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Abstract

We give an abstract model of parts and part-hood relations of software application
domains such as the financial service industry, railway systems, road transport systems, health
care, oil pipelines, secure [IT] systems, etcetera. We relate this model to axiom systems for
mereology [6], showing satisfiability, and show that for every mereology there corresponds
a class of Communicating Sequential Processes [10], that is: a λ–expression.

1 Introduction 1

The term ‘mereology’ is accredited to the Polish mathematician, philosopher and logician
Stans law Leśniewski (1886–1939) who “was a nominalist: he rejected axiomatic set theory and
devised three formal systems,Protothetic, Ontology, and Mereology as a concrete alternative
to set theory”. In this contribution I shall be concerned with only certain aspects of mereology,
namely those that appears most immediately relevant to domain science (a relatively new
part of current computer science). Our knowledge of ‘mereology’ has been through studying,
amongst others, [6, 11].

1.1 Computing Science Mereology 2

“Mereology (from the Greek µǫρoς ‘part’) is the theory of parthood relations: of the relations
of part to whole and the relations of part to part within a whole”2. In this contribution we
restrict ‘parts’ to be those that, firstly, are spatially distinguishable, then, secondly, while
“being based” on such spatially distinguishable parts, are conceptually related. The relation:
“being based”, shall be made clear in this contribution. 3

1See the big paragraph first in Sect. 7.1.
2Achille Varzi: Mereology, http://plato.stanford.edu/entries/mereology/ 2009 and [6]
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2 A Rôle for Mereology

Accordingly two parts, px and py, (of a same “whole”) are are either “adjacent”, or are
“embedded within” one another as loosely indicated in Fig. 1.
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Figure 1: ‘Adjacent’ and “Embedded Within’ parts

4

‘Adjacent’ parts are direct parts of a same third part, pz, i.e., px and py are “embedded
within” pz; or one (px) or the other (py) or both (px and py) are parts of a same third part, p′z
“embedded within” pz; etcetera; as loosely indicated in Fig. 2. or one is “embedded within”
the other — etc. as loosely indicated in Fig. 2.5
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Figure 2: ‘Adjacent’ and “Embedded Within’ parts

Parts, whether adjacent or embedded within one another, can share properties. For adjacent
parts this sharing seems, in the literature, to be diagrammatically expressed by letting the part
rectangles “intersect”. Usually properties are not spatial hence ‘intersection’ seems confusing.
We refer to Fig. 3.6
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Figure 3: Two models, [L,R], of parts sharing properties

Instead of depicting parts sharing properties as in Fig. 3[L]eft where dashed rounded edge
rectangles stands for ‘sharing’, we shall (eventually) show parts sharing properties as in
Fig. 3[R]ight where •—• connections connect those parts.

1.2 From Domains via Requirements to Software 7

One reason for our interest in mereology is that we find that concept relevant to the modelling
of domains. A derived reason is that we find the modelling of domains relevant to the develop-
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in Domain Science and Engineering 3

ment of software. Conventionally a first phase of software development is that of requirements
engineering. To us domain engineering is (also) a prerequisite for requirements engineering
[2, 4]. Thus to properly design Software we need to understand its or their Requirements; 8

and to properly prescribe Requirements one must understand its Domain. To argue correct-
ness of Software with respect to Requirements one must usually make assumptions about the
Domain: D, S |= R. Thus description of Domains become an indispensable part of Software
development.

1.3 Domains: Science and Engineering 9

Domain science is the study and knowledge of domains. Domain engineering is the prac-
tice of “walking the bridge” from domain science to domain descriptions: to create do-

main descriptions on the background of scientific knowledge of domains, the specific do-
main “at hand”, or domains in general; and to study domain descriptions with a view to
broaden and deepen scientific results about domain descriptions. This contribution is based
on the engineering and study of many descriptions, of air traffic, banking, commerce (the con-
sumer/retailer/wholesaler/producer supply chain), container lines, health care, logistics, pipelines,
railway systems, secure [IT] systems, stock exchanges, etcetera.

1.4 Contributions of This Contribution 10

A general contribution is that of providing elements of a domain science. Three specific
contributions are those of (i) giving a model that satisfies published formal, axiomatic char-
acterisations of mereology; (ii) showing that to every (such modelled) mereology there corre-
sponds a CSP [10] program and to conjecture the reverse; and, related to (ii), (iii) suggesting
complementing syntactic and semantic theories of mereology.

1.5 Structure of This Contribution 11

We briefly overview the structure of this contribution. First, on Sect. 2, we loosely charac-

terise how we look at mereologies: “what they are to us !”. Then, in Sect. 3, we give an

abstract, model-oriented specification of a class of mereologies in the form of composite
parts and composite and atomic subparts and their possible connections. The abstract model
as well as the axiom system (Sect. 4) focuses on the syntax of mereologies. Following that, 12

in Sect. 4 we indicate how the model of Sect. 3 satisfies the axiom system of that section.

In preparation for Sect. 6, Sect. 5 presents characterisations of attributes of parts, whether

atomic or composite. Finally Sect. 6 presents a semantic model of mereologies, one of
a wide variety of such possible models. This one emphasize the possibility of considering
parts and subparts as processes and hence a mereology as a system of processes. Section 7
concludes with some remarks on what we have achieved.

2 Our Concept of Mereology 13

2.1 Informal Characterisation

Mereology, to us, is the study and knowledge about how physical and conceptual parts relate
and what it means for a part to be related to another part: being disjoint, being adjacent,
being neighbours, being contained properly within, being properly overlapped with, etcetera.

June 15, 2012: 08:26 c© Dines Bjørner 2012. DTU Informatics



4 A Rôle for Mereology

By physical parts we mean such spatial individuals which can be pointed to. Examples: a14

road net (consisting of street segments and street intersections); a street segment (between
two intersections); a street intersection; a road (of sequentially neigbouring street segments
of the same name) a vehicle; and a platoon (of sequentially neigbouring vehicles).15

By a conceptual part we mean an abstraction with no physical extent, which is either
present or not. Examples: a bus timetable (not as a piece or booklet of paper, or as an
electronic device, but) as an image in the minds of potential bus passengers; and routes of a
pipeline, that is, neighbouring sequences of pipes, valves, pumps, forks and joins, for example
referred to in discourse: the gas flows through “such-and-such” a route”. The tricky thing
here is that a route may be thought of as being both a concept or being a physical part —
in which case one ought give them different names: a planned route and an actual road, for
example.16

The mereological notion of subpart, that is: contained within can be illustrated by exam-

ples: the intersections and street segments are subparts of the road net; vehicles are subparts
of a platoon; and pipes, valves, pumps, forks and joins are subparts of pipelines. The mereo-17

logical notion of adjacency can be illustrated by examples. We consider the various controls
of an air traffic system, cf. Fig. 4 on the facing page, as well as its aircrafts as adjacent within
the air traffic system; the pipes, valves, forks, joins and pumps of a pipeline, cf. Fig. 9 on
Page 8, as adjacent within the pipeline system; two or more banks of a banking system, cf.
Fig. 6 on Page 6, as being adjacent. The mereo-topological notion of neighbouring can be18

illustrated by examples: Some adjacent pipes of a pipeline are neighbouring (connected) to
other pipes or valves or pumps or forks or joins, etcetera; two immediately adjacent vehicles
of a platoon are neighbouring. The mereological notion of proper overlap can be illustrated19

by examples some of which are of a general kind: two routes of a pipelines may overlap; and
two conceptual bus timetables may overlap with some, but not all bus line entries being the
same; and some of really reflect adjacency: two adjacent pipe overlap in their connection, a
wall between two rooms overlap each of these rooms — that is, the rooms overlap each other
“in the wall”.

