
Software Systems EngineeringFrom Domain Analysis via Requirements Capture to SoftwareArchitecturesDines Bj�rnerUNU/IIST,�P.O.Box 3052, MacauAbstractBased on an Air Tra�c example we illustrate is-sues of Domain Analysis (of: air space, time tables,and tra�c), of Requirements Capture (of: schedulingsystems, and of air tra�c control), and of SoftwareArchitectures for the above.1 An overview of an example methodWe explore a method for developing software foran air tra�c system in which a Software Architectureis developed from a Requirements Capture, which isagain developed from a Domain Analysis. We do notexpect strict adherence to the temporal relation: Soft-ware Architecture from Requirements Capture andRequirements Capture from Domain Analysis | or:�rst Domain Analysis, then Requirements Captureand �nally Software Architecture | but rather expectthat once a software construction has been completedthen its documentation follow the above suggested se-quence.The principles according to which the techniquesare applied, are only claimed relevant wrt. the speci�cexample. We have however also applied basically theseprinciples to other infrastructure systems (railways,toll-ways, manufacturing industries, etc.).The techniques and the tools used are those ofthe RAISE method, [20], respectively RSL, the RAISESpeci�cation Language, [19]. RAISE is a compre-hensive method for describing rather arbitrary soft-ware systems and for developing correct implemen-tations from such descriptions. RSL allows descrip-tions that range from axiomatic, via applicative (func-tional) and imperative to concurrent, with these de-scriptions being embodied in modules: classes, ob-jects and schemes. The RAISE/RSL proof system andimplementation (re�nement) relation allows you to\posit and verify" (construct and prove) correctness�UNU/IIST: The United Nations' International Institute forSoftware Technology; Author's E-mail: db@iist.unu.edu; Fax:+853-712.940

of stages of development, from abstract types to con-crete types.1.1 Application domain analysisBy `domain' we loosely mean the application area,such a railways, air transport, manufacturing enter-prise, health care, libraries, etc.In this report we illustrate the domain of air tra�c.By a `domain analysis' we understand an analy-sis, i.e. an identi�cation of the system to be describedtogether with the formal description of (parts) of thedomain| possibly adorned with theorems (about thedomain) and possibly their proof.Each domain component is formally described andthus Domain Analysis creates theories of the domain| much like Maxwell's Equations form a theory ofelectro-magnetic wave propagation irrespective of anyradio communication application.Domain Analysis is thus carried out without anyreference to any software that might later be devel-oped from requirements which in turn have been de-veloped from a domain analysis.It is important to observe, for the chosen applica-tion, that we decompose domain analysis into severalparts: (i) intrinsics, (ii) support technology, (iii) [op-erator, resp. client] rules & regulations, (iv) operator,resp. client \behaviours", (v) domain economics, (vi)domain safety & dependability analysis, etc. We coverintrinsics, to some depth, and support technology andrules & regulations rather cursorily. See �gure 1.What the �gure intends to express is that a develop-ment contains activities that produce documents foreach of the boxes shown | not necessarily the orderof their construction. What the \Process" �gure doesnot show are the relations between the domain boxes.We shall try elucidate these:� Intrinsics v Support Technology� Intrinsics � Support Technology ) Plant� (Plant k Regulations k Sta�) ) Operations1



Figure 1: A System Development Process
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An Air Traffic System R&D Process� Operations k Clients ) Business� Business 1 C&C Platforms ) E�ciency� E�ciency 1 Economics1 ) Pro�tabilityThe terms `plant', `operations', `business', `e�ciency'and `pro�tability' are initially non-technical terms.They are used (non-technically) by the customers whorequire the kind of computing systems we aim at. Weuse instead the terms: `intrinsics', `support technol-ogy', `rules & regulations', `sta�', `clients', `platforms',and `economics' | and then we postulate, throughthe above \formulas", that we can indeed address cus-tomer concerns.It remains, however, to justify the above postulates(\meta-theory") through an appropriate theoreticalstudy.1.2 Requirements captureBy `requirements' we loosely mean a set of state-ments that express desires for computerized supportof some functions, operations and behaviours of anapplication domain.By a Requirements Capture we mean a set of for-mal expressions of such statements | as well as the`process' of capturing these speci�cations.In this report, i.e. for the example chosen, we in-dicate the capture of requirements for (i) a tra�cscheduling system, and (ii) an air tra�c monitoring& control system.1.3 Software architectureBy Software Architecture we loosely mean a docu-ment that describes a major aspect of a top-level struc-turing of the ensuing software that is: major compo-nent identi�cation and interface design, together withthe internal structuring of the major components and1Among the \dotted" omitted domain analysis views (i.e.boxes) of the \Process" �gure given earlier is that of Economics.

