ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	
mains and Problem Frames			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	11
/db/doreso/frame/frame1	May 23, 2006, 02:56	Page 1, Topic: 0, Foil: 1	Nomi, Ishikawa, Japan 923-1292	

Domains and Problem Frames

- Event: IWAAPF 2006, Shanghai, 23 May
- Speaker: Dines Bjørner
- Affiliations:

Computer Science and Engineering Informatics and Mathematical Modelling Technical University of Denmark Bldgs. 305, 321–322, 325 DK–28000 Kgs.Lyngby, Denmark db@imm.dtu.dk School of Information Science JAIST 1-1, Asahidai, Tatsunokuchi, Nomi, Ishikawa 923-1292 Japan

bjorner@gmail.com

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
.1 The Dogma			School of Information Sciences	₩
<u> </u>			1-1, Asahidai, Tatsunokuchi	
home/db/doreso/frame/frame1	May 23, 2006, 02:56	Page 2, Topic: 0, Foil: 2	Nomi, Ishikawa, Japan 923-1292	

Domains and Problem Frames The Dogma

- Before **software** can be designed
- we must understand its **requirements**.
- Before **requirements** can be prescribed
- we must understand the $domain^1$
- In this talk we show
 - *** one** example **domain description** and
 - *** four** related example **requirements prescriptions**;
 - \star the latter illustrates distinct **frames**.

¹The term domain is here used instead of the, i PF contexts, perhaps more common term environment.

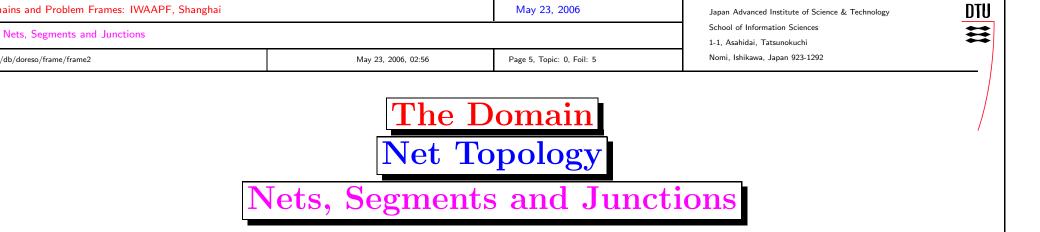
ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
Objectives			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	DTU
/db/doreso/frame/frame1	May 23, 2006, 02:56	Page 3, Topic: 0, Foil: 3	Nomi, Ishikawa, Japan 923-1292	

- Illustrate aspects of
 - \star problem frame **independent** domain engineering,
 - \star problem frame **dependent** requirements engineering,
 - \star and the **interplay** between various requirements prescriptions.

Objectives

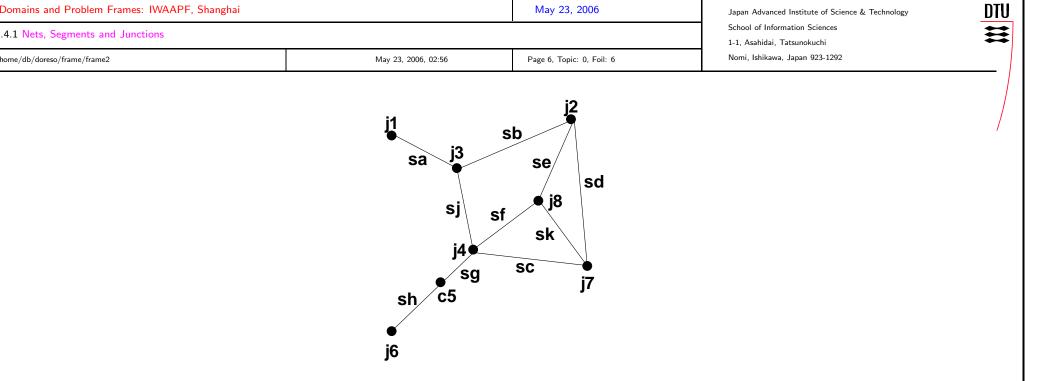
- To plead for more systematic software engineering work around domain engineering,
- before requirements engineering sets in.

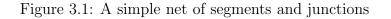
Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology
.3 Structure of Presentation			School of Information Sciences
			1-1, Asahidai, Tatsunokuchi
home/db/doreso/frame/frame1	May 23, 2006, 02:56	Page 4, Topic: 0, Foil: 4	Nomi, Ishikawa, Japan 923-1292


Structure of Presentation

- A long and undoubtedly boring domain description.
- An exhaustive four requirements presecriptions.
- A conclusion
 - \star which relates this quadruple development to the problem frame approach, and
 - \star and briefly discusses a rôle for the triptych cum problem frame approach in the VSTTE and Ubiquitous Computing grand challenges!
- We need the "multiple masses of details" to substantiate our claims.
- We have 42 minutes left so we need skip over

 \star some of the domain description aspects and


 \star some of the four requirements developments.


DTU

1. Nets consists of one or more segments and two or more junctions.

type N, S, J value $obs_Ss: N \rightarrow S$ -set $obs_Js: N \rightarrow J$ -set axiom $\forall n:N \cdot card obs_Ss(n) \ge 1 \land card obs_Js(n) \ge 2$

Applying the observer functions to the net of Fig. 3.1 yields:

$$obs_Ss(n) = \{sa,sb,sc,sd,se,sf,sg,sh,sj,sk\}$$

$$obs_Js(n) = \{j1,j2,j3,j4,j5,j6,j7,j8\}$$

+81-761-51-1275, Fax: +81-761-51-1149

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	
Segment and Junction Identifications		School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ		
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 7, Topic: 0, Foil: 7	Nomi, Ishikawa, Japan 923-1292		

Segment and Junction Identifications

2. Segments and junctions have unique identifications.

type Si, Ji value $obs_Si: S \rightarrow Si$ $obs_Ji: J \rightarrow Ji$

Segment and junction identifications are abstract concepts.

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	_
.4.2 Segment and Junction Identifications			School of Information Sciences	=]
.4.2 Segment and Sulction Identifications			1-1, Asahidai, Tatsunokuchi	÷÷	
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 8, Topic: 0, Foil: 8	Nomi, Ishikawa, Japan 923-1292		

3. No two segments have the same segment identifier. And no two junctions have the same junction identifier.

axiom

 $\forall n:N \cdot card obs_Ss(n) \equiv card \{obs_Si(s)|s:S \cdot s \in obs_Ss(n)\} \\ \forall n:N \cdot card obs_Js(n) \equiv card \{obs_Ji(c)|j:J \cdot j \in obs_Js(n)\}$

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
Segment and Junction Reference Identifications			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 9, Topic: 0, Foil: 9	Nomi, Ishikawa, Japan 923-1292	

Segment and Junction Reference Identifications

4. Segments are delimited by two distinct junctions. From a segment one can also observe, obs_Jis, the identifications of the delimiting junctions.

