables may overlap with some, but not all bus line entries being the same;
 - and some of really reflect adjacency:
 - * two adjacent pipe overlap in their connection,
 - * a wall between two rooms overlap each of these rooms that is, the rooms overlap each other "in the wall".

2.2. Six Examples

- We shall later
 - present a model that is claimed to abstract essential mereological properties of
 - * air traffic,
 - * buildings with installations,
 - * machine assemblies,
 - * financial service industry,

- * the oil industry and oil pipelines, and
- * railway nets.

2.2.1. Air Traffic

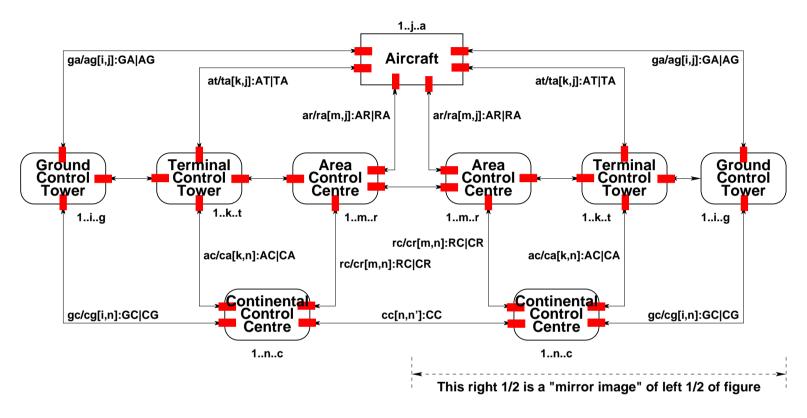


Figure 4: A schematic air traffic system

2.2.2. Buildings

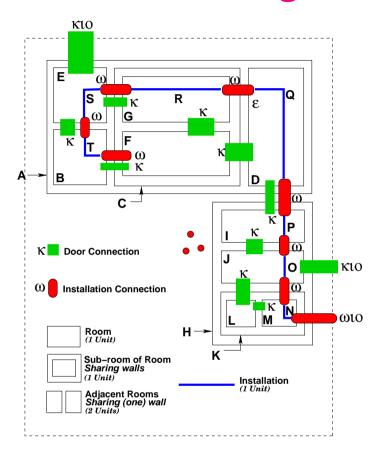


Figure 5: A building plan with installation

2.2.3. Financial Service Industry

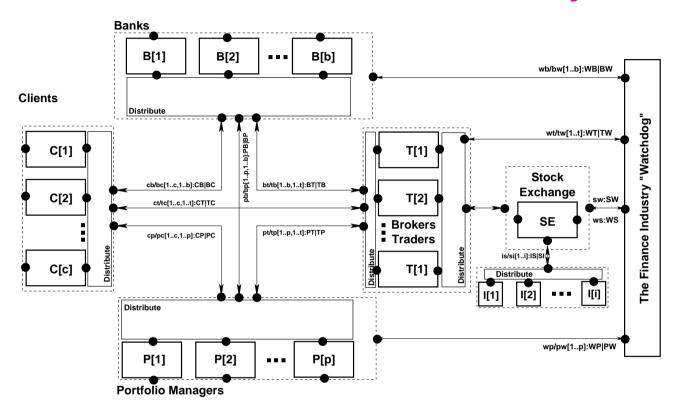


Figure 6: A financial service industry

2.2.4. Machine Assemblies

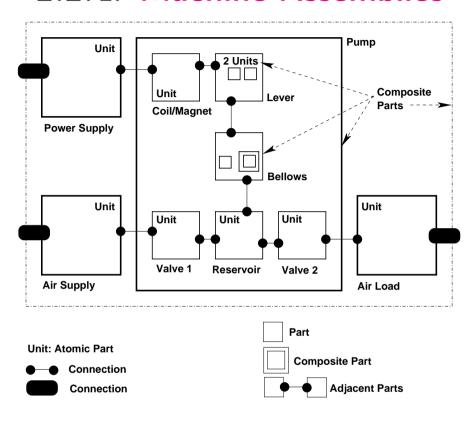


Figure 7: An air pump, i.e., a physical mechanical system

2.2.5. Oil Industry

2.2.5.1. "The" Overall Assembly

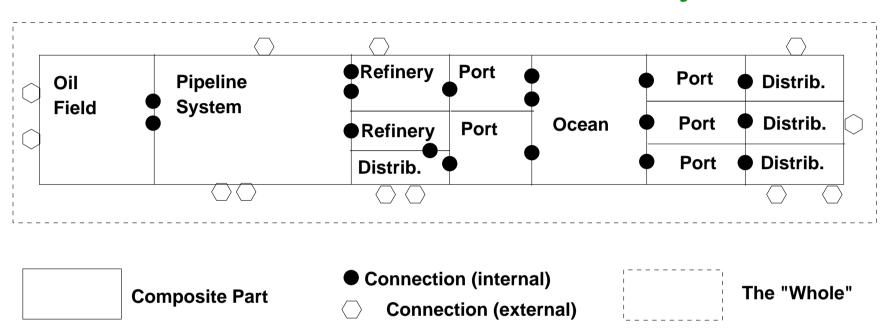


Figure 8: A Schematic of an Oil Industry

2.2.5.2. A Concretised Composite parts

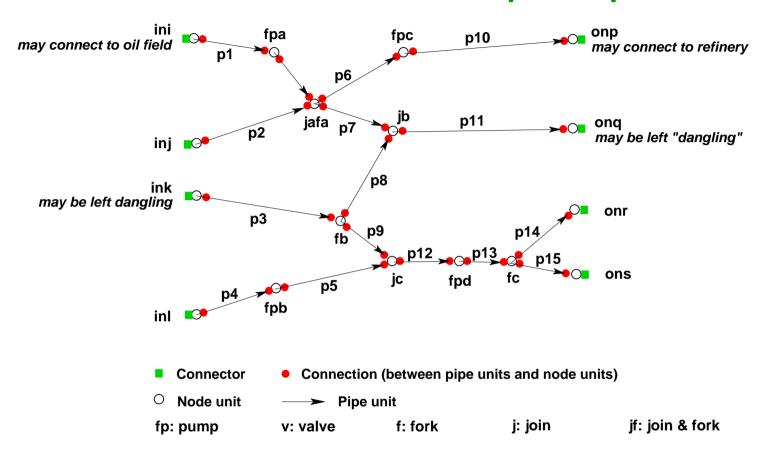


Figure 9: A pipeline system

2.2.6. Railway Nets

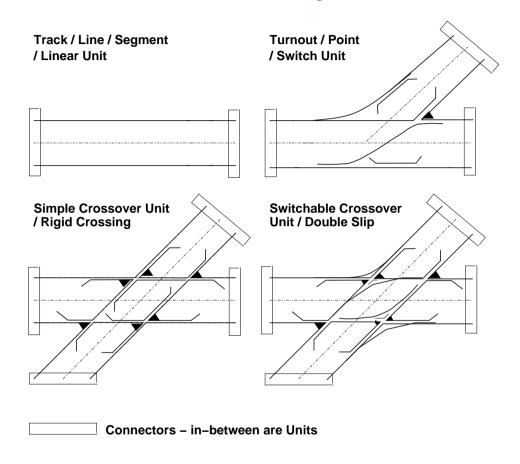


Figure 10: Four example rail units

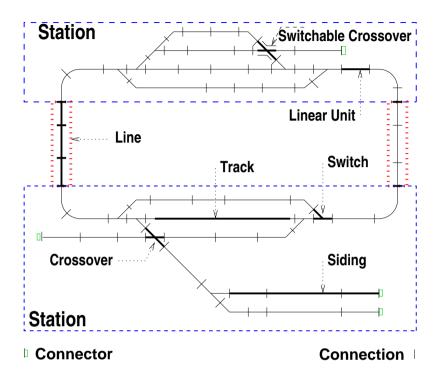


Figure 11: A "model" railway net. An Assembly of four Assemblies:

