
On Domains and Domain Engineering
Prerequisites for Trustworthy Software

A Necessity for Believable Project Management

• Before software can be designed we must understand its requirements.
• Before requirements can be prescribed we must understand the domain.

With the attached document we wish to make the reader aware of a new dimension to
software engineering.

• Automotive engineers have their application science include those of mechanics and
of thermodynamics and be otherwise based on applied mathematics.

• Mobile phone engineers have their application science include those of electromag-
netic field theory and of electronics and be otherwise based on applied mathematics.

• Application software engineers, till now, have only had their professionalism be “oth-
erwise” based on computer science. There has, effectively speaking, not been an ap-
propriate set of application sciences, one for each domain of software applications.

• Domain engineering, applied to application areas such as administrative forms pro-
cessing (i.e., documents), air traffic, financial service systems, health care, manufac-
cturing, “the market” (including digital rights management), transportation, etc.,
raises the specter of there now emerging proper software application sciences.

In the attached (still draft) document we outline, in a more pedantic manner, several of
the issues stemming from domain engineering.

• We bring small in-line examples illustrating facets of domains and their description.
• We summarise engineering approaches to domain and to requirements modelling.
• We show how the latter, requirements engineering, changes and becomes more stable

and a more well-founded professional activitity.
• And we show, in five appendixes, “small” scale examples of domain descriptions of

transportation nets, manufacturing, documents, “the market” and cyberrail.

We hope with this to make you interested in making your group an even more professional
engineering enterprise.

Domain Engineering and Digital Rights Group, April 28, 2006
Graduate School of Information Science

JAIST: Japan Institute of Advanced Science & Technolog
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Preface

Warning: This is a Casual Document

This is not a technical scientific document. This is a casual, sort of
“advertisement” document. Behind this document lies a major three-volume
technical/scientific reference work [11–13]. What may appear as claims in the
present document are fully substantiated in the 2416 pages of this referenced
major work.

The intended target audiences for this document are business, soft-
ware developement and research managers of from small via medium to large
scale software houses as well as my peer colleagues in computer and computing
science.

The aim of this document is to explain the concepts of domain and
domain engineering, and motivate why the reader should be interested in
understanding what we have to say.

The undoubtedly ambitious objective of this document is, on the ba-
sis of presentations given by me and my colleagues to the above-mentioned
managers — and as based on this document — to convince them that their
enterprise ought engage in some form of loose or less-loose collaboration aimed
at some form of joint domain engineering (“trial run”) activity.
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FAQ: Domains and Domain Models

In this chapter we bring in some definitions related to domains (Sect. 1.1),
we briefly characterise what a domain description contains (Sect. 1.2), and we
overview the triptych dogma of developing software from domain models via
requirements to software design (Sect. 1.3). In Sect. 1.3 we also briefly touch
upon such issues as “domains change slowly”, “requirements do not change
that often” and “domain knowledge representing corporate assets”. After that
we overview the triptych phases of development (domain engineering, require-
ments engineering and software design) (Sect. 1.4). The chapter ends with a
reference to business process engineering (Sect. 1.5).

1.1 Some Definitions

1.1.1 Domains

By a domain we understand a universe of discourse, an area of human activity
or an area of science — sufficiently well delineated to justify given it a name:
the name domain, and sufficiently well distinguished from “neighbouring”
universes or areas to avoid unnecessary overlap and confusion.

1.1.2 Examples of Domains

Examples of domains are: air traffic, financial service industry (banks, insur-
ance companies, portfolio managers, stock brokers, traders and exchanges,
etc.), transportation (railways or road nets or airline nets or shipping nets),
health care (from private physicians and pharmacies via analytical laborato-
ries and rehabilitation clinics to hospitals, etc.), manufacturing, etc. These
were examples of components of a country’s or a region’s infrastructure. An-
other example is documents (of any form, shape and medium, being created,
modified (edited), copied, moved, etc.). And yet another example is rights
management of digital documents (usually music recordings, books, movies,
photos [images in general], also known as DRM).
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1.1.3 Domain Engineering

By domain engineering we understand the modeling of a domain: a careful
description of the domain as it is, void of any reference to possibly desired
new software, including requirements to such software.

1.1.4 Domain Model and Domain Theory

By a domain theory we understand a formal model of a domain such that
properties of the domain can be stated and formally verified.

A domain model is thus a description of a sufficient number of domain
entities, domain functions, domain events and domain behaviours — so as to
be able to answer most relevant questions about the domain.

1.2 What Is a Domain Description?

A domain description describes the domain: in natural language, for example
Japanese or English, and mathematically, in some abstract, formal specifica-
tion language.

What do the descriptions describe? The short answer is: entities, functions,
events and behaviours. A slightly longer answer is given next.

1.2.1 Entities and Types

They describe the entities of the domain: the manifest phenomena — things
that you can point to or measure by scientific instruments — and concepts
derived from these — things that can be defined in terms of the phenomena.

Example 1.1 Entities: We exemplify the notion of entities:

Financial Service Industry: Bank accounts, whether demand/deposit, savings
& loan, or other are entities. So are monies, bank cards, credit cards,
securities instruments like bonds and stocks. Etcetera.

The Market: The core entity is merchandise (goods, wares for sale).
Transportation Nets: Road, rail, shipping lane, and air lane segments and

corresponding junctions are entities. States of junctions (open or closed
for movement across a junction from a segment to another segment) are
conceptual entities.

Documents: A document is an entity.

The domain stakeholders decide which aggregations of entities constitute the
dynamic, value-varying state of the domain, which constitute the static, more-
or-less value-constant context of the domain.
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1.2.2 Functions

Functions apply to entities, some of them “input” to the domain, some being
states and/or context values of the domain and yield entities, either “output”
from the domain, or new states.

Example 1.2 Functions: We exemplify the notion of functions:

Financial Service Industry: Opening and closing bank accounts, buying and
selling securities instruments, buying on a credit card, depositing into and
withdrawing monies from an account, etc., are functions.

The Market: Buyers inquiring about availability, price and delivery terms
of specific merchandise, sellers offering this information, buyers ordering
quantities of merchandise, sellers acknowledging such orders (or not) and
delivering the goods, buyers accepting the goods — or rejecting them, and
sellers invoicing accepted goods — with buyers paying the invoice, etc.

Transportation Nets: Changing the state of a junction (from “red” to
“green”) is a function. So is adding a new segment, removing an old one,
etc.

Documents: Creating, copying and editing documents are functions.

1.2.3 Events

We may label as events some state or context changes.

Example 1.3 Events: We exemplify the notion of events:

Financial Service Industry: The event of going below a credit limit when with-
drawing monies from an account. The event of a bank failing to meet its
obligations. The event of a listed stock company failing to properly report
its quarterly dividends.

The Market: The event of running out of stock of some merchandise in some
retailer or wholesaler or producer. The event of a buyer failing to pay an
overdue invoice.

Transportation Nets: The event of having to turn a junction state into all
“red” because of a traffic accident.

Documents: The event of creating the billionth document!

1.2.4 Behaviours

Behaviours are sequences of function actions and events.
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Example 1.4 Behaviours: We exemplify the notion of behaviours:

Financial Service Industry: The opening of a demand/deposit account fol-
lowed by a sequence of zero, one or more deposits and withdrawals and
ending with the closing of the account forms a behaviour.

The Market: There are customer, retailer, wholesaler and producer be-
haviours, as well as the behaviours of the delivery of the merchandise
between from producers via wholesalers to retailers and consumers.

Transportation Nets: The movement of transport conveyours (cars, trains,
ships and aircraft) along segments, and into and out of junctions, forms a
behaviour.

Documents: The sequence of creating a document, editing it, copying it, edit-
ing and copying the copy, etc., forms a behaviour.

1.2.5 Domain Descriptions are Serious Documents

Examples 1.1–1.4 illustrated tiny aspects of domains. A reasonably compre-
hensive and fully consistent domain description of even the “tiniest” domain
is a serious document. It takes much time and many human resources to
establish a trustworthy domain description.

Appendices C–G (Pages 93–182) shows fragments of realistic domain mod-
els of (C) transportation nets, (D) manufacturing, (E) documents, (F) “the
market” and (G) a futuristic railway service concept CyberRail.

1.3 The Triptych Dogma

The triptych dogma is the basis for Vol. 3 of [11–13].

The Triptych Dogma

Before software can be developed one, the software developers and the
clients contracting this software must understand the requirements.

Before requirements can be developed one, the software developers and
the clients contracting these requirements must understand the domain.

Needless to say, this document would not be issued if the concept of domain
was widely known and if the concept of first doing domain engineering before
requirements engineering was likewise well accepted.

1.3.1 Other Engineering Branches Have Their Domain Theories

Automotive engineers have the physical sciences of mechanics and thermo-
dynamics as part of their well-understood domain. Mobile telephony engi-
neers have the physical sciences of electronics and radio communication (i.e.,
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Maxwell’s Equations) as part of their well-understood domain. Aeronautics
engineers have celestial mechanics and aerodynamics as part of their well-
understood domain. Civil engineers have soil physics and structural mechanics
as part of their well-understood domain.

Nissan, Mazda and Toyota would only hire such automotive engineers who
have the necessary and sufficient scientific and technical skills in their basic
science. NTT DoCoMo would only hire such radio and electronics engineers
who have the necessary and sufficient scientific and technical skills in their
basic science. And so on.

If a software engineer develops software for the financial service indus-
try then, besides the tool science of computing, that software engineer needs
know “all about” the financial service industry domain theory! Similar for
software applications within transportation, health care, manufacturing, air
traffic, “the market”, etcetera.

It is about time, we think, that application software engineers be given the
same opportunity to also conduct their work professionally — by providing
them with suitable domain theories.

1.3.2 Domains Change Slowly

Domains change slowly. The majority of phenomena and concepts of the fi-
nancial service industry remain the same over decades. What you see, today,
as a possibly bewildering array of fancy offers is but neat combinations of
standard, well-known basic concepts, basic facilities put to new uses. Similar
for “all other” domains.

1.3.3 In Future Requirements Will “Never” Change

Some software engineers, and especially some academic software engineering
scientists claim that requirements always change — and that therefore “their
little gimmick contribution” to requirements engineering offers a solution to
the problem. Well, once you have understood the underlying, and, we claim,
rather stable domain, then requirements tend not to change “at all”!

1.3.4 Corporate Assets

So, we claim, it is a good thing for a mature, professional software house to
focus on its core businesses in terms of one, two or a few more domains. To
build up domain knowledge — not just in the heads of its loyal staff — but
more importantly, on paper, e.g., electronically “inside the computer”: in the
form of carefully constructed, carefully maintained, carefully protected and
carefully adhered to domain theories. Once in place, even rudiments of such
theories should convince existing and potential clients that their provider is
the real pro.
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1.4 Proper Software Development

So, for us, software development proceeds in phases:

1.4.1 Domain Engineering

If one has not already been established for the wider domain of some appli-
cation, then establish first a domain model — usually with a scope thta is far
wider than the usually narrow span of the subsequent requirements.

The domain model usually embodies descriptions of the following domain
facets:

• the domain intrinsics: that in terms of which all other facets are ex-
pressed,

• the supporting technologies of the domain,
• the management and organisation of the domain,
• the rules and regulations of the domain,
• the domain scripts, and
• the human behaviour of the domain.

Chapter 2 will touch upon some issues of how to construct a domain model.

1.4.2 Requirements Engineering

From the domain model, in stages of development, and in close interaction
with requirements stakeholders, construct the machine, i.e., the hardware +
software computing system. There are three parts to requirements:

• The domain requirements: those requirements which can be expressed
solely using terms of the domain. (Usually domain requirements are called
functional requirements.)

• The interface requirements: those requirements which are expressed
using terms both of the domain and of the machine — building up around
the entities, functions, events and behaviours that are (to be) shared be-
tween the domain and the machine.

• The machine requirements: those requirements which can be expressed
solely using terms of the machine. (Usually domain requirements are called
non-functional requirements.)

Chapter 3 will touch upon some issues of how to construct a requirements
model from a domain model.

1.4.3 Software Design

From the requirements model, in stages of development, we design the soft-
ware.

Chapters 27–28 of Vol. 3, [13], of [11–13] cover a number of techniques for
“deriving” trustworthy software from requirements.
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1.5 Business Process Engineering and Reengineering

Crucial elements in software engineering and in providing services to IT clients
is that of identifying the business processes and suggesting the revision of
business processes.

With carefully worked out domain descriptions the pursuit of business
process engineering and reengineering takes on a far more professional role.

We therefore claim that pursuing serious domain engineering helps con-
sultancy firms better advise their clients.

We refer to Appendix A for more on business process engineering and
reengineering.

1.6 Precise Narratives and Formal Specifications

Appendices C–G show both informal and formal domain descriptions.

• The informal, yet precise narratives are directed at domain and require-
ments stakeholders.

• The formal descriptions — “tuned” carefully, almost line-by-line to the
informal narratives — are directed at software engineers representing both
the developers and acting as consultants to the domain client.

In this document we show only RSL [39, 41] specifications. We are now, at
JAIST, developing corresponding models in CafeOBJ [31,37,38].

In domain and in requirements verification the strong, interactive verifica-
tion features are expected to bring a heretofore unseen high level of trust to
bear on domain descriptions and on requirements prescriptions.
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FAQ: Domain Engineering

2.1 With Whom to do Domain Models?

Domain models are developed in close collaboration with stakeholders of the
domain.

Example 2.1 Stakeholders: Typical stakeholders of the financial services do-
main are:

• The owners of banks, insurance companies, stock broking companies, the
stock exchange, credit card companies, etc.

• The executive, divisional, and operational layers of managers of the insti-
tutions just mentioned above.

• The clerks, i.e., the “floor” workers of the banks, the insurance companies,
the stock broking companies, the stock exchange, the credit card company,
etc., institutions.

• The customers of banks, insurance companies, stock broking companies,
the stock exchange, the credit card companies, etc.: private citizens as well
as commercial forms (businesses, industries, etc.).

• The government regulatory agencies: Federal Savings & Loan Agency, Fed-
eral Reserve Bank, Stock Exchanges Commission, etc.

• The ministries of finance, commerce, etc.
• Politicians.

In other words, the stakeholder group is quite large.

2.2 What Role “Business Process Engineering”?

We refer to Appendix A for detailed accounts and examples of the concepts
of business processes and business process reengineering.
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It is of utmost importance to identify all those business processes that
might possibly be affected by requisition of new computing systems. Once a
new computing system has been installed then many of the people acting in the
domain need change their business processes. Hence — as we shall see in the
next chapter, FAQ: Business Process Reengineering — requirements engineer-
ing need establish careful reengineering prescriptions (see also Appendix A).
That can only be done if the domain engineering work has constructed similar
careful business process descriptions.

2.3 Which Are the Facets of a Domain Model?

By a facet of a domain we understand a way of looking at the domain, some
view, from some stakeholder or other perspective, of the domain.

We can identify the following domain facets:

• Intrinsics
• Support Technology
• Management & Organisation
• Rules & Regulations
• Scripts
• Human Behaviour

We will briefly touch upon each of these.

2.3.1 Intrinsics

By intrinsics we mean the absolute barebones of a domain: That without
which it is not meaningful to talk about anything in the domain.

Example 2.2 Intrinsics of Transportation: In order to transport there must
be a (i) path, from one location to another, along which to transport (a se-
quence of one or more road segments, rail lines, shipping lanes, airlanes —
called segments connected by junctions); there must something to transport,
i.e., a (ii) load (freight, passenger); there must be a (iii) conveyour (that
transports, i.e., a vehicle, a car, a train, a ship, an aircraft), and there must
be (iv) movement. The terms path (segment, junction), load (freight, passen-
ger), conveyour (car, train, ship, aircraft), and movement are the intrinsics of
transportation.

A domain description must describe all the intrinsics.
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2.3.2 Support Technology

By support technology we mean the technological or human means for affect-
ing functions and for “carrying” (embodying) entities of the domain.

Example 2.3 Support Technology of Transportation: To regulate traffic
along a road net, one often deploys signals, for example the red/yellow/green
semaphores of road junctions. To switch trains from one line to another line
one deploys switches (point machines) and the switch technology may man-
ifest itself in many ways: hand thrown switches (as in the very old days),
mechanically pulled switches (from cabin towers with mechanical pulleys and
wires), electromechanical such, or, as today, the solid state interlocking of
groups of switches.

A domain description must describe all the relevant support technologies.
The descriptions must include descriptions of failure modes, of probabilities
of failure, of timing of operations, etc.

2.3.3 Management & Organisation

By management & organisation we mean the structure of layers of manage-
ment and the issues that are dealt with by management: giving directives, set-
ting codes of conduct (rules & regulations), “back-stopping” (timely responses
to) problems arising in lower levels of the worker and manager hierarchy, etc.

Example 2.4 Management & Organisation: Manufacturing: In a production
plant management must set strategic goals and tactical plans for implement-
ing these goals. Strategies deal with such matters as when should goodwill
in the market be turned into extra borrowing of funds for expansion — that
is conversion of one form of resources to other forms. Tactics deal with such
matters as which allocation and scheduling of serially reusable resources must
be implemented in order to achieve smooth production, balanced use of re-
sources, etc.

A domain description must describe all the management & organisation enti-
ties, functions, events and behaviours.

2.3.4 Rules & Regulations

By a rule we mean a directive that states how a human should act in the
domain, or how technology in the domain is expected to behave, including be
deployed.

By a regulation we mean a directive that states what should occur if a
rule is found not to be followed.
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Example 2.5 Rules & Regulations: Banking: Rule: For normal de-
mand/deposit bank accounts a demand (a withdrawal of money) should not
bring the account balance below zero. Regulation: If it does, then the trans-
action should be rejected, and the account holder notified.

A domain description must describe all the rules & regulation entities, func-
tions, events and behaviours.

2.3.5 Scripts

By a script we understand a semi- to fully formal description of rules and
of regulations — such that can possibly be computerised and/or which can
stand the test of the rule-of-law.

Example 2.6 Scripts: Digital Rights Management Licenses: Currently there
is a lot of interest in DRM: Digital Rights Management licensing of use of
digital works such as music and movie videos. These licenses are usually ex-
pressed in a so-called rights expression language. The DRM can then decide
whether actual uses of the digital works satisfy, i.e., are in accordance with
the licenses.

A domain description must describe all the script entities, functions, events
and behaviours.

2.3.6 Human Behaviour

By human behaviour we understand the entities, functions, events and be-
haviours of humans as they go about discharging their work in the domain.
Some do it diligently, with care, some with less care, some sloppily, some
delinquently, and some in an outright criminal matter.

Example 2.7 Human Behaviour: A bank clerk must check and double check
customer identification versus account information. Doing so is diligence. Fail-
ing occasionally to do so is sloppy. Forgetting outright to even check may be
an act of criminal neglect.

A domain description must describe all the human behaviour entities, func-
tions, events and behaviours: looseness, non-determinism, vagrancy, and all!

If subsequent software requirements are to cope with human failures within
the above outlined spectrum and if one has not properly described that spec-
trum, then one cannot prescribe proper requirements.
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2.4 How to Acquire Domain Knowledge?

We see the following — initially tentative — steps in the process of domain
acquisition:

• The domain engineer is familiarised with the domain through on-site visits
and casual talks with as full a variety of domain stakeholders as can be
made available.

• The domain engineer may have access to more or less casual descriptions
of the domain from elsewhere. Such documents are also studied in the very
initial domain acquisition stage.

• The domain engineer, on the basis of such casual talks, tries out an own,
rudimentary domain model — enough for the domain engineer now to
formulate an extensive domain questionnaire.

• The domain engineer now present that domain questionnaire to different
groups of domain stakeholders.

• For each such group the questionnaire asks questions that cover:

⋆ the entities,
⋆ the functions,
⋆ the events, and
⋆ the behaviours

of the domain, and from each of the full variety of domain facets:
⋆ the intrinsics,
⋆ the support technologies,
⋆ the management & organisation,
⋆ the rules & regulations,
⋆ the script, and
⋆ the human behaviour facets.

• Individuals and groups of individuals within the diverse stakeholder com-
munities are now, possibly guided by the domain engineers, to answer the
questionnaire. Usually the answers can be expressed in one or two line
statements. We refer to these statements as domain description units.

• The domain description units are now indexed, classified, categorised, anal-
ysed, and possibly revised — with stakeholders.

• A “final” such, usually very large, database registered set of domain de-
scription units — free from inconsistencies and otherwise relative complete
— form the basis for the domain engineer’s domain description, informal
and formal.

• Thus ends the domain acquisition stage when the domain description stage
has begun.
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2.5 How to Validate a Domain Model?

To Get the Right Domain

Domain validation is about getting the right domain. Not a domain descrip-
tion which describes entities, functions, events and behaviours that were not
intended, but intrinsics, support technologies, management & organisation,
rules & regulations, scripts and human behaviours which indeed characterise
the domain in question.

After the resource-consuming domain description stage comes the stage where
the proposed domain model is put forward for validation. Domain validation
is a stage in which domain stakeholders, typically a subset of those who took
part in the domain acquisition stage, collaborate with the domain engineers.

Line-by-line the two “parties” go through the informal description of the
domain: its entities, functions, events and behaviours; its business processes;
and its intrinsics, support technologies, management & organisation, rules &
regulations, scripts and human behaviours. Agreement has to be reached on
each and every item of description. Disagreements lead to revisions of the
domain description. Sooner or later the domain modeling process stabilises.

The domain validation process can be supported technologically by reason-
ably sophisticated hyper-link cross-referenced domain description documents.

2.6 How to Verify a Domain Model?

To Get the Domain Right

Domain verifications is about getting th domain right. Not a domain descrip-
tion with mistakes, errors and inconsistencies, but a domain description that
is consistent and relative complete.

During the domain description process many questions arise as to the inter-
pretation of stakeholder expressed domain description units. To resolve many
of these the domain engineer may have to express lemmas (propositions, theo-
rems) that may or may not hold of the (formalised) domain description being
worked out.

Domain verification is the process of analysing domain description units,
stating hypotheses and of proving lemmas about, testing, or model checking
the emerging domain description. Domain analysis and verification may thus
involved a variety of support tools: Proof checkers, theorem provers, testing
tools and model checkers.
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FAQ: Requirements from Domain Models?

The aim of requirements is to prescribe a machine. The machine is the com-
bination of hardware and software to be acquired and/or developed.

Whereas a domain description describes “the domain out there”, as it is,
a requirements prescription prescribes “the machine in there”, as you would
like it to be!

The domain engineer “looks at the world” and carves out some segment for
description. The requirements engineer knows what is feasible with machines
and tries to map a suitable segment of the domain onto a machine.

3.1 With Whom to do Requirements Models?

Same answer as given in Sect. 2.1 on page 21. See Example 2.1 on page 21.

3.2 What Role “Business Process Re-engineering”?

We refer to Appendix A for detailed accounts and examples of the concepts
of business processes and business process re-engineering.

We repeat from Sect. 2.2:

It is of utmost importance to identify all those business processes that might

possibly be affected by requisition of new computing systems. Once a new

computing system has been installed then many of the people acting in the

domain need change their business processes. Hence — as we shall see in

the next chapter, FAQ: Business Process Re-engineering — requirements

engineering need establish careful re-engineering prescriptions (see also Ap-

pendix A). That can only be done if the domain engineering work has

constructed similar careful business process descriptions.



28 3 FAQ: Requirements from Domain Models?

3.3 Which Are the Facets of a Requirements Model?

There are three main parts to a requirements prescription:

• Domain Requirements: These are the requirements that can be ex-
pressed solely by using terms from the domain.

• Interface Requirements: These are the requirements that are expressed
using terms both from the domain and from the machine.

• Machine Requirements: These are the requirements that can be ex-
pressed solely by using terms from the machine.

We will now briefly survey each of these.

3.3.1 Which Are the Facets of Domain Requirements?

The domain requirements are the requirements that can be expressed solely
by using terms from the domain. The domain requirements describes that
part of an idealised view of the domain which is to “reside” in the machine.

In addition to the domain facets (intrinsics, support technology, manage-
ment & organisation, rules & regulations, scripts, human behaviour) there are
an orthogonal number of domain requirements facets. They are:

• Projection: Not all of a domain description need be “implemented”. Pro-
jection serves to identify those parts of a domain description which shall
remain in the requirements prescription.

Example 3.1 A Projected Transportation Domain: In Appendix C we
present a domain description of a multi-modal transportation net. That de-
scription is intended to also cover dynamic aspects of such nets: traffic, the
flow of vehicles across the various modalities of the net (road, rail, sea and
air) including the transfer of goods between different modality conveyours,
etcetera. An example projection would be to leave out all of the dynamics
and focus just on rail line maintenance.

• Determination: Of those parts of a domain description which are pro-
jected onto the requirements prescription some may express undesired non-
determinism, that is, a kind of “looseness” with respect to entity value,
functionality, event variability and behaviour. Determination serves to en-
dow the projected parts with a necessary and sufficient, desirable level of
determinism.

Example 3.2 A Determined Market Domain: In Appendix F we present a
domain description of “the market”. That description is covers arbitrary buy-
ing and selling amongst pairs of buyers and sellers (consumers and retailers,
retailers and wholesalers, and wholesalers and producers). To limit the de-
scription to only allow such orders which are covered by seller catalogues
represents a determination.
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• Instantiation: Oftentimes a domain description describes a domain in its
fullest generality. And very often a required application shall reside in a
domain which is far less general.

Example 3.3 An Instantiated Transport Domain: A domain description may
have covered all possibly conceivable railway nets. But if the application is
only for the Japanese Shinkansen, then that domain description can be con-
siderably instantiated (that is, abbreviated, shortened).

• Extension: Sometimes certain operations are not feasible in the domain.
For humans to carry them out would require inordinate access to resources,
including time. With computing and communication such hitherto infea-
sible operations may now become feasible. We say that the description
of previously infeasible operations in the domain extends that domain.
The need to extend the domain has arisen in the context of prescribing
requirements.

Example 3.4 An Extended Travel Planning Domain: In the olde days, with
telephone directory thick airline guides on flights anywhere in the world, it was
not feasible to think of a geographically illiterate clerk to find combinations of
typically 5–6 consecutive flights that would bring a passenger from some small
locality in western China to some other small locality in northern Brasil.

• Fitting: Oftentimes two or more groups of requirements engineers are
working on sufficiently distinct applications albeit within relatable do-
mains (either the same or two or more domain that do indeed share some
phenomena and concepts). Requirements may then, naturally arise, re-
quirements that imply that the otherwise distinct set of requirements be-
ing (otherwise) worked out, from respective domain description (parts),
be fitted to one another.

Example 3.5 Two Timetable-Fitted Transport Domains: Two groups of re-
quirements engineers are each working on their transport requirements, one
fore train traffic, its monitoring and control, and one for bus traffic, its moni-
toring and control. During this work it is decided to fit the two traffic timeta-
bles such that queries can involved both train and bus timetables.

3.3.2 Which Are the Facets of Interface Requirements?

The interface requirements are the requirements that are expressed using
terms both from the domain and from the machine. The interface requirements
prescribe software which builds a bridge between the real domain outside the
machine and its idealised counterpart inside the machine.

The interface is defined by all those entities, functions, events and be-
haviours that can be said to be shared between the domain and the machine.
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In the domain these entities, functions, events and behaviours “occur for real”.
In the machine they serve to “mimic” a perceived real domain.

We consider the following facets of interface requirements:

• Shared Phenomena & Concept Identification: A line by line inspec-
tion of the domain requirements shall reveal and result in a list of all
shared phenomena & concepts.

• Shared Data Initialisation Interface: Usually, before a new computing
system, i.e., the machine, can be put to use, it must be initialised. Typically
a database must be established. The software resulting from initialisation
requirements is often substantial.

Example 3.6 Supply Chain State Initialisation: In requirements for a supply
chain system of consumers, retailers and delivery services it is necessary to
establish initial sales catalgues and delivery service tables.

• Shared Data Refreshment Interface: Initial information may have to
be updated.

Example 3.7 Supply Chain State Refreshment: In requirements for a supply
chain system of consumers, retailers and delivery services it is also necessary to
have to more or less irregularly to update sales catalgues and delivery service
tables.

• Computational Interface: The main computations of a machine may
occasionally need prompts from the domain: guidelines as whether to per-
form a computation in one way or in another.

Example 3.8 We refer to the next interface item: MM dialogues, and to the
example, Example 3.9 of that item. While successively providing inout for
segment after segment, and for junction after junction (not mentioned below)
the input provider may decide, occassionally, to request the input vetting
system to check for consistency of input data. Such requests and the possible
need for the update of previously input data, amount to a computational
interface.:

• Man-Machine Dialogue Interface: The bulk, or mass, of interaction
between the machine and the domain are guided by dialogues. MM di-
alogues prescribe desirable sequences of interactions and how these se-
quences are presented over the usually graphic interface (GUI).

Example 3.9 GUI for Transport Net State Initialisation: Every segment of
a transport net contains the following information: Segment identifier, seg-
ment name, segment length, identifiers of the two junctions between which
the segment is connected, a set of four Bezier coordinates that approximate
the segment curvature, etc. A graphic user interface “window” has named
paired with blank fields for providing this kind of information. Etcetera.
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• Man-Machine Physiological Interface: The MM dialogue, besides
GUI, is usually “carried” by tacticle instruments (keyboard, mouse, “point-
ing to the screen, depressing icons (buttons)”), by sound (microphones and
louadspeakers), video and fingerprint recognition, etc. A close fit to the do-
main is often desirable.

• Machine-Machine Dialogue: Not all initialisation or update of infor-
mation takes place over the man-machine interface. Remaining such re-
freshment and update occurs between machines. Typically involving data
migration from legacy systems (i.e., machine for which no proper domain
engineering exists).

3.3.3 Which Are the Facets of Machine Requirements?

The machine requirements are the requirements that can be expressed solely
by using terms from the machine, that is, the hardware and the software with
which to build the machine.

• Performance: Performance is measured in terms of computation (re-
sponse) time, storage consumption, and usage of other (equipment) re-
sources.

• Dependability: To properly define the “ilities” of accessability, availabil-
ity, integrity, reliability, robustness, safety, security,etcetera, one must first
define the concepts of failure, error and fault. Fault tree analysis can be
used to determine suitable dependability requirements.

• Maintainability: There are a number of maintainbility issues: adaptive,
corrective, perfective, preventive and extensional maintenance: to fit new
hardware and software, to remove bugs, to tune performance, to safeguard
against failures due to other forms of maintenance, and to implement ad-
ditional, new requirements.

• Platform: Software is developed on specific computing platforms, to be
executed on specific computing platforms, to be maintained/serviced from
specific computing platforms, and to be demonstrated on specific comput-
ing platforms. These platforms must be precisely prescribed.

• Documentation: Software development documentation can be extensive,
and encompass documents covering all phases, stages and steps of develop-
ment, from domain engineering via requirements engineering to software
design, including, of course, the “executable” code. Or software documen-
tation may just be a user’s guide. In-between there are installation man-
uals, maintenance manuals, usage logbooks, test suite manuals with test
outcomes, etc.
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3.4 How to Acquire Requirements?

Principles and techniques very much similar to those covered in Sect. 2.4 apply
here. So we just refer the reader to study Page 25 — reading ‘requirements’
wherever Sect. 2.4 wrote ‘domain’.

3.5 How to Validate a Requirements Model?

Principles and techniques very much similar to those covered in Sect. 2.5 apply
here. So we first refer the reader to study Page 26 — reading ‘requirements’
wherever Sect. 2.5 wrote ‘domain’. Then validation must be performed not just
on the requirements prescription documents but also the underlying domain
description documents.

3.6 How to Verify a Requirements Model?

Principles and techniques very much similar to those covered in Sect. 2.6 apply
here. So we first refer the reader to study Page 26 — reading ‘requirements’
wherever Sect. 2.6 wrote ‘domain’. Then verification must be performed not
just on the requirements prescription documents but also with respect to the
underlying domain description documents.

3.7 What About Satisfiability and Feasibility?

3.8 Satisfiability

For a requirements prescription to be satisfactory the following must hold:

• the document must be correct (i.e., verified),
• the document must be unambiguous,
• the document must be complete,
• the document must be consistent,
• the document must be stable,
• the document must be verifiable,
• the document must be modifiable,
• the document must be traceable, and
• the document must be faithful.

Section 23.2 of Vol. 3 [13] provides details.
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3.9 Feasibility

For a requirements prescription to be feasible the following must hold:

• the requirements prescription must be technically feasible,
• the requirements prescription must be economically feasible, and
• the requirements prescription must somehow imply the im-

plicit/derivate goals of the project.

