
The Rôle of Domain Engineering in Software Development

DINES BJØRNER1 2 3

We outline the concept of domain engineering and explain the main stages of developing domain
models. Requirements engineering is then seen as an intermediate stage where domain models are “trans-
formed” into requirements prescriptions. Software Design concludes development — and we comment
on software correctness with respect to both requirements prescriptions and domain descriptions. We
finally overview this new phase of development: domain engineering and argues its engineering virtues
while relating them to object-orientedness, UML, component-based SE, aspect-orientedness and inten-
tional software development.

1 Introduction

1.1 Triptych Dogma

Traditionally, today, software development starts
with expressing requirements and then goes on to
design software from the requirements. In this pa-
per we shall explain why this is not good enough.
First we express the triptych dogma: Before soft-
ware can be developed we must understand its re-
quirements. Before requirements can be expressed
we must understand the domain in which the soft-
ware (plus the hardware) is to reside. Therefore we
must first develop an understanding of that domain.

1.2 Triptych of Software Development

We therefore develop software as follows: First we
develop a domain description. Then, from the do-
main description, we develop a requirements pre-
scription. And, finally, from the requirements pre-
scription we develop a software design. While de-
veloping we verify and validate the domain descrip-
tion, verify and validate the requirements prescrip-
tion with respect to the domain description and re-
quirements stakeholder statements, and verify the
software design with respect to the requirements
and domain specifications.

1School of Information Science, Japan Advanced Institute
of Science and Technology, 1-1, Asahidai, Tatsunokuchi, Nomi,
Ishikawa, Japan 923-1292

2Dept. of Informatics and Mathematical Modelling, Techni-
cal University of Denmark, DK-2800 Kgs.Lyngby, Denmark

3Invited keynote paper for the Special Interest Group of
Software Engineering (SIGSE), Information Processing Society
of Japan (IPSJ) IPSJ/SIGSE Software Engineering Symposium
2006, Oct. 21, Tokyo, Japan

2 An Example: Railway Nets

Before we delve into too much “talking about” do-
main descriptions let us show a tiny example. The
example covers a description of just a small part
of a domain: the net of rails of a railway system.
There are only two parts to the description: A sys-
tematic, “tight”, precise English narrative, and “its”
corresponding formalsation in the specification lan-
guage, RSL of RAISE [13, 14, 5, 6, 7]. We do not
show “all the work” that precedes establishing this
description.

2.1 Narrative

1. A railway net is a net of mode railway.

2. Its segments are lines of mode railway.

3. Its junctions are stations of mode railway.

4. A railway net consists of one or more lines and
two or more stations.

5. A railway net consists of rail units.

6. A line is a linear sequence of one or more linear
rail units.

7. The rail units of a line must be rail units of the
railway net of the line.

8. A station is a set of one or more rail units.

9. The rail units of a station must be rail units of
the railway net of the station.

10. No two distinct lines and/or stations of a railway
net share rail units.

11. A station consists of one or more tracks.

12. A track is a linear sequence of one or more lin-
ear rail units.

1

13. No two distinct tracks share rail units.

14. The rail units of a track must be rail units of the
station (of that track).

15. A rail unit is either a linear, or is a switch, or a is
simple crossover, or is a switchable crossover,
etc., rail unit.

16. A rail unit has one or more connectors.

17. A linear rail unit has two distinct connectors. A
switch (a point) rail unit has three distinct con-
nectors. Crossover rail units have four distinct
connectors (whether simple or switchable), etc.

18. For every connector there are at most two rail
units which have that connector in common.

19. Every line of a railway net is connected to ex-
actly two distinct stations of that railway net.

20. A linear sequence of (linear) rail units is an
acyclic sequence of linear units such that
neighbouring units share connectors.

2.2 Formalisation
type
1. RN = {| n:smN • obs M(n)=railway |}
2. LI = {| s:S • obs M(s)=railway |}
3. ST = {| c:C • obs M(c)=railway |}

Tr, U, K

value
4. obs LIs: RN → LI-set
4. obs STs: RN → ST-set
5. obs Us: RN → U-set
6. obs Us: LI → U-set
8. obs Us: ST → U-set
11. obs Trs: ST → Tr-set
15. is Linear: U → Bool
15. is Switch: U → Bool
15. is Simple Crossover: U → Bool
15. is Switchable Crossover: U → Bool
16. obs Ks: U → K-set

20. lin seq: U-set → Bool
lin seq(us) ≡

∀ u:U • u ∈ us ⇒ is Linear(u) ∧
∃ q:U∗

• len q = card us ∧ elems q = us ∧
∀ i:Nat • {i,i+1} ⊆ inds q ⇒ ∃ k:K •

obs Ks(q(i)) ∩ obs Ks(q(i+1)) = {k} ∧
len q > 1 ⇒ obs Ks(q(i)) ∩ obs Ks(q(len q)) = {}

axiom
4. ∀ n:RN •

card obs LIs(n) ≥ 1 ∧ card obs STs(n) ≥ 2

6. ∀ n:RN, l:LI •

l ∈ obs LIs(n) ⇒ lin seq(l)