type $Jip = \{|\{ji,ji'\}: Ji-set \cdot ji \neq ji'|\}$ value $obs_Jis: S \rightarrow Jip$

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
.4.3 Segment and Junction Reference Identifications			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 10, Topic: 0, Foil: 10	Nomi, Ishikawa, Japan 923-1292	

5. Any junction has a finite, but non-zero number of segments connected to it. From a junction one can also observe, obs_Sis, the identifications of the connected segments.

```
type

Si1 = \{|sis:Si-set \cdot card sis \ge 1|\}

value
```

obs_Sis: $J \rightarrow Si1$

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
Segment and Junction Reference Identifications			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	₩
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 11, Topic: 0, Foil: 11	Nomi, Ishikawa, Japan 923-1292	

6. In any net, if s is a segment connected to connectors identified by ji and ji', respectively, then there must exist connectors j and j' which have these identifications and such that the identification si of s is observable from both j and j'.

axiom

$$\forall n:N, s:S \cdot s \in obs_Ss(n) \Rightarrow$$

$$let \{ji,ji'\} = obs_Jis(s) in$$

$$\exists ! j,j':J \cdot \{j,j'\} \subseteq obs_Js(n) \land j \neq j' \land$$

$$obs_Si(s) \in obs_Sis(c) \cap obs_Sis(c') end$$

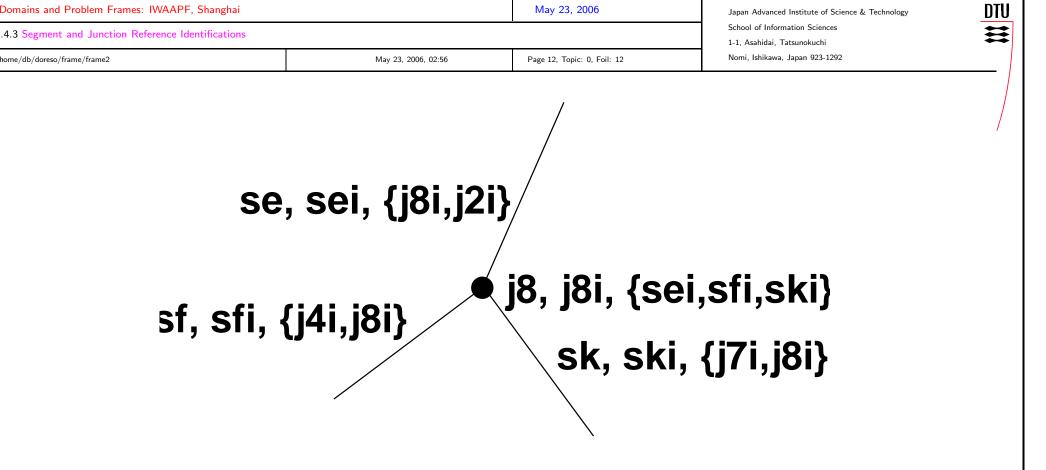


Figure 3.2: One junction and its connected segments

+81-761-51-1275, Fax: +81-761-51-1149

© Dines Bjørner, 2006

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
Segment and Junction Reference Identifications			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	₩
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 13, Topic: 0, Foil: 13	Nomi, Ishikawa, Japan 923-1292	

7. Vice-versa: In any net, if j is a junction connecting segments identified by si, si', ..., si'' then there must exist segments s, s', ..., s'' which have these identifications and such that the identification ji of j is observable from all s, s', ..., s''.

axiom

$$\begin{array}{l} \forall n:N, j:J \cdot j \in obs_Js(n) \Rightarrow \\ \textbf{let} sis = obs_Sis(c), ji = obs_Ji(j) \textbf{ in} \\ \exists ! ss:S-\textbf{set} \cdot ss \subseteq obs_Ss(n) \land \textbf{card} ss = \textbf{card} sis \land \\ sis = \{|obs_Si(s)|s:S \cdot s \in ss|\} \textbf{ end} \end{array}$$

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	
.4.4 Paths and Routes			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ	
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 14, Topic: 0, Foil: 14	Nomi, Ishikawa, Japan 923-1292		

Paths and Routes

8. By a path we shall understand a triplet of a junction identification, a segment identification and a junction identification.

type

```
P = Ji \times Si \times Ji
```

value

```
paths: N \rightarrow P-set

paths(n) \equiv

{(ji,si,ji')|s:S,ji,ji':Ji,si:Si-

s \in obs\_Ss(n) \land \{ji,ji'\} \in obs\_Jis(s) \land si=obs\_Si(s)\}
```

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
Paths and Routes			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 15, Topic: 0, Foil: 15	Nomi, Ishikawa, Japan 923-1292	

- 9. By a route of a net we shall understand a list, i.e., a sequence of paths as follows:
 - A sequence of just one path of the net is a route.
 - If r and r' are routes of the net such that the last junction identification, ji, of the last path, (_,_,ji) of r and the first junction identification, ji', of the first path (ji',_,_) of r' are the same, i.e., ji=ji', then r ~ r' is a route.
 - Only routes that can be generated by uses of the first (the basis) and the second (the induction) clause above qualify as proper routes of a net.

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
.4.4 Paths and Routes			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	DTU Ħ
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 16, Topic: 0, Foil: 16	Nomi, Ishikawa, Japan 923-1292	

type $R = \{|r:P^* \cdot wf_R(r)|\}$ value $wf_R: P^* \rightarrow Bool$ $wf_R(r) \equiv$ $\forall i:Nat \cdot \{i,i+1\} \subseteq inds(r) \Rightarrow$ $let (_,_,ji)=r(i), (ji',_,_)=r(i+1) in ji = ji' end$

routes:
$$N \rightarrow R$$
-infset
routes(n) \equiv
let $rs = \{\langle p \rangle | p: P \cdot p \in paths(n)\}$
 $\cup \{r \cdot r' | r, r': R \cdot \{r, r'\} \subseteq rs \land wf R(r \cdot r')\}$ in
rs end

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	
Connected Nets			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ	
db/doreso/frame/frame2	May 23, 2006, 02:56	Page 17, Topic: 0, Foil: 17	Nomi, Ishikawa, Japan 923-1292		

Connected Nets

10. A net is connected if for any two junctions of the net there is a route between them.

value

is_connected:
$$N \rightarrow \mathbf{Bool}$$

is_connected(n) \equiv
 $\forall j,j':J \cdot \{j,j'\} \subseteq obs_Js(n) \land j \neq j' \Rightarrow$
 $\mathbf{let} (ji,ji') = (obs_Ji(j),obs_Ji(j')) \mathbf{in}$
 $\exists r:R \cdot r \in routes(n) \land$
 $\operatorname{first}_Ji(r) = ji \land \operatorname{last}_Ji(r) = ji' \mathbf{end}$

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	
.4.6 Net Decomposition		School of Information Sciences 1-1, Asahidai, Tatsunokuchi	**	
nome/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 18, Topic: 0, Foil: 18	Nomi, Ishikawa, Japan 923-1292	

Net Decomposition

11. One can decompose a net into all its connected subnets. If a net exhaustively consists of m disconnected nets, then for any pair of nets in different disconnected nets it is the case that they share no junctions and no segments. The set of disconnected nets is the smallest such set that together makes up all the segments and all the junctions of the ("original") net.