Sections 23.3–5 of Vol. 3 [13] provides a few more details.

3.9.1 Technical Feasibility

Technical feasibility amounts to:

• Feasibility of business process re-engineering: Can the prescribed
business process re-engineering requirements be imoplemented? We refer
to Appendix A.

• Feasibility of hardware: Can the required hardware be implemented?
• Feasibility of software: Can the required software be implemented?

Section 23.3 of Vol. 3 [13] provides details.

3.9.2 Economic Feasibility

Economic feasibility amounts to:

• Are the development costs feasible? Are they realistic and can they
be funded?

• Are the write-off costs feasible? Is it economic to use the required
system?

• Do gains outweigh costs?

Section 23.4 of Vol. 3 [13] provides a few more details.

3.9.3 Compliance with Implicit/Derivative Goals

By implicit/derivative goals we mean those goals that cannot be expressed in
terms of computable functions but which are expected to be fulfilled once the
required software has been in sue for some time. Classical examples are: The
corporation using this software becomes more competitive, or its staff are now
more satisfied with their working conditions, etc.

Compliance is hard to measure, let alone predict. But attempts should be
made to assess compliance up-front.

Section 23.5 of Vol. 3 [13] provides a few more details.





4

Conclusion

4.1 Myths and Commandments of Formal Methods

As of the year 2005 some, even respectable software engineers and academics,
have problems with what they refer to as formal methods, which we prefer to
call formal techniques.1 One often finds that these sceptics voice various con-
cerns. Some in the form of myths or claims. Other concerns reflect hesitancy
with respect to how such formal techniques can be inserted into university
curricula and into industry.

In this section we shall discuss these and related topics.
The aim of this section is to cover some — perhaps, let’s hope — historical

objections made against formal techniques and related issues. The objective
of this section is to prepare you with counterarguments should you become
engaged in discussions centred around these topics.

4.1.1 First Seven Myths

Anthony Hall [44] lists and dispels the following myths (claims) about formal
techniques:2

1. Using formal techniques can guarantee that software is perfect.

1Recall that a good method is a set of principles for selecting and applying a
number of principles, techniques and tools in order to [efficiently] analyse a problem
and provide (i.e., construct, synthesize) an [efficient] solution to that problem. Given
that the principles cannot be formalised in that they most often relate to pragmatic
issues — which also cannot be formalised — it does not seem wise to refer to a
method as a formal method. So instead we prefer to speak about formal techniques
and formally based tools.

2We list the “myths” and claims as enumerated in [44], but the subsequent
indented comments represent our own views.
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Of course, use of formal techniques cannot guarantee perfect soft-
ware. It can, when properly followed, and in most cases indeed
does, lead to far more appropriate software.

2. Formal Techniques are all about program proving.

Well, at least in these three volumes of textbooks of software en-
gineering it is not. In these three volumes we have emphasised
abstract modelling.

3. Formal techniques are only useful for safety-critical systems.

Formal techniques are useful for any kind of software system,
whether a translator (compiler, interpreter), a database informa-
tion management system, a reactive system, a workpiece (spread-
sheet, text processor) system, etc.

4. Formal techniques require highly trained mathematicians.

No, they do not. But they do require software engineers who are
willing and able to think abstractly, and here mathematics is a
wonderful carrier. To do proofs requires, not highly trained logi-
cian mathematicians, but software engineers with a sense of logic,
with analytic minds and the ability to reason.

5. Using formal techniques increases the cost of development.

No. In numerous projects (some conducted under the auspices
of the European Union’s IT research programmes, in the 1980s
and the 1990s) it has been demonstrated that using formal tech-
niques did not increase cost of development, and in several cases
it decreased the cost. For example, consider the Dansk Datamatik
Center’s (DDC) very successful development of a full Ada com-
piler [3, 20, 29]. DDC spent around 44 man years to develop a
United States Department of Defense validated compiler — while
another European and several US companies spent at least three–
five times the manpower.

6. Formal techniques are unacceptable to users.

Who says users should read formal specifications? In the present
volume we have stressed the importance of concurrently develop-
ing and maintaining informal as well as formal domain descrip-
tions, requirements prescriptions and software design specifica-
tions.

7. Formal techniques are not used on real, large-scale software.

Of course they are. And, where they are not, they should be!
Doing otherwise is basically outright criminal, and is cheating the
customer — since formal techniques can be used.

We encourage the readers to study Anthony Hall’s delightful [44].
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4.1.2 Seven More Myths

Jonathan P. Bowen and Michael G. Hinchey [24] builds upon Anthony Hall’s
analysis [44], and add a further seven “myths” and claims:3

8. Using formal techniques delays the development process.

Like item 5 above, using formal techniques does not, in general,
delay the development process. It may, and usually will demand
that far more time is spent on domain and on requirements mod-
elling, and on early stages of software design. But, also in indus-
trial projects, use of formal techniques has shown to then decrease
rather significantly the length and manpower needs of coding.

9. Formal techniques are not supported by tools.

Most formal techniques today come with industry-scale tool sets.

10. Formal techniques mean forsaking traditional engineering design

methods.

No. Many traditional engineering methods still apply. Some need
to be revised a little.

11. Formal techniques only apply to software.

No. Formal techniques are, interestingly enough, today far more
widespread in hard development than in software development. It
seems hardware producers are more responsible, since the costs of
having to withdraw a chip from the market can easily run into
US $ 300 million.

12. Formal techniques are not required.

Yes, they are. In particular, software for military applications, in
the UK, now demands the use of formal techniques.

13. Formal techniques are not supported.

There are now many software houses, especially in Europe, which
offer consultancy advice on the use of formal techniques in other
software houses’ formal developments.

14. “Formal methods” people always use formal methods.

Well, we really cannot speak on behalf of all “formal methods
people”. So, let’s leave this one uncommented.

Despite the seeming “outdatedness” of some of the seven more myths, we still
encourage the readers to study Bowen and Hinchey’s delightful [24].

3We list the “myths” and claims as enumerated in [24], but the subsequent
indented comments represent our own views.
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4.1.3 Ten Formal Methods Commandments

Given that the myths and claims have been disposed of in a trustworthy,
believable manner, we can then go on and reiterate what has been said again
and again in these volumes: When using formal techniques, please consider
carefully the following sound advice from Jonathan P. Bowen and Michael G.
Hinchey [25]:4

15. Choose an appropriate notation.

Certainly.

16. Formalise, but not overformalise.

What is probably meant here is: Choose an appropriate abstrac-
tion level.

17. Estimate costs.

Always.

18. Have a formal methods guru “on call”.

See answer to item 13 above.

19. Do not abandon thy traditional development methods.

See answer to item 10 above.

20. Document sufficiently.

This volume in our three-volume series of textbooks on software
engineering stresses this point almost to the extreme. In most
other engineering practices documentation is far more extensive
than what we witness today (year 2005) in software development.
So follow the advice of the present volume: Document, document,
document.

21. Do not compromise thy quality standards.

In fact, tighten your quality standards.

22. Do not be dogmatic.

Creating abstract models and making design decisions as to soft-
ware data structures and algorithms requires exceedingly open
minds. Developing software, in general, requires the effort of at
least two, and usually 5–8, people in tight collaboration. Dogma-
tism, sticking to early development (modelling and design) deci-
sions, simply “is out”. Your colleagues will not have it.

23. Test, test and test again.

Also this point has been stressed in the present volume. Besides
verification and model checking, it is indeed necessary to test.
In this volume we have advocated, in Sect. ??, an approach to
testing which was tied very closely to an approach to software

4We list the Ten Commandments as listed in [25], but the subsequent indented
comments represent our own views.
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development, from demos, via skeletons, as we called them, and
prototypes to actual unit code and systems. The testing went hand
in hand with that development.

24. Reuse. There are two issues here.

(a) Reuse of software designs: Reuse of modules is what is pri-
marily referred to here. Since we have not covered, in Vol. 2,
Chap. 10’s treatment of ‘modularity’ that concept to the depth
necessary for large-scale specifications and projects, we really
cannot give any qualified advice in this area. It seems to this
author that “reuse” is sort of a “white elephant,” a desidera-
tum that few can live up to.

When, for example, a compiler is first developed, its de-
velopment, all stages, from domain (i.e., language semantics)
description via requirements prescription to software design,
is being reused. We hope. That is, the company, the group
that develops the first compiler, “survives” to make several
subsequent generations of that “same” compiler, but now for
slightly, or less slightly changed, requirements, for new lan-
guage features, etc.

That is reuse at the level we know and are familiar with.
For us to think of reusing a module, or even a component,
from some problem frame, i.e., from some domain-specific ar-
chitecture development in an entirely different domain-specific
architecture development makes less sense.

It does, however, make sense in the meaning of that of the
Object Management Group’s (OMG) guidelines for, say, dic-
tionary components. The kind of dictionaries referred to have
a base part which can be reused across compiler, operating sys-
tem, database, and several application system developments.

So, really, all we can say is: The jury is still out, and the
verdict can be expected in the next decade!

(b) Reuse of domain descriptions and requirements pre-
scriptions: This is an altogether different matter. The very
purpose of developing domain descriptions is that they be
reused whenever requirements for software within the appli-
cation area are being developed.

And even the requirements, for some applications, can be
partially reused, i.e., fitted to, requirements for a “neighbour-
ing” area of the same domain.

4.2 FAQs: Frequently Asked Questions

4.2.1 General

25. Should/can/must stakeholders understand formal specifications?
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No, not necessarily. As we have advocated, proper developments
should contain complementary informal and formal descriptions,
prescriptions and specifications.

For a number of software developments, customers may engage
consultants to also check that the formal descriptions, prescrip-
tions and specifications are up to standard.

For a number of software products, insurance companies re-
quire that a certified company, like Lloyd’s [69] (or such simi-
lar companies as Norwegian Veritas [76], Bureau Veritas [26] or
TÜV [88]), regularly and irregularly, unannounced, inspect and,
in various ways, check the development. Such insurance and “ver-
ification” companies are increasingly turning to formal techniques
so their staff can understand and professionally evaluate the use
of formal descriptions, prescriptions and specifications.

26. What should/could be the languages of informal descriptions?

For domain descriptions it should be the national, i.e., natural
language of the client plus the professional language of the domain.
No IT jargon is basically needed — unless, of course, IT plays a
nontrivial role in the already existing domain.

For requirements prescriptions the answer is the same as for
domain descriptions, except that now one is allowed to use, in
appropriate areas of typically interface and machine requirements,
an appropriate, generally established sublanguage of IT.

For software designs — for which we have not dealt with infor-
mal annotations to any serious extent — it is, of course, necessary
to use the language also of IT (software).

As for domain-specific languages, make also sure that proper
terminologies are established for the IT (software) sublanguages
that are used.

27. What should/could be the languages of formal descriptions?

Whichever is most appropriate and at hand. For most develop-
ments that we know of, i.e., for most problem frames, the RAISE

Specification Language, RSL, is adequate. You can then, when
and as needed, augment RSL descriptions, prescriptions or spec-
ifications with Petri nets [64, 79–82], message sequence charts
[60–62], live sequence charts [30, 51, 66], statecharts [47–50,52] or
duration calculus [91, 92] descriptions, prescriptions or specifica-
tions — or several of these. These “augmentations” were covered,
to some nontrivial depth, in Vol. 2, Chaps. 12–15.

Or you can use B [1], eventB, VDM-SL [18, 19, 34] or Z
[55, 85, 86, 90] — all come, or will soon come, with suitable Petri

net, message or live sequence chart, statechart, duration calculus
or TLA+ [67,71] augmentations.
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RSL variants of UML’s Class Diagrams may also be advisable
(Vol. 2, Chap. 10).

28. When have we specified enough — minimum/maximum?

You have specified enough, both informally and formally, when
what is left to describe are such things as identifier formats. That
is, when you have specified everything but possibly that, then you
have specified the necessary and sufficient amounts. The trivial
things left unspecified are those things that one can safely trust
the software designer to make final and trustworthy design de-
cisions about. Also, certain aspects of graphical user interfaces,
specific handling of tactile input, etc., seem to belong to this class
of initially unspecified things.

4.2.2 Domains

1. Why domain engineering by computing scientists and software engineers?

Because computing science has the tools, namely the specifica-
tion languages, and because computing science has the principles
and techniques of abstract modelling. Mathematicians — in some
sense — could be claimed to have similar such tools, but they
really do not. Their abstractions go well beyond those that are
needed for domain modelling. They are not interested in proof
systems, for example, for formal specifications — but in the more
general notions of power of such proof systems, etc. Finally, the
computing scientists interface, daily, with software engineers —
and, in the hard realities of the day, domain theories are the first
to be demanded by software engineers.

2. Should one use normative and/or instantiated domain descriptions?

This is a contentious issue. For a specific requirements develop-
ment one may be tricked into developing only an instantiated do-
main description, that is, a domain description that is already
instantiated to the specific domain. But, as we have seen in this
volume, Part ??, it is oftentimes far more convenient to develop
highly reusable, cf. item 24(b) above, domain descriptions.

Some authors seem, in their writing, to assume instantiated
domain descriptions. The author of this volume advises normative,
i.e., generic, domain descriptions.

3. Who should research and develop domain theories?

There are basically three possibilities, listed in causal order:
• initially university and academic research centre computing

science departments, i.e., their staff,
• eventually domain-specific university and academic research

centre departments, and
• finally, domain-specific commercial companies.
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Initially it is advised that university and academic research cen-
tre computing science scientists research and develop domain
models. As mentioned above, in item 1, initially the computing
scientists have the basic methods needed to do domain theory re-
search, and are also interested in the engineering of large-scale
documentation, etc.

But eventually, within years, say 3–5 years after the initial
start of computing science R&D in domain theories, it should also
be undertaken by domain-specific research groups: transporta-
tion, in healthcare, in financial services, in marketing and sales
(e-marketing), etc. Just as such university departments are, to-
day, using (applied) mathematics, we can foresee that they will
also be able, soon, to use even fairly sophisticated computing sci-
ence ideas.

And, finally, private, commercial companies, for example,
software houses strong in a particular application domain, will
embark on such domain theory R&D, as will suppliers of any form
of technology to companies within the domain.

4. What is the timeframe for the R&D of domain theories?

It is strongly believed that the timeframe for the R&D of domain
theories is of the order of 10 to 20 years, or in cases up to 30
years, before one can safely say that a domain theory has been
established.

In other words: Patience is called for. Conviction that estab-
lishing such theories is of utmost importance is called for.

To do research and development on domain theories seems to belong to the
category of “Grand Challenge” endeavours (Sect. 4.3.2).

4.2.3 Requirements

To us, there are basically only two questions concerning requirements devel-
opment:

1. Requirements always change, so why formalise?

No! It may be true that people conceive of requirements “always
changing”. But we venture to claim that such “changes” are re-
ally not so much “changing requirements” as they are, or reflect,
increased, and hence better, understanding of the domain.

In other words: Given that one had an established, i.e., a rea-
sonably comprehensive, domain theory, we will then claim that
requirements do not change “so much” (as before conceived)!
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2. Must we formulate requirements strictly before software design? This
question could also appear in the previous section as: Must we determine
domain descriptions strictly before requirements prescriptions?

In both cases the answer is: Yes, for the time being. Till such a time
when we do indeed have (i) reasonably firmly established domain
theories, and (ii) an insufficient body of knowledge, i.e., experience
with requirements “strictly derived” from domain theories, until
such a time we are, due to commercial, i.e., competitive, pressures,
more or less forced to develop domain descriptions hand in hand
with requirements prescriptions, and the latter hand in hand with
early stages of software design. The special approach to software
development advocated in Sect. ?? shows a way in which to de-
velop domain descriptions “staggered” with the development of
requirements prescriptions, “staggered” with the development of
software architecture design — where, by “staggering”, we mean
that one phase follows almost right “on the heels” of the preceding
phase.

4.3 Research and Tool Development

These three volumes of textbooks on software engineering represent a state of
the art as of the winter of 2005/2006.

4.3.1 Evolving Principles, Techniques and Tools

As programming methodology and computing science (i.e., foundational) re-
search progress, the present development principles and techniques will evolve,
and more elegant forms of these can be expected. New, formal specification
languages will emerge. And tools for their use, including verification, model
checking and testing tools will be constructed. One thing seems, however, to
be an assurance: these new principles techniques and tools (the latter includ-
ing the new languages), will not deviate radically from what these volumes
have shown.

4.3.2 Grand Challenges

To put a man on the moon was a grand technological as well as a scientific
grand challenge. To embark upon, conduct and complete the human genome
project was likewise a grand challenge.
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Three Dimensions of Grand Challenges

Related to the material of this series of textbooks on software engineering we
can formulate three sets of grand challenges: (i) integration of formal tech-
niques, (ii) trustworthy evolutionary systems development, and (iii) domain
theories. We will briefly remark on these.

Integration of Formal Techniques

Volume 2, Chaps. 10, 12–15 introduced UML class diagrams, Petri nets, mes-
sage and live sequence charts, statecharts and the duration calculus. The
chapters suggested that, when appropriate, these other notational, mostly
diagrammatic systems be used in conjunction with, for example, RSL. The
formal issue is: How does the semantics of RSL fit with the semantics of UML
class diagrams, Petri nets, message and live sequence charts, statecharts and
the duration calculus?

The referenced chapters gave some hints. But “the jury is still out!”
Much research and much experimental development still has to be done

before we deploy these combinations or integrations in common industrial
practice. For now they can be used in carefully monitored and integrated
formal techniques guru-tutored industrial developments. We refer to a series
of conferences on IFM: (Integrated Formal Methods), which are held annually,
for references to ongoing R&D [2,23, 27, 43].

• We consider it a ‘Grand Challenge’ to achieve a set of formal techniques
and formally based tools which together cover software development for
all of today’s and the immediately foreseeable applications.

Trustworthy Evolutionary Systems Development

Software systems evolve. From when they are first delivered till they are fi-
nally disposed of they usually undergo many, many changes, that is, they are
maintained: Corrected (for bugs), perfected (new functionalities are added,
old functionalities are, resource-consumption-wise, made more efficient), and
adapted (to new platforms). Software systems evolution, the proper handling
of legacy systems, i.e., systems that have been in use, say, for decades, is a
major problem. The use of formal techniques in the initial development of
these is no hindrance, but, we strongly believe, the non use of formal tech-
niques and/or the absence of proper, fully comprehensive documentation, is
an obstacle to smooth, problem-free evolution.

• We consider it a grand challenge to achieve a set of development princi-
ples and techniques as well as a set of management practices which to-
gether cover all of today’s and the immediately foreseeable applications
and which by careful use — and reuse — can ensure software systems
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whose evolution, from initial development, via repeated adaptive and per-
fective maintenance, to final disposition, perhaps decades later, ensure as
near bug-free software as is humanly conceivable.

Domain Theories

We repeat our adage: software cannot be designed before we have a reasonable
grasp of its requirements; requirements cannot be prescribed before we have
a reasonable grasp of the domain of the software; and hence it is of utmost
importance, as this volume attests, to (somehow) build requirements develop-
ment on domain theories. The somehow hedge makes room for the developers
to codevelop the domain description and the requirements prescription.

• We consider the following to be examples of grand challenges: to achieve
domain theories for such domains as railways, transportation in general,
the market (buyers and sellers: consumers, retailers, wholesalers, produc-
ers, brokers, distributors, etc.), healthcare, financial services (banks, in-
surance companies, securities instrument brokers and traders, stock (etc.)
exchanges, portfolio management, etc.), and production (i.e., manufactur-
ing), etc.

On the Nature of “Grand Challenges”

Tony Hoare has formulated 17 criteria for a research topic to be a grand
challenge. We borrow the topic lines from [56], but edit, i.e., shorten Hoare’s,
as usual, poignant, discussion. In other words, we strongly encourage the
reader to study Hoare’s paper.

The “it” below refers to “a grand challenge”.

1. Fundamental: It relates strongly to foundations, and the nature and
limits of a discipline.

2. Astonishing: It implies constructing something ambitious, heretofore not
imagined.

3. Testable: It must be objectively decidable whether a grand challenge
project endeavour is succeeding or failing.

4. Revolutionary: It must imply radical paradigm shifts.
5. Research-oriented: It can be achieved by methods of academic research

— and is not likely to be met solely by commercial interests.
6. Inspiring: Almost the entire research community must support it, enthu-

siastically, even while not all may be engaged in the endeavour.
7. Understandable: Comprehensible by — and captures the imagination

of — the general public.
8. Challenging: Goes beyond what is initially possible and requires insight,

techniques and tools not available at the start of the project.
9. Useful: Results in scientific or other rewards — even if the project as a

whole may fail.
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10. International: It has international scope: Participation would increase
the research profile of a nation.

11. Historical: It will eventually be said: It was formulated years ago, and
will stand for years to come.

12. Feasible: Reasons for previous failures are now understood and can now
be overcome.

13. Incremental: Decomposes into identified individual research goals.
14. Cooperative: Calls for loosely planned cooperation between research

teams.
15. Competitive: Encourages and benefits from competition among indi-

viduals and teams — with clear criteria on who is winning, or who has
won.

16. Effective: General awareness and spread of results changes attitudes and
activities of scientists and engineers.

17. Risk-Managed: Risks of failure are identified and means to meet will be
applied.

4.4 Application Areas

The present three volumes on software engineering, of which the one you have
in front of you now is the third, have, in their very many examples, hinted at
a great number of application areas.

4.4.1 Additional Areas

With this section we shall try to complement that list with yet some more
examples. But the examples will only be dealt with in a discursive manner.
For each of a number of such examples, we will briefly outline the application
area and then refer to a monograph, a book, in which the example is covered
to some non-trivial depth.

We mention the following books:

• I. Hayes (ed.): Specification Case Studies (Prentice Hall, 1987), [53].
• C. Jones, R. Shaw (eds.): Case Studies in Systematic Software Develop-

ment (Prentice Hall, 1990), [65].
• H.D. Van, C. George, T. Janowski, R. Moore (eds.) [89]: Specification Case

Studies in RAISE (Springer, April 2002), [89].

Needless to say: they (should) all belong in the reference library of the pro-
fessional software engineer.
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4.4.2 The Examples

In the list below chapter references are to chapters in the above mentioned
and below repeated first references. Second, separately bracketed references
are to individual papers (chapters).

1. The UNIX Filing System: Chap. 4 [53] [73]
Title explains the application.

2. CAVIAR: Visitor Information System: Chap. 5 [53] [36]
A reasonably sophisticated company visitor and meeting (room reserva-
tion) system is developed.

3. The IBM CICS Transaction System: Chaps. 14–17 [53] [54]
A number of papers outline the major legacy system reengineering of the
IBM Customer Information and Control System (CICS).

4. A Proof Assistant: Chap. 4 [65] [72]
The design of a proof assistant system, with theorem store, proof verifi-
cation, etc., is carefully argued.

5. Unification: Chaps. 5, 6 [65] [35]
Two chapters outline fundamental aspects of unification, a technique used
extensively in proof systems, and in rewrite systems, including interpreters
for, for example, logic programming languages.

6. Storage: Chaps. 7, 8 [65] [42]
Two papers investigate heap storage and garbage collection.

7. Graphics: Chap. 13 [65] [70]
Paper investigates and formalises line representations on graphics devices.

8. A University Library System: Chap. 3 [89] [78]
A reasonably sophisticated library system is developed.

9. A Radio Communications-Based Telephone Switching System:
Chap. 4 [89] [32]
In a fascinating development, a system for radio communication-based
telephony for The Philippines is developed. It involved a centralised sta-
tion and some 40 (Philippine island remote) stations, time-division multi-
plexing (TDM), and many other technology-based hardware equipment
factors. This careful, stepwise development unfolds towards an imple-
mentable system.

10. A Ministry of Finance Information System: Chap. 5 [89] [68]
Developed for the Vietnam Ministry of Finance, this system involves the
Taxation, the Budget and the Treasury Departments as well as all the
actions within and between them: from assessment of tax bases, via the
budgeting for all ministries, to the collection of taxes.
We refer to exercise item ?? of Sect. ?? for an abstract description of the
domain of this project.

11. Multilingual Document Processing: Chap. 6 [89] [33]
A system is developed for processing (creating, editing, communicating
and displaying) documents containing any number of scripts for any com-
bination of the four script directions: horizontal left-to-right (say English),
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horizontal right-to-left (say Arabic), vertical left-to-right (say Mongol) and
vertical right-to-left (say old Chinese and Japanese).

12. Production Processes: Chap. 7 [89] [77]
A manufacturing system is developed, one which involves production cells,
stock handling and all the related processes.

13. Travel Planning: Chap. 8 [89] [84]
A reasonably sophisticated travel planning system is developed.

14. Authentication: Chap. 9 [89] [87]
Some safety properties of authentication protocols are formulated and
proven.

15. Spatial Graphics: Chap. 10 [89] [75]
A model of (what is called) the Realm data structure and its operations is
given. The Realm data structure is used in representing three-dimensional
spatial data and operations on these.



References

1. Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings. Tracts in
Theoretical Computer Science. Cambridge University Press, Cambridge, Eng-
land, 1996.

2. Keijiro Araki, Andy Galloway, and Kenji Taguchi, editors. IFM 99: Integrated
Formal Methods, volume 1945 of Lecture Notes in Computer Science, York, UK,
June 1999. Springer–Verlag. Proceedings of 1st Intl. Conf. on IFM.

3. D. Bjørner and O. Oest. The DDC Ada Compiler Development Project. [20],
pages 1–19, 1980.

4. Dines Bjørner. Programming in the Meta-Language: A Tutorial. In Dines
Bjørner and C. B. Jones, editors, The Vienna Development Method: The Meta-
Language, [18], LNCS, pages 24–217. Springer–Verlag, 1978.

5. Dines Bjørner. Software Abstraction Principles: Tutorial Examples of an Oper-
ating System Command Language Specification and a PL/I-like On-Condition
Language Definition. In Dines Bjørner and C. B. Jones, editors, The Vienna De-
velopment Method: The Meta-Language, [18], LNCS, pages 337–374. Springer–
Verlag, 1978.

6. Dines Bjørner. The Vienna Development Method: Software Abstraction and
Program Synthesis. In Mathematical Studies of Information Processing, vol-
ume 75 of LNCS. Springer–Verlag, 1979. Proceedings of Conference at Research
Institute for Mathematical Sciences (RIMS), University of Kyoto, August 1978.

7. Dines Bjørner. Formal Software Techniques in Railway Systems. In Eckehard
Schnieder, editor, 9th IFAC Symposium on Control in Transportation Systems,
pages 1–12, Technical University, Braunschweig, Germany, 13–15 June 2000.
VDI/VDE-Gesellschaft Mess– und Automatisieringstechnik, VDI-Gesellschaft für
Fahrzeug– und Verkehrstechnik. Invited talk.

8. Dines Bjørner. Dynamics of Railway Nets: On an Interface between Automatic
Control and Software Engineering. In CTS2003: 10th IFAC Symposium on Con-
trol in Transportation Systems, Oxford, UK, August 4-6 2003. Elsevier Science
Ltd. Symposium held at Tokyo, Japan. Editors: S. Tsugawa and M. Aoki.

9. Dines Bjørner. New Results and Trends in Formal Techniques for the Devel-
opment of Software for Transportation Systems. In FORMS2003: Symposium
on Formal Methods for Railway Operation and Control Systems. Institut für
Verkehrssicherheit und Automatisierungstechnik, Techn.Univ. of Braunschweig,



50 References

Germany, 15–16 May 2003. Conf. held at Techn.Univ. of Budapest, Hungary.
Editors: G. Tarnai and E. Schnieder, Germany.

10. Dines Bjørner. Software Engineering, volume 1: Abstraction and Modelling,
vol. 2: Specification of Systems and Languages, vol. 3: Domains, Requirements
and Software Design of Texts in Theoretical Computer Science, the EATCS
Series. Springer, 2006. Chapters 12–14 of vol.2 primarily authored by Christian
Krog Madsen.

11. Dines Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling. Texts
in Theoretical Computer Science, the EATCS Series. Springer, 2006.

12. Dines Bjørner. Software Engineering, Vol. 2: Specification of Systems and Lan-
guages. Texts in Theoretical Computer Science, the EATCS Series. Springer,
2006. Chapters 12–14 are primarily authored by Christian Krog Madsen.

13. Dines Bjørner. Software Engineering, Vol. 3: Domains, Requirements and
Software Design. Texts in Theoretical Computer Science, the EATCS Series.
Springer, 2006.

14. Dines Bjørner, Yu Lin Dong, and S. Prehn. Domain Analyses: A Case Study of
Station Management. In KICS’94: Kunming International CASE Symposium,
Yunnan Province, P.R.of China. Software Engineering Association of Japan,
16–20 November 1994.

15. Dines Bjørner, Chris W. George, Anne Eliabeth Haxthausen, Christian Krog
Madsen, Steffen Holmslykke, and Martin Pěnička. “UML”–ising Formal Tech-
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A

Business Processes

A.1 Business Process Engineering

We rough-sketch a number of examples. In each example we start, according to
the principles and techniques enunciated above, with identifying behaviours,
events, and hence channels and the type of entities communicated over chan-
nels, i.e. participating in events. Hence we shall emphasise, in these examples,
the behaviour, or process diagrams. We leave it to other examples to present
other aspects, so that their totality yields the principles, the techniques and
the tools of domain description.
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Fig. A.1. An air traffic behavioural system abstraction
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A.1.1 Air Traffic Business Processes

The main business process behaviours of an air traffic system are the following:
(i) the aircraft, (ii) the ground control towers, (iii) the terminal control towers,
(iv) the area control centres and (v) the continental control centres (Fig. A.1
on the preceding page).

We describe each of these behaviours separately:
(i) Aircraft get permission from ground control towers to depart; proceed

to fly according to a flight plan (an entity); keep in contact with area control
centres along the route, (upon approach) contacting terminal control towers
from which they, simplifying, get permission to land; and upon touchdown,
changing over from terminal control tower to ground control tower guidance.

(ii) The ground control towers, on one hand, take over monitoring and
control of landing aircraft from terminal control towers; and, on the other
hand, hand over monitoring and control of departing aircraft to area control
centres. Ground control towers, on behalf of a requesting aircraft, negotiate
with destination ground control tower and (simplifying) with continental con-
trol centres when a departing aircraft can actually start in order to satisfy
certain “slot” rules and regulations (as one business process). Ground control
towers, on behalf of the associated airport, assign gates to landing aircraft,
and guide them from the spot of touchdown to that gate, etc. (as another
business process).

(iii) The terminal control towers play their major role in handling air-
craft approaching airports with intention to land. They may direct these to
temporarily wait in a holding area. They — eventually — guide the aircraft
down, usually “stringing” them into an ordered landing queue. In doing this
the terminal control towers take over the monitoring and control of landing
aircraft from regional control centres, and pass their monitoring and control
on to the ground control towers.

(iv) The area control centres handle aircraft flying over their territory:
taking over their monitoring and control either from ground control towers,
or from neighbouring area control centres. Area control centres shall help en-
sure smooth flight, that aircraft are allotted to appropriate air corridors, if
and when needed (as one business process), and are otherwise kept informed
of “neighbouring” aircraft and weather conditions en route (other business
processes). Area control centres hand over aircraft either to terminal con-
trol towers (as yet another business process), or to neighbouring area control
centres (as yet another business process).

(v) The continental control centres monitor and control, in collaboration
with regional and ground control centres, overall traffic in an area comprising
several regional control centres (as a major business process), and can thus
monitor and control whether contracted (landing) slot allocations and sched-
ules can be honoured, and, if not, reschedule these (landing) slots (as another
major business process).
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From the above rough sketches of behaviours the domain engineer then
goes on to describe types of messages (i.e., entities) between behaviours, types
of entities specific to the behaviours, and the functions that apply to or yield
those entities.

A.1.2 Freight Logistics Business Processes

The main business process behaviours of a freight logistics system are the
following: (i) the senders of freight, (ii) the logistics firms which plan and
coordinate freight transport, (iii) the transport companies on whose conveyors
freight is being transported, (iv) the hubs between which freight conveyors
“ply their trade”, (v) the conveyors themselves and (vi) the receivers of freight
(Fig. A.2). A detailed description for each of the freight logistics business
process behaviours listed above should now follow. We leave this as an exercise
to the reader to complete.
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Fig. A.2. A freight logistics behavioural system abstraction

A.1.3 Harbour Business Processes

The main business process behaviours of a harbour system are the following:
(i) the ships who seek harbour to unload and load cargo at a harbour quay, (ii)
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the harbourmaster who allocates and schedules ships to quays, (iii) the quays
at which ships berth and unload and load cargo (to and from a container area)
and (iv) the container area which temporarily stores (“houses”) containers
(Fig. A.3). There may be other parts of a harbour: a holding area for ships to
wait before being allowed to properly enter the harbour and be berthed at a
buoy or a quay, or for ships to rest before proceeding; as well as buoys at which
ships may be anchored while unloading and loading. We shall assume that the
reader can properly complete an appropriate, realistic harbour domain.

