
Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 1

The Rôle of Domain Engineering in Software Development

Dines Bjørner1,2

1: Computer Science and Engineering

Informatics and Mathematical Modelling

Technical University of Denmark

DK-28000 Kgs.Lyngby

Denmark

2: Graduate School of Information Science

Japan Advanced Institute of Science & Technology

1-1, Asahidai, Tatsunokuchi

Nomi, Ishikawa 923-1292

Japan

bjorner@gmail.com

August 30, 2006. Compiled September 3, 2006

IPSJ/SIGSE Software Engineering Symposium 2006, Oct. 20, Tokyo

Information Processing Society of Japan (IPSJ)

Special Interest Group of Software Engineering (SIGSE)

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

2 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

0. Abstract

• We outline the concept of

⋆ domain engineering

⋆ and explain the main stages of developing domain models.

• Requirements engineering

⋆ is then seen as an intermediate stage

⋆ where domain models

⋆ are “transformed” into requirements prescriptions.

• Software Design concludes development —

⋆ and we comment on software correctness

⋆ with respect to both

⋄ requirements prescriptions

⋄ and domain descriptions.

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 3

0. Abstract (Continued)

• We finally overview this new phase of development:

⋆ domain engineering

⋆ and argues its engineering virtues

⋆ while relating them to

⋄ object-orientedness,

⋄ UML,

⋄ component-based SE,

⋄ aspect-orientedness and

⋄ intentional software development.

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

4 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

1. Introduction
1.1 Triptych Dogma

• Traditionally, today, software development

⋆ starts with expressing requirements

⋆ and then goes on to design software from the requirements.

• In this paper we shall explain why this is not good enough.

• First we express the triptych dogma:

⋆ Before software can be developed we must understand its re-
quirements.

⋆ Before requirements can be expressed we must understand the
domain in which the software (plus the hardware) is to reside.

⋆ Therefore we must first develop an understanding of that do-
main.

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 5

1.2 Triptych of Software Development

• We therefore develop software as follows:

⋆ First we develop a domain description.

⋆ Then, from the domain description, we develop a requirements
prescription.

⋆ And, finally, from the requirements prescription we develop a soft-
ware design.

• While developing these three parts we

⋆ verify and validate the domain description,

⋆ verify and validate the requirements prescription with respect to
the domain description and requirements stakeholder statements,
and

⋆ verify the software design with respect to the requirements and
domain specifications.

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

6 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

2. An Example: Railway Nets

• Before we delve into too much “talking about” domain descriptions

• let us show a tiny example.

⋆ The example covers a description of just a small part of a domain:
the net of rails of a railway system.

⋆ There are only two parts to the description:

⋄ A systematic, “tight”, precise English narrative, and

⋄ “its” corresponding formalsation.

⋆ We do not show “all the work” that precedes establishing this
description.

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 7

2.1 Narrative

1. A railway net is a net of mode railway.

2. Its segments are lines of mode railway.

3. Its junctions are stations of mode railway.

4. A railway net consists of one or more lines and two or more stations.

5. A railway net consists of rail units.

6. A line is a linear sequence of one or more linear rail units.

7. The rail units of a line must be rail units of the railway net of the line.

8. A station is a set of one or more rail units.

9. The rail units of a station must be rail units of the railway net of the station.

10. No two distinct lines and/or stations of a railway net share rail units.

11. A station consists of one or more tracks.

12. A track is a linear sequence of one or more linear rail units.

13. No two distinct tracks share rail units.

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

8 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

14. The rail units of a track must be rail units of the station (of that track).

15. A rail unit is either a linear, or is a switch, or a is simple crossover, or is a switchable
crossover, etc., rail unit.

16. A rail unit has one or more connectors.

17. A linear rail unit has two distinct connectors. A switch (a point) rail unit has three
distinct connectors. Crossover rail units have four distinct connectors (whether
simple or switchable), etc.

18. For every connector there are at most two rail units which have that connector in
common.

19. Every line of a railway net is connected to exactly two distinct stations of that
railway net.

20. A linear sequence of (linear) rail units is an acyclic sequence of linear units such that
neighbouring units share connectors.

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 9

2.2 Formalisation

type
1. RN = {| n:smN • obs M(n)=railway |}
2. LI = {| s:S • obs M(s)=railway |}
3. ST = {| c:C • obs M(c)=railway |}

Tr, U, K

value
4. obs LIs: RN → LI-set
4. obs STs: RN → ST-set
5. obs Us: RN → U-set
6. obs Us: LI → U-set
8. obs Us: ST → U-set
11. obs Trs: ST → Tr-set
15. is Linear: U → Bool
15. is Switch: U → Bool
15. is Simple Crossover: U → Bool
15. is Switchable Crossover: U → Bool
16. obs Ks: U → K-set

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

10 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

20. lin seq: U-set → Bool
lin seq(us) ≡
∀ u:U • u ∈ us ⇒ is Linear(u) ∧
∃ q:U∗

• len q = card us ∧ elems q = us ∧
∀ i:Nat • {i,i+1} ⊆ inds q ⇒ ∃ k:K •

obs Ks(q(i)) ∩ obs Ks(q(i+1)) = {k} ∧
len q > 1 ⇒ obs Ks(q(i)) ∩ obs Ks(q(len q)) = {}

axiom
4. ∀ n:RN •

card obs LIs(n) ≥ 1 ∧ card obs STs(n) ≥ 2

6. ∀ n:RN, l:LI •

l ∈ obs LIs(n) ⇒ lin seq(l)

7. ∀ n:RN, l:LI •

l ∈ obs LIs(n) ⇒ obs Us(l) ⊆ obs Us(n)

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 11

8. ∀ n:RN, s:ST •

s ∈ obs STs(n) ⇒ card obs Us(s) ≥ 1

9. ∀ n:RN, s:ST •

s ∈ obs LIs(n) ⇒ obs Us(s) ⊆ obs Us(n)

10. ∀ n:RN,l,l′:LI •

{l,l′}⊆obs LIs(n)∧l6=l′⇒obs Us(l)∩ obs Us(l′)={}

10. ∀ n:RN,l:LI,s:ST •

l ∈ obs LIs(n)∧
s ∈ obs STs(n)⇒obs Us(l)∩ obs Us(s)={}

10. ∀ n:RN,s,s′:ST •

{s,s′}⊆obs STs(n)∧s 6=s′⇒obs Us(s)∩ obs Us(s′)={}

11. ∀ s:ST•card obs Trs(s)≥1

12. ∀ n:RN,s:ST,t:Tr • s ∈ obs STs(n)∧t ∈ obs Trs(s)⇒lin seq(t)

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

12 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

13. ∀ n:RN,s:ST,t,t′:Tr •

s ∈ obs STs(n)∧{t,t′}⊆obs Trs(s)∧t6=t′

⇒ obs Us(t) ∩ obs Us(t′) = {}

18. ∀ n:RN • ∀ k:K •

k ∈ ∪{obs Ks(u)|u:U•u ∈ obs Us(n)}
⇒card{u|u:U•u ∈ obs Us(n)∧k ∈ obs Ks(u)}≤2

19. ∀ n:RN,l:LI • l ∈ obs LIs(n) ⇒
∃ s,s′:ST • {s,s′} ⊆ obs STs(n) ∧ s 6=s′ ⇒
let sus=obs Us(s),sus′=obs Us(s′),lus=obs Us(l) in
∃ u,u′,u′′,u′′′:U • u ∈ sus ∧

u′ ∈ sus′ ∧ {u′′,u′′′} ⊆ lus ⇒
let sks=obs Ks(u),sks′=obs Ks(u′),

lks=obs Ks(u′′),lks′=obs Ks(u′′′) in
∃!k,k′:K•k 6=k′∧sks ∩ lks={k}∧sks′ ∩ lks′={k′}
end end

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 13

2.3 References

• We can refer to more complete descriptions of railway domains:

⋆ There is a “grand challenge” network:
www.railwaydomain.org.

⋆ There are some publications:

⋄ See paper for references.

⋄ and a “book”: “The TRain Book”:
http://www.railwaydomain.org/book.ps

⋆ A “larger”, more encompassing description of transportation nets
in general has been started: www.jaist.ac.jp/˜bjorner/transnets.

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

14 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

3. Domains
3.1 Examples of Domains

• There are basically three kinds of domains,

⋆ sometimes called application domains or

⋆ business domains.

• These are:

⋆ base systems software such as compilers, operating systems, database
management systems, data communication systems, etc.,

⋆ “middleware” software packages: Web servers, word/text process-
ing systems, etc., and

⋆ the real end-user applications.

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 15

3. Examples of Domains (Continued)
That is, software for

• airlines and airports;

• banks and insurance companies;

• hospitals and healthcare in general;

• manufacturing;

• the market: consumers, retailers, wholesaler, the distribution chain;

• railways;

• securities trading: exchanges, traders and brokers;

• and so forth.

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

16 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

3.2 Domain Description
3.2.1 What Is a Domain Description

• What do we mean by a domain description?

⋆ By a domain description we mean a document, or a set of documents which
describe a domain as it is,

⋄ with no references to, with no implicit requirements to software.

⋆ The informal language part of a domain description

⋆ is such that a reader from, a stakeholder of that domain

⋆ recognizes that it is a faithful description of the domain.

• So, a domain description describes something real, something existing.

• Usually a domain description

⋆ describes not just a specific instance

⋆ of a domain, but a set of such,

⋆ not just one bank but a set of “all” banks!

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 17

3.2.2 How Is a Domain Description Expressed?

• How is a domain description expressed?

⋆ By a domain description we mean any text

⋆ that clearly designates an phenomena,

⋄ an entity, or

⋄ a function (which when applied to some entities become an
action), or

⋄ an event, or

⋄ a behaviour (i.e., a sequence of actions and events)

⋆ of the domain,

⋆ or a concept defined, i.e., abstracted from other domain descrip-
tions.

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

18 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

3.2.2.1 Domain Descriptions Are Indicative

• Domain descriptions described what there is,

• the domain as it is,

• not as the stakeholder would like it to be.

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 19

3.2.2.2 Informal and Formal Domain Descriptions

• Domain descriptions come in four, mutually supportive forms, three
informal texts and one formal:

⋆ rough sketches are informal, incomplete and perhaps not very well
structured descriptions;

⋆ terminologies — explain all terms: names of phenomena or con-
cepts of the domain;

⋆ narratives — “tell the story”, in careful national/natural and pro-
fessional language; and

⋆ formal specification — formalises in mathematics the narrative
and provides the ultimate answer to questions of interpretation of
the informal texts.

• Initial descriptions necessarily are rough sketches. They help us
structure our thinking and generate entries for the terminology.

• Terminologies, narratives and formalisations are deliverables.
September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

20 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

3.2.3 Existing Descriptions

• Are there accessible examples of domain descriptions?

• Yes, there are descriptions now of

⋆ railway systems, transportation nets, financial service industries,
hospital healthcare, airports, air traffic, and many other domains.

⋆ Some are in the form of MSc theses, some are part of PhD theses.

⋆ Some fragment domain descriptions are published in journal pa-
pers, some in conference papers.

⋆ And several are proprietary — having been developed in software
houses.

• For all the cases implied above the descriptions include formal de-
scriptions.

• At JAIST students are currently developing such formalisations in
CafeOBJ.

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 21

3.3 Domain Engineering
3.3.1 How to Construct a Domain Description?

• In the following we will briefly outline the steps —

⋆ stakeholder identification,

⋆ acquisition,

⋆ acquisition analysis,

⋆ modelling,

⋆ verification and

⋆ validation —

• that it takes to construct a domain description.

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

22 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

3.3.2 Domain Stakeholders

• All relevant stakeholders must be identified.

• For, say a railway domain, typical stakeholder groups are:

⋆ the owners of a railway,

⋆ the executive, strategic, tactical and operational management — that is several
groups,

⋆ the railway (“blue collar”) workers — station staff, train staff, line staff, main-
tenance staff, etc.

⋆ potential and actual passengers and relatives of these,

⋆ suppliers of goods and services to the railway,

⋆ railway regulatory authorities,

⋆ the ministry of transport, and

⋆ politicians “at large”.

• Liaison with representatives of these stakeholder groups must be
regular — as some, later, become requirements stakeholders.

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 23

3.3.3 Domain Acquisition

• The domain engineer need acquire information (“knowledge”) about
the domain.

• This should be done pursuing many different approaches. Two most
important are:

⋆ reading literature, books, pamphlets, Internet information, about the domain;
and

⋆ eliciting hopefully commensurate information from stakeholders.

• From the former the domain engineer is (hopefully) able to formulate
a reasonable questionnaire.

• Elicitation is then based on distributing and the domain engineers
personally “negotiating” the questionnaire with all relevant stake-
holders.

• The result of the latter is a set of possibly thousands of domain
description units.

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

24 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

3.3.4 Domain Analysis
3.3.4.1 Description Unit Attributes

• The domain description units are then subjected to an analysis.

⋆ First they must be annotated with attribute designators such as
⋄ entity,

⋄ function,

⋄ event,

⋄ behaviour;

⋆ and
⋄ intrinsics,

⋄ support technology,

⋄ management & organisation,

⋄ rules & regulation,

⋄ script,

⋄ human behaviour:

⋆ and

⋄ source of information,

⋄ date, time, locations,

⋄ who acquired,

⋄ etc.:

• etcetera.

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 25

3.3.4.2 Problems

• Analysis of the description units involve looking for and resolving

⋆ incompleteness,

⋆ inconsistency and

⋆ conflicts.

3.3.4.3 Concepts

• Analysis of the description units primarily aims at

• discovering concepts, that is notions that generalises a class of phe-
nomena,

• and for discovering meta-concepts, that is “high level” abstractions

• that together might help develop as generic and hence, it is believed,

• applicable, reusable domain model as possible.

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

26 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

3.3.5 Domain Modelling Proper

• Domain modelling is then based on the most likely database handled
domain description units.

• The domain model, that is, the meaning of the domain description
must capture:

⋆ intrinsics: that which is at the basis of, or common to all facets,

⋆ technologies which support phenomena of the domain,

⋆ management & organisation: who does what, who reports
to whom, etc.,

⋆ rules & regulations — governing human behaviour and use of
technologies — sometimes manifested in scripts, and

⋆ human behaviour — diligent, sloppy, delinquent or outright
criminal.

• It must all be described!

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 27

3.3.6 Domain Verification

• Verification — only feasible when a formal description is available —

• proves properties of the domain model not explicitly expressed,

• and serves to ensure that we got the model right.

3.3.7 Domain Validation

• Validation is the human process of

• “clearing” with all relevant stakeholders

• that we got the right model.

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

28 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

3.3.8 Discussion

• Thus domain engineering is a highly professional discipline.

• It requires many talents:

⋆ interacting with stakeholders,

⋆ ability to write beautifully and concisely,

⋆ ability to formalise and analyse formal specifications,

⋆ etc.

• Domain engineers are also researchers: physicists of human made
universes.

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 29

3.4 Professionalism of SE

• Mechanical engineers are fully versant in the laws of the domain for
which they create artifacts (Newton’s Laws, etc.).

• Radio engineers, when hired, a fully versant in Maxwell’s Equations
— laws governing their application domain.

• And so it goes for all other professional engineers than SEs.

• Sometimes their basis in theoretical computer science is rather shaky.

• And always they know little or nothing about the business domain
for which they develop software: financial services, transportation,
healthcare.

• It is not becoming of a professional.

• Domain engineering brings professionalism into SE.

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

30 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

4. “Deriving” Requirements
4.1 “The Machine”

• By “the machine” we understand that computing system
⋆ hardware and ⋆ software

• which is to be inserted in the domain

• in order to support some activities of the domain.

4.2 Three Kinds of Requirements

• There are basically three kinds of requirements:
⋆ domain requirements — those

which can be expressed solely using
terms of the domain;

⋆ machine requirements — those
which can be expressed without using

terms of the domain; and

⋆ interface requirements — those
which must be expressed using terms
both of the domain and the machine.

• We treat these in a slightly changed order.

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 31

4.2.1 Domain Requirements

• One can rather simply, that is very easily, develop the domain re-
quirements from the domain description.

• Here is how it is done:

⋆ With the various requirements stakeholders, one-by-one

⋆ “go through”, i.e., co-read the domain description, line-by-line
⋆ while seeking answers to the following sequentially order questions:

⋄ Projection: should this “line” (being read)

be part of the requirements?

⋄ Instantiation: if so, should what is de-

scribed be instantiated from it usually

generic form?

⋄ Determination: and — if it is expressed

in a loose or non-deterministic, i.e., under-

specified manner, be made more determi-

nate?

⋄ Extension: Are there potential phenomena

or concepts of the domain which were not

described because they were infeasible in the

domain — if so the machine make it feasi-

ble?

⋄ Fitting: Are there other requirements

development, elsewhere, with which the

present one could be “interfaced”?

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

32 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

4.2.1 Domain Requirements (Continued)

• The result of a domain requirements development phase is a (sizable)
document

• that is expected to (functional) requirements specify that which can
be computed.

4.2.2 Interface Requirements

• The interface requirements development stage now starts

• by identifying all the phenomena that are to be shared between

⋆ the domain (“out there”) and

⋆ “the machine” (“in here”)!

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 33

4.2.2 Interface Requirements (Continued)

• The shared phenomena and (now machine) concepts are either

⋆ entities,

⋆ functions,

⋆ events or

⋆ behaviours.

• Each such shared phenomenon leads, respectively, to interface re-
quirements concerning

⋆ entities: bulk data (database) initial-
isation and refreshment;

⋆ functions: man/machine dialogue
concerning computational progress;

⋆ events: handling of interrupts and
the like; and

⋆ behaviours: logging and replay mon-
itoring and control.

• For each of the four classes due consideration is paid wrt. use of

⋆ visual displays,

⋆ tactile instruments (“mouse”, key-
board, stylos, sensitive screens or
pads, etc.),

⋆ audio equipment: sound recognition
and production,

⋆ smell, taste, and physics measure-
ments.

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

34 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

4.2.2 Interface Requirements (Continued)

• The result of an interface requirements development phase is a (siz-
able) document, adjoint to the domain requirements document,

• that is expected to (user) requirements specify that which can be
interchanged (input/output between man or machine and machine).

4.2.3 Machine Requirements

• Machine (or systems) requirements deal with such matters as

⋆ performance: dealing with concerns
of storage and response times (hence
equipment “numbers”);

⋆ dependability: accessibility, avail-
ability, reliability, fault tolerance; se-
curity, etc.;

⋆ maintainability: adaptive, perfec-
tive, corrective and preventive main-

tenance;

⋆ portability: development, demon-
stration, execution, and maintenance
platform issues;

⋆ documentation: installation, train-
ing, user, maintenance and develop-
ment documents.

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 35

4.2.3 Machine Requirements (Continued)

• The machine requirements are developed

⋆ “against” a check-list of all these requirements possibilities

⋆ and focusing on each line of the

⋄ domain requirements and

⋄ interface requirements documents.

• The result of a machine requirements development phase is yet a
(sizable) document —

• adjoint to the domain and interface requirements documents —

• that is expected to (system) requirements specify that which can be
also implemented.

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

36 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

4.3 Further SE Professionalism

• Requirements engineering has been made easy.

• The domain is very stable.

• There is now a clear, well-defined path from domain models to re-
quirements models.

• The adage, i.e., the common observation, “requirements always
change” need no longer be true.

• For a software engineer

⋆ to command the process of creating domain models

⋆ and comfortably transforming them into requirements

⋆ with input from requirements stakeholders

• signifies professional SE.

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 37

5. Software Design

• To round off the triptych approach to software development,

• such as advocated here,

• we briefly mention that

⋆ the requirements specifications (which prescribe what),

⋆ are now the basis for refinement into software designs (the how).

• We shall not go into these aspects in this presentation

• other than recalling
D,S |= R

⋆ Correctness of S

⋆ with respect to R

⋆ can be proven using recorded assumptions about the D.

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

38 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

6. Rôle of Domain Descriptions

6.1 A Science Motivation

• One rôle of domain modelling is that of obtaining and recording understanding.

• The domain engineer is a researcher:

⋆ studies “new territory”.

• Just as physicists for centuries have studied “mother” nature,

• so it is high time we study the universes of man-made structures.7

6.2 A Engineering Motivation

• Another rôle of domain modelling is the engineering one.

• We present an elegantly formulated summary of the rôle of domain
descriptions in software engineering.

• It was expressed by Sir Tony Hoare — in an exchange of e-mails in
July 2006.

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 39

6.2.1 Tony Hoare’s Assessment

“There are many unique contributions that can be made by domain mod-
elling.

1. The models describe all aspects of the real world that are relevant for
any good software design in the area. They describe possible places
to define the system boundary for any particular project.

2. They make explicit the preconditions about the real world that have
to be made in any embedded software design, especially one that is
going to be formally proved.

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

40 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

6.2.1 Tony Hoare’s Assessment (Continued)

3. They describe the whole range of possible designs for the software,
and the whole range of technologies available for its realisation.

4. They provide a framework for a full analysis of requirements, which is
wholly independent of the technology of implementation.

5. They enumerate and analyse the decisions that must be taken earlier
or later any design project, and identify those that are independent
and those that conflict. Late discovery of feature interactions can be
avoided.”

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 41

6.2.2 Structuring of Rôles

• We rephrase our and Tony’s formulation as follows:

⋆ Domain models represent theories of human organisations — and
as such they are interesting in and by themselves.

⋆ Domain models also represent a first major result in a software
development:

⋄ In proving correctness of Software

⋄ with respect to Requirements

⋄ assumptions are repeatedly made about the Domain.

⋆ We can summarise the engineering rôle of domain engineering as
follows:

D,S |= R

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

42 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

6.3 Conventional SE Paradigms

• We are presenting a novel theory-based approach to software development.

⋆ This, the triptych approach has to compete

⋆ with conventional software development methods,

⋆ that are currently en vogue in the industry.

• Let us try relate these conventional methods to what we are advocating:

• Examples are:

⋆ object-oriented programming (OO),

⋆ unified modeling language (UML),

⋆ component-based programming (CBSE),

⋆ aspect-oriented software engineering (AOS), and

⋆ int∃ntion∀l software development (∃∀).

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 43

6.3 Conventional SE Paradigms (Continued)

• I believe that you will find that

⋆ some of the strengths of OO, CBSE and especially ∃∀

⋆ are occurring “naturally” in both

⋄ the domain engineering and in

⋄ the “derived” requirements engineering.

• That is, we wish to point out

⋆ how we can understand basic traits of OO, CBSE, AOP and es-
pecially ∃∀ and

⋆ and thus explain why these approaches have won adherents.

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

44 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

6.3.1 OO Programming

• We assume that the reader is well familiar with the OO programming
paradigm.

• We shall briefly list some of the OO “quarks”1:

⋆ class,

⋆ object,

⋆ method,

⋆ message passing,

⋆ inheritance,

⋆ encapsulation,

⋆ abstraction and

⋆ polymorphism.

• Several of these “quarks” are specifically oriented at programming
rather than specifying.

1Term used by Ms Deborah J. Armstrong in naming fundamental OO concepts (http://en.wikipedia.org/wiki/Object-oriented programming)

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 45

6.3.1 OO Programming (Continued)

• The foremost feature of OO

⋆ that are of interest in the context of domain and requirements
engineering

⋆ is the concept of objects.

• OO objects are also present in the triptych approach to formalisation:

⋆ the encapsulation of related

⋄ entities, ⋄ functions and ⋄ events

in a module,

⋆ with that module now denoting possible behaviours.

• Many object modelling techniques,

⋆ essentially all discovered by the Simula 67 originators,

⋆ carry over to domain and requirements specification.

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

46 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

6.3.1 OO Programming (Continued)

• So first we remark that

⋆ OO primarily addresses programming

⋆ assuming given requirements,

• whereas the triptych approach advocated here

⋆ address the entire span of software develop ment

⋆ from, and significantly focused on domain modelling,

⋆ and on deriving requirements from domain descriptions.

• The triptych approach advocated here

⋆ does not prescribe which combination of coding paradigms you
may wish to use:

⋆ OO, AOP, CBSE, XP (Expert Programming), etc.

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 47

6.3.2 UML

• UML, to us, is a confused approach to software development.

• Yet, however, it has some appealing features.

⋆ It mixes informal textual specifications

⋆ with several graphical techniques (Petri nets, MSCs, Statecharts).

⋆ It supposedly has a “powerful” data schema concept
(class diagrams).

• In UML you are programming more than you are specifying.

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

48 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

6.3.2 UML (Continued)

• But UML, to us, has problems:

⋆ It has no notion of abstraction.

⋆ It thus has no notion of stepwise development —

⋄ necessary to conquer complexity with a phase,

⋄ and necessary to separate the necessarily separated phases of

◦ domain modelling (the why),

◦ requirements modelling (the what), and

◦ software design (the how)

⋆ One cannot reason logically over UML specifications.

⋆ It is placed somewhere between requirements and software design
specifications.

• For these reasons we cannot take UML serious

• and we wonder why professional software engineers do?

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 49

6.3.3 CBSE: Component-based SE

• A basic concern of CBSE is building software systems from reusable
components.

• There seems to be many different “schools” of CBSE.

• Being in Japan it is reasonable to follow that of the CBSE Group,
Fukazawa Laboratory, Waseda University2:

⋆ In a narrow sense,a software component is defined as a unit of
composition, and can be independently exchanged in the form of
an object code without source codes.

⋆ The internal structure of the component is not available to the
public.

2http://www.fuka.info.waseda.ac.jp/Project/CBSE

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

50 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

6.3.3 CBSE: Component-based SE (Continued)

⋆ The characteristics of the component-based development are the
following:

⋄ Black-box reuse

⋄ Reactive-control and component’s granularity

⋄ Using RAD (rapid application development) tools

⋄ Contractually specified interfaces

⋄ Introspection mechanism provided by the component systems

⋄ Software component market (CALS)

⋆ It is natural to model and implement components in an object-
oriented paradigm/language.

⋆ Therefore, when understanding the component, the traditional
techniques in the OO paradigm such like OO framework, design
patterns, architecture patterns and meta-patterns are very impor-
tant

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 51

6.3.3 CBSE: Component-based SE (Continued)

• We shall now try evaluate basic tenets of CBSE in light of the triptych
approach.

⋆ We strongly advice that search for components start at the level
of domain modelling.

⋆ Once identified in the domain, requirements may project, instan-
tiate, determinate, extend and fit them in a variety of ways.

⋆ Such domain-to-requirements operations may be expressed in the
form of adjusting suitable parameters to a schema/module/object
like abstract formalisation of the domain component.

⋆ From here on many of the intriguing issues of CBSE can be better
understood, either as basic abstraction-to-concretisation refine-
ments or as simple coding tricks.

• CBSE certainly has a rôle in making the triptych approach even
more viable.

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

52 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

6.3.4 AOP: Aspect-oriented Programming

• A basic concern of AOP is that some code is scattered or tangled,
making it harder to understand and maintain.

• It is scattered when one concern (like logging) is spread over a num-
ber of modules (e.g., classes and methods).

• That means to change logging can require modifying all affected
modules.

• Modules end up tangled with multiple concerns (e.g., account pro-
cessing, logging, and security).

• That means changing one module entails understanding all the tan-
gled concerns.

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 53

6.3.4 AOP: Aspect-oriented Programming (Continued)

• AOP attempt to aid programmers in the separation of concerns,

⋆ specifically cross-cutting concerns,

⋆ as an advance in modularization.

⋆ AOP does so using primarily language changes,

⋆ while AOSD (aspect-oriented software development) uses a com-
bination of language, environment, and methodology.

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

54 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

6.3.4 AOP: Aspect-oriented Programming (Continued)

• Separation of concerns entails breaking down a program into distinct
parts that overlap in functionality as little as possible.

⋆ All programming methodologies —

⋆ including procedural programming and object-oriented program-
ming —

⋆ support some separation and encapsulation of concerns

⋆ (or any area of interest or focus)

⋆ into single entities.

⋆ For example, procedures, packages, classes,

⋆ and methods all help programmers encapsulate concerns into sin-
gle entities. But some concerns defy these forms of encapsulation.

⋆ Software engineers call these cross cutting concerns, because they
cut across many modules in a program.

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 55

6.3.4 AOP: Aspect-oriented Programming (Continued)

• So, really, AOS, is primarily a coding discipline.

• So why do we bring it up here, in a presentation which is primarily
not about coding, but about domains and requirements.

• Some software engineers (may) ask:

⋆ What is relation between the triptych approach and AOS?

• Our answer is:

⋆ The cross cutting concerns appear not to be caused by domain
requirements, nor by interface requirements,

⋆ but by machine requirements.

• Thus problems of cross-cutting concern appears to be introduced in
a serious, but not really user-oriented stage of requirements develop-
ment.

• This “discovery” might enlighten researchers in the AOS community.

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

56 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

6.3.5 ∃∀: Intentional Software Development

• The intentional software development paradigm is the creation of
Charles Simonyi3.

• It appears that little if any literature is readily accessible.

• So we shall resort to quoting from Intentional Software’s Web page
(http://intentsoft.com/technology/glossary.html).

• The quotes are in sans serif.

3Intentional Software, Bellevue, Washington, USA; http://intentsoft.com

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 57

6.3.5.1 Domain

• A domain is an area of business, engineering or society for which a
body of knowledge exists.

• Examples include

⋆ health care administration,

⋆ telecommunications,

⋆ banking,

⋆ accounting,

⋆ avionics,

⋆ computer games and

⋆ software engineering.

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

58 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

6.3.5.2 Domain Code

• Domain code is the structured code to represent the intentions con-
tributed by subject matter experts for the problem being solved.

• Domain code includes contributions from all domains relevant to the
software problem.

• Domain code is not executable

⋆ (as traditional source code is - by compilation or interpretation),

⋆ but it can be transformed into an implementation solution

⋆ when it is input to a generator

⋆ that has been programmed to perform that transformation process.

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 59

6.3.5.3 Domain-Oriented Development

• Domain-oriented development

⋆ is the process of separating the contributions of subject matter
experts and programmers

⋆ to the maximum extent

⋆ so that generative programming can be applied to structured do-
main code.

• This greatly simplifies improvements to the domain and implementa-
tion solutions.

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

60 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

6.3.5.4 Domain Schema

• A domain schema is a schema for a specific domain.

• The domain schema

⋆ defines the domain terminology

⋆ and any other information that is needed —

⋆ for the intentional editor and generator to work —
⋆ such as

⋄ parameters,

⋄ help text,

⋄ default values,

⋄ applicable notations and

⋄ other structure of the domain code.

• Domain schemas

⋆ are created by the subject matter experts and programmers working
together, and

⋆ are expressed in a schema language.

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 61

6.3.5.5 Domain Terminology

• Domain terminology means the terms of art (words with a special
meaning) in a domain, for example “claim payment” in health care
administration.

• Domain terminology is important because it is the usual way to express
intentions.

• Broadly speaking, terminology includes notations normally used by a
subject matter expert, such as tables, flowcharts and other symbols.

• The meaning of the terms is part of the domain knowledge that is
shared between subject matter experts and programmers to the ex-
tent necessary and ultimately designed into domain schemas and the
generator.

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

62 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

6.3.5.6 Discussion

• Intentional software development, it should be clear from the above

⋆ builds on a number of software development tools

⋆ which are provided with domain description-like information

⋆ and which can then significantly automate code generation.

• Other than that shall neither comment nor speculate on Charles
Simonyi’s characterisations.4

• We believe that the reader can easily see the very tight relations to
the triptych phases of development.

• We find them fascinating and will try communicate our own obser-
vations to Charles Simonyi before commenting in depth.

• ∃∀ certainly has a rôle in making the triptych approach even more
viable.

4Well, I cannot, of course, refrain from saying that my students have founded a number of Danish software companies whose corporate asset it is that they
generate code for application of the domain specific area which is their company’s hallmark.

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 63

7. Conclusion
7.1 What Have We Achieved?

• We have outlined two of the major phases of an extended)read:
new) approach to software development:

⋆ domain engineering — primarily — and

⋆ requirements engineering — as it relates to domain engineering.

• We have not really covered

⋆ the relation of requirements engineering to software design, i.e.,
programming —

⋆ other than

⋄ now saying: software design is then a further refinement of the
requirements, and, well, hear next!

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

64 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

7.1 What Have We Achieved? (Continued)

• We have then related this, the triptych approach to some current
programming and software development paradigms:

⋆ OO, CBSE, AOS — as mostly programming cum coding paradigms,
and

⋆ Intentional Software Development

⋄ which, to us, have a much clearer and cleaner understanding of
the domain,

⋄ with the domain intentions, when being edited,

◦ probably having the editing stage

◦ amount to, or being based on some form of requirements de-
velopment.

⋆ We shall certainly look into Intentional Software Development
more closely.

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 65

7.2 What More Need be Achieved?

• Well, on the basis of three volumes,

⋆ D. Bjørner: Software Engineering, Vol. 1: Abstraction and

Modelling (Springer, 2006)

⋆ D. Bjørner: Software Engineering, Vol. 2: Specification of Sys-

tems and Languages (Springer, 2006)

⋆ D. Bjørner: Software Engineering, Vol. 3: Domains, Require-

ments and Software Design (Springer, 2006)

• supported by almost 6,000 lecture slides

• and supported extensive RAISE tools,

• what more could one wish?

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

66 September 3, 2006 — Dines Bjørner: The Rôle of Domain Engineering in Software Development

7.2 What More Need be Achieved? (Continued)

• The answer is: more tools,

⋆ tools to support documentation: creation, editing, versioning, etc.;

⋆ tools to support domain and requirements acquisition and analy-
sis;

⋆ tools to extend the use of RAISE; as well as

⋆ tools to integrate the formal use of RAISE with the formal
use of

⋄ Petri nets, MSCs, LSCs, Statecharts, Duration Calculus and
TLA+, etc.,

⋄ further theorem proving, proof checking, model checking and
testing tools.

c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan September 3, 2006, 20:57

Dines Bjørner: The Rôle of Domain Engineering in Software Development — September 3, 2006 67

7.3 Acknowledgments

• The author gratefully acknowledges the support of JAIST

• and of his colleague, Prof. Kokichi Futatsugi.

• The author also gratefully acknowledges Prof. Hironori Washizaki,
National Institute of Informatics , for so kindly having invited me to
write and present this paper at the IPSJ/SIGSE Software Engineer-
ing Symposium in Tokyo in Oct. 2006.

September 3, 2006, 20:57 c© Dines Bjørner 2006, JAIST ⊕ Apt.303, 44-1 Satomicho, Kanazawa, Ishikawa, Japan