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	
Net Decomposition			School of Information Sciences	Ħ	ĺ
			1-1, Asahidai, Tatsunokuchi	÷÷	ĺ
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 19, Topic: 0, Foil: 19	Nomi, Ishikawa, Japan 923-1292		ĺ

value

decompose:
$$N \rightarrow N$$
-set
decompose(n) as ns
obs_Ss(n) = $\cup \{obs_Ss(n')|n':N \cdot n' \in ns\} \land$
obs_Js(n) = $\cup \{obs_Js(n')|n':N \cdot n' \in ns\} \land$
 $\{\} = \cap \{obs_Ss(n')|n':N \cdot n' \in ns\} \land$
 $\{\} = \cap \{obs_Js(n')|n':N \cdot n' \in ns\} \land$
 $\{\} = \cap \{obs_Js(n')|n':N \cdot n' \in ns\} \land$
 $\forall n':N \cdot n' \in ns \Rightarrow connected(n') \land ...$

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	_
.4.6 Net Decomposition			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ	
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 20, Topic: 0, Foil: 20	Nomi, Ishikawa, Japan 923-1292		

That is, we have the following:

Lemma:

 $\forall n:N \cdot$ $\mathbf{let} ns = decompose (n) \mathbf{in}$ $\forall n',n'':N \cdot \{n',n''\} \subseteq ns \land n' \neq n'' \Rightarrow$ $obs_Ss(n') \cap obs_Ss(n'') = \{\} \land$ $obs_Js(n') \cap obs_Js(n'') = \{\} \mathbf{end}$

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
Segment and Junction Modes		•	School of Information Sciences 1-1, Asahidai, Tatsunokuchi	DTU
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 21, Topic: 0, Foil: 21	Nomi, Ishikawa, Japan 923-1292	
	Multi-M	lodal Nets		

12. We introduce a concept, M, of transport mode. M is a small set of distinct, but otherwise further undefined tokens. An m in M designates a transport modality.

General Issues

type M

Segment and Junction Modes

13. With each segment, s, we can associate a single mode, m, and with each junction we can associate the set of modes of its connected segments.

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
.5.2 Segment and Junction Modes		School of Information Sciences 1-1, Asahidai, Tatsunokuchi	DTU	
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 22, Topic: 0, Foil: 22	Nomi, Ishikawa, Japan 923-1292	

value

 $obs_M: S \rightarrow M$ $obs_Ms: J \rightarrow M$ -set axiom $\forall n:N, j:J \cdot j \in obs_Js(n) \Rightarrow$ $let ss = xtr_Ss(n, obs_Ji(j))$ in $obs_Ms(j) = \{obs_M(s)|s:S \cdot s \in ss\}$ end $\forall n:N, s:S \cdot s \in obs_Ss(n) \Rightarrow$ $let \{ji,ji'\} = obs_Jis(s)$ in $let \{j,j'\} = \{xtr_J(n,ji), xtr_J(n,ji')\}$ in $obs_M(s) \in obs_Ms(j) \cap obs_Ms(j')$ end end

 $+81\text{-}761\text{-}51\text{-}1275, \ \mathsf{Fax:}\ +81\text{-}761\text{-}51\text{-}1149$

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	
Single-Modal Nets and Net Projection			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ	
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 23, Topic: 0, Foil: 23	Nomi, Ishikawa, Japan 923-1292		

Single-Modal Nets and Net Projection

14. Given a multi-modal net one can project it onto a set of single modality nets, namely one for each modality registered in the multi-modal net.

```
type

mmN = \{|n:N \cdot card xtr_Ms(n) > 1|\}
smN = \{|n:N \cdot card xtr_Ms(n) = 1|\}
value

xtr_Ms: N \rightarrow M\text{-set}
xtr_Ms(n) \equiv \{obs_M(s) \mid s:S \cdot s \in obs_Ss(n)\}
```

projs: $N \to smN$ -set projs $(n) \equiv \{proj(n,m) \mid m:M \cdot m \in xtr_Ms(n)\}$

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
.5.3 Single-Modal Nets and Net Projection		School of Information Sciences	#	
			1-1, Asahidai, Tatsunokuchi	
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 24, Topic: 0, Foil: 24	Nomi, Ishikawa, Japan 923-1292	

proj:
$$N \times M \rightarrow smN$$

proj(n,m) **as** n'
post

$$\begin{array}{l} \textbf{let } ss = obs_Ss(n), \, ss' = obs_Ss(n'), \\ js = obs_Js(n), \, js' = obs_Js(n') \, \textbf{in} \\ ss' = \{s \mid s:S \cdot s \in ss \, \land \, m {=} obs_M(s)\} \, \land \\ js' = \{j \mid j:J \cdot j \in js \, \land \, m \in obs_Ms(j)\} \\ \textbf{end} \end{array}$$

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
Segment and Junction Attribute Observations			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 25, Topic: 0, Foil: 25	Nomi, Ishikawa, Japan 923-1292	

Segment and Junction Attributes

Segment and Junction Attribute Observations

- We now enrich our segments and junctions.
- 15. Segments have lengths.
- 16. Junctions have modality-determined lengths between pairs of (same such modality) segments connected to the junction.
- 17. Segments have standard transportation times, i.e., time durations that it takes to transport any number of units of freight from one end of the segment to the other.

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
.6.1 Segment and Junction Attribute Observations			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	₩
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 26, Topic: 0, Foil: 26	Nomi, Ishikawa, Japan 923-1292	

- 18. Junctions have standard transfer time per modality of transport between pairs of segments connected to the junction.
- 19. Junctions have standard arrival time per modality of transport.
- 20. Junctions have standard departure times per modality of transport.
- 21. Segments have standard costs of transporting a unit of freight from one end of the segment to the other end.
- 22. Junctions have standard costs of transporting a unit of freight from the end of one connecting segment to the beginning of another connecting segment.

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	
Segment and Junction Attribute Observations			School of Information Sciences	₩	
			1-1, Asahidai, Tatsunokuchi		
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 27, Topic: 0, Foil: 27	Nomi, Ishikawa, Japan 923-1292		

We can now assess

- \bullet (i) length of a route,
- (ii) shortest routes between two junctions,
- (iii) duration time of standard transport along a route, including transfer, stopover and possible reloading times at junctions, and
- (iv) shortest duration time route of standard transport between two junctions.