A detailed description for each of the harbour business process behaviours
listed above should now follow. We leave this as an exercise to the reader to
complete.
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A.1.4 Financial Service Industry Business Processes

The main business process behaviours of a financial service system are the fol-
lowing: (i) clients, (ii) banks, (iii) securities instrument brokers and traders,
(iv) portfolio managers, (v) (the, or a, or several) stock exchange(s), (vi) stock
incorporated enterprises and (vii) the financial service industry “watchdog”.
We rough-sketch the behaviour of a number of business processes of the fi-
nancial service industry.

(i) Clients engage in a number of business processes: (i.1) they open, de-
posit into, withdraw from, obtain statements about, transfer sums between
and close demand/deposit, mortgage and other accounts; (i.2) they request
brokers to buy or sell, or to withdraw buy/sell orders for securities instruments
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(bonds, stocks, futures, etc.); and (i.3) they arrange with portfolio managers
to look after their bank and securities instrument assets, and occasionally they
reinstruct portfolio managers in those respects.

(ii) Banks engage with clients, portfolio managers, and brokers and traders
in exchanges related to client transactions with banks, portfolio managers, and
brokers and traders, as well as with these on their own behalf, as clients.

(iii) Securities instrument brokers and traders engage with clients, portfolio
managers and the stock exchange(s) in exchanges related to client transactions
with brokers and traders, and, for traders, as well as with the stock exchange(s)
on their own behalf, as clients.

(iv) Portfolio managers engage with clients, banks, and brokers and traders
in exchanges related to client portfolios.

(v) Stock exchanges engage with the financial service industry watchdog,
with brokers and traders, and with the stock listed enterprises, reinforcing
trading practices, possibly suspending trading of stocks of enterprises, etc.

(vi) Stock incorporated enterprises engage with the stock exchange: They
send reports, according to law, of possible major acquisitions, business devel-
opments, and quarterly and annual stockholder and other reports.

(vii) The financial industry watchdog engages with banks, portfolio man-
agers, brokers and traders and with the stock exchanges.
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A.2 Business Process Reengineering Requirements

Characterisation. By business process reengineering we understand the re-
formulation of previously adopted business process descriptions, together with
additional business process engineering work.

Business process reengineering (BPR) is about change, and hence BPR is also
about change management. The concept of workflow is one of these “hyped” as
well as “hijacked” terms: They sound good, and they make you “feel” good.
But they are often applied to widely different subjects, albeit having some
phenomena in common. By workflow we shall, very loosely, understand the
physical movement of people, materials, information and “centre (‘locus’) of
control” in some organisation (be it a factory, a hospital or other). We have,
in Vol. 1, Chap. 12 (Petri Nets), in Sect. 12.5.1 covered the notion of work
flow systems.

A.2.1 Michael Hammer’s Ideas on BPR

Michael Hammer, a guru of the business process reengineering “movement”,
states [46]:

1. Understand a method of reengineering before you do it for serious.

So this is what this chapter is all about!

1. One can only reengineer processes.

Clearly Hammer utters an untenable dogma!

1. Understanding the process is an essential first step in reengineering.

And then he goes on to say: “but an analysis of those processes is a waste
of time. You must place strict limits, both on time you take to develop this
understanding and on the length of the description you make.” Needless to
say we question this latter part of the third item.

1. If you proceed to reengineer without the proper leadership, you are making
a fatal mistake. If your leadership is nominal rather than serious, and isn’t
prepared to make the required commitment, your efforts are doomed to
failure.

By leadership is basically meant: “upper, executive management”.

1. Reengineering requires radical, breakthrough ideas about process design.
Reengineering leaders must encourage people to pursue stretch goals1 and
to think out of the box; to this end, leadership must reward creative
thinking and be willing to consider any new idea.

1A ‘stretch goal’ is a goal, an objective, for which, if one wishes to achieve that
goal, one has to stretch oneself.
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This is clearly an example of the US guru, “new management”-type ‘speak’ !

1. Before implementing a process in the real world create a laboratory version
in order to test whether your ideas work. . . . Proceeding directly from idea
to real-world implementation is (usually) a recipe for disaster.

Our careful both informal and formal description of the existing domain pro-
cesses as well as the similarly careful prescription of the reengineered business
processes shall, in a sense, make up for this otherwise vague term “laboratory
version”.

1. You must reengineer quickly. If you can’t show some tangible results within
a year, you will lose the support and momentum necessary to make the
effort successful. To this end “scope creep” must be avoided at all cost.
Stay focused and narrow the scope if necessary in order to get results fast.

We obviously do not agree, in principle and in general, with this statement.

1. You cannot reengineer a process in isolation. Everything must be on the
table. Any attempts to set limits, to preserve a piece of the old system,
will doom your efforts to failure.

We can only agree. But the wording is like mantras. As a software engineer,
founded in science, such statements as the above are not technical, are not
scientific. They are “management speak”.

1. Reengineering needs its own style of implementation: fast, improvisational,
and iterative.

We are not so sure about this statement either! Professional engineering work
is something one neither does fast nor improvisational.

1. Any successful reengineering effort must take into account the personal
needs of the individuals it will affect. The new process must offer some
benefit to the people who are, after all, being asked to embrace enormous
change, and the transition from the old process to the new one must be
made with great sensitivity as to their feelings.

This is nothing but a politically correct, pat statement! It would not pass the
negation test: Nobody would claim the opposite. Real benefits of reengineering
often come from not requiring as many people, i.e., workers and management,
in the corporation as before reengineering. Hence: What about the “feelings”
of those laid off?

A.2.2 What Are BPR Requirements?

Two “paths” lead to business process reengineering:

• A client wishes to improve enterprise operations by deploying new comput-
ing systems (i.e., new software). In the course of formulating requirements
for this new computing system a need arises to also reengineer the human
operations within and without the enterprise.
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• An enterprise wishes to improve operations by redesigning the way staff
operates within the enterprise and the way in which customers and staff
operate across the enterprise-to-environment interface. In the course of for-
mulating reengineering directives a need arises to also deploy new software,
for which requirements therefore have to be enunciated.

One way or the other, business process reengineering is an integral component
in deploying new computing systems.

A.2.3 Overview of BPR Operations

We suggest six domain-to-business process reengineering operations:

1. introduction of some new and removal of some old intrinsics;
2. introduction of some new and removal of some old support technologies;
3. introduction of some new and removal of some old management and or-

ganisation substructures;
4. introduction of some new and removal of some old rules and regulations;
5. introduction of some new and removal of some old work practices (relating

to human behaviours); and
6. related scripting.

A.2.4 BPR and the Requirements Document

The reader must be duly “warned”: The BPR requirements are not for a
computing system, but for the people who “surround” that (future) system.
The BPR requirements state, unequivocally, how those people are to act, i.e.,
to use that system properly. Any implications, by the BPR requirements, as
to concepts and facilities of the new computing system must be prescribed
(also) in the domain and interface requirements.

A.2.5 Intrinsics Review and Replacement

Characterisation. By intrinsics review and replacement we understand an
evaluation as to whether current intrinsics stays or goes, and as to whether
newer intrinsics need to be introduced.

Example A.1 Intrinsics Replacement: A railway net owner changes its busi-
ness from owning, operating and maintaining railway nets (lines, stations and
signals) to operating trains. Hence the more detailed state changing notions
of rail units need no longer be part of that new company’s intrinsics while the
notions of trains and passengers need be introduced as relevant intrinsics.

Replacement of intrinsics usually point to dramatic changes of the business
and are usually not done in connection with subsequent and related software
requirements development.
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A.2.6 Support Technology Review and Replacement

Characterisation. By support technology review and replacement we un-
derstand an evaluation as to whether current support technology as used in
the enterprise is adequate, and as to whether other (newer) support technology
can better perform the desired services.

Example A.2 Support Technology Review and Replacement: Currently the
main information flow of an enterprise is taken care of by printed paper, copy-
ing machines and physical distribution. All such documents, whether originals
(masters), copies, or annotated versions of originals or copies, are subject to
confidentiality. As part of a computerised system for handling the future in-
formation flow, it is specified, by some domain requirements, that document
confidentiality is to be taken care of by encryption, public and private keys,
and digital signatures. However, it is realised that there can be a need for
taking physical, not just electronic, copies of documents. The following busi-
ness process reengineering proposal is therefore considered: Specially made
printing paper and printing and copying machines are to be procured, and
so are printers and copiers whose use requires the insertion of special signa-
ture cards which, when used, check that the person printing or copying is
the person identified on the card, and that that person may print the desired
document. All copiers will refuse to copy such copied documents — hence the
special paper. Such paper copies can thus be read at, but not carried outside
the premises (of the printers and copiers). And such printers and copiers can
register who printed, respectively who tried to copy, which documents. Thus
people are now responsible for the security (whereabouts) of possible paper
copies (not the required computing system). The above, somewhat construed
example, shows the “division of labour” between the contemplated (required,
desired) computing system (the “machine”) and the “business reengineered”
persons authorised to print and possess confidential documents.

It is implied in the above that the reengineered handling of documents
would not be feasible without proper computing support. Thus there is a
“spill-off” from the business reengineered world to the world of computing
systems requirements.

A.2.7 Management and Organisation Reengineering

Characterisation. By management and organisation reengineering we un-
derstand an evaluation as to whether current management principles and or-
ganisation structures as used in the enterprise are adequate, and as to whether
other management principles and organisation structures can better monitor
and control the enterprise.
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Example A.3 Management and Organisation Reengineering: A rather com-
plete computerisation of the procurement practices of a company is being
contemplated. Previously procurement was manifested in the following phys-
ically separate as well as designwise differently formatted paper documents:
requisition form, order form, purchase order, delivery inspection form, rejec-
tion and return form, and payment form. The supplier had corresponding
forms: order acceptance and quotation form, delivery form, return acceptance
form, invoice form, return verification form, and payment acceptance form.
The current concern is only the procurement forms, not the supplier forms.
The proposed domain requirements are mandating that all procurer forms
disappear in their paper version, that basically only one, the procurement
document, represents all phases of procurement, and that order, rejection
and return notification slips, and payment authorisation notes, be effected by
electronically communicated and duly digitally signed messages that represent
appropriate subparts of the one, now electronic procurement document. The
business process reengineering part may now “short-circuit” previous staff’s
review and acceptance/rejection of former forms, in favour of fewer staff in-
terventions.

The new business procedures, in this case, subsequently find their way into
proper domain requirements: those that support, that is monitor and control
all stages of the reengineered procurement process.

A.2.8 Rules and Regulations Reengineering

Characterisation. By rules and regulations reengineering we understand an
evaluation as to whether current rules and regulations as used in the enterprise
are adequate, and as to whether other rules and regulations can better guide
and regulate the enterprise.

Here it should be remembered that rules and regulations principally stipulate
business engineering processes. That is, they are — i.e., were — usually not
computerised.

Example A.4 Rules and Regulations Reengineering: Assume now, due to
reengineered support technologies, that interlock signalling can be made mag-
nitudes safer than before, without interlocking. from: In any three-minute in-
terval at most one train may either arrive to or depart from a railway station
into: In any 20-second interval at most two trains may either arrive to or
depart from a railway station.

This reengineered rule is subsequently made into a domain requirements,
namely that the software system for interlocking is bound by that rule.
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A.2.9 Human Behaviour Reengineering

Characterisation. Human Behaviour Reengineering: By human behaviour
reengineering we understand an evaluation as to whether current human be-
haviour as experienced in the enterprise is acceptable, and as to whether
partially changed human behaviours are more suitable for the enterprise.

Example A.5 Human Behaviour Reengineering: A company has experienced
certain lax attitudes among members of a certain category of staff. The
progress of certain work procedures therefore is reengineered, implying that
members of another category of staff are henceforth expected to follow up on
the progress of “that” work.

In a subsequent domain requirements stage the above reengineering leads
to a number of requirements for computerised monitoring of the two groups
of staff.

A.2.10 Script Reengineering

On one hand, there is the engineering of the contents of rules and regulations,
and, on another hand, there are the people (management, staff) who script
these rules and regulations, and the way in which these rules and regulations
are communicated to managers and staff concerned.

Characterisation. By script reengineering we understand evaluation as to
whether the way in which rules and regulations are scripted and made known
(i.e., posted) to stakeholders in and of the enterprise is adequate, and as
to whether other ways of scripting and posting are more suitable for the
enterprise.

Example A.6 Script Reengineering: They illustrated the description of a
perceived bank script language. One that was used, for example, to explain to
bank clients how demand/deposit and mortgage accounts, and hence loans,
“worked”.

With the given set of “schematised” and “user-friendly” script commands,
such as they were identified in the referenced examples, only some banking
transactions can be described. Some obvious ones cannot, for example, merge
two mortgage accounts, transfer money between accounts in two different
banks, pay monthly and quarterly credit card bills, send and receive funds
from stockbrokers, etc.

A reengineering is therefore called for, one that is really first to be done in
the basic business processes of a bank offering these services to its customers.
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A.2.11 Discussion: Business Process Reengineering

A.2.12 Who Should Do the Business Process Reengineering?

It is not in our power, as software engineers, to make the kind of business
process reengineering decisions implied above. Rather it is, perhaps, more the
prerogative of appropriately educated, trained and skilled (i.e., gifted) other
kinds of engineers or business people to make the kinds of decisions implied
above. Once the BP reengineering has been made, it then behooves the client
stakeholders to further decide whether the BP reengineering shall imply some
requirements, or not.

Once that last decision has been made in the affirmative, we, as software
engineers, can then apply our abstraction and modelling skills, and, while
collaborating with the former kinds of professionals, make the appropriate
prescriptions for the BPR requirements. These will typically be in the form
of domain requirements.

A.2.13 General

Business process reengineering is based on the premise that corporations must
change their way of operating, and, hence, must “reinvent” themselves. Some
corporations (enterprises, businesses, etc.) are “vertically” structured along
functions, products or geographical regions. This often means that business
processes “cut across” vertical units. Others are “horizontally” structured
along coherent business processes. This often means that business processes
“cut across” functions, products or geographical regions. In either case ad-
justments may need to be made as the business (i.e., products, sales, markets,
etc.) changes. We otherwise refer to currently leading books on business pro-
cess reengineering: [45, 46, 59, 63].
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RSL: The RAISE Specification Language

B.1 Types

This is a very brief refresher on the RAISE Specification Language RSL. The
reader is kindly asked to study first the decomposition of this section into its
subparts and sub-subparts.

B.1.1 Type Expressions

RSL has a number of built-in types. There are the Booleans, integers, natural
numbers, reals, characters and texts. From these one can form type expres-
sions: finite sets, infinite sets, Cartesian products, lists, maps, etc. Let A, B
and C be any type names or type expressions, then the following (save the [i]
line numbers) are generic type expressions:

Formal Expressions

type
[ 1 ] Bool
[ 2 ] Int
[ 3 ] Nat
[ 4 ] Real
[ 5 ] Char
[ 6 ] Text

[ 7 ] A-set
[ 8 ] A-infset
[ 9 ] A × B × ... × C
[ 10 ] A∗

[ 11 ] Aω

[ 12 ] A →m B
[ 13 ] A → B
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[ 14 ] A
∼

→ B
[ 15 ] (A)
[ 16 ] A | B | ... | C
[ 17 ] mk id(sel a:A,...,sel b:B)
[ 18 ] sel a:A ... sel b:B

Annotations:

1. The Boolean type of truth values false and true.
2. The integer type on integers ..., −2,−1, 0, 1, 2, ... .
3. The natural number type of positive integer values 0, 1, 2, ... .
4. The real number type of real values, i.e., values whose numerals can be

written as an integer, followed by a period (“.”), followed by a natural
number (the fraction).

5. The character type of character values ”a”, ”b”, ... .1

6. The text type of character string values ”aa”, ”aaa”, ..., ”abc”, ... .
7. The set type of finite set values, see below.
8. The set type of infinite set values.
9. The Cartesian type of Cartesian values, see below.

10. The list type of finite list values, see below.
11. The list type of infinite list values.
12. The map type of finite map values, see below.
13. The function type of total function values, see below.
14. The function type of partial function values.
15. In (A) A is constrained to be:

• either a Cartesian B × C × ... × D, in which case it is identical to type
expression kind 9,

• or not to be the name of a built-in type (cf. 1–6) or of a type, in
which case the parentheses serve as simple delimiters, e.g., (A →m B),
or (A∗)-set, or (A-set)list, or (A|B) →m (C|D|(E →m F)), etc.

16. The (postulated disjoint) union of types A, B, . . . , and C.
17. The record type of mk id-named record values mk id(av,...,bv), where av,

. . . , and bv are values of respective types. The distinct identifiers sel a,
etc., designate selector functions.

18. The record type of unnamed record values (av,...,bv), where av, . . . , and bv
are values of respective types. The distinct identifiers sel a, etc., designate
selector functions.

1RSL uses double quotes ” on both sides of a character and a character string
rather than usual balanced quotes “...”
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B.1.2 Type Definitions

Concrete Types:

Types can be concrete, in which case the structure of the type is specified by
type expressions:

Formal Expressions

type
A = Type expr

Some schematic type definitions are:

Formal Expressions

[ 1 ] Type name = Type expr /∗ without | s or sub-types ∗/
[ 2 ] Type name = Type expr 1 | Type expr 2 | ... | Type expr n
[ 3 ] Type name ==

mk id 1(s a1:Type name a1,...,s ai:Type name ai) |
... |
mk id n(s z1:Type name z1,...,s zk:Type name zk)

[ 4 ] Type name :: sel a:Type name a ... sel z:Type name z
[ 5 ] Type name = {| v:Type name′ • P(v) |}

where a form of [2–3] is provided by combining the types:

Formal Expressions

Type name = A | B | ... | Z
A == mk id 1(s a1:A 1,...,s ai:A i)
B == mk id 2(s b1:B 1,...,s bj:B j)
...
Z == mk id n(s z1:Z 1,...,s zk:Z k)

Subtypes

In RSL, each type represents a set of values. Such a set can be delimited by
means of predicates. The set of values b which have type B and which satisfy
the predicate P constitutes the subtype A:

Formal Expressions

type
A = {| b:B • P(b) |}
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Sorts (Abstract Types)

Types can be sorts (abstract) in which case their structure is not specified:

Formal Expressions

type
A, B, ..., C

B.2 The RSL Predicate Calculus

B.2.1 Propositional Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean
values. Then

Formal Expressions

false, true
a, b, ..., c
∼a, a∧b, a∨b, a⇒b, a=b, a 6=b

are propositional expressions having Boolean values. ∼, ∧, ∨, ⇒, and = are
Boolean connectives (i.e., operators). They are read: not, and, or, if-then (or
implies), equal and not-equal.

B.2.2 Simple Predicate Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean
values, let x, y, ..., z (or term expressions) designate non-Boolean values, and
let i, j, . . ., k designate number values, then

Formal Expressions

false, true
a, b, ..., c
∼a, a∧b, a∨b, a⇒b, a=b, a 6=b
x=y, x 6=y,
i<j, i≤j, i≥j, i>j, ...

are simple predicate expressions.
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B.2.3 Quantified Expressions

Let X, Y, . . ., C be type names or type expressions, and let P(x), Q(y) and
R(z) designate predicate expressions in which x, y and z are free. Then

Formal Expressions

∀ x:X • P(x)
∃ y:Y • Q(y)
∃ ! z:Z • R(z)

are quantified expressions — also being predicate expressions. They are “read”
as: For all x (values in type X) the predicate P(x) holds; there exists (at least)
one y (value in type Y ) such that the predicate Q(y) holds; and there exists
a unique z (value in type Z) such that the predicate R(z) holds.

B.3 Concrete RSL Types

B.3.1 Set Enumerations

Let the below as denote values of type A, then the below designate simple set
enumerations:

Formal Expressions

{{}, {a}, {a1,a2,...,am}, ...} ∈ A-set
{{}, {a}, {a1,a2,...,am}, ..., {a1,a2,...}} ∈ A-infset

The expression, last line below, to the right of the ≡, expresses set comprehen-
sion. The expression “builds” the set of values satisfying the given predicate.
It is highly abstract in the sense that it does not do so by following a concrete
algorithm.

Formal Expressions

type
A, B
P = A → Bool

Q = A
∼

→ B
value

comprehend: A-infset × P × Q → B-infset
comprehend(s,P ,Q) ≡ { Q(a) | a:A • a ∈ s ∧ P(a) }
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B.3.2 Cartesian Enumerations

Let e range over values of Cartesian types involving A, B, . . ., C (allowing in-
dexing for solving ambiguity), then the below expressions are simple Cartesian
enumerations:

Formal Expressions

type
A, B, ..., C
A × B × ... × C

value
... (e1,e2,...,en) ...

B.3.3 List Enumerations

Let a range over values of type A (allowing indexing for solving ambiguity),
then the below expressions are simple list enumerations:

Formal Expressions

{〈〉, 〈a〉, ..., 〈a1,a2,...,am〉, ...} ∈ A∗

{〈〉, 〈a〉, ..., 〈a1,a2,...,am〉, ..., 〈a1,a2,...,am,... 〉, ...} ∈ Aω

〈 ei .. ej 〉

The last line above assumes ei and ej to be integer-valued expressions. It then
expresses the set of integers from the value of ei to and including the value of
ej . If the latter is smaller than the former then the list is empty.

The last line below expresses list comprehension.

Formal Expressions

type

A, B, P = A → Bool, Q = A
∼

→ B
value

comprehend: Aω × P × Q
∼

→ Bω

comprehend(lst,P ,Q) ≡
〈 Q(lst(i)) | i in 〈1..len lst〉 • P(lst(i)) 〉
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B.3.4 Map Enumerations

Let a and b range over values of type A and B, respectively (allowing indexing
for solving ambiguity).Then the below expressions are simple map enumera-
tions:

Formal Expressions

type
A, B
M = A →m B

value
a,a1,a2,...,a3:A, b,b1,b2,...,b3:B

[ ], [ a 7→b ], ..., [ a1 7→b1,a2 7→b2,...,a3 7→b3 ] ∀ ∈ M

The last line below expresses map comprehension:

Formal Expressions

type
A, B, C, D
M = A →m B

F = A
∼

→ C

G = B
∼

→ D
P = A → Bool

value
comprehend: M×F×G×P → (C →m D)
comprehend(m,F ,G,P) ≡

[ F(a) 7→ G(m(a)) | a:A • a ∈ dom m ∧ P(a) ]

B.3.5 Set Operations

Formal Expressions

value
∈: A × A-infset → Bool
6∈: A × A-infset → Bool
∪: A-infset × A-infset → A-infset
∪: (A-infset)-infset → A-infset
∩: A-infset × A-infset → A-infset
∩: (A-infset)-infset → A-infset
\: A-infset × A-infset → A-infset
⊂: A-infset × A-infset → Bool
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⊆: A-infset × A-infset → Bool
=: A-infset × A-infset → Bool
6=: A-infset × A-infset → Bool

card: A-infset
∼

→ Nat

examples
a ∈ {a,b,c}
a 6∈ {}, a 6∈ {b,c}
{a,b,c} ∪ {a,b,d,e} = {a,b,c,d,e}
∪{{a},{a,b},{a,d}} = {a,b,d}
{a,b,c} ∩ {c,d,e} = {c}
∩{{a},{a,b},{a,d}} = {a}
{a,b,c} \ {c,d} = {a,b}
{a,b} ⊂ {a,b,c}
{a,b,c} ⊆ {a,b,c}
{a,b,c} = {a,b,c}
{a,b,c} 6= {a,b}
card {} = 0, card {a,b,c} = 3

Annotations:

• ∈ The membership operator expresses that an element is member of a set.
• 6∈ The nonmembership operator expresses that an element is not member

of a set.
• ∪ The infix union operator. When applied to two sets, the operator gives

the set whose members are in either or both of the two operand sets.
• ∩ The infix intersection operator. When applied to two sets, the operator

gives the set whose members are in both of the two operand sets.
• \ The set complement (or set subtraction) operator. When applied to two

sets, the operator gives the set whose members are those of the left operand
set which are not in the right operand set.

• ⊆ The proper subset operator expresses that all members of the left
operand set are also in the right operand set.

• ⊂ The proper subset operator expresses that all members of the left
operand set are also in the right operand set, and that the two sets are
not identical.

• = The equal operator expresses that the two operand sets are identical.
• 6= The nonequal operator expresses that the two operand sets are not

identical.
• card The cardinality operator gives the number of elements in a (finite)

set.
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The operations can be defined as follows:

Formal Expressions

value
s′ ∪ s′′ ≡ { a | a:A • a ∈ s′ ∨ a ∈ s′′ }
s′ ∩ s′′ ≡ { a | a:A • a ∈ s′ ∧ a ∈ s′′ }
s′ \ s′′ ≡ { a | a:A • a ∈ s′ ∧ a 6∈ s′′ }
s′ ⊆ s′′ ≡ ∀ a:A • a ∈ s′ ⇒ a ∈ s′′

s′ ⊂ s′′ ≡ s′ ⊆ s′′ ∧ ∃ a:A • a ∈ s′′ ∧ a 6∈ s′

s′ = s′′ ≡ ∀ a:A • a ∈ s′ ≡ a ∈ s′′ ≡ s⊆s′ ∧ s′⊆s
s′ 6= s′′ ≡ s′ ∩ s′′ 6= {}
card s ≡

if s = {} then 0 else
let a:A • a ∈ s in 1 + card (s \ {a}) end end
pre s /∗ is a finite set ∗/

card s ≡ chaos /∗ tests for infinity of s ∗/

B.3.6 Cartesian Operations

Formal Expressions

type
A, B, C
g0: G0 = A × B × C
g1: G1 = ( A × B × C )
g2: G2 = ( A × B ) × C
g3: G3 = A × ( B × C )

value
va:A, vb:B, vc:C, vd:D
(va,vb,vc):G0,
(va,vb,vc):G1
((va,vb),vc):G2
(va3,(vb3,vc3)):G3

decomposition expressions
let (a1,b1,c1) = g0,

(a1′,b1′,c1′) = g1 in .. end
let ((a2,b2),c2) = g2 in .. end
let (a3,(b3,c3)) = g3 in .. end
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B.3.7 List Operations

Formal Expressions

value

hd: Aω ∼

→ A

tl: Aω ∼

→ Aω

len: Aω ∼

→ Nat
inds: Aω → Nat-infset
elems: Aω → A-infset

.(.): Aω × Nat
∼

→ A
̂: A∗ × Aω → Aω

=: Aω × Aω → Bool
6=: Aω × Aω → Bool

examples
hd〈a1,a2,...,am〉=a1
tl〈a1,a2,...,am〉=〈a2,...,am〉
len〈a1,a2,...,am〉=m
inds〈a1,a2,...,am〉={1,2,...,m}
elems〈a1,a2,...,am〉={a1,a2,...,am}
〈a1,a2,...,am〉(i)=ai
〈a,b,c〉̂〈a,b,d〉 = 〈a,b,c,a,b,d〉
〈a,b,c〉=〈a,b,c〉
〈a,b,c〉 6= 〈a,b,d〉

Annotations:

• hd Head gives the first element in a nonempty list.
• tl Tail gives the remaining list of a nonempty list when Head is removed.
• len Length gives the number of elements in a finite list.
• inds Indices gives the set of indices from 1 to the length of a nonempty

list. For empty lists, this set is the empty set as well.
• elems Elements gives the possibly infinite set of all distinct elements in a

list.
• ℓ(i) Indexing with a natural number, i larger than 0, into a list ℓ having a

number of elements larger than or equal to i, gives the ith element of the
list.

• ̂ Concatenates two operand lists into one. The elements of the left operand
list are followed by the elements of the right. The order with respect to
each list is maintained.

• = The equal operator expresses that the two operand lists are identical.
• 6= The nonequal operator expresses that the two operand lists are not

identical.
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The operations can also be defined as follows:

Formal Expressions

value
is finite list: Aω → Bool

len q ≡
case is finite list(q) of

true → if q = 〈〉 then 0 else 1 + len tl q end,
false → chaos end

inds q ≡
case is finite list(q) of

true → { i | i:Nat • 1 ≤ i ≤ len q },
false → { i | i:Nat • i6=0 } end

elems q ≡ { q(i) | i:Nat • i ∈ inds q }

q(i) ≡
if i=1

then
if q 6=〈〉

then let a:A,q′:Q • q=〈a〉̂q′ in a end
else chaos end

else q(i−1) end

fq ̂ iq ≡
〈 if 1 ≤ i ≤ len fq then fq(i) else iq(i − len fq) end
| i:Nat • if len iq 6=chaos then i ≤ len fq+len end 〉

pre is finite list(fq)

iq′ = iq′′ ≡
inds iq′ = inds iq′′ ∧ ∀ i:Nat • i ∈ inds iq′ ⇒ iq′(i) = iq′′(i)

iq′ 6= iq′′ ≡ ∼(iq′ = iq′′)

B.3.8 Map Operations

Formal Expressions

value

m(a): M → A
∼

→ B, m(a) = b
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dom: M → A-infset [ domain of map ]
dom [ a1 7→b1,a2 7→b2,...,an7→bn ] = {a1,a2,...,an}

rng: M → B-infset [ range of map ]
rng [ a1 7→b1,a2 7→b2,...,an7→bn ] = {b1,b2,...,bn}

†: M × M → M [ override extension ]
[ a 7→b,a′7→b′,a′′7→b′′ ] † [ a′7→b′′,a′′7→b′ ] = [ a 7→b,a′7→b′′,a′′7→b′ ]

∪: M × M → M [ merge ∪ ]
[ a 7→b,a′7→b′,a′′7→b′′ ] ∪ [ a′′′ 7→b′′′ ] = [ a 7→b,a′7→b′,a′′7→b′′,a′′′7→b′′′ ]

\: M × A-infset → M [ restriction by ]
[ a 7→b,a′7→b′,a′′7→b′′ ]\{a} = [ a′7→b′,a′′ 7→b′′ ]

/: M × A-infset → M [ restriction to ]
[ a 7→b,a′7→b′,a′′7→b′′ ]/{a′,a′′} = [ a′7→b′,a′′ 7→b′′ ]

=,6=: M × M → Bool

◦: (A →m B) × (B →m C) → (A →m C) [ composition ]
[ a 7→b,a′7→b′ ] ◦ [ b7→c,b′7→c′,b′′7→c′′ ] = [ a 7→c,a′7→c′ ]

Annotations:

• m(a) Application gives the element of which a maps to in the map m.
• dom Domain/definition set gives the set of values which maps to in a

map.
• rng: Range/image set gives the set of values which are mapped to in a

map.
• † Override/extend. When applied to two operand maps, it gives the map

which is like an override of the left operand map by all or some “pairings”
of the right operand map.

• ∪ Merge. When applied to two operand maps, it gives a merge of these
maps.

• \: Restriction. When applied to two operand maps, it gives the map which
is a restriction of the left operand map to the elements that are not in the
right operand set.

• / Restriction. When applied to two operand maps, it gives the map which
is a restriction of the left operand map to the elements of the right operand
set.

• = The equal operator expresses that the two operand maps are identical.
• 6= The nonequal operator expresses that the two operand maps are not

identical.
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• ◦ Composition. When applied to two operand maps, it gives the map from
definition set elements of the left operand map, m1, to the range elements
of the right operand map, m2, such that if a is in the definition set of m1

and maps into b, and if b is in the definition set of m2 and maps into c,
then a, in the composition, maps into c.

The map operations can also be defined as follows:

Formal Expressions

value
rng m ≡ { m(a) | a:A • a ∈ dom m }

m1 † m2 ≡
[ a 7→b | a:A,b:B •

a ∈ dom m1 \ dom m2 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a) ]

m1 ∪ m2 ≡ [ a 7→b | a:A,b:B •

a ∈ dom m1 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a) ]

m \ s ≡ [ a 7→m(a) | a:A • a ∈ dom m \ s ]
m / s ≡ [ a 7→m(a) | a:A • a ∈ dom m ∩ s ]

m1 = m2 ≡
dom m1 = dom m2 ∧ ∀ a:A • a ∈ dom m1 ⇒ m1(a) = m2(a)

m1 6= m2 ≡ ∼(m1 = m2)

m◦n ≡
[ a 7→c | a:A,c:C • a ∈ dom m ∧ c = n(m(a)) ]
pre rng m ⊆ dom n

B.4 λ-Calculus and Functions

RSL supports function expressions for λ-abstraction.

