
Speci�cation of Air Tra�c Control�Kristian KalsingySoftware Veri�cation Research CentreSchool of Information TechnologyThe University of QueenslandOctober 3, 1999AbstractThis report presents a case study of air tra�c control (ATC). A formalspeci�cation of an ATC system is developed. The ATC model represents theair tra�c controllers and the actual ATC system as a whole.A simulator is speci�ed as an extension to the ATC speci�cation. Thesimulator comprises operations that are external to the ATC system such as
ight movements, etc.Contents1 Introduction 22 The Air Tra�c Control System 22.1 Description . 22.2 Operational Concept . 33 Formal Speci�cation 53.1 The Sum Language . 53.2 The ATC system . 53.2.1 State and Initialisation . 63.2.2 Operations . 103.3 The Simulator . 143.3.1 State and Initialisation . 143.3.2 Operations . 144 Discussions 174.1 Handover . 174.2 Topology . 18�This work represents parts of an honours project at the Software Veri�cation Research Centre,The University of Queensland. Supervisor is Peter A. Lindsay.yM.Sc. student, Technical University of Denmark, email: kristian@kalsing.dk.1

5 Conclusions 18A Mathematical Notation 19A.1 Sets . 19A.2 Numbers . 19A.3 Binary Relations . 19A.4 Functions . 20A.5 Sequences . 20B ATC Speci�cation 21C Simulator Speci�cation 261 IntroductionIn this report we present a formal model of air tra�c control (ATC). The model isnot an attempt to give a complete speci�cation of an ATC system.The model covers aspects that are relevant for our particular purpose: to buildand simulate an ATC system which can be used for animation in order to performsafety analysis on an algorithm that calculates reasonable delays for all the aircraftin the system.This report merely presents the Sum speci�cations of the ATC system and apurpose built simulator.2 The Air Tra�c Control SystemIn this section we �rst describe the ATC system in general. Then we describe theoperational concept of our simpli�ed model of the system.2.1 DescriptionIn general terms, an ATC system together with the air tra�c controllers who run itare responsible for directing aircraft safely through the respective ATC region. Themain objective is to make sure that all aircraft are separated in time and spatiallocation.In particular, we consider arrivals to an airport. The ATC region consists of asequence of airspaces beginning where the aircraft start to approach the airport andending where the aircraft have landed and is located at a gate.All airspaces in the sequence has exactly one controller assigned to it. A con-troller is responsible for all the aircraft in the airspace that he/she is assigned to.Figure 1 shows a typical
ow chart of the arrivals. An aircraft goes through sev-eral states as it approaches an airport. At all times a particular controller (enroute,approach, etc.) is responsible for directing the aircraft. We will refer to this
ow asthe arrivals
ow. 2

Enroute - Aircraft on STAR - FinalisingSTAR - Approach - FinalApproach-Landed- O�Runway-At GateEnroute Approach Director Aerodrome Ground��� ��� AAU ��� AAU ��� AAU ��������� AAU ��� AAU ��� ��� AAU ���Controller
Aircraft State

Figure 1: Arrivals Flow ChartThere is communication between the aircraft and the controller at certain pointsin the arrivals
ow (in the
ow chart communication is represented by an arrowbetween a controller and an aircraft state). The controllers call the aircraft to givethem speed adjustments, tell the pilot to delay the
ight or tell the pilot to contactthe next controller in a handover. The pilots call the controllers mainly to announcetheir current position or to con�rm instructions.2.2 Operational ConceptIn this section we will describe our interpretation of an ATC system. Our speci�ca-tions will not cover all aspects of an ATC system. However, it will be comprehensiveenough to model a simple system that can be used to simulate aircraft going throughthe arrivals
ow.We model the arrivals
ow by having a sequence of controllers. We do notdistinguish between controllers and their airspaces. When an aircraft is located inan airspace we simply say that the aircraft is at the respective controller.Within each controller we have a �xed number of positions
ights can occupy.The positions do not represent spatial locations but are positions in time. The num-ber of a particular position represents the number of time units till next handover.We do not monitor the spatial locations of aircraft. We assume that the spatialseparation is taken of. We use the abstraction of modelling positions in time ratherthan spatial positions because it really is what we are interested in when buildingthe simulator.Strictly the model should take the spatial separation into account. However,spatial separation is not relevant for our particular purpose of the simulation, hencewe have made the abstraction that we merely consider positions in time and assumethat parts of the ATC system we have not speci�ed handle the spatial separation.Being that close to the airport (as we are in the arrivals
ow) the aircraft willapproach the airport following a nearly one-dimensional path. Hence separation intime normally implies spatial separation too. However, we may encounter situationswhere
ights are overtaking each other. In those cases we assume that the requiredspatial separation is fully satis�ed. 3