2.2 Six Examples 20

We shall, in Sect. 3, present a model that is claimed to abstract essential mereological prop-
erties of air traffic, buildings and their installations, machine assemblies, financial service
industry, the oil industry and oil pipelines, and railway nets.

2.2.1 Air Traffic 21

Figure 4 on the next page shows nine adjacent (9) boxes and eighteen adjacent (18) lines.
Boxes and lines are parts. The line parts “neighbours” the box parts they “connect”. Indi-
vidually boxes and lines represent adjacent parts of the composite air traffic “whole”. The
rounded corner boxes denote buildings. The sharp corner box denote an aircraft. Lines de-
note radio telecommunication. The “overlap” between neigbouring line and box parts are
indicated by “connectors”. Connectors are shown as small filled, narrow, either horisontal or
vertical “filled” rectangle3 at both ends of the double-headed-arrows lines, overlapping both
the line arrows and the boxes. The index ranges shown attached to, i.e., labelling each unit,
shall indicate that there are a multiple of the “single” (thus representative) box or line unit

3There are 38 such rectangles in Fig. 4 on the facing page.
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in Domain Science and Engineering 5
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Figure 4: A schematic air traffic system

shown. These index annotations are what makes the diagram of Fig. 4 schematic. Notice
that the ‘box’ parts are fixed installations and that the double-headed arrows designate the
ether where radio waves may propagate. We could, for example, assume that each such line
is characterised by a combination of location and (possibly encrypted) radio communication
frequency. That would allow us to consider all lines for not overlapping. And if they were
overlapping, then that must have been a decision of the air traffic system.

2.2.2 Buildings 22
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Figure 5: A building plan with installation

Figure 5 shows a building plan — as a composite part. The building consists of two
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6 A Rôle for Mereology

buildings, A and H. The buildings A and H are neighbours, i.e., shares a common wall.
Building A has rooms B, C, D and E, Building H has roomsI, J and K; Rooms L and M are
within K. Rooms F and G are within C.

The thick lines labelled N, O, P, Q, R, S, and T models either electric cabling, water
supply, air conditioning, or some such “flow” of gases or liquids.

Connection κιo provides means of a connection between an environment, shown by dashed
lines, and B or J, i.e. “models”, for example, a door. Connections κ provides “access” between
neighbouring rooms. Note that ‘neighbouring’ is a transitive relation. Connection ωιo allows
electricity (or water, or oil) to be conducted between an environment and a room. Connection
ω allows electricity (or water, or oil) to be conducted through a wall. Etcetera.

Thus “the whole” consists of A and B. Immediate subparts of A are B, C, D and E.
Immediate subparts of C are G and F. Etcetera.

2.2.3 Financial Service Industry 23
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Figure 6: A financial service industry

Figure 6 is rather rough-sketchy! It shows seven (7) larger boxes [6 of which are shown by
dashed lines], six [6] thin lined “distribution” boxes, and twelve (12) double-arrowed lines.
Boxes and lines are parts. (We do not described what is meant by “distribution”.) Where
double-arrowed lines touch upon (dashed) boxes we have connections. Six (6) of the boxes,
the dashed line boxes, are composite parts, five (5) of them consisting of a variable number
of atomic parts; five (5) are here shown as having three atomic parts each with bullets
“between” them to designate “variability”. Clients, not shown, access the outermost (and
hence the “innermost” boxes, but the latter is not shown) through connections, shown by
bullets, •.

2.2.4 Machine Assemblies 24

Figure 7 on the facing page shows a machine assembly. Square boxes show composite and
atomic parts. Black circles or ovals show connections. The full, i.e., the level 0, composite
part consists of four immediate parts and three internal and three external connections. The
Pump is an assembly of six (6) immediate parts, five (5) internal connections and three (3)

c© Dines Bjørner 2012. DTU Informatics June 15, 2012: 08:26



in Domain Science and Engineering 7
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Figure 7: An air pump, i.e., a physical mechanical system

external connectors. Etcetera. Some connections afford “transmission” of electrical power.
Other connections convey torque. Two connections convey input air, respectively output air.

2.2.5 Oil Industry 25
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Figure 8: A Schematic of an Oil Industry

“The” Overall Assembly Figure 8 shows a composite part consisting of fourteen (14) com-
posite parts, left-to-right: one oil field, a crude oil pipeline system, two refineries and one, say,
gasoline distribution network, two seaports, an ocean (with oil and ethanol tankers and their
sea lanes), three (more) seaports, and three, say gasoline and ethanol distribution networks.

Between all of the neighbouring composite parts there are connections, and from some
of these composite parts there are connections (to an external environment). The crude oil
pipeline system composite part will be concretised next.

26

A Concretised Composite parts Figure 9 on the following page shows a pipeline system.
It consists of 32 atomic parts: fifteen (15) pipe units (shown as directed arrows and labelled
p1–p15), four (4) input node units (shown as small circles, ◦, and labelled ini–inℓ), four (4)
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8 A Rôle for Mereology
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Figure 9: A pipeline system

flow pump units (shown as small circles, ◦, and labelled fpa–fpd), five (5) valve units (shown
as small circles, ◦, and labelled vx–vw), three (3) join units (shown as small circles, ◦, and
labelled jb–jc), two (2) fork units (shown as small circles, ◦, and labelled fb–fc), one (1)
combined join & fork unit (shown as small circles, ◦, and labelled jafa), and four (4) output
node units (shown as small circles, ◦, and labelled onp–ons).

In this example the routes through the pipeline system start with node units and end with
node units, alternates between node units and pipe units, and are connected as shown by fully
filled-out dark coloured disc connections. Input and output nodes have input, respectively
output connections, one each, and shown as lighter coloured connections.

2.2.6 Railway Nets 27

Figure 10 on the next page diagrams four rail units, each with two, three or four connectors
shown as narrow, somewhat “longish” rectangles. Multiple instances of these rail units can
be assembled (i.e., composed) by their connectors as shown on Fig. 11 on Page 10 into proper
rail nets.28

Figure 11 on Page 10 diagrams an example of a proper rail net. It is assembled from the kind
of units shown in Fig. 10. In Fig. 11 consider just the four dashed boxes: The dashed boxes
are assembly units. Two designate stations, two designate lines (tracks) between stations. We
refer to to the caption four line text of Fig. 10 on the facing page for more “statistics”. We
could have chosen to show, instead, for each of the four “dangling’ connectors, a composition
of a connection, a special “end block” rail unit and a connector.

c© Dines Bjørner 2012. DTU Informatics June 15, 2012: 08:26



in Domain Science and Engineering 9
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Simple Crossover Unit

Figure 10: Four example rail units

2.2.7 Discussion 29

We have brought these examples only to indicate the issues of a “whole” and atomic and com-
posite parts, adjacency, within, neighbour and overlap relations, and the ideas of attributes
and connections. We shall make the notion of ‘connection’ more precise in the next section.
[17] gives URLs to a number of domain models illustrating a great variety of mereologies.