B.4.1 The λ-Calculus Syntax

Formal Expressions

type /∗ A BNF Syntax: ∗/
〈L〉 ::= 〈V〉 | 〈F〉 | 〈A〉 | ( 〈A〉 )
〈V〉 ::= /∗ variables, i.e. identifiers ∗/
〈F〉 ::= λ〈V〉 • 〈L〉
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〈A〉 ::= ( 〈L〉〈L〉 )
value /∗ Examples ∗/

〈L〉: e, f, a, ...
〈V〉: x, ...
〈F〉: λ x • e, ...
〈A〉: f a, (f a), f(a), (f)(a), ...

B.4.2 Free and Bound Variables

Formal Expressions
Let x, y be variable names and e, f be λ-expressions.

• 〈V〉: Variable x is free in x.
• 〈F〉: x is free in λy •e if x 6= y and x is free in e.
• 〈A〉: x is free in f(e) if it is free in either f or e (i.e., also in both).

B.4.3 Substitution

In RSL, the following rules for substitution apply:

Formal Expressions

• subst([N/x]x) ≡ N;
• subst([N/x]a) ≡ a,

for all variables a 6= x;
• subst([N/x](P Q)) ≡ (subst([N/x]P) subst([N/x]Q));
• subst([N/x](λx•P )) ≡ λ y•P;
• subst([N/x](λ y•P)) ≡ λy• subst([N/x]P),

if x6=y and y is not free in N or x is not free in P;
• subst([N/x](λy•P)) ≡ λz•subst([N/z]subst([z/y]P)),

if y6=x and y is free in N and x is free in P
(where z is not free in (N P)).

B.4.4 α-Renaming and β-Reduction

Formal Expressions

• α-renaming: λx•M
If x y are distinct variables then replacing x by y in λx•M results in
λy•subst([y/x]M): We can rename the formal parameter of a λ-function
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expression provided that no free variables of its body M thereby become
bound.

• β-reduction: (λx•M)(N)
All free occurrences of x in M are replaced by the expression N provided
that no free variables of N thereby become bound in the result.
(λx•M)(N) ≡ subst([N/x]M)

B.4.5 Function Signatures

For some functions, we want to abstract from the function body:

Formal Expressions

value
obs Pos Aircraft: Aircraft → Pos,
move: Aircraft × Dir → Aircraft,

B.4.6 Function Definitions

Functions — with body — can be defined explicitly

Formal Expressions

value
f: A × B × C → D
f(a,b,c) ≡ Value Expr

g: B-infset × (D →m C-set)
∼

→ A∗

g(bs,dm) ≡ Value Expr
pre P(dm)

or implicitly

Formal Expressions

value
f: A × B × C → D
f(a,b,c) as d
post P1(d)

g: B-infset × (D →m C-set)
∼

→ A∗

g(bs,dm) as al



86 B RSL: The RAISE Specification Language

pre P2(dm)
post P3(al)

The symbol
∼

→ indicates that the function is partial and thus not defined for
all arguments. Partial functions should be assisted by preconditions stating
the criteria for arguments to be meaningful to the function.

B.5 Further Applicative Expressions

B.5.1 Let Expressions

Simple (i.e., nonrecursive) let expressions:

Formal Expressions

let a = Ed in Eb(a) end

is an “expanded” form of

Formal Expressions

(λa.Eb(a))(Ed)

Recursive let expressions are written as:

Formal Expressions

let f = λa:A • E(f) in B(f,a) end

is “the same” as:

let f = YF in B(f,a) end

where:

F ≡ λg•λa•(E(g)) and YF = F(YF)

Predicative let expressions:

Formal Expressions

let a:A • P(a) in B(a) end
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express the selection of a value a of type A which satisfies a predicate P(a)
for evaluation in the body B(a).

Patterns and wild cards can be used:

Formal Expressions

let {a} ∪ s = set in ... end
let {a, } ∪ s = set in ... end

let (a,b,...,c) = cart in ... end
let (a, ,...,c) = cart in ... end

let 〈a〉̂ℓ = list in ... end
let 〈a, ,b〉̂ℓ = list in ... end

let [ a 7→b ] ∪ m = map in ... end
let [ a 7→b, ] ∪ m = map in ... end

B.5.2 Conditionals

Various kinds of conditional expressions are offered by RSL:

Formal Expressions

if b expr then c expr else a expr end

if b expr then c expr end ≡ /∗ same as: ∗/
if b expr then c expr else skip end

if b expr 1 then c expr 1
elsif b expr 2 then c expr 2
elsif b expr 3 then c expr 3
...
elsif b exprt n then c expr n end

case expr of
choice pattern 1 → expr 1,
choice pattern 2 → expr 2,
...
choice pattern n or wild card → expr n

end
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B.5.3 Operator/Operand Expressions

Formal Expressions

〈Expr〉 ::=
〈Prefix Op〉 〈Expr〉
| 〈Expr〉 〈Infix Op〉 〈Expr〉
| 〈Expr〉 〈Suffix Op〉
| ...

〈Prefix Op〉 ::=
− | ∼ | ∪ | ∩ | card | len | inds | elems | hd | tl | dom | rng

〈Infix Op〉 ::=
= | 6= | ≡ | + | − | ∗ | ↑ | / | < | ≤ | ≥ | > | ∧ | ∨ | ⇒
| ∈ | 6∈ | ∪ | ∩ | \ | ⊂ | ⊆ | ⊇ | ⊃ | ̂ | † | ◦

〈Suffix Op〉 ::= !

B.6 Imperative Constructs

Often, following the RAISE method, software development starts with highly
abstract-applicative constructs which, through stages of refinements, are
turned into concrete and imperative constructs. Imperative constructs are
thus inevitable in RSL.

B.6.1 Variables and Assignment

Formal Expressions

0. variable v:Type := expression
1. v := expr

B.6.2 Statement Sequences and skip

Sequencing is done using the “;” operator. skip is the empty statement having
no value or side effect.

Formal Expressions

2. skip
3. stm 1;stm 2;...;stm n
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B.6.3 Imperative Conditionals

Formal Expressions

4. if expr then stm c else stm a end
5. case e of: p 1→S 1(p 1),...,p n→S n(p n) end

B.6.4 Iterative Conditionals

Formal Expressions

6. while expr do stm end
7. do stmt until expr end

B.6.5 Iterative Sequencing

Formal Expressions

8. for b in list expr • P(b) do S(b) end

B.7 Process Constructs

B.7.1 Process Channels

Let A, B stand for types of channel messages and KIdx stand for channel array
indexes. Then

Formal Expressions

channel c:A
channel { k[ i ]:B • i:KIdx }

declare a channel, c, and an array of channels, k, whose individual channels,
k[i], are able to communicate values of the designated types.
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B.7.2 Process Composition

Let P and Q stand for names of process functions, i.e., of functions which
express willingness to engage in input and/or output events, thereby commu-
nicating over declared channels.

Let P() and Q(i) stand for process expressions2 then

Formal Expressions

P() ‖ Q(i) Parallel composition
P() ⌈⌉⌊⌋ Q(i) Nondeterministic External Choice (either/or)
P() ⌈⌉ Q(i) Nondeterministic Internal Choice (either/or)
P() –‖ Q() Interlock Parallel composition

expresses the parallel (‖) of two processes, the nondeterministic choice be-
tween two processes, either external (⌈⌉⌊⌋) or internal (⌈⌉). The interlock (–‖)
composition expresses that the two processes are forced to communicate only
with one another, until one of them terminates.

B.7.3 Input/Output Events

Let c and k[i] designate channels of type A, and let e designate an expression
also of type A. Then

Formal Expressions

c ?, k[ i ] ? Input expression (a clause)
c ! e, k[ i ] ! e Output clause (a statement)

expresses the willingness to engage in an event that “reads” an input, and
respectively “writes” an output.

B.7.4 Process Definitions

The below signatures are just examples. They emphasise that process func-
tions must somehow express, in their signature, via which channels they wish
to engage in input and output events.

Formal Expressions

value

2Both expressions (P() and (Q(i)) name process definitions (P respectively Q).
P has no formal parameters. Q has, as only parameter, a channel array index. The
former, P(), thus invokes P with no arguments and the latter, Q(i), invokes Q with
a channel array index argument.
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P: Unit → in c out k[ i ] Unit
Q: i:KIdx → out c in k[ i ] Unit

P() ≡ ... c ? ... k[ i ] ! e ...
Q(i) ≡ ... k[ i ] ? ... c ! e ...

The process function definitions (i.e., their bodies) express possible events.

B.8 Simple RSL Specifications

Often, we do not want to encapsulate small specifications in schemes, classes
and objects, as is often done in RSL. An RSL specification is simply a sequence
of one or more types, one or more values (including functions), zero, one or
more variables, zero, one or more channels and zero, one or more axioms listed
under respective type, variable, channel, valueand axiom “headers”. We
prefer to list their order as shown:

Formal Expressions

type
...

variable
...

channel
...

value
...

axiom
...

In practice a full specification repeats the above listings many times, once
for each “module” (i.e., aspect, facet, view) of specification. Each of these
modules may be “wrapped” into scheme, class or object definitions.3

3For schemes, classes and objects we refer to Vol. 2, Chap. 10 of this series of
textbooks.





C

On a Domain Model of Transportation

We bring a fragment of a domain model of transportation nets.

C.1 Net Topology

We conceptualise as segments the physically manifest phenomena of roads
(between adjacent street intersections), rail tracks (between adjacent train
stations), airlanes (between adjacent airports) and shpping lanes (between
adjacent harbours). We likewise conceptualise as junctions street intersections,
train stations, airports and harbours.

C.1.1 Nets, Segments and Junctions

1. Nets consists of one or more segments and two or more junctions.

type
N, S, J

value
obs Ss: N → S-set
obs Js: N → J-set

axiom
∀ n:N • card obs Ss(n) ≥ 1 ∧ card obs Js(n) ≥ 2

Annotations:
• N, S, J are considered abstract types, i.e., sorts. N, S and J are type

names, i.e., names of types of values. Values of type N are nets, values
of type S are segments and values of type J are junctions.

• One can observe from nets, n, their (one or more) segments (obs Ss(n))
and their (two or more) junctions (obs Js(n)); n is a value of type N.

• Functions have names, obs Ss, and obs Cs, and functions, f, have sig-
natures, f: A → B (not illustrated), where A and B are type names. A
designates the definition set of f and B the range set.
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• A-set is a type expression. It denotes the type whose values are finite,
possibly empty set of A values.

• These observer functions are postulated.
• They cannot be formally defined.
• They are “defined” once a net has been pointed out1

• The axiom expresses that in any net there is at lest one segment and
at least two junctions.

sa
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sh c5
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j1

Fig. C.1. A simple net of segments and junctions

Applying the observer functions to the net of Fig. C.1 yields:

obs Ss(n) = {sa,sb,sc,sd,se,sf,sg,sh,sj,sk}
obs Js(n) = {j1,j2,j3,j4,j5,j6,j7,j8}

Nets, segments and junctions are physically manifest, i.e., are phenomena.

C.1.2 Segment and Junction Identifications

1. We now assume that segments and junctions have unique identifications.

type
Si, Ji

value
obs Si: S → Si
obs Ji: J → Ji

Segment and junction identifications are mental concepts.

1Take the transportation net Europe. By inspecting it, and by deciding which
segments and which associated junctions to focus on (i.e., “the interesting ones”)
we know which are all the interesting roads, rail tracks, airlanes and shipping lanes,
respectively the interesting (associated) street intersections, trains stations, airports
and harbours.
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2. No two segments have the same segment identifier. And no two junctions
have the same junction identifier.

axiom
∀ n:N • card obs Ss(n) ≡ card {obs Si(s)|s:S • s ∈ obs Ss(n)}
∀ n:N • card obs Js(n) ≡ card {obs Ji(c)|j:J • j ∈ obs Js(n)}

Annotations:
• card set expresses the cardinality of the set set, i.e., its number of

distinct elements.
• {f(a)|a:A • p(a)} expresses the set of all those B elements f(a) where a

is of type A and has property p(a) [where we do not further state f, A
and B. p is a predicate, i.e., a function, here from A into truth values
of type Bool, for Boolean].

• The axioms now express that the number of segments in n is the same
as the number of segment identifiers of n — which is a circumscription
for: No two segments have the same segment identifier.

• Similar for junctions.
The constraints that limit identification of segments and junctions can be
physically motivated: Think of the geographic (x, y, z co-ordinate) point
spaces “occupied” by a segment or by a junction. They must necessarily be
distinct for otherwise physically distinct segments and junctions. Segments
may thus cross each other without the crossing point (in x, y space) being
a junction, but, for example, one segment may, at the crossing point be
physically above the other segment (tunnels, bridges, etc.).

C.1.3 Segment and Junction Reference Identifications

1. Segments are delimited by two distinct junctions. From a segment one can
also observe, obs Cis, the identifications of the delimiting junctions.

type
Jip = {|{ji,ji′}:Ji-set • ji6=ji′|}

value
obs Jis: S → Jip

Annotations:
• {|a:A • p(a)|} is a subtype expression. It expresses a subset of type A,

namely those A values which enjoys property p(a) [p is a predicate,
i.e., a function, here from A into truth values in the type Bool]. In
the above p(a) is ji6=ji′.

• In this case Jip is the subtype of Ji-set whose values are exactly 2
element sets of Ji elements.

2. Any junction has a finite, but non-zero number of segments connected to
it. From a junction one can also observe, obs Sis, the identifications of the
connected segments.



96 C On a Domain Model of Transportation

type
Si1 = {|sis:Si-set•card sis ≥1|}

value
obs Sis: J → Si1

Annotations:
• Si1 is the type whose values are non-empty, but still finite sets of Si

values.
One cannot from a segment alone observe the connected junctions. One
can only refer to them. Similarly: one cannot from a junction alon observe
the connected segments. One can only refer to them. The identifications
serve the role of being referents.

3. In any net, if s is a segment connected to connectors identified by ji and
ji′, respectively, then there must exist connectors j and j′ which have these
identifications and such that the identification si of s is observable from
both j and j′.

axiom
∀ n:N, s:S • s ∈ obs Ss(n) ⇒

let {ji,ji′} = obs Jis(s) in
∃! j,j′:J • {j,j′}⊆obs Js(n) ∧ j6=j′ ∧

obs Si(s) ∈ obs Sis(c) ∩ obs Sis(c′) end

Annotations:
• We read the above axiom:

⋆ for all nets n and for all segments s in n
⋆ let ji and ji′be the two distinct junction identifications observable

from s, then
⋆ exists exactly two distinct junctions, j and j′ of the net, such that
⋆ the segment identification of s is in both the sets of segment iden-

tifications observable from j and j′.

sf, sfi, {j4i,j8i}

se, sei, {j8i,j2i}

j8, j8i, {sei,sfi,ski}

sk, ski, {j7i,j8i}

Fig. C.2. One junction and its connected segments

Figure C.2 illustrates the relation between observed identifications of seg-
ments and junctions.
The above constraints take on the mantle of being laws of nets: If segments
and junctions otherwise have distinct identifications, then the above must
follow as a law of man-made artifacts.
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4. Vice-versa: In any net, if j is a junction connecting segments identified by
si, si′, . . . , si′′ then there must exist segments s, s′, . . . , s′′ which have
these identifications and such that the identification ji of j is observable
from all s, s′, . . . , s′′.

axiom
∀ n:N, j:J • j ∈ obs Js(n) ⇒

let sis = obs Sis(c), ji = obs Ji(j) in
∃! ss:S-set • ss⊆obs Ss(n) ∧ card ss=card sis ∧
sis = {|obs Si(s)|s:S•s ∈ ss|} end

Annotations:
• Let us read the above axiom:

⋆ for all nets, n, and all junctions, j, of that net
⋆ let sis be the set of segment identifications observed from j, and let

ji be the junction identifier of j, then
⋆ there exists a unique set, ss, of segments of n with as many segments

as there are segment identifications in sis, and such that
⋆ sis is exactly the set of segment identifications of segments in ss.

C.1.4 Paths and Routes

1. By a path we shall understand a triplet of a junction identification, a
segment identification and a junction identification.

type
P = Ji × Si × Ji

value
paths: N → P-set
paths(n) ≡

{(ji,si,ji′)|s:S,ji,ji′:Ji,si:Si• s ∈ obs Ss(n)∧{ji,ji′} ∈ obs Jis(s)∧si=obs Si(s)}

Annotations:
• Paths are modelled as Cartesians.
• One can generate all the paths of a net.
• It is the set of path triplets, two for each segment of the net and such

that the pair of junction identifications, ji and ji′, observable from a
segment is at either “end” of the triplet, and such that the segment
identification is common to the two triplets (and in the “middle”).

Paths, and as we shall see next, routes are mental concepts.
2. By a route of a net we shall understand a list, i.e., a sequence of paths as

follows:
• A sequence of just one path of the net is a route.
• If r and r′ are routes of the net such that the last junction identification,

ji, of the last path, ( , ,ji) of r and the first junction identification, ji′,
of the first path (ji′, , ) of r′ are the same, i.e., ji=ji′, then r̂r′ is a
route.
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• Only routes that can be generated by uses of the first (the basis) and
the second (the induction) clause above qualify as proper routes of a
net.

type
R = {|r:P∗

•wf R(r)|}
value

wf R: P∗ → Bool
wf R(r) ≡

∀ i:Nat • {i,i+1}⊆inds(r) ⇒
let ( , ,ji)=r(i), (ji′, , )=r(i+1) in ji = ji′ end

routes: N → R-infset
routes(n) ≡

let rs = {〈p〉|p:P•p ∈ paths(n)}
∪ {r̂r′|r,r′:R•{r,r′}⊆rs∧wf R(r̂r′)} in

rs end

Annotations:
• Routes are well-formed sequences of paths.
• A sequence of paths is a well-formed route if adjacent path elements

of the route share junction identification.
• Give a net we can compute all its routes as follows:

⋆ let rs be the set of routes to be computed. It consists first of all the
single path routes of the net.

⋆ Then rs also contains the concatenation of all pairs of routes, r and
r′, such that these are members of rs and such that their concate-
nation is a well-formed route.

⋆ If the net is circular then the set rs is an infinite set of routes. The
least fix point of the recursive equation in rs is the solution to the
“routes” computation.

C.1.5 Segment and Junction Identifications of Routes

1. For future purposes we need be able to identifiy various segment and
junction identifications as well as various segments and junctions of a
route.

value
xtr Jis: R → Ci-set, xtr Sis: R → Si-set
xtr Jis(r) ≡ case r of 〈〉 → {}, 〈(ji, ,ji′)〉̂r′ → {ji,ji′}∪ xtr Jis(r′) end
xtr Sis(r) ≡ case r of 〈〉 → {}, 〈( ,si, )〉̂r′ → {si}∪ xtr Sis(r′) end

xtr Ss: N × Ji → S-set
xtr Ss(n,ji) ≡ {s|s:S•s ∈ obs Ss(n) ∧ ji ∈ obs Jis(s)}
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xtr C: N × Ji → C, xtr S: N × Si → S
xtr C(n,ji) ≡ let j:J • j ∈ obs Js(n) ∧ ji=obs Ji(j) in j end
xtr S(n,si) ≡ let s:S • s ∈ obs Ss(n) ∧ si=obs Si(s) in s end

first Ji: R
∼

→ Ji, last Ji: R
∼

→ Ji
first Ji(r) ≡ case r of 〈〉 → chaos, 〈(ji, , )〉̂r′ → ji end
last Ji(r) ≡ case r of 〈〉 → chaos, r′̂〈( , ,ji)〉 → ji end

first Si: R
∼

→ Si, last Si: R
∼

→ Si
first Si(r) ≡ case r of 〈〉 → chaos, 〈( ,si, )〉̂r′ → si end
last Si(r) ≡ case r of 〈〉 → chaos, r′̂〈( ,si, )〉 → si end

first J: R × N
∼

→ J, last J: R × N
∼

→ J
first J(r,n) ≡ xtr J(first Ji(r),n)
last J(r,n) ≡ xtr J(last Ji(r),n)

first S: R × N
∼

→ S, last S: R × N
∼

→ S
first S(r,n) ≡ xtr S(first Si(r),n)
last S(r,n) ≡ xtr S(last Si(r),n)

Annotations:
• Given a route one can extract the set of all its junction identifications.

⋆ If the route is empty, then the set is empty.
⋆ If the route is not empty than it consists of at least one path and

the set of junction identifications is the pair of junction identifica-
tions of the path together with set of junction identifications of the
remaining route.

⋆ Possible double “counting up” of route adjacent junction identifica-
tions “collapse”, in the resulting set into one junction identification.
(Similarely for cyclic routes.)

• Given a route one can similarly extract the set of all its segment iden-
tifications.

• Given a net and a junction identification one can extract all the seg-
ments connected to the identified junction.

• Given a net and a junction identification one can extract the identified
junction.

• Given a net and a segment identification one can extract the identified
segment.

• Given a route one can extract the first junction identification of the
route.
⋆ This extraction should not be applied to empty routes.
⋆ A non-empty route can always be thought of as its first path and

the remaining route. The first junction identification of the route
is the first junction identification of that (first) path.
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• Given a route one can similarly extract the last junction identification
of the route.

• Given a route one can similarly extract the first segment identification
of the route.

• Given a route one can similarly extract the last segment identification
of the route.

• And similarly for extracting the first and last junctions, respectively
first and last segments of a route.

C.1.6 Circular and Pendular Routes

1. A route is circular if the same junction identification either occurs more
than twice in the route, or if it occurs as both the first and the last junction
identification of the route. Given a net we can compute the set of all non-
circular routes by omitting from the above pairs of routes, r and r′, where
the two paths share more than one junction identification.

non circular routes: N → R-set
non circular routes(n) ≡

let rs = {〈p〉|p:P•p ∈ paths(n)}
∪ {r̂r′|r,r′:R•{r,r′}⊆rs∧wf R(r̂r′)∧non circular(r,r′)} in

rs end
non circular: R×R → Bool
non circular(r,r′) ≡ card xtr Jis(r) ∩ xtr Jis(r′) =1

Annotations:
• To express the finite set of all non-circular routes

⋆ is to re-express the set of all routes
⋆ except contrained by the further predicate: non circular.

• An otherwise well-formed route consisting of a first part r and a re-
maining part r′

⋆ is non-circular if the two parts share at most one junction identifi-
cation.

2. Let a path be (jif , si, jit), then (jit, si, jif) is a reverse path. That is:
the two junction identifications of a path are reversed in the reverse path.
A route, rr, is the reverse route of a route r if the ith path of rr is the
reverse path of the n− i+1’st path of r where n is the length of the route
r, i.e., its number of paths. A route is a pendular route if it is of an even
length and the second half (which is a route) is the reverse of the first half
route.

value
reverse: P → P
reverse(jif,si,jit) ≡ (jit,si,jif)

reverse: R → R
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Fig. C.3. A route, graphically and as an expression
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Fig. C.4. A circular route, graphically and as an expression

reverse(r) ≡
case r of

〈〉 → 〈〉,
〈(jif,si,jit)〉̂r′ → reverse(r′)̂〈(jit,si,jif)〉

end

reverse(r) ≡ 〈reverse(r(i))|i in [ n..1 ]〉

pendular: R → R
pendular(r) ≡ r̂reverse(r)

is pendular(r) ≡ ∃ r′,r′′:R • r′̂r′′ = r ∧ r′′=reverse(r′)

Annotations:
• The reverse of a path is a path with the same segment identification,

but with reverse junction identifications.
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• The reverse of a route, r, is
⋆ the empty route if r is empty, and otherwise
⋆ it is the reverse route of all of r except the first path of r concatenate

(juxtaposed) with the singleton route of the reverse path of the first
path of r.

• Given a route, r, we can constuct a pendular route whose first half is
the route r and whose last half is the reverse route of r.

• A (an even length) route is a pendular route if it can be expressed as
the concatenation of two (equal length) routes, r′ and r′′ such that r′′

is the reverse of r′, that is, if its second half is the reverse of its first
half.

C.1.7 Connected Nets

1. A net is connected if for any two junctions of the net there is a route
between them.

value
is connected: N → Bool
is connected(n) ≡

∀ j,j′:J • {j,j′}⊆obs Js(n) ∧ j6=j′ ⇒
let (ji,ji′) = (obs Ji(j),obs Ji(j′)) in
∃ r:R • r ∈ routes(n) ∧

first Ji(r) = ji ∧ last Ji(r) = ji′ end

Annotations:
• A net n is connected if

⋆ for all two distinct connectors of the net
⋆ where ji and ji′ are their junction identifications,
⋆ there exists a route, r, of the net,
⋆ whose first junction identification is ji and whose last junction iden-

tification is ji′.

C.1.8 Net Decomposition

1. One can decompose a net into all its connected subnets. If a net exhaus-
tively consists of m disconnected nets, then for any pair of nets in different
disconnected nets it is the case that they share no junctions and no seg-
ments. The set of disconnected nets is the smallest such set that together
makes up all the segments and all the junctions of the (“original”) net.

value
decompose: N → N-set
decompose(n) as ns

obs Ss(n) = ∪{obs Ss(n′)|n′:N•n′ ∈ ns} ∧
obs Js(n) = ∪{obs Js(n′)|n′:N•n′ ∈ ns} ∧
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{} = ∩{obs Ss(n′)|n′:N•n′ ∈ ns} ∧
{} = ∩{obs Js(n′)|n′:N•n′ ∈ ns} ∧
∀ n′:N•n′ ∈ ns ⇒ connected(n′) ∧ ...

Annotations:
• A set ns of nets constitutes a decomposition of a net, n,

(a) if all the segments of n appear in some net of ns,
(b) if all the junctions of n appear in some net of ns,
(c) if no two or more distinct nets of ns share segments,
(d) if no two or more distinct nets of ns share junctions, and
(e) if all nets of ns are connected.

• Comment: It appears that items 3 and 4 are unnecessary, that is, are
properties once items 1, 2 and 5 hold.

That is, we have the following:

Lemma:
∀ n:N •

let ns = decompose (n) in
∀ n′,n′′:N • {n′,n′′}⊆ns ∧ n′6=n′′ ⇒

obs Ss(n′) ∩ obs Ss(n′′) = {} ∧
obs Js(n′) ∩ obs Js(n′′) = {} end

The above 1 items define a lot of what there is to know about transportation
nets if we only operate with the sorts that have been introduced (N, S, Si,
J, Ji) and the observer functions that have likewise been introduced (obs Ss,
obs Js, obs Si, obs Ji, obs Jis and obs Sis). The relationships between sorts,
i.e., net, segment, segment identification, junction and junction identification
values are expressed by the axioms. The above is a so-called property-oriented
model of the topology of transportation nets. That model is abstract in that
it does not hint at a mathematical model or at a data structure representation
of nets, segments and junctions, let alone their topology. By topology we shall
here mean how segments and junctions are “wired up”. The axioms above
guarantee that no segment of a net is left “dangling”: It is always connected
to two distinct junctions; and no junctions of a net is left isolated: It is always
connected to some segments of the net.

We have tacitly assumed that all segments are two way segments, that is,
transport can take place i either direction. Hence a segment gives rise to two
paths.

C.2 Multi-Modal Nets

Interesting transportation nets are multi-modal. That is, consists of segments
of different transport modalities: roads, rails, air-lanes, shipping lanes, and,
within these of different categories. Thus roads can be either freeways, motor-
ways, ordinary highways, and so on.
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C.2.1 General Issues

1. We introduce a concept, M, of transport mode. M is a small set of distinct,
but otherwise further undefined tokens. An m in M designates a transport
modality.

type
M

C.2.2 Segment and Junction Modes

1. With each segment, s, we can associate a single mode, m, and with each
junction we can associate the set of modes of its connected segments.

value
obs M: S → M
obs Ms: J → M-set

axiom
∀ n:N, j:J • j ∈ obs Js(n) ⇒

let ss = xtr Ss(n,obs Ji(j)) in
obs Ms(j) = {obs M(s)|s:S • s ∈ ss} end

∀ n:N, s:S • s ∈ obs Ss(n) ⇒
let {ji,ji′} = obs Jis(s) in
let {j,j′} = {xtr J(n,ji),xtr J(n,ji′)} in
obs M(s) ∈ obs Ms(j) ∩ obs Ms(j′) end end

Annotations:
• From a segment one can observe its mode.
• From a junction one can observe its set of modes.
• Let us read the first axiom:

⋆ for all net, n, and all junctions, j, of that net
⋆ let ss be the set of segments connected to j,
⋆ now the set of modes of c is equal to the set of modes of the

segments in ss.
• Let us read the second axiom:

⋆ for all net, n, and all segments, s, of that net
⋆ let ji and ji′ be the junction identifiers of the two junctions to which

s is connected, and
⋆ let j and j′ be the two corresponding junctions,
⋆ then the segment mode is in both the set of modes of the two

junctions.
• We can define a function, xtr Ss, which from a net, n, and a junction

identification, ji, extracts the set of segments, ss, connected to the
junction identified by ji.

• xtr Ss(n,ji) yields the set of segments, ss, in the net n for which ji is
one of the observed junction identifications of s.
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• And we can define a function, xtr J, of signature N × Ji → J, which
when applied to a net, n, and a junction identification, ji,

• extracts the junction in the net which has that junction identifier.

C.2.3 Single-Modal Nets and Net Projection

1. Given a multi-modal net one can project it onto a set og single modality
nets, namely one for each modality registered in the multi-modal net.

type
mmN = {|n:N • card xtr Ms(n) > 1|}
smN = {|n:N • card xtr Ms(n) = 1|}

value
xtr Ms: N → M-set
xtr Ms(n) ≡ {obs M(s) | s:S • s ∈ obs Ss(n)}

projs: N → smN-set
projs(n) ≡ {proj(n,m) | m:M • m ∈ xtr Ms(n)}

proj: N × M → smN
proj(n,m) as n′

post
let ss = obs Ss(n), ss′ = obs Ss(n′),

js = obs Js(n), js′ = obs Js(n′) in
ss′ = {s | s:S • s ∈ ss ∧ m=obs M(s)} ∧
js′ = {j | j:J • j ∈ js ∧ m ∈ obs Ms(j)}
end

Annotations:
• A multi-modal net is a net with more than one mode. mmN is thus

the subtype of nets, n:N, which are multi-modal.
• A single-modal net is a net with exactly one mode. smN is thus the

subtype of nets, n:N, which are multi-modal.
• The xtr Ms function extracts the mode of every segment of a net.
• The projs function applies to any net, n:N, and yields the set of single-

modal subnets of n, one for each mode of n. The projs function makes
use of the proj function.

• The proj function applies to any n, n:N, and any mode of that net, and
yields the single-modal subnet on n whose mode is the given mode.
⋆ The proj function is expressed by a post condition, i.e., a predicate

that characterises the necessary and sufficient relation between the
argument net, n, and the result net n′.

⋆ In a single-modal net, n′, projected from a multi-modal net, n, and
of mode m, we keep exactly those segments, ss′, of n whose mode
is m,
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⋆ and we keep exactly those junctions, js′, of n whose mode contains
m.

⋆ No more is needed in order to express the necessary and sufficient
condition for a single-modal net to be a subsnet of a proper net.

⋆ That is, some single-modal nets are not proper nets since in proper
nets every junction have the set of modes of all the segments con-
nected to the junction.

C.3 Segment and Junction Attributes

C.3.1 Segment and Junction Attribute Observations

We now enrich our segments and junctions.

1. Segments have lengths.
2. Junctions have modality-determined lengths between pairs of (same such

modality) segments connected to the junction.
3. Segments have standard transportation times, i.e., time durations that

it takes to transport any number of units of freight from one end of the
segment to the other.

4. Junctions have standard transfer time per modality of transport between
pairs of segments connected to the junction.

5. Junctions have standard arrival time per modality of transport.
6. Junctions have standard departure times per modality of transport.
7. Segments have standard costs of transporting a unit of freight from one

end of the segment to the other end.
8. Junctions have standard costs of transporting a unit of freight from the

end of one connecting segment to the beginning of another connecting
segment.