7. ∀ n:RN, l:LI •

l ∈ obs LIs(n) ⇒ obs Us(l) ⊆ obs Us(n)

8. ∀ n:RN, s:ST •

s ∈ obs STs(n) ⇒ card obs Us(s) ≥ 1

9. ∀ n:RN, s:ST •

s ∈ obs LIs(n) ⇒ obs Us(s) ⊆ obs Us(n)

10. ∀ n:RN,l,l′:LI •

{l,l′}⊆obs LIs(n)∧l6=l′⇒obs Us(l)∩ obs Us(l′)={}

10. ∀ n:RN,l:LI,s:ST •

l ∈ obs LIs(n)∧
s ∈ obs STs(n)⇒obs Us(l)∩ obs Us(s)={}

10. ∀ n:RN,s,s′:ST •

{s,s′}⊆obs STs(n)∧s6=s′⇒obs Us(s)∩ obs Us(s′)={}

11. ∀ s:ST•card obs Trs(s)≥1

12. ∀ n:RN,s:ST,t:Tr • s ∈ obs STs(n)∧t ∈ obs Trs(s)⇒lin seq(t)

13. ∀ n:RN,s:ST,t,t′:Tr •

s ∈ obs STs(n)∧{t,t′}⊆obs Trs(s)∧t6=t′

⇒ obs Us(t) ∩ obs Us(t′) = {}

18. ∀ n:RN • ∀ k:K •

k ∈ ∪{obs Ks(u)|u:U•u ∈ obs Us(n)}
⇒card{u|u:U•u ∈ obs Us(n)∧k ∈ obs Ks(u)}≤2

19. ∀ n:RN,l:LI • l ∈ obs LIs(n) ⇒
∃ s,s′:ST • {s,s′} ⊆ obs STs(n) ∧ s6=s′ ⇒

let sus=obs Us(s),sus′=obs Us(s′),lus=obs Us(l) in
∃ u,u′,u′′,u′′′:U • u ∈ sus ∧

u′ ∈ sus′ ∧ {u′′,u′′′} ⊆ lus ⇒
let sks=obs Ks(u),sks′=obs Ks(u′),

lks=obs Ks(u′′),lks′=obs Ks(u′′′) in
∃!k,k′:K•k6=k′∧sks ∩ lks={k}∧sks′ ∩ lks′={k′}

end end

2.3 References
We can refer to more complete descriptions of railway domains: There
is a “grand challenge” network: www.railwaydomain.org. There
are some publications: [8, 3, 9, 4] and a “book”: “The TRain
Book”: http://www.railwaydomain.org/book.ps A “larger”, more en-
compassing description of transportation nets in general has been started:
www.jaist.ac.jp/˜bjorner/transnets.

3 Domains

3.1 Examples of Domains
There are basically three kinds of domains, sometimes called application
domains or business domains. These are: base systems software such as
compilers, operating systems, database management systems, data com-
munication systems, etc., “middleware” software packages: Web servers,
word/text processing systems, etc., and the real end-user applications.
That is, software for airlines and airports; banks and insurance compa-
nies; hospitals and healthcare in general; manufacturing; the market: con-
sumers, retailers, wholesaler, the distribution chain; railways; securities
trading: exchanges, traders and brokers; and so forth.

3.2 Domain Description
3.2.1 What Is a Domain Description
What do we mean by a domain description? By a domain description we
mean a document, or a set of documents which describe a domain as it
is, with no references to, with no implicit requirements to software. The

2

informal language part of a domain description is such that a reader from,
a stakeholder of that domain recognizes that it is a faithful description of
the domain. So, a domain description describes something real, some-
thing existing. Usually a domain description describes not just a specific
instance of a domain, but a set of such, not just one bank but a set of “all”
banks!

3.2.2 How Is a Domain Description Expressed?
How is a domain description expressed? By a domain description we
mean any text that clearly designates an phenomena, an entity, or a func-
tion (which when applied to some entities become an action), or an event,
or a behaviour (i.e., a sequence of actions and events) of the domain, or a
concept defined, i.e., abstracted from other domain descriptions.

Domain Descriptions Are Indicative: Domain de-
scriptions described what there is, the domain as it is, not as the stake-
holder would like it to be.

Informal and Formal Domain Descriptions: Do-
main descriptions come in four, mutually supportive forms, three informal
texts and one formal: rough sketches are informal, incomplete and perhaps
not very well structured descriptions; terminologies — explain all terms:
names of phenomena or concepts of the domain; narratives — “tell the
story”, in careful national/natural and professional language; and formal
specification — formalises in mathematics the narrative and provides the
ultimate answer to questions of interpretation of the informal texts. Initial
descriptions necessarily are rough sketches. They help us structure our
thinking and generate entries for the terminology. Terminologies, narra-
tives and formalisations are deliverables.