3 An Abstract, Syntactic Model of Mereologies 30

We distinguish between atomic and composite parts. Atomic parts do not contain separately
distinguishable parts. Composite parts contain at least one separately distinguishable part.
It is the domain analyser who decides what constitutes “the whole”, that is, how parts relate
to one another, what constitutes parts, and whether a part is atomic or composite. We refer
to the proper parts of a composite part as subparts.

3.1 Parts and Subparts 31

Figure 12 on Page 11 illustrates composite and atomic parts. The slanted sans serif uppercase
identifiers of Fig. 12 A1, A2, A3, A4, A5, A6 and C1, C2, C3 are meta-linguistic, that is. they
stand for the parts they “decorate”; they are not identifiers of “our system”.

3.1.1 The Model 32

The formal models of this contribution are expressed in the RAISE Specification Language,
RSL [9, 8, 1].

1. The “whole” contains a set of parts.

2. A part is either an atomic part or a composite part.

3. One can observe whether a part is atomic or composite.

June 15, 2012: 08:26 c© Dines Bjørner 2012. DTU Informatics



10 A Rôle for Mereology
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Figure 11: A “model” railway net. An Assembly of four Assemblies:
two stations and two lines; Lines here consist of linear rail units;
stations of all the kinds of units shown in Fig. 10 on the preceding page.
There are 66 connections and four “dangling” connectors

4. Atomic parts cannot be confused with composite parts.

5. From a composite part one can observe one or more parts.

type

1. W = P-set

2. P = A | C
value

3. is A: P → Bool, is C: P → Bool

axiom

4. ∀ a:A,c:C•a6=c, i.e., A∩C={‖} ∧ is A(a)≡∼is C(a)∧is C(c)≡∼is A(c)
value

5. obs Ps: C → P-set axiom ∀ c:C • obs Ps(c)6={}

33

Fig. 12 on the facing page and the expressions below illustrate the observer function obs Ps:

• obs Ps(C1) = {A2, A3, C3},

• obs Ps(C2) = {A4, A5},

• obs Ps(C3) = {A6}.

Please note that this example is meta-linguistic. We can define an auxiliary function.34

6. From a composite part, c, we can extract all atomic and composite parts

a observable from c or

b extractable from parts observed from c.

c© Dines Bjørner 2012. DTU Informatics June 15, 2012: 08:26
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Figure 12: Atomic and composite parts

value

6. xtr Ps: C → P-set

6. xtr Ps(c) ≡
6a. let ps = obs Ps(c) in

6b. ps ∪ ∪ {obs Ps(c′)|c′:C • c′ ∈ ps} end

3.2 ‘Within’ and ‘Adjacency’ Relations 35

3.2.1 ‘Within’

7. One part, p, is said to be immediately within, imm within(p,p′), another part,

a if p′ is a composite part

b and p is observable in p′.

value

7. imm within: P × P
∼
→ Bool

7. imm within(p,p′) ≡
7a. is C(p′)
7b. ∧ p ∈ obs Ps(p′)

3.2.2 ‘Transitive Within’ 36

We can generalise the ‘immediate within’ property.

8. A part, p, is transitively within a part p′, within(p,p′),

a either if p, is immediately within p′

b or if there exists a (proper) composite part p′′ of p′ such that within(p′′,p).

June 15, 2012: 08:26 c© Dines Bjørner 2012. DTU Informatics



12 A Rôle for Mereology

value

8. within: P × P
∼
→ Bool

8. within(p,p′) ≡
8a. imm within(p,p′)
8b. ∨ ∃ p′′:C • p′′ ∈ obs Ps(p′) ∧ within(p,p′′)

3.2.3 ‘Adjacency’ 37

9. Two parts, p,p′, are said to be immediately adjacent, imm adjacent(p,p′)(c), to one
another, in a composite part c, such that p and p′ are distinct and observable in c.

value

9. imm adjacent: P × P → C
∼
→ Bool,

9. imm adjacent(p,p′)(c) ≡ p 6=p′ ∧ {p,p′}⊆obs Ps(c)

3.2.4 Transitive ‘Adjacency’ 38

We can generalise the immediate ‘adjacent’ property.

10. Two parts, p,p′, of a composite part, c, are adjacent(p, p′) in c

a either if imm adjacent(p,p′)(c),

b or if there are two p′′ and p′′′ of c such that

i. p′′ and p′′′ are immediately adjacent parts of c and

ii. p is equal to p′′ or p′′ is properly within p and p′ is equal to p′′′ or p′′′ is properly
within p′

value

10. adjacent: P × P → C
∼
→ Bool

10. adjacent(p,p′)(c) ≡
10a. imm adjacent(p,p′)(c) ∨
10b. ∃ p′′,p′′′:P •

10(b)i. imm adjacent(p′′,p′′′)(c) ∧
10(b)ii. ((p=p′′)∨within(p,p′′)(c)) ∧ ((p′=p′′′)∨within(p′,p′′′)(c))

3.3 Unique Identifications 39

Each physical part can be uniquely distinguished for example by an abstraction of its prop-
erties at a time of origin. In consequence we also endow conceptual parts with unique iden-
tifications.

11. In order to refer to specific parts we endow all parts, whether atomic or composite, with
unique identifications.

12. We postulate functions which observe these unique identifications, whether as parts in
general or as atomic or composite parts in particular.

c© Dines Bjørner 2012. DTU Informatics June 15, 2012: 08:26



in Domain Science and Engineering 13

13. such that any to parts which are distinct have unique identifications.

type

11. Π
value

12. uid Π: P → Π
axiom

13. ∀ p,p′:P • p 6=p′ ⇒ uid Π(p)6=uid Π(p′)

40

Figure 13 illustrates the unique identifications of composite and atomic parts.

ci1

ai5 ai4

ai1

ci3

ai2

ci2

ai3

ai6

Figure 13: aij : atomic part identifiers, cik: composite part identifiers

41

We exemplify the observer function obs Π in the expressions below and on Fig. 13:

• obs Π(C1) = ci1 , obs Π(C2) = ci2 , etcetera; and

• obs Π(A1) = ai1 , obs Π(A2) = ai2 , etcetera.