We can now assess

• (i) length of a route,
• (ii) shortest routes between two junctions,
• (iii) duration time of standard transport along a route, including transfer,

stopover and possible reloading times at junctions, and
• (iv) shortest duration time route of standard transport between two junc-

tions.

type
L, TI

value
ms:M-set, axiom ms 6={}
obs L: S → L
obs L: Si × J × M × Si → L
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obs TI: S → TI
obs TI: Si × J × Si → TI

obs TI: J × M
∼

→ TI, pre obs TI(j,m): m ∈ obs Ms(j)

obs TI: J × M × M
∼

→ TI, pre obs TI(j,m,m′): {m,m′}⊆obs Ms(j)

obs arr TI: J × M
∼

→ TI, pre obs arr TI(j,m): m ∈ obs Ms(j)

obs dep TI: J × M
∼

→ TI, pre obs dep TI(j,m): m ∈ obs Ms(j)
+: L × L → L
+: TI × TI → TI

Annotations:

• L and Ti are sorts designating length and time values.
• ms denotes a non-empty set of modes.
• From a segment one can observe, obs L, its length.
• From a segment one can observe, obs TI, a time duration for a normal

conveyour of the mode of the segment to travel the length of the segment.
• From a junction and a mode (of that junction) one can observe, obs TI, a

time duration for a normal conveyour of the mode to cross, i.e., to travel
through the junction.

• From a junction and a pair of modes (m and m′ of that junction) one can
observe, obs TI, a time duration which represents the normal time it takes
to transfer freight from a conveyour of mode m to a conveyour of mode
m′. (The two modes may be the same.)

• From a junction and a mode (of that junction) one can observe, obs arr TI,
a time duration for an item of freight destined for a normal conveyour of
the mode to arrive and be “entry” processed (including loaded) at that
junction.

• From a junction and a mode (of that junction) one can observe, obs dep TI,
a time duration for an item of freight destined for a normal conveyour of
the mode to arrive and be “exit” processed (including unloaded) at that
junction.

• One can add lenths.
• One can add time durations.

C.3.2 Route Lengths

1. One can compute the length of a route of a net and one can find the
shortest such route between two identified junctions.

value

length: R → N
∼

→ L
length(r)(n) ≡

case r of
〈〉 → 0,
〈(jf,si,jt)〉 → obs L(xtr S(si,n)),
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〈(ji1,sii,ji2),(jj1,sij,jj2)〉̂r′ →
let si=xtr S(sii,n),sj=xtr S(sij,n) in
obs L(si) + obs L(sii,xtr J(ji2,n),sij) + length(〈(jj1,sij,jj2)〉̂r′) end

end
pre: r ∈ routes(n) ∧ ji2=jj1

value

shortest route: Ji × Ji → N
∼

→ R
shortest route(jf,jt)(n) ≡

let rs = routes(n) in
let crs = {r|r:R•r ∈ rs ∧ first Ji(r)=jf ∧ last Ji(r)=jt} in
let sr:R • sr ∈ crs ∧ ∼∃ r:R • r ∈ crs ∧ length(r)(n)<length(sr)(n) in
sr end end end
pre: {jf,jt}⊆obs Jis(n) ∧ jf6=jt

Annotations:
• The length of a single modality route of a net

⋆ is 0 if the route is empty,
⋆ otherwise it is the length of the first segment of the route plus the

length of the rest of the route computed as follows:
· If the route consists of just one segment, then 0,
· else, the length of the junction from incident segment to ema-

nating segment plus
· the length of the rest of the route computed as otherwise spec-

ified above.
• The shortest route of a net between two of its identified junctions (the

precondition) can be abstractly determined as follows:
⋆ First we find all the routes, rs, of the net.
⋆ Then we find those routes, crs, whose first and last connnection

identifications are the given ones, cf and ct.
⋆ Amongst those we find a shortest one, that is, one, in crs, for which

there are no shorter routes, r, in crs.

C.3.3 Route Traversal Times

1. One can find the total time it takes to traverse a route, including the times
it takes to pass through a junction, and one can find the quickest route
between two identified junctions.

all time: R → N → TI
all time(r)(n) ≡

obs arr TI(xtr J(first J(r),n),obs M(first S{r}))
+ time(r)(n)
+ obs dep TI(xtr J(last J{r},n),obs M(last S(r)))
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time: R → N → TI
time(r)(n) ≡

case r of
〈〉 → 0,
〈(jf,si,jt)〉 → obs TI(xtr S(si,n)),
〈(ji1,sii,ji2),(jj1,sij,jj2)〉̂r′ →

let si=xtr S(sii,n),sj=xtr S(sij,n) in
obs TI(si) + obs TI(sii,xtr J(ji2,n),sij) + time(〈(jj1,sij,jj2)〉̂r′) end

end
pre: r ∈ routes(n) ∧ ji2=jj1

quickest route: Ji × Ji → N → R
quickest route(jf,jt)(n) ≡

let rs = routes(n) in
let crs = {r|r:R•r ∈ rs ∧ first Ji(r)=jf ∧ last Ji(r)=jt} in
let qr:R • qr ∈ crs ∧ ∼∃ r:R • r ∈ crs ∧ all time(r)(n)<all time(qr)(n) in
qr end end end

C.3.4 Function Lifting

1. Notice how the two functions shortest route and quickest route differ only
by the length, respectively the time functions. Hence:

type
Q
FCT = R → N → Q

value
less: Q × Q → Bool
lowest: Ji × Ji → N → FCT → R
lowest(jf,jt)(n)(fct) ≡

let rs = routes(n) in
let crs = {r|r:R•r ∈ rs ∧ first Ji(r)=jf ∧ last Ji(r)=jt} in
let lr:R • lr ∈ crs ∧ ∼∃ r:R • r ∈ crs ∧ less(fct(r)(n),fct(qr)(n)) in
lr end end end

2. Similarely one could also lift the ‘less’ predicate:

Q
PRE = Q × Q → Bool
FCT = R → N → Q

value
best: Ji × Ji → N → FCT → PRE → R
best(cf,ct)(n)(fct)(pre) ≡

let rs = routes(n) in
let crs = {r|r:R•r ∈ rs ∧ first Ji(r)=cf ∧ last Ji(r)=ct} in
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let br:R • lr ∈ crs ∧ ∼∃ r:R • r ∈ crs ∧ pre(fct(r)(n),fct(qr)(n)) in
br end end end

And so on.

C.3.5 Transporation Costs

1. We can further assess (i) transport costs, (ii) lowest (per unit) freight cost
between two junctions, etc. We assume that if a freight item is transported
into a junction and out of that junction by the same modality conveyour,
then it is not reloaded, i.e., along segments of the same modality.2

type
K, F

value
obs K: (S|J) → K
obs F: (S|J) → F

+: K × K → K

cost: R → N → K
cost(r)(n) ≡

case r of
〈〉 → 0,
〈(jf,si,jt)〉 →

obs K(xtr J(jf,n))+obs K(xtr S(si,n))+obs K(xtr J(jt,n))
〈(jf,si,jt),(jf′,si′,jt′)〉̂r′ → assert: jt=jf′

obs K(xtr J(jf,n))+obs K(xtr S(si,n))+...+cost(r′)
end

cheapest: Ji×Ji → N → ((K×K)→K) → ((K×K)→Bool) → R
cheapest(jf,jt)(n) ≡

best(jf,jt)(n)(λ(k1,k2):(K×K)•k1+k2)(λ(k1,k2):(K×K)•k1<k2)

C.4 Road Nets

We wish to view road nets at different levels of abstraction. At a most detailed
such level we make no distinction between the road kinds, whether community
roads, provincial roads, motor roads or freeways. At another level of abstrac-
tion we wish to make exactly those distinctions. And at least detailed level

2This grossly simplifying assumption will be removed later. For the time being
it allows us to operate with the simple notion of routes that was introduced above.
For the reloading case we need to decorate the route notion, effectively maing it into
a bill of ladings notion: one that prescribes possible reloading at junctions.
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of abstraction we consider certain road junctions to designate road nets of
smaller or larger communities.
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Fig. C.5. Gross [A] versus semi-detailed [B] road net — and community road nets
[C]

1. Figure [A] C.5 shows a road net. Instead of showing junctions J1, J2 and
J3 as small black disks we show them as larger circles — for reasons that
transpires from Fig. [B] C.5.

2. Junctions J1, J2 and J3 are considered composite, that is, to represent
communities.

3. We may consider the road net of Fig.[A] C.5 to be an abstraction of the
road net hinted at in Fig.[B] C.5.

4. Junctions j11, j12, . . . , j35 are considered simple embedded junctions.
5. We decide to allow three kinds of junctions:

(a) composite,
(b) simple embedded and
(c) simple.

They are as follows:
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(a) Composite junctions stand for road nets themselves. The junctions of
those road nets are all simple embedded junctions.

(b) Simple embedded junctions are the junctions, hence, of composite
junction road nets.

(c) Simple junctions are those junctions which are not composite (that is:
are not standing for road nets) and are not simple embedded junctions
(that is: simple, hence un-embedded junctions are those remaining
junctions of a net which include modality road).

6. In Fig. [B] C.5 on the preceding page we have left out the internal roads,
that is, segments of junctions J1, J2 and J3, that is between the simple
embedded junctions j11, j12 and j13, between j21, j22 and j23, and between
j31, j32, j33, j34 ans j35.

7. The internal segments of junctions J1, J2 and J3 are shown in Fig. [C] C.5
on the previous page. They are to be considered complete nets “in and
by” themselves.

8. We may consider the implied junction identifications Ji1, Ji2 and Ji3 to
be names of communities.

9. We may consider the implied junction identifications ji11, ji12 and ji13 to
abstract to J1, ji21, ji22 and ji23 to abstract to J2, and ji31, ji32, ji33,
ji34 and ji35 to abstract to J3.

10. We shall assume that from these junction identifications, say jikℓ, one can
observe the more abstract junction identifications, i.e., Jik.

11. We shall, conversely, assume that from segment junction identifications
one can observe whether they are identifications of composite, of simple
embedded or of simple junctions, and, if of composite junctions, that one
can further observe which simple embedded junction of the composite
junction the segment is connected to.

12. In summary: When consider any multi-modality net and from it project,
that is, consider only the net, nr, of modality road, then we may find that
some junctions are composite while are are simple. When then examin-
ing the road nets, rn, contained in composite junctions then we will find
that their junctions are simple embedded. The embedded road nets, rn,
otherwise satisfy all the properties (i.e., axioms) of nets in general. To
link up the segments of nr incident upon, that is, connected to composite
junctions (in nr) we provide their junction identifications with two levels
of observability: the abstract one that made us see that they were con-
nected to composite junctions (cf. Fig. [A] C.5 on the preceding page),
and a concrete one that enables us to decide which ones of the simple
embedded junctions they are “finally” linked to (cf. Fig. [B] C.5 on the
previous page).

type
M == road | ...
Jc, Js, Jse
Jic, Jis, Jise
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J = Jc | Js | Jse
Cn

value
is composite J: J → Bool
is simple J: J → Bool
is simple embedded J: J → Bool
obs N: Jc → N
obs Jic: Jc → Jic, obs Jis: Js → Jis, obs Jise: Jse → Jise
obs Cn: Jic → Cn, obs Cn: Jise → Cn
obs Jise: Jic → Jise

axiom
∀ j:Jc • is composite J(j) ∧ xtr Ms(obs N(j,road))={road},
∀ j:Js • is simple J(j),
∀ j:Jse • is simple embedded J(j)

∀ n:N,j:J • j ∈ obs Js(n) ∧ is composite J(j) ⇒
let rn = obs N(j) in

end

C.5 Railway Nets

C.5.1 General

A transportation net of modality railway has segments be lines between sta-
tions and have junctions be stations.

1. We concretise the concept of modes. Mode m=railway will now designate
railway nets:

type
M == road | railway | ...

2. From a multi-modal transportation net we can project the railway net,
rn:RN:

value
proj: N × {railway} → RN

3. Junctions of a transportation net of modality railway have sub-junctions
which are stations:

value
proj: J × {railway} → ST



114 C On a Domain Model of Transportation

4. Segments of a transportation net of modality railway become lines:

value
proj: S × {railway} → LI

C.5.2 Lines, Stations, Units and Connectors

Railway segments are thus called lines, and railway sub-junctions are thus
called stations. A notion of connectors is introduced. It is not to be confused
with the previous notion of junctions.

1. A railway net is a net of mode railway.
2. Its segments are lines of mode railway.
3. Its junctions are stations of mode railway.
4. A railway net consists of one or more lines and two or more stations.
5. A railway net consists of rail units.
6. A line is a linear sequence of one or more linear rail units.
7. The rail units of a line must be rail units of the railway net of the line.
8. A station is a set of one or more rail units.
9. The rail units of a station must be rail units of the railway net of the

station.
10. No two distinct lines and/or stations of a railway net share rail units.
11. A station consists of one or more tracks.
12. A track is a linear sequence of one or more linear rail units.
13. No two distinct tracks share rail units.
14. The rail units of a track must be rail units of the station (of that track).
15. A rail unit is either a linear, or is a switch, or a is simple crossover, or is

a switchable crossover, etc., rail unit.
16. A rail unit has one or more connectors.
17. A linear rail unit has two distinct connectors. A switch (a point) rail

unit has three distinct connectors. Crossover rail units have four distinct
connectors (whether simple or switchable), etc.

18. For every connector there are at most two rail units which have that
connector in common.

19. Every line of a railway net is connected to exactly two distinct stations of
that railway net.

20. A linear sequence of (linear) rail units is an acyclic sequence of linear units
such that neighbouring units share connectors.

type
1. RN = {| n:smN • obs M(n)=railway |}
2. LI = {| s:S • obs M(s)=railway |}
3. ST = {| c:C • obs M(c)=railway |}

Tr, U, K
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value
4. obs LIs: RN → LI-set
4. obs STs: RN → ST-set
5. obs Us: RN → U-set
6. obs Us: LI → U-set
8. obs Us: ST → U-set
11. obs Trs: ST → Tr-set
15. is Linear: U → Bool
15. is Switch: U → Bool
15. is Simple Crossover: U → Bool
15. is Switchable Crossover: U → Bool
16. obs Ks: U → K-set

20. lin seq: U-set → Bool
lin seq(us) ≡

∀ u:U • u ∈ us ⇒ is Linear(u) ∧
∃ q:U∗

• len q = card us ∧ elems q = us ∧
∀ i:Nat • {i,i+1} ⊆ inds q ⇒ ∃ k:K •

obs Ks(q(i)) ∩ obs Ks(q(i+1)) = {k} ∧
len q > 1 ⇒ obs Ks(q(i)) ∩ obs Ks(q(len q)) = {}

axiom
4. ∀ n:RN • card obs LIs(n) ≥ 1 ∧ card obs STs(n) ≥ 2

6. ∀ n:RN, l:LI • l ∈ obs LIs(n) ⇒ lin seq(l)

7. ∀ n:RN, l:LI • l ∈ obs LIs(n) ⇒ obs Us(l) ⊆ obs Us(n)

8. ∀ n:RN, s:ST • s ∈ obs STs(n) ⇒ card obs Us(s) ≥ 1

9. ∀ n:RN, s:ST • s ∈ obs LIs(n) ⇒ obs Us(s) ⊆ obs Us(n)

10. ∀ n:RN,l,l′:LI•{l,l′}⊆obs LIs(n)∧l6=l′⇒obs Us(l)∩ obs Us(l′)={}

10. ∀ n:RN,l:LI,s:ST•l ∈ obs LIs(n)∧s ∈ obs STs(n)⇒obs Us(l)∩ obs Us(s)={}

10. ∀ n:RN,s,s′:ST•{s,s′}⊆obs STs(n)∧s 6=s′⇒obs Us(s)∩ obs Us(s′)={}

11. ∀ s:ST•card obs Trs(s)≥1

12. ∀ n:RN,s:ST,t:Tr•s ∈ obs STs(n)∧t ∈ obs Trs(s)⇒lin seq(t)

13. ∀ n:RN,s:ST,t,t′:Tr•s ∈ obs STs(n)∧{t,t′}⊆obs Trs(s)∧t6=t′

⇒ obs Us(t) ∩ obs Us(t′) = {}
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18. ∀ n:RN • ∀ k:K •

k ∈ ∪{obs Ks(u)|u:U•u ∈ obs Us(n)}
⇒card{u|u:U•u ∈ obs Us(n)∧k ∈ obs Ks(u)}≤2

19. ∀ n:RN,l:LI • l ∈ obs LIs(n) ⇒
∃ s,s′:ST • {s,s′} ⊆ obs STs(n) ∧ s 6=s′ ⇒

let sus=obs Us(s),sus′=obs Us(s′),lus=obs Us(l) in
∃ u,u′,u′′,u′′′:U • u ∈ sus ∧

u′ ∈ sus′ ∧ {u′′,u′′′} ⊆ lus ⇒
let sks = obs Ks(u), sks′ = obs Ks(u′),

lks = obs Ks(u′′), lks′ = obs Ks(u′′′) in
∃!k,k′:K•k 6=k′∧sks ∩ lks={k}∧sks′ ∩ lks′={k′}

end end

C.6 Net Dynamics

By net dynamics we shall mean the changing possibilities of flow of conveyors
(cars, trains, aircraft, ships, etc.) along segments and through junctions. We
speak of direction of flow along segments in terms of “from the junction at
one end of the segment to the junction at the other end”. And we speak of
flow through a junction as “proceeding from one segment incident upon the
junction into a (udually different) segment emanating from that junction”.
Segments connected to a junction are both incident upon that junction and
emanates from that junction.

C.6.1 Segment and Junction States

1. Segments may be open for traffic in either or both directions (between the
segments’ two junctions [identified by jix and jiy]) or may be closed.

2. We model the state, sσ : SΣ, of a segment, s : S, as a set of pairs of
junction identifications, namely of the two identifications of the junctions
that the segment connects. This state, sσ : SΣ, is
(a) either empty, i.e., the segment is closed ({}),
(b) or has one pair, {(jix, jiy)}, that is, the segment is open in direction

from junction jix to junction jiy,
(c) or another pair {(jiy, jix)},
(d) or both pairs {(jix, jiy), (jiy, jix)}, that is, is open in both directions.

3. Junctions may direct traffic from any subset of incident segments to any
subset of emanating segments.

4. We model the state, jσ : JΣ, of a junction, j : J , as a set of pairs of
segment identifications, namely of identifications of segments connected
to the junction.
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(a) Let the set of identifications of segments connected to junction j be
{si1, si2, ..., sim)}.

(b) If, in some state, jσ of the junction, it is possible (allowed) to pass
through the junction from the segment identified by sij to the segment
identified by sik, then the pair (sij , sik) is in jσ.

(c) The junction state may be empty, i.e., closed: no traffic is allowed
through the junction.

(d) Or the junction state may be “anarchic full”, that is, it contains all
combinations of the pairs of identifiers of segments incident upon the
junction.

type
SΣ = (Ji×Ji)-set
JΣ = (Si×Si)-set

value
obs SΣ: S → SΣ
obs JΣ: J → JΣ

xtr Jis: SΣ → Ji-set, xtr Jis(sσ) ≡ {ji|ji:Ji • (ji, ) ∈ obs sσ ∨ ( ,ji) ∈ obs sσ}
xtr Sis: JΣ → Si-set, xtr Sis(jσ) ≡ {si|si:Si • (si, ) ∈ obs jσ ∨ ( ,si) ∈ obs jσ}

axiom
∀ s:S • xtr Jis(obs SΣ(s)) ⊆ xtr Jip(s),
∀ j:J • xtr Sis(obs JΣ(j)) ⊆ xtr Sis(j)

Observations:

• A junction, j : J , of just one segment, s : S, that is, s is a cul de sac, may
either be closed, and vehicles trying to enter j will be queued up, or it is
open, and vehicles entering j will be lead back to s.

• As a consequence segment s, in order for this latter routing to happen,
must be open in both directions when j is “open”.

• In general, if the state of a junction j (identified by ji) contains a pair
(six, siy) then the state of the designated segments, sx and sy, must re-
spectively contain pairs (ji′, ji), respectively (ji, ji′′), where {ji, ji′} and
(ji, ji′′} are the pairs of junction identifications associated with six and
siy respectively.

• And this must hold for all states of junctions and adjacent segments.
• This is captured in the axioms below.

axiom
...

1. The junction of Fig. C.6 shows four segments, identified by A, B, C and
D.

2. The figure also suggests a state in which traffic lights prohibit movements
from A into J, from B into J,
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Fig. C.6. A Special “Carrefour” Junction

3. from C via J into A, and from D via J into B.
4. The “bypass” from A/X into Y/D appears to be such that traffic can

always pass from A into D.
5. The current state alluded to in Fig. C.6 appears to be:

jσJ : {(A, D), (C, B), (C, D), (D, A), (D, C)}

6. (A, D) is potentially a member of every state that the junction can possi-
bly be in — see next section.

C.6.2 Segment and Junction State Spaces

type
SΩ = SΣ-set
JΩ = JΣ-set

value
obs SΩ: S → SΩ
obs JΩ: J → JΩ

axiom
∀ s:S • obs SΣ(s) ⊆ obs SΩ(s),
∀ j:J • obs JΣ(j) ⊆ obs JΩ(j)

Etcetera!
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On a Domain Model of Manufacturing

We bring a fragment of a domain model of manufacturing.

D.1 Introduction

D.1.1 Definitions

In this chapter we present a model of a number of aspects of manufacturing. By
manufacturing Merriam-Webster’s (MW) Collegiate Dictionary understands:
to make into a product suitable for use; to make from raw materials by hand or
by machinery; to produce according to an organized plan and with division of
labor. Anther term is production. Again MW, amongst several alternatives,
understands: the act or process of producing; the creation of utility; espe-
cially: the making of goods available for use. We equate the composite terms:
manufacturing plant, production facility and factory. The latter, according
to MW: a building or set of buildings with facilities for manufacturing; the
seat of some kind of production. By plant, in our context, MW means: the
land, buildings, machinery, apparatus, and fixtures employed in carrying on
a trade or an industrial business; a factory or workshop for the manufacture
of a particular product; the total facilities available for production or service;
the buildings and other physical equipment of an institution.

Central to the concept of manufacturing are the concepts of machines
and products. By a machine MW means: an assemblage of parts that trans-
mit forces, motion, and energy one to another in a predetermined manner;
an instrument (as a lever) designed to transmit or modify the application of
power, force, or motion; a mechanically, electrically, or electronically operated
device for performing a task. By a product MW means: something produced
(produce: to compose, create, or bring out by intellectual or physical effort).
Central to the concept of production is the concept of part: one of the of-
ten indefinite or unequal subdivisions into which something is or is regarded
as divided and which together constitute the whole; an essential portion or
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integral element; one of several or many equal units of which something is
composed or into which it is divisible (MW).

D.1.2 Examples of Machines

The concept of machine in this book is best understood by bringing some
examples: lathe, band saw, belt sander, milling machine, drill press, grinder,
shear, notscher, and press brake. If you are not familiar with these names
perhaps a look at:

• http://www-me.mit.edu/Lectures/MachineTools/outline.html

might help!

D.1.3 Structure of Chapter

General

From models of “smallest”, atomic, phenomena and concepts we build up
models of increasingly more complex phenomena and concepts, ending with
models of manufacturing plants.

These models are very general. The reader may think: far too general. That
may very well be so. In Sect. D.7 we shall instantiate our models to models
of manufacturing plants that are claimed to be typical of specific factories.

Reading Guide

The text consists of sequences of one, two, three or four sub-texts. Always
a narrative explication of a phenomenon or a concept. Additionally a formal
model of that phenomenon or a concept. Then, in most cases, at least in this
chapter, an annotation which explains the formal notation. And, sometimes
some observations. Readers with a background in formal specification lan-
guages a la B [1], RAISE’s RSL [39,41], VDM-SL [18,19,34] or Z [55,85,86,90]
can skip the annotations. The formal notation that is used is RSL [39]. We
refer to [11–13] for a thorough introduction to abstract and modelling using
RSL.

D.2 Parts

1. An atomic part is a smallest unit of man-made production.

type
P

value
is atomic P: P → Bool
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Annotations:

• P is a type name, that is, stands for a set of values. We shall think of these
values as parts.

• is atomic is an observer function, i.e.., a postulated predicate which when
applied to parts (i.e., to entities of type P) yield truth if they are atomic,
false otherwise.

1. An atomic part has a part number, as has all parts, whether atomic or
composite.

type
Pn

value
obs Pn: P → Pn

Annotations:

• Pn is a type name, that is, a set of values. We shall think of these values
as part numbers.

• obs Pn is an observer function, that is a postulated function which when
applied to values of type P yields their part numbers.

1. A composite part consists of two or more parts which have been manufac-
tured (fitted, assembled, welded, etc.) together according to some mere-
ology.

value
is composite P: P → Bool

axiom
∀ p:P•is atomic P(p)∧∼is composite P(p) ∨ is composite P(p)∧∼is atomic P(p)

1. A composite part may have two or more occurrences (components) of parts
of the same part number. Mereologically they appear (occur) in distinct
“locations” of the whole part. We abstract locations (etc.) by associating
with each part a unique identification, π : Π .

type
Π
COMPS = P-set

value
obs Π : P → Π
obs COMPS: P → COMPS

no of occurrences: P × P
∼

→ Nat
no of occurrences(cp,p) ≡

card {p′|p′:P • p′ ∈ obs COMPS(cp) ∧ obs Pn(p′)=obs Pn(p)}
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pre: is composite P(cp)
axiom

∀ p:P •

is atomic P(p) ⇒ obs COMPS(p)={} ∧
is composite P(p) ⇒

obs COMPS(p)6={} ∧
∀ p′,p′′:P • {p′,p′′}⊆dom obs COMPS(p) ∧ p6=p′ ∧

p′6=p′′ ⇒ obs Π(p′) 6= obs Π(p′′) ∧
obs Π(p) 6= obs Π(p′)

Annotations:

• Π is a type name. We shall think of these values as part identifiers.
• COMPS is a type name. Its values are sets of parts.
• obs Π names an observer function which, when applied to values of type

part yields their part identification.
• obs COMPS names an observer function.
• no of occurrences names a function which, when applied to a pair of parts,

(cp,p) yields the number of occurrences of p in cp — where cp is assumed
to be a composite part. The function is not defined for cp being atomic. If
p is not a sub-component of cp then the function value is zero.

• When obs COMPS is applied to values of type part yeilds the set of their
sub-components. An atomic part has no such. A composite part has one
or more sub-components which are parts (i.e., are part values). Part iden-
tifiers of distinct subcomponents are distinct and different also from the
“mother” component.

• In the following we shall say no more about part identifiers, and hence we
consider them atomic.

1. From the above we observe that no two physically manifest parts are
identical: They may be of the same kind, i.e., part number, but they will,
as a “law of nature” have distinct identifications. We are not saying that
these identifications are physically manifest things, i.e., “labels” the part.
We are saying that these identifications are comcepts.1

D.3 Machines

1. A machine basically offers a function which takes a non-zero number of
parts and produces a non-zero number of other, distinct parts.

type
Parts′ = P-set
Parts = {| parts:Parts′ • parts 6={} |}

1It is like the coins in your pocket: There may be several instances of a shilling
but they are all distinct in space (and otherwise).
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MOp
MFct = Parts → Parts

value
obs MFct: MOp → MFct

axiom
∀ mop:MOp • {obs Pn(p)|p:P•p ∈ D} ∩ {obs Pn(p)|p:P•p ∈ D} = {}

D, the definition set function, is a non-computable function. So is R, the range
set function.
Annotations:

• Parts is a type name which denotes a non-empty set of parts.
• MOp is a type name which denotes a set of machine operations.
• MFct is a type name which denotes a set of machine functions. Machine

functions are total functions which when applied to a set of not necessarily
part number distinct parts yields a set of not necessarily part number
distinct parts. Thus a machine operation (i.e., machine function) may take
more than one part of a given part number, and may yield not only one
or more parts, but also such that two or more of these may have the same
part number.

• obs MFct names an observer function which when applied to a machine
operation yields a machine function.

• None of the yielded parts of a machine function have the same part number
as any of the input parts.

1. We can characterise the functionality of a machine by the signature of the
machine function mop:MOp.

type
Config′ = Pn →m Nat
Config = {| c:Config′ • 0 6∈ rng c |}
Input,Output = Config
MSig′ = Input × Output
MSig = {| (i,o):MSig′ • dom i ∩ dom o = {} |}

Annotations:

• Config is a type name. It denotes a map from part numbers to non-zero
natural numbers.

• Input and Output are type names of the same configuration type.
• MSig is a type name. It denotes the set of pairs of respectively input and

output configurations where none of the input part numbers are the same
as the output part numbers. The idea is that MSig designates a machine
function signature. If in an input configuration, i, part number pnj maps
into quantity n = i(pnj) then the machine function to which the machine
signature will be associated (see below) shall require n occurrences of parts
p1, p2, . . . , pn — all having the same part number pnj .
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1. A machine proper can pragmatically be thought of as an “optional formal
machine and zero, one or more workers”. If the “optional formal” machine
is not there, then the machine “embodies” at least one worker. In any
case we consider the “optional formal machine and zero, one or more
workers” as a unit. The machine, in addition to its machine operation2,
can be thought of as also being represented by the machine signature and
a machine in-tray and a machine out-tray. The in- and out-trays, at one
one moment, consists of zero, one or more parts. The parts may, or may
not be relevant to the machine operation. Usually they are. We shall, in
fact, expect that the in-tray [out-tray] parts are of the kind (i.e., having
the input [output] part numbers) of the machine signature.

type
MC
MACH′ = Input × MSig × MOp × Output
MACH = {| mach:MACH′

• wf MACH(mach) |}
value

obs MACH: MC → MACH
wf MACH(i,(isig,osig),op,o) ≡

dom i ⊆ dom isig ∧ dom o ⊆ dom osig ∧
dom i = {pn | pn:Pn • ∃ p:P • p ∈D(op)∧pn=obs Pn(p)}∧
dom o = {pn | pn:Pn • ∃ p:P • p ∈R(op)∧pn=obs Pn(p)}

Annotations:

• MC is a type name. It denotes a sort.
• MACH is a type name. It denotes the set of machine well-formed quadru-

ples (i.e., Cartesians) of inputs, machine signatures, (associated) machine
operations, and outputs. The idea is that inputs stand for machine in-
trays, outputs for machine out-trays, and that the machine signature is
associated the machine operation.

• obs MACH names an observer function which, when applied to values of
type MC yields values of type MACH.

• wf MACH names a predicate. Its definition expresses the well-formedness
of machine. A machine quadruple (i,(isig,osig),op,o) is well-formed if the
in-tray [out-tray] does not contain parts of types that are not of interest
to the machine (that is, which does not contain parts which (for i:) are
not needed in order for the machine to perform its operation [(for o:) are
not yielded by the machine operation]).

• Note: We have modelled the occurrence of actal parts in the trays, not by
their real sets of parts, but by a recording of how many parts there is of
given part numbers.

2The machine operation is performed either by the “optional formal machine”
or the “optional formal machine and one or more workers” or, when the “optional
formal machine” is not there, the “one or more workers”.
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In Tray Machine Operation Out Tray

ip1
ip1’

...
ip1’’

ip2
ip2’
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ipm
ipm’

...
ipm’’

...

...

...

op1
op1’

op1’’

opn
opn’

opn’’

Fig. D.1. A schematic machine

1. Figure D.1 intends to illustrate that a machine can be considered to consist
of an in tray, a facility for performing the machine operation and an out
tray.

D.4 Machine Operation

1. Figure D.1 also intends to show that a machine operation consumes one or
more occurrences (ip1, ip1′, . . . , ip1′′) of parts of one part number (ip1),
one or more occurrences (ip2, ip2′, . . . , ip2′′) of parts of another part
number (ip2), etc., and one or more occurrences (ipm, ipm′, . . . , ipm′′) of
parts of yet another part number (ipm),

2. For a machine operation to take place it must be enabled. A machine is
enabled if the in-tray contains at least the number of parts for each of
the parts required in the machine operation, that is, as designated in the
machine operation signature.

value
is enabled: MACH → Bool
is enabled(input,(isig,osig),op,output) ≡

dom input = dom isig ∧
∀ pn:Pn • pn ∈ dom input ⇒ input(pn)≥isig(pn)

Annotations:

• is enabled names a predicate. When applied to machines it checks (tests)
whether
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• the in-tray of the machine has exactly the kind (i.e., type) of parts needed
for the machine operation: of the right part number

• and at least in the required quantity.