3.2.3 Existing Descriptions
Are there accessible examples of domain descriptions? Yes, there are de-
scriptions now of railway systems, transportation nets, financial service
industries, hospital healthcare, airports, air traffic, and many other do-
mains. Some are in the form of MSc theses, some are part of PhD theses.
Some fragment domain descriptions are published in journal papers, some
in conference papers. And several are proprietary — having been devel-
oped in software houses. For all the cases implied above the descriptions
include formal descriptions. At JAIST students are currently developing
such formalisations in CafeOBJ.

3.3 Domain Engineering
3.3.1 How to Construct a Domain Description?
In the following we will briefly outline the steps — stakeholder identifi-
cation, acquisition, acquisition analysis, modelling, verification and vali-
dation — that it takes to construct a domain description.

3.3.2 Domain Stakeholders
All relevant stakeholders must be identified. For, say a railway domain,
typical stakeholder groups are: the owners of a railway, the execu-
tive, strategic, tactical and operational management — that is sev-
eral groups, the railway (“blue collar”) workers — station staff, train
staff, line staff, maintenance staff, etc. potential and actual passen-
gers and relatives of these, suppliers of goods and services to the
railway, railway regulatory authorities, the ministry of transport, and
politicians “at large”. Liaison with representatives of these stakeholder
groups must be regular — as some, later, become requirements stakehold-
ers.

3.3.3 Domain Acquisition
The domain engineer need acquire information (“knowledge”) about the
domain. This should be done pursuing many different approaches. Two

most important are: reading literature, books, pamphlets, Internet infor-
mation, about the domain; and eliciting hopefully commensurate infor-
mation from stakeholders. From the former the domain engineer is
(hopefully) able to formulate a reasonable questionnaire. Elicitation is
then based on distributing and the domain engineers personally “negoti-
ating” the questionnaire with all relevant stakeholders. The result of the
latter is a set of possibly thousands of domain description units.

3.3.4 Domain Analysis
Description Unit Attributes: The domain description
units are then subjected to an analysis. First they must be annotated with
attribute designators such as entity, function, event, behaviour; and in-
trinsics, support technology, management & organisation, rules & regu-
lation, script, human behaviour: and source of information, date, time,
locations, who acquired, etc.: etcetera.

Problems: Analysis of the description units involve looking for and
resolving incompleteness, inconsistency and conflicts.

Concepts: Analysis of the description units primarily aims at dis-
covering concepts, that is notions that generalises a class of phenomena,
and for discovering meta-concepts, that is “high level” abstractions that
together might help develop as generic and hence, it is believed, applica-
ble, reusable domain model as possible.

3.3.5 Domain Modelling Proper
Domain modelling is then based on the most likely database handled do-
main description units. The domain model, that is, the meaning of the
domain description must capture: intrinsics: that which is at the basis
of, or common to all facets, technologies which support phenomena of
the domain, management & organisation: who does what, who reports
to whom, etc., rules & regulations — governing human behaviour and
use of technologies — sometimes manifested in scripts, and human be-
haviour — diligent, sloppy, delinquent or outright criminal. It must all be
described!

3.3.6 Domain Verification
Verification — only feasible when a formal description is available —
proves properties of the domain model not explicitly expressed, and serves
to ensure that we got the model right.

3.3.7 Domain Validation
Validation is the human process of “clearing” with all relevant stakehold-
ers that we got the right model.

3.3.8 Discussion
Thus domain engineering is a highly professional discipline. It requires
many talents: interacting with stakeholders, ability to write beautifully
and concisely, ability to formalise and analyse formal specifications, etc.
Domain engineers are also researchers: physicists of human made uni-
verses.

3.4 Professionalism of SE
Mechanical engineers are fully versant in the laws of the domain for which
they create artifacts (Newton’s Laws, etc.). Radio engineers, when hired,
a fully versant in Maxwell’s Equations — laws governing their applica-
tion domain. And so it goes for all other professional engineers than SEs.
Sometimes their basis in theoretical computer science is rather shaky. And
always they know little or nothing about the business domain for which
they develop software: financial services, transportation, healthcare. It is
not becoming of a professional. Domain engineering brings professional-
ism into SE.

3

4 “Deriving” Requirements

4.1 “The Machine”
By “the machine” we understand that computing system hardware and
software which is to be inserted in the domain in order to support some
activities of the domain.

4.2 Three Kinds of Requirements
There are basically three kinds of requirements: domain requirements
— those which can be expressed solely using terms of the domain; ma-
chine requirements — those which can be expressed without using terms
of the domain; and interface requirements — those which must be ex-
pressed using terms both of the domain and the machine. We treat these
in a slightly changed order.