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	
.6.1 Segment and Junction Attribute Observations		School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ		
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 28, Topic: 0, Foil: 28	Nomi, Ishikawa, Japan 923-1292		

type		
L, TI		
value		
ms:M-set,	$\mathbf{axiom} \ \mathrm{ms} \neq \{\}$	
$obs_L: S \to L$		
obs_L: Si \times J \times M \times Si \rightarrow	L	
$obs_TI: S \to TI$		
$obs_TI: Si \times J \times Si \rightarrow TI$		
obs_TI: J × M $\xrightarrow{\sim}$ TI,	pre obs_TI(j,m): $m \in obs_Ms(j)$	
$obs_TI: J \times M \times M \xrightarrow{\sim} TI,$	pre obs_TI(j,m,m'): $\{m,m'\}\subseteq obs_Ms(j)$	
$obs_arr_TI: J \times M \xrightarrow{\sim} TI,$	pre obs_arr_TI(j,m): $m \in obs_Ms(j)$	
$obs_dep_TI: J \times M \xrightarrow{\sim} TI,$	pre obs_dep_TI(j,m): $m \in obs_Ms(j)$	
$+: L \times L \rightarrow L$		
$+: TI \times TI \rightarrow TI$		

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	
Route Lengths		School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ		
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 29, Topic: 0, Foil: 29	Nomi, Ishikawa, Japan 923-1292		

Route Lengths

23. One can compute the length of a route of a net and one can find the shortest such route between two identified junctions.

value

```
\begin{array}{l} \operatorname{length:} R \to N \xrightarrow{\sim} L \\ \operatorname{length}(r)(n) \equiv \\ \mathbf{case } r \ \mathbf{of} \\ \langle \rangle \to 0, \\ \langle (\mathrm{jf}, \mathrm{si}, \mathrm{jt}) \rangle \to \operatorname{obs\_L}(\mathrm{xtr\_S}(\mathrm{si}, n)), \\ \langle (\mathrm{ji1}, \mathrm{sii}, \mathrm{ji2}), (\mathrm{jj1}, \mathrm{sij}, \mathrm{jj2}) \rangle \land r' \to \\ \mathbf{let} \ \mathrm{si=} \mathrm{xtr\_S}(\mathrm{sii}, n), \mathrm{sj=} \mathrm{xtr\_S}(\mathrm{sij}, n) \ \mathbf{in} \\ \operatorname{obs\_L}(\mathrm{si}) + \operatorname{obs\_L}(\mathrm{sii}, \mathrm{xtr\_J}(\mathrm{ji2}, n), \mathrm{sij}) + \operatorname{length}(\langle (\mathrm{jj1}, \mathrm{sij}, \mathrm{jj2}) \rangle \land r') \ \mathbf{end} \\ \mathbf{end} \\ \mathbf{pre:} \ r \in \operatorname{routes}(n) \land \mathrm{ji2=jj1} \end{array}
```

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
.6.2 Route Lengths		School of Information Sciences 1-1, Asahidai, Tatsunokuchi	DTU Ħ	
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 30, Topic: 0, Foil: 30	Nomi, Ishikawa, Japan 923-1292	

value

shortest_route: $Ji \times Ji \rightarrow N \xrightarrow{\sim} R$ shortest_route(jf,jt)(n) \equiv let rs = routes(n) in let $crs = \{r|r:R \cdot r \in rs \land first_Ji(r)=jf \land last_Ji(r)=jt\}$ in let $sr:R \cdot sr \in crs \land \sim \exists r:R \cdot r \in crs \land length(r)(n) < length(sr)(n)$ in sr end end end pre: $\{jf,jt\}\subseteq obs_Jis(n) \land jf\neq jt$

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	
Route Traversal Times			School of Information Sciences		
			1-1, Asahidai, Tatsunokuchi	#	
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 31, Topic: 0, Foil: 31	Nomi, Ishikawa, Japan 923-1292		

Route Traversal Times

24. One can find the total time it takes to traverse a route, including the times it takes to pass through a junction, and one can find the quickest route between two identified junctions.

all_time:
$$R \rightarrow N \rightarrow TI$$

all_time(r)(n) \equiv
obs_arr_TI(xtr_J(first_J(r),n),obs_M(first_S{r}))
+ time(r)(n)
+ obs_dep_TI(xtr_J(last_J{r},n),obs_M(last_S(r)))

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	
Route Traversal Times			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	₩	
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 33, Topic: 0, Foil: 33	Nomi, Ishikawa, Japan 923-1292		

quickest_route:
$$Ji \times Ji \rightarrow N \rightarrow R$$

quickest_route(jf,jt)(n) \equiv
let $rs = routes(n)$ in
let $crs = \{r|r:R \cdot r \in rs \land first_Ji(r)=jf \land last_Ji(r)=jt\}$ in
let $qr:R \cdot qr \in crs \land \sim \exists r:R \cdot r \in crs \land all_time(r)(n) < all_time(qr)(n)$ is
qr end end end

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	
.6.4 Transportation Costs			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ	
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 34, Topic: 0, Foil: 34	Nomi, Ishikawa, Japan 923-1292		

Transportation Costs

25. We can further assess (i) transport cost (tk:TK), (ii) lowest (per unit) freight cost (fk:FK) between two junctions, etc. We assume that if a freight item is transported into a junction and out of that junction by the same modality conveyour, then it is not reloaded, i.e., along segments of the same modality.²

type

TK, FK, K = TK|FK

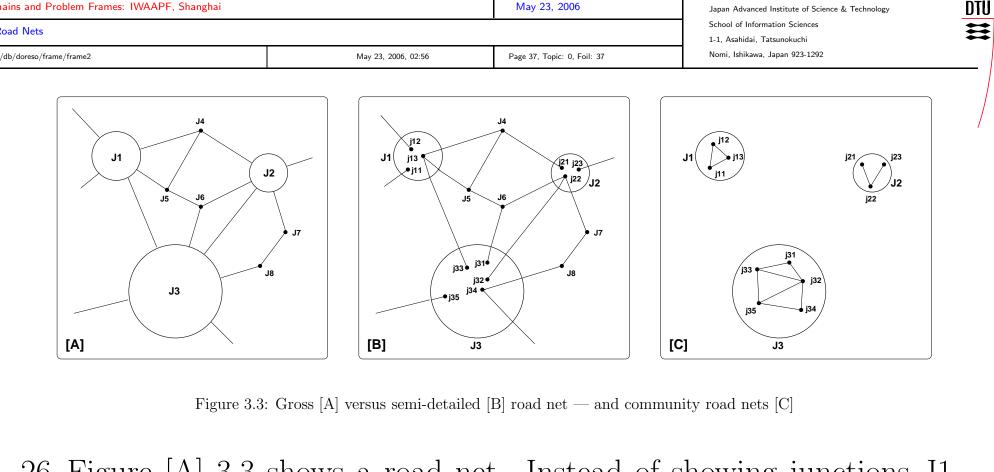
value

obs_TK: $(S|J) \rightarrow TK$ obs_FK: $(S|J) \rightarrow FK$

 $+: \mathrm{K} \times \mathrm{K} \to \mathrm{K}$

+81-761 51 1275, Fax: +81 761 51 1149

 $^{^{2}}$ This grossly simplifying assumption will be removed later. For the time being it allows us to operate with the simple notion of routes that was introduced above. For the reloading case we need to decorate the route notion, effectively making it into a bill of ladings notion: one that prescribes possible reloading at junctions.


$$\begin{array}{c|c} \text{Mey 23. 2006} & \text{Mey 23. 2006} & \text{Mey 23. 2006} & \text{Mey 24. 2006} & \text{M$$

-761-51-1275, Fax: +81-761-51-1149

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	
.7 Road Nets			School of Information Sciences 1-1. Asahidai, Tatsunokuchi	Ħ	
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 36, Topic: 0, Foil: 36	Nomi, Ishikawa, Japan 923-1292		

Road Nets

We wish to view road nets at different levels of abstraction. At a most detailed such level we make no distinction between the road kinds, whether community roads, provincial roads, motor roads or freeways. At another level of abstraction we wish to make exactly those distinctions. And at least detailed level of abstraction we consider certain road junctions to designate road nets of smaller or larger communities.