1. An enable machine can fire. Firing means that the machine performs its
function: consumes an appropriate number of parts (removes them) from
the in-tray and produces another appropriate number of parts (adds them)
to the out-tray.

value
fire: MACH → MACH
fire(input,(isig,osig),op,output) as (input′,(isig′,osig′),op′,output′)

pre: is enabled(input,(isig,osig),op,output)
post: isig′ = isig ∧ osig′ = osig ∧ op′ = op ∧

input′ = input \ D op ∧ output′ = output ∪ R op

Annotations:

• fire is a generator function: from a machine it generates a new machine.
• The fire function is defined by a pre/post pair of predicates.
• In order to perform the machine operation the machine must be (in an)

enabled (state).
• Once a machine operation has been performed (by an enabled machine)

the parts reequired for the operation has been removed from the in-tray
and the parts produced by the machine operation as been added to the
out-tray.

D.5 Production Floors

1. A production floor of a manufacturing plant, MP, consists of a non-zero
number of uniquely identified machines.

type
MP, PFId, MId
PFs′ = PFId →m PF, PFs = {|pfs:PFs′ • pfs 6=[ ]|}
PF′ = Mid →m MC, PF = {|pf:PF′

• pf6=[ ]|}
value

obs PFs: MP → PFs
obs PF: MP × PFid −∼> PF, pre obs PF(mp)(pfid): pfig ∈ dom mp

Annotations:

• MP is a type name. It designates the set of all manufacturing plants.
• PFId is a type name. It designates the set of all production floor identifiers.
• MId is a type name. It designates the set of all machine identifiers.
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• PFs is a type name. It designates the set of all uniquely identified, non-
empty production floors.

• PF is is a type name. It designates the set of all production floors — which
are here modelled as non-empty sets of uniquely named machine.s

• From (or in) a manufacturing plant one can observe, obs PFs, its set of
uniquely idenfied production floors.

• Given a manufacturing plant and a valid production floor identifier of that
plant one can observe, obs PF, the identified plant.

Observations:

• This we allow a manufacturing plant to consist of more than one produc-
tion floor.

• A manufacturing plant may have two or more occurrences of what might
otherwise be considered identical production floors — only they are dis-
tinguished by distinct production floor identifiers.

• A production floor may have two or more occurrences of what might oth-
erwise be considered identical machines — only they are distinguished by
distinct machine identifiers.

1. We can think of a production floor as shown in Fig. D.2.

M

Mj1

Mj2

Mjn

Mkm

Mk2

Mk1

Mo2

Mo1

Moo

Input/Machine/Output Machinery

Mi1

Mi2

Mii

...

...

Fig. D.2. A schematic production floor

1. Let us focus on the entral — what we call — the Input/Machine/Output
Machinery in that figure. Machine M potentially receives one or more
parts of possibly different part numbers from machine Mj1 , one or more
parts of possibly different part numbers from machine Mj2 , etc., and one
or more parts of possibly different part numbers from machine Mjn

. And
machine M potentially delivers one or more parts of possibly different
part numbers to machine Mk1

, one or more parts of possibly different part
numbers to machine Mk2

, etc., and one or more parts of possibly different
part numbers to machine Mkm

. We say “potentially” since, as wee shall
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see later, machine M may receive or deliver parts from, respectively to
other machines.
For a machine to “potentially receive” parts from another machine means
two things: the parts received are necessary for machine M to perform its
operation, i.e., are required inputs to M .
For a machine to “potentially deliver” parts to another machine means two
things: the parts delivered are produced by machine M , i.e., are output
from M .

2. Figure D.3 shows a more general situation for the input/machine/output
machinery of Fig. D.2.

M

Mj1

Mjn

Mkm

Mk1

Input/Machine/Output Machinery

From

Input

To

Output
Warehouse Warehouse

Fig. D.3. A general input/machine/output machinery

1. Whereas Fig. D.2 could be construed as expressing that all inputs to
the central machine M came from other machines, Fig. D.3 hints at the
possibility that some, or all, parts input to a machine operation may come
from an input warehouse.
The same wrt. outputs. Instead of all central machine M outputs being
delivered to other machines, some, or all, may go to an output warehouse.

2. It is thus that we arrive at a production unit consisten of a production
floor and an input and an output warehouse.

type
InWh,OutWh

value
obs Ps: (InWh|OutWh) → P-set
obs InWh: MP → InWh
obs OutWh: MP → OutWh
xtr Pns: (InWh|OutWh) → Pn-set
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xtr Pns(wh) ≡ {pn|pn:Pn,p:P•p ∈ obs Ps(wh)∧pn=obs Pn(p)}
type

BoM = Pn →m Nat
value

xtr BoM: (InWh|OutWh) → BoM
xtr BoM(wh) ≡

[ pn7→n|pn:Pn,p:P•p ∈ obs Ps(wh)∧pn=obs Pn(p)∧
n=card{p|p:P•p ∈ obs Ps(wh)∧pn=obs Pn(p)} ]

Annotations:

• InWh and OutWh are type names. They designate input, respectively
output warehouses.

• From a input and output warehouses one can observe, obs Ps, their parts.
• From a manufactutng plant one can observe, obs InWh and obs OutWh,

their input and output warehouses.
• From a warehouse one can extract the part numbers of the parts housed

in that warehouse.
• BoM is a type name. It designates the set of all Bills-of-Material. A Bills-

of-Material is like a table which to distinct part numbers list a number of
occurrences.

• From a warehouse one can extract a Bills-of-Material:
⋆ The Bill-of-Material maps part numbers of parts in the warehouse
⋆ into their number of occurrences in that warehouse.

Observations:

• Notice that we only observe one input and one output warehouse with a
given manufacturing plant.

• That is, we consider the input and output warehouses shared between all
the production floors of a manufacturing plant.

• A Bills-of-Material may list a part as having no, i.e., zero occurrences —
but the Bills-of-Materials extracted from a warehouse will always have
non-zero numbers of occurrence of its parts.

D.6 Production Plans

D.6.1 Production Layouts

1. By a production layout we mean any arbitrary composition (i.e., set) of
machines on a production floor, pf:PF.

2. The definition of PF given in item 1 is a model of a production layout.
3. Assume, as a thought experiment, that there is such a pf:PF. It consists

on n machines: m1, m2, . . . , mn.
4. A number of situations can now occur:
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(a) The operation of machine mi requires parts that can all be provided
by other machines mjk

in the set {M1, m2, . . . , mn}\{mi}.
(b) Some parts necessary for the operation of machine mi cannot be pro-

vided by any machine mjk
the set {M1, m2, . . . , mn}\{mi}. They

must hence be available, i.e., provided by, the in ware house.
(c) The operation of machine mi produces parts that are not provided

to any of the machines mjk
in the set {M1, m2, . . . , mn}\{mi}. They

must hence be sent to the out ware house.
(d) Any realistic production floor is a combination of the above (items 4(a–

4(c).
5. We decide not to model, as part of the individual machines, from where

they obtain their input production parts or to where they provide their
output production parts.

6. Instead we decide to model this aspect of production in the form of a
production plan.

D.6.2 Production Targets

1. By a production target we mean the number of products of a finite number
of distinct part numbers

2. A production target could be expressed, as intimated in Fig. D.4, by a set
of pairs of non-zero natural numbers and part numbers.
(a) The m : p pairs in out-tray boxes mean that each machine operation

produces m “copies” of part p.
(b) The m : p pairs on arrows into a specific machine means that that

machine, in order to perform a machine operation, consumes n copies
of part p.

3. In order to fulfill a production target one or more of the machines which
provide the target parts may need more than one machine operation each.

4. If such a machine, say Mi, requires nMi
operations and each of these

require (mMi
: p), (m′

Mi
: p′), . . . , (m′′

Mi
: p′′) input parts, then machine

Mi requires an input production target of (nMi
×mMi

: p), (nMi
×m′

Mi
:

p′), . . . , (nMi
× m′′

Mi
: p′′).

5. And so on.

type
PP
PT′ = Pn →m Nat, PT = {|pt:PT′:∀ n:Nat•n ∈ rng pt ⇒ n≥0|}

value
obs PT: PP → PT

Annotations:

• PP names the sort of production plans.
• PT names the concrete type of production targets. A production target is

a map from part numbers to non-zero natural numbers.
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Fig. D.4. A production layout

D.6.3 Part Dependencies

1. Figure D.4 instantiates a rather general layout. Same kind (i.e., part num-
ber) input parts may come from different machines, etc.

2. Given that p is a part of part number pi, and given a layout as formalised
by PF, one can raise the question: are there machines in that layout which
produces every part required in the production of p?

3. To answer that question we first perform the following investigation. This
investigation examines proper input/output part precedence relations be-
tween machines on the production floor (and the input warehouse of
parts).

4. Let us examine Fig. D.3 on page 128 and Fig. D.4. Some machine input
parts are (expected to be) provided by other machines on the factory floor
while the remaining are (expected to be) provided by the input warehouse.
Let us assume that parts p1–p4 (of Fig. D.4) are provided by the input
warehouse. We must now assume that all other parts are provided by
other machines from the same floor. We must further assume that there
are no cycles of parts provision: That some machine m provides parts to
a subsequent machine m′ which provides parts to a subsequent machine
m′′ which . . . provides parts to a machine m′···′ which provides parts to
machine m.

5. To express this formally, and thus precisely, we simplify some aspects
of machines: The abstract from machine signatues pairs of sets of part
numbers. (To express that there are indeed machine which can provide
necessary parts, and to express non-circularity one does not need to know
the quantities of parts consumed and produced.)

type
MP, PFId, MId
PFs′ = PFId →m PF, PFs = {|pfs:PFs′ • pfs 6=[ ]|}
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PF′ = Mid →m MC, PF = {|pf:PF′
• pf6=[ ]|}

MCSign′ = Pn-set × Pn-set
MCSign = {|(ips,ops):MCSign′

• ips ∩ ops = {}|}
value

obs PFs: MP → PFs
obs PF: MP × PFid −∼> PF, pre obs PF(mp)(pfid): pfig ∈ dom mp
obs InWhPns: MP → Pn-set
obs OutWhPns: MP → Pn-set
obs MCSign: MC → MCSign
wf MP: Plant → Bool
wf PM(mp) ≡

let iws,ows = (obs InWhPns(mp),obs OutWhPns(mp)),
pfs = obs PFs(mp) in

∀ pf:PF • pf ∈ pfs ⇒
let ... in
...

end end

D.6.4 Production Plans

Etcetera.

D.7 Interpretations of the Model — So Far!

We present a few examples of “near”-realistic production facilities.

D.7.1 A Matchbox Factory

1. Figure D.5 intends to show the production floor of a simple minded match
factory.

2. Descriptions of machines are onky indicative of what “goes on”!
3. The reader may wish to make these descriptions more complete.

1. Leftmost and rightmost “dangling” arrows designate input from the in
warehouse, respectively output to the out warehouse.

2. The reader may ponder about such questions as:

(a) How is the output production capacity of machine Mt “tuned” to the
input production capacty of machine Ms,

(b) How is the output production capacity of machine Ms “tuned” to the
input production capacty of machine Mmb,

(c) How is the output production capacity of machine Mb “tuned” to the
input production capacty of machine Mmb and
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MsMt

Mp...

MmbMb

Machine Mmb inputs

Machine Mp inputs
various chemical
ingredients and 

produces a liquid
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1mm by 1mm sticks
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trunks and nachines them 
Machine Mt inputs raw tree

6 by 40 1mm by 1mm
sticks, empty match

boxes, and 8ml of
match−phosphor to
produce a matchbox

Fig. D.5. A match factory

(d) How is the output production capacity of machine Mp “tuned” to the
input production capacty of machine Mmb.

3. So do we!
4. Please not that this is just one interpretation of the concept of machines,

warehouses and production floors.
5. For more realistics pictures of match production, please see:

(a) http://server18.joeswebhosting.net/˜xx9185/english/variety/variety01.html.
(b) http://server18.joeswebhosting.net/ xx9185/english/column/column03.html
(c) http://phillumeny.onego.ru/collect/articles/phil36/1.html

D.7.2 A Hot Strip Mill

For an intuition of hot strip tubular and sheet production, please see:
http://www.ussteel.com/corp/sheet/hr/pmcpline.htm
http://www.wcisteel.com/operations/main.html

D.7.3 Cog Wheel Factory

For an intuition of cog wheel production, please see:http://www.hero.dk/engelsk/
Click successive images in left quadrangle
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On a Domain Model of Documents

We bring a fragment of a domain model of documents.

E.1 A RAISE Model of Documents

E.1.1 Originals, Copies and Versions

There are documents. Documents are either created, edited or copied. One can
claim that a document is either an original, or an edited version, for short,
a version, of a document, or a copy of a document. One can claim that a
document can either only (say: “most recently”) be an original, or only (say:
“most recently”) be an edited document (i.e., a version), or only (say: “most
recently”) be a copy of a document. The pragmatic intention of documents
is to embody document content. We leave the notion of document content
undefined. There is information. Information is either document content, or
the absence of such. We use the special literal void to designate absence of
content. To create a document needs no document content. From a document
one can observe its most recent information.

(a)(b)• type
D, oD, eD, cD, C, E
I == void | C

value
create: Unit → oD
edit: E × D → eD
copy: D → cD

is oD: D → Bool
is eD: D → Bool
is cD: D → Bool

axiom
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∀ d:D •

is oD(d)∨is eD(d)∨is cD(d) ∧
is oD(d)⇒∼is eD(d)∧∼is cD(d) ∧
is eD(d)⇒∼is oD(d)∧∼is cD(d) ∧
is cD(d)⇒∼is oD(d)∧∼is eD(d) ∧ ... or, which is the same:

∀ d:D,e:E •

is oD(create()) ∧ ∼is eD(create()) ∧ ∼is cD(create()) ∧
is cD(copy(d)) ∧ ∼is oD(copy(d)) ∧ ∼is cD(edit(e,d))
is eD(edit(e,d)) ∧ ∼is oD(edit(e,d)) ∧ ∼is cD(edit(e,d))

value
obs I: D → I

axiom
obs I(create()) = void ∧
∀ d:D • is oD(d) ⇒ obs I(copy(d)) = void

Annotations:

• The sectioning literal type designates that the following text (up to a
next sectioning literal) introduces abstract and concrete type definitions.
An abstract type definition is like a sort.
⋆ D, oD, eD, cD, C and E introduces the sorts of documents, original doc-

uments, edited documents, document copies, document contents and
document editing. (We shall not elaborate further on E till Sect. E.1.2
on the facing page.

⋆ The equation I == void | C defines document information as either
being void or C. (We are not here telling you what void means.) The
alternatives of U == V | W | X | Y ... are, by the == constructor.,
being defined as disjoint types.

• The sectioning literal value designates that the following text (up to a
next sectioning literal) introduces values of defined types. Six such values
are introduced. We see from their types (... → ...) that they are all function
values.
⋆ create designates the create function. It is a type Unit → oD. Thus it

takes no arguments (designated by the value literal Unit) and yields
an original document.

⋆ edit designates the editing function. It is a type E × D → eD. Thus it
takes two arguments: some editing value and a document and yields
an edited document.

⋆ copy designates the copy function. It is a type D → cD. Thus it takes one
argument, a document and yields a document: the copied document.
The function signature says nothing about “what happened” to the
input argument. As we shall see, it is still there, “somewhere”.1

⋆ is oD designates a predicate observer function. It is a type D → Bool.
If the document is an original then truth is yielded, otherwise falsity.

1Adding 3 and 7, yielding 10, does not, in any way, destroy or influence 3 and 7.
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⋆ is eD designates a predicate observer function. It is a type D → Bool. If
the document is an edited version of a document then truth is yielded,
otherwise falsity.

⋆ is cD designates a predicate observer function. It is a type D → Bool.
If the document is a copy then truth is yielded, otherwise falsity.

The functions are all postulated. They are claimed to exist. They are not
defined. Instead their properties will be revealed through axioms.

• The sectioning literal axiom designates that the following text (up to a
next sectioning literal) introduces a number of properties — typically over
the types and values introduced before these axioms.
⋆ The clause ∀ a:A • “reads”: for all values a of type A it is the case that.

In RSL all quantifications are typed.
⋆ The proposition is oD(d)∨is eD(d)∨is cD(d) ∧ “reads” a document d is

either an original or an edited version or a copy, and ... .
⋆ The proposition is oD(d)⇒∼is eD(d)∧∼is cD(d) “reads” if a document

is an original then it is neither an edited version or a copy, and ... .
⋆ The proposition is oD(create()) ∧ ∼is eD(create()) ∧ ∼is cD(create())

“reads” for all documents and editing values, the value resulting from
a proper create operation is an original and is not a edited version and
is not a copy.

⋆ The predicate ∀ d:D,e:E • is eD(edit(e,d)) ∧ ∼is oD(edit(e,d)) etcetera
“reads” a document that has been properly edited is an edited version
and is not an original and is not a copy.

• The signature obs I: D → I expresses a an observer function which from a
document observes its information.

• The axioms obs I(create()) = void and ∀ d:D • is oD(d) ⇒ obs I(copy(d))
= void expresses that copies of copies of ... of copies of originals still have
no proper information content.

E.1.2 Editing and Versions

Editing a document modifies its information. An edited document is a ver-
sion of the document from which it was edited. Editing a document does not
amount to establishing a new document. From an edited document one can
observe the information immediately before it was most recently edited, and
how that information was edited, i.e., the resulting content. One way of mod-
elling the edit function is by means of two functions: a forward editing function
and a backward, “undo” editing function. The forward editing function takes
an information argument and delivers an information result. The backward
editing function takes an information argument and delivers an information
results. The backward editing function is the inverse of the forward editing
function.

type
E′ = FE × BE
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FE,BE = I → I
E = {|(fe,be):E • ∀ i:I • be(fe(i))=i |}

value

obs E: D
∼

→ E
axiom

obs E(create()) = chaos ∧
∀ d:D,e,(fe,be):E

obs E(edit(e,d)) = e ∧
obs I(edit((fe,be),d)) = fe(obs I(d)) ∧
obs I(d) = be(obs I(edit((fe,be),d))) ∧
obs E(copy(edit(e,d))) = e ∧ ... /∗ induction ∗/

Annotations:

• E′ is a concrete type. It is defined as the Cartesian of two types: FE and
BE.

• Both FE and BE are total functions from information to information.
• E is the subtype of E′ which constrains the backward editing function

be:BE to be an inverse of the forward editing function fe:FE.
• obs E is a partial observer function. It applies to documents.
• From an original document one cannot observe any editing functions:

obs E(create()) = chaos.
• From edited documents (whether since copied) one can (still) observe the

editing functions.
• The parenthesised clauses: (whether since copied) and (still) are not ex-

pressed by obs E(copy(edit(e,d))) = e, but intimated by the ellipses clause
... — to be formalised below.

E.1.3 Document Traces

From a document one can observe its immediate predecessor document. An
original document has no predecessor. A copy, dc of a document, d, had d
as its immediate predecessor document. An edited document, also called a
version,, de of a document, d, had d as its immediate predecessor document.
And so on, “ad finitum”, till the original document is encountered.

Let us call the document from which an edited version arises for the master
document. And let us call document from which a copy is made also for
the master document. Thus the predecessor documents are masters wrt. the
successors.

value

obs Pre: D
∼

→ D
axiom

obs Pre(create()) = chaos ∧
∀ d:D,e:E • obs Pre(copy(d)) = d = obs Pre(edit(e,d))
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Annotations:

• From any document other than an original one can observe, obs Pre, its
predecessor.

• Thus obs Pre(create()) is not defined, that is, is chaos.
• For all documents and editing functions the predecessor of a copy of d,

i.e., copy(d), is d, and the predecessor of the e edited version, edit(e,d) of
d is also d.

Observations:

• We could decide, instead of making obs Pre a partial function, to let
obs Pre(create()) yield create().

• Then obs Pre would be a total function.
• And then obs Pre(copy(create())) would be “the same” as create().
• We shall review and modify our predecessor function, obs Pre, later in this

book.

A document trace is a history trail, i.e., a sequence of documents, from an
original to the present document, whether a copy or a version such that the
first document of the sequence is the document, the ith document in the
sequence is the predecessor of the i − 1st document in the sequence, and
hence such that the last document in the sequence is the original. Thus one
can establish the full history that any document has undergone since the
creation of its “ultimate predecessor”.

value
obs doc trace: D → D∗

obs doc trace(d) ≡
if is oD(d) then 〈d〉 else 〈d〉̂obs doc trace(obs Pre(d)) end

Annotations:

• We name the document trace function obs doc trace since it is really an
observer function (it is being “defined” solely in terms of, in this case one
observer function).

• The document trace of an original document is the singleton sequence of
that document.

• The document trace of a copy or an edited version (d) is the prefix concate-
nation of the singleton sequence of that document (d) with the document
trace of the predecessor document of d.

• Termination is guaranteed since only a finite number of copies and edits
can have taken place on any document.

We can now complete the induction part of the axiom above obs E(copy(edit(e,d)))
= e ∧ ....

axiom
∀ d:D •
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∀ i:Nat • i ∈ inds obs doc trace(d) ⇒
is eD(obs doc trace(d)(i)) ⇒

∀ j:Nat • j ∈ inds obs doc trace(d) ∧ j<i ∧
∀ k:Nat • k ∈ {j,i−1} ∧ is cD(obs doc trace(d)(k)) ⇒

obs E(obs doc trace(d)(i)) = obs E(obs doc trace(d)(k))

Annotations:

• For all documents
• and for all indices, i, into the trace of such doucments
• if the i′th document of that trace is an edited version
• then for all lower indices j, before i,
• if all documents (obs doc trace(d)(k)) of the trace properly j and i−1 are

copies,
• then we can observe in these copies the same editing value.

E.1.4 Annotated Original Documents

We modify the copy function and the notion of an original document, od:oD.
We now annotate original document by a trace of “has been copied” markers.
The document resulting from create() has an empty such trace. The document
resulting from copy(create()) has a singleton trace of one “has been copied”
marker. Each additional copying of a marked original adds one “has been
copied” marker to the trace.

Two original documents which differ only in number of “has been copied”
markers are otherwise considered the same original.

type
hbc Mark == hbc

value
obs hbc Marks: oD → hbc Mark∗

axiom
obs hbc Marks(create()) ≡ 〈〉 ∧
∀ od:oD • obs hbc Marks(copy(od)) = 〈hbc〉̂obs hbc Marks(od)

value
disregard Marks: D → D
disregard Marks(d) as d′

obs hbc Marks(d′) = 〈〉 ∧ obs Pre(d) = obs Pre(d′)
differ by 1 Mark: D × D → Bool
differ by 1 Mark(d,d′) ≡

obs hbc Marks(d) = tl obs hbc Marks(d′) ∧
disregard Marks(d) = disregard Marks(d′)

Annotations:

• hbc Mark names a concrete type. Its only value is hbc. hbc is not further
defined.
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• obs hbc Marks is an observer function. It applies to original documents and
yields a possibly empty list of hbc:hbc Marker∗ of hbc markers.

• The list of hbc markers of a fresh, “virgin” original is empty.
• The list of hbc markers of any original that has been copied (once or more)

has one more hbc marker than the original from which it was copied.
• We can view a document without its “bass been copied” marks. That is

the function of the disregard Marks function.
• Two documents are, in a sense, the same if they differ only by one or more

marks.

We now redefine the predecessor observer function.

value

obs Pre: D
∼

→ D
axiom

obs Pre(copy(d)) = d ∧
∀ d:D,e:E •

obs Pre(edit(e,d)) = d ∧
∀ od:oD •

obs hbc Marks(od) = 〈〉 ⇒ obs Pre(od) = chaos ∧
/∗ the above is the same as ∗/ obs Pre(create()) = chaos ∧
obs Pre(copy(od)) = od

Later we shall augment the “has been copied” marker with location and time
of copying.

E.1.5 Document Family Trees

Each document creation may give rise to a whole set of documents: copies of
documents (for each copy a new document arises while the document from
which it was copied basically remains), and edited versions of documents (for
each version the number of documents remain the same). Given an original
document one can establish the family tree of documents descending from the
originally created document.
A document family tree consists of nodes and stems (i.e., branches). Nodes,
other than the root node, designate operations performed on documents. The
root node designates the “moment” before “creation”! Stems designate doc-
uments. A node, other than the root node, has one input stem and, for any
node, one or two output stems. The input stem of a node is (also) said to be
incident upon that node, and to designate the predecessor document of the
new document resulting from the node oeration. The output stem is, or the
output stems are said to emanate from the node. The root node designates
the create operation. Any other node designates either an edit or a copy oper-
ation. If a node designates an edit operation then it has one output stem and
that stem designates the edited version of the document designated by the
stem incident upon the edit node. If a node designates a copy operation then
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Fig. E.1. A document family tree

it has two output stems: one of these stems designate the (input) document
designated by the stem incident upon the copy node while the other stem
designates the copy of that (input) document. Finally a document family tree
ends in leaves which are stems, i.e., documents. From any stem in a docu-
ment tree one can establish the unique path of stems from that stem back to
the original document designated by the stem emanating from the root node.
Such a path is a document trace. As for the general, i.e., abstract concept of
trees one can speak of subtrees. If a stem is incident upon a node, then that
node is the sub-root of a subtree which we shall here call a document tree
(as distinguished from a document family tree). A (sub-)root of a document
[family]tree2 may have one or two subtrees, i.e., document trees: one of the
(sub-)root designates the [create] (edit) 3 operation, two if it designates the
copy operation.

type
DFT′ = mkCreate() × oD × DT
DFT = {|dft:DFT′

• wfDFT(dft)|}
DT == nil | ET | CT
ET = mkET(mkEdit(efns:(fe:FE,be:BE)),(ed:eD,dt:DT))
CT = mkCT(mkCopy(),(d:D,dt:DT),(cd:cD,dt′:DT))

value
wfDFT: DFT′ → Bool
wfDFT( ,od,dt) ≡

2The phrase: (sub-)root of a document [family]tree reads as follows: root of a
document family tree or sub-root of a document tree.

3The phrase: (sub-)root designates the [create] (edit) reads as follows: root des-
ignates the create or sub-root designates the edit.
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case dt of
nil → true,

→ wfDT(dt)(od)
end

wfDT: DT → D → Bool
wfDT(dt)(d) ≡

case dt of
nil → true,
mkET((fe,be),(ed,dt′))

→ preEpost((fe,be),d,ed) ∧ wfDT(dt′)(ed),
mkCT(mkCopy(),(d′,dt′),(cd,dt′′))

→ preCpost(d,d′) ∧ wfDT(dt′)(d′) ∧ wfDT(dt′′)(cd)
end

preEpost: E × D × eD → Bool
preEpost((fe,be),d,ed) ≡ ...

/∗ see postcondition of the edit function on page 138 ∗/

preCpost: D × D → Bool
preCpost(d,d′) ≡ disregard Marks(d′)=d

Annotations:

• DFT′ defines the Cartesian of not necessarily well-formed document tree.
• mkCreate(), oD and DT are the types of the components of the document

tree.
• mkCreate() is strictly speaking not necessary, but is introduced so that all

nodes possess an operation designator.
• oD designates the stem amanating from the mkCreate() node.
• DT designates the possibly emty sub-tree “attached” to the stem, i.e.,

upon which the stem may be incident.
• DT is thus either nil (i.e., the stem is a leaf) or is an edit tree et:ET or a

copy tree ct:CT.
• An edit tree mkET(mkEdit(efns:(fe:FE,be:BE)),(ed:eD,dt:DT)) has sub-root

node mkEdit(efns:(fe:FE,be:BE)) snd one sub-tree (ed:eD,dt:DT).
⋆ The sub-root node designates the editing functions mkEdit(efns:(fe:FE,be:BE)).
⋆ The forward editing function fe “works” on the document of the stem

incident upon this sub-root node.
⋆ The backward editing function be “works” on the document of [the

edited version stem ed:eD] emanating from this sub-root node.
⋆ dt:DT designates a possible sub-tree of the stem emanating from this

sub-root node.
• A copy tree mkCT(mkCopy(),(d:D,dt:DT),(cd:cD,dt′:DT)) has sub-root node

mkCopy() and two sub-trees (d:D,dt:DT) and (cd:cD,dt′:DT).
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⋆ The sub-root node designates the copy function mkCopy().
⋆ One (here shown as “the left”) sub-tree (d:D,dt:DT) designates the

document d:D being copied, hence “carried” forward, and its sub-tree
dt:DT.

⋆ One (here shown as “the right”) sub-tree (cd:cD,dt′:DT) designates the
document copy cd:cD, and its sub-tree dt′:DT.

• A number of constraints must be satisfied for a document history tree, dft,
to be proper, i.e., to be well-formed wfDFT(dft).
⋆ We can ignore the Cartesian mkCopy() component of dft.
⋆ If the sub-tree component dt is nil then the whole document history

tree is well-formed.
⋆ Otherwise the well-formedness of dft is the well-formedness of dt in the

context of the incident document od.
• The well-formedness wfDT(dt)(d) of a sub-tree dt in the context of an

incident document d is likewsie defined by cases:
⋆ If dt is nil then well-formedness is guaranteed.
⋆ If dt is an edit sub-tree mkET((fe,be),(ed,dt′)) then well-formedness is

a conjunction of
· the edit pre/post condition preEpost((fe,be),d,ed) explained earlier,

and
· the well-formedness of the version document sub-tree dt′.

⋆ If dt is a copy sub-tree mkCT(mkCopy(),(d′,dt′),(cd,dt′′)) then well-
formedness is a conjunction of
· the copy pre/post condition preCpost(d,d′) where d′ is the document

being copied — and after copying,
· the well-formedness of the master4 document sub-tree wfDT(dt′)(d′),

and
· the well-formedness of the copied document sub-tree wfDT(dt′′)(cd).

E.1.6 Document Family States

A state of a document family tree is a breadth-first set of stems of the tree. A
breadth-first set of stems of a document family tree is one whose stems belong
to distinct paths. Fig. E.2 shows 11 states of a document family tree.

The idea is that there is an initial state, here s0, of the tree, and that there
is a final state, here s10, of the tree. The initial state, here s0, designates the
initial, i.e., the original document. The final state, here s10, designates a notion
of final documents. A final state means that no further operations are to be
performed on members of a set of documents. (“Case closed.”) Please note
that the final state of any document family tree is unique — as is the initial
state. Please also note that a void document, i.e., a copy of a copy of . . . a

4We shall move this notion way back, towards the front of this book: the master
document is the document being copied.
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s0 = {o}

s1 = {o’,co}
s2 = {eo’,co}

s3 = {o’,eco}
s4 = {eo’,eco}

s5 = {eo’,eco’,ceco}
s6 = {o’,eco’,ceco}

s7 = {o’,eco’,ececo}

s9 = {o’,eco’,eececo}
s10 = {eo’,eco’,eececo}

s8 = {eo’,eco’,ececo}

Fig. E.2. Document family states

copy of an original document may be a final document.5 Intermediate states
designate possible collections of non-final documents. Thus a non-final state
has one or more successor states. Usually there may be several ways of making
state transitions from the initial state to the final state. Possible sequences of
states are indicated by:

s0 7→ s1 7→ s3 7→ s6 7→ s7 7→ s9,
s0 7→ s1 7→ s2 7→ s4 7→ s8 7→ s10.

From a document family tree we can compute all states and all possible initial
to final state sequences.

type
Σ = {|σ:D-set•σ 6={}|}

value
States: DFT → Σ-set
Traversal: DFT → Σ∗

States(dft) ≡ ...
Traversal(dft) ≡ ...

E.1.7 Document Community

By a document community we mean a set of uniquely identified document
family trees.

5The reader may feel uncomfortable having such void copies “floating” around,
seemingly to no effect. But that is the cost of not imposing constraints that would
otherwise impose what we consider unnatural limitations on what can be done to
documents.
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type
Did
DoCo = Did →m DFT

No two states of (two) distinctly named document family trees share states,
i.e., have one or more documents in common.

value
wfDoCo: DoCo → Bool
wfDoCo(doco) ≡ ...

E.1.8 Discussion of First Model of Document Intrinsics

There seems to be a number of problems with the model so far: Documents,
whether manifest by humans senses (such as paper documents) or by tech-
nical/scientific apparata (such a MS Word, LATEX (.tex) files, portable docu-
ment format (.pdf) files or postcript (.ps)files) always have a unique location
in space. Operations on documents occur at certain times and these opera-
tions may, or may not “take time to perform”. Finally we did not mention
any notion of document identity: two documents which differ in some way
(location, time of application of, say, most recent operation, content, etc.) can
be claimed to have unique, i.e., distinct indentities. We will, in the next two
sections propose concrete models of locations and time of operation invoca-
tion.

E.1.9 A Concrete Model of Locations

We introduce a spatial notion of location. Mathematically we consider a loca-
tion to be a dense point set equipped with some “neighbourhood” (or “infini-
tisimally close” predicate). No two otherwise distinct documents can occupy
overlapping locations. Thus all distinct documents of a document family state
occupy distinct, non-overlapping locations. And similarly for document com-
munities.