Please note that also this example is meta-linguistic. 42

14. We can define an auxiliary function which extracts all part identifiers of a composite
part and parts within it.

value

14. xtr Πs: C → Π-set

14. xtr Πs(c) ≡ {uid Π(c)} ∪ ∪ {uid Π(p)|p:P•p ∈ xtr Πs(c)}

3.4 Attributes 43

In Sect. 5 we shall explain the concept of properties of parts, or, as we shall refer to them,
attributes For now we just postulate that

15. parts have sets of attributes, atr:ATR, (whatever they are!),

16. that we can observe attributes from parts, and hence

17. that two distinct parts may share attributes

June 15, 2012: 08:26 c© Dines Bjørner 2012. DTU Informatics



14 A Rôle for Mereology

18. for which we postulate a membership function ∈.

type

15. ATR
value

16. atr ATRs: P → ATR-set

17. share: P×P → Bool

17. share(p,p′) ≡ p 6=p′∧∃ atr:ATR•atr∈ atr ATRs(p)∧atr∈ atr ATRs(p′)
18. ∈: ATR × ATR-set → Bool

3.5 Connections 44

In order to illustrate other than the within and adjacency part relations we introduce the
notions of connectors and, hence, connections. Figure 14 illustrates connections between
parts. A connector is, visually, a •—• line that connects two distinct part boxes.45

ai6
ai5 ai4

ai1
ai3ai2

ci1
ci3

ci2

Figure 14: Connectors

46

19. We may refer to the connectors by the two element sets of the unique identifiers of the
parts they connect.

For example:

• {ci1, ci3},

• {ai2, ai3},

• {ai6, ci1},

• {ai3, ci1},

• {ai6, ai5} and

• {ai1, ci1}.
47

20. From a part one can observe the unique identities of the other parts to which it is
connected.

type

19. K = {| k:Π-set • card k = 2 |}
value

20. mereo Ks: P → K-set

21. The set of all possible connectors of a part can be calculated.
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value

21. xtr Ks: P → K-set

21. xtr Ks(p) ≡ {{uid Π(p),π}|π:Π•π ∈ mereo Πs(p)}

3.5.1 Connector Wellformedness 48

22. For a composite part, s:C,

23. all the observable connectors, ks,

24. must have their two-sets of part identifiers identify parts of the system.

value

22. wf Ks: C → Bool

22. wf Ks(c) ≡
23. let ks = xtr Ks(c), πs = mereo Πs(c) in

24. ∀ {π′,π′′}:Π-set • {π′,π′′}⊆ks ⇒
24. ∃ p′,p′′:P • {π′,π′′}={uid Π(p′),uid Π(p′′)} end

3.5.2 Connector and Attribute Sharing Axioms 49

25. We postulate the following axiom:

a If two parts share attributes, then there is a connector between them; and

b if there is a connector between two parts, then they share attributes.

26. The function xtr Ks (Item 21 on the preceding page) can be extended to apply to Wholes.

axiom

25. ∀ w:W•

25. let ps = xtr Ps(w), ks = xtr Ks(w) in

25a. ∀ p,p′:P • p 6=p′ ∧ {p,p′}⊆ps ∧ share(p,p′) ⇒
25a. {uid Π(p),uid Π(p′)} ∈ ks ∧
25b. ∀ {uid,uid′} ∈ ks ⇒
25b. ∃ p,p′:P • {p,p′}⊆ps ∧ {uid,uid′}={uid Π(p),uid Π(p′)}
25b. ⇒ share(p,p′) end

value

26. xtr Ks: W → K-set

26. xtr Ks(w) ≡ ∪{xtr Ks(p)|p:P•p ∈ obs Ps(p)}

In other words: modelling sharing by means of intersection of attributes or by means of
connectors is “equivalent”.
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3.5.3 Sharing 50

27. When two distinct parts share attributes,

28. then they are said to be sharing:

27. sharing: P × P → Bool

28. sharing(p,p′) ≡ p 6=p′∧share(p,p′)

3.6 Uniqueness of Parts 51

There is one property of the model of wholes: W, Item 1 on Page 9, and hence the model of
composite and atomic parts and their unique identifiers “spun off” from W (Item 2 [Page 9] to
Item 25b [Page 15]). and that is that any two parts as revealed in different, say adjacent parts
are indeed unique, where we — simplifying — define uniqueness sôlely by the uniqueness of
their identifiers.

3.6.1 Uniqueness of Embedded and Adjacent Parts 52

29. By the definition of the obs Ps function, as applied obs Ps(c) to composite parts, c:C,
the atomic and composite subparts of c are all distinct and have distinct identifiers
(uiids: unique immediate identifiers).

value

29. uiids: C → Bool

29. uiids(c) ≡ ∀ p,p′:P•p 6=p′∧{p,p′}⊆obs Ps(c)⇒card{uidΠ(p),uidΠ(p′),uidΠ(c)}=3

53

30. We must now specify that that uniqueness is “propagated” to parts that are proper
parts of parts of a composite part (uids: unique identifiers).

30. uids: C → Bool

30. uids(c) ≡
30. ∀ c′:C•c′ ∈ obs Ps(c) ⇒ uiids(c′)
30. ∧ let ps′=xtr Ps(c′),ps′′=xtr Ps(c′′) in

30. ∀ c′′:C•c′′ ∈ ps′⇒uids(c′′)
30. ∧ ∀ p′,p′′:P•p′ ∈ ps′∧p′′ ∈ ps′′⇒uid Π(p′)6=uid Π(p′′) end

4 An Axiom System 54

Classical axiom systems for mereology focus on just one sort of “things”, namely Parts.
Leśniewski had in mind, when setting up his mereology to have it supplant set theory. So
parts could be composite and consisting of other, the sub-parts — some of which would be
atomic; just as sets could consist of elements which were sets — some of which would be
empty.
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4.1 Parts and Attributes 55

In our axiom system for mereology we shall avail ourselves of two sorts: Parts, and Attributes.4

• type P,A

Attributes are associated with Parts. We do not say very much about attributes: We think
of attributes of parts to form possibly empty sets. So we postulate a primitive predicate, ∈,
relating Parts and Attributes.

• ∈: A× P → Bool.

4.2 The Axioms 56

The axiom system to be developed in this section is a variant of that in [6]. We introduce the
following relations between parts:

part of: P : P × P → Bool Page 17
proper part of: PP : P × P → Bool Page 17

overlap: O : P × P → Bool Page 17
underlap: U : P × P → Bool Page 18

over crossing: OX : P × P → Bool Page 18
under crossing: UX : P × P → Bool Page 18
proper overlap: PO : P × P → Bool Page 18

proper underlap: PU : P × P → Bool Page 18
57

Let P denote part-hood; px is part of py, is then expressed as P(px, py).5 (1) Part px is part
of itself (reflexivity). (2) If a part px is part py and, vice versa, part py is part of px, then
px = py (antisymmetry). (3) If a part px is part of py and part py is part of pz, then px is
part of pz (transitivity).

∀px : P • P(px, px) (1)

∀px, py : P • (P(px, py) ∧ P(py, px))⇒px = py (2)

∀px, py, pz : P • (P(px, py) ∧ P(py, pz))⇒P(pz, pz) (3)
58

Let PP denote proper part-hood. px is a proper part of py is then expressed as PP(px, py).
PP can be defined in terms of P. PP(px, py) holds if px is part of py, but py is not part of px.