4.2.1 Domain Requirements
One can rather simply, that is very easily, develop the domain require-
ments from the domain description. Here is how it is done: With the vari-
ous requirements stakeholders, one-by-one “go through”, i.e., co-read the
domain description, line-by-line while seeking answers to the following
sequentially order questions: Projection: should this “line” (being read)
be part of the requirements? Instantiation: if so, should what is described
be instantiated from it usually generic form? Determination: and — if it
is expressed in a loose or non-deterministic, i.e., under-specified manner,
be made more determinate? Extension: Are there potential phenomena or
concepts of the domain which were not described because they were in-
feasible in the domain — if so the machine make it feasible? Fitting: Are
there other requirements development, elsewhere, with which the present
one could be “interfaced”?

The result of a domain requirements development phase is a (sizable)
document that is expected to (functional) requirements specify that which
can be computed.

4.2.2 Interface Requirements
The interface requirements development stage now starts by identifying
all the phenomena that are to be shared between the domain (“out there”)
and “the machine” (“in here”)!

The shared phenomena and (now machine) concepts are either en-
tities, functions, events or behaviours. Each such shared phenomenon
leads, respectively, to interface requirements concerning entities: bulk
data (database) initialisation and refreshment; functions: man/machine
dialogue concerning computational progress; events: handling of inter-
rupts and the like; and behaviours: logging and replay monitoring and
control. For each of the four classes due consideration is paid wrt. use of
visual displays, tactile instruments (“mouse”, keyboard, stylos, sensitive
screens or pads, etc.), audio equipment: sound recognition and produc-
tion, smell, taste, and physics measurements.

The result of an interface requirements development phase is a (siz-
able) document, adjoint to the domain requirements document, that is
expected to (user) requirements specify that which can be interchanged
(input/output between man or machine and machine).

4.2.3 Machine Requirements
Machine (or systems) requirements deal with such matters as perfor-
mance: dealing with concerns of storage and response times (hence
equipment “numbers”); dependability: accessibility, availability, relia-
bility, fault tolerance; security, etc.; maintainability: adaptive, perfec-
tive, corrective and preventive maintenance; portability: development,
demonstration, execution, and maintenance platform issues; documen-
tation: installation, training, user, maintenance and development docu-
ments.

The machine requirements are developed “against” a check-list of all
these requirements possibilities and focusing on each line of the domain
requirements and interface requirements documents.

The result of a machine requirements development phase is yet a (siz-
able) document — adjoint to the domain and interface requirements docu-
ments — that is expected to (system) requirements specify that which can
be also implemented.

4.3 Further SE Professionalism
Requirements engineering has been made easy. The domain is very stable.
There is now a clear, well-defined path from domain models to require-
ments models. The adage, i.e., the common observation, “requirements
always change” need no longer be true. For a software engineer to com-
mand the process of creating domain models and comfortably transform-
ing them into requirements with input from requirements stakeholders sig-
nifies professional SE.

5 Software Design
To round off the triptych approach to software development, such as advo-
cated here, we briefly mention that the requirements specifications (which
prescribe what), are now the basis for refinement into software designs
(the how). We shall not go into these aspects in this paper but refer the
reader to the rather fully comprehensive [5, 6, 7] other than recalling

D,S |= R

Correctness of S with respect to R can be proven using recorded assump-
tions about the D.

6 Rôle of Domain Descriptions

6.1 A Science Motivation
One rôle of domain modelling is that of obtaining and recording under-
standing. The domain engineer is a researcher: studies “new territory”.
Just as physicists for centuries have studied “mother” nature, so it is high
time we study the universes of man-made structures.7

6.2 A Engineering Motivation
Another rôle of domain modelling is the engineering one. We present an
elegantly formulated summary of the rôle of domain descriptions in soft-
ware engineering. It was expressed by Sir Tony Hoare — in an exchange
of e-mails in July 2006.

6.2.1 Tony Hoare’s Assessment
“There are many unique contributions that can be made by domain
modelling.

1. The models describe all aspects of the real world that are
relevant for any good software design in the area. They de-
scribe possible places to define the system boundary for any
particular project.

2. They make explicit the preconditions about the real world
that have to be made in any embedded software design, es-
pecially one that is going to be formally proved.

3. They describe the whole range of possible designs for the
software, and the whole range of technologies available for
its realisation.

4. They provide a framework for a full analysis of requirements,
which is wholly independent of the technology of implemen-
tation.

5. They enumerate and analyse the decisions that must be
taken earlier or later any design project, and identify those
that are independent and those that conflict. Late discovery
of feature interactions can be avoided.”

4

6.2.2 Structuring of Rôles
We rephrase our and Tony’s formulation as follows: Domain models rep-
resent theories of human organisations — and as such they are interesting
in and by themselves. Domain models also represent a first major result in
a software development: In proving correctness of Software with respect
to Requirements assumptions are repeatedly made about the Domain.
We can summarise the engineering rôle of domain engineering as follows:

D,S |= R

6.3 Conventional SE Paradigms
We are presenting a novel theory-based approach to software develop-
ment. This, the triptych approach has to compete with conventional soft-
ware development methods, that are currently en vogue in the industry.
Let us try relate these conventional methods to what we are advocat-
ing: Examples are: object-oriented programming (OO), unified model-
ing language (UML), component-based programming (CBSE), aspect-
oriented software engineering (AOS), and int∃ntion∀l software devel-
opment (∃∀).