Two stations and two lines; Lines here consist of linear rail units;

stations of all the kinds of units shown in Fig. 10 on the preceding slide.

There are 66 connections and four "dangling" connectors

2.2.7. Discussion

- We have brought these examples only to indicate the issues of
 - a "whole" and atomic and composite parts,
 - adjacency, within, neighbour and overlap relations, and
 - the ideas of attributes and connections.
- We shall make the notion of 'connection' more precise in the next section.

3. An Abstract, Syntactic Model of Mereologies

- We distinguish between **atomic** and **composite parts**.
 - Atomic parts do not contain separately distinguishable parts.
 - Composite parts contain
 at least one separately distinguishable part.
 - It is the domain analyser who decides
 - * what constitutes "the whole",
 - · that is, how parts relate to one another,
 - * what constitutes parts, and
 - * whether a part is atomic or composite.
- We refer to the proper parts of a composite part as subparts.

3.1. Parts and Subparts

- Figure 12 illustrates composite and atomic parts.
- The *slanted sans serif* uppercase identifiers of Fig. 12 A1, A2, A3, A4, A5, A6 and C1, C2, C3 are meta-linguistic, that is.
 - they stand for the parts they "decorate";
 - they are not identifiers of "our system".

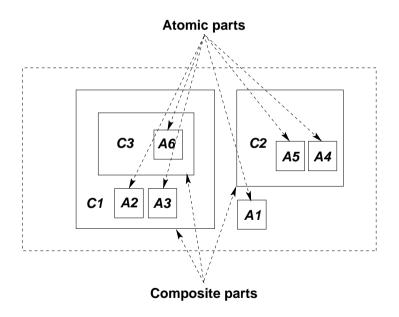


Figure 12: Atomic and composite parts

3.1.1. The Model

- 1. The "whole" contains a set of parts.
- 2. A part is either an atomic part or a composite part.
- 3. One can observe whether a part is atomic or composite.
- 4. Atomic parts cannot be confused with composite parts.
- 5. From a composite part one can observe one or more parts.

type

- 1. W = P-set
- 2. $P = A \mid C$

value

3. is_A: $P \rightarrow \mathbf{Bool}$, is_C: $P \rightarrow \mathbf{Bool}$

axiom

4. \forall a:A,c:C•a\neq c, i.e., A\cap C={||} \lambda is_A(a)\eq \sis_C(a) \lambda is_C(c)\eq \sis_A(c)

value

5. obs_Ps: $C \rightarrow P$ -set axiom $\forall c: C \cdot obs_Ps(c) \neq \{\}$

• Fig. 13 and the expressions below illustrate the observer function obs_Ps:

$$- obs_Ps(C1) = - obs_Ps(C2) = - obs_Ps(C3) =$$
 $\{C2, C3, A1\}, \{A3, A4\}, \{A6\}.$

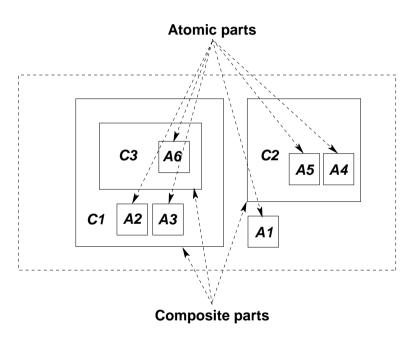


Figure 13: Atomic and composite parts

• Please note that this example is meta-linguistic.

- We can define an auxiliary function.
- 6. From a composite part, **c**, we can extract all atomic and composite parts
 - (a) observable from **c** or
 - (b) extractable from parts observed from c.

value

- 6. $xtr_Ps: C \rightarrow P-set$
- 6. $xtr_Ps(c) \equiv$
- 6(a). **let** ps = obs_Ps(c) **in**
- 6(b). ps $\cup \cup \{obs_Ps(c')|c':C \cdot c' \in ps\}$ end

3.2. 'Within' and 'Adjacency' Relations 3.2.1. 'Within'

- 7. One part, **p**, is said to be *immediately within*, **imm_within(p,p')**, another part,
 - (a) if **p'** is a composite part
 - (b) and **p** is observable in **p'**.

- 7. imm_within: $P \times P \xrightarrow{\sim} \mathbf{Bool}$
- 7. $\operatorname{imm_within}(p,p') \equiv$
- 7(a). is_C(p')
- 7(b). $\land p \in obs_Ps(p')$

3.2.2. 'Transitive Within'

- We can generalise the 'immediate within' property.
- 8. A part, p, is transitively within a part p', within(p,p'),
 - (a) either if p, is immediately within p'
 - (b) or if there exists a (proper) composite part p'' of p' such that within (p'',p).

- 8. within: $P \times P \xrightarrow{\sim} \mathbf{Bool}$
- 8. within(p,p') \equiv
- 8(a). imm_within(p,p')
- 8(b). $\forall \exists p'': C \cdot p'' \in obs_Ps(p') \land within(p,p'')$

3.2.3. 'Adjacency'

9. Two parts, p,p', are said to be immediately adjacent, imm_adjacent(p,p')(c), to one another, in a composite part c, such that p and p' are distinct and observable in c.

