Software Systems Engineering

From Domain Analysis via Requirements Capture to Software

Architectures

Dines Bjgrner
UNU/IST,*P.O.Box 3052, Macau

Abstract

Based on an Air Traffic ezample we illustrate is-
sues of Domain Analysis (of: air space, time tables,
and traffic), of Requirements Capture (of: scheduling
systems, and of air traffic control), and of Software
Architectures for the above.

1 An overview of an example method

We explore a method for developing software for
an air traffic system in which a Software Architecture
is developed from a Requirements Capture, which is
again developed from a Domain Analysis. We do not
expect strict adherence to the temporal relation: Soft-
ware Architecture from Requirements Capture and
Requirements Capture from Domain Analysis — or:
first Domain Analysis, then Requirements Capture
and finally Software Architecture — but rather expect
that once a software construction has been completed
then its documentation follow the above suggested se-
quence.

The principles according to which the techniques
are applied, are only claimed relevant wrt. the specific
example. We have however also applied basically these
principles to other infrastructure systems (railways,
toll-ways, manufacturing industries, etc.).

The techniques and the tools used are those of
the RAISE method, [20], respectively RSL, the RAISE
Specification Language, [19]. RAISE is a compre-
hensive method for describing rather arbitrary soft-
ware systems and for developing correct implemen-
tations from such descriptions. RSL allows descrip-
tions that range from axiomatic, via applicative (func-
tional) and imperative to concurrent, with these de-
scriptions being embodied in modules: classes, ob-
jects and schemes. The RAISE/RSL proof system and
implementation (refinement) relation allows you to
“posit and verify” (construct and prove) correctness

*UNU/IIST: The United Nations’ International Institute for
Software Technology; Author’s E-mail: db@iist.unu.edu; Fax:
+853-712.940

of stages of development, from abstract types to con-
crete types.
1.1 Application domain analysis

By ‘domain’ we loosely mean the application area,
such a railways, air transport, manufacturing enter-
prise, health care, libraries, etc.

In this report we illustrate the domain of air traffic.

By a ‘domain analysis’ we understand an analy-
sis, i.e. an identification of the system to be described
together with the formal description of (parts) of the
domain — possibly adorned with theorems (about the
domain) and possibly their proof.

Each domain component is formally described and
thus Domain Analysis creates theories of the domain
— much like Maxwell’s Equations form a theory of
electro-magnetic wave propagation irrespective of any
radio communication application.

Domain Analysis is thus carried out without any
reference to any software that might later be devel-
oped from requirements which in turn have been de-
veloped from a domain analysis.

Tt is important to observe, for the chosen applica-
tion, that we decompose domain analysis into several
parts: (i) intrinsics, (ii) support technology, (iii) [op-
erator, resp. client] rules & regulations, (iv) operator,
resp. client “behaviours”, (v) domain economics, (vi)
domain safety & dependability analysis, etc. We cover
intrinsics, to some depth, and support technology and
rules & regulations rather cursorily. See figure 1.
What the figure intends to express is that a develop-
ment contains activities that produce documents for
each of the boxes shown — not necessarily the order
of their construction. What the “Process” figure does
not show are the relations between the domain boxes.
We shall try elucidate these:

e Intrinsics C Support Technology
e Intrinsics @ Support Technology = Plant

o (Plant || Regulations || Staff) = Operations

Figure 1: A System Development Process

Intrinsics

Support Technology
Staff & Clients

Choices Choices

Requirements Capture H Software Architecture }—

Software Development ...

Computing and

Communications Platform

Domain Analyses

An Air Traffic System R&D Process

e Operations || Clients = Business

e Business X C&C Platforms = Efficiency

e Efficiency X Economics® = Profitability

The terms ‘plant’, ‘operations’, ‘business’, ‘efficiency’
and ‘profitability’ are initially non-technical terms.
They are used (non-technically) by the customers who
require the kind of computing systems we aim at. We
use instead the terms: ‘intrinsics’, ‘support technol-
ogy’, ‘rules & regulations’, ‘staff’, ‘clients’, ‘platforms’,
and ‘economics’ — and then we postulate, through
the above “formulas”, that we can indeed address cus-
tomer concerns.

It remains, however, to justify the above postulates
(“meta-theory”) through an appropriate theoretical
study.

1.2 Requirements capture

By ‘requirements’ we loosely mean a set of state-
ments that express desires for computerized support
of some functions, operations and behaviours of an
application domain.

By a Requirements Capture we mean a set of for-
mal expressions of such statements — as well as the
‘process’ of capturing these specifications.

In this report, i.e. for the example chosen, we in-
dicate the capture of requirements for (i) a traffic
scheduling system, and (ii) an air traffic monitoring
& control system.

1.3 Software architecture

By Software Architecture we loosely mean a docu-
ment that describes a major aspect of a top-level struc-
turing of the ensuing software that is: major compo-
nent identification and interface design, together with
the internal structuring of the major components and

1 Among the “dotted” omitted domain analysis views (i.e.
boxes) of the “Process” figure given earlier is that of Economics.

their basic implementation in terms of software mech-
anisms such as pipes, etc. This aspect is often called
top level systems design.