26. Figure [A] 3.3 shows a road net. Instead of showing junctions J1, J2 and J3 as small black disks we show them as larger circles — for reasons that transpires from Fig. [B] 3.3.

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	
.7 Road Nets			School of Information Sciences	#	
			1-1, Asahidai, Tatsunokuchi		
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 38, Topic: 0, Foil: 38	Nomi, Ishikawa, Japan 923-1292		

- 27. Junctions J1, J2 and J3 are considered composite, that is, to represent communities.
- 28. We may consider the road net of Fig.[A] 3.3 on the preceding page to be an abstraction of the road net hinted at in Fig.[B] 3.3 on the page before.
- 29. Junctions j11, j12, ..., j35 are considered simple embedded junctions.
- 30. We decide to allow three kinds of junctions:
 - (a) composite,(b) simple embedded and
 - (c) simple.

+81-761-51-1275, Fax: +81-761-51-1149

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
General			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 39, Topic: 0, Foil: 39	Nomi, Ishikawa, Japan 923-1292	

A transportation net of modality railway has segments be lines between stations and have junctions be stations.

31. We concretise the concept of modes. Mode m=railway will now designate railway nets:

 $\mathbf{type} \\ \mathbf{M} == \mathbf{road} \mid \mathbf{railway} \mid \dots$

32. From a multi-modal transportation net we can project the railway net, rn:RN:

value

proj: N × {railway} \rightarrow RN

33. Junctions of a transportation net of modality railway have sub-junctions which are stations:

value

proj: J × {railway} \rightarrow ST

34. Segments of a transportation net of modality railway become lines:

value proj: $S \times \{railway\} \rightarrow LI$

-761-51-1275, Fax: +81-761-51-1149

E-mail: bjorner @gmail.com; URL: http://www.jaist.ac.jp/~bjorner

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
.8.2 Lines, Stations, Units and Connectors			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 40, Topic: 0, Foil: 40	Nomi, Ishikawa, Japan 923-1292	

Lines, Stations, Units and Connectors

Railway segments are thus called lines, and railway sub-junctions are thus called stations. A notion of connectors is introduced. It is not to be confused with the previous notion of junctions.

- 35. A railway net is a net of mode railway.
- 36. Its segments are lines of mode railway.
- 37. Its junctions are stations of mode railway.
- 38. A railway net consists of one or more lines and two or more stations.
- 39. A railway net consists of rail units.
- 40. A line is a linear sequence of one or more linear rail units.
- 41. The rail units of a line must be rail units of the railway net of the line.
- 42. A station is a set of one or more rail units.
- 43. The rail units of a station must be rail units of the railway net of the station.
- 44. No two distinct lines and/or stations of a railway net share rail units.
- 45. A station consists of one or more tracks.

- 46. A track is a linear sequence of one or more linear rail units.
- 47. No two distinct tracks share rail units.
- 48. The rail units of a track must be rail units of the station (of that track).
- 49. A rail unit is either a linear, or is a switch, or a is simple crossover, or is a switchable crossover, etc., rail unit.
- 50. A rail unit has one or more connectors.
- 51. A linear rail unit has two distinct connectors. A switch (a point) rail unit has three distinct connectors. Crossover rail units have four distinct connectors (whether simple or switchable), etc.
- 52. For every connector there are at most two rail units which have that connector in common.
- 53. Every line of a railway net is connected to exactly two distinct stations of that railway net.
- 54. A linear sequence of (linear) rail units is an acyclic sequence of linear units such that neighbouring units share connectors.

ins and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology
Lines, Stations, Units and Connectors		•	School of Information Sciences
db/doreso/frame/frame2	May 23, 2006, 02:56	Page 41, Topic: 0, Foil: 41	Nomi, Ishikawa, Japan 923-1292
type 35. RN = { n:smN • obs_M(n)=railway	}	41. \forall n:RN, l:LI • l \in obs.	$LIs(n) \Rightarrow obs_Us(l) \subseteq obs_Us(n)$
36. LI = { $ $ s:S • obs_M(s)=railway $ $ } 37. ST = { $ $ c:C • obs_M(c)=railway $ $ }	,,	42. \forall n:RN, s:ST • s \in obt	$s_STs(n) \Rightarrow card obs_Us(s) \ge 1$
Tr, U, K		43. \forall n:RN, s:ST • s \in obt	$s_LIs(n) \Rightarrow obs_Us(s) \subseteq obs_Us(n)$
value		44. \forall n:RN,l,l':LI•{l,l'} \subseteq o	$bs_LIs(n) \land l \neq l' \Rightarrow obs_Us(l) \cap obs_Us(l') = \{\}$
38. obs_LIs: $RN \rightarrow LI$ -set 38. obs_STs: $RN \rightarrow ST$ -set		44. \forall n:RN,l:LI,s:ST•l \in o	$bbs_LIs(n) \land s \in obs_STs(n) \Rightarrow obs_Us(l) \cap obs_Us(s) = \{\}$
39. obs_Us: $RN \rightarrow U$ -set 40. obs_Us: $LI \rightarrow U$ -set		44. \forall n:RN,s,s':ST•{s,s'}	$_obs_STs(n) \land s \neq s' \Rightarrow obs_Us(s) \cap obs_Us(s') = \{\}$
42. obs_Us: $ST \rightarrow U$ -set 45. obs_Trs: $ST \rightarrow Tr$ -set		45. \forall s:ST•card obs_Trs($s) \ge 1$
49. is_Linear: $U \rightarrow \mathbf{Bool}$ 49. is_Switch: $U \rightarrow \mathbf{Bool}$		46. \forall n:RN,s:ST,t:Tr•s \in	$obs_STs(n) \land t \in obs_Trs(s) \Rightarrow lin_seq(t)$
49. is_Simple_Crossover: $U \rightarrow Bool$ 49. is_Switchable_Crossover: $U \rightarrow Bc$	ool		$\in obs_STs(n) \land \{t,t'\} \subseteq obs_Trs(s) \land t \neq t'$
50. obs_Ks: $U \to K$ -set		$\Rightarrow \text{obs}_\text{Us}(t)$	$) \cap obs_Us(t') = \{\}$
54. $\lim_{\to} \text{seq: } U\text{-set} \to \text{Bool}$		52. \forall n:RN • \forall k:K •	
$\begin{aligned} \lim_seq(us) \equiv \\ \forall u: U \bullet u \in us \Rightarrow is_Linear\end{aligned}$			$\begin{array}{l} n u: U \bullet u \in obs_Us(n) \\ : U \bullet u \in obs_Us(n) \land k \in obs_Ks(u) \} \leq 2 \end{array}$
$\exists q: U^* \bullet len q = card us \land \forall i: Nat \bullet \{i, i+1\} \subseteq ind obs_Ks(q(i)) \cap obs_Is(q(i)) \cap obs_Is((i)) \cap obs_Is(q(i$	$ls q \Rightarrow \exists k:K \bullet$		$obs_STs(n) \land s \neq s' \Rightarrow$ (s),sus'=obs_Us(s'),lus=obs_Us(l) in
axiom		$u' \in sus' \land d$	$\{\mathrm{u}'',\mathrm{u}'''\}\subseteq\mathrm{lus}\Rightarrow$
38. \forall n:RN • card obs_LIs(n) $\geq 1 \land$ card	$obs_STs(n) \ge 2$		$bs_Ks(u), sks' = obs_Ks(u'),$ $bs_Ks(u''), lks' = obs_Ks(u''')$ in
40. \forall n:RN, l:LI • l \in obs_LIs(n) \Rightarrow lin_see	q(l)		$\mathbf{k'} \land \mathbf{sks} \cap \mathbf{lks} = \{\mathbf{k}\} \land \mathbf{sks'} \cap \mathbf{lks'} = \{\mathbf{k'}\}$