I believe that you will find that some of the strengths of OO, CBSE and
especially ∃∀ are occurring “naturally” in both the domain engineering
and in the “derived” requirements engineering. That is, we wish to point
out how we can understand basic traits of OO, CBSE, AOP and especially
∃∀ and and thus explain why these approaches have won adherents.

6.3.1 OO Programming
We assume that the audience is well familiar with the OO programming
paradigm. We shall briefly list some of the OO “quarks” 4: class, object,
method, message passing, inheritance, encapsulation, abstraction and
polymorphism. Several of these “quarks” are specifically oriented at
programming rather than specifying.

The foremost feature of OO that are of interest in the context of do-
main and requirements engineering is the concept of objects. OO objects
are also present in the triptych approach to formalisation: the encapsu-
lation of related entities, functions and events in a module, with that
module now denoting possible behaviours. Many object modelling tech-
niques, essentially all discovered by the Simula 67 originators, carry over
to domain and requirements specification.

So first we remark that OO primarily addresses programming assum-
ing given requirements, whereas the triptych approach advocated here ad-
dress the entire span of software develop ment from, and significantly
focused on domain modelling, and on deriving requirements from domain
descriptions. The triptych approach advocated here does not prescribe
which combination of coding paradigms you may wish to use: OO, AOP,
CBSE, XP (Expert Programming), etc.

6.3.2 UML
UML, to us, is a confused approach to software development. Yet, how-
ever, it has some appealing features. It mixes informal textual specifica-
tions with several graphical techniques (Petri nets, MSCs, Statecharts). It
supposedly has a “powerful” data schema concept (class diagrams). In
UML you are programming more than you are specifying.

But UML, to us, has problems: It has no notion of abstraction. It
thus has no notion of stepwise development — necessary to conquer
complexity with a phase, and necessary to separate the necessarily sepa-
rated phases of domain modelling (the why), requirements modelling (the
what), and software design (the how) One cannot reason logically over
UML specifications. It is placed somewhere between requirements and
software design specifications. For these reasons we cannot take UML
serious and we wonder why professional software engineers do?

4Term used by Ms Deborah J. Armstrong in naming
fundamental OO concepts (http://en.wikipedia.org/wiki/Object-
oriented programming)

6.3.3 CBSE: Component-based SE
A basic concern of CBSE is building software systems from reusable com-
ponents. There seems to be many different “schools” of CBSE. Being in
Japan it is reasonable to follow that of the CBSE Group, Fukazawa Lab-
oratory, Waseda University5: In a narrow sense,a software component is
defined as a unit of composition, and can be independently exchanged in
the form of an object code without source codes. The internal structure of
the component is not available to the public. The characteristics of the
component-based development are the following:

• Black-box reuse

• Reactive-control and component’s granularity

• Using RAD (rapid application development) tools

• Contractually specified interfaces

• Introspection mechanism provided by the component systems

• Software component market (CALS)

It is natural to model and implement components in an object-oriented
paradigm/language. Therefore, when understanding the component, the
traditional techniques in the OO paradigm such like OO framework, de-
sign patterns, architecture patterns and meta-patterns are very important

We shall now try evaluate basic tenets of CBSE in light of the triptych
approach. We strongly advice that search for components start at the level
of domain modelling. Once identified in the domain, requirements may
project, instantiate, determinate, extend and fit them in a variety of ways.
Such domain-to-requirements operations may be expressed in the form of
adjusting suitable parameters to a schema/module/object like abstract for-
malisation of the domain component. From here on many of the intriguing
issues of CBSE can be better understood, either as basic abstraction-to-
concretisation refinements or as simple coding tricks. CBSE certainly has
a rôle in making the triptych approach even more viable.

6.3.4 AOP: Aspect-oriented Programming
A basic concern of AOP is that some code is scattered or tangled, making
it harder to understand and maintain. It is scattered when one concern
(like logging) is spread over a number of modules (e.g., classes and meth-
ods). That means to change logging can require modifying all affected
modules. Modules end up tangled with multiple concerns (e.g., account
processing, logging, and security). That means changing one module en-
tails understanding all the tangled concerns.

AOP attempt to aid programmers in the separation of concerns, specif-
ically cross-cutting concerns, as an advance in modularization. AOP does
so using primarily language changes, while AOSD (aspect-oriented soft-
ware development) uses a combination of language, environment, and
methodology.

Separation of concerns entails breaking down a program into distinct
parts that overlap in functionality as little as possible. All programming
methodologies — including procedural programming and object-oriented
programming — support some separation and encapsulation of concerns
(or any area of interest or focus) into single entities. For example, proce-
dures, packages, classes, and methods all help programmers encapsulate
concerns into single entities. But some concerns defy these forms of en-
capsulation. Software engineers call these cross cutting concerns, because
they cut across many modules in a program.