2 Intrinsics domain analysis
2.1 An Overview

By the ‘intrinsics’ (of a[n application] domain) we
mean the bare essentials that fundamentally charac-
terize the domain: that ideally singles the domain out
from any other domain.

The choice as to what “belongs” to ‘intrinsics’ and
what “belongs” to other sub-domains is, however, a
pragmatic, hence subjective one.

After some experimentation the following “areas”
were deemed exemplary part of the sub-domain of in-
trinsics:

Air-space: connections (relations) between air-
ports, air-domes, and airways; and the operations of
putting new airports, air-domes, and airways into ser-
vice, modifying existing ones, or removing airports
(hence air-domes) or airways;

Time tables: which flights fly where and at which
arrival and departure times; and the operations of
time tabling: creating new time tables from scratch,
modifying existing ones (incl. adding new, changing
present, or removing present entries);

Traffic: the positions, at any time, of any flight; and
the operations of scheduling and re-scheduling, dis-
patching, redirecting and cancelling flights.

The following “areas” were deemed “outside” (i.e.
not part of) intrinsics: (a) the (here: support) tech-
nology that enters into the operation of air traffic; (b)
the civil (and other, for example military) aviation
rules & regulations; (c) staff (i.e. air traffic controller,
pilot, etc.) behaviours, etc. These latter will here
be treated as separate sub-domains. In doing so we
will observe that we refer to concepts and facilities
(i.e. [state] components, functions, operations and be-
haviours) of other sub-domains, notably the intrinsics.
Hence we begin by presenting that which is common
to, i.e. shared by most other sub-domains.

2.2 Some Illustrations

Before we embark on a detailed analysis, let us give
some hints, in the form of concrete type models and
example expressions of the modeled types.

An air space example “picture” See figure 2.

Figure 2: An Air Space “Picture”

wild,wal

wizw2l

An air space model and an example:

type G=A = (L x (A = W))

value
g:[al— (11,[a2 —» wl2,
a3 — wl3,
ad — wld |),
a2 — (12, al — w21,
ad — w24 |),

a3 — (13, al — w31]),
ad — (14, al — w4,
a2 —» w42 1)]

A time table model and an example:

type TT=F = (A = (T x T))

value
tt: [fa —
[al — (t3,t4),
a2 > (9,t11) 1,
8 —
[a3 — (t1,t2),
al — (t5,£7)],
fy >
[al — (£13,t14),
a3 > (£16,t18)],
6 —
[al — (t6,t8),
ad > (£19,620)],
fr
[a2 — (£10,612),
ad > (t15,617)
al > (£21,622)]]
An air traffic “picture” . See figure 3.

An air traffic model and an example:

type
TF =T = (F = E)
TR=T = (T x E)*
value
cTFtoTR: TF 5 TR

Figure 3: An Air Traffic “Picture”

wild,wal

wi3w3l

TRAFFIC

(s (8,[fy > ey, 8 — €6, fr — em]),
(t"[fy — eyl, f§ — e, fr — exl]),
(t",[fy — ev2, f§ — e62]), ...)

fy: (.. (t,e7),(t ev1),(t"ev2), ..)

2.3 Air spaces

We will now begin our series of description exper-
iments. First noting down concrete types, later ab-
stract types, and finally observer functions and gen-
erator operations over these. Initially we give their
signatures. Eventually we shall express a number of
axioms that relate observer functions and generator
operations.

2.3.1 Concrete types

Airports have names and are otherwise here consid-
ered to be further undefined entities.

type A

With airports we associate air-domes: a continu-
ous space, or a composition of connected continuous
spaces, that “surround” the airport: which denotes its
geographical, for example three dimensional (z,y, z)
or polar coordinate, spatial extension. In the air traf-
fic control terminology air-dome? is often referred to
as terminal area (TMA), a controlled area, or a control
zone, usually smaller than control area.

type D

Section 2.3.2 elaborates on D.

3

An air space® is a composition of airports, their

air-domes and the airways between (some, but not

2We hyphenate ‘air-dome’ to indicate that it is a constructed
term.

3We write ‘air space’ to distinguish from ‘airspace’: the air
space over a country considered as a property of that country.

necessarily all) airports. An airway is a continuous
space between a pair of airports and includes their
air-domes.

type

W

S"=A @» (Dx (A » W))

Section 2.3.2 elaborates on W.

The model just given defines an infinite set of (sim-
plified) air spaces.

A well-formed subset of these have all airports that
are used also being defined, that is: there are no dan-
gling airways (i.e. edges in a graph which have airport
names as node labels and airways as further undefined
edges). Further constraints are mentioned next.

We speak now of internal and of external airports.
An internal airport is one whose air-dome is defined.
An external airport is one whose air-dome is not de-
fined. From an internal airport there may be zero, one
or more airways leading to (or coming from) other in-
ternal airports. Such airways include the air-domes of
the pairs of connected airports as proper “ends”. We
may think of the two “ends” of an airway to be “an-
chors”. From an internal airport there may addition-
ally be zero, one or more airways leading to [or com-
ing from] external (output[, respectively input]) air-
ports. Corresponding output, respectively input air-
ways need not have their airways “anchored” in both
airports’ air-domes, but definitely in the air-dome of
the internal airport. Some airways may connect a pair
of external airports: such airways can be said to pro-
vide fly-over possibilities. Finally: all domes and air-
ways are contained within an air space volume (v:V).

type
S’ = jas:A-set
x g:(A m (ad:AD x aws:(A - W)))
x oas:A-set
X sp:V
AD = undef | d(D)
A%

As mentioned above, for §”, internal, used airports
must be defined, i.e. have their air-domes defined.