-761-51-1275, Fax: +81-761-51-1149

E-mail: bjorner@gmail.com; URL: http://www.jaist.ac.jp/~bjorner

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTL
9 Net Dynamics			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ
nome/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 42, Topic: 0, Foil: 42	Nomi, Ishikawa, Japan 923-1292	

Net Dynamics

- By net dynamics we shall mean the changing possibilities of flow of conveyors (cars, trains, aircraft, ships, etc.) along segments and through junctions.
- We speak of direction of flow along segments in terms of "from the junction at one end of the segment to the junction at the other end".
- And we speak of flow through a junction as "proceeding from one segment incident upon the junction into a (udually different) segment emanating from that junction".
- Segments connected to a junction are both incident upon that junction and emanates from that junction.

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
Segment and Junction States			School of Information Sciences	Ħ
Segment and Surfetion States			1-1, Asahidai, Tatsunokuchi	ŤŤ I
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 43, Topic: 0, Foil: 43	Nomi, Ishikawa, Japan 923-1292	

Segment and Junction States

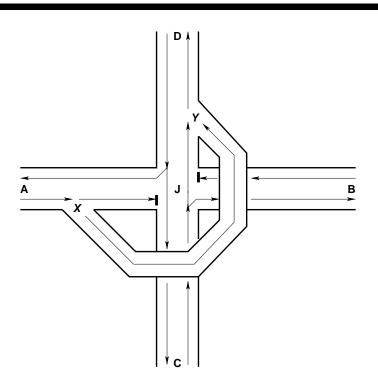


Figure 3.4: A Special "Carrefour" Junction

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	i.
.9.1 Segment and Junction States			School of Information Sciences	=]
			1-1, Asahidai, Tatsunokuchi	÷ ÷	
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 44, Topic: 0, Foil: 44	Nomi, Ishikawa, Japan 923-1292		

- 55. Segments may be open for traffic in either or both directions (between the segments' two junctions [identified by ji_x and ji_y]) or may be closed.
- 56. We model the state, $s\sigma : S\Sigma$, of a segment, s : S, as a set of pairs of junction identifications, namely of the two identifications of the junctions that the segment connects. This state, $s\sigma : S\Sigma$, is

(a) either empty, i.e., the segment is closed $(\{\})$,

- (b) or has one pair, $\{(ji_x, ji_y)\}$, that is, the segment is open in direction from junction ji_x to junction ji_y ,
- (c) or another pair $\{(ji_y, ji_x)\},\$
- (d) or both pairs $\{(ji_x, ji_y), (ji_y, ji_x)\}$, that is, is open in both directions.

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
Segment and Junction States			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	₩
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 45, Topic: 0, Foil: 45	Nomi, Ishikawa, Japan 923-1292	

- 57. Junctions may direct traffic from any subset of incident segments to any subset of emanating segments.
- 58. We model the state, $j\sigma : J\Sigma$, of a junction, j : J, as a set of pairs of segment identifications, namely of identifications of segments connected to the junction.
 - (a) Let the set of identifications of segments connected to junction j be $\{si_1, si_2, ..., si_m\}$.
 - (b) If, in some state, $j\sigma$ of the junction, it is possible (allowed) to pass through the junction from the segment identified by si_j to the segment identified by si_k , then the pair (si_j, si_k) is in $j\sigma$.
 - (c) The junction state may be empty, i.e., closed: no traffic is allowed through the junction.
 - (d) Or the junction state may be "anarchic full", that is, it contains all combinations of the pairs of identifiers of segments incident upon the junction.

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
.9.1 Segment and Junction States			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	#
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 46, Topic: 0, Foil: 46	Nomi, Ishikawa, Japan 923-1292	

type

$$S\Sigma = (Ji \times Ji)$$
-set
 $J\Sigma = (Si \times Si)$ -set

value

obs_S Σ : S \rightarrow S Σ obs_J Σ : J \rightarrow J Σ

```
\operatorname{xtr}_{Jis:} S\Sigma \to Ji\operatorname{-set}, \operatorname{xtr}_{Jis}(s\sigma) \equiv \{ji|ji:Ji \cdot (ji,\_) \in \operatorname{obs}_{s\sigma} \lor (\_,ji) \in \operatorname{obs}_{s\sigma} \}\operatorname{xtr}_{Sis:} J\Sigma \to Si\operatorname{-set}, \operatorname{xtr}_{Sis}(j\sigma) \equiv \{si|si:Si \cdot (si,\_) \in \operatorname{obs}_{j\sigma} \lor (\_,si) \in \operatorname{obs}_{j\sigma} \}
```

axiom

 $\forall s:S \cdot xtr_Jis(obs_S\Sigma(s)) \subseteq xtr_Jip(s), \\ \forall j:J \cdot xtr_Sis(obs_J\Sigma(j)) \subseteq xtr_Sis(j)$

axiom

. . .

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
Segment and Junction States			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	₩
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 47, Topic: 0, Foil: 47	Nomi, Ishikawa, Japan 923-1292	

- 59. The junction of Fig. 3.4 shows four segments, identified by A, B, C and D.
- 60. The figure also suggests a state in which traffic lights prohibit movements from A into J, from B into J,
- 61. from C via J into A, and from D via J into B.
- 62. The "bypass" from A/X into Y/D appears to be such that traffic can always pass from A into D.
- 63. The current state alluded to in Fig. 3.4 on page 43 appears to be:

 $j\sigma_J:\{(A,D), (C,B), (C,D), (D,A), (D,C)\}$

64. (A, D) is potentially a member of every state that the junction can possibly be in — see next section.

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
.9.2 Segment and Junction State Spaces			School of Information Sciences	#
			1-1, Asahidai, Tatsunokuchi	**
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 48, Topic: 0, Foil: 48	Nomi, Ishikawa, Japan 923-1292	

Segment and Junction State Spaces

65. A segment can be in one of several segments states.

66. A junction can be in one of several junction states.

67. Hence we introduce segment and junction state spaces.

type

- $S\Omega = S\Sigma$ -set
- $J\Omega = J\Sigma$ -set

value

```
obs_S\Omega: S \rightarrow S\Omega
```

```
obs_J\Omega: J \rightarrow J\Omega
```

axiom

```
\begin{array}{l} \forall \ s:S \cdot obs\_S\Sigma(s) \subseteq obs\_S\Omega(s), \\ \forall \ j:J \cdot obs\_J\Sigma(j) \subseteq obs\_J\Omega(j) \end{array}
```

 $+81\text{-}761\text{-}51\text{-}1275, \ \mathsf{Fax:}\ +81\text{-}761\text{-}51\text{-}1149$

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
1 Vehicles and Positions			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 49, Topic: 0, Foil: 49	Nomi, Ishikawa, Japan 923-1292	

More on Net Dynamics: Traffic Vehicles and Positions

- 68. There is a further undefined notion of vehicles, V.
- 69. And there is a notion of the position, P, of a vehicle.
 - (a) Either a vehicle is positioned in a junction, and then its position is designated by the junction identifier.
 - (b) Or a vehicle is positioned along a segment, and then its position is designated by a triplet:
 - i. the identifier of the junction it is moving away from,
 - ii. the identifier of the junction it is moving towards, and

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
10.1 Vehicles and Positions			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	₩
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 50, Topic: 0, Foil: 50	Nomi, Ishikawa, Japan 923-1292	

- iii. the fraction of the distances from the position to the two junctions:
 - A. If the fraction is 0, then the vehicle has just entered the segment,
 - B. if the fraction is 1, then the vehicle is just about to leave the segment, and, hence,
 - C. if the fraction is a proper real between 0 and 1, but neither 0 nor 1, then the vehicle is properly within the segment.

type

 $F = \{|f: \mathbf{Real} \cdot 0 \le f \le 1|\}$ $P == mkP_at_J(ji:Ji) \mid mkP_along_S(fji:Ji,f:F,tji:Ji)$

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	_
2 Traffic			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ]
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 51, Topic: 0, Foil: 51	Nomi, Ishikawa, Japan 923-1292		

'I'raffic		
LIAIIIC	'	'no Hio

70. Traffic is now a function from time to a pair of

(a) a net,

(b) and the positions of vehicles within the net.

```
type

V

T

TF = T \xrightarrow{m} (N \times (V \xrightarrow{m} P))
```

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
.10.2.1 Proper Vehicle Positions		School of Information Sciences 1-1, Asahidai, Tatsunokuchi	DTU	
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 52, Topic: 0, Foil: 52	Nomi, Ishikawa, Japan 923-1292	

Proper Vehicle Positions

71. The positions of a traffic must designate proper junctions of the net.

axiom $\forall \text{ tf:TF} \cdot$ $\forall \text{ t} \in \text{dom tf} \cdot$ let (n, vps) = tf(t) in $\forall \text{ p:P} \cdot \text{p} \in \text{rng vps} \Rightarrow$ case p of $\text{mkP_at_J(ji)} \rightarrow \text{ji} \in \text{obs_Jis(n)},$ $\text{mkP_along_S(jf,_,jt)} \rightarrow \{\text{jf,jt}\} \subseteq \text{obs_Jis(n)}$ end end

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
.2 Other Traffic Constraints			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 53, Topic: 0, Foil: 53	Nomi, Ishikawa, Japan 923-1292	

Other Traffic Constraints

72. Traffic must be smooth: Positions of vehicles do not "jump around", i.e., movement are monotonic.

73. No "ghost vehicles":

(a) If at times t and t'

(b) considered close to one another

(c) a vehicle is in the traffic

(d) then it is also in the traffic at all times in between t and t'.

We omit the formalisations of the above.

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	
.11.1 Time Tables			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	DTU Ħ	
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 54, Topic: 0, Foil: 54	Nomi, Ishikawa, Japan 923-1292		

Time Tables and Traffic Time Tables

- By a time table we understand an entity which to named transport vehicles associate journey descriptions.
- By a journey description we understand a sequence of junction visits.
- By a junction visit we understand a triple: Arrival time, junction identifier and departure time.

type

 $TT = Vn \quad \overrightarrow{m} \text{ Journey} \\ Journey = (at:T \times ji:Ji \times dt:T)^*$

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	
2 Scheduling			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ	
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 55, Topic: 0, Foil: 55	Nomi, Ishikawa, Japan 923-1292		

Scheduling

- By scheduling we shall here, in a narrow sense, understand
 - \star a function from nets and time tables to
 - $\star\,\mathrm{a}$ possibly infinite set of traffics
 - \star such that each traffic satisfies the time table.

value

```
sched: TT \rightarrow N \rightarrow TF-infset
sched(tt)(n) as tfs
pre: wf_TT_and_N(tt,n)
post: \forall tf:TF \cdot tf \in tfs \Rightarrow wf_TF(tf) \land sat(tf,tt)
```

```
wf_TT_and_N: TT \times N \rightarrow Bool, ...
sat: TF \times TT \rightarrow Bool, ...
```

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	
12 And so on!			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ
nome/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 56, Topic: 0, Foil: 56	Nomi, Ishikawa, Japan 923-1292	

And so on!

- We have shown fragments of a description of a domain of transportation nets.
- There is, of course, much more. "Years of work still to be done!"
- But, for the time being we have enough to illustrate some reasonably interesting requirements.

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	
et of Requirements			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 57, Topic: 0, Foil: 57	Nomi, Ishikawa, Japan 923-1292	

A Set of Requirements

- We shall consider the following three sets of requirements:
 - ***** requirements for software to **monitor net maintenance**,
 - * requirements for software to **monitor & control net traffic**,
 - \star requirements for software to **simulate net traffic**, and
 - ***** requirements for software to **support transport logistics**: optimal routes etc.

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
13 Plan of Development of Requirements			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ
nome/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 58, Topic: 0, Foil: 58	Nomi, Ishikawa, Japan 923-1292	

Plan of Development of Requirements

- The plan is now to
 - \star first give a brief, rough sketch narrative of the four sets of requirements.
 - \diamond We do so, here, in this talk, in an **unusual** way.
 - \diamond First we **extend** the **domain** description give earlier.
 - Then we project, instantiate, and make less non-deterministic (determination) the extended domain description,
 - ♦ that is: We transform it into domain requirements prescriptions.

But first we present the **domain extensions**.