- 9. imm_adjacent: $P \times P \to C \xrightarrow{\sim} \mathbf{Bool}$,
- 9. $\operatorname{imm_adjacent}(p,p')(c) \equiv p \neq p' \land \{p,p'\} \subseteq \operatorname{obs_Ps}(c)$

3.2.4. Transitive 'Adjacency'

- 10. Two parts, p,p', of a composite part, c, are adjacent(p, p') in c
 - (a) either if imm_adjacent(p,p')(c),
 - (b) or if there are two p'' and p''' of c such that
 - i. p'' and p''' are immediately adjacent parts and
 - ii. p is equal to p" or p" is properly within p and
 p' is equal to p"" or p" is properly within p'

- 10. adjacent: $P \times P \to C \xrightarrow{\sim} \mathbf{Bool}$
- 10. $adjacent(p,p')(c) \equiv$
- 10(a). $imm_adjacent(p,p')(c) \vee$
- 10(b). $\exists p'', p''': P \cdot$
- 10((b))i. imm_adjacent(p",p")(c) \land
- 10((b))ii. $((p=p'')\vee within(p,p'')(c)) \wedge ((p'=p''')\vee within(p',p''')(c))$

3.3. Unique Identifications

- Each physical part can be uniquely distinguished
 - for example by an abstraction of its spatial location.
- In consequence we also endow conceptual parts with unique identifications.
- 11. In order to refer to specific parts we endow all parts, whether atomic or composite, with **u**nique **id**entifications.
- 12. We postulate functions which observe these **u**nique **id**entifications, whether as parts in general or as atomic or composite parts in particular.
- 13. such that any to parts which are distinct have **u**nique **id**entifications.

type

11. ∏

value

12. $\operatorname{uid}_{\Pi}: P \to \Pi$

axiom

13. $\forall p,p':P \cdot p \neq p' \Rightarrow uid_\Pi(p) \neq uid_\Pi(p')$

• Figure 14 illustrates the unique identifications of composite and atomic parts.

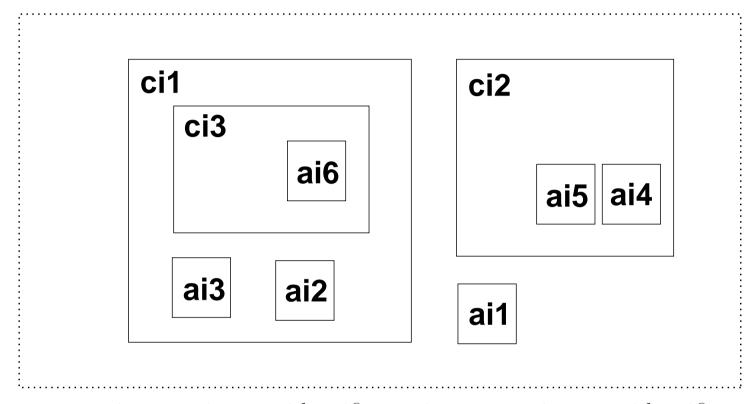


Figure 14: ai_j : atomic part identifiers, ci_k : composite part identifiers

• We exemplify the observer function obs_Π in the expressions below and on Fig. 15:

$$-\operatorname{obs_\Pi}(C1) = ci1$$
, $\operatorname{obs_\Pi}(C2) = ci2$, etcetera; and

$$-\operatorname{obs_\Pi}(A1) = ai1$$
, $\operatorname{obs_\Pi}(A2) = ai2$, etcetera.

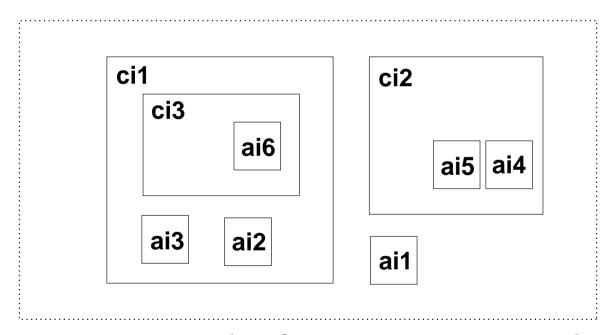


Figure 15: ai_j : atomic part identifiers, ci_k : composite part identifiers

14. We can define an auxiliary function which extracts all part identifiers of a composite part and parts within it.

- 14. $xtr_\Pi s: C \to \Pi$ -set
- 14. $xtr_\Pi s(c) \equiv \{uid_\Pi(c)\} \cup \{uid_\Pi(p)|p:P\cdot p \in xtr_\Pi s(c)\}$

3.4. Attributes

- We shall later
 - explain the concept of properties of parts,
 - or, as we shall refer to them, attributes
- For now we just postulate that
 - 15. parts have sets of attributes, atr:ATR, (whatever they are!),
 - 16. that we can observe attributes from parts, and hence
 - 17. that two distinct parts may share attributes
 - 18. for which we postulate a membership function \in .

type

15. ATR

- 16. atr_ATRs: $P \rightarrow ATR$ -set
- 17. share: $P \times P \to \mathbf{Bool}$
- 17. $\operatorname{share}(p,p') \equiv p \neq p' \land \exists \operatorname{atr}: ATR \cdot \operatorname{atr} = \operatorname{atr} ATRs(p) \land \operatorname{atr} \in \operatorname{atr} ATRs(p')$
- 18. \in : ATR \times ATR-set \rightarrow Bool

3.5. Connections

- In order to illustrate other than the within and adjacency part relations we introduce the notions of connectors and, hence, connections.
- Figure 16 on the facing slide illustrates connections between parts.
- A connector is, visually, a •—• line that connects two distinct part boxes.

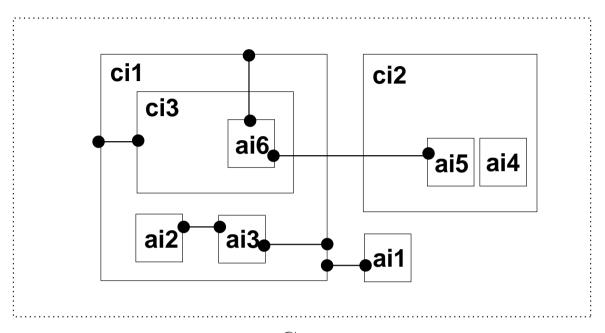


Figure 16: Connectors

19. We may refer to the connectors by the two element sets of the unique identifiers of the parts they connect.

For **example:**

• $\{ci_1, ci_3\},$

 \bullet { ai_6 , ci_1 },

 $\bullet \{ai_6, ai_5\}$ and

• $\{ai_2, ai_3\},$

 $\bullet \{ai_3, ci_1\},\$

• $\{ai_1, ci_1\}$.

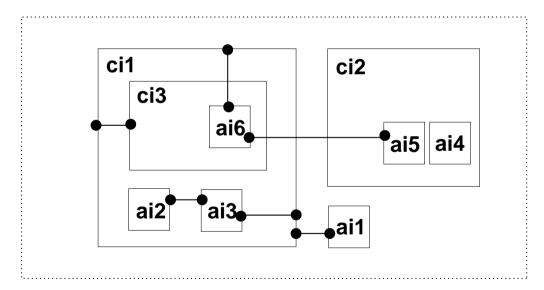


Figure 17: Connectors

20. From a part one can observe the unique identities of the other parts to which it is connected.

type

19. $K = \{ | k: \Pi - set \cdot card k = 2 | \}$

value

- 20. mereo_Ks: $P \rightarrow K$ -set
- 21. The set of all possible connectors of a part can be calculated.

- 21. $xtr_Ks: P \rightarrow K$ -set
- 21. $xtr_Ks(p) \equiv \{\{uid_\Pi(p),\pi\} | \pi: \Pi \cdot \pi \in mereo_\Pi s(p)\}\}$

3.5.1. Connector Wellformedness

- 22. For a composite part, s:C,
- 23. all the observable connectors, ks,
- 24. must have their two-sets of part identifiers identify parts of the system.

- 22. wf_Ks: $C \rightarrow \mathbf{Bool}$
- 22. wf_Ks(c) \equiv
- 23. **let** ks = xtr_Ks(c), π s = mereo_ Π s(c) **in**
- 24. $\forall \{\pi', \pi''\}: \Pi \operatorname{-set} \cdot \{\pi', \pi''\} \subseteq \mathrm{ks} \Rightarrow$
- 24. $\exists p',p'':P \cdot \{\pi',\pi''\} = \{\text{uid}\Pi(p'),\text{uid}\Pi(p'')\} \text{ end }$

3.5.2. Connector and Attribute Sharing Axioms

- 25. We postulate the following axiom:
 - (a) If two parts share attributes, then there is a connector between them; and
 - (b) if there is a connector between two parts, then they share attributes.
- 26. The function xtr_Ks (Item 21 on Slide 49) can be extended to apply to Wholes.

axiom

```
25. \forall w:W•
25. \mathbf{let} ps = xtr_Ps(w), ks = xtr_Ks(w) \mathbf{in}
25(a). \forall p,p':P • p\neq p' \wedge {p,p'}\subseteq ps \wedge share(p,p') \Rightarrow
25(a). {uid_$\Pi(p)$,uid_$\Pi(p')$} \in ks \wedge
25(b). \forall {uid,uid'} \in ks \Rightarrow
25(b). \exists p,p':P • {p,p'}\subseteq ps \wedge {uid,uid'}={uid_$\Pi(p)$,uid_$\Pi(p')}$
25(b). \Rightarrow share(p,p') \mathbf{end}

value

26. xtr_Ks: W \rightarrow K-set
26. xtr_Ks(w) \equiv \cup{xtr_Ks(p)|p:P•p \in obs_Ps(p)}
```

3.5.3. Sharing

- 27. When two distinct parts share attributes,
- 28. then they are said to be sharing:
- 27. sharing: $P \times P \rightarrow \mathbf{Bool}$
- 28. $\operatorname{sharing}(p,p') \equiv p \neq p' \wedge \operatorname{share}(p,p')$

3.6. Uniqueness of Parts

- There is one property of the model of wholes: W, Item 1 on Slide 34, and hence the model of composite and atomic parts and their unique identifiers "spun off" from W (Item 2 [Slide 34] to Item 25(b) [Slide 51]).
 - and that is that any two parts as revealed in different, say adjacent parts are indeed unique,
 - where we simplifying define uniqueness sôlely by the uniqueness of their identifiers.

3.6.1. Uniqueness of Embedded and Adjacent Parts

29. By the definition of the obs_Ps function, as applied obs_Ps(c) to composite parts, c:C, the atomic and composite subparts of c are all distinct and have distinct identifiers (uiids: unique immediate identifiers).

- 29. uiids: $C \rightarrow \mathbf{Bool}$
- 29. $uiids(c) \equiv \forall p,p':P \cdot p \neq p' \land \{p,p'\} \subseteq obs_Ps(c) \Rightarrow card\{uid\Pi(p),uid\Pi(p'),uid\Pi(c)\} = 3$

- 30. We must now specify that that uniqueness is "propagated" to parts that are proper parts of parts of a composite part (uids: <u>unique</u> <u>identifiers</u>).
- 30. uids: $C \rightarrow \mathbf{Bool}$
- 30. $uids(c) \equiv$
- 30. $\forall c': C \cdot c' \in obs_Ps(c) \Rightarrow uiids(c')$
- 30. \wedge **let** ps'=xtr_Ps(c'),ps"=xtr_Ps(c") **in**
- 30. $\forall c'': C \cdot c'' \in ps' \Rightarrow uids(c'')$
- 30. $\land \forall p', p'' : P \cdot p' \in ps' \land p'' \in ps'' \Rightarrow uid \Pi(p') \neq uid \Pi(p'') end$

4. An Axiom System

- ullet Classical axiom systems for mereology focus on just one sort of "things", namely $\mathcal P$ arts.
 - Leśniewski had in mind, when setting up his mereology to have it supplant set theory.
 - * So parts could be composite and consisting of other, the sub-parts some of which would be atomic;
 - * just as sets could consist of elements which were sets some of which would be empty.

4.1. Parts and Attributes

- In our axiom system for mereology we shall avail ourselves of two sorts:
 - $-\mathcal{P}$ arts, and
 - $-\mathcal{A}$ ttributes.³
 - -type \mathcal{P}, \mathcal{A}
- Attributes are associated with Parts.
- We do not say very much about attributes:
 - We think of attributes of parts to form possibly empty sets.
 - So we postulate a primitive predicate, \in , relating \mathcal{P} arts and \mathcal{A} ttributes.
- $\bullet \in : \mathcal{A} \times \mathcal{P} \to \mathbf{Bool}.$

³Identifiers P and A stand for model-oriented types (parts and atomic parts), whereas identifiers \mathcal{P} and \mathcal{A} stand for property-oriented types (parts and attributes).

4.2. The Axioms

- The axiom system to be developed in this section is a variant of that in [CasatiVarzi1999].
- We introduce the following relations between parts:

```
part_of: \mathbb{P}: \mathcal{P} \times \mathcal{P} \to \mathbf{Bool}
                                                                                     Slide 59
  proper_part_of: \mathbb{PP}: \mathcal{P} \times \mathcal{P} \to \mathbf{Bool}
                                                                                     Slide 60
               overlap: \mathbb{O}: \mathcal{P} \times \mathcal{P} \to \mathbf{Bool}
                                                                                     Slide 61
             underlap: \mathbb{U}: \mathcal{P} \times \mathcal{P} \to \mathbf{Bool}
                                                                                     Slide 62
     over_crossing: \mathbb{OX}: \mathcal{P} \times \mathcal{P} \to \mathbf{Bool}
                                                                                     Slide 63
  under_crossing: \mathbb{U}\mathbb{X}: \mathcal{P} \times \mathcal{P} \to \mathbf{Bool}
                                                                                     Slide 64
  proper_overlap: \mathbb{PO}: \mathcal{P} \times \mathcal{P} \to \mathbf{Bool}
                                                                                     Slide 65
proper_underlap: \mathbb{PU}: \mathcal{P} \times \mathcal{P} \to \mathbf{Bool}
                                                                                     Slide 66
```

- Let \mathbb{P} denote **part-hood**; p_x is part of p_y , is then expressed as $\mathbb{P}(p_x, p_y)$.⁴
 - -(1) Part p_x is part of itself (reflexivity).
 - -(2) If a part p_x is part p_y and, vice versa, part p_y is part of p_x , then $p_x = p_y$ (antisymmetry).
 - -(3) If a part p_x is part of p_y and part p_y is part of p_z , then p_x is part of p_z (transitivity).

$$\forall p_x : \mathcal{P} \bullet \mathbb{P}(p_x, p_x) \tag{1}$$

$$\forall p_x, p_y : \mathcal{P} \bullet (\mathbb{P}(p_x, p_y) \land \mathbb{P}(p_y, p_x)) \Rightarrow p_x = p_y \tag{2}$$

$$\forall p_x, p_y, p_z : \mathcal{P} \bullet (\mathbb{P}(p_x, p_y) \land \mathbb{P}(p_y, p_z)) \Rightarrow \mathbb{P}(p_z, p_z)$$
 (3)

⁴Our notation now is not RSL but a conventional first-order predicate logic notation.