PP(px, py)
△
= P(px, py) ∧ ¬P(py, px) (4)

59

Overlap, O, expresses a relation between parts. Two parts are said to overlap if they have
“something” in common. In classical mereology that ‘something’ is parts. To us parts are
spatial entities and these cannot “overlap”. Instead they can ‘share’ attributes.

O(px, py)
△
= ∃a : A • a ∈ px ∧ a ∈ py (5)

60

4Identifiers P and A stand for model-oriented types (parts and atomic parts), whereas identifiers P and A

stand for property-oriented types (parts and attributes).
5Our notation now is not RSL but a conventional first-order predicate logic notation.
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Underlap, U, expresses a relation between parts. Two parts are said to underlap if there
exists a part pz of which px is a part and of which py is a part.

U(px, py)
△
= ∃pz : P • P(px, pz) ∧ P(py, pz) (6)

Think of the underlap pz as an “umbrella” which both px and py are “under”.61

Over-cross, OX, px and py are said to over-cross if px and py overlap and px is not part of
py.

OX(px, py)
△
= O(px, py) ∧ ¬P(px, py) (7)

62

Under-cross, UX, px and py are said to under cross if px and py underlap and py is not part
of px.

UX(px, py)
△
= U(px, pz) ∧ ¬P(py, px) (8)

63

Proper Overlap, PO, expresses a relation between parts. px and py are said to properly
overlap if px and py over-cross and if py and px over-cross.

PO(px, py)
△
= OX(px, py) ∧ OX(py, px) (9)

64

Proper Underlap, PU, px and py are said to properly underlap if px and py under-cross and
px and py under-cross.

PU(px, py)
△
= UX(px, py) ∧ UX(py, px) (10)

4.3 Satisfaction 65

We shall sketch a proof that the model of the previous section, Sect. 3, satisfies is a model
for the axioms of this section. To that end we first define the notions of interpretation,
satisfiability, validity and model.66

Interpretation: By an interpretation of a predicate we mean an assignment of a truth
value to the predicate where the assignment may entail an assignment of values, in general,
to the terms of the predicate.

Satisfiability: By the satisfiability of a predicate we mean that the predicate is true for
some interpretation.

Valid: By the validity of a predicate we mean that the predicate is true for all interpre-
tations.

Model: By a model of a predicate we mean an interpretation for which the predicate
holds.

4.3.1 A Proof Sketch 67

We assign

31. P as the meaning of P

32. ATR as the meaning of A,
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33. imm within as the meaning of P,

34. within as the meaning of PP,

35. ∈(of type:ATR×ATR−set→Bool) as the meaning of ∈(of type:A×P→Bool) and

36. sharing as the meaning of O.

With the above assignments is is now easy to prove that the other axiom-operators U, PO, PU,
OX and UX can be modelled by means of imm within, within, ∈(of type:ATR×ATR−set→Bool)
and sharing.

5 An Analysis of Properties of Parts 68

So far we have not said much about “the nature” of parts other than composite parts having
one or more subparts and parts having attributes. In preparation also for the next section,
Sect. 6 we now take a closer look at the concept of ‘attributes’. We consider three kinds of
attributes: their unique identifications [uid Π] — which we have already considered; their
connections, i.e., their mereology [mereo P] — which we also considered; and their “other”
attributes which we shall refer to as properties. [prop P]

5.1 Mereological Properties 69

5.1.1 An Example

Road nets, n:N, consists of a set of street intersections (hubs), h:H, uniquely identified by
hi’s (in HI), and a set of street segments (links), l:L, uniquely identified by li’s (in LI). such
that from a street segment one can observe a two element set of street intersection identifiers,
and from a street intersection one can observe a set of street segment identifiers. Constraints 70

between values of link and hub identifiers must be satisfied. The two element set of street
intersection identifiers express that the street segment is connected to exactly two existing
and distinct street intersections, and the zero, one or more element set of street segment
identifiers express that the street intersection is connected to zero, one or more existing and
distinct street segments. An axiom expresses these constraints. We call the hub identifiers
of hubs and links, the link identifiers of links and hubs, and their fulfilment of the axiom the
connection mereology. 71

type

N, H, L, HI, LI
value

obs Hs: N→H-set, obs Ls: N→L-set

uid HI: H→HI, uid LI: L→LI
mereo HIs: L→HI-set axiom ∀ l:L•card mereo HIs(l)=2
mereo LIs: H→LI-set

axiom

∀ n:N•

let hs=obs Hs(n),ls=obs Ls(n) in

∀ h:H•h ∈ hs ⇒ ∀ li:LI•li ∈ mereo LIs(h)⇒∃ l:L•uid LI(l)=li
∧ ∀ l:L•l ∈ ls ⇒ ∃ h,h′:H•{h,h′}⊆hs∧mereo HIs(l)={uid HI(h),uid HI(h′)}
end •
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5.1.2 Unique Identifier and Mereology Types 72

In general we allow for any embedded (within) part to be connected to any other embedded
part of a composite part or across adjacent composite parts. Thus we must, in general,
allow for a family of part types P1, P2, . . . , Pn, for a corresponding family of part identifier
types Π1, Π2, . . . , Πn, and for corresponding observer unique identification and mereology
functions:

type

P = P1 | P2 | ... | Pn
Π = Π1 | Π2 | ... | Πn

value

uid Πj: Pj → Πj for 1≤j≤n
mereo Πs: P → Π-set

73

Example: Our example relates to the abstract model of Sect. 3.

37. With each part we associate a unique identifier, π.

38. And with each part we associate a set, {π1, π2, . . . , πn}, n ≤ 0 of zero, one ore more
other unique identifiers, different from π.

39. Thus with each part we can associate a set of zero, one or more connections, viz.: {π, πj}
for 0 ≤ j ≤ n.

74

type

37. Π
value

37. uid Π: P → Π
38. mereo Πs: P → Π-set

axiom

38. ∀ p:P•uid Π(p) 6∈mereo Πs(p)
value

39. xtr Ks: P → K-set

39. xtr Ks(p) ≡
39. let (π,πs)=(uid Π,mereo Πs)(p) in

39. {{π′,π′′}|π′,π′′:Π•π′=π∧π′′ ∈πs} end

•

5.2 Properties 75

By the properties of a part we mean such properties additional to those of unique identification
and mereology. Perhaps this is a cryptic characterisation. Parts, whether atomic or composite,
are there for a purpose. The unique identifications and mereologies of parts are there to refer
to and structure (i.e., relate) the parts. So they are there to facilitate the purpose. The
properties of parts help towards giving these parts “their final meaning”. (We shall support
his claim (“their final meaning”) in Sect. 6.) Let us illustrate the concept of properties.76

Examples: (i) Typical properties of street segments are: length, cartographic location,
surface material, surface condition, traffic state — whether open in one, the other, both or
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closed in all directions. (ii) Typical properties of street intersections are: design6 location,77

surface material, surface condition, traffic state — open or closed between any two pairs of
in/out street segments. (iii) Typical properties of road nets are: name, owner, public/private,
free/tool road, area, etcetera. • 78

40. Parts are characterised (also) by a set of one or more distinctly named and not neces-
sarily distinctly typed property values.

a Property names are further undefined tokens (i.e., simple quantities).

b Property types are either sorts or are concrete types such as integers, reals, truth
values, enumerated simple tokens, or are structured (sets, Cartesians, lists, maps)
or are functional types.

c From a part

i. one can observe its sets of property names

ii. and its set (i.e., enumerable map) of distinctly named and typed property
values.

d Given an property name of a part one can observe the value of that part for that
property name.

e For practical reasons we suggest property named property value observer function
— where we further take the liberty of using the property type name in lieu of
the property name.

79

type

40. Props = PropNam →m PropVAL
40a. PropNam
40b. PropVAL
value

40(c)i. obs Props: P → Props
40(c)ii. xtr PropNams: P → PropNam-set

40(c)ii. xtr PropNams(p) ≡ dom obs Props(p)

40d. xtr PropVAL: P → PropNam
∼
→ PropVAL

40d. xtr PropVAL(p)(pn) ≡ (obs Props(p))(pn)
40d. pre: pn ∈ xtr PropNams(p)

Here we leave PropNames and PropVALues undefined. 80

Example:

type

NAME, OWNER, LEN, DESIGN, PP == public | private, ...

LΣ, HΣ, LΩ, HΩ
value

obs Props: N → {| [ ′′name′′7→nm,′′owner′′7→ow,′′public/private′′7→pp,... ]
| nm:NAME, ow:OWNER, ..., pp:PP |}

6for example, a simple ‘carrefour’, or a (circular) roundabout, or a free-way interchange a cloverleaf or
a stack or a clover-stack or a turbine or a roundabout or a trumpet or a directional or a full Y or a hybrid
interchange.
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obs Props: L → {| [ ′′length′′ 7→len,...,′′state′′ 7→lσ,′′state space′′7→lω:LΩ ]
| len:LEN,...,lσ:LΣ,lω:LΩ |}

obs Props: H → {| [ ′′design′′7→des, ...,′′state′′7→hσ,′′state space′′7→hω ]
| des:DESIGN,...,hσ:HΣ,hω:HΩ |}

prop NAME: N → NAME
prop OWNER: N → OWNER
prop LEN: L → LEN
prop LΣ: L → LΣ, obs LΩ: L → LΩ
prop DESIGN: H → DESIGN
prop HΣ: H → HΣ, obs HΩ: H → HΩ
...

We trust that the reader can decipher this example. •

5.3 Attributes 81

There are (thus) three kinds of part attributes:

• unique identifier “observers” (uid ),

• mereology “observers (mereo ), and

• property “observers” (prop ..., obs Props)

We refer to Sect. 3.4, and to Items 15–16.

type

15.′ ATR = Π × Π-set × Props
value

16.′ atr ATR: P → ATR
axiom

∀ p:P • let (π,πs,props) = atr ATR(p) in π 6∈ πs end

82
In preparation for redefining the share function of Item 17 on Page 13 we must first introduce a
modification to property values.

41. A property value, pv:PropVal, is either a simple property value (as was hitherto assumed), or is
a unique part identifier.

type

40. Props = PropNam →m PropVAL or Π
41. PropVAL or Π :: mk Simp:PropVAL | mk Π:Π

83

42. The idea a property name pn, of a part p′, designating a Π-valued property value π is

a that π refers to a part p′

b one of whose property names must be pn

c and whose corresponding property value must be a proper, i.e., simple property value, v,

d which is then the property value in p′ for pn.
84

value

42. get VAL: P × PropName → W → PropVAL
42. get VAL(p,pn)(w) ≡
44. let pv = (obs Props(p))(pn) in
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42. case pv of

42. mk Simp(v) → v,
42a. mk Π(π) →
42a. let p′:P•p′ ∈ xtr Ps(w)∧uid Π(p′)=π in

42c. (obs Props(p′))(pn) end

42. end end

42c. pre: pn ∈ obs PropNams(p)
42b. ∧ pn ∈ obs PropNams(p′)
42c. ∧ is PropVAL((obs Props(p′))(pn))

The three bottom lines above, Items 42b–42c, imply the general constraint now formulated. 85

43. We now express a constraint on our modelling of attributes.

a Let the attributes of a part p be (π, πs, props).

b If a property name pn in props has (associates to) a Π value, say π′

c then π′ must be in πs.

d and there must exist another part, p′, distinct from p, with unique identifier π′, such that

e it has some property named pn with a simple property value.

value

43. wf ATR: ATR → W → Bool

43a. wf ATR(π,πs,props)(w) ≡
43a. π 6∈ πs ∧
43b. ∀ π′:Π • π′ ∈ rng props ⇒
43c. let pn:PropNam•props(pn)=π′ in

43c. pi′∈ πs
43d. ∧ ∃ p′:P•p′∈ xtr Ps(w)∧uid Π(p′)=π′ ⇒
43e. pn ∈ obs PropNams(obs Props(p′))
43e. ∧ ∃ mk SimpVAL(v):VAL•(obs Props(p′))(pn)=mk SimpVAL(v) end

86

44. Two distinct parts share attributes

a if the unique part identifier of one of the parts is in the mereology of the other part, or

b if a property value of one of the parts refers to a property of the other part.
87

value

44. share: P × P → Bool

44. share(p,p′) ≡
44. p 6= p′ ∧
44. let (π,πs,props) = atr ATR(p),(π′,πs′,props′) = atr ATR(p′),
44. pns = xtr PropNams(p), pns′ = xtr PropNams(p′) in

44a. π ∈ πs′ ∨ π′ ∈ πs ∨
44b. ∃ pn:PropNam•pn ∈ pns ∩ pns′ ⇒
44b. let vop = props(pn), vop′ = props′(pn) in

44b. case (vop,vop′) of

44b. (mk Π(π′′),mk Simp(v)) → π′′=π′,
44b. (mk Simp(v),mk Π(π′′)) → π=π′′,
44b. → false

44. end end end

Comment: v is a shared attribute.
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5.4 Discussion 88

We have now witnessed four kinds of observer function:

• he above three kinds of mereology and property ‘observers’ and the

• part (and subpart) obs ervers.

These observer functions are postulated. They cannot be defined. They “just exist” by the force of
our ability to observe and decide upon their values when applied by us, the domain observers.89

Parts are either composite or atomic. Analytic functions are postulated. They help us decide
whether a part is composite or atomic, and, from composite parts their immediate subparts.

Both atomic and composite parts have all three kinds of attributes: unique identification, mere-
ology (connections), and properties. Analytic functions help us observe, from a part, its unique
identification, its mereology, and its properties.90

Some attribute values may be static, that is, constant, others may be inert dynamic, that is, can be
changed. It is exactly the inert dynamic attributes which are the basis for the next sections semantic
model of parts as processes.

In the above model (of this and Sect. 3) we have not modelled distinctions between static and
dynamic properties. You may think, instead of such a model, that an always temporal operator, �,
being applied to appropriate predicates.

6 A Semantic CSP Model of Mereology 91

The model of Sect. 3 can be said to be an abstract model-oriented definition of the syntax of mereology.
Similarly the axiom system of Sect. 4 can be said to be an abstract property-oriented definition of
the syntax of mereology. With the analysis of attributes of parts, Sect. 5, we have begun a semantic
analysis of mereology. We now bring that semantic analysis a step further.

6.1 A Semantic Model of a Class of Mereologies 92

We show that to every mereology there corresponds a program of cooperating sequential processes
CSP. We assume that the reader has practical knowledge of Hoare’s CSP [10].

6.1.1 Parts ≃ Processes

The model of mereology presented in Sect. 3 (Pages 9–16) focused on (i) parts and (ii) connectors.
To parts we associate CSP processes. Part processes are indexed by the unique part identifiers. The
connectors form the mereological attributes of the model.

6.1.2 Connectors ≃ Channels 93

The CSP channels are indexed by the two-set (hence distinct) part identifier connectors. From a whole
we can extract (xtr Ks, Item 26 on Page 15) all connectors. They become indexes into an array of
channels. Each of the connector channel index identifiers indexes exactly two part processes. Let w:W94

be the whole under analysis.

value

w:W
ps:P-set = ∪{xtr Ps(c)|c:C•c ∈ w} ∪ {a|a:A•a ∈ w}
ks:K-set = xtr Ks(w)

type

K = Π-set axiom ∀ k:K•card k=2
ChMap = Π →m K-set

value
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cm:ChMap = [ uid Π(p)7→xtr Ks(p)|p:P•p ∈ ps ]
channel

ch[ k|k:K•k ∈ ks ] MSG

We leave channel messages. m:MSG, undefined.

6.1.3 Process Definitions 95

value

system: W → process

system(w) ≡
‖{comp process(uid Π(c))(c)|c:C•c ∈ w} ‖ ‖{atom process(uid Π(a),a)|a:A•a ∈ w}

comp process: π:Π → c:C→ in,out {ch(k)|k:K•k ∈ cm(π)} process

comp process(π)(c) ≡ [ assert: π = uid Π(c) ]
MC(π)(c)(atr ATR(c)) ‖
‖ {comp process(uid Π(c′))(c′)|c′:C•c′ ∈ obs Ps(c)} ‖
‖ {atom process(uid Π(a))(a)|a:A•a ∈ obs Ps(c)}

MC : π:Π → C → ATR → in,out {ch(k)|k:K•k ∈ cm(pi)} process

MC(π)(c)(c attrs) ≡ MC(c)(CF(c)(c attrs)) assert: atr ATR(c) ≡ c attrs

CF : c:C → ATR → in,out {ch[ em(i) ]|i:KI•i ∈ cm(uid Π(c))} ATR

ATR and atr ATR are defined in Items 15.′ and 16.′ (Page 22). 96

atom process: a:A → in,out {ch[ cm(k) ]|:K•k ∈ cm(uid Π(a))} process

atom process(a) ≡ MA(a)(atr ATR(a))

MA: a:A → ATR → in,out {ch[ cm(k) ]|k:K•k ∈ cm(uid Π(a))} process

MA(a)(a attrs) ≡ MA(a)(AF(a)(a attrs)) assert: atr ATR(a) ≡ a attrs

AF : a:A → ATR → in,out {ch[ em(k) ]|k:K • k ∈ cm(uid Π(a))} ATR

97
The meaning processes MC and MA are generic. Their sôle purpose is to provide a never ending
recursion. “In-between” they “make use” of Composite, respectively Atomic specific Functions here
symbolised by CF , respectively AF .

Both CF and AF are expected to contain input/output clauses referencing the channels of their
signatures; these clauses enable the sharing of attributes. We illustrate this “sharing” by the schema-
tised function F standing for either CF or AF . 98

value

F : p:(C|A) → ATR → in,out {ch[ em(k) ]|k:K • k ∈ cm(uid Π(p))} ATR
F(p)(π,πs,props) ≡

⌈⌉⌊⌋ {let av = ch[ em({π,j}) ] ? in

... ; [ optional ] ch[ em({π,j}) ] ! in reply(props)(av);
(π,πs,in update ATR(props)(j,av)) end | {π,j}:K•{π,j} ∈ πs}

⌈⌉ ⌈⌉⌊⌋ { ... ; ch[ em({π,j}) ] ! out reply(props);
(π,πs,out update ATR(props)(j)) | {π,j}:K•{π,j} ∈ πs}

⌈⌉ (π,πs,own work(props))
assert: π = uid Π(p)
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in reply: Props → Π × VAL → VAL
in update ATR: Props → Π × VAL → Props
out reply: Props → VAL
out update ATR: Props →Π → Props
own work: Props → Props

We leave VAL undefined.

6.2 Discussion 99

6.2.1 General

A little more meaning has been added to the notions of parts and connections. The within and adjacent
to relations between parts (composite and atomic) reflect a phenomenological world of geometry,
and the connected relation between parts reflect both physical and conceptual world understandings:
physical world in that, for example, radio waves cross geometric “boundaries”, and conceptual world in
that ontological classifications typically reflect lattice orderings where overlaps likewise cross geometric
“boundaries”.

6.2.2 Partial Evaluation 100

The composite processes function “first” “functions” as a compiler. The ‘compiler’ translates an assem-
bly structure into three process expressions: the MC(c)(c attrs) invocation, the parallel composition
of composite processes, c′, one for each composite sub-part of c, and the parallel composition of
atomic processes, a, one for each atomic sub-part of c — with these three process expressions “being
put in parallel”. The recursion in composite processes ends when a sub-. . . -composites consist of no
sub-sub-. . . -composites. Then the compiling task ends and the many generated MC(c)(c attrs) and
MA(a)(a attrs) process expressions are invoked.

7 Concluding Remarks 101

7.1 Relation to Other Work

The present contribution has been conceived in the following context.
My first awareness of the concept of ‘mereology’ was from listening to many presentations by

Douglas T. Ross (1929–2007) at IFIP working group WG3.2 meetings over the years 1980–1999. In
[15] Douglas T. Ross and John E. Ward reports on the 1958–1967 MIT project for computer-aided
design (CAD) for numerically controlled production.7 Pages 13–17 of [15] reflects on issues bordering
to and behind the concerns of mereology. Ross’ thinking is clearly seen in the following text: “. . .
our consideration of fundamentals begins not with design or problem-solving or programming or even
mathematics, but with philosophy (in the old-fashioned meaning of the word) – we begin by establishing
a “world-view”. We have repeatedly emphasized that there is no way to bound or delimit the potential
areas of application of our system, and that we must be prepared to cope with any conceivable problem.
Whether the system will assist in any way in the solution of a given problem is quite another matter,
. . . , but in order to have a firm and uniform foundation, we must have a uniform philosophical basis
upon which to approach any given problem. This “world-view” must provide a working framework and
methodology in terms of which any aspect of our awareness of the world may be viewed. It must be
capable of expressing the utmost in reality, giving expression to unending layers of ever-finer and more
concrete detail, but at the same time abstract chimerical visions bordering on unreality must fall within
the same scheme. “Above all, the world-view itself must be concrete and workable, for it will form
the basis for all involvement of the computer in the problem-solving process, as well as establishing a

7Doug is said to have coined the term and the abbreviation CAD [13].
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viewpoint for approaching the unknown human component of the problem-solving team.” Yes, indeed, the
philosophical disciplines of ontology, epistemology and mereology, amongst others, ought be standard
curricula items in the computer science and software engineering studies, or better: domain engineers
cum software system designers ought be imbued by the wisdom of those disciplines as was Doug.

Douglas T. Ross 1927–2007.

Courtesy MIT Museum

“. . . in the summer of 1960 we coined the word plex to serve as a
generic term for these philosophical ruminations. ”Plex” derives from
the word plexus, “An interwoven combination of parts in a structure”,
(Webster). . . . The purpose of a ‘modeling plex’ is to represent com-
pletely and in its entirety a “thing”, whether it is concrete or abstract,
physical or conceptual. A ‘modeling plex’ is a trinity with three primary
aspects, all of which must be present. If any one is missing a complete
representation or modeling is impossible. The three aspects of plex are
data, structure, and algorithm. . . . ” which “. . . is concerned with
the behavioral characteristics of the plex model– the interpretive rules
for making meaningful the data and structural aspects of the plex, for
assembling specific instances of the plex, and for interrelating the plex
with other plexes and operators on plexes. Specification of the algo-
rithmic aspect removes the ambiguity of meaning and interpretation of
the data structure and provides a complete representation of the thing
being modeled.” In the terminology of the current paper a plex is
a part (whether composite or atomic), the data are the properties
(of that part), the structure is the mereology (of that part) and the
algorithm is the process (for that part). Thus Ross was, perhaps,
a first instigator (around 1960) of object-orientedness. A first, “top of the iceberg” account of the
mereology-ideas that Doug had then can be found in the much later (1976) three page note [14].
Doug not only ‘invented’ CAD but was also the father of AED (Algol Extended for Design), the Au-
tomatically Programmed Tool (APT) language, SADT (Structured Analysis and Design Technique)
and helped develop SADT into the IDEF0 method for the Air Force’s Integrated Computer-Aided
Manufacturing (ICAM) program’s IDEF suite of analysis and design methods. Douglas T. Ross went
on for many years thereafter, to deepen and expand his ideas of relations between mereology and the
programming language concept of type at the IFIP WG2.3 working group meetings. He did so in the,
to some, enigmatic, but always fascinating style you find on Page 63 of [14].

In [12] Henry S. Leonard and Henry Nelson Goodman: A Calculus of Individuals and Its Uses
present the American Pragmatist version of Leśniewski’s mereology. It is based on a single primitive:
discreet, ⌉⌊. The idea the calculus of individuals is, as in Leśniewski’s mereology, to avoid having to
deal with the empty sets while relying on explicit reference to classes (or parts).

[6] R. Casati and A. Varzi: Parts and Places: the structures of spatial representation has been
the major source for this paper’s understanding of mereology. Although our motivation was not the
spatial or topological mereology, [16], and although the present paper does not utilize any of these
concepts’ axiomatision in [6, 16] it is best to say that it has benefitted much from these publications.

Domain descriptions, besides mereological notions, also depend, in their successful form. on FCA:
Formal Concept Analysis. Here a main inspiration has been drawn , since the mid 1990s from B. Ganter

and R. Wille’s Formal Concept Analysis — Mathematical Foundations [7]. The approach takes as
input a matrix specifying a set of objects and the properties thereof, called attributes, and finds both all the
“natural” clusters of attributes and all the “natural” clusters of objects in the input data, where a “natural”
object cluster is the set of all objects that share a common subset of attributes, and a “natural” property
cluster is the set of all attributes shared by one of the natural object clusters. Natural property clusters
correspond one-for-one with natural object clusters, and a concept is a pair containing both a natural
property cluster and its corresponding natural object cluster. The family of these concepts obeys the
mathematical axioms defining a lattice, a Galois connection). Thus the choice of adjacent and embedded
(‘within’) parts and their connections is determined after serious formal concept analysis. In [5] we
present a ‘concept analysis’ approach to domain description, where the present paper presents the
mereological approach.
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The present paper is based on [3] of which it is an extensive revision and extension.

7.2 What Has Been Achieved ? 102

We have given a model-oriented specification of mereology. We have indicated that the model satisfies a
widely known axiom system for mereology. We have suggested that (perhaps most) work on mereology
amounts to syntactic studies. So we have suggested one of a large number of possible, schematic
semantics of mereology. And we have shown that to every mereology there corresponds a set of
communicating sequential process (CSP).

7.3 Future Work 103

We need to characterise, in a proper way, the class of CSP programs for which there corresponds a
mereology. Are you game ?

One could also wish for an extensive editing and publication of Doug Ross’ surviving notes.
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1–30, Heidelberg, May 2008. Springer.

[3] D. Bjørner. On Mereologies in Computing Science. In Festschrift for Tony Hoare, History of
Computing (ed. Bill Roscoe), London, UK, 2009. Springer.

[4] D. Bjørner. The Role of Domain Engineering in Software Development. Why Current Requirements
Engineering Seems Flawed! In Perspectives of Systems Informatics, volume 5947 of Lecture Notes in
Computer Science, pages 2–34, Heidelberg, Wednesday, January 27, 2010. Springer.

[5] D. Bjørner and A. Eir. Compositionality: Ontology and Mereology of Domains. Some Clarifying
Observations in the Context of Software Engineering in July 2008, eds. Martin Steffen, Dennis
Dams and Ulrich Hannemann. In Festschrift for Prof. Willem Paul de Roever Concurrency,
Compositionality, and Correctness, volume 5930 of Lecture Notes in Computer Science, pages 22–59,
Heidelberg, July 2010. Springer.

[6] R. Casati and A. Varzi. Parts and Places: the structures of spatial representation. MIT Press, 1999.

[7] B. Ganter and R. Wille. Formal Concept Analysis — Mathematical Foundations. Springer-Verlag,
January 1999. ISBN: 3540627715, 300 pages, Amazon price: US $ 44.95.

[8] C. W. George, P. Haff, K. Havelund, A. E. Haxthausen, R. Milne, C. B. Nielsen, S. Prehn, and K. R.
Wagner. The RAISE Specification Language. The BCS Practitioner Series. Prentice-Hall, Hemel
Hampstead, England, 1992.

[9] C. W. George, A. E. Haxthausen, S. Hughes, R. Milne, S. Prehn, and J. S. Pedersen. The RAISE
Development Method. The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead, England,
1995.

c© Dines Bjørner 2012. DTU Informatics June 15, 2012: 08:26



in Domain Science and Engineering 29

[10] C. Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in Computer Science.
Prentice-Hall International, 1985. Published electronically: http://www.usingcsp.com/cspbook.pdf
(2004).
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