c c6 5 4 3 2 1 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 1enroute approach director aerodrome ground
landedFigure 2: Arrivals Flow Chart as ModelledThe simple arrivals
ow is shown in �gure 2. The aircraft states (see �gure 1)are not relevant to our model. At a certain position in the
ow the aircraft will havelanded. This position is usually located at the aerodrome controller.In our model, under normal operation, an aircraft will arrive at the �rst controller(the enroute controller), move through all the positions, and �nally be removed fromthe system at the last position at the last controller (the ground controller). At thispoint the aircraft will be located at a gate and will no longer be of interest.We will refer to the basic setup in �gure 2 as the topology of the system. Thetopology de�nes the sequence of controllers, the number of positions, and determinesthe landing position.Our speci�cation will consist of two models. As indicated in �gure 3, one modulespeci�es the ATC system and the other models the simulator. The model of the ATCsystem covers the controllers' behaviour and actions performed by the system itself.The simulator models the behaviour of aircraft.Aircraft

Controllers System
Simulator
ATC System

Figure 3: Speci�cation Structure
4

3 Formal Speci�cationThe models of the ATC system and the simulator are formally speci�ed using theSum speci�cation language. The next section brie
y describes Sum.The following two sections give a formal presentation of the two models. Eachmodel is presented gradually beginning with the state variables and the invariants.Essential concepts in the model are related to concepts in our domain as presentedin the previous section.3.1 The Sum LanguageSum [3] is a variant of the well known Z speci�cation language. While closely relatedto Z, Sum extends Z to facilitate the production of modular speci�cations and easespeci�cation readability. Relevant to this case study, Sum particularly providesfacilities at the speci�cation level for:� Modular and parameterised speci�cations. Modules may be imported, givingvisibility to the referenced entities.� Distinguished state machines represented by modules through the use of pre-de�ned state, init and schema schemas:{ state schemas represent the state encapsulated by the module.{ init schemas initialise the respective state.{ schema schemas capture state transitions.� Explicit preconditions in schemas by using the pre�x pre.In this particular case study the speci�cation comprises two modules, the ATCsystem and the simulator. The simulator module will import the ATC module.3.2 The ATC systemRecall, that in our model the ATC system represents both the actual system andthe controllers.

5

3.2.1 State and InitialisationThe state of the ATC system and its respective invariant are speci�ed as follows:state
ow : iseqControllerpositions : Controller 7! N1delay pos : Controller 7! PN1capacity : Controller 7! Nlanding ctrl : Controllerlanding pos : N1control : Aircraft 7! Controllercurrent pos : Aircraft 7! N1remaining t : Aircraft 7! Ndelay : Aircraft 7! Ncontact : Aircraft $ Controllerwaiting : PAircraftopen : Bt to landing : Aircraft 7! Zmax delay : Aircraft 7! Ndom control = dom current posdom control = dom remaining tdom control = dom delayran control � ran
owdom contact � dom controlran contact � ran
owwaiting � dom control8 a : dom control � current pos(a) � positions(control(a))8 c : ran
ow �c 2 dom positions ^ c 2 dom delay pos ^ c 2 dom capacity8 c : ran
ow � 8 p : delay pos(c) � p � positions(c)
ow 6= h i)landing ctrl 2 ran
ow ^landing pos � positions(landing ctrl)8 a : dom control � a 2 waiting) current pos(a) = 1open)
ow 6= h i8 a : dom control � t to landing(a) =t to end(control(a); current pos(a); positions ;
ow)�t to end(landing ctrl ; landing pos ; positions ;
ow)8 a : dom control � max delay(a) =remaining t(a) � t to landing(a)6

The variables
ow and positions represent a sequence of controllers and thenumber of positions within each controller (recall, that a position is the time till nexthandover). Together with landing ctrl and landing pos, which specify the controllerand the position within that particular controller the actual landing takes place,they de�ne the topology of the arrivals
ow.The �rst controller in the sequence is the last one an aircraft encounters undernormal operation. The positions within a controller are numbered from 1 to n, wheren is the total number of positions. Position 1 is the last position a
ight occupieswithin a controller when passing through that particular controllers airspace.Those four variables could just as well have been speci�ed as constants as thatis what they basically would be under normal circumstances. When simulatingscenarios from the real world we would never change those variables. We chose toput them among the state variables in order to allow a wider range of experimentswith the system. We will have the opportunity to run the same scenarios on di�erenttopologies. For example, we can systematically analyse how a di�erent number ofcontrollers would handle a particular scenario.
c cs s s sf1 f2 f3 f46 5 4 3 2 1 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 1enroute approach director aerodrome ground