their basic implementation in terms of software mech-anisms such as pipes, etc. This aspect is often calledtop level systems design.2 Intrinsics domain analysis2.1 An OverviewBy the `intrinsics' (of a[n application] domain) wemean the bare essentials that fundamentally charac-terize the domain: that ideally singles the domain outfrom any other domain.The choice as to what \belongs" to `intrinsics' andwhat \belongs" to other sub-domains is, however, apragmatic, hence subjective one.After some experimentation the following \areas"were deemed exemplary part of the sub-domain of in-trinsics:Air-space: connections (relations) between air-ports, air-domes, and airways; and the operations ofputting new airports, air-domes, and airways into ser-vice, modifying existing ones, or removing airports(hence air-domes) or airways;Time tables: which ights y where and at whicharrival and departure times; and the operations oftime tabling: creating new time tables from scratch,modifying existing ones (incl. adding new, changingpresent, or removing present entries);Tra�c: the positions, at any time, of any ight; andthe operations of scheduling and re-scheduling, dis-patching, redirecting and cancelling ights.The following \areas" were deemed \outside" (i.e.not part of) intrinsics: (a) the (here: support) tech-nology that enters into the operation of air tra�c; (b)the civil (and other, for example military) aviationrules & regulations; (c) sta� (i.e. air tra�c controller,pilot, etc.) behaviours, etc. These latter will herebe treated as separate sub-domains. In doing so wewill observe that we refer to concepts and facilities(i.e. [state] components, functions, operations and be-haviours) of other sub-domains, notably the intrinsics.Hence we begin by presenting that which is commonto, i.e. shared by most other sub-domains.2.2 Some IllustrationsBefore we embark on a detailed analysis, let us givesome hints, in the form of concrete type models andexample expressions of the modeled types.An air space example \picture" See �gure 2.2



Figure 2: An Air Space \Picture"
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Figure 3: An Air Tra�c \Picture"
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πh :::, (t,[ f 7! e, f� 7! e�, f� 7! e� ]),(t0,[ f 7! e1, f� 7! e�1, f� 7! e�1 ]),(t00,[ f 7! e2, f� 7! e�2 ]), ::: if: h :: (t,e),(t0,e1),(t00,e2), :: i2.3 Air spacesWe will now begin our series of description exper-iments. First noting down concrete types, later ab-stract types, and �nally observer functions and gen-erator operations over these. Initially we give theirsignatures. Eventually we shall express a number ofaxioms that relate observer functions and generatoroperations.2.3.1 Concrete typesAirports have names and are otherwise here consid-ered to be further unde�ned entities.type AWith airports we associate air-domes: a continu-ous space, or a composition of connected continuousspaces, that \surround" the airport: which denotes itsgeographical, for example three dimensional (x; y; z)or polar coordinate, spatial extension. In the air traf-�c control terminology air-dome2 is often referred toas terminal area (TMA), a controlled area, or a controlzone, usually smaller than control area.type DSection 2.3.2 elaborates on D.An air space3 is a composition of airports, theirair-domes and the airways between (some, but not2We hyphenate `air-dome' to indicate that it is a constructedterm.3We write `air space' to distinguish from `airspace': the airspace over a country considered as a property of that country.3