So, really, AOS, is primarily a coding discipline. So why do we bring
it up here, in a presentation which is primarily not about coding, but about
domains and requirements. Some software engineers (may) ask: What is
relation between the triptych approach and AOS?Our answer is: The cross
cutting concerns appear not to be caused by domain requirements, nor by
interface requirements, but by machine requirements. Thus problems of
cross-cutting concern appears to be introduced in a serious, but not really
user-oriented stage of requirements development. This “discovery” might
enlighten researchers in the AOS community.

5http://www.fuka.info.waseda.ac.jp/Project/CBSE

5

6.3.5 ∃∀: Intentional Software Development
The intentional software development paradigm is the creation of Charles
Simonyi6 .

It appears that little if any literature is readily accessible [35, 1, 36,
37]. So we shall resort to quoting from Intentional Software’s Web page
(http://intentsoft.com/technology/glossary.html). The quotes are in sans
serif.

Domain: A domain is an area of business, engineering or so-
ciety for which a body of knowledge exists. Examples include
health care administration, telecommunications, banking, account-
ing, avionics, computer games and software engineering.

Domain Code: Domain code is the structured code to rep-
resent the intentions contributed by subject matter experts for the
problem being solved. Domain code includes contributions from
all domains relevant to the software problem. Domain code is not
executable (as traditional source code is - by compilation or inter-
pretation), but it can be transformed into an implementation solution
when it is input to a generator that has been programmed to per-
form that transformation process.

Domain-Oriented Development: Domain-oriented
development is the process of separating the contributions of
subject matter experts and programmers to the maximum extent
so that generative programming can be applied to structured
domain code. This greatly simplifies improvements to the domain
and implementation solutions.

Domain Schema: A domain schema is a schema for a spe-
cific domain. The domain schema defines the domain terminology
and any other information that is needed — for the intentional ed-
itor and generator to work — such as parameters, help text, de-
fault values, applicable notations and other structure of the domain
code. Domain schemas are created by the subject matter ex-
perts and programmers working together, and are expressed in a
schema language.

Domain Terminology: Domain terminology means the
terms of art (words with a special meaning) in a domain, for exam-
ple “claim payment” in health care administration. Domain terminol-
ogy is important because it is the usual way to express intentions.
Broadly speaking, terminology includes notations normally used by
a subject matter expert, such as tables, flowcharts and other sym-
bols. The meaning of the terms is part of the domain knowledge
that is shared between subject matter experts and programmers to
the extent necessary and ultimately designed into domain schemas
and the generator.

Discussion: Intentional software development, it should be clear
from the above builds on a number of software development tools which
are provided with domain description-like information and which can then
significantly automate code generation. Other than that shall neither com-
ment nor speculate on Charles Simonyi’s characterisations.7 We believe
that the reader can easily see the very tight relations to the triptych phases
of development. We find them fascinating and will try communicate our
own observations to Charles Simonyi before commenting in depth. ∃∀
certainly has a rôle in making the triptych approach even more viable.

6Intentional Software, Bellevue, Washington, USA;
http://intentsoft.com

7Well, I cannot, of course, refrain from saying that my stu-
dents have founded a number of Danish software companies
whose corporate asset it is that they generate code for application
of the domain specific area which is their company’s hallmark.

7 Conclusion

7.1 What Have We Achieved?
We have outlined two of the major phases of an extended)read: new)
approach to software development: domain engineering — primarily —
and requirements engineering — as it relates to domain engineering. We
have not really covered the relation of requirements engineering to soft-
ware design, i.e., programming — other than now saying: software design
is then a further refinement of the requirements, and, well, read next! We
have then related this, the triptych approach to some current programming
and software development paradigms: OO, CBSE, AOS — as mostly pro-
gramming cum coding paradigms, and Intentional Software Develop-
ment which, to us, have a much clearer and cleaner understanding of the
domain, with the domain intentions, when being edited, probably having
the editing stage amount to, or being based on some form of requirements
development. We shall certainly look into Intentional Software Develop-
ment more closely.

7.2 What More Need be Achieved?
Well, on the basis of three volumes,

• D. Bjørner: Software Engineering, Vol. 1: Abstraction and Mod-
elling (Springer, 2006)

• D. Bjørner: Software Engineering, Vol. 2: Specification of Systems
and Languages (Springer, 2006)

• D. Bjørner: Software Engineering, Vol. 3: Domains, Requirements
and Software Design (Springer, 2006)

supported by almost 6,000 lecture slides and supported extensive RAISE
tools, what more could one wish?