2.3.2 A theory of 3-dimensional bodies

So far two three-dimensional (i.e. spatial) bodies have
been introduced: D, W, V. We now introduce a fourth
spatial entity: a surface — so that we can identify
where airways are “glued” to, or intersects, space
spheres (volumes).

type
D,W, V=8B

Sur

We have spoken about an airway being a spatial
body being “anchored” by two (internal airport) air-
domes or by one internal, either the target airport’s
air-dome if “the other” (first) airport is an input air-
port, or the source airport’s air-dome if “the other”
(last) airport is an output airport:

value
Two_Domes: D x W x D — Bool
Fst_Dome: D x W — Bool
Lst_Dome: W x D — Bool
Domes: W - D x D
axiom
forall d,d":D, w:W «
Two_Domes(d,w,d") =
Fst_Dome(w,d’) A Lst_Dome(d,w)
Domes(w) = (d,d') == Two_Domes(d,w,d")

In contrast we could speak of an air-dome being
contained within, i.e. being a proper subset of an air-
way, and two distinct air-domes being disjoint:

value
Subset: B x B — Bool
Intersect: B x B — Bool
axiom
forall d,d":D, w:W «
d # d’ = ~Intersect(d,d’) A
Two_Domes(d,w,d') =
Subset(d,w) A Subset(d’,w)

Airways are allowed to intersect, air-domes not.
Given an airway we can speak of its length, or
rather the minimum and maximum length of an air-

way:
type
LI=L xL
L = Rat
value

W _Length: W — LI

For more on intervals (of lengths) we refer to the
next Section 2.3.3.

One may speak of an airway being a “reasonably
smooth” connection or corridor:

value Smooth: W — Bool

We may impose a constraint:

axiom forall w:W « Smooth(w)

An airway may be glued to an air space volume;
and glue points form surfaces: zero, one or two!

value
is_Glued: W x V — Bool
Glues: W x V — Sur-set
axiom
forall w:W, v:V « 0 < card Glues(w,v) < 2

2.3.3 Towards a theory of intervals — 1

Intervals, say in the form of pairs of rational numbers:

type
I ={| (bse) | be:Rat = b<e |}
TI=Tx T=1
LI=LxL=1I
I, T = Rat

occur in different contexts. Three obvious classes of
intervals are:

e the interval, ti:TI, of time an aircraft is at a gate
or in an airport, as from the arrival to the depar-
ture times,

e the interval, ti:TT, of time that an aircraft is in
the air, that is: the flying between two airports,
as from the departure time from one airport to
the arrival time at another airport,

e the interval, ti:TT, of minimum to maximum fly-
ing time, and

e the interval, 1i:LI, of minimum to maximum dis-
tance, or length, within an airway, that is: be-
tween two airports.

The first three items above are further commented
upon in Section 2.4.1.

2.3.4 Abstract types

In section 2.3.1 we gave a concrete type model for
S, the class of air spaces. In this section we give a
description of the air spaces without giving a model
of their components. We thus restrict ourselves to
present sorts and a number of functions which extract,
from Cartesian sorts, other sorts, such as AD, D, and
W, or simple sets or Cartesian products:

type
S, A, AD,D, W,V
value
is_Empty_S: S — Bool
Obs_As: S — A-set

Obs_iAS: S — A-set
is_Internal_ A: A x S — Bool
Obs_xAs: S — A-set
is_External-A: A x S — Bool
Obs_inAs: S — A-set
is_Input—A: A x S — Bool
Abs—QOuAs: S — A-set
is_Output_A: A x S — Bool
Obs_AD: A x S 5 AD
Obs_dAs: A x S — A-set
is_Conn_AA: (A x A) x S — Bool
Obs_W: (A x A) x S S5 wW

Partiality of some functions require the definition
of suitable pre-conditions.

value
Obs_dAs(a): pre is_Internal A(a)
Obs_W(a,a’): pre is_Conn_AA(a,a’)

2.3.5 Operations on air spaces

In real life new airports are brought into service, old
airports are taken out of service, and existing airports
are temporarily closed (and subsequently re-opened)
or are modified — by some modification m:M, which
we leave undefined.

In real life the scope of airports that we consider
is changed: external airports become internal or “dis-
appear”, solely input airports also become output air-
ports, and vice versa.

In real life airways are changed, closed, re-open, etc.