landedflow = hground; aerodrome; director; approach; enrouteipositions(ground) = 6positions(aerodrome) = 6positions(director) = 9positions(approach) = 6positions(enroute) = 6landing ctrl = aerodromelanding pos = 3
control(f1) = enroutecontrol(f2) = approachcontrol(f3) = directorcontrol(f4) = aerodromecurrent pos(f1) = 4current pos(f2) = 1current pos(f3) = 6current pos(f4) = 1

t to landing(f1) = 22t to landing(f2) = 13t to landing(f3) = 9t to landing(f4) = �2waiting = ff2; f4gFigure 4: Instantiation of State VariablesThe variable delay pos speci�es for each controller, a set of positions where it ispossible to delay a
ight. These positions represent some sort of holding patterns.The capacity of a controller is speci�ed by capacity. There is a limit on howmany
ights a controller can handle. We allow capacity and delay pos to be changedduring normal operation due to weather conditions, etc.The current position of an aircraft is represented by control and current pos.The �rst variable gives us the controller and the second the position within thatcontroller. 7

The relation contact represents whether communication has been establishedbetween a controller and an aircraft. Notice, that control gives the controller towhom the aircraft is visible, which does not necessarily mean that the controller cancommunicate with the respective aircraft.The variable remaining t is the remaining time an aircraft can stay in the airdue to fuel limitations, etc.The variable delay speci�es for each aircraft the current instructions to delay.Zero means that none is given, any other number denotes how many time units a
ight should delay as soon as it reaches a position where delay is possible.The set waiting is the set of aircrafts waiting to be handed over. They havereached the last position (1) within a controller's airspace and await the controller'shandover.The boolean variable open tells us whether the airport is open or closed. Whenan airport is closed no aircraft can be added to the system. But the system will stillhandle the aircraft that were already in the system when the airport was closed.The variables t to landing and max delay are secondary variables (their valuesare derived from one or more primary state variables). Respectively, for each aircraftin the system they give the number of time units from the current position to thelanding and the maximum possible delay the aircraft can be given.Figure 4 shows an example of how some of the state variables are used. Thereare four
ights in the system.We introduce a number of auxiliary functions in order to ease the speci�cation:next ctrl :Controller � iseqController 7! Controller8 c1; c2 : Controller ;
w : iseqController �next ctrl(c1;
w) = c2,9 i : N � c1 =
w(i) ^ c2 =
w(i � 1)entrance ctrl :iseqController 7! Controller8
w : iseqController �entrance ctrl(
w) = last
wexit ctrl :iseqController 7! Controller8
w : iseqController �exit ctrl(
w) = head
wnumber in seq :Controller � iseqController 7! N8 c : Controller ;
w : iseqController ; n : N �number in seq(c;
w) = n ,
w(n) = c8

sum of pos :N � (Controller 7! N) � iseqController 7! N8 i : N; psn : Controller 7! N;
w : iseqController �sum of pos(i ; psn;
w) =if i = 0 then 0 else psn(
w(i)) + sum of pos(i � 1; psn;
w)t to end :Controller � N � (Controller 7! N) � iseqController 7! N8 c : Controller ; p : N; psn : Controller 7! N;
w : iseqController �t to end(c; p; psn;
w) =p + sum of pos(number in seq(c;
w)� 1; psn;
w)With next ctrl, entrance ctrl and exit ctrl we can get the next controller in the
ow, the �rst controller, and the last controller, respectively.number in seq tells us what number in the
ow a controller is. From an arbitraryposition in the
ow we can get the distance (in time) to the end of the
ow witht to end.All the �ve auxiliary functions are partial. This implies that there are a lot ofcases where we cannot predict what the functions will return when applied to certaininput. However, our model will only pass input to these functions that gives sensibleoutput (e.g. we will never ask for the next controller given the last controller, we willnever ask for the entrance controller of an empty sequence, etc.). In order words,the way the functions are used in the speci�cation ensures deterministic behaviour.Practically the preconditions of the operations in the model ensure that the auxiliaryfunctions will always return deterministic results.The state invariant puts restrictions on the system state. The essential relation-ships between the objects in the system state are:� each aircraft that is visible to a controller has a current position within thatcontroller, its remaining time in the air is known, and it has a current instruc-tion to delay (possibly zero);� aircraft can only be visible to controllers within the arrivals
ow;� controllers can only have communication with aircraft within the system;� only aircraft located within the system can be waiting to be handed over;� aircraft can only occupy positions that actually exist;� for all controllers in the arrivals
ow we know their number of positions, theirset of positions where delay is possible, and their capacity;� the set of delay positions for a controller has to be actual positions within thatcontroller; 9

� an arrivals
ow has to have a known landing controller and a landing position;� an aircraft awaiting handover (or removal) is in position 1 of some controller;� an open airport requires at least one controller;� the secondary variable t to landing is speci�ed as the di�erence between theaircraft's distance from last position in the
ow and the landing position'sdistance from the last position;� the secondary variable max delay is speci�ed as the di�erence between theaircraft's remaining time in the air and its total time to landing.Notice, that we did not demand the number of aircraft within a controller tostay within the capacity limit. This speci�cation should be interpreted as a domainmodel. In such a speci�cation we model all possible behaviours. In the real worldthe capacity can be exceeded, naturally it should be in the domain model (specifyingthat the capacity limit can not be exceeded is a (safety) requirement to the systemand is not a part of the domain model).Initially no topology is set up, there are no aircraft in the system, no currentinstructions to delay and the airport is closed.init
ow 0 = h ipositions 0 = ?delay pos 0 = ?capacity 0 = ?control 0 = ?current pos 0 = ?remaining t 0 = ?delay 0 = ?contact 0 = ?waiting 0 = ?: open 03.2.2 OperationsThe topology of the arrivals
ow is reset with the two operations Reset Flow andReset Positions.
10

op Reset Flowcs? : iseqControllerc? : Controllerp? : Npre(control = ? ^ c? 2 ran cs? ^ p? � positions(c?))changes only f
ow ; landing ctrl ; landing posg
ow 0 = cs?landing ctrl 0 = c?landing pos 0 = p?op Reset Positionsc? : Controllern? : Npre(c? 62 ran control)changes only fpositionsgpositions 0 = positions � fc? 7! n?gWith Reset Flow we can de�ne the sequence of controllers and the compulsorylanding controller and position. With Reset Positions we de�ne the number ofpositions within a controller. As stated in the invariant, the landing controller andposition have to exist for any non-empty sequence of controllers.The arrivals
ow cannot be reset whilst aircraft are located in the system. Simi-larly the number of positions can not be reset for a controller if there are one or moreaircraft located within that particular controller's airspace. Under normal operationwe would not wish to reset these variables, anyway.With Reset Capacity we can reset the current capacity of a controller. There areno restrictions on when that can be done.op Reset Capacityc? : Controllern? : Nchanges only fcapacitygcapacity 0 = capacity � fc? 7! n?gThe operation Reset Delay Pos is used to reset the set of positions within acontroller that allow delay. Add Delay Pos and Delete Delay Pos are used to alterthe set.
11

op Reset Delay Posc? : Controllerps? : PNpre(8 p : ps? � p � positions(c?))changes only fdelay posgdelay pos 0 = delay pos � fc? 7! ps?gop Add Delay Posc? : Controllerp? : N1pre(p? 62 delay pos(c?) ^ p? � positions(c?))changes only fdelay posgdelay pos 0 = delay pos � fc? 7! (delay pos(c?) [fp?g)gop Delete Delay Posc? : Controllerp? : N1pre(p? 2 delay pos(c?))changes only fdelay posgdelay pos 0 = delay pos � fc? 7! (delay pos(c?) n fp?g)gThe operation Handover Flight hands over an aircraft from its current controllerto the next controller in the sequence. The aircraft has to be waiting for the handover(be in position 1 and not currently on hold).An aircraft that reaches position 1 within a controller is seen as an externalevent, thus it will be a task of the simulator to extend the set waiting with theaircraft. op Handover Flighta? : Aircraftpre(a? 2 waiting ^ control(a?) 6= exit ctrl(
ow))changes only fcontrol ; current pos ;waitinggcontrol 0 = control�fa? 7! next ctrl(control(a?);
ow)gcurrent pos 0 = current pos�fa? 7! positions(next ctrl(control(a?);
ow))gwaiting 0 = waiting n fa?gIt is not possible for an aircraft to be handed over from the last controller (ground)in the arrivals
ow. In that case we use the operation Remove Flight to remove the12

aircraft from the system, meaning that the aircraft has been located at a gate and isno longer of interest in the arrivals
ow. The latter operation can be seen as specialcase of the previous one.op Remove Flighta? : Aircraftpre(a? 2 waiting ^ control(a?) = exit ctrl(
ow))changes only fcontrol ; current pos ; remaining t ; delay ; contact ;waitinggcontrol 0 = (fa?g �C control)current pos 0 = (fa?g �C current pos)remaining t 0 = (fa?g �C remaining t)delay 0 = (fa?g �C delay)contact 0 = (fa?g �C contact)waiting 0 = waiting n fa?gWhen a controller instructs a
ight to delay we use the operation Delay Flight.As input we give the aircraft and the number of time units the aircraft is to bedelayed. op Delay Flighta? : Aircraftt? : Npre(a? 2 dom control ^ a? contact control(a?))changes only fdelay ;waitinggdelay 0 = delay � fa? 7! t?gwaiting 0 = waiting n fa?gNotice, that this operation represents an instruction to delay, that does not meanthat the aircraft actually will delay. The aircraft might not currently be in a positionthat allows delay. However, the aircraft will still receive the instruction and keep ituntil a new one is given.If the
ight previously was waiting to be handed over it will be removed fromthe set waiting (if its current position does not allow delay the simulator will put itback in waiting).Instructions to delay can only be given if the aircraft is visible to a controllerand communication is established between the aircraft and its current controller.Finally we introduce two operations Open Entrance and Close Entrance to openand close the airport respectively.op Open Entrancepre(: open)changes only fopengopen 0 13

op Close Entrancepre(open)changes only fopeng: open 0A closed airport cannot receive any more aircraft to its arrivals
ow. However,aircraft that are already in the system when the airport is closed will still be handledas usual.3.3 The SimulatorThe simulator module imports the ATC module, meaning that the simulator in termsof the speci�cation is an extension to the ATC system. We model the behaviour ofaircraft including communication with these.3.3.1 State and InitialisationNo additional variables are introduced in the simulator.stateATC :stateinitATC :init3.3.2 OperationsThe operation Add Flight adds a
ight to the system. This simulates the normalcase where an aircraft arrives to the airport and enters the arrivals
ow. Flights canbe added only when the airport is open.op Add Flighta? : Aircraftrt? : Npre(open ^ a? 62 dom control)changes only fcontrol ; current pos ; remaining t ; delaygcontrol 0 = control � fa? 7! entrance ctrl(
ow)gcurrent pos 0 = currrent pos � fa? 7! positions(entrance ctrl(
ow))gremaining t 0 = remaining t � fa? 7! rt?gdelay 0 = delay � fa? 7! 0gWhen a
ight is added to the system it becomes visible to the �rst controller inthe arrivals
ow, its current position is set to the �rst position in the
ow within14

that controller, its remaining time in the air is given, and its current instruction todelay is set to zero.With Flight Appears and Flight Disappears we can simulate the cases where
ights for more or less mysterious reasons suddenly appears or disappears at randompositions in the arrivals
ow.op Flight Appearsa? : Aircraftc? : Controllerp? : Nrt? : Npre(a? 62 dom control ^ c? 2 ran
ow ^ p? � positions(c?))changes only fcontrol ; current pos ; remaining t ; delaygcontrol 0 = control � fa? 7! c?gcurrent pos 0 = current pos � fa? 7! p?gremaining t 0 = remaining t � fa? 7! rt?gdelay 0 = delay � fa? 7! 0gop Flight Disappearsa? : Aircraftpre(a? 2 dom control)changes only fcontrol ; current pos ; remaining t ; delay ; contact ;waitinggcontrol 0 = (fa?g �C control)current pos 0 = (fa?g �C current pos)remaining t 0 = (fa?g �C remaining t)delay 0 = (fa?g �C delay)contact 0 = (fa?g �C contact)waiting 0 = waiting n fa?gThese operations can be used to simulate failure in the radars or more rare (butstill possible) scenarios such as a
ight that all of a sudden with no reason turnsaround and leaves the system while approaching the airport.Communication between an aircraft and a controller is established and aban-donned with Establish Contact and Abandon Contact respectively.op Establish Contacta? : Aircraftc? : Controllerpre(a? 2 dom control ^ c? 2 ran
ow ^ (a?; c?) 62 contact)changes only fcontactgcontact 0 = contact [f(a?; c?)g 15

op Abandon Contacta? : Aircraftc? : Controllerpre(a? contact c?)changes only fcontactgcontact 0 = contact n f(a?; c?)gThe aircraft has to be visible to the system and the controller has to be part ofthe arrivals
ow for the communication to be established.The operation Tick is intended to be the default operation in the simulator.op Tickpre(waiting = ?)8 a : dom control �remaining t 0 = remaining t � fa 7! (remaining t(a)� 1)g ^if delay(a) = 0 thenif current pos(a) = 1 thenchanges only fremaining t ;waitingg ^waiting 0 = waiting [fagelse changes only fremaining t ; current posg ^current pos 0 = current pos � fa 7! (current pos(a) � 1)g�else if current pos(a) 2 delay pos(control(a)) thenchanges only fremaining t ; delayg ^delay 0 = delay � fa 7! (delay(a) � 1)gelse if current pos(a) = 1 thenchanges only fremaining t ;waitingg ^waiting 0 = waiting [fagelse changes only fremaining t ; current posg ^current pos 0 = current pos � fa 7! (current pos(a) � 1)g���The operation can only be activated if no aircraft are waiting to be handed over.This forces the controllers to perform the handover before time goes by.When Tick is activated all aircraft have their remaining time in the air decreasedby one time unit. Whether or not to move an aircraft is decided by dividing itscurrent state into six di�erent cases. Table 1 explains the di�erent cases in theoperation. 16

Instruction Current At delayto delay position position Actionno 1 - The aircraft is waiting to be handed over.The set waiting is updated.no > 1 - The aircraft moves one position forwards.current pos is updated.yes - yes The aircraft delays. The current instruc-tion to delay (delay) is decreased by 1 timeunit.yes 1 no The aircraft is waiting to be handed over.The set waiting is updated.yes > 1 no The aircraft moves one position forwards.current pos is updated.Table 1: The Six Cases of the Tick Operation4 DiscussionsIn this section we will discuss a few shortcomings in the model.4.1 HandoverThe main shortcoming in the speci�cation is how the handover is modelled. In ourmodel the handover can be described as follows:1. The simulator moves the aircraft into the last position (1) of a controller.2. If the aircraft does not have a current instruction to delay or the position it isoccupying disallows delay, the simulator will add the aircraft to the set waiting,meaning that it is waiting to be handed over.3. At some point the ATC system will perform the handover. The aircraft willbe moved to the �rst position within the next controller.The problem is that there is no guarantee when the ATC system will performthe actual handover. What happens if the controller refuses to hand over a
ight?In our model the
ight will stay in the same position and await the handover.The simulator will freeze until the handover is done (the Tick operation requiresthat no aircraft are waiting to be handed over to be activated).With our simulator the handovers have to be done automatically in order toperform a smooth continuous simulation. This is not a satisfactory solution as itdoes not correspond to what actually happens in the real world.Another model could have allowed the
ight to move on into the next controller'sairspace when it reaches the last position within an airspace. But what would the17

role of the handover be in that case? If the aircraft can move on without thecontroller's permission then the handover operation is super
uous in our model.4.2 TopologyAnother issue to discuss is the number of controllers in the arrivals
ow. In our modelwe require at least one controller to open an airport. A more realistic scenario wouldbe to demand a larger number of controllers as a minimum. The �ve controllers in�gure 1 (enroute, approach, director, aerodrome and ground) seem to be a reasonablenumber. Most airports have this structure.Nevertheless, we chose the minimum of one controller in order to come up with amore general and generic model. We want to be able to experiment with the numberof controllers and even try topologies that are very uncommon at present.5 ConclusionsTogether the two modules specify a domain model of an ATC region. We have mod-elled the ATC system including its controllers and modelled the aircraft's behaviouras a part of the simulator.Based on the model we can formulate requirements to the system. The require-ments model will be a formal derivation of the domain model.The objective is to develop an algorithm that calculates reasonable delays for allaircraft in the system in order to obtain an optimal
ow through the system and toensure that all safety requirements are satis�ed.Our model has an appropriate selection of operations to build testing scenariosfor that algorithm. We can test the algorithm on several di�erent scenarios:� normal operation, where aircraft arrive regularly;� less normal operation, where aircraft arrive in an unusual pattern;� the odd
ight appears in the middle of the arrivals
ow;� a
ight suddenly disappears from the system;� communication between controller and aircraft is not established as exspected;� contact between a controller and an aircraft is suddenly lost;� or any combination of the above.In order to perform a safety analysis on the handover process we would need tocome up with another model. We need to specify what the simulator should do withan aircraft that a controller has forgotten to hand over.
18

A Mathematical NotationThis section explains some of the mathematical notaions used in the speci�cations.The section is not a complete Sum glossary, it only contains notation used in thisparticular report.A.1 SetsLet S and T be sets; and t an expression.t 2 S Set membership.t 62 S Set non-membership.S � T Set inclusion.S \ T Set intersection.S [T Set union.S n T Set di�erence.PS Powerset: the set of all subsets of S .#S Size of a �nite set.A.2 NumbersZ The set of integers.N The set of natural numbers.N1 The set of strictly positive natural numbers.m : : n The set of integers between m and n inclusive.A.3 Binary RelationsA binary relation is modelled by a set of ordered pairs. Hence operators for sets canbe used on relations. Let X and Y be sets; x : X ; y : Y ; S be a subset of X ; T bea subset of Y ; and R a relation between X and Y .

19

X $ Y The set of relations between X and Y .x R y x is related by R to y .domR The domain of a relation R: the set of x components thatare related to some y .ranR The range of a relation R: the set of y components thatsome x is related to.S C R Domain restriction: the relation R with its domain restrictedto the set S .S �C R Domain exclusion: the relation R with the members of Sexcluded from its domain.R B T Range restriction: the relation R with its range restrictedto the set T .R �B T Range exclusion: the relation R with the members of Texcluded from its range.R1 �R2 Overriding.A.4 FunctionsAs functions are relations, all the operators de�ned above for relations also apply tofunctions. Let X and Y be sets.X 7! Y The set of partial functions from X to Y . Note that thedomain of a partial function does not necessarily containthe whole of X , but it may.X ! Y The set of total functions from X to Y .A.5 SequencesLet X be a set; and A a sequence with elements taken from X .iseq The set of �nite injective sequences whose elements aredrawn from X .#A The length of a sequence A.h i The empty sequence.set A The set of elements in the sequence A.head A The �rst element of a non-empty sequence A.last A The �nal element of a non-empty sequence A.
20

B ATC Speci�cationThis appendix provides the complete speci�cation of the ATC system encapsulatedin a module.ATC [Controller ; Aircraft]next ctrl :Controller � iseqController 7! Controller8 c1; c2 : Controller ;
w : iseqController �next ctrl(c1;
w) = c2,9 i : N � c1 =
w(i) ^ c2 =
w(i � 1)entrance ctrl :iseqController 7! Controller8
w : iseqController �entrance ctrl(
w) = last
wexit ctrl :iseqController 7! Controller8
w : iseqController �exit ctrl(
w) = head
wnumber in seq :Controller � iseqController 7! N8 c : Controller ;
w : iseqController ; n : N �number in seq(c;
w) = n ,
w(n) = csum of pos :N � (Controller 7! N) � iseqController 7! N8 i : N; psn : Controller 7! N;
w : iseqController �sum of pos(i ; psn;
w) =if i = 0 then 0 else psn(
w(i)) + sum of pos(i � 1; psn;
w)t to end :Controller � N � (Controller 7! N) � iseqController 7! N8 c : Controller ; p : N; psn : Controller 7! N;
w : iseqController �t to end(c; p; psn;
w) =p + sum of pos(number in seq(c;
w)� 1; psn;
w)
21

state
ow : iseqControllerpositions : Controller 7! N1delay pos : Controller 7! PN1capacity : Controller 7! Nlanding ctrl : Controllerlanding pos : N1control : Aircraft 7! Controllercurrent pos : Aircraft 7! N1remaining t : Aircraft 7! Ndelay : Aircraft 7! Ncontact : Aircraft $ Controllerwaiting : PAircraftopen : Bt to landing : Aircraft 7! Zmax delay : Aircraft 7! Ndom control = dom current posdom control = dom remaining tdom control = dom delayran control � ran
owdom contact � dom controlran contact � ran
owwaiting � dom control8 a : dom control � current pos(a) � positions(control(a))8 c : ran
ow �c 2 dom positions ^ c 2 dom delay pos ^ c 2 dom capacity8 c : ran
ow � 8 p : delay pos(c) � p � positions(c)
ow 6= h i)landing ctrl 2 ran
ow ^landing pos � positions(landing ctrl)8 a : dom control � a 2 waiting) current pos(a) = 1open)
ow 6= h i8 a : dom control � t to landing(a) =t to end(control(a); current pos(a); positions ;
ow)�t to end(landing ctrl ; landing pos ; positions ;
ow)8 a : dom control � max delay(a) =remaining t(a)� t to landing(a)
22

init
ow 0 = h ipositions 0 = ?delay pos 0 = ?capacity 0 = ?control 0 = ?current pos 0 = ?remaining t 0 = ?delay 0 = ?contact 0 = ?waiting 0 = ?: open 0op Reset Flowcs? : iseqControllerc? : Controllerp? : Npre(control = ? ^ c? 2 ran cs? ^ p? � positions(c?))changes only f
ow ; landing ctrl ; landing posg
ow 0 = cs?landing ctrl 0 = c?landing pos 0 = p?op Reset Positionsc? : Controllern? : Npre(c? 62 ran control)changes only fpositionsgpositions 0 = positions � fc? 7! n?gop Reset Capacityc? : Controllern? : Nchanges only fcapacitygcapacity 0 = capacity � fc? 7! n?g
23

op Reset Delay Posc? : Controllerps? : PNpre(8 p : ps? � p � positions(c?))changes only fdelay posgdelay pos 0 = delay pos � fc? 7! ps?gop Add Delay Posc? : Controllerp? : N1pre(p? 62 delay pos(c?) ^ p? � positions(c?))changes only fdelay posgdelay pos 0 = delay pos � fc? 7! (delay pos(c?) [fp?g)gop Delete Delay Posc? : Controllerp? : N1pre(p? 2 delay pos(c?))changes only fdelay posgdelay pos 0 = delay pos � fc? 7! (delay pos(c?) n fp?g)gop Handover Flighta? : Aircraftpre(a? 2 waiting ^ control(a?) 6= exit ctrl(
ow))changes only fcontrol ; current pos ;waitinggcontrol 0 = control�fa? 7! next ctrl(control(a?);
ow)gcurrent pos 0 = current pos�fa? 7! positions(next ctrl(control(a?);
ow))gwaiting 0 = waiting n fa?g

24

op Remove Flighta? : Aircraftpre(a? 2 waiting ^ control(a?) = exit ctrl(
ow))changes only fcontrol ; current pos ; remaining t ; delay ; contact ;waitinggcontrol 0 = (fa?g �C control)current pos 0 = (fa?g �C current pos)remaining t 0 = (fa?g �C remaining t)delay 0 = (fa?g �C delay)contact 0 = (fa?g �C contact)waiting 0 = waiting n fa?gop Delay Flighta? : Aircraftt? : Npre(a? 2 dom control ^ a? contact control(a?))changes only fdelay ;waitinggdelay 0 = delay � fa? 7! t?gwaiting 0 = waiting n fa?gop Open Entrancepre(: open)changes only fopengopen 0op Close Entrancepre(open)changes only fopeng: open 0

25

C Simulator Speci�cationThis appendix provides the complete speci�cation of the simulator encapsulated ina module.Simulatorimport ATCstateATC :stateinitATC :initop Add Flighta? : Aircraftrt? : Npre(open ^ a? 62 dom control)changes only fcontrol ; current pos ; remaining t ; delaygcontrol 0 = control � fa? 7! entrance ctrl(
ow)gcurrent pos 0 = currrent pos � fa? 7! positions(entrance ctrl(
ow))gremaining t 0 = remaining t � fa? 7! rt?gdelay 0 = delay � fa? 7! 0gop Flight Appearsa? : Aircraftc? : Controllerp? : Nrt? : Npre(a? 62 dom control ^ c? 2 ran
ow ^ p? � positions(c?))changes only fcontrol ; current pos ; remaining t ; delaygcontrol 0 = control � fa? 7! c?gcurrent pos 0 = current pos � fa? 7! p?gremaining t 0 = remaining t � fa? 7! rt?gdelay 0 = delay � fa? 7! 0g

26

op Flight Disappearsa? : Aircraftpre(a? 2 dom control)changes only fcontrol ; current pos ; remaining t ; delay ; contact ;waitinggcontrol 0 = (fa?g �C control)current pos 0 = (fa?g �C current pos)remaining t 0 = (fa?g �C remaining t)delay 0 = (fa?g �C delay)contact 0 = (fa?g �C contact)waiting 0 = waiting n fa?gop Establish Contacta? : Aircraftc? : Controllerpre(a? 2 dom control ^ c? 2 ran
ow ^ (a?; c?) 62 contact)changes only fcontactgcontact 0 = contact [f(a?; c?)gop Abandon Contacta? : Aircraftc? : Controllerpre(a? contact c?)changes only fcontactgcontact 0 = contact n f(a?; c?)g

27

op Tickpre(waiting = ?)8 a : dom control �remaining t 0 = remaining t � fa 7! (remaining t(a)� 1)g ^if delay(a) = 0 thenif current pos(a) = 1 thenchanges only fremaining t ;waitingg ^waiting 0 = waiting [fagelse changes only fremaining t ; current posg ^current pos 0 = current pos � fa 7! (current pos(a) � 1)g�else if current pos(a) 2 delay pos(control(a)) thenchanges only fremaining t ; delayg ^delay 0 = delay � fa 7! (delay(a) � 1)gelse if current pos(a) = 1 thenchanges only fremaining t ;waitingg ^waiting 0 = waiting [fagelse changes only fremaining t ; current posg ^current pos 0 = current pos � fa 7! (current pos(a) � 1)g���

28

References[1] Brenton Atchison, Peter Lindsay, and David Tombs. Using Formal Methods forSoftware Safety Assurance. Software Veri�cation Research Centre, The Univer-sity of Queensland, 1999.[2] Juan C. Bicarregui, John S. Fitzgerald, Peter A. Lindsay, Richard Moore, andBrian Ritchie. Proof in VDM: A Practitioner's Guide. Springer-Verlag, 1994.[3] The Cogito Group. The Sum Reference Manual. Software Veri�cation ResearchCentre, 1997.[4] Daniel Hazel, Paul Strooper, and Owen Traynor. Requirements Engineeringand Veri�cation using Speci�cation Animation. Software Veri�cation ResearchCentre, The University of Queensland, 1998.[5] Michael S. Nolan. Fundamentals of Air Tra�c Control. Wadsworth PublishingCompany, 1994.[6] Ben Potter, Jane Sinclair, and David Till. An Introduction to Formal Speci�ca-tion and Z. Prentice Hall, 1996.[7] J. M. Spivey. The Z Notation. Prentice Hall, 1989.

29