- Let PP denote proper part-hood.
 - $-p_x$ is a proper part of p_y is then expressed as $\mathbb{PP}(p_x, p_y)$.
 - $-\mathbb{PP}$ can be defined in terms of \mathbb{P} .
 - $-\mathbb{PP}(p_x, p_y)$ holds if
 - * p_x is part of p_y , but
 - * p_y is not part of p_x .

$$\mathbb{PP}(p_x, p_y) \stackrel{\triangle}{=} \mathbb{P}(p_x, p_y) \land \neg \mathbb{P}(p_y, p_x) \tag{4}$$

- Overlap, O, expresses a relation between parts.
 - Two parts are said to overlap
 - * if they have "something" in common.
 - In classical mereology that 'something' is parts.
 - To us parts are spatial entities and these cannot "overlap".
 - Instead they can 'share' attributes.

$$\mathbb{O}(p_x, p_y) \stackrel{\triangle}{=} \exists a : \mathcal{A} \bullet a \in p_x \land a \in p_y$$
 (5)

- Underlap, U, expresses a relation between parts.
 - Two parts are said to underlap
 - * if there exists a part p_z
 - * of which p_x is a part
 - * and of which p_y is a part.

$$\mathbb{U}(p_x, p_y) \stackrel{\triangle}{=} \exists p_z : \mathcal{P} \bullet \mathbb{P}(p_x, p_z) \land \mathbb{P}(p_y, p_z)$$
 (6)

• Think of the underlap p_z as an "umbrella" which both p_x and p_y are "under".

• Over-cross, \mathbb{OX} ,

- $-p_x$ and p_y are said to over-cross if
- $-p_x$ and p_y overlap and
- $-p_x$ is not part of p_y .

$$\mathbb{OX}(p_x, p_y) \stackrel{\triangle}{=} \mathbb{O}(p_x, p_y) \land \neg \mathbb{P}(p_x, p_y)$$
 (7)

• Under-cross, UX,

- $-p_x$ and p_y are said to under cross if
- $-p_x$ and p_y underlap and
- $-p_y$ is not part of p_x .

$$\mathbb{UX}(p_x, p_y) \stackrel{\triangle}{=} \mathbb{U}(p_x, p_z) \land \neg \mathbb{P}(p_y, p_x)$$
(8)

- Proper Overlap, PO, expresses a relation between parts.
 - $-p_x$ and p_y are said to properly overlap if
 - $-p_x$ and p_y over-cross and if
 - $-p_y$ and p_x over-cross.

$$\mathbb{PO}(p_x, p_y) \stackrel{\triangle}{=} \mathbb{OX}(p_x, p_y) \wedge \mathbb{OX}(p_y, p_x) \tag{9}$$

• Proper Underlap, PU,

- $-p_x$ and p_y are said to properly underlap if
- $-p_x$ and p_y under-cross and
- $-p_x$ and p_y under-cross.

$$\mathbb{PU}(p_x, p_y) \stackrel{\triangle}{=} \mathbb{UX}(p_x, p_y) \wedge \mathbb{UX}(p_y, p_x)$$
 (10)

4.3. Satisfaction

- We shall sketch a proof that
 - the *model* of the previous section
 - satisfies is a model for the axioms of this section.
- To that end we first define the notions of
 - interpretation,
 - satisfiability,
 - validity and
 - model.

Interpretation:

- By an interpretation of a predicate we mean
 - an assignment of a truth value to the predicate
 - where the assignment may entail
 - an assignment of values, in general, to the terms of the predicate.

Satisfiability:

- By the satisfiability of a predicate we mean
 - that the predicate is true for some interpretation.

Valid:

- By the validity of a predicate we mean
 - that the predicate is true for all interpretations.

Model:

- By a model of a predicate we mean
 - an interpretation for which the predicate holds.

4.3.1. A Proof Sketch

We assign

- 31. P as the meaning of \mathcal{P}
- 32. ATR as the meaning of \mathcal{A} ,
- 33. imm_within as the meaning of \mathbb{P} ,
- 34. within as the meaning of \mathbb{PP} ,
- 35. $\in_{\text{(of type:}ATR\times ATR-\mathbf{set}\to\mathbf{Bool)}}$ as the meaning of $\in_{\text{(of type:}A\times\mathcal{P}\to\mathbf{Bool)}}$ and
- 36. sharing as the meaning of \mathbb{O} .
 - With the above assignments is is now easy to prove that
 - the other axiom-operators
 - $-\mathbb{U}$, \mathbb{PO} , \mathbb{PU} , \mathbb{OX} and \mathbb{UX}
 - can be modelled by means of
 - imm_within, within, $\in_{(\text{of type}:ATR \times ATR \mathbf{set} \to \mathbf{Bool})}$ and sharing

5. An Analysis of Properties of Parts

- So far we have not said much about "the nature" of parts
 - other than composite parts having one or more subparts and
 - parts having attributes.
- In preparation also for the next section we now take a closer look at the concept of 'attributes'.
 - We consider three kinds of attributes:
 - * their unique identifications

 $[\mathsf{uid}_\Pi]$

- which we have already considered;
- * their connections, i.e., their mereology

 $[mereo_P]$

- which we also considered;
- * and their "other" attributes
 which we shall refer to as properties.

[prop_P]

5.1. Mereological Properties 5.1.1. An Example

- Road nets, n:N, consists of
 - a set of street intersections (hubs), h:H,
 - uniquely identified by hi's (in HI), and
 - a set of street segments (links), I:L,
 - uniquely identified by li's (in LI).
- such that
 - from a street segment one can observe a two element set of street intersection identifiers, and
 - from a street intersection one can observe a set of street segment identifiers.