necessarily all) airports. An airway is a continuousspace between a pair of airports and includes theirair-domes.typeWS00 = A !m (D � (A !m W))Section 2.3.2 elaborates on W.The model just given de�nes an in�nite set of (sim-pli�ed) air spaces.A well-formed subset of these have all airports thatare used also being de�ned, that is: there are no dan-gling airways (i.e. edges in a graph which have airportnames as node labels and airways as further unde�nededges). Further constraints are mentioned next.We speak now of internal and of external airports.An internal airport is one whose air-dome is de�ned.An external airport is one whose air-dome is not de-�ned. From an internal airport there may be zero, oneor more airways leading to (or coming from) other in-ternal airports. Such airways include the air-domes ofthe pairs of connected airports as proper \ends". Wemay think of the two \ends" of an airway to be \an-chors". From an internal airport there may addition-ally be zero, one or more airways leading to [or com-ing from] external (output[, respectively input]) air-ports. Corresponding output, respectively input air-ways need not have their airways \anchored" in bothairports' air-domes, but de�nitely in the air-dome ofthe internal airport. Some airways may connect a pairof external airports: such airways can be said to pro-vide y-over possibilities. Finally: all domes and air-ways are contained within an air space volume (v:V).typeS0 = ias:A-set� g:(A !m (ad:AD � aws:(A !m W)))� oas:A-set� sp:VAD = undef j d(D)VAs mentioned above, for S00, internal, used airportsmust be de�ned, i.e. have their air-domes de�ned.2.3.2 A theory of 3-dimensional bodiesSo far two three-dimensional (i.e. spatial) bodies havebeen introduced: D, W, V. We now introduce a fourthspatial entity: a surface | so that we can identifywhere airways are \glued" to, or intersects, spacespheres (volumes).

typeD, W, V = BSurWe have spoken about an airway being a spatialbody being \anchored" by two (internal airport) air-domes or by one internal, either the target airport'sair-dome if \the other" (�rst) airport is an input air-port, or the source airport's air-dome if \the other"(last) airport is an output airport:valueTwo Domes: D � W � D ! BoolFst Dome: D � W ! BoolLst Dome: W � D ! BoolDomes: W ! D � Daxiomforall d,d0:D, w:W �Two Domes(d,w,d0) )Fst Dome(w,d0) ^ Lst Dome(d,w)Domes(w) = (d,d0) == Two Domes(d,w,d0)In contrast we could speak of an air-dome beingcontained within, i.e. being a proper subset of an air-way, and two distinct air-domes being disjoint:valueSubset: B � B ! BoolIntersect: B � B ! Boolaxiomforall d,d0:D, w:W �d 6= d0 ) �Intersect(d,d0) ^Two Domes(d,w,d0) )Subset(d,w) ^ Subset(d0,w)Airways are allowed to intersect, air-domes not.Given an airway we can speak of its length, orrather the minimum and maximum length of an air-way: typeLI = L � LL = RatvalueW Length: W ! LIFor more on intervals (of lengths) we refer to thenext Section 2.3.3.One may speak of an airway being a \reasonablysmooth" connection or corridor:value Smooth: W ! BoolWe may impose a constraint:axiom forall w:W � Smooth(w)4



An airway may be glued to an air space volume;and glue points form surfaces: zero, one or two!valueis Glued: W � V ! BoolGlues: W � V ! Sur-setaxiomforall w:W, v:V � 0 � card Glues(w,v) � 22.3.3 Towards a theory of intervals | IIntervals, say in the form of pairs of rational numbers:typeI = fj (b,e) j b,e:Rat � b<e jgTI = T � T = ILI = L � L = IL,T = Ratoccur in di�erent contexts. Three obvious classes ofintervals are:� the interval, ti:TI, of time an aircraft is at a gateor in an airport, as from the arrival to the depar-ture times,� the interval, ti:TI, of time that an aircraft is inthe air, that is: the ying between two airports,as from the departure time from one airport tothe arrival time at another airport,� the interval, ti:TI, of minimum to maximum y-ing time, and� the interval, li:LI, of minimum to maximum dis-tance, or length, within an airway, that is: be-tween two airports.The �rst three items above are further commentedupon in Section 2.4.1.2.3.4 Abstract typesIn section 2.3.1 we gave a concrete type model forS, the class of air spaces. In this section we give adescription of the air spaces without giving a modelof their components. We thus restrict ourselves topresent sorts and a number of functions which extract,from Cartesian sorts, other sorts, such as AD, D, andW, or simple sets or Cartesian products:type S, A, AD, D, W, Vvalue is Empty S: S ! BoolObs As: S ! A-set

Obs iAS: S ! A-setis Internal A: A � S ! BoolObs xAs: S ! A-setis External�A: A � S ! BoolObs inAs: S ! A-setis Input�A: A � S ! BoolAbs�OuAs: S ! A-setis Output A: A � S ! BoolObs AD: A � S �! ADObs dAs: A � S ! A-setis Conn AA: (A � A) � S ! BoolObs W: (A � A) � S �! WPartiality of some functions require the de�nitionof suitable pre-conditions.valueObs dAs(a): pre is Internal A(a)Obs W(a,a0): pre is Conn AA(a,a0)2.3.5 Operations on air spacesIn real life new airports are brought into service, oldairports are taken out of service, and existing airportsare temporarily closed (and subsequently re-opened)or are modi�ed | by some modi�cation m:M, whichwe leave unde�ned.In real life the scope of airports that we consideris changed: external airports become internal or \dis-appear", solely input airports also become output air-ports, and vice versa.In real life airways are changed, closed, re-open, etc.We present the signature of these state-changingoperations, but �rst a pre-amble: CON is the type ofstate to state changing functions.typeCON = S �! SNow the operation signatures:valueNew S: SNew A: A ! CONOld A: A ! CONCls A: A ! CONOpn A: A ! CONMod A: A � M ! CONmk In A: A ! CONrm In A: A ! CONmk Out A: A �! CONchg W: (A � A) � W �! CONcls W: (A � A) �! CONopn W: (A � A) �! CON5



Suitable de�nitions can now be given of these oper-ations | some require the de�nition of an appropriatepre condition. For example:valuechg W(a,a0,w)(s): pre fa,a0g � Obs As(s) ^ is Conn AA(a,a)2.4 Time tables2.4.1 Concrete typesWe can look at time tables in several ways:typeTTa = A !m (F !m (T �T))TTf = F !m (A !m (T �T))The �rst model emphasizes ights in and out ofairports, the latter emphasizes ights.Time tables must be well-formed:wf TTa: TTa ! Boolwf TTf: TTf ! BoolLet ttf, f, f0, a, a0, a00 be related as follows:ttf:TTf, f,f0:F, a,a0,a00:Af,f0 2 dom ttf,f 6= f0a,a0 2 dom ttf(f),a 6= a0a,a00 2 dom ttf(f0),Well-formedness conditions for any given time tablemay include:1. For any ight arrival/departure intervals (at dis-tinct airports) do not overlap.let ((b,e),(b0,e0)) = ((ttf(f))(a),(ttf(f))(a0)) ine<b0 _ e0<bend2. For any airport, pairs of arrival times, respec-tively pairs of departure times for distinct ightshave a minimum time separation | that is nocongestion.let ((b,e),(b0,e0)) = ((ttf(f))(a),(ttf(f0))(a)) inb�e > min sep ^b0�e0 > min sep ^e<b0 ) b0�e > min sep ^e0<b ) b�e0 > min sepend

This constraint can be re�ned: for any one run-way of any one airport a suitable rewording of theabove should hold. To tackle such a re�nementwe need further re�ne the notion of an airport.An airport could for example have several concur-rently operable runways. Correspondingly two ormore A's may in actuality designate di�erent run-ways of the same airport | with correspondingair-domes now overlapping, or being identical!3. Some airports may not allow scheduled arrivalsor departures during certain time intervals, forexample during night hours.The two kinds of time tables, TTa and TTf, \com-mute":valueTTf to TTa: TTf ! TTaTTa to TTf: TTa ! TTfaxiomforall ttf:TTf, tta:TTa �wf�TTf(ttf))TTa to TTf(TTf to TTa(ttf)) = ttf ^wf�TTa(tta))TTf to TTa(TTa to TTf(tta)) = ttaThe above time tables, let us refer to them as abso-lute time tables, are not seen as \modulo-something".That is: we can think of another form of time table,let us refer to them as relative time tables, which ismodulo the season and the day of the week! An ab-solute time table can be thought of as having beenexpanded from a relative time table. Thus a ightidentity in a global time table can be thought of as[further] adorned with day/date information!2.4.2 Invariant: Air space & time tableClearly we can only have non-stop ights between ex-isting and directly airway connected airports; and y-ing times should be commensurate with airway (cor-ridor) lengths:inv S TT: S � TT �! Bool=� Only ights between airway connected airports �==� and with airway length commensurate ying times �=2.4.3 Abstract typesWe de�ne the sort TT of time tables, the sort R ofroutes, the sort J of journies (where a journey is asequence of routes [and perhaps some more]), and anumber of observation functions:6



typeTT, R, JvalueObs Fs: TT ! F-setObs J: TT � F �! JObs dTaT: TT � F � A �! T � T2.4.4 Operations on time tablesOne may add new, delete old and modify existing timetable entries:valueAdd TT: (F � J) � TT �! TTDel TT: F � TT �! TTMod TT: F � (A � (T � T)) � TT �! TT2.5 Air tra�c2.5.1 Concrete typesBy a ight we understand the trajectory formed by theposition of an aircraft, designated by some f:F, over acontinuous time interval: from a (dense) set of timeswhen the aircraft is on the ground, via a (dense) setof times when the aircraft is taking o�, in the air (`inight') and landing, to a (dense) set of times when theaircraft is again on the ground. For each time the tra-jectory gives the position of the aircraft. A position,p:P, is a 3-dimensional body, some \envelope" aroundthe aircraft, its \sphere" of integrity.Tra�c is now the composite of all ight trajectories:a function from time to functions from ight designa-tors to positions.typeTF = T �! (F !m P)TFs = T �! (F !m P � Sch Info)TFr = T �! (F !m P � Real Time Info)Tra = P!Trajectory = (T �! P)valueTra f Trajectory: Trajectory �! TraTFs stands for scheduled ights: those that areplanned and possibly ongoing (i.e. in ight); TFrstands for real ights; and TF for an abstraction ofeither of these where we have suppressed auxiliary in-formation such as schedule information or real timeinformation. Tra stands for in�nite length sequencesof (trajectory) positions.A tra�c may very well contain trajectories that\touches airport ground" three or more times: initialand �nal airport plus zero, one or stop-over airports.We can only determine whether a trajectory \is on anairport ground" if we are also given an air space, s:S.

Well-formedness Conditions:� Continuous ights: No holesWe also require that if a ight, f, is recorded (ineither tf:TFs, tf:TFr or tf:TF) at times t and t'to be in ight, i.e. t and t' are in the domain of tffor ight f then at all times between t and t' thatf is recorded in TF (etc.).� Smooth trajectoriesThe trajectory formed by all ight positions be-tween such times is continuous. A trajectory isnecessarily an in�nite sequence of positions.One may think that the next constraint is intrinsic:� No collisionsFor a tra�c, tf:TF, to be well-formed we requirethat no two positions of di�erent ights at anytime overlap | such would amount to a crash (orcollision), whether in the air or on the ground.But since accidents do occur we do not include itas an intrinsic property. Instead we de�ne suitablecollision or near-miss observation functions:valueCrash: TF �! (T !m F-set)Near�Miss: TF �! (T !m F-set)Continuous Flights: TF �! BoolSmooth Flights: TF �! Boolis wf TF: TF ! Boolis wf TF(tf) �Continuous Flights(tf) ^Smooth Flights(tf)The Crash function observes, for any time in tf:TF,the set of all the ights that are crashing, i.e. whosepositions interfere with one another. Near-Miss simi-larly observes near misses, i.e. pairs or more of ightswhich are not (yet) crashing but whose distance is lessthan the minimum safe distance.2.5.2 Invariant: Air space & tra�cGiven an air space, s:S, and a tra�c we can checkwhether the trajectories are within the airways: Initialand �nal trajectory positions are those of air-domes;intermediate airport positions are \reasonable"; andtrajectories fall within airways:value inv S TF: S � TF ! Bool7



2.5.3 System invariantGiven all three major components: an air space, s:S,a time table, tt:TT, and a tra�c, tf:TF, we can checkwhether ights are on time: Flights start on time,ights land on time, and real ights must be in timetable:value inv S TT TF: S � TT � TF ! BoolWe are not checking whether all ights recorded inthe time table are indeed ying, but we are checkingthat actual, recorded, real time ights are indeed timetabled.2.5.4 Invariant: scheduled and real tra�csGiven a scheduled and a real, observed, tra�c, thelatter usually up to a time less that or equal to thelargest time recorded in a tra�c schedule, we cancheck whether a real (observed) tra�c follows a sched-uled tra�c:value inv TFs TFr: TFs � TFr ! BoolGiven a scheduled and a real ,(observed) tra�c onecan observe a �rst time, if any, where a real ight isnot on course with respect to its schedule:value is TF Disruption: TFs � TFr �! BoolTF Disruption: TFs � TFr �! (T � F)2.5.5 Abstract typesWe introduce the sorts of tra�c, positions and trajec-tories:type TF, P, Tra, TrajectoryWe assume the functions that observe the �rst and lasttimes of TT and the domain of TT as well as whethersuch a domain is dense.We introduce the observation functions:valueObs Fs: TF ! F-setObs bTeT: F � TF �! T � TObs Tra: F � TF �! TraIn a trajectory we can speak of the �rst and last po-sition and the in�nite sequence of positions, but wecannot compute the last position:valueObs bP: Tra ! PObs eP: Tra ! P

2.5.6 Operations on air tra�cWe can add a ight (with its trajectory) to a tra�c,we can cancel a ight, and we can modify a ight bychanging its trajectory:valueNew F: F � (T �! P) � TF �! TFCancel F: F � TF �! TFModify F: F � (T �! P) � TF �! TFThe operations are partial since we have to ensurethat input arguments are well-formed (smooth, con-tinuous), and that resulting tra�cs are likewise.3 Requirements captureWe consider the following groups of concerns as en-tering the Requirements Capture process and thus tobe covered by a requirements speci�cation.Requirements capture include separate considera-tions of:Re�nement of domain speci�cities: We often�nd that one never \completes" a domain analysis:that further issues that ought be treated during Do-main Analysis crop up, ie. are inspired by issues oth-erwise dealt with in Requirements Capture.Computational behavioural characteristics: Isthe computing system to be implemented character-ized by its: distributability, concurrency, reactiveness(interaction), clocks (local or global), dependency,safety criticality, performance, etc.?Answers to, i.e. decisions on the above usually leadsto re�nements of the Domain Analysis descriptions ofprevious stages, or to new such domain descriptionsbeing added to the set already researched and devel-oped.We will not illustrate this point in the current re-port but refer to [17] which investigates techniques fordeveloping a domain analysis that seemingly portraysa `global state system' into one reecting a `distributedstate system'.Computing systems boundary: The DomainAnalysis covered many \laws" about air space, timetables, and air tra�c. Some of these laws are now tobe understood as assumptions to be relied upon dur-ing Requirements Capture, Software Architecture andthe further software development.Computer & communications system plat-forms: Here we are concerned with the hard-ware and software that is envisaged for the imple-mentation: main-frame, client-server (more speci�-cally: MS/DOS, NT/Windows, Windows'95, UNIX,8



VAX/VMS, IBM PC-compatible, X11-Windows w./Widgets, Novell Netware, etc.Decisions on the above leads us to further analyzethese computer and communications platform com-ponents, including presenting formal descriptions ofthese as part of the Domain Analysis.We will not illustrate this point in the current re-port.General domain requirements: We will focusonly on this aspect in this report and will do so insection 3.2.3.1 Computing systems boundaryTo understand the issues involved under the head-ing of `computing system boundary' we bring the Airtra�c control requirements example:The system boundary excludes the air tra�c: itcan only be observed: \sensed" through support tech-nology such as radar etc. We cannot control it di-rectly, only hope that messages sent from air tra�ccontrollers to pilots (etc.) concerning possible ightcourse (trajectory) adjustments issued so as to avoidfor example collisions are followed. We cannot insurethat they are indeed followed. So an air tra�c controlsystem receives and sends messages: it receives senseddata on for example ight positions and radio commu-nicated conversations with pilots, etc. The same airtra�c control system sends messages to pilots, to sup-port technology (like radar) that activates re-sensingetc.So major parts of the system modeled during Do-main Analysis| is \outside" the computing systemto be implemented. This has implications both forthe mapping of external to internal states, their inputand ongoing update, cf. section 3.3.1, as well as forthe way in which the basic functions and operationsbehave, cd. section 3.3.2.More speci�cally: the requirements shall decideupon the set of interfaces: those a�orded by supporttechnology sensors and activators and those a�ordedby sta� and client message links.3.2 General domain requirementsRequirements brings together and further enrich(i.e. algebraically extend, mo-del-theoretically furtherre�ne) issues of the combined domains.In this Subsection we make an attempt to enumer-ate all the issues that requirements capture must coverwrt. the domain analyses. A subsequent Subsection(3.3) then illustrates these general issues wrt. the var-ious requirements for di�erent air tra�c domain soft-ware packages (sub-systems).

1: Real States: External to internal state require-ments: to what extent must the internal state of thesoftware system reect the actual state of the system.2: State Input: Requirements on the initial inputof the external state: Editing, vetting, validation, ex-perimental computation, etc.3: State Updates: Requirements on recordingchanges to external state, incl. frequency of (reasonfor) sampling.4: Commands: Base Functions and their Invo-cation: Which functions, operations and behavioursof the application domain are to be supported andhow: semi- or fully automatically.5: Safety Criticality: Identi�cation of which fail-ures will be handled, and how. For example: reconcil-iation of apparent discrepancies between componentdomain models.6: Dependability: Identi�cation (estimation) offailure rates (probabilities), computation (estimation)of required dependability | relative to each individualfailure source and to some combined failure sources.7: Auxiliary Functions and their Invocation:Desired software which o�ers above features usuallyallow additional monitoring (statistics, and sometimescontrol) functions.8: CHI Facilities: Facilities for displaying state in-formation and results of computations: 3D and virtualreality animation, etc.3.3 Speci�c requirementsIn order to see the full consequences of having �rstestablished careful (formal) descriptions of the appli-cation domain we illustrate the capture of require-ments for two di�erent sub-systems.Scheduling and Re-scheduling System: Givenan air space and a commensurate time table, schedul-ing means: constructing a \best" well-formed sched-uled tra�c invariant with both the air space and thetime table.Re-scheduling is invoked whenever current tra�cdeviates from (a previous) scheduled tra�c. (We maysay that the scheduled tra�c has been disrupted.) Re-scheduling then means: constructing a \best" alterna-tive new scheduled tra�c, as above, such that the newscheduled tra�c up till the time deviation has been ob-served coincides with the previous schedule and such9



that the new schedule as from that time on brings traf-�c back to \normal" (i.e. follows the original time ta-ble) \as soon as possible". Usually re-scheduling alsomeans introducing a temporary time table for the pe-riod between the time disruption has been observed till\tra�c is restored", that is: till the current tra�c (atthat time) coincides with the originally (previously)scheduled tra�c.Air Tra�c Control System: Given an air spaceand scheduled and real, i.e. current tra�c, air tra�ccontrol means: to dispatch ights (i.e. to monitor andguide departing ights, that is: take-o�) out of airdomes, to monitor and guide ights along airways, andto monitor and guide approaching (arriving, that is:landing) ights. Air tra�c control determines whetherights are deviating from schedule and, if so, whatform of temporary re-scheduling must be enacted.For some of the 8 general domain requirements is-sues we will now relate these to each of the two appli-cation alternatives.The reason why we treat two di�erent application(sub-)areas is to show how they all re-use signi�cantparts of the intrinsics domain analysis.The message therefore is this:In capturing requirements for any applicationwithin the larger domain, it is most likely very use-ful to have done Domain Analysis of a larger subsetof the application domain that that which is imme-diately relevant to the speci�c computerization beingrequirements captured. And: Domain Analysis canthen be re-used over a larger subset of speci�c com-puting supports.We are not saying, however, that we must completeall of Domain Analysis | not even all of its intrin-sics | for \the entire" applications domain, beforewe can tackle the requirements for any one softwaresub-system, We �nd that we cannot alwaysIn the following six subsections we sketch varietiesof requirements.3.3.1 State mappingReal States:1. Scheduling System:State components: Air space and time table: S, TTfRe-Scheduling System:State components: Air space, time table, scheduledandcurrent ight positions: S, TTf, TFs, TFr

2. Air Tra�c Control System:State components: Air space, time table, scheduledand real tra�c: S, TTf, TFs, TFrFrom the above we observe how di�erent sub-applications, usually developed in isolation from oneanother, require overlapping subsets of the \grand"external state to be represented internally. To safe-guard, therefore, against future mismatches betweensuch di�erent sub-application software packages' im-plementation of such state components, it is thereforeadvisable that a careful analysis �rst be made wrt.computable representations of as encompassing an ex-ternal grand state as foreseeable before any require-ment decisions are made wrt. the speci�c packages'state \consumption". The domain analyses serves tomake such an assessment as consistent and completeas possible irrespective of any application.Initial State Input:1. Scheduling & Re-Scheduling System:States input and input functions: Air space andtime tables; air space and time table well-formednessand invariants: S, TTF; is-wf-S, is-wf-TTf, inv-S-TTf2. Air Tra�c Control System:States input and input functions: Air space, timetables, scheduled and real air tra�c; S,TTf, TFs, TFr well-formedness: is-wf-S, is-wf-TTf, is-wf-TFs, is-wf-TFr invariants: inv-S-TTf, inv-S-TFs,inv-S-TTf-TFs, inv-S-TTf-TFrWe consider well-formedness and invariant checks,as well as prior data vetting to be indispensable partsof initial state input, as well as state update.Initial[izing] input is thus seen as a major compo-nent of a resulting software system. Often this fact isinitially overlooked with the consequence that result-ing software \patches" rather ad hoc input systemsonto a therefore ill thought out software architecture.And often these patches occur late in the developmentof the software giving rise to inconsistent treatment ofstates.State Updates:1. Scheduling & Re-Scheduling System:States updated, sampling frequency: Air space andtime table changes, phasing old schedules out and new[re-schedules] in.Issues: Hard real-time: for re-scheduling maybeof the order of 5{10 minutes.10



2. Air Tra�c Control System:States updated, sampling frequency: Air space, timetable, scheduled and real air tra�c.Issues: Hard real-time: de�nitely so; order sec-onds (10-60 ?).The question of how often various state values areto be sampled, and whether in response to interruptsor through polling is a crucial one. Classical laws ofcontrol theory must be observed in order to ensure Li-apunow stability on one hand and timeliness (validity)of data on the other hand.3.3.2 Function, operation and behaviour re-quirements: Sketches1. Scheduling & Re-Scheduling System:Initial Scheduling vs. Re-scheduling functions.Initial Scheduling experiments (simulations).Re-scheduling: disruption noti�cation etc.Invocation: yearly to seasonal for scheduling,\on-line, real-time" for re-scheduling.:2. Air Tra�c Control System:Aircraft dispatch control, departure and approachmonitoring and advice, disaster prevention, dis-aster monitoring & control, etc.Invocation: constant polling and readiness for in-terrupts/exceptions.:4 ReferencesBasic references to air tra�c systems are [22, 15,18, 29, 21, 30]5 Summary and Conclusion5.1 Summary5.2 AcknowledgementsReferences[1] Gregory Abowd, Robert Allen, and David Gar-lan. Using Style to Understand Descriptions ofSoftware Architecture. In Symposium on Foun-dations of Software Engineering, Redondo Beach,CA, USA, December 1993. SIGSOFT'93.[2] Civil Aviation Authority. Scottish & Oceanic AirTra�c Control Centres, volume Doc. No. 259of National Air Tra�c Services. Civil AviationAuthority London, Greville House, 37 GrattonRoad, Cheltenham, England, 19??
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