We now extend our simplistic model of document intrinsics. From docu-
ments we can now observe their location. When creating or copying a doc-
ument a single location is provided. The original document being created
“receives” the given location. The document copy being established likewise
“receives” the given location. The document from which the copy was made
retains its location. The document resulting from an edit retains the location
of the document being edited. We finally add a new operation on documents:
Moving a document from one location to another, therefrom distinct location.
The move shall result in the location of the moved document changing from
what it was before the move to the given location. We shall, when now con-
sidering the create, copy, edit and move operations not consider whether the
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implied locations may interfere with locations of other documents of a family
or community.

type
L

value
=: L × L → Bool
infinitesimally close: L × L → Bool

axiom
∀ l,l′:L • infinitisimally close(l,l′) ⇒ l6=l′

∀ l,l′,l′′:L • l′6=l′′ ∧
infinitesimally close(l,l′)∧infinitisimally close(l,l′′) ⇒

infinitesimally close(l′,l′′) ...
value

create: L → oD
copy: D × L → D × cD
edit: E × D → eD

move: D × L
∼

→ D, pre: move(d,l): obs L(d)6=l
obs L: D → L

axiom
∀ l:L,e:E •

obs L(create(l)) = l ∧
let (d′,cd) = copy(d,l) in
preCpost′(d,d′) ∧ obs L(cd)=l end ∧
let ed = edit(e,d) in obs L(ed)=obs L(d) end ∧
obs L(move(d,l)) = l

E.1.10 A Basic Concrete Model of Time

We introduce a temporal notion of time. Mathematically we consider time to
be a linear dense point ordering. Each document operation: create, copy, edit
and move occurs at a specific time (and lasts no time).

We now extend our simplistic model of document intrinsics. From docu-
ments we can now observe the time of their last operation. When creating,
copying, editing and moving a document a single time is provided. The original
document being created “receives” the given time. The document copy being
established likewise “receives” the given time. The document from which the
copy was made retains its time. The document resulting from an edit “re-
ceives” the given time. The move shall result in a moved document marked
with the given time. We shall, when now considering the create, copy, edit and
move operations not consider whether the implied times are coincident with
times of other documents of other the same family or other families. Previous
documents of any documents retain their times of operation applications.
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type
T

value
obs T: D → T
create: L × T → oD
copy: D × L × T → D × cD
edit: E × D × T → eD

move: D × L × T
∼

→ D, pre: move(d,l): obs L(d)6=l
axiom

∀ t:T,e:E •

obs T(create( ,t)) = t ∧
let (d′,cd) = copy(d, ,t) in
preCpost′(d,d′) ∧ obs T(cd)=t end ∧
let ed = edit(e,d,t) in obs T(ed)=t end ∧
obs T(move(d,l,t)) = t

E.1.11 Located and Timed Documents

We wish to record that for every document that has been copied the fact that
it has been copied: tie and place.

value
has been copied: D → Bool

when where copied: D
∼

→ L×T
otherwise the same: D×D → Bool

axiom
∀ d:D •

∼has been copied(d) ≡ when where copied(d)=chaos ∧
∀ l:L,t:T •

let (c′,cd) = copy(d,l,t) in
has been copied(d′) ∧ when where copied(d′)=(l,t) ∧
otherwise the same(d,d′) end

Time and Space (Locations)

No document can at the same time be in two different locations:

axiom
∀ d,d′:D •

let (l,t) = (obs L(d),obs T(d)),(l′,t′) = (obs L(d′),obs T(d′)) in
(t=t′ ∧ l=l′ ≡ d=d′) ∧ (t=t′ ∧ l6=l′ ≡ d6=d′) end
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E.1.12 Unique Document Identifiers

Given that creation and copying times and locations are unique we can intro-
duce a notion of unique document identifications. For a document family that
is simple enough:

type
Uid

value
obs Uid: D → Uid

axiom
let od = create() in
let uid = obs Uid(d) in
∀ d:D, e:E, t:T, l:L •

let dt = doc trace(d) in dt(len dt)=od ⇒
∀ i:Nat • i ∈ inds dt ⇒

is oD(dt(i)) ⇒ obs Uid(dt(i))=uid ∧
is eD(dt(i)) ⇒ obs Uid(dt(i))6=uid ∧
is cD(dt(i)) ⇒ obs Uid(dt(i))6=uid

end end end

For a community we need to distnguish two originals by their distinct docu-
ment family identifiers. That is: The Uid is some concoction of a document
family identifier, a ocopy or edit operation time and a copy or edit operation
location.

E.2 A CafeOBJ Model of Documents

This model and its analysis (inclunding proofs) has been worked out by
Kazuhiro Ogata.

--

-- Sort Absence corresponds to the type whose values are only void.
-- Constant void corresponds to value void.
--

mod! ABSENCE {
[Absence]

op void : -> Absence .
op _=_ : Absence Absence -> Bool {comm}
var A : Absence

eq (A = A) = true .
}

--

-- Sort Content corresponds to type C.
--
mod* CONTENT {

[Content]
op _=_ : Content Content -> Bool {comm}

var C : Content
eq (C = C) = true .

}
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--
-- Sort Info is declared as a supersort of Void and Content.

-- The sort corresponds to type I == void | C.
--
mod* INFO {

pr(ABSENCE + CONTENT)
[Absence Content < Info]

op _=_ : Info Info -> Bool {comm}
op _=_ : Absence Content -> Bool
op _=_ : Content Absence -> Bool

var I : Info
var A : Absence

var C : Content
eq (I = I) = true .

eq (A = C) = false .
eq (C = A) = false .

}

--
-- Visible sort Editing corresponds to type E.

--
mod* EDITING {
[Editing]

op _=_ : Editing Editing -> Bool {comm}
var E : Editing

eq (E = E) = true .
}

--
-- Sort Document is declared as a supersort of sorts ODoc, EDoc and CDoc.
-- Sort Document corresponds to type D.

-- Sort ODoc corresponds to type oD.
-- Sort EDoc corresponds to type eD.

-- Sort CDoc corresponds to type oD.
--
mod! DOCUMENT {

pr(INFO + EDITING)
[ODoc EDoc CDoc < Document]

op create : -> ODoc
op edit : Editing Document -> EDoc

op copy : Document -> CDoc
op isODoc : Document -> Bool -- corresponds to is_oD
op isEDoc : Document -> Bool -- corresponds to is_eD

op isCDoc : Document -> Bool -- corresponds to is_cD
op obsInfo : Document -> Info -- corresponds to obs_I

op _=_ : Document Document -> Bool {comm}
vars D D1 : Document
var OD : ODoc

var ED : EDoc
var CD : CDoc

vars E E1 : Editing
--

eq isODoc(OD) = true .
eq isODoc(ED) = false .
eq isODoc(CD) = false .

eq isEDoc(OD) = false .
eq isEDoc(ED) = true .

eq isEDoc(CD) = false .
eq isCDoc(OD) = false .
eq isCDoc(ED) = false .

eq isCDoc(CD) = true .
--

-- The following four equations surely hold because of the definitiong.
-- A term of sort Document is one of create, edit(e,d) or cpoy(d),

-- where e is a term of sort Editing and d is a temr of sort Document.
--
eq isODoc(D) or isEDoc(D) or isCDoc(D) = true .

ceq (not isEDoc(D)) and (not isCDoc(D)) = true if isODoc(D) .
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ceq (not isODoc(D)) and (not isCDoc(D)) = true if isEDoc(D) .

ceq (not isODoc(D)) and (not isEDoc(D)) = true if isCDoc(D) .
--

eq obsInfo(create) = void .
ceq obsInfo(copy(D)) = void if isODoc(D) .
--

eq (D = D) = true .
eq (create = edit(E,D)) = false .

eq (create = copy(D)) = false .
eq (edit(E,D) = copy(D1)) = false .
eq (edit(E,D) = edit(E1,D1)) = (E = E1) and (D = D1) .

eq (copy(D) = copy(D1)) = (D = D1) .
}

--

-- Since CafeOBJ does not provide any facilities that deal with higher-order
-- functions directly, we have to come up with something, which can simulate
-- higher-order functions.

--

--
-- This module is used to constrain paramters of the coming parameterized modules.
--

mod* EQTRIV {
[Elt]

op _=_ : Elt Elt -> Bool {comm}
}

--
-- This module deals with higher-order functions to some extent.

-- The module has two paramters named D and R, each of which is constrained
-- by module EQTRIV.

--
mod* FUNCTION(D :: EQTRIV, R :: EQTRIV) {
[Fun]

op app : Fun Elt.D -> Elt.R
op _=_ : Fun Fun -> Bool {comm}

vars F F1 F2 : Fun
vars D1 D2 : Elt.D

eq (F = F) = true .
ceq (app(F1,D1) = app(F2,D2)) = true if (F1 = F2) and (D1 = D2) .

}

--

-- This view can be used to instantiate module FUNCTION with module INFO
-- that is used as actual parameters.
--

view VIEW1 from EQTRIV to INFO {
sort Elt -> Info,

op _=_ -> _=_
}

--
-- An editing is represented by a pair of two functions such that

-- the two functions satisfy equation (*1).
-- Sort Chaos is declared as a supersort of sort Editing.

-- A term of sort Chaos is either chaos or <fe,be>, where fe and be are
-- terms of sort Fun.
-- A partial function f : Document ~> Editing can be dealt with as

-- a total function f’ : Document -> Chaos such that f’(d) is f(d) if f is
-- defined on d, and f’(d) is chaos otherwise.

--
mod! EXTENDED-EDITING {

ex(EDITING)
pr(FUNCTION(D <= VIEW1, R <= VIEW1)) -- instantiating
[Editing < Chaos]

op <_,_> : Fun Fun -> Editing
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ops fe be : Editing -> Fun

op chaos : -> Chaos
op _=_ : Chaos Chaos -> Bool {comm}

op _=_ : Editing Chaos -> Bool
op _=_ : Chaos Editing -> Bool
vars F1 F2 F11 F21 : Fun

var E : Editing
var I : Info

var C : Chaos
eq fe(< F1, F2 >) = F1 .
eq be(< F1, F2 >) = F2 .

eq (< F1, F2 > = < F11, F21 >) = (F1 = F11) and (F2 = F21) .
--

eq app(be(E),app(fe(E),I)) = I . -- (*1)
--

-- In addition to equation (*1), some more equations, which are
-- equivalent to it, may have to be added so that rewriring can be used to
-- reason about documents.

--
eq (chaos = chaos) = true .

eq (E = chaos) = false .
eq (chaos = E) = false .

}

--

-- Sort Chaos2 is declared as a supersort of sort Document.
--

mod! EXTENDED-DOCUMENT {
pr(EXTENDED-EDITING)
ex(DOCUMENT)

[Document < Chaos2]
op obsEdit : Document -> Editing

op obsPre : Document -> Document
op chaos2 : -> Chaos2
op _=_ : Chaos2 Chaos2 -> Bool {comm}

op _=_ : Document Chaos2 -> Bool
op _=_ : Chaos2 Document -> Bool

var E : Editing
var D : Document

var C : Chaos2
eq obsEdit(create) = chaos .
eq obsEdit(edit(E,D)) = E .

--
-- eq obsEdit(copy(edit(E,D))) = E .

-- -- This equation is immplied by the following one.
--
eq obsEdit(copy(D)) = obsEdit(D) .

--
eq obsInfo(edit(E,D)) = app(fe(E),obsInfo(D)) .

--
-- eq obsInfo(D) = app(be(E),obsInfo(edit(E,D))) .

-- -- This equation cannot be used as a left-to-right rewrite rules
-- -- b/c variable E, which appears on the right-hand side, does not
-- -- appear on the left-hand side.

-- -- So, instead of it, the following one is declared.
--

eq app(be(E),obsInfo(edit(E,D))) = obsInfo(D) .
--
eq obsPre(create) = chaos2 .

eq obsPre(edit(E,D)) = D .
eq obsPre(copy(D)) = D .

--
eq (chaos2 = chaos2) = true .

eq (D = chaos2) = false .
eq (chaos2 = D) = false .

}
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--

-- Sort Nat denotes natural numbers.
--

mod! PNAT {
[Nat]
op 0 : -> Nat

op s : Nat -> Nat
op p : Nat -> Nat

op _=_ : Nat Nat -> Bool {comm}
op _<_ : Nat Nat -> Bool
op _=<_ : Nat Nat -> Bool

vars N N1 : Nat
eq p(s(N)) = N .

eq (N = N) = true .
eq (0 = s(N)) = false .

eq (s(N) = s(N1)) = (N = N1) .
eq (N < N) = false .
eq (0 < s(N)) = true .

eq (N < 0) = false .
eq (s(N) < s(N1)) = (N < N1) .

eq (N =< N) = true .
eq (0 =< N) = true .
eq (s(N) =< 0) = false .

eq (s(N) =< s(N1)) = (N =< N1) .
}

--

-- Sort List denotes generic lists.
--
mod! LIST(D :: EQTRIV) {

pr(PNAT)
[List]

op nil : -> List
op _,_ : Elt.D List -> List
op hd : List -> Elt.D

op tl : List -> List
op len : List -> Nat

op nth : List Nat -> Elt.D
op _=_ : List List -> Bool {comm}

vars L L1 : List
vars E E1 : Elt.D
var N : Nat

eq (L = L) = true .
eq ((E, L) = (E1, L1)) = (E = E1) and (L = L1) .

eq len(nil) = 0 .
eq len((E, L)) = s(len(L)) .
eq nth((E, L),0) = E .

eq nth((E, L),s(N)) = nth(L,N) .
}

--

-- This view can be used to instantiate LIST with EXTENDED-DOCUMENT.
--
view VIEW2 from EQTRIV to EXTENDED-DOCUMENT {

sort Elt -> Document,
op _=_ -> _=_

}

--

-- LIST(D <= VIEW2) is the module for lists of documents and
-- "* {sort List -> DocTrace}" says that sort List is renamed DocTrace.

-- So, LIST(D <= VIEW2) * {sort List -> DocTrace} is the module for lists of
-- documents in which DocTrace, which denotes lists of documents, is used instead of List.

--
mod! DOC-TRACE {
pr(LIST(D <= VIEW2) * {sort List -> DocTrace})

op obsDocTrace : Document -> DocTrace
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vars D D1 : Document

ceq obsDocTrace(D) = D, nil if isODoc(D) .
ceq obsDocTrace(D) = D, obsDocTrace(obsPre(D)) if not isODoc(D) .

--
eq nth(obsDocTrace(D),0) = D . -- is deduced from the above.

}

--

-- A simulation is conducted.
--
open DOC-TRACE

ops e1 e2 : -> Editing .
op d : -> Document .

eq d = edit(e2,copy(edit(e1,create))) .
red obsDocTrace(d) .

--
-- The result is
-- edit(e2,copy(edit(e1,create))) , copy(edit(e1,create)) , edit(e1,create) , create , nil

--
close

--
-- A(d,i) = i \in inds obs_doc_trace(d)

-- B(d,i) = is_eD(obs_doc_trace(d)(i))
-- C(d,j) = j \in inds obs_doc_trace(d)

-- D(i,j) = j<i
-- E(i,j,k) = k \in {j,i-1}

-- F(d,k) = is_cD(obs_doc_trace(d)(k))
-- G(d,i,k) = obs_E(obs_E(obs_doc_trace(d)(i)) = obs_E(obs_doc_trace(d)(k))
--

-- \A{d:D}.\A{i:Nat}.A(d,i) => B(d,i) =>
\A{j:Nat}.C(d,j) /\ D(i,j) /\ \A{k:Nat}.E(i,j,k) /\ F(d,k) => G(d,i,k) ... (*1)

--
-- where \A is \forall.
--

-- How should we parse formula (*1)?
--

-- (1) \A{d:D}.\A{i:Nat}.[A(d,i) => B(d,i) =>
\A{j:Nat}.[C(d,j) /\ D(i,j) /\ \A{k:Nat}.[E(i,j,k) /\ F(d,k) => G(d,i,k)]]]

-- It is easy to find d,i,j such that the formula does not hold. So, this is not reasonable.
--
-- (2) \A{d:D}.\A{i:Nat}.[A(d,i) => B(d,i) =>

\A{j:Nat}.[C(d,j) /\ D(i,j) /\ \A{k:Nat}.[E(i,j,k) /\ F(d,k)] => G(d,i,k)]]
-- The last occurrence of k is free. So, this is not reasonable.

--
-- It seems that the last occurrence of k should be j.
--

-- (3) \A{d:D}.\A{i:Nat}.[A(d,i) => B(d,i) =>
\A{j:Nat}.[C(d,j) /\ D(i,j) /\ \A{k:Nat}.[E(i,j,k) /\ F(d,k)] => G(d,i,j)]]

-- It is easy to find k such that E(i,j,k) does not hold. For
-- example, let k be i. So, (3) clearly holds. It seems nonsense.

--
-- So, it seems that formula (*1) should be modified as follows:
--

-- \A{d:D}.\A{i:Nat}.[A(d,i) => B(d,i) =>
\A{j:Nat}.[C(d,j) /\ D(i,j) /\ \A{k:Nat}.[E(i,j,k) => F(d,k)] => G(d,i,j)]] ... (*2)

--
--

--
-- We are going to prove that formula (*2) is deduced from the definition.

--

-- PROOF OF (*2):
--
-- All quantifiers are moved to the head position as follows:

--
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-- (*2) = \A{d:D}.\A{i:Nat}.\A{j:Nat}.

[[A(d,i) /\ B(d,i) /\ C(d,j) /\ D(i,j) /\ \A{k:Nat}.[E(i,j,k) => F(d,k)]] => G(d,i,j)]
-- = \A{d:D}.\A{i:Nat}.\A{j:Nat}.\E{k:Nat}.

[[A(d,i) /\ B(d,i) /\ C(d,j) /\ D(i,j) /\ [E(i,j,k) => F(d,k)]] => G(d,i,j)]
-- = \A{d:D}.\A{i:Nat}.\A{j:Nat}.\E{k:Nat}.

[[ABCD(d,i,j) /\ [E(i,j,k) => F(d,k)]] => G(d,i,j)]

--
-- where \E is \exists and ABCD(d,i,j) is A(d,i) /\ B(d,i) /\ C(d,j) /\ D(i,j).

-- And the existentially quantified variable k is replaced with
-- f(d,i,j) where f is a skolem function as follows:
--

-- = \A{d:D}.\A{i:Nat}.\A{j:Nat}.
[[ABCD(d,i,j) /\ [E(i,j,f(d,i,j)) => F(d,f(d,i,j))]] => G(d,i,j)]

--
-- Prove by structural induction on d.

--
-- I) Base case:
-- We are going to prove the formula

--
-- G1: \A{i:Nat}.\A{j:Nat}.[[ABCD(create,i,j) /\ [E(i,j,f(create,i,j)) =>

F(create,f(create,i,j))]] => G(create,i,j)]
--
-- II) Induction cases:

-- We suppose the induction hypothesis
--

-- IH: \A{i:Nat}.\A{j:Nat}.[[ABCD(d,i,j) /\ [E(i,j,f(d,i,j)) =>
F(d,f(d,i,j))]] => G(d,i,j)]

--
-- where d is an arbitrary document, and prove the two formulas
--

-- G2: \A{i:Nat}.\A{j:Nat}.[[ABCD(edit(e1,d1),i,j) /\ [E(i,j,f(edit(e1,d1),i,j)) =>
F(edit(e1,d1),f(edit(e1,d1),i,j))]] => G(edit(e1,d1),i,j)]

-- G3: \A{i:Nat}.\A{j:Nat}.[[ABCD(copy(d1),i,j) /\ [E(i,j,f(copy(d1),i,j)) =>
F(copy(d1),f(copy(d1),i,j))]] => G(copy(d1),i,j)]

--

-- where d1 is an arbitrary document and e1 is an arbitrary editing.
--

-- Thoese proofs are supported by CafeOBJ.
--

-- Note that i \in inds obs_doc_trace(d) can be expressed by 0 =< i
-- and i < len(obsDocTrace(d)) in CafeOBJ and
-- k \in {j,i-1} can be expressed by j =< k and k < i in CafeOBJ.

--
--

mod LEMMA {
pr(DOC-TRACE)
-- arbitrary values

op d : -> Document
ops i j : -> Nat

-- operators representing lemmas or theorems
op lemma1 : Document Nat Nat -> Bool

-- skolem constants and functions
op f : Document Nat Nat -> Nat
-- CafeOBJ variables

var D : Document
vars I J K : Nat

-- Lemmas or theorems to prove
eq lemma1(D,I,J) =

((0 =< I and I < len(obsDocTrace(D))) and isEDoc(nth(obsDocTrace(D),I)) and

(0 =< J and J < len(obsDocTrace(D))) and J < I and
((J =< f(D,I,J) and f(D,I,J) < I) implies isCDoc(nth(obsDocTrace(D),f(D,I,J)))))

implies
obsEdit(nth(obsDocTrace(D),I)) = obsEdit(nth(obsDocTrace(D),J)) .

}
--
-- I) Base case: G1 is proved.

--
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-- G1: create

-- By case splitting.
-- G1.a: i = 0

open LEMMA
eq d = create .
eq i = 0 .

red lemma1(d,i,j) .
close

-- G1.b: i = s(n)
open LEMMA
op n : -> Nat . -- an arbitrary nat

eq d = create .
eq i = s(n) .

red lemma1(d,i,j) .
close

--
-- II) Induction cases: G2 and G2 are proved assuming IH.
--

-- G2: edit(e1,d1)
-- By case splitting.

-- G2.a: i = 0
open LEMMA
op e1 : -> Editing .

op d1 : -> Document .
eq d = edit(e1,d1) .

eq i = 0 .
red lemma1(d,i,j) .

close
-- G2.b.a: i = s(n) /\ nth(obsDocTrace(d1),n) = create
open LEMMA

op e1 : -> Editing .
op d1 : -> Document .

op n : -> Nat .
eq d = edit(e1,d1) .
eq i = s(n) .

eq nth(obsDocTrace(d1),n) = create .
red lemma1(d,i,j) .

close
-- G2.b.b: i = s(n) /\ nth(obsDocTrace(d1),n) = copy(d2)

open LEMMA
op e1 : -> Editing .
ops d1 d2 : -> Document .

op n : -> Nat .
eq d = edit(e1,d1) .

eq i = s(n) .
eq nth(obsDocTrace(d1),n) = copy(d2) .
red lemma1(d,i,j) .

close
-- G2.b.c.a: i = s(n) /\ nth(obsDocTrace(d1),n) = edit(e2,d2) /\ j = 0

open LEMMA
ops e1 e2 : -> Editing .

ops d1 d2 : -> Document .
op n : -> Nat .
eq d = edit(e1,d1) .

eq i = s(n) .
eq nth(obsDocTrace(d1),n) = edit(e2,d2) .

eq j = 0 .
eq f(edit(e1,d1),s(n),0) = 0 .
red lemma1(d,i,j) .

close
-- G2.b.c.b: i = s(n) /\ nth(obsDocTrace(d1),n) = edit(e2,d2) /\ j = s(n1)

open LEMMA
ops e1 e2 : -> Editing .

ops d1 d2 : -> Document .
ops n n1 : -> Nat .
eq d = edit(e1,d1) .

eq i = s(n) .
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eq nth(obsDocTrace(d1),n) = edit(e2,d2) .

eq j = s(n1) .
--

eq f(edit(e1,d1),s(n),s(n1)) = s(f(d1,n,n1)) .
--
red lemma1(d1,n,n1) implies lemma1(d,i,j) .

close
--

-- G3: copy(d1)
-- By case splitting.
-- G3.a: i = 0

open LEMMA
op d1 : -> Document .

eq d = copy(d1) .
eq i = 0 .

red lemma1(d,i,j) .
close
-- G3.b.a: i = s(n) /\ nth(obsDocTrace(d1),n) = create

open LEMMA
op d1 : -> Document .

op n : -> Nat .
eq d = copy(d1) .
eq i = s(n) .

eq nth(obsDocTrace(d1),n) = create .
red lemma1(d,i,j) .

close
-- G3.b.b: i = s(n) /\ nth(obsDocTrace(d1),n) = copy(d2)

open LEMMA
ops d1 d2 : -> Document .
op n : -> Nat .

eq d = copy(d1) .
eq i = s(n) .

eq nth(obsDocTrace(d1),n) = copy(d2) .
red lemma1(d,i,j) .

close

-- G3.b.c.b: i = s(n) /\ nth(obsDocTrace(d1),n) = edit(e2,d2) /\ j = s(n1)
open LEMMA

op e2 : -> Editing .
ops d1 d2 : -> Document .

ops n n1 : -> Nat .
eq d = copy(d1) .
eq i = s(n) .

eq nth(obsDocTrace(d1),n) = edit(e2,d2) .
eq j = s(n1) .

--
eq f(copy(d1),s(n),s(n1)) = s(f(d1,n,n1)) .
--

red lemma1(d1,n,n1) implies lemma1(d,i,j) .
close

-- G3.b.c.a.a: i = s(n) /\ nth(obsDocTrace(d1),n) = edit(e2,d2) /\
j = 0 /\ len(obsDocTrace(d1)) = 0

open LEMMA
op e2 : -> Editing .
ops d1 d2 : -> Document .

op n : -> Nat .
eq d = copy(d1) .

eq i = s(n) .
eq nth(obsDocTrace(d1),n) = edit(e2,d2) .
eq j = 0 .

eq len(obsDocTrace(d1)) = 0 .
red lemma1(d,i,j) .

close
-- G3.b.c.a.b.a: i = s(n) /\ nth(obsDocTrace(d1),n) = edit(e2,d2) /\

j = 0 /\ len(obsDocTrace(d1)) = s(n1) /\ n = 0
open LEMMA
op e2 : -> Editing .

ops d1 d2 : -> Document .
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ops n n1 : -> Nat .

eq d = copy(d1) .
eq i = s(n) .

eq nth(obsDocTrace(d1),n) = edit(e2,d2) .
eq j = 0 .
eq len(obsDocTrace(d1)) = s(n1) .

eq n = 0 .
red lemma1(d,i,j) .

close
-- G3.b.c.a.b.b: i = s(n) /\ nth(obsDocTrace(d1),n) = edit(e2,d2) /\

j = 0 /\ len(obsDocTrace(d1)) = s(n1) /\ n = s(n2)

open LEMMA
op e2 : -> Editing .

ops d1 d2 : -> Document .
ops n n1 n2 : -> Nat .

eq d = copy(d1) .
eq i = s(n) .
-- eq nth(obsDocTrace(d1),n) = edit(e2,d2) .

eq nth(obsDocTrace(d1),s(n2)) = edit(e2,d2) .
--

eq j = 0 .
eq len(obsDocTrace(d1)) = s(n1) .
eq n = s(n2) .

--
eq f(copy(d1),s(s(n2)),0) = s(f(d1,s(n2),0)) .

--
red lemma1(d1,n,j) implies lemma1(d,i,j) .

close
--
-- Q.E.D.

--



F

On a Domain Model of “The Market”

By a domain we understand an area of human (or other) activity. Exam-
ples are: “the railway domain”, “the health–care domain”, the domain of the
“financial service industry”, etc. Elsewhere the composite term ‘application
domain’, where ‘application’ signals that the person who utters the compos-
ite term intends to apply computers & communication to problems of the
domain.

We present our understanding of a domain through documents. Software
development is focused on the development of (semantically meaningful) doc-
uments.

We present a fair selection of parts of descriptive documents.

F.1 A Rough Sketch and its Analysis

We first bring an example rough sketch, then its analysis. After that we bring
both rough sketches and analyses.

F.1.1 Buyers and Sellers

First a rough sketch of what is meant by buyers and sellers, then its analysis.

Rough Sketch

Consumers, retailers, wholesalers and producers form the major “players” in
the market.

A consumer may inquire with a supposedly appropriate retailer as to the
availability of certain products (cum merchandise): Their price, delivery times,
other delivery conditions (incl. quantity rebates), and financing (ie., payment).
A retailer may respond to a consumer inquiry with either of the following
responses: A quote of the requested information, or a (courteous) declination,



160 F On a Domain Model of “The Market”

or a message that the inquiry was misdirected (refusals), or the retailer may
decide to not, or fail to, respond ! A consumer may decide to order products
with a supposedly appropriate retailer, whether such an order has been or
has not been preceded by a related inquiry. The retailer may respond to a
consumer order with either of the following responses: Confirming, declining
or “no–response”, with a confirmation being following either by a delivery,
or no delivery — or the retailer may just provide a delivery, or inform the
consumer that a back–order has been recorded: The desired products may
not be in store, but has been (or will be) ordered from a wholesaler — for
subsequent delivery. A delivery may deliver the ordered or some other, not
ordered, products ! The consumer may decide to not accept, or to accept a
delivery. The retailer may invoice the consumer before, at the same time as,
or after delivery. The consumer may pay, or not pay an invoice, including
performing a payment based on no invoice, for example at the same time as
placing the order. The retailer may acknowledge payments. The consumer may
find faults with a previously accepted delivery and return that (or, by mistake,
another) delivery. The retailer may refund, or not refund such a return.

Analysis

Based on an analysis of the above rough sketch we suggest to treat market
interactions between retailers and wholesalers, and between wholesalers and
producers in exactly the same way as interactions between consumers and
retailers. That is: we observe that retailers acts as (a kind of) “consumers”
vis-a–vis wholesalers (who, similarly acts as retailers).

We thus summarise the interactions into the following enumeration: in-
quiries, quotes, declinations, refusals, orders, confirmations, deliveries, accep-
tances, invoicings, payments, acknowledgments, returns, and refunds.

Figure F.1 attempts to illustrate possible transaction transitions between
buyers and sellers.

Fig. F.1. Buyer / Seller Protocol
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F.1.2 Traders

As a consequence of the analysis we shall “lift” the labels ‘consumer’, ‘retailer’,
‘wholesaler’ and ‘producer’ into the labels ‘buyer’ and ‘seller’. And we shall
use the term ‘trader’ to cover both a buyer and a seller. Since the consumers
and producers mentioned in the rough sketch above may also act as any of
the other kinds of traders, all will be labeled traders.

Figure F.2 attempts to show that a trader can be both a buyer and a
seller. Thus traders “alternate” between buying and selling, that is: Between
performing ‘buy’ and performing ‘sell’ transactions.

Fig. F.2. Trader=Buyer+Seller

F.1.3 Supply Chains

Figure F.3 attempts to show “an arbitrary” constellation of buyer and seller
traders. It highlights three supply chains. Each chain, in this example, consists,
in this example, of a “consumer”, a retailer, a wholesaler, and a producer.

Fig. F.3. A Network of Traders and Supply Chains

A collection, a set, of traders may thus give rise to any set of supply chains,
with each supply chain consisting of a sequence of two or more traders. Supply
chains are not static: They form, act and dissolve. They are a result of positive
inquiries, orders, deliveries, etc.
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‘Likeness’, ‘Kinds’, ‘Adjacency’, and ‘Supply Chain Instances’

As a result of analysis we identify a need for some abstract concepts: ‘likeness’,
‘kinds’, and ‘supply [chain] instances’ (where [. . . ] expresses that we can omit
the . . . ).

Like traders are of the same ‘kind’, where the ‘kind’ of a trader is either
consumer, retailer, wholesaler, or producer.

We can also speak of the ‘kind’ of a transaction.
The ‘kind’ of a transaction is either than of inquiry, quote, declination,

refusal, order, confirmation, delivery, acceptance, invoice, payment, acknowl-
edgment, return, or refund.

There may be chains of one or more wholesalers: Global, regional, na-
tional, or, within a state, area wholesalers. We therefore allow for the following
kinds of adjacent traders: (consumer,retailer), (retailer,wholesaler), (whole-
saler,wholesaler), and (wholesaler,producer).

A supply [chain] instance is a specific and related occurrence of two or
more transactions. The following is an elaborate supply chain instances —
where we omit reference to the specifics by only mentioning the transaction
kinds: (i) inquiry (consumer to retailer), → inquiry (retailer to wholesaler), →
quote (wholesaler to retailer), → quote (retailer to consumer), → order (con-
sumer to retailer), → order (retailer to wholesaler), → order (wholesaler to
producer), → confirm (producer to wholesaler), → confirm (wholesaler to re-
tailer), → confirm (retailer to consumer), → delivery (producer to wholesaler),
→ acceptance (wholesaler to producer), → delivery (wholesaler to retailer),
→ acceptance (retailer to wholesaler), → delivery (retailer to consumer), →
acceptance (consumer to retailer), → invoice (retailer to consumer), → pay-
ment (etc., the reader fills in possible details), → acknowledge, → invoice, →
invoice, → payment, → payment, → acknowledge, → acknowledge, → return,
and → refund.

F.1.4 Agents and Brokers

Although not formalised explicitly in the present paper we discuss the concepts
of brokers and traders. We then, later on, “reduce” agents and brokers to
become like traders are.

Agents

An agent, α, in the domain, is any human or any enterprise, including media
advertisement, who, or which, acts on behalf of one trader, t1, in order to
mediate possible purchase (or sale) of goods from another trader, t2. So t1
may be a consumer, or a retailer, or a wholesaler who, through α acquires
goods from t2 who, respectively, is a retailer, a wholesaler and a producer.
Or t1 may be a retailer, or a wholesaler, or a producer who, through α sells
to t2 who, respectively, is a consumer, a retailer, and a wholesaler. One can
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generalise the notion of agents to such who (or which) acts on behalf of a
group of like traders to “reach” a corresponding group of like and adjacent
traders.

Figure F.4 attempts to show a buyer–agent (left hand figure), respectively
a seller–agent (right hand figure). The buyer–agent “searches” the market for
suitable sellers of a specific product. The seller–agent searches the market for
suitable buyers of a specific product.

Fig. F.4. Buyer and Seller Agents

The idea is that the two kinds of agents behave like buyers, respectively like
sellers: The buyer–agent “learns” from the buyer about what is to be in-
quired, is instructed when to order, etc. (This is designated by the single line
(between the Buyer and the Buyer Agent rectangles) of the left–hand side
of Figure F.4.) The buyer–agent then iterates over a set of sellers known to
meet inquired expectation. (This is designated by the mostly slanted lines
(between the Buyer Agent and the Seller Agent rectangles) of the left–hand
side of Figure F.4.)

Similarly for seller–agents (the right–hand side of Figure F.4).

Brokers

A broker, β, in the domain, is any human or any enterprise, including media
advertisement, who, or which, acts on behalf of two (or more, respectively)
adjacent groups of like traders, bringing them together in order to effect in-
stances of supplies.

Figure F.5 on the next page attempts to diagram a broker mediating be-
tween m buyers and n (adjacent kind) sellers.

The idea is that a combination of buyer and seller searches, and hence a
combination of the buyer– and seller–agent behaviours are needed.

Brokers can span more than one stage.
Figure F.6 on the following page attempts to diagram a broker mediating

between m1 consumers, m2 retailers, m3 wholesalers and m4 producers —
subsets of all the known such.
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Fig. F.5. A Simple (“One Stage”) Broker

Fig. F.6. A Multiple (here: Three) Stage Broker

The three sets of dashed lines in the three vertical “stems” of the broker
shall designate “local” brokerage between adjacent pairs of buyers and sellers.
The set of dashed lines in the horisontal branch of the broker shall designate
overall, “global” brokerage between all parties.

The aim of the mediation is to create a consortium of subsets of consumers,
retailers, wholesalers and producers. The objective of the consortium is, like
a “Book of the Month Club”, to create a stable set of complete supply chains
for a given set of products.

As for simple brokers we shall (ever so briefly) argue that the same iter-
ated searching of resolution protocols and mechanisms as for agents are to be
deployed, and that these are based on the all the transaction kinds as first
sketched.

F.1.5 Catalogues

An important concept of the market is that of a catalogue. It may be implicit,
or it may exist explicitly. A catalogue, in a widest sense of that term, is any
form of recording that lists what merchandise is for sale, its price, conditions
of delivery, payment, refund, etc. An ordinary retailer — your small neigh-
borhood “Mom & Pop” store — may not be able to display a catalogue in
the form of, for example, a ring binder each of whose pages lists, in some
order, the merchandise by name, order number, producer, etc., and which
records the above mentioned forms of information. But, from the shelves of
that store one can “gather” that information. For wholesalers and producers
we can probably assume such more formal catalogues. But, as a concept, we
can in any case speak of catalogues. And hence we can speak of such concepts
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as searching in a catalogue, marking entries as being out of stock, how many
sold, when, to whom etc.

F.1.6 The Transactions

We have, above, just hinted at the kind of transactions, to wit: inquiry, quote,
declination, refusal, order, confirm, delivery, acceptance, invoice, payment,
acknowledge, return, and refund. Instead of treating them in more detail —
as part of a narrative — we relegate, for the sake of brevity, such a treatment
to the terminology section, next, and to the formalisation, following.

F.1.7 Contractual Relations

Issuance of orders, order confirmations, acceptance of deliveries, issuance of
invoices and attemots of payments, etc., imply a number of contractual rela-
tions. Again notions of ‘parties to the contract’, ‘subject matter’, and ‘con-
siderations’ arise. For the first two is seems reasonably as to what is meant.
With respect to considerations we briefly mention such things as conditions
of delivery, conditions of acceptance (testing), and whether credit worthyness,
specific forms of payments, and credit period have been established, are being
fullfilled, and the extension or termination of credit lines.

We shall not go into whether new kinds a transactions are needed to deal
with contractual considerations — other than suggesting that the ones already
implied (inquiry, quotation, reject, order, conform, delivery, acceptance, in-
voicing, payments, acknowledment, return and refund) — used, in a sense, at
a meta–level — already suffice ! But to justify this, perhaps cryotic remark,
requires a proper demonstration — which will not be given in the current
paper.

• • •

This completes our, lengthy, rough sketch of “The Market” domain. It was
made deliberately long in order to make the point: That rough sketching is
an important process, and that rough sketches serve a purpose — as we shall
subsequently see.

F.2 Narrative and Formal Model

We combine, into one document, the informal description and the formal
description of the domain of traders. We describe only the basic protocols for
inquiry, quote, order, confirmation, delivery, acceptance, invoice, payment,
etc. transactions. We thus do not describe agents and brokers. We leave that
to a requirements modeling phase.

Please observe the extensive need for expressing selection of and responses
to transactions non–deterministically. In the real world, ie., in the domain, all
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is possible: Diligent staff will indeed follow–up on inquiries, orders, payments,
etc. Loyal consumers will indeed respond likewise. But sloppy such people may
not. And outright criminals may wish to cheat, say on payments or rejects.
And we shall model them all. Hence non–determinism.

F.2.1 Formalisation of Syntax

type
Trans == Inq|Ord|Acc|Pay|Ret

| Qou|Con|Del|Acc|Inv|Ref
| NoR|Dec|Mis

The first two lines above list the ‘buyer’, respectively the ‘seller’ initiated
transaction types. The third line lists common transaction types.

In the domain we can speak of the uniqueness of a transaction: “it was
issued at such–and–such time, by such–and–such person, and at such–and–
such location,” etcetera.

U below stand for (supposedly, or possibly) unique identifications, includ-
ing time, location, person, etc., stamps (T, P, L), Sui (where i=1,2) stands
for surrogate information, and MQP alludes to Merchandise identification,
Quantity, and Price.

type

U, M, Q, P, T, Su1, Su2, Inf
Inq :: MQP × U
MQP == mk(m:M,q:Q,p:P,...)
Quo :: ((Inq|Su1) × Inf) × U
Ord :: Qou|Su2 × U
Con :: Ord × U
Del :: Ord × U
Acc :: Del × U

Inv :: Ord × U
Pay :: Inv × U
Ret :: Del × U
Ref :: Pay × U
NoR :: Trans × U
Dec :: Trans × U
Mis :: Trans × U

value

obs T: U → T

The above defines the syntax of classes of disjoint transation commands, of
the abstract form mk Name(kind,u) where Name is either of Inq, Quo, Ord,
Con, Del, . . . or Mis.

An inquiry:Inq consists of a pair, some (desired) merchandise, (desired)
quantity and (desired) price information, and a supposedly unique identifi-
cation (of time, location, person, etc.) of issue – this “mimics” a consumer
inquiry of the form “I am in the market for such–and–such merchandise, in
such–and–such a quantity, and at such–and–such prices. What can you of-
fer ?”..

An quote:Quo either refers to the inquiry in which the quote is a response or
presents surrogate information — typically (where the seller takes the initia-
tive to advertise some merchandise and then) of a form similar to an inquiry:
“If you are in the market for such–and–such merchandise, in such–and–such
a quantity, and at such–and–such prices, then here is what we offer”.
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information:Inf is then what is offered.
In general we model, in the domain, a “subsequent” transaction by refer-

ring to a complete trace of (supposedly) unique time, location, person, etc.,
stamped transactions. Thus, in general, a transaction “embodies” the trans-
action it is a manifest response to, and time, location, person, etc. of response.

Do not mistake this for a requirement. A requirement may or may not
impose unique identification wrt. time and location and person etc. Therefore
we do not detail U. Nor do we actually say that no two transactions can be
issued with the same uniqueness.

F.2.2 Formalisation of Semantics of Market Interactions

“The Market” consist of n traders, whether buyers, or sellers, or both; whether
additionally agents or brokers. Each trader τi is able, potentially to commu-
nicate with any other trader:

{τ1, . . . , τi−1, τi+1, . . . , τn}.

We omit formal treatment of how traders come to know of one another. An
arbiter for such information is just like a trader. Other traders sell information
about their existence to such an arbiter. Thus no special formal treatment is
necessary.

We focus on the internal and external non–determinism which is always
there, in the domain, when transactions are selected, sent and received.

Our model is expressed in a variant of CSP, as “embedded” in RSL [39].

type
[ 0 ] Θ, MSG
[ 1 ] Idx = {| 1..n |}

value
[ 2 ] sys: (Idx →m Θ) → Unit
[ 3 ] sys(mθ) ≡ ‖ { tra(i)(mθ(i)) | i:Idx }

channels {tc[ i,j ]:MSG | i,j:Idx • i< j}

value
[ 4 ] tra: i:Idx → Θ → in {tc[ j,i ]|j:Idx•i6=j} out {tc[ i,j ]|j:Idx•i6=j} Unit
[ 5 ] tra(i)(θ) ≡ tra(i)(nxt(i)(θ))

[ 6 ] nxt: i:Idx → Θ → in {tc[ j,i ]|j:Idx•i6=j} out {tc[ i,j ]|j:Idx•i6=j} Θ
[ 7 ] nxt(i)(θ) ≡
[ 8 ] let choice = rcv ⌈⌉ snd in
[ 9 ] cases choice of rcv→receive(i)(θ), snd→send(i)(θ) end end
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(0) Θ is the state space that any trader may span. MSG is type space of all
messages that can be exchanged between traders (ie., over channels). We de-
tail neither Θ nor MSG: In the “real world”, ie., in the domain, all is possible.
Determination of Θ and MSG is usually done when “deriving” the functional
requirements from the domain model. (1) Idx is the set of n indexes, where each
trader has a unique index. We do not detail Idx. That usually is done as late
as possible, say during code implementation. (2) The system initialises each
trader with a possibly unique local state (from its only argument). (3) The
system is the parallel combination of n traders. (4) A trader has a unique, con-
stant index, i, and is, at any moment, in some state θ. (4) Traders communicate
(both input and output) over channels: tc[i,j] — from trader i to trader j. (5)
Each trader is modeled as a process which “goes on forever”, (5) but in steps
of next state transitions. (8) The next state transition non—deterministically
(internal choice, ⌈⌉) “alternates” between (9) expressing willingness to receive,
respectively desire to send.

In “real life”, ie. in the domain, the choice as to which transactions are
pursued is non–deterministic. And it is an internal choice. That is: The choice
is not influenced by the environment.

We model receiving as something “passive”: No immediate response is
made, but a receive state component of the trader state is updated. A trader
that has decided to send (something), may non–deterministically decide to
inspect the receive component of its state so as to ascertain whether there are
received transactions pending that ought or may be responded to.

The update rcv state invokes further functions.

receive: i:Idx → Θ → in {tc[ j,i ]|j:Idx•i6=j} Θ
receive(i)(θ) ≡

⌈⌉⌊⌋ {let msg=tc[ j,i ]? in update rcv state(msg,j)(θ) end | j:Idx}

Once the internal non–deterministic choice (⌈⌉) has been made ((8) above):
Whether to receive or send, the choice as to whom to ‘receive from’ is also
non–deterministic, but now external (⌈⌉⌊⌋). That is: receive expresses willingness
to receive from any other trader. But just one. As long as no other trader j
does not send anything to trader i that trader i just “sits” there, “waiting” —
potentially forever. This is indeed a model of the real world, the domain. A
subsequent requirement may therefore, naturally, be to provide some form of
time out. A re–specification of receive with time out is a correct implementation
of the above.

[ 2 ] update rcv state: MSG × i:Idx → Θ → Θ
[ 3 ] update rcv state(msg,j)(θ) ≡
[ 4 ] cases obs Trans(msg) of
[ 5 ] mk Del( , )
[ 6 ] → upd rcv(msg,j)(upd del(msg,j)(θ)),
[ 7 ] mk Ret( , )
[ 8 ] → upd rcv(msg,j)(upd ret(msg,j)(θ)),
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[ 9 ] → upd rcv(msg,j)(θ)
[ 10 ] end

(2) any message received leads to an update of a ’receive’ component of the lo-
cal trader state (upd rec). (5–6) If the received “message” constitutes a (physi-
cal package) delivery, then a ‘Merchandise’ component of the local trader state
is first updated (deposit delivery). (7–8) If the received “message” constitutes
the return (of a physical package), then the ‘merchandise’ component of the
local trader state is first updated (remove return).

[ 0 ] upd rec(msg,j)(θ) ≡ deposit trans((sU(msg),j),msg)(cond rec(msg,j)(θ))
[ 1 ] upd del(msg,j)(θ) ≡ deposit delivery((sU(msg),j),msg)(θ)
[ 2 ] upd ret(msg,j)(θ) ≡ remove return((sU(msg),j),msg)(θ)

[ 3 ] cond rcv(msg,j)(θ) ≡
[ 4 ] if intial trans(msg)(θ)
[ 5 ] then θ
[ 6 ] else remove prior trans(sU(msg),j)(θ) end

sU: Trans → U, sU( ,u) ≡ u

(0) The upd rec operation invokes the cond rec operation and then extends
the possibly new state by depositing the argument message under the unique
identification and message–sending trader identification. (3–6) The cond rec
operation examines ((4) initial trans) whether the received message is a first
such, ie., “contains” no prior transactions, or whether it contains such prior
transactions. In this latter case (6) the prior transaction may be conditionally
removed (remove prior trans) — this is not shown here, but commented upon
below.

[ 0 ] send: i:Idx → Θ → in {tc[ i,j ]|j:Idx•i6=j} Θ
[ 1 ] send(i)(θ) ≡
[ 2 ] let choice = ini ⌈⌉ res ⌈⌉ nor in
[ 3 ] cases choice of
[ 4 ] ini → send initial(i)(θ),
[ 5 ] res → send response(i)(θ),
[ 6 ] nor → remove received msg(θ) end end

Either a trader, when communicating a transaction chooses (2,4) an initial
(ini) one, or chooses (2,5) one which is in response (res) to a message received
earlier, or chooses (2,6) to not respond (nor) to such an earlier message The
choice is again non–deterministic internal (2). In the last case (6) the state
is thus non–deterministically internal choice updated by removing the, or an
earlier received message.

Note that the above functions describe the internal as well as the external
non–determinism of protocols. We omit the detailed description of those func-
tions which can be claimed to not be proper protocol description functions
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— but are functions which describe updates to local trader states. We shall,
below, explain more about these state–changing functions.

send initial: i:Idx → Θ → out {tc[ i,j ]|j:Idx•i6=j} Θ
send initial(i)(θ) ≡

let choice = buy ⌈⌉ sell in
cases choice of

buy → send init buy(i)(θ),
sell → send init sell(i)(θ) end end

send response: i:Idx → Θ → out {tc[ i,j ]|j:Idx•i6=j} Θ
send response(i)(θ) ≡

let choice = buy ⌈⌉ sell in
cases choice of

buy → send res buy(i)(θ),
sell → send res sell(i)(θ) end end

In the above functions we have, perhaps arbitrarily chosen, to distinguish
between buy and sell transactions. Both send initial and send response functions
— as well as the four auxiliary functions they invoke — describe aspects of
the protocol.

send init buy: i:Idx → Θ → out {tc[ i,j ]|j:Idx•i6=j} Θ
send init buy(i)(θ) ≡

let choice = inq ⌈⌉ ord ⌈⌉ pay ⌈⌉ ret ⌈⌉ ... in
let (j,msg,θ′) = prepare init buy(choice)(i)(θ) in
tc[ i,j ]!msg ; θ′ end end

send init sell: i:Idx → Θ → out {tc[ i,j ]|j:Idx•i6=j} Θ
send init sell(i)(θ) ≡

let choice = quo ⌈⌉ con ⌈⌉ del ⌈⌉ inv ⌈⌉ ... in
let (j,msg,θ′) = prepare init sell(choice)(i)(θ) in
tc[ i,j ]!msg ; θ′ end end

prepare init buy is not a protocol function, nor is prepare init sell. They both
assemble an initial buy, respectively sell message, msg, a target trader, j, and
update a send repository state component.

send res buy: i:Idx → Θ → out {tc[ i,j ]|j:Idx•i6=j} Θ
send res buy(i)(θ) ≡

let (θ′,msg)=sel update buy state(θ), j=obs trader(msg) in
let (θ′′,msg′) = response buy msg(msg)(θ′) in
tc[ i,j ]!msg′; θ′′ end end

send res sell: i:Idx → Θ → out {tc[ i,j ]|j:Idx•i6=j} Θ
send res sell(i)(θ) ≡
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let (θ′,msg)=sel update sell state(θ), j=obs trader(msg) in
let (θ′′,msg′) = response sell msg(msg)(θ′) in
tc[ i,j ]!msg′; θ′′ end end

sel update buy state is not a protocol function, neither is sel update sell state.
They both describe the selection of a previously deposited, buy, respectively a
sell message, msg, (from it) the index, j, of the trader originating that message,
and describes the update of a received messages repository state component.
response buy msg and response sell msg both effect the assembly, from msg, of
suitable response messages, msg′. As such they are partly protocol functions.
Thus, if msg was an inquiry then msg′ may be either a quote, decline, or a
misdirected transaction message. Etcetera.

F.2.3 On Operations on Trader States

We have left a number of trader state operations undefined. In fact we have not
said anything about ‘the state’ — other than it may have a ‘received messages’
component. It likewise is expected to have a ‘sent messages’ component, a
‘catalogue’, and a ‘merchandise (wharehouse)’ component. Etcetera. To be too
specific would unnecesaruly bind requirements development and bias possible
software implementations.

Below we give their signature and otherwise comment informally. The
reason for not formally defining them is simple: Since we are modeling the
domain, and since, in the domain, these updates are typically performed by
humans, and since these humans are either diligent, or sloppy, or delinquent,
or outright criminal in the dispatch of their duties we really cannot define the
operations as we would really like to see them dispatched — namely diligently.

value
deposit trans: (U × Idx) × MSG → Θ → Θ
deposit delivery: (U × Idx) × MSG → Θ → Θ
remove return: (U × Idx) × MSG → Θ → Θ
initial trans: MSG × Idx → Θ → Bool
remove prior trans: U × Idx → Θ → Θ
remove received msg: Θ → Θ

The above operations have all basically been motivated earlier. The de-
posit trans unconditionally deposits a received message, for example in a part
of the local trader state that could be characterised as a repository for received
transactions. That repository may have messages identified by the sender and
the unique identification. To specify so is not a matter of binding future re-
quirements and therefore also not future implementations. It just models that
one can, in the domain “talk” about these things.

An initial transaction is one which does not contain prior transactions, that
is: Is one which is either an inquiry transaction or contains surrogates (Sur1,
Sur2).
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To remove a prior transaction models that people may no longer keep a
record of such a transaction — since it is embedded in the message in response
to which this removal is invoked. We do not show the details of removal, but
expect a model to capture that such prior transactions need not be removed. In
other words: The removal may be internal non–deterministically “controlled”.

remove received msg unconditionally removes a message: This models that
people and institutions (internal non–deterministically) may choose to ignore
inquiries, quotations, orders, confirmations, deliveries, etc.

prepare init buy: Choice → Idx → Θ → Idx × MSG × Θ
prepare init sell: Choice → Idx → Θ → Idx × MSG × Θ

The above operations internal deterministically chooses which prior transac-
tions to respond to.

obs trader: MSG → Idx

No matter which transaction (ie., message) one can always identify, say from
the unique identification, which trader originated that message. We do not
specify how since that might bias an implementation.

For the sake of completeness we also state the signatures of remaining and
previously described operations:

value
upd rec: MSG × Idx → Θ → Θ
upd del: MSG × Idx → Θ → Θ
upd ret: MSG × Idx → Θ → Θ
cond rcv: MSG × Idx → Θ → Θ

sel update buy state: Θ → Θ × MSG
sel update sell state: Θ → Θ × MSG

response buy msg: MSG → Θ → Θ × MSG
response sell msg: MSG → Θ → Θ × MSG

In summary: All operations on local trader states are, in the domain, basically
under–specified. It will be a task for requirements to, as we shall call it,
determine precise functionalities for each of these operations.

F.3 Discussion

As for local trader state operations, so it is for the possible sequences of
transactions between “market players” (ie., the traders): They are all, in the
above model, left “grossly” non–deterministic.

Those trader who initiate transactions toward other traders can be viewed
as “clients”, while those others are seen as “servers”. Thus it is that we see that
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“clients” are characterisable by internal non–determinism, while “servers” are
characterisable by external non–determinism.

It is now a task for requirements to determine the extent of non–determinisms
and the more precise rôles of ‘clients’ and ‘servers’.
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On a Domain Model of CyberRail

G.1 Background

The background for the work reported in this extended abstract is threefold:
(i) Many years of actual formal specification as well as research into how to
engineer such formal specifications, by the first author, of domains, including
the railway domain [14] [17] [21] [22] [7] [16] [9] [8] [15] — using abstraction and
modelling principles and techniques extensively covered in three forthcoming
software engineering textbooks [10]. (ii) A term project with four MSc stu-
dents. And (iii) Some fascination as whether one cold formalise an essence
of the novel ideas of CyberRail. We strongly believe that we can capture one
crucial essence of CyberRail — such as this paper will show.

The formalisation of CyberRail is expressed in the RAISE [41] Specifica-
tion Language, RSL [39]. RAISE stands for Rigorous Approach to Industrial
Software Engineering. In the current abstract model we especially make use of
RSL’s parallel process modeling capability. It builds on, ie., borrows from Tony
Hoare’s algebraic process concept of Communicating Sequential Processes, CSP
[58].

G.2 A Rough Sketch Formal Model

G.2.1 An Overall CyberRail System

CyberRail consists of an index set of traveller behaviours and one cyber be-
haviour “running” in parallel. Each traveller behaviour is uniquely identified,
p:Tx. Traveller behaviours communicate with the cyber behaviour. We ab-
stract the communication medium as an indexed set of channels, ct[p], from
the cyber behaviour to each individual traveller behaviour, and tc[p], from
traveller behaviours to the cyber behaviour. Messages over channels are of
respective types, CT and TC. The cyber behaviour starts in an initial state
ωi, and each traveller behaviour, p, starts in some initial state mσi(p).
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type
Tx, Σ, Ω, CT, TC
MΣ = Tx →m Σ

channel
{ct[ p ]:CT,tc[ p ]:TC|p:Tx}, cr:CR, rc:RC

value
mσi:MΣ, ωi:Ω

cyberrail system: Unit → Unit
cyberrail system() ≡ ‖ { traveller(p)(mσi(p)) | p:Tx } ‖ cyber(ω)

cyber: Ω → in {tc[ p ]|p:Tx},cr out {ct[ p ]|p:Tx},rc Unit
cyber(ω) ≡

cyber as server(ω) ⌈⌉ cyber as proactive(ω) ⌈⌉ cyber as co director(ω)

traveller: p:Tx → Σ → in ct[ p ] out tc[ p ] Unit
traveller(p)(σ) ≡ active traveller(p)(σ) ⌈⌉ passive traveller(p)(σ)

The cyber behaviour either acts as a server: Ready to engage in com-
munication input from any traveller behaviour; or the cyber behaviour acts
pro–actively: Ready to engage in performing output to one, or some traveller
behaviours; or the cyber behaviour acts in consort with the “rest” of the trans-
portation market (including rail infrastructure owners, train operators, etc.),
in improving and changing services, and in otherwise responding to unforeseen
circumstances of that market.

Similarly any traveller behaviour acts as a client: Ready to engage in per-
forming output to the cyber behaviour; or its acts passively: Ready to accept
input from the cyber behaviour.

G.2.2 Travellers

Active Travellers

Active traveller behaviours alternate internally non–deterministically, ie., at
their own choice, between start (travel) planning st pl, select (among sug-
gested) travel plan(s) se pl, change (travel) planning ch pl, begin travel be tr,
board train bo tr, leave train lv tr, ignore train ig tr, cancel travel ca tr, seek-
ing guidance se gu, notifying cyber no cy, entertainment ent, deposit resource
de re (park car, . . . ), claim resource cl re (retreive car, . . . ), get resource ge re
(rent a car, . . . ), return resource re re (return rent-car, . . . ), going to restau-
rant rest (or other), change travel ch tr, interrupt travel in tr, resume travel
re tr, leave train le tr, end travel en tr, and many other choices. Each of these
normally entail an output communication to the cyber behaviour, and for
those we can assume immediate response from the cyber behaviour, where
applicable.
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value
active traveller: p:Tx → Σ → out tc[ p ] in ct[ p ] Unit
active traveller(p)(σ) ≡

let choice = st pl ⌈⌉ ac pl ⌈⌉ ch pl ⌈⌉ en tr ⌈⌉ ... ⌈⌉ le tr ⌈⌉ te tr in
let σ′ = case choice of

st pl → start planning(p)(σ),
se pl → select travel plan(p)(σ),
ch pl → change trael plan(p)(σ),
be tr → begin travel(p)(σ),
bo tr → board train(p )(σ),
... → ..,
le tr → leave train(p)(σ),
en tr → end travel(p)(σ),
... → ..

end in
traveller(p)(σ′) end end

start planning: p:Tx → Σ → out tc[ p ] in ct[ p ] Σ
start planning(p)(σ) ≡

let (σ′,plan) = magic plan(σ) in
tc[ p ]!plan;
let sps = ct[ p ]? in updateΣ((plan,sps))(σ′) end end

...
updateΣ: Update → Σ → Σ

type
Update == mkInPlRes(ip:InitialPlan,ps:Plan-set) | ...

Passive Travellers

When not engaging actively with the cyber behaviour, traveller behaviours are
ready to accept any cyber initated action. The traveller behaviour basically
“assimilates” messages received from cyber — and may make use of these in
future.

value
passive traveller: p:Tx → Σ → in ct[ p ] out tc[ p ] Unit
passive traveller(p)(σ) ≡ let res = ct[ p ]? in updateΣ(res)(σ) end

Active Traveller Actions

The active traveller behaviour performs either of the internally non–deterministically
chosen actions: start planning, select travel plan, change travel plan, begin travel,
board train, . . . , leave train, or end travel. They make use only of the “sum to-
tal state” (σ) that that traveller behaviour “is in”. Each such action basically
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communicates either of a number of plans (or parts thereof, here simplified
into plans). Let us summarise:

type
Plan
Request = Initial Plan | Selected Plan | Change Plan | Begin Travel

| Board Train | ... | Leave Train | End Travel | ...
Initial Plan == mkIniPl(pl:Plan)
Selected Plan == mkSelPl(pl:Plan)
Change Plan == mkChgPl(pl:Plan)
Begin Travel == mkBTrav(pl:Plan)
Board Train == mkBTrai(pl:Plan)
...
Leave Train == mkLeTr(pl:Plan)
End Travel == mkEnTr(pl:Plan)

value
∀ f: p:Tx → Σ → out tc[ p ] Σ
magic f: Σ → Σ × Request

f(p)(σ) ≡ let (σ′,req) = magic f(σ) in tc[ p ]!req;σ′ end

The magic functions access and changes the state while otherwise yielding
some request. They engage in no events with other than the traveller state.
There are the possibility of literally “zillions” such functions, all fitted into
the above sketched traveller behaviour.

G.2.3 cyber

cyber as Server

cyber is at any moment ready to engage in actions with any traveller be-
haviour. cyber is assumed here to respond immediately to “any and such”.

value
cyber rail as server: Ω → in {tc[ p ]|p:Tx} out {ct[ p ]|p:Tx} Unit
cyber rail as server(ω) ≡

⌈⌉⌊⌋ {let req = tc[ p ]? in cyber(serve traveller(p,req)(ω)) end | p:Tx}

serve traveller: p:Tx × Req → Ω → in {tc[ p ]|p:Tx} out {ct[ p ]|p:Tx} Ω
serve traveller(p,req)(ω) ≡

case req of
mkIniPl(pl) →

let (ω′,pls) = sugg pls(p,pl)(ω) in ct[ p ]!pls;cyberrail(ω′) end
mkSelPl(pl) →

let (ω′,res) = res pl(p,pl)(ω) in ct[ p ]!book;cyberrail(ω′) end
mkChgPl(pl) →
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let (ω′,pl′) = chg pl(p,pl)(ω) in ct[ p ]!pl′;cyberrail(ω′) end
mkBTrav(pl) → ...
mkBTrai(pl) → ...
...
mkLeTr(pl) → ...
mkEnTr(pl) → ...

end

cyber as Pro–Active

cyber, on its own volition, may, typically based on its accumulated knowledge
of traveller behaviours, engage in sending messages of one kind or another
to selected groups of travellers. Section G.2.3 rough sketch–formalises one of
these.

type
CR act == gu tr | no tr | co tr | wa tr | ...

value
cyber as proactive: Ω → out {ct[ p ]|p:Tx} Unit
cyber as proactive(ω) ≡

let cho = gu tr ⌈⌉ no tr ⌈⌉ co tr ⌈⌉ wa tr ⌈⌉ ... in
let ω′ = case cho of gu tr → guide traveller(ω),

no tr → notify traveller(ω),
co tr → commercial to travellers(ω),
wa tr → warn travellers(ω),
... → ... end in

cyber(ω′) end end

cyber as Co–Director

We do not specify this behaviour. It concerns the actions that cyber takes
together with the “rest” of the transportation market. One could mention
input from cyber as co director to the train operators as to new traveller
preferences, profiles, etc., and output from the rail (ie., net) infrastructure
owners or train operators to cyber as co director as to net repairs or train
shortages, etc. The decomposition of CyberRail into cyber and the “rest”, may
— to some — be articificial, namely in countries where there is no effective
privatisation and split–up into infrastructyre owners and train operators. But
it is a decomposition which is relevant, structurally, in any case.

cyber Server Actions

We sketch:
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value
sugg plans: p:Tx × Plan → Ω → Ω × Plan-set
res pl: p:Tx × Plan → Ω → Ω × Plan
chg pl: p:Tx × Plan → Ω → Ω × Plan
...

There are many other such traveller instigated cyber actions.

Pro–Active cyber Actions

We rough sketch just a single of the possible “dozens” of cyber inititated
actions versus the travellers.

value
guide traveller: Ω → out {ct[ p ]|p:Tx} Ω
guide traveller(ω) ≡

let (ω′,(ps,guide)) = any guide(ω) in broadcast(ps,guide) ; ω′ end

any guide: Ω → Ω × (Tx-set × Guide)

notify traveller: Ω → out {ct[ p ]|p:Tx} Ω
commercial to travellers: Ω → out {ct[ p ]|p:Tx} Ω
warn traveller: Ω → out {ct[ p ]|p:Tx} Ω
...

broadcast: Tx-set × CT → Unit
broadcast(ps,msg) ≡

case ps of {}→skip,{p}∪ ps′→ct[ p ]!msg;broadcast(ps′,msg) end

type
CT = Guide | Notification | Commercial | Warning | ...
Guide == mkGui(...)
Notification == mkNot(...)
Commercial == mkCom(...)
Warning == mkWar(...)
...

G.3 Conclusion

A formalisation of a crucial aspect of CyberRail has been sketched. Namely
the interplay between the rôles of travellers and the central CyberRail system.

Next we need analyse carfully all the action functions with respect to the
way in which they use and update the respective states (σ : Σ) of traveller
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behaviours and the cyber behaviour (ω : Ω). At the end of such an analysis
one can then come up with precise, formal descriptions, including axioms,
of what the title of [?] refers to as the Information Infrastructure. We look
forward to report on that in a near future.

The aim of this work is to provide a foundation, a domain theory, for Cy-
berRail. A set of models from which to “derive”, in a systematic way, proposals
for computing systems, including software architectures.
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