- Constraints between values of link and hub identifiers must be satisfied.
 - The two element set of street intersection identifiers express that the street segment is connected to exactly two existing and distinct street intersections, and
 - the zero, one or more element set of street segment identifiers express that the street intersection is connected to zero, one or more existing and distinct street segments.
- An axiom expresses these constraints.
- We call the hub identifiers of hubs and links, the link identifiers of links and hubs, and their fulfilment of the axiom the connection **mereo**logy.

```
type
    N, H, L, HI, LI
value
    obs_Hs: N \rightarrow H-set, obs_Ls: N \rightarrow L-set
    uid_HI: H \rightarrow HI, uid_LI: L \rightarrow LI
    mereo_HIs: L \rightarrow HI-set axiom \forall l: L-card mereo_HIs(l)=2
    mereo_LIs: H \rightarrow LI-set
axiom
   \forall n·N.
        let hs=obs_Hs(n),ls=obs_Ls(n) in
        \forall h:H·h \in hs \Rightarrow
             \forall \text{ li:LI:li} \in \text{mereo\_LIs(h)} \Rightarrow \exists \text{ l:L:uid\_LI(l)} = \text{li}
    \land \forall \text{ l:L-l} \in \text{ls} \Rightarrow
             \exists h,h':H\cdot\{h,h'\}\subseteq hs\land mereo\_HIs(l)=\{uid\_HI(h),uid\_HI(h')\}
        end
```

5.1.2. Unique Identifier and Mereology Types

- In general we allow for any embedded (within) part to be connected to any other embedded part of a composite part or across adjacent composite parts.
- Thus we must, in general, allow
 - for a family of part types P1, P2, ..., Pn,
 - for a corresponding family of part identifier types $\Pi 1$, $\Pi 2$, ..., Πn ,
 - and for corresponding observer **u**nique **id**entification and **mer**eology functions:

type

$$P = P1 \mid P2 \mid \dots \mid Pn$$

$$\Pi = \Pi1 \mid \Pi2 \mid \dots \mid \Pin$$

value

uid_ Πj : Pj $\rightarrow \Pi j$ for $1 \le j \le n$

mereo_ Π s: $P \to \Pi$ -set

- Example: Our example relates to the abstract model given earlier.
 - 37. With each part we associate a unique identifier, π .
- 38. And with each part we associate a set, $\{\pi_1, \pi_2, \dots, \pi_n\}, n \leq 0$ of zero, one ore more other unique identifiers, different from π .
- 39. Thus with each part we can associate a set of zero, one or more connections, viz.: $\{\pi, \pi_j\}$ for $0 \le j \le n$.

type

37. Π

value

37. $\operatorname{uid}_{\Pi} : P \to \Pi$

38. mereo_ Π s: $P \rightarrow \Pi$ -set

axiom

38. $\forall p: P \cdot uid \Pi(p) \notin mereo \Pis(p)$

value

39. $xtr_Ks: P \rightarrow K$ -set

39. $xtr_Ks(p) \equiv$

39. **let** $(\pi,\pi s)=(uid_\Pi,mereo_\Pi s)(p)$ **in**

39. $\{\{\pi',\pi''\}|\pi',\pi'':\Pi\cdot\pi'=\pi\wedge\pi''\in\pi\mathrm{s}\}\ \mathbf{end}$

5.2. Properties

- By the properties of a part we mean
 - such properties additional to those of
 - unique identification and mereology.
- Perhaps this is a cryptic characterisation.
 - Parts, whether atomic or composite, are there for a purpose.
 - The unique identifications and mereologies of parts are there to refer to and structure (i.e., relate) the parts.
 - So they are there to facilitate the purpose.
 - The properties of parts help towards giving these parts "their final meaning".
 - (We shall support his claim ("their final meaning") in the next section.)

• Let us illustrate the concept of properties.

• Examples:

- Typical properties of street segments are:

- * length,
- * cartographic location,
- * surface material,
- * surface condition,

* traffic state —
whether open in one, the
other, both or closed in all
directions.

- Typical properties of street intersections are:

* design⁵

* location,

* surface material,

* surface condition,

* traffic state — open or closed between any two pairs of in/out street segments.

- Typical properties of road nets are:

* name,

* owner,

* public/private,

* free/tool road,

* area,

* etcetera.

⁵for example,

 \cdot a simple 'carrefour', or

· a (circular) roundabout, or

· a free-way interchange

a cloverleaf or

a stack or

a clover-stack or

a turbine or

a roundabout or

a trumpet or

a directional or

a full Y or

a hybrid interchange.

- 40. Parts are characterised (also) by a set of one or more distinctly named and not necessarily distinctly typed property values.
 - (a) Property names are further undefined tokens (i.e., simple quantities).
 - (b) Property types are either sorts or are concrete types such as integers, reals, truth values, enumerated simple tokens, or are structured (sets, Cartesians, lists, maps) or are functional types.
 - (c) From a part
 - i. one can observe its sets of property names
 - ii. and its set (i.e., enumerable map) of distinctly named and typed property values.
 - (d) Given an property name of a part one can observe the value of that part for that property name.
 - (e) For practical reasons we suggest **prop**erty named **prop**erty value observer function where we further take the liberty of using the **prop**erty type name in lieu of the **prop**erty name.

```
type
```

```
40. Props = PropNam \rightarrow PropVAL

40(a). PropNam

40(b). PropVAL

value

40((c))i. obs_Props: P \rightarrow Props

40((c))ii. xtr_PropNams: P \rightarrow PropNam-set

40((c))ii. xtr_PropNams(p) \equiv dom obs_Props(p)

40(d). xtr_PropVAL: P \rightarrow PropNam \rightarrow PropVAL

40(d). xtr_PropVAL(p)(pn) \equiv (obs_Props(p))(pn)

40(d). pre: pn \in xtr_PropNams(p)
```

• Here we leave PropNames and PropVALues undefined.

• Example:

```
type
      NAME, OWNER, LEN, DESIGN, PP == public | private, ...
     L\Sigma, H\Sigma, L\Omega, H\Omega
value
     obs_Props: N \to \{ | ["name" \mapsto nm,"owner" \mapsto ow,"public/private" \mapsto pp,... ] \}
                                  | nm:NAME, ow:OWNER, ..., pp:PP |}
     obs_Props: L \rightarrow {| ["length"\mapstolen,...,"state"\mapstol\sigma,"state space"\mapstol\omega:L\Omega ]
                                  | \mathbf{len}: LEN, ..., l\sigma: L\Sigma, l\omega: L\Omega | 
     obs_Props: H \rightarrow {| ["design"\mapstodes, ...,"state"\mapstoh\sigma,"state space"\mapstoh\omega ]
                                  | des:DESIGN,...,h\sigma:H\Sigma,h\omega:H\Omega |}
      prop_NAME: N \rightarrow NAME
      prop_OWNER: N \rightarrow OWNER
      prop_LEN: L \rightarrow LEN
      prop_L\Sigma: L \rightarrow L\Sigma, obs_L\Omega: L \rightarrow L\Omega
      prop_DESIGN: H \rightarrow DESIGN
      prop_H\Sigma: H \rightarrow H\Sigma, obs_H\Omega: H \rightarrow H\Omega
```

5.3. Attributes

- There are (thus) three kinds of part attributes:
 - unique identifier "observers" (uid_),
 - mereology "observers (mereo_), and
 - property "observers" (prop_..., obs_Props)
- We refer to the section on 'Attributes' in the previous section, and to Items 15–16.

type

15.' ATR = $\Pi \times \Pi$ -set \times Props

value

16.' atr_ATR: $P \rightarrow ATR$

axiom

 $\forall p:P \cdot \mathbf{let} (\pi,\pi s,props) = \operatorname{atr_ATR}(p) \mathbf{in} \ \pi \not\in \pi s \mathbf{end}$

- In preparation for redefining the **share** function of Item 17 on Slide 45 we must first introduce a modification to property values.
- 41. A property value, pv:PropVal, is
 - either a simple property value (as was hitherto assumed),
 - or is a unique part identifier.

type

- 40. Props = PropNam \overrightarrow{m} PropVAL_or_ Π
- 41. PropVAL_or_Π :: mk_Simp:PropVAL | mk_Π:Π

- 42. The idea a property name pn, of a part p', designating a Π -valued property value π is
 - (a) that π refers to a part p'
 - (b) one of whose property names must be pn
 - (c) and whose corresponding property value must be a proper, i.e., simple property value, v,
 - (d) which is then the property value in p' for pn.

value

```
42. get_VAL: P \times PropName \rightarrow W \rightarrow PropVAL
42. get_VAL(p,pn)(w) \equiv
    \mathbf{let} \ \mathbf{pv} = (\mathbf{obs\_Props(p)})(\mathbf{pn}) \ \mathbf{in}
42. case pv of
42. mk_Simp(v) \rightarrow v,
42(a). mk_{-}\Pi(\pi) \rightarrow
42(a). let p':P \cdot p' \in xtr_P s(w) \wedge uid_\Pi(p') = \pi in
42(c). (obs\_Props(p'))(pn) end
42.
        end end
42(c). pre: pn \in obs_PropNams(p)
42(b).
              \land pn \in obs_PropNams(p')
42(c).
              ∧ is_PropVAL((obs_Props(p'))(pn))
```

• The three bottom lines above, Items 42(b)–42(c), imply the general constraint now formulated.

- 43. We now express a constraint on our modelling of attributes.
 - (a) Let the attributes of a part p be $(\pi, \pi s, props)$.
 - (b) If a property name pn in props has (associates to) a Π value, say π'
 - (c) then π' must be in πs .
 - (d) and there must exist another part, p', distinct from p, with unique identifier π' , such that
 - (e) it has some property named pn with a simple property value.

value

- 43. wf_ATR: ATR \rightarrow W \rightarrow **Bool**
- 43(a). wf_ATR(π , π s,props)(w) \equiv
- 43(a). $\pi \notin \pi s \land$
- 43(b). $\forall \pi' : \Pi \cdot \pi' \in \mathbf{rng} \text{ props} \Rightarrow$
- 43(c). **let** pn:PropNam•props(pn)= π' in
- 43(c). $pi' \in \pi s$
- 43(d). $\land \exists p': P \cdot p' \in xtr_P s(w) \land uid_\Pi(p') = \pi' \Rightarrow$
- 43(e). $pn \in obs_PropNams(obs_Props(p'))$
- 43(e). $\land \exists mk_SimpVAL(v):VAL \cdot (obs_Props(p'))(pn) = mk_SimpVAL(v)$ end

44. Two distinct parts share attributes

- (a) if the unique part identifier of one of the parts is in the mereology of the other part, or
- (b) if a property value of one of the parts refers to a property of the other part.

value

```
44.
       share: P \times P \rightarrow Bool
       share(p,p') \equiv
44.
44. p \neq p' \wedge
          let (\pi, \pi s, props) = atr\_ATR(p), (\pi', \pi s', props') = atr\_ATR(p'),
44.
               pns = xtr_PropNams(p), pns' = xtr_PropNams(p') in
44.
44(a). \pi \in \pi s' \vee \pi' \in \pi s \vee
44(b). \exists pn:PropNam \cdot pn \in pns \cap pns' \Rightarrow
44(b). let vop = props(pn), vop' = props'(pn) in
        case (vop,vop') of
44(b).
                  (mk_\Pi(\pi''), mk_Simp(v)) \rightarrow \pi'' = \pi',
44(b).
                  (mk\_Simp(v), mk\_\Pi(\pi'')) \rightarrow \pi = \pi'',
44(b).

ightarrow false
44(b).
          end end end
```

• Comment: v is a shared attribute.

5.4. Discussion

- We have now witnessed four kinds of observer function:
 - he above three kinds of mereology and property 'observers' and the
 - part (and subpart) **obs**_ervers,.
- These observer functions are postulated.
 - They cannot be defined.
 - They "just exist" by the force
 - * of our ability to observe and
 - * decide upon their values
 - * when applied by us, the domain observers.

- Parts are either composite or atomic.
 - Analytic functions are postulated. They help us decide
 - * whether a part is composite or atomic, and,
 - * from composite parts their immediate subparts.
- Both atomic and composite parts have all three kinds of attributes:
 - unique identification,
 - mereology (connections), and
 - properties.
- Analytic functions help us observe, from a part,
 - its unique identification,
 - its mereology, and
 - its properties.

- Some attribute values
 - may be static, that is, constant, others
 - may be inert dynamic, that is, can be changed.
- It is exactly the inert dynamic attributes which are the basis for the next sections semantic model of parts as processes.
- In the above model
 - we have not modelled distinctions between static and dynamic properties.
 - You may think, instead of such a model, that an **always** temporal operator, \square , being applied to appropriate predicates.

6. A Semantic CSP Model of Mereology

- The model of Sect. 3 can be said to be an abstract model-oriented definition of the syntax of mereology.
- Similarly the axiom system of Sect. 4 can be said to be an abstract property-oriented definition of the syntax of mereology.
- With the analysis of attributes of parts, Sect. 5, we have begun a semantic analysis of mereology.
- We now bring that semantic analysis a step further.

6.1. A Semantic Model of a Class of Mereologies

- We show that to every mereology there corresponds a program of cooperating sequential processes CSP.
- We assume that the listener has practical knowledge of **Hoare**'s **CSP**.

6.1.1. Parts \equiv Processes

- The model of mereology (Slides 32–55) given earlier focused on (i) parts and (ii) connectors.
- To parts we associate CSP processes.
- Part processes are indexed by the unique part identifiers.
- The connectors form the mereological attributes of the model.

6.1.2. Connectors \equiv Channels

- The CSP channels are indexed by the two-set (hence distinct) part identifier connectors.
- From a whole we can extract (xtr_Ks, Item 26 on Slide 51) all connectors.
- They become indexes into an array of channels.
 - Each of the connector channel index identifiers
 - indexes exactly two part processes.

• Let w:W be the whole under analysis.

value

```
w:W
ps:P\textbf{-set} = \bigcup \{xtr\_Ps(c) | c:C \cdot c \in w\} \cup \{a | a:A \cdot a \in w\}
ks:K\textbf{-set} = xtr\_Ks(w)
type
K = \Pi\textbf{-set axiom} \ \forall \ k:K \cdot card \ k=2
ChMap = \Pi \ \overrightarrow{m} \ K\textbf{-set}
value
cm:ChMap = [ uid\_\Pi(p) \mapsto xtr\_Ks(p) | p:P \cdot p \in ps ]
channel
ch[k|k:K \cdot k \in ks] \ MSG
```

• We leave channel messages. m:MSG, undefined.

6.1.3. Process Definitions

value

```
system: W \rightarrow \mathbf{process}
system(w) \equiv
    \|\{\text{comp\_process}(\text{uid\_}\Pi(c))(c)|c:C\cdot c \in w\}\|\|\{\text{atom\_process}(\text{uid\_}\Pi(a),a)|a:A\cdot a \in w\}\|
comp_process: \pi:\Pi \to c:C \to in,out \{ch(k)|k:K\cdot k \in cm(\pi)\} process
comp_process(\pi)(c) \equiv [ assert: \pi = \text{uid}_{\Pi}(c) ]
  \mathcal{M}_{\mathcal{C}}(\pi)(c)(\operatorname{atr\_ATR}(c)) \parallel
  \| \{ comp\_process(uid\_\Pi(c'))(c') | c': C \cdot c' \in obs\_Ps(c) \} \|
  \| \{atom\_process(uid\_\Pi(a))(a) | a: A \cdot a \in obs\_Ps(c) \}
\mathcal{M}_{\mathcal{C}}: \pi:\Pi \to C \to ATR \to in,out \{ch(k)|k:K\cdot k \in cm(pi)\} process
\mathcal{M}_{\mathcal{C}}(\pi)(c)(c_{\text{attrs}}) \equiv \mathcal{M}_{\mathcal{C}}(c)(C\mathcal{F}(c)(c_{\text{attrs}})) assert: atr_ATR(c) \equiv c_{\text{attrs}}
C\mathcal{F}: c:C \to ATR \to in,out \{ch[em(i)]|i:KI \in cm(uid_\Pi(c))\} ATR
```

ATR and atr_ATR are defined in Items 15.' and 16.' (Slide 83).

atom_process: a:A \rightarrow in,out {ch[cm(k)]|:K·k \in cm(uid_ Π (a))} process atom_process(a) $\equiv \mathcal{M}_{\mathcal{A}}(a)(atr_ATR(a))$

 $\mathcal{M}_{\mathcal{A}}$: a:A \to ATR \to in,out {ch[cm(k)]|k:K·k \in cm(uid_ Π (a))} process $\mathcal{M}_{\mathcal{A}}$ (a)(a_attrs) $\equiv \mathcal{M}_{\mathcal{A}}$ (a)(A \mathcal{F} (a)(a_attrs)) assert: atr_ATR(a) \equiv a_attr

 $A\mathcal{F}: a:A \to ATR \to in,out \{ch[em(k)]|k:K \cdot k \in cm(uid_\Pi(a))\}$ ATR

- ullet The meaning processes $\mathcal{M}_{\mathcal{C}}$ and $\mathcal{M}_{\mathcal{A}}$ are generic.
 - Their sôle purpose is to provide a never ending recursion.
 - "In-between" they "make use" of Composite, respectively Atomic specific \mathcal{F} unctions
 - here symbolised by $C\mathcal{F}$, respectively $A\mathcal{F}$.
- Both $C\mathcal{F}$ and $A\mathcal{F}$
 - are expected to contain input/output clauses referencing the channels of their signatures;
 - these clauses enable the sharing of attributes.
- We illustrate this "sharing" by the schematised function \mathcal{F} standing for either $C\mathcal{F}$ or $A\mathcal{F}$.

value

```
\mathcal{F}: p:(C|A) \to ATR \to \mathbf{in},\mathbf{out} \{ch[em(k)]|k:K \cdot k \in cm(uid_\Pi(p))\} ATR
\mathcal{F}(p)(\pi,\pi s, props) \equiv
      \lceil \{ \mathbf{let} \ \mathbf{av} = \mathbf{ch} [\mathbf{em}(\{\pi,j\})] ? \mathbf{in} \rceil 
             ...; [optional] ch[em(\{\pi,j\})]! in_reply(props)(av);
             (\pi, \pi s, \text{in\_update\_ATR(props)}(j, \text{av})) end
             |\{\pi,j\}:K\cdot\{\pi,j\}\in\pi_s\}
   \Pi \ \Pi \ \{ \dots ; \}
             \operatorname{ch}[\operatorname{em}(\{\pi,j\})] ! \operatorname{out\_reply(props)};
             (\pi, \pi s, \text{out\_update\_ATR}(\text{props})(j))
             |\{\pi,j\}:K\cdot\{\pi,j\}\in\pi_S\}
      (\pi, \pi s, \text{own\_work}(\text{props}))
assert: \pi = \text{uid} \Pi(p)
in_reply: Props \rightarrow \Pi \times VAL \rightarrow VAL
in_update_ATR: Props \rightarrow \Pi \times VAL \rightarrow Props
out_reply: Props \rightarrow VAL
out_update_ATR: Props \rightarrow \Pi \rightarrow Props
own_work: Props \rightarrow Props
```

6.2. Discussion

6.2.1. General

- A little more meaning has been added to the notions of parts and connections.
- The within and adjacent to relations between parts (composite and atomic) reflect a phenomenological world of geometry, and
- the connected relation between parts
 - reflect both physical and conceptual world understandings:
 - * physical world in that, for example, radio waves cross geometric "boundaries", and
 - * conceptual world in that ontological classifications typically reflect lattice orderings where *overlaps* likewise cross geometric "boundaries".

6.2.2. Partial Evaluation

- The composite_processes function "first" "functions" as a compiler.

 The 'compiler' translates an assembly structure into three process expressions:
 - the $\mathcal{M}_{\mathcal{C}}(c)(c_{attrs})$ invocation,
 - the parallel composition of composite processes, c', one for each composite sub-part of c, and
 - the parallel composition of atomic processes, a, one for each atomic sub-part of c
 - with these three process expressions "being put in parallel".
 - The recursion in **composite_processes** ends when a sub-...-composites consist of no sub-sub-...-composites.
- Then the compiling task ends and the many generated $\mathcal{M}_{\mathcal{C}}(c)(c_{-attrs})$ and $\mathcal{M}_{\mathcal{A}}(a)(a_{-attrs})$ process expressions are invoked.

7. Closing

7.1. Relation to Other Work

- Douglas T. Ross: Plex, CAD, APT, SADT, IDEF0, ...
- Leonard Goodman 1940: Calculus of Individuals
- R. Casati and A. Varzi: Parts and Places: the structures of spatial representation.
- B. Ganter and R. Wille: Formal Concept Analysis Mathematical Foundations.
- Etcetera.

7.2. What Has Been Achieved?

- We have given a model-oriented specification of mereology.
- We have indicated that the model satisfies a widely known axiom system for mereology.
- We have suggested that (perhaps most) work on mereology amounts to syntactic studies.
- So we have suggested one of a large number of possible, schematic semantics of mereology.
- And we have shown that to every mereology there corresponds a set of communicating sequential process (CSP).

7.3. Future Work

- We need to characterise, in a proper way,
 - the class of CSP programs
 - for which there corresponds a mereology.
- Are you game?
- One could also wish for an extensive editing and publication of Doug Ross' surviving notes.

7.4. Acknowledgements

- I thank
 - Dr. Claudio Calosi and
 - Dr. Pierluigi Graziani,

University of Urbino, Italy, for inviting this paper for

- a Springer Verlag Synthese Library volume on
- Mereology and the Sciences.

Due Summer 2012

• I further thank Patricia M. Ross for permission to dedicate this paper to the memory of her husband of many years.

QUESTIONS?