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
Plan of Development of Requirements			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 59, Topic: 0, Foil: 59	Nomi, Ishikawa, Japan 923-1292	

• The plan is further

- ★ to analyse these four domain extension sketches wrt. such common "features" that may be **shared** by the three (or pairs of two) software implementations.
- \star to present the requirements for each of the four specific software "packages".
- \star and finally to present the requirements for such a shared "core" of software. That is, we are **fitting**.

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	_
.14.0.1 Domain Requirements			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ	
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 60, Topic: 0, Foil: 60	Nomi, Ishikawa, Japan 923-1292		

Brief Narrative of the Four Sets of Requirements

Domain Requirements

- By domain requirements we understand requirements that can be sôlely expressed using terms of the domain (and ordinary, non-technical language).³
- In this talk we shall only consider domain requirements.
- Of course, many, if not most of the interesting problems of software development in relation also to 'problem frames' may be those due to interface and machine requirements.

+81-761 51 1275, Fax: +81 761 51 1149

 $^{^{3}}$ By machine requirements we understand requirements that can be sôlely expressed using terms of the machine (and ordinary, non-technical language). By interface requirements we understand requirements that can be expressed only by using terms of both the domain and the machine (and ordinary, non-technical language).

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology
1 'Net Maintenance' Software			School of Information Sciences
I Net Maintenance Software			1-1, Asahidai, Tatsunokuchi
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 61, Topic: 0, Foil: 61	Nomi, Ishikawa, Japan 923-1292

'Net Maintenance' Software

- \bullet We propose a (parameterised) software package to be developed for
- monitoring and supporting the management of the maintenance of both road and rail nets.
- An instantiation parameter (**road,rail**) shall determine whether the package works for road or for rail nets.

DTU

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	
.14.1.1 'Net Maintenance' Domain Description: An Extensio	n		School of Information Sciences	#	
			1-1, Asahidai, Tatsunokuchi	**	
nome/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 62, Topic: 0, Foil: 62	Nomi, Ishikawa, Japan 923-1292		

'Net Maintenance' Domain Description: An Extension

- Segments and junctions need be maintained, that is,
 - \star we **may** associate a set of quality attributes related to the upkeep of segments and junctions, as well as of any traffic signals associated with these,
 - ★ we may further associate actual and estimated date(s), cost(s), and duration(s) of previous and next maintenance services, etc.,
 - \star and we **may** keep "such" records of all segments, junctions and signals of the net.

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	
1.1 'Net Maintenance' Domain Description: An Extensio	n		School of Information Sciences 1-1, Asahidai, Tatsunokuchi	₩	
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 63, Topic: 0, Foil: 63	Nomi, Ishikawa, Japan 923-1292		

- To monitor the net quality attributes, in the domain, some need perform **work** that help
 - \star advise maintenance staff to evaluate and report quality attributes of segments, junctions and signals,
 - \star follow-up on missing such reports,
 - \star and help update the attributes of the records kept when reported.
- To support the management of net maintenance some need perform, in the domain, **work** that help management schedule and allocate resources
 - \star for the monitoring of net quality and corresponding update of records,
 - \star for the actual maintenance work,
 - \star and for handling "unforeseen" reports on segment, junction and signal malfunctioning (i.e., in need of repair).

Domains and Problem Frames: IWAAPF, Shanghai May 23, 2006 Japan Advanced Institute of Science & Technology DTU .14.1.2 'Net Maintenance' Domain Requirements School of Information Sciences 1.1, Asahidai, Tatsunokuchi Ethor home/db/doreso/frame/frame2 May 23, 2006, 02:56 Page 64, Topic: 0, Foil: 64 Nomi, Ishikawa, Japan 923-1292	Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	
home/db/doreso/frame/frame2 May 23, 2006, 02:56 Page 64, Topic: 0, Foil: 64 Nomi, Ishikawa, Japan 923-1292	.14.1.2 'Net Maintenance' Domain Requirements				Ħ	
	nome/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 64, Topic: 0, Foil: 64	Nomi, Ishikawa, Japan 923-1292		

'Net Maintenance' Domain Requirements

• Entities

- Segments and junctions need be maintained, that is,
 - \star we **must** associate a set of quality attributes related to the upkeep of segments and junctions, as well as of any traffic signals associated with these,
 - * we **must** further associate actual and estimated date(s), cost(s), and duration(s) of previous and next maintenance services, etc.,
 - ★ and we **must** keep "such" records of all segments, junctions and signals of the net.

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
1.2 'Net Maintenance' Domain Requirements			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 65, Topic: 0, Foil: 65	Nomi, Ishikawa, Japan 923-1292	
				1

• Monitoring Functions

- To monitor the net quality attributes, in the domain, the software **must** have **functions** that help
 - \star advise maintenance staff to evaluate and report quality attributes of segments, junctions and signals,
 - \star follow-up on missing such reports,
 - \star and help update the attributes of the records kept when reported.

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
.14.1.2 'Net Maintenance' Domain Requirements			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 66, Topic: 0, Foil: 66	Nomi, Ishikawa, Japan 923-1292	
				1

• Management Functions

- To support the management of net maintenance the software **must** have **functions** that help management schedule and allocate resources
 - \star for the monitoring of net quality and corresponding update of records,
 - \star for the actual maintenance work,
 - \star and for handling "unforeseen" reports on segment, junction and signal malfunctioning (i.e., in need of repair).
- ... here follows precise requirements details ...

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	
1.3 Domain to Requirements Operations			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	DTU Ħ	
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 67, Topic: 0, Foil: 67	Nomi, Ishikawa, Japan 923-1292		

Domain to Requirements Operations

In summary:

- **Projection:** Most of the net attributes have been kept. Many of the concepts (routes, ..) and evaluation functions (time, length, ...) have been "projected away".
- **Instantiation:** Usually the software, when delivered to a client, is instantiated to the specific net characteristics of the client.
- **Determination:** No example.

(Looseness and non-determinism is removed.)

• *Etcetera!*

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	
.14.2 'Traffic Control' Software			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	₩	
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 68, Topic: 0, Foil: 68	Nomi, Ishikawa, Japan 923-1292		

'Traffic Control' Software

- We propose a software package to be developed for monitoring and controlling road net traffic
- not just at local junctions
- but along segments, and providing for "green" flow along certain route directions.

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
2.1 Domain Description: A Very Rough Sketch Extension	1		School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 69, Topic: 0, Foil: 69	Nomi, Ishikawa, Japan 923-1292	

Domain Description: A Very Rough Sketch Extension

- Traffic control in the conventional, non-technological net domain
- is done by traffic police controlling junction flows
- \bullet or by local sensors and actuators
 - \star positioned near junctions
 - \star sensors monitor only local traffic
 - \star and actuators control only local junction semaphores.
- An assessment is made (by police or sensors) of local traffic density only,
- and appropriate arm signals or semaphore ligting (red, yellow, green) acts as controls.

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
.14.2.2 Domain Requirements			School of Information Sciences	Ħ
			1-1, Asahidai, Tatsