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Abstract

This report presents a case study of air traffic control (ATC). A formal
specification of an ATC system is developed. The ATC model represents the
air traffic controllers and the actual ATC system as a whole.

A simulator is specified as an extension to the ATC specification. The
simulator comprises operations that are external to the ATC system such as
flight movements, etc.
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1 Introduction

In this report we present a formal model of air traffic control (ATC). The model is
not an attempt to give a complete specification of an ATC system.

The model covers aspects that are relevant for our particular purpose: to build
and simulate an ATC system which can be used for animation in order to perform
safety analysis on an algorithm that calculates reasonable delays for all the aircraft
in the system.

This report merely presents the Sum specifications of the ATC system and a
purpose built simulator.

2 The Air Traffic Control System

In this section we first describe the ATC system in general. Then we describe the
operational concept of our simplified model of the system.

2.1 Description

In general terms, an ATC system together with the air traffic controllers who run it
are responsible for directing aircraft safely through the respective ATC region. The
main objective is to make sure that all aircraft are separated in time and spatial
location.

In particular, we consider arrivals to an airport. The ATC region consists of a
sequence of airspaces beginning where the aircraft start to approach the airport and
ending where the aircraft have landed and is located at a gate.

All airspaces in the sequence has exactly one controller assigned to it. A con-
troller is responsible for all the aircraft in the airspace that he/she is assigned to.

Figure 1 shows a typical flow chart of the arrivals. An aircraft goes through sev-
eral states as it approaches an airport. At all times a particular controller (enroute,
approach, etc.) is responsible for directing the aircraft. We will refer to this flow as
the arrivals flow.
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Figure 1: Arrivals Flow Chart

There is communication between the aircraft and the controller at certain points
in the arrivals flow (in the flow chart communication is represented by an arrow
between a controller and an aircraft state). The controllers call the aircraft to give
them speed adjustments, tell the pilot to delay the flight or tell the pilot to contact
the next controller in a handover. The pilots call the controllers mainly to announce
their current position or to confirm instructions.

2.2 Operational Concept

In this section we will describe our interpretation of an ATC system. Our specifica-
tions will not cover all aspects of an ATC system. However, it will be comprehensive
enough to model a simple system that can be used to simulate aircraft going through
the arrivals flow.

We model the arrivals flow by having a sequence of controllers. We do not
distinguish between controllers and their airspaces. When an aircraft is located in
an airspace we simply say that the aircraft is at the respective controller.

Within each controller we have a fixed number of positions flights can occupy.
The positions do not represent spatial locations but are positions in time. The num-
ber of a particular position represents the number of time units till next handover.

We do not monitor the spatial locations of aircraft. We assume that the spatial
separation is taken of. We use the abstraction of modelling positions in time rather
than spatial positions because it really is what we are interested in when building
the simulator.

Strictly the model should take the spatial separation into account. However,
spatial separation is not relevant for our particular purpose of the simulation, hence
we have made the abstraction that we merely consider positions in time and assume
that parts of the ATC system we have not specified handle the spatial separation.

Being that close to the airport (as we are in the arrivals flow) the aircraft will
approach the airport following a nearly one-dimensional path. Hence separation in
time normally implies spatial separation too. However, we may encounter situations
where flights are overtaking each other. In those cases we assume that the required
spatial separation is fully satisfied.
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Figure 2: Arrivals Flow Chart as Modelled

The simple arrivals flow is shown in figure 2. The aircraft states (see figure 1)
are not relevant to our model. At a certain position in the flow the aircraft will have
landed. This position is usually located at the aerodrome controller.

In our model, under normal operation, an aircraft will arrive at the first controller
(the enroute controller), move through all the positions, and finally be removed from
the system at the last position at the last controller (the ground controller). At this
point the aircraft will be located at a gate and will no longer be of interest.

We will refer to the basic setup in figure 2 as the topology of the system. The
topology defines the sequence of controllers, the number of positions, and determines
the landing position.

Our specification will consist of two models. As indicated in figure 3, one module
specifies the ATC system and the other models the simulator. The model of the ATC
system covers the controllers’ behaviour and actions performed by the system itself.
The simulator models the behaviour of aircraft.

| Simulator

Aircraft

\ ATC System .

. Controllers System ,

Figure 3: Specification Structure



3 Formal Specification

The models of the ATC system and the simulator are formally specified using the
Sum specification language. The next section briefly describes Sum.

The following two sections give a formal presentation of the two models. Each
model is presented gradually beginning with the state variables and the invariants.
Essential concepts in the model are related to concepts in our domain as presented
in the previous section.

3.1 The Sum Language

Sum [3] is a variant of the well known Z specification language. While closely related
to Z, Sum extends Z to facilitate the production of modular specifications and ease
specification readability. Relevant to this case study, Sum particularly provides
facilities at the specification level for:

e Modular and parameterised specifications. Modules may be imported, giving
visibility to the referenced entities.

e Distinguished state machines represented by modules through the use of pre-
defined state, init and schema schemas:

— state schemas represent the state encapsulated by the module.
— 4nit schemas initialise the respective state.

— schema schemas capture state transitions.
e Explicit preconditions in schemas by using the prefix pre.

In this particular case study the specification comprises two modules, the ATC
system and the simulator. The simulator module will import the ATC module.

3.2 The ATC system

Recall, that in our model the ATC system represents both the actual system and
the controllers.



3.2.1 State and Initialisation

The state of the ATC system and its respective invariant are specified as follows:

___state

flow : iseq Controller

positions : Controller + Ny
delay_pos : Controller + PNy
capacity : Controller - N
landing_ctrl : Controller
landing_pos : Ny

control : Aircraft - Controller
current_pos : Aircraft + Ny
remaining_t : Aircraft + N
delay : Aircraft +» N

contact : Aircraft <» Controller
waiting : P Aircraft

open : B

t_to_landing : Aircraft + 7Z
maz_delay : Aircraft +» N

dom control = dom current_pos
dom control = dom remaining_t
dom control = dom delay

ran control C ran flow

dom contact C dom control

ran contact C ran flow

waiting C dom control

Y a : dom control & current_pos(a) < positions(control(a))

V¢ :ran flow e
¢ € dom positions A ¢ € dom delay_pos A ¢ € dom capacity

Ve :ranflow e Vp : delay_pos(c) e p < positions(c)
flow # () =

landing_ctrl € ran flow A

landing_pos < positions(landing_ctrl)
Y a : dom control & a € waiting = current_pos(a) = 1
open = flow # ()
Y a : dom control e t_to_landing(a) =

t_to_end(control(a), current_pos(a), positions, flow)—
t_to_end(landing_ctrl, landing_pos, positions, flow)

Y a : dom control e maz_delay(a) =
remaining_t(a) — t_to_landing(a)




The variables flow and positions represent a sequence of controllers and the
number of positions within each controller (recall, that a position is the time till next
handover). Together with landing_ctrl and landing_pos, which specify the controller
and the position within that particular controller the actual landing takes place,
they define the topology of the arrivals flow.

The first controller in the sequence is the last one an aircraft encounters under
normal operation. The positions within a controller are numbered from 1 to n, where
n is the total number of positions. Position 1 is the last position a flight occupies
within a controller when passing through that particular controllers airspace.

Those four variables could just as well have been specified as constants as that
is what they basically would be under normal circumstances. When simulating
scenarios from the real world we would never change those variables. We chose to
put them among the state variables in order to allow a wider range of experiments
with the system. We will have the opportunity to run the same scenarios on different
topologies. For example, we can systematically analyse how a different number of
controllers would handle a particular scenario.
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flow = (ground, aerodrome, director, approach, enroute)

positions(ground) = 6
positions(aerodrome) = 6
positions(director) = 9

positions(approach) = 6

control(fi) = enroute
control(fo) = approach
control(fs) = director

control(fs) = aerodrome

t_to_landing(f1) = 22
t_to_landing(f2) = 13
t_to_landing(f3) = 9

t_to_landing(fs) = —2

positions(enroute) = 6

current_pos(f;) = 4 waiting = {fo, fa}

landing-ctrl = aerodrome current_pos(fo) =1

landing_pos = 3 current_pos(fs) =6

current_pos(fs) =1

Figure 4: Instantiation of State Variables

The variable delay_pos specifies for each controller, a set of positions where it is
possible to delay a flight. These positions represent some sort of holding patterns.

The capacity of a controller is specified by capacity. There is a limit on how
many flights a controller can handle. We allow capacity and delay_pos to be changed
during normal operation due to weather conditions, etc.

The current position of an aircraft is represented by control and current_pos.
The first variable gives us the controller and the second the position within that
controller.



The relation contact represents whether communication has been established
between a controller and an aircraft. Notice, that control gives the controller to
whom the aircraft is visible, which does not necessarily mean that the controller can
communicate with the respective aircraft.

The variable remaining_t is the remaining time an aircraft can stay in the air
due to fuel limitations, etc.

The variable delay specifies for each aircraft the current instructions to delay.
Zero means that none is given, any other number denotes how many time units a
flight should delay as soon as it reaches a position where delay is possible.

The set waiting is the set of aircrafts waiting to be handed over. They have
reached the last position (1) within a controller’s airspace and await the controller’s
handover.

The boolean variable open tells us whether the airport is open or closed. When
an airport is closed no aircraft can be added to the system. But the system will still
handle the aircraft that were already in the system when the airport was closed.

The variables t_to_landing and maz_delay are secondary variables (their values
are derived from one or more primary state variables). Respectively, for each aircraft
in the system they give the number of time units from the current position to the
landing and the maximum possible delay the aircraft can be given.

Figure 4 shows an example of how some of the state variables are used. There
are four flights in the system.

We introduce a number of auxiliary functions in order to ease the specification:

next_ctrl :
Controller x iseq Controller + Controller

Vcl,c2: Controller; flw : iseq Controller e
next_ctri(cl, flw) = 2 &
Fi:Necl=flw(i)Ac2=flw(i—1)

entrance_ctrl :
iseq Controller - Controller

Y flw : iseq Controller e
entrance_ctrl(flw) = last flw

exit_ctrl :
iseq Controller -+ Controller

Y flw : iseq Controller e
exit_ctrl(flw) = head flw

number_in_seq :
Controller x iseq Controller + N

Y ¢ : Controller; flw :iseq Controller; n: N e

number_in_seq(c, flw) = n & flw(n) = ¢



sum_of _pos :
N x (Controller + N) x iseq Controller -+ N

Vi:N; psn: Controller » N; flw : iseq Controller e

sum—of _pos(i, psn, flw) =
if i =0 then 0 else psn(flw(i)) + sum—_of_pos(i — 1, psn, flw)

t_to_end :
Controller x N x (Controller + N) x iseq Controller + N

Y ¢ : Controller; p : N; psn: Controller » N; flw : iseq Controller e
t_to_end(c, p, psn, flw) =

p + sum_of _pos(number_in_seq(c, flw) — 1, psn, flw)

With next_ctrl, entrance_ctrl and exit_ctrl we can get the next controller in the
flow, the first controller, and the last controller, respectively.

number_in_seq tells us what number in the flow a controller is. From an arbitrary
position in the flow we can get the distance (in time) to the end of the flow with
t_to_end.

All the five auxiliary functions are partial. This implies that there are a lot of
cases where we cannot predict what the functions will return when applied to certain
input. However, our model will only pass input to these functions that gives sensible
output (e.g. we will never ask for the next controller given the last controller, we will
never ask for the entrance controller of an empty sequence, etc.). In order words,
the way the functions are used in the specification ensures deterministic behaviour.
Practically the preconditions of the operations in the model ensure that the auxiliary
functions will always return deterministic results.

The state invariant puts restrictions on the system state. The essential relation-
ships between the objects in the system state are:

e each aircraft that is visible to a controller has a current position within that
controller, its remaining time in the air is known, and it has a current instruc-
tion to delay (possibly zero);

e aircraft can only be visible to controllers within the arrivals flow;

e controllers can only have communication with aircraft within the system;
e only aircraft located within the system can be waiting to be handed over;
e aircraft can only occupy positions that actually exist;

e for all controllers in the arrivals flow we know their number of positions, their
set of positions where delay is possible, and their capacity;

e the set of delay positions for a controller has to be actual positions within that
controller;



e an arrivals flow has to have a known landing controller and a landing position;
e an aircraft awaiting handover (or removal) is in position 1 of some controller;
e an open airport requires at least one controller;

e the secondary variable t_to_landing is specified as the difference between the
aircraft’s distance from last position in the flow and the landing position’s
distance from the last position;

e the secondary variable maz_delay is specified as the difference between the
aircraft’s remaining time in the air and its total time to landing.

Notice, that we did not demand the number of aircraft within a controller to
stay within the capacity limit. This specification should be interpreted as a domain
model. In such a specification we model all possible behaviours. In the real world
the capacity can be exceeded, naturally it should be in the domain model (specifying
that the capacity limit can not be exceeded is a (safety) requirement to the system
and is not a part of the domain model).

Initially no topology is set up, there are no aircraft in the system, no current
instructions to delay and the airport is closed.

—_nit
flow' = ()

positions' = &

delay_pos' = &
capacity’ = @
control' = &
current_pos' = &
remaining_t' = &
delay’' = @
contact' = &
waiting' = @

- open’

3.2.2 Operations

The topology of the arrivals flow is reset with the two operations Reset_Flow and
Reset_Positions.

10



landing controller and position.

—_op Reset_Flow

cs? : iseq Controller
c? : Controller
p?:N

pre(control = @ A ¢? € rancs? A p? < positions(c?))
changes_only {flow, landing_ctrl, landing_pos}

flow’ = ¢s?

landing_ctrl' = ¢?

landing_pos' = p?

__op Reset_Positions

¢? : Controller
n?: N

pre(c? & ran control)
changes_only {positions}

positions' = positions & {c? — n?}

With Reset_Flow we can define the sequence of controllers and the compulsory
With Reset_Positions we define the number of
positions within a controller. As stated in the invariant, the landing controller and
position have to exist for any non-empty sequence of controllers.

The arrivals flow cannot be reset whilst aircraft are located in the system. Simi-
larly the number of positions can not be reset for a controller if there are one or more
aircraft located within that particular controller’s airspace. Under normal operation

we would not wish to reset these variables, anyway.

With Reset_Capacity we can reset the current capacity of a controller. There are

no restrictions on when that can be done.

—_op Reset_Capacity

¢? : Controller
n?: N

changes_only { capacity}
capacity’ = capacity & {c? — n?}

The operation Reset_Delay_Pos is used to reset the set of positions within a
controller that allow delay. Add_Delay_Pos and Delete_Delay_Pos are used to alter

the set.
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—_op Reset_Delay_Pos

¢? : Controller
ps? : PN

pre(¥p : ps? e p < positions(c?))
changes_only {delay_pos}

delay_pos' = delay_pos & {c? — ps?}

—op Add_Delay_Pos
¢? : Controller
p?7: N

pre(p? & delay_pos(c?) A p? < positions(c?))
changes_only {delay_pos}
delay_pos' = delay_pos & {c? — (delay_pos(c?) U {p?})}

__op Delete_Delay_Pos
c? : Controller
p? . N1

pre(p? € delay_pos(c?))
changes_only {delay_pos}
delay_pos' = delay_pos @ {c? — (delay_pos(c?) \ {p?})}

The operation Handover_Flight hands over an aircraft from its current controller
to the next controller in the sequence. The aircraft has to be waiting for the handover
(be in position 1 and not currently on hold).

An aircraft that reaches position 1 within a controller is seen as an external
event, thus it will be a task of the simulator to extend the set waiting with the
aircraft.

__op Handover_Flight
a? : Aircraft

pre(a? € waiting A control(a?) # exit_ctrl(flow))
changes_only { control, current_pos, waiting}
control’ = control®

{a? — next_ctrl(control(a?), flow)}
current_pos' = current_pos®

{a? — positions(next_ctrl(control(a?), flow))}
waiting' = waiting \ {a?}

It is not possible for an aircraft to be handed over from the last controller (ground)
in the arrivals flow. In that case we use the operation Remowve_Flight to remove the
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aircraft from the system, meaning that the aircraft has been located at a gate and is
no longer of interest in the arrivals flow. The latter operation can be seen as special
case of the previous one.

—_op Remove_Flight
a? : Aircraft

pre(a? € waiting A control(a?) = exit_ctrl(flow))

changes_only { control, current_pos, remaining_t, delay, contact, waiting}
control' = ({a?} g control)

current_pos' = ({a?} < current_pos)

remaining_t' = ({a?} <9 remaining_t)

delay’ = ({a?} < delay)

contact’ = ({a?} <9 contact)

waiting' = waiting \ {a?}

When a controller instructs a flight to delay we use the operation Delay_Flight.
As input we give the aircraft and the number of time units the aircraft is to be
delayed.

—op Delay_Flight
a? : Aircraft
t?7:N

pre(a? € dom control A a? contact control(a?))
changes_only {delay, waiting }

delay’ = delay @ {a? — 17}

waiting' = waiting \ {a?}

Notice, that this operation represents an instruction to delay, that does not mean
that the aircraft actually will delay. The aircraft might not currently be in a position
that allows delay. However, the aircraft will still receive the instruction and keep it
until a new one is given.

If the flight previously was waiting to be handed over it will be removed from
the set waiting (if its current position does not allow delay the simulator will put it
back in waiting).

Instructions to delay can only be given if the aircraft is visible to a controller
and communication is established between the aircraft and its current controller.

Finally we introduce two operations Open_Entrance and Close_Entrance to open
and close the airport respectively.

op Open_Entrance
pre(— open)
changes_only {open}

open’
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op Close_Entrance
pre(open)
changes_only {open}

- open’

A closed airport cannot receive any more aircraft to its arrivals flow. However,
aircraft that are already in the system when the airport is closed will still be handled
as usual.

3.3 The Simulator

The simulator module imports the ATC module, meaning that the simulator in terms
of the specification is an extension to the ATC system. We model the behaviour of
aircraft including communication with these.

3.3.1 State and Initialisation

No additional variables are introduced in the simulator.

___state
ATC .state

___init
ATC .init

3.3.2 Operations

The operation Add_Flight adds a flight to the system. This simulates the normal
case where an aircraft arrives to the airport and enters the arrivals flow. Flights can
be added only when the airport is open.

—_op Add_Flight
a? : Aircraft
rt? : N

pre(open A a? ¢ dom control)

changes_only { control, current_pos, remaining_t, delay }

control' = control & {a? — entrance_ctrl(flow)}

current_pos' = currrent_pos @® {a? — positions(entrance_ctrl(flow))}
remaining_t' = remaining_t ® {a? — rt?}

delay’ = delay @ {a? — 0}

When a flight is added to the system it becomes visible to the first controller in
the arrivals flow, its current position is set to the first position in the flow within
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that controller, its remaining time in the air is given, and its current instruction to
delay is set to zero.

With Flight_Appears and Flight_Disappears we can simulate the cases where
flights for more or less mysterious reasons suddenly appears or disappears at random
positions in the arrivals flow.

—_op Flight_Appears
a? : Aircraft

c? : Controller
p?:N

rt? : N

-~

pre(a? ¢ dom control A ¢? € ran flow A p? < positions(c?))
changes_only { control, current_pos, remaining_t, delay }
control’ = control & {a? — c?}

current_pos' = current_pos ® {a? — p?}

remaining_t' = remaining_t ® {a? — rt?}

delay’ = delay ® {a? — 0}

__op Flight_Disappears
a? : Aircraft

pre(a? € dom control)

changes_only { control, current_pos, remaining_t, delay, contact, waiting }
control' = ({a?} g control)

current_pos' = ({a?} < current_pos)

remaining_t' = ({a?} <9 remaining_t)

delay' = ({a?} < delay)

contact’ = ({a?} <9 contact)

waiting' = waiting \ {a?}

These operations can be used to simulate failure in the radars or more rare (but
still possible) scenarios such as a flight that all of a sudden with no reason turns
around and leaves the system while approaching the airport.

Communication between an aircraft and a controller is established and aban-
donned with FEstablish_Contact and Abandon_Contact respectively.

___op FEstablish_Contact
a? : Aircraft

¢? : Controller

pre(a? € dom control A ¢? € ran flow A (a?, c?) € contact)
changes_only { contact}
contact’ = contact U {(a?,c?)}
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—_op Abandon_Contact
a? : Aircraft

c? : Controller

pre(a? contact c?)
changes_only { contact}
contact’ = contact \ {(a?, c?)}

The aircraft has to be visible to the system and the controller has to be part of
the arrivals flow for the communication to be established.
The operation Tick is intended to be the default operation in the simulator.

—op Tick

pre(waiting = &)
YV a : dom control e
remaining_t' = remaining_t ® {a — (remaining_t(a) — 1)} A
if delay(a) =0 then
if current_pos(a) =1 then
changes_only {remaining_t, waiting} A
waiting' = waiting U {a}
else
changes_only {remaining_t, current_pos} A
current_pos' = current_pos ® {a — (current_pos(a) — 1)}

else
if current_pos(a) € delay_pos(control(a)) then
changes_only {remaining_t, delay} A
delay’ = delay ® {a — (delay(a) — 1)}
else
if current_pos(a) =1 then
changes_only {remaining_t, waiting} A
waiting' = waiting U {a}
else
changes_only {remaining_t, current_pos} A
current_pos' = current_pos ® {a — (current_pos(a) — 1)}

The operation can only be activated if no aircraft are waiting to be handed over.
This forces the controllers to perform the handover before time goes by.

When Tick is activated all aircraft have their remaining time in the air decreased
by one time unit. Whether or not to move an aircraft is decided by dividing its
current state into six different cases. Table 1 explains the different cases in the

operation.
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Instruction | Current | At delay
to delay | position | position | Action

no 1 - The aircraft is waiting to be handed over.
The set waiting is updated.

no >1 - The aircraft moves one position forwards.
current_pos is updated.

yes - yes The aircraft delays. The current instruc-
tion to delay (delay) is decreased by 1 time
unit.

yes 1 no The aircraft is waiting to be handed over.
The set waiting is updated.

yes >1 no The aircraft moves one position forwards.
current_pos is updated.

Table 1: The Six Cases of the Tick Operation

4 Discussions

In this section we will discuss a few shortcomings in the model.

4.1 Handover

The main shortcoming in the specification is how the handover is modelled. In our
model the handover can be described as follows:

1. The simulator moves the aircraft into the last position (1) of a controller.

2. If the aircraft does not have a current instruction to delay or the position it is
occupying disallows delay, the simulator will add the aircraft to the set waiting,
meaning that it is waiting to be handed over.

3. At some point the ATC system will perform the handover. The aircraft will
be moved to the first position within the next controller.

The problem is that there is no guarantee when the ATC system will perform
the actual handover. What happens if the controller refuses to hand over a flight?
In our model the flight will stay in the same position and await the handover.

The simulator will freeze until the handover is done (the Tick operation requires
that no aircraft are waiting to be handed over to be activated).

With our simulator the handovers have to be done automatically in order to
perform a smooth continuous simulation. This is not a satisfactory solution as it
does not correspond to what actually happens in the real world.

Another model could have allowed the flight to move on into the next controller’s
airspace when it reaches the last position within an airspace. But what would the
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role of the handover be in that case? If the aircraft can move on without the
controller’s permission then the handover operation is superfluous in our model.

4.2 Topology

Another issue to discuss is the number of controllers in the arrivals flow. In our model
we require at least one controller to open an airport. A more realistic scenario would
be to demand a larger number of controllers as a minimum. The five controllers in
figure 1 (enroute, approach, director, aerodrome and ground) seem to be a reasonable
number. Most airports have this structure.

Nevertheless, we chose the minimum of one controller in order to come up with a
more general and generic model. We want to be able to experiment with the number
of controllers and even try topologies that are very uncommon at present.

5 Conclusions

Together the two modules specify a domain model of an ATC region. We have mod-
elled the ATC system including its controllers and modelled the aircraft’s behaviour
as a part of the simulator.

Based on the model we can formulate requirements to the system. The require-
ments model will be a formal derivation of the domain model.

The objective is to develop an algorithm that calculates reasonable delays for all
aircraft in the system in order to obtain an optimal flow through the system and to
ensure that all safety requirements are satisfied.

Our model has an appropriate selection of operations to build testing scenarios
for that algorithm. We can test the algorithm on several different scenarios:

e normal operation, where aircraft arrive regularly;

e less normal operation, where aircraft arrive in an unusual pattern;

e the odd flight appears in the middle of the arrivals flow;

e a flight suddenly disappears from the system;

e communication between controller and aircraft is not established as exspected;
e contact between a controller and an aircraft is suddenly lost;

e or any combination of the above.

In order to perform a safety analysis on the handover process we would need to
come up with another model. We need to specify what the simulator should do with
an aircraft that a controller has forgotten to hand over.
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A Mathematical Notation

This section explains some of the mathematical notaions used in the specifications.
The section is not a complete Sum glossary, it only contains notation used in this
particular report.

A.1 Sets

Let S and T be sets; and ¢ an expression.

tes Set membership.

tZS Set non-membership.

SCT Set inclusion.

SNT Set intersection.

SUuT Set union.

S\T Set difference.

PS Powerset: the set of all subsets of S.
#S Size of a finite set.

A.2 Numbers

Z The set of integers.

N The set of natural numbers.

N; The set of strictly positive natural numbers.
m..n The set of integers between m and n inclusive.

A.3 Binary Relations

A binary relation is modelled by a set of ordered pairs. Hence operators for sets can
be used on relations. Let X and Y be sets; z : X; y: Y; S be a subset of X; T be
a subset of Y; and R a relation between X and Y.

19



XY The set of relations between X and Y.
xRy z is related by R to y.

domR The domain of a relation R: the set of £ components that
are related to some y.

ran R The range of a relation R: the set of y components that
some z is related to.

S <R Domain restriction: the relation R with its domain restricted
to the set S.
S<R Domain exclusion: the relation R with the members of S

excluded from its domain.

RpT Range restriction: the relation R with its range restricted
to the set T.
ReT Range exclusion: the relation R with the members of T

excluded from its range.

R ® R- Overriding,.

A.4 Functions

As functions are relations, all the operators defined above for relations also apply to
functions. Let X and Y be sets.

X+Y The set of partial functions from X to Y. Note that the
domain of a partial function does not necessarily contain
the whole of X, but it may.

X—=Y The set of total functions from X to Y.

A.5 Sequences

Let X be a set; and A a sequence with elements taken from X.

iseq The set of finite injective sequences whose elements are
drawn from X.

#A The length of a sequence A.

() The empty sequence.

set A The set of elements in the sequence A.

head A The first element of a non-empty sequence A.

last A The final element of a non-empty sequence A.
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B ATC Specification

This appendix provides the complete specification of the ATC system encapsulated
in a module.

—_ ATC|[Controller; Aircraft]

next_ctrl :
Controller x iseq Controller + Controller

Vel, c2: Controller; flw : iseq Controller o
next_ctrl(cl, flw) = 2 &
Ji:Necl=Fflw(i) A c2= flw(i —1)

entrance_ctrl :
iseq Controller + Controller

Y flw : iseq Controller o
entrance_ctrl(flw) = last flw

exit_ctrl :
iseq Controller + Controller

Y flw : iseq Controller o
exit_ctrl(flw) = head flw

number_in_seq :
Controller x iseq Controller + N

V ¢ : Controller; flw :iseq Controller; n: N e
number_in_seq(c, flw) = n < flw(n) = ¢

sum_of _pos :
N x (Controller + N) x iseq Controller -+ N

Vi:N; psn: Controller + N; flw : iseq Controller e
sum—of _pos (i, psn, flw) =
if 1 =0 then 0 else psn(flw(i)) + sum_of _pos(i — 1, psn, flw)

t_to_end :
Controller x N x (Controller + N) x iseq Controller + N

V¢ : Controller; p: N; psn : Controller + N; flw : iseq Controller e
t_to_end(c, p, psn, flw) =

p + sum_of _pos(number_in_seq(c, flw) — 1, psn, flw)

21



__state

flow : iseq Controller

positions : Controller + Ny
delay_pos : Controller + PN
capacity : Controller » N
landing_ctrl : Controller
landing_pos : Ny

control : Aircraft + Controller
current_pos : Aircraft + Ny
remaining_t : Aircraft + N
delay : Aircraft + N

contact : Aircraft < Controller
waiting : P Aircraft

open : B

t_to_landing : Aircraft -+ 7,
maz_delay : Aircraft +» N

dom control = dom current_pos
dom control = dom remaining_t
dom control = dom delay

ran control C ran flow

dom contact C dom control

ran contact C ran flow

waiting C dom control

Y a : dom control e current_pos(a) < positions(control(a))

V¢ :ran flow e
¢ € dom positions N ¢ € dom delay_pos A ¢ € dom capacity
V¢ :ran flow ¢ Vp : delay_pos(c) e p < positions(c)
flow # () =
landing_ctrl € ran flow A
landing_pos < positions(landing_ctrl)
Y a : dom control e a € waiting = current_pos(a) = 1
open = flow # ()
Y a : dom control e t_to_landing(a) =

t_to_end(control(a), current_pos(a), positions, flow)—
t_to_end(landing_ctrl, landing_pos, positions, flow)

Y a : dom control e maz_delay(a) =
remaining_t(a) — t_to_landing(a)
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__init

flow" = ()
positions' = &
delay_pos' = &
capacity’ = @
control' = &
current_pos' = &
remaining_t' = &
delay’ = &
contact' = &
waiting' = @

- open’

—_op Reset_Flow
cs? :iseq Controller
c? : Controller
p?:N

pre(control = @ A ¢? € ran ¢s? A p? < positions(c?))
changes_only {flow, landing_ctrl, landing_pos}
flow' = cs?
landing_ctrl’ = ¢?
landing_pos' = p?

__op Reset_Positions
c? : Controller
n?: N

pre(c? ¢ ran control)
changes_only {positions}
positions' = positions ® {c? — n?}

—_op Reset_Capacity
c? : Controller
n?: N

changes_only { capacity}
capacity’ = capacity ® {c? — n?}
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—_op Reset_Delay_Pos
c? : Controller
ps? : PN

pre(Vp : ps? e p < positions(c?))
changes_only {delay_pos}
delay_pos' = delay_pos ® {c? — ps?}

__op Add_Delay_Pos

c? : Controller
p? : Nl

pre(p? & delay_pos(c?) A p? < positions(c?))
changes_only {delay_pos}
delay_pos' = delay_pos & {c? — (delay_pos(c?) U {p?})}

—op Delete_Delay_Pos

¢? : Controller
p? Ny

pre(p? € delay_pos(c?))
changes_only {delay_pos}
delay_pos' = delay_pos & {c? — (delay_pos(c?) \ {p?})}

—_op Handover_Flight

a? : Aircraft

pre(a? € waiting A control(a?) # exit_ctrl(flow))
changes_only { control, current_pos, waiting}
control' = control®
{a? — next_ctrl(control(a?), flow)}
current_pos' = current_pos®
{a? — positions(next_ctrl(control(a?), flow))}
waiting’ = waiting \ {a?}
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—_op Remowve_Flight
a? : Aircraft

pre(a? € waiting A control(a?) = exit_ctrl(flow))

changes_only { control, current_pos, remaining_t, delay, contact, waiting}
control' = ({a?} g control)

current_pos' = ({a?} < current_pos)

remaining_t' = ({a?} <9 remaining_t)

delay' = ({a?} < delay)

contact’' = ({a?} <9 contact)

waiting' = waiting \ {a?}

__op Delay_Flight
a? : Aircraft
t?7:N

pre(a? € dom control A a? contact control(a?))
changes_only {delay, waiting}

delay’ = delay ® {a? — ¢7}

waiting' = waiting \ {a?}

—_op Open_Entrance
pre(— open)
changes_only {open}

open’

—_op Close_Entrance

pre(open)
changes_only {open}

- open’
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C Simulator Specification

This appendix provides the complete specification of the simulator encapsulated in
a module.

___Simulator

import ATC

__state
ATC .state

__init
ATC .init

—_op Add_Flight
a? : Aircraft
rt? : N

pre(open A a? ¢ dom control)

changes_only { control, current_pos, remaining_t, delay }

control' = control & {a? — entrance_ctrl(flow)}

current_pos' = currrent_pos @ {a? — positions(entrance_ctrl(flow))}
remaining_t' = remaining_t ® {a? — rt?}

delay' = delay & {a? — 0}

—_op Flight_Appears
a? : Aircraft

c? : Controller
p?:N

rt? : N

pre(a? & dom control A ¢? € ran flow A p? < positions(c?))
changes_only { control, current_pos, remaining_t, delay }
control' = control & {a? — c?}
current_pos' = current_pos ® {a? — p?}
remaining_t' = remaining_t ® {a? — rt?}
delay' = delay & {a? — 0}
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__op Flight_Disappears
a? : Aircraft

pre(a? € dom control)

changes_only { control, current_pos, remaining_t, delay, contact, waiting}
control' = ({a?} g control)

current_pos' = ({a?} < current_pos)

remaining_t' = ({a?} <9 remaining_t)

delay' = ({a?} < delay)

contact’' = ({a?} <9 contact)

waiting' = waiting \ {a?}

__op Establish_Contact
a? : Aircraft

c? : Controller

pre(a? € dom control A ¢? € ran flow A (a?,¢?) & contact)
changes_only { contact}
contact’ = contact U {(a?,c?)}

__op Abandon_Contact
a? : Aircraft

c? : Controller

pre(a? contact c?)
changes_only { contact}
contact’ = contact \ {(a?, c?)}
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__op Tick

pre(waiting = &)
YV a : dom control e
remaining_t' = remaining_t & {a — (remaining_t(a) — 1)} A
if delay(a) =0 then
if current_pos(a) =1 then
changes_only {remaining_t, waiting} A
waiting' = waiting U {a}
else
changes_only {remaining_t, current_pos} A
current_pos' = current_pos @ {a — (current_pos(a) — 1)}
fi
else
if current_pos(a) € delay_pos(control(a)) then
changes_only {remaining_t, delay} N
delay' = delay ® {a — (delay(a) — 1)}
else
if current_pos(a) =1 then
changes_only {remaining_t, waiting} A
waiting’ = waiting U {a}
else
changes_only {remaining_t, current_pos} A
current_pos' = current_pos ® {a — (current_pos(a) — 1)}

28



References

1]

[6]

[7]

Brenton Atchison, Peter Lindsay, and David Tombs. Using Formal Methods for
Software Safety Assurance. Software Verification Research Centre, The Univer-
sity of Queensland, 1999.

Juan C. Bicarregui, John S. Fitzgerald, Peter A. Lindsay, Richard Moore, and
Brian Ritchie. Proof in VDM: A Practitioner’s Guide. Springer-Verlag, 1994.

The Cogito Group. The Sum Reference Manual. Software Verification Research
Centre, 1997.

Daniel Hazel, Paul Strooper, and Owen Traynor. Requirements Engineering
and Verification using Specification Animation. Software Verification Research
Centre, The University of Queensland, 1998.

Michael S. Nolan. Fundamentals of Air Traffic Control. Wadsworth Publishing
Company, 1994.

Ben Potter, Jane Sinclair, and David Till. An Introduction to Formal Specifica-
tion and Z. Prentice Hall, 1996.

J. M. Spivey. The Z Notation. Prentice Hall, 1989.

29