We present the signature of these state-changing
operations, but first a pre-amble: CON is the type of
state to state changing functions.

type
CON=S85S§

Now the operation signatures:

value
New.S: S
New_A: A - CON
Old_A: A - CON
Cls_A: A - CON
Opn_A: A - CON
Mod_A: A x M —- CON
mk_In_A: A - CON
rm_In_A: A - CON
mk_Out_A: A 5 CON
chg W: (A x A) x W 5 CON
cls. W: (A x A) 5 CON
opn_ W: (A x A) 5 CON

Suitable definitions can now be given of these oper-
ations — some require the definition of an appropriate
pre condition. For example:

value

This constraint can be refined: for any one run-
way of any one airport a suitable rewording of the
above should hold. To tackle such a refinement
we need further refine the notion of an airport.
An airport could for example have several concur-

chg W(a,a',w)(s): pre {a,a’} C Obs_As(s) A is—conn—AA(ar@:}ltly operable runways. Correspondingly two or

2.4 Time tables
2.4.1 Concrete types

We can look at time tables in several ways:

type
TTa = A = (F - (T ><T))
TTf=F m» (A - (T ><T))

The first model emphasizes flights in and out of
airports, the latter emphasizes flights.
Time tables must be well-formed:

wf_TTa: TTa — Bool
wf_TTf: TTf - Bool

Let ttf, f, f', a, a’, a” be related as follows:

ttf: T'Tf, f,f:F, a,a’,a”:A
f,f € dom ttf,

f£f
a,a’ € dom ttf(f),

a#a'

a,a’ € dom ttf(f'),

Well-formedness conditions for any given time table
may include:

1. For any flight arrival/departure intervals (at dis-
tinct airports) do not overlap.

let ((be),(b'e’)) = ((t££(F))(a),(tt£(f))(a")) in
e<b’ v e'<b
end

2. For any airport, pairs of arrival times, respec-
tively pairs of departure times for distinct flights
have a minimum time separation — that is no
congestion.

let ((bye), (b)) = ((B£6())(2),(54£(£))(a)) im
b—e > min_sep A

b’—e’ > min_sep A

e<b’ = b'—e > min_sep A

e'<b = b—e' > min_sep

end

more A’s may in actuality designate different run-
ways of the same airport — with corresponding
air-domes now overlapping, or being identical!

3. Some airports may not allow scheduled arrivals
or departures during certain time intervals, for
example during night hours.

The two kinds of time tables, TTa and TTf, “com-
mute”:

value
TTf to_TTa: TTf - TTa
TTa_to TTf: TTa — TTf
axiom
forall ttf:T'Tf, tta:TTa «
wf—TTf(ttf) =
TTa to TTf(TTfto TTa(ttf)) = ttf A
wf—TTa(tta) =
TTf to TTa(TTa to_TTf(tta)) = tta

The above time tables, let us refer to them as abso-
lute time tables, are not seen as “modulo-something”.
That is: we can think of another form of time table,
let us refer to them as relative time tables, which is
modulo the season and the day of the week! An ab-
solute time table can be thought of as having been
expanded from a relative time table. Thus a flight
identity in a global time table can be thought of as
[further] adorned with day/date information!

2.4.2 Invariant: Air space & time table

Clearly we can only have non-stop flights between ex-
isting and directly airway connected airports; and fly-
ing times should be commensurate with airway (cor-
ridor) lengths:

inv.S_TT: S x TT = Bool

/* Only flights between airway connected airports */
/+ and with airway length commensurate flying times */

2.4.3 Abstract types

We define the sort TT of time tables, the sort R of
routes, the sort J of journies (where a journey is a
sequence of routes [and perhaps some more]), and a
number of observation functions:

type
TT, R, J
value
Obs_Fs: TT — F-set
Obs.]: TTx F 3 7J
Obs dTaT: TT xFx A S Tx T

2.4.4 Operations on time tables

One may add new, delete old and modify existing time
table entries:

value
Add_TT: (F x J) x TT 5 TT
Del TT: F x TT 5 TT
Mod TT: F x (A x (T x T)) x TT 3 TT

2.5 Air traffic
2.5.1 Concrete types

By a flight we understand the trajectory formed by the
position of an aircraft, designated by some f:F, over a
continuous time interval: from a (dense) set of times
when the aircraft is on the ground, via a (dense) set
of times when the aircraft is taking off, in the air (‘in
flight’) and landing, to a (dense) set of times when the
aircraft is again on the ground. For each time the tra-
jectory gives the position of the aircraft. A position,
p:P, is a 3-dimensional body, some “envelope” around
the aircraft, its “sphere” of integrity.

Traffic is now the composite of all flight trajectories:
a function from time to functions from flight designa-
tors to positions.

type
TF= T35 (F m» P)
TFs =T 5 (F m P x Sch_Info)
TFr=T5 (F = P x Real_Time_Info)

Tra = P
Trajectory = (T 5 P)
value

Tra_f_Trajectory: Trajectory = Tra

TFs stands for scheduled flights: those that are
planned and possibly ongoing (i.e. in flight); TFr
stands for real flights; and TF for an abstraction of
either of these where we have suppressed auxiliary in-
formation such as schedule information or real time
information. Tra stands for infinite length sequences
of (trajectory) positions.

A traffic may very well contain trajectories that
“touches airport ground” three or more times: initial
and final airport plus zero, one or stop-over airports.
We can only determine whether a trajectory “is on an
airport ground” if we are also given an air space, s:S.

Well-formedness Conditions:

e Continuous flights: No holes

We also require that if a flight, f, is recorded (in
either tf:TFs, t{:TFr or tf:TF) at times t and t’
to be in flight, i.e. t and t’ are in the domain of tf
for flight f then at all times between t and t’ that
f is recorded in TF (etc.).

e Smooth trajectories

The trajectory formed by all flight positions be-
tween such times is continuous. A trajectory is
necessarily an infinite sequence of positions.

One may think that the next constraint is intrinsic:

e No collisions

For a traffic, tf:TF, to be well-formed we require
that no two positions of different flights at any
time overlap — such would amount to a crash (or
collision), whether in the air or on the ground.

But since accidents do occur we do not include it
as an intrinsic property. Instead we define suitable
collision or near-miss observation functions:

value

Crash: TF = (T = F-set)

Near—Miss: TF 5 (T m F-set)

Continuous_Flights: TF 5 Bool

Smooth_Flights: TF 5 Bool

is.wf_TF: TF — Bool

is_wf_TF(tf) =
Continuous_Flights(tf) A
Smooth_Flights(tf)

The Crash function observes, for any time in tf:TF,
the set of all the flights that are crashing, i.e. whose
positions interfere with one another. Near-Miss simi-
larly observes near misses, i.e. pairs or more of flights
which are not (yet) crashing but whose distance is less
than the minimum safe distance.

2.5.2 Invariant: Air space & traffic

Given an air space, s:S, and a traffic we can check
whether the trajectories are within the airways: Initial
and final trajectory positions are those of air-domes;
intermediate airport positions are “reasonable”; and
trajectories fall within airways:

value inv_.S_TF: S x TF — Bool

2.5.3 System invariant

Given all three major components: an air space, s:5,
a time table, tt:TT, and a traffic, tI:TF, we can check
whether flights are on time: Flights start on time,
flights land on time, and real flights must be in time
table:

value inv_.S_TT_TF:S x TT x TF — Bool

We are not checking whether all flights recorded in
the time table are indeed flying, but we are checking
that actual, recorded, real time flights are indeed time

tabled.

2.5.4 Invariant: scheduled and real traffics

Given a scheduled and a real, observed, traffic, the
latter usually up to a time less that or equal to the
largest time recorded in a traffic schedule, we can
check whether a real (observed) traffic follows a sched-
uled traffic:

value inv_TFs_TFr: TFs x TFr — Bool

Given a scheduled and a real ,(observed) traffic one
can observe a first time, if any, where a real flight is
not on course with respect to its schedule:

value
is_TF_Disruption: TFs x TFr 5 Bool
TF Disruption: TFs x TFr 5 (T x F)

2.5.5 Abstract types

We introduce the sorts of traffic, positions and trajec-
tories:

type TF, P, Tra, Trajectory

We assume the functions that observe the first and last
times of TT and the domain of TT as well as whether
such a domain is dense.

We introduce the observation functions:

value
Obs_Fs: TF — F-set

Obs bTeT: F x TF 3 T x T
Obs_Tra: F x TF 5 Tra

In a trajectory we can speak of the first and last po-
sition and the infinite sequence of positions, but we
cannot compute the last position:

value
Obs_bP: Tra — P
Obs_eP: Tra — P

2.5.6 Operations on air traffic

We can add a flight (with its trajectory) to a traffic,
we can cancel a flight, and we can modify a flight by
changing its trajectory:

value
New F: F x (T 5 P) x TF 5 TF
Cancel_ F: F x TF 5 TF
Modify F: F x (T 3 P) x TF 5 TF

The operations are partial since we have to ensure
that input arguments are well-formed (smooth, con-
tinuous), and that resulting traffics are likewise.

3 Requirements capture
We consider the following groups of concerns as en-
tering the Requirements Capture process and thus to
be covered by a requirements specification.
Requirements capture include separate considera-
tions of:

Refinement of domain specificities: We often
find that one never “completes” a domain analysis:
that further issues that ought be treated during Do-
main Analysis crop up, ie. are inspired by issues oth-
erwise dealt with in Requirements Capture.

Computational behavioural characteristics: Is
the computing system to be implemented character-
ized by its: distributability, concurrency, reactiveness
(interaction), clocks (local or global), dependency,
safety criticality, performance, etc.?

Answers to, i.e. decisions on the above usually leads
to refinements of the Domain Analysis descriptions of
previous stages, or to new such domain descriptions
being added to the set already researched and devel-
oped.

We will not illustrate this point in the current re-
port but refer to [17] which investigates techniques for
developing a domain analysis that seemingly portrays
a ‘global state system’ into one reflecting a ‘distributed
state system’.

Computing systems boundary: The Domain
Analysis covered many “laws” about air space, time
tables, and air traffic. Some of these laws are now to
be understood as assumptions to be relied upon dur-
ing Requirements Capture, Software Architecture and
the further software development.

Computer & communications system plat-
forms: Here we are concerned with the hard-
ware and software that is envisaged for the imple-
mentation: main-frame, client-server (more specifi-

cally: MS/DOS, NT/Windows, Windows’95, UNIX,

VAX/VMS, IBM PC-compatible, X11-Windows w./
Widgets, Novell Netware, etc.

Decisions on the above leads us to further analyze
these computer and communications platform com-
ponents, including presenting formal descriptions of
these as part of the Domain Analysis.

We will not illustrate this point in the current re-
port.

General domain requirements: We will focus
only on this aspect in this report and will do so in
section 3.2.

3.1 Computing systems boundary

To understand the issues involved under the head-
ing of ‘computing system boundary’ we bring the Air
traffic control requirements example:

The system boundary excludes the air traffic: it
can only be observed: “sensed” through support tech-
nology such as radar etc. We cannot control it di-
rectly, only hope that messages sent from air traffic
controllers to pilots (etc.) concerning possible flight
course (trajectory) adjustments issued so as to avoid
for example collisions are followed. We cannot insure
that they are indeed followed. So an air traffic control
system receives and sends messages: it receives sensed
data on for example flight positions and radio commu-
nicated conversations with pilots, etc. The same air
traffic control system sends messages to pilots, to sup-
port technology (like radar) that activates re-sensing
etc.

So major parts of the system modeled during Do-
main Analysis— is “outside” the computing system
to be implemented. This has implications both for
the mapping of external to internal states, their input
and ongoing update, cf. section 3.3.1, as well as for
the way in which the basic functions and operations
behave, cd. section 3.3.2.

More specifically: the requirements shall decide
upon the set of interfaces: those afforded by support
technology sensors and activators and those afforded
by staff and client message links.

3.2 General domain requirements

Requirements brings together and further enrich
(i.e. algebraically extend, mo-del-theoretically further
refine) issues of the combined domains.

In this Subsection we make an attempt to enumer-
ate all the issues that requirements capture must cover
wrt. the domain analyses. A subsequent Subsection
(3.3) then illustrates these general issues wrt. the var-
ious requirements for different air traffic domain soft-
ware packages (sub-systems).

1: Real States: External to internal state require-
ments: to what extent must the internal state of the
software system reflect the actual state of the system.

2: State Input: Requirements on the initial input
of the external state: Editing, vetting, validation, ex-
perimental computation, etc.

3: State Updates: Requirements on recording
changes to external state, incl. frequency of (reason
for) sampling.

4: Commands: Base Functions and their Invo-
cation: Which functions, operations and behaviours
of the application domain are to be supported and
how: semi- or fully automatically.

5: Safety Criticality: Identification of which fail-
ures will be handled, and how. For example: reconcil-
iation of apparent discrepancies between component
domain models.

6: Dependability: Identification (estimation) of
failure rates (probabilities), computation (estimation)
of required dependability — relative to each individual
failure source and to some combined failure sources.

7: Auxiliary Functions and their Invocation:
Desired software which offers above features usually
allow additional monitoring (statistics, and sometimes
control) functions.

8: CHI Facilities: Facilities for displaying state in-
formation and results of computations: 3D and virtual
reality animation, etc.

3.3 Specific requirements

In order to see the full consequences of having first
established careful (formal) descriptions of the appli-
cation domain we illustrate the capture of require-
ments for two different sub-systems.

Scheduling and Re-scheduling System: Given
an air space and a commensurate time table, schedul-
ing means: constructing a “best” well-formed sched-
uled traffic invariant with both the air space and the
time table.

Re-scheduling is invoked whenever current traffic
deviates from (a previous) scheduled traffic. (We may
say that the scheduled traffic has been disrupted.) Re-
scheduling then means: constructing a “best” alterna-
tive new scheduled traffic, as above, such that the new
scheduled traffic up till the time deviation has been ob-
served coincides with the previous schedule and such

that the new schedule as from that time on brings traf-
fic back to “normal” (i.e. follows the original time ta-
ble) “as soon as possible”. Usually re-scheduling also
means introducing a temporary time table for the pe-
riod between the time disruption has been observed till
“traffic is restored”, that is: till the current traffic (at
that time) coincides with the originally (previously)
scheduled traffic.

Air Traffic Control System: Given an air space
and scheduled and real, i.e. current traffic, air traffic
control means: to dispatch flights (i.e. to monitor and
guide departing flights, that is: take-off) out of air
domes, to monitor and guide flights along airways, and
to monitor and guide approaching (arriving, that is:
landing) flights. Air traffic control determines whether
flights are deviating from schedule and, if so, what
form of temporary re-scheduling must be enacted.

For some of the 8 general domain requirements is-
sues we will now relate these to each of the two appli-
cation alternatives.

The reason why we treat two different application
(sub-)areas is to show how they all re-use significant
parts of the intrinsics domain analysis.

The message therefore is this:

In capturing requirements for any application
within the larger domain, it is most likely very use-
ful to have done Domain Analysis of a larger subset
of the application domain that that which is imme-
diately relevant to the specific computerization being
requirements captured. And: Domain Analysis can
then be re-used over a larger subset of specific com-
puting supports.

We are not saying, however, that we must complete
all of Domain Analysis — not even all of its intrin-
sics — for “the entire” applications domain, before
we can tackle the requirements for any one software
sub-system, We find that we cannot always

In the following six subsections we sketch varieties
of requirements.

3.3.1 State mapping

Real States:

1. Scheduling System:

State components: Air space and time table: S, T'Tf

Re-Scheduling System:

State components: Air space, time table, scheduled
and

current flight positions: S, TTf, TFs, TFr

10

2. Air Traffic Control System:

State components: Air space, time table, scheduled

and real traffic: S, TTf, TFs, TFr

From the above we observe how different sub-
applications, usually developed in isolation from one
another, require overlapping subsets of the “grand”
external state to be represented internally. To safe-
guard, therefore, against future mismatches between
such different sub-application software packages’ im-
plementation of such state components, it is therefore
advisable that a careful analysis first be made wrt.
computable representations of as encompassing an ex-
ternal grand state as foreseeable before any require-
ment decisions are made wrt. the specific packages’
state “consumption”. The domain analyses serves to
make such an assessment as consistent and complete
as possible irrespective of any application.

Initial State Input:

1. Scheduling & Re-Scheduling System:

States input and input functions: Air space and
time tables; air space and time table well-formedness
and invariants: S, TTF; is-wf-S, is-wf-TTf, inv-S-TTf

2. Air Traffic Control System:

States input and input functions: Air space, time
tables, scheduled and real air traffic; S,
TTf, TFs, TFr well-formedness: is-wf-S, is-wf-TTT, is-
wi-TFs, is-wf-TFr invariants: inv-S-TTf, inv-S-TFs,
inv-S-TTf-TFs, inv-S-TT{-TFr

We consider well-formedness and invariant checks,
as well as prior data vetting to be indispensable parts
of initial state input, as well as state update.

Initial[izing] input is thus seen as a major compo-
nent of a resulting software system. Often this fact is
initially overlooked with the consequence that result-
ing software “patches” rather ad hoc input systems
onto a therefore ill thought out software architecture.
And often these patches occur late in the development
of the software giving rise to inconsistent treatment of
states.

State Updates:

1. Scheduling & Re-Scheduling System:

States updated, sampling frequency: Air space and
time table changes, phasing old schedules out and new
[re-schedules] in.

Issues: Hard real-time: for re-scheduling maybe
of the order of 5-10 minutes.

2. Air Traffic Control System:

States updated, sampling frequency: Air space, time
table, scheduled and real air traffic.

Issues: Hard real-time: definitely so; order sec-

onds (10-60 7).

The question of how often various state values are
to be sampled, and whether in response to interrupts
or through polling is a crucial one. Classical laws of
control theory must be observed in order to ensure Li-
apunow stability on one hand and timeliness (validity)
of data on the other hand.

3.3.2 Function, operation and behaviour re-
quirements: Sketches

1. Scheduling & Re-Scheduling System:

Initial Scheduling vs. Re-scheduling functions.
Initial Scheduling ezperiments (simulations).
Re-scheduling: disruption notification etc.

Invocation: yearly to seasonal for scheduling,
“on-line, real-time” for re-scheduling.:

2. Air Traffic Control System:

Aircraft dispatch control, departure and approach
monitoring and advice, disaster prevention, dis-
aster monitoring & control, etc.

Invocation: constant polling and readiness for in-
terrupts/exceptions.:

4 References

Basic references to air traffic systems are [22, 15,

18, 29, 21, 30]

5 Summary and Conclusion
5.1
5.2 Acknowledgements

Summary

References

[1] Gregory Abowd, Robert Allen, and David Gar-
lan. Using Style to Understand Descriptions of
Software Architecture. In Symposium on Foun-

dations of Software Engineering, Redondo Beach,
CA, USA, December 1993. SIGSOFT’93.

Civil Aviation Authority. Scottish €& Oceanic Air
Traffic Control Centres, volume Doc. No. 259
of National Air Traffic Services. Civil Aviation
Authority London, Greville House, 37 Gratton
Road, Cheltenham, England, 1977

11

[3] Civil Aviation Authority. Air Traffic Manage-
ment in the United Kingdom: Memorandum by
the Civil Aviation Authority to the House of Com-
mons Transport Committee, volume CAP 537.
Civil Aviation Authority London, Greville House,
37 Gratton Road, Cheltenham, England, 1988.
ISBN 0 86039 342 9, GBP 4.

Civil Aviation Authority. Air Traffic Manage-
ment in the United Kingdom: Second Memoran-
dum by the Civil Aviation Authority to the House
of Commons Transport Committee, volume CAP
540. Civil Aviation Authority London, Greville
House, 37 Gratton Road, Cheltenham, England,
1988. ISBN 0 86039 351 8, GBP 1.50.

Civil Aviation Authority. Strategies for making
good use of airspace 1989-1995: Advice to the
Secretary of State for Transport, volume CAP
546. Civil Aviation Authority London, Greville
House, 37 Gratton Road, Cheltenham, England,
1988. ISBN 0 86039 366 6, GBP 4.

Civil Aviation Authority. CCF — Handling Lon-
don’s Air Traffic in the nineties, 1990.

Civil Aviation Authority. Controlling Britain’s
Air Traffic, volume Doc. No. 420 of National
Air Traffic Services. Civil Aviation Authority
London, Greville House, 37 Gratton Road, Chel-
tenham, England, 1990.

Civil Aviation Authority. Qutline of a method for
the Determination of Separation Standards for
future Air Traffic Systems, volume CAP 91010.
Civil Aviation Authority London, Greville House,
37 Gratton Road, Cheltenham, England, 1991.

Civil Aviation Authority. ATC Ezamination Syl-
labus: Section A: Aviation Lew and Air Traffic
Control Procedures, volume CAP 390. Civil Avi-
ation Authority London, Greville House, 37 Grat-
ton Road, Cheltenham, England, 1992. ISBN 0
86039 530 8, GBP 2.00.

[10] Civil Aviation Authority. ATC Ezamination Syl-
labus: Section D: The Approach Control Rat-
ing, volume CAP 390. Civil Aviation Authority
London, Greville House, 37 Gratton Road, Chel-
tenham, England, 1992. ISBN 0 86039 479 2,
GBP 2.00.

[11] Civil Aviation Authority. ATC Ezamination Syl-

labus: Section E: Approach Radar Control and
Radar Theory, volume CAP 390. Civil Aviation

[15]

[16]

Authority London, Greville House, 37 Gratton
Road, Cheltenham, England, 1992. ISBN 0 86039
506 5, GBP 2.00.

Civil Aviation Authority. Scottish and Oceanic
Air Traffic Control Centre - an introducation,

1993.

Civil Aviation Authority. Development Plan For
the UK Air Traffic Control system, 1994. ISBN
0 86039 591 X, GBP 7.5.

Air Traffic Services Standards Department. Ap-
proval of Air Traffic Control Units. Civil Avia-
tion Authority, Greville House, 37 Gratton Road,

Cheltenham, England, August 1991. ISBN 0
86039 488 3, GBP 15.
Graham Duke. Air Traffic Control. Tan Allan

Publishing, Terminal House, Station Approach,
Sheperton, Surrey TW17 8AS, 5th ed edition,
1994.

David Garlan.
Architecture.

Formal Approaches to Software
In Workshop on Studies of Soft-
ware Design, Heidelberg, Germany, May 1994.
Springer-Varlag.

Chris W. George. A Theory of Distributing Train
Rescheduling. Technical report, UNU/IIST,
P.0.Box 3058, Macau, April-August 1995.

Dave Graves. A Layman’s Guide to United King-
dom Air Traffic Control. Airlife Publishing Ltd.,
101 Longden Road, Shrewsbury SY3 9EB, Eng-
land, 2nd ed edition, 1993. ISBN 1 85310 407
8.

The RAISE Language Group. The RAISE Spec-
ification Language. The BCS Practitioner Series.
Prentice-Hall, Hemel Hampstead, England, 1195.

The RAISE Method Group. The RAISE
Method. The BCS Practitioner Series. Prentice-
Hall, Hemel Hampstead, England, 1992.

Nancy G. Leveson, Mats Per Erik Heimdahl,
and Holly Hildreth. Requirements Specification
for Process-Control Systems. Transactions on
Software Engineering, 20(9):684-707, September
1994. Note: lllustrates requirements for an indus-
trial aircraft collision avoidance system [TCASII].

Michael S. Nolan. Fundamentals of air traffic
control. International Thomson Publishing, Wad-
worth Publishing Company, Belmont, California
94002, 2nd edition, 1994. ISBN 0-534-23058-X.

12

[23]

[24]

[27]

International Civil Aviation Organization. Units
of Measurement To Be Used In Air and Ground
Operations, July 1979.

International Civil Aviation Organization. Sup-
plement To Units of Measurement To Be Used In
Air and Ground Operations, May 1988.

International Civil Aviation Organization. Sup-
plement To Units of Measurement To Be Used In
Air and Ground Operations, August 1990.

ATC Standards Publications. Standards for Air
Traffic Controllers - Part A: Aerodrome Control.
CAP 624. Civil Aviation Authority, Civil Avi-
ation Authority, 1E, Aviation House, Gatwich
Airport South, West Sussex RH6 0YR, January
1994. ISBN 0 86039 570 7, GBP 10.

ATC Standards Publications. Standards for Air
Traffic Controllers - Part B: Approach/Approach
Radar Control and Area Radar Control (Aero-
drome). CAP 624. Civil Aviation Authority, Civil
Aviation Authority, 1E, Aviation House, Gatwich
Airport South, West Sussex RH6 0YR, February
1994. ISBN 0 86039 581 2, GBP 10.

ATC Standards Publications. Standards for Air
Traffic Controllers - Part C: Area/Area Radar
Control. CAP 624. Civil Aviation Authority, Civil
Aviation Authority, 1E, Aviation House, Gatwich
Airport South, West Sussex RH6 0YR, January
1994. ISBN 0 86039 576 6, GBP 10.

Jeff Worsinger TAB/AERO Staff. AIM/FAR
1995 - Airman’s Information Manual/Federal
Aviation Regulations. TAB AERO - Divvision
of McGraw-Hill, Blue Ridge Summit, PA 17294-
0850, aim revised to 18 aug 1994, far revised to
2 sept 1994 edition, 1995. ISBN 0-07-063084-4 .
US$12.95.

John A. Wise, V. David Hopkin, and Marvin L.
Smith, editors. Automation aend Systems Issues
in Air Traffic Control, Berlin, Aquafredda, Ttaly
confrence, June 1990 1991. Springer-Verlag.