The answer is: more tools, tools to support documentation: creation,
editing, versioning, etc.; tools to support domain and requirements acqui-
sition and analysis; tools to extend the use of RAISE; as well as tools
to integrate the formal use of RAISE with the formal use of Petri nets
[25, 30, 31, 32, 33], MSCs [22, 23, 24], LSCs [12, 20, 26], Statecharts
[16, 17, 19, 21, 18], Duration Calculus and TLA+ [38, 39], [27, 28, 29],
etc. [2, 15, 11, 10, 34], further theorem proving, proof checking, model
checking and testing tools.

7.3 Acknowledgments
The author gratefully acknowledges the support of JAIST and of his col-
league, Prof. Kokichi Futatsugi. The author also gratefully acknowledges
Prof. Hironori Washizaki, National Institute of Informatics , for so kindly
having invited me to write and present this paper at the IPSJ/SIGSE Soft-
ware Engineering Symposium in Tokyo in Oct. 2006.

References
[1] W. Aitken, B. Dickens, P. Kwiatkowski et al: Transformation in in-

tentional programming. In: Fifth International Conference on Soft-
ware Reuse, ICSR’98 (Victoria, Canada)

[2] K. Araki, A. Galloway, K. Taguchi, editors. IFM 1999: Integrated
Formal Methods, volume 1945 of Lecture Notes in Computer Sci-
ence, York, UK, June 1999. Springer. Proceedings of 1st Intl. Conf.
on IFM.

[3] D. Bjørner: Formal Software Techniques in Railway Systems. In:
9th IFAC Symposium on Control in Transportation Systems, ed by
E. Schnieder (2000) pp 1–12

[4] D. Bjørner: Dynamics of Railway Nets: On an Interface between
Automatic Control and Software Engineering. In: CTS2003: 10th
IFAC Symposium on Control in Transportation Systems (Elsevier
Science Ltd., Oxford, UK 2003)

6

[5] D. Bjørner: Software Engineering, Vol. 1: Abstraction and Mod-
elling (Springer, 2006)

[6] D. Bjørner: Software Engineering, Vol. 2: Specification of Systems
and Languages (Springer, 2006)

[7] D. Bjørner: Software Engineering, Vol. 3: Domains, Requirements
and Software Design (Springer, 2006)

[8] D. Bjørner, C. George, S. Prehn. Scheduling and Rescheduling of
Trains, chapter 8, pages 157–184. Industrial Strength Formal Meth-
ods in Practice, Eds.: Michael G. Hinchey and Jonathan P. Bowen.
FACIT, Springer–Verlag, London, England, 1999.

[9] D. Bjørner, C.W. George, S. Prehn: Computing Systems for Rail-
ways — A Rôle for Domain Engineering. Relations to Require-
ments Engineering and Software for Control Applications. In: In-
tegrated Design and Process Technology. Editors: Bernd Kraemer
and John C. Petterson (Society for Design and Process Science,
P.O.Box 1299, Grand View, Texas 76050-1299, USA 2002)

[10] E.A. Boiten, J. Derrick, G. Smith, editors. IFM 2004: Integrated
Formal Methods, volume 2999 of Lecture Notes in Computer Sci-
ence, London, England, April 4-7 2004. Springer. Proceedings of
4th Intl. Conf. on IFM. ISBN 3-540-21377-5.

[11] M.J. Butler, L. Petre, K. Sere, editors. IFM 2002: Integrated For-
mal Methods, volume 2335 of Lecture Notes in Computer Science,
Turku, Finland, May 15-18 2002. Springer. Proceedings of 3rd Intl.
Conf. on IFM. ISBN 3-540-43703-7.

[12] W. Damm, D. Harel: LSCs: Breathing Life into Message Sequence
Charts. Formal Methods in System Design 19 (2001) pp 45–80

[13] C.W. George, P. Haff, K. Havelund et al: The RAISE Specification
Language (Prentice-Hall, Hemel Hampstead, England 1992)

[14] C.W. George, A.E. Haxthausen, S. Hughes et al: The RAISE Method
(Prentice-Hall, Hemel Hampstead, England 1995)

[15] W. Grieskamp, T. Santen, B. Stoddart, editors. IFM 2000: Inte-
grated Formal Methods, volume of Lecture Notes in Computer Sci-
ence, Schloss Dagstuhl, Germany, November 1-3 2000. Springer.
Proceedings of 2nd Intl. Conf. on IFM.

[16] D. Harel: Statecharts: A Visual Formalism for Complex Systems.
Science of Computer Programming 8, 3 (1987) pp 231–274

[17] D. Harel: On Visual Formalisms. Communications of the ACM 33,
5 (1988)

[18] D. Harel, E. Gery: Executable Object Modeling with Statecharts.
IEEE Computer 30, 7 (1997) pp 31–42

[19] D. Harel, H. Lachover, A. Naamad et al: STATEMATE: A Work-
ing Environment for the Development of Complex Reactive Systems.
Software Engineering 16, 4 (1990) pp 403–414

[20] D. Harel, R. Marelly: Come, Let’s Play – Scenario-Based Program-
ming Using LSCs and the Play-Engine (Springer-Verlag, 2003)

[21] D. Harel, A. Naamad: The STATEMATE Semantics of Statecharts.
ACM Transactions on Software Engineering and Methodology
(TOSEM) 5, 4 (1996) pp 293–333

[22] ITU-T. CCITT Recommendation Z.120: Message Sequence Chart
(MSC), 1992.

[23] ITU-T. ITU-T Recommendation Z.120: Message Sequence Chart
(MSC), 1996.

[24] ITU-T. ITU-T Recommendation Z.120: Message Sequence Chart
(MSC), 1999.

[25] K. Jensen: Coloured Petri Nets, vol 1: Basic Concepts (234 pages +
xii), Vol. 2: Analysis Methods (174 pages + x), Vol. 3: Practical Use
(265 pages + xi) of EATCS Monographs in Theoretical Computer
Science (Springer–Verlag, Heidelberg 1985, revised and corrected
second version: 1997)

[26] J. Klose, H. Wittke: An Automata Based Interpretation of Live Se-
quence Charts. In: TACAS 2001, ed by T. Margaria, W. Yi (Springer-
Verlag, 2001) pp 512–527

[27] L. Lamport: The Temporal Logic of Actions. Transactions on Pro-
gramming Languages and Systems 16, 3 (1995) pp 872–923

[28] L. Lamport: Specifying Systems (Addison–Wesley, Boston, Mass.,
USA 2002)

[29] S. Merz: On the Logic of TLA+. Computing and Informatics 22, 1–2
(2003)

[30] C.A. Petri: Kommunikation mit Automaten (Bonn: Institut für In-
strumentelle Mathematik, Schriften des IIM Nr. 2, 1962)

[31] W. Reisig: Petri Nets: An Introduction, vol 4 of EATCS Monographs
in Theoretical Computer Science (Springer Verlag, 1985)

[32] W. Reisig: A Primer in Petri Net Design (Springer Verlag, 1992)

[33] W. Reisig: Elements of Distributed Algorithms: Modelling and
Analysis with Petri Nets (Springer Verlag, 1998)

[34] J.M. Romijn, G.P. Smith, J.C. van de Pol, editors. IFM 2005: Inte-
grated Formal Methods, volume 3771 of Lecture Notes in Computer
Science, Eindhoven, The Netherlands, December 2005. Springer.
Proceedings of 5th Intl. Conf. on IFM. ISBN 3-540-30492-4.

[35] C. Simonyi: The Death of Computer Languages, the Birth of In-
tentional Programming. In: NATO Science Committee Informatics
Conference (1995)

[36] C. Simonyi: The Future is Intentional. Computer 32, 5 (1999) pp
56–57

[37] C. Simonyi: Intentional Programming: Asymptotic Fun? In: Posi-
tion Paper, SDP Workshop, Vanderbilt University (December, 2001)

[38] C.C. Zhou, M.R. Hansen: Duration Calculus: A Formal Approach
to Real–time Systems (Springer–Verlag, 2004)

[39] C.C. Zhou, C.A.R. Hoare, A.P. Ravn: A Calculus of Durations. In-
formation Proc. Letters 40, 5 (1992)

7

Contents
1 Introduction 1

1.1 Triptych Dogma . 1
1.2 Triptych of Software Development 1

2 An Example: Railway Nets 1
2.1 Narrative . 1
2.2 Formalisation . 2
2.3 References . 2

3 Domains 2
3.1 Examples of Domains 2
3.2 Domain Description 2

3.2.1 What Is a Domain Description 2
3.2.2 How Is a Domain Description Expressed? 3
3.2.3 Existing Descriptions 3

3.3 Domain Engineering 3
3.3.1 How to Construct a Domain Description? 3
3.3.2 Domain Stakeholders 3
3.3.3 Domain Acquistion 3
3.3.4 Domain Analysis 3
3.3.5 Domain Modelling Proper 3
3.3.6 Domain Verification 3
3.3.7 Domain Validation 3
3.3.8 Discussion 3

3.4 Professionalism of SE 3

4 “Deriving” Requirements 4
4.1 “The Machine” . 4
4.2 Three Kinds of Requirements 4

4.2.1 Domain Requirements 4
4.2.2 Interface Requirements 4
4.2.3 Machine Requirements 4

4.3 Further SE Professionalism 4

5 Software Design 4

6 Rôle of Domain Descriptions 4
6.1 A Science Motivation 4
6.2 A Engineering Motivation 4

6.2.1 Tony Hoare’s Assessment 4
6.2.2 Structuring of Rôles 5

6.3 Conventional SE Paradigms 5
6.3.1 OO Programming 5
6.3.2 UML . 5
6.3.3 CBSE: Component-based SE 5
6.3.4 AOP: Aspect-oriented Programming 5
6.3.5 ∃∀: Intentional Software Development 6

7 Conclusion 6
7.1 What Have We Achieved? 6
7.2 What More Need be Achieved? 6
7.3 Acknowledgements 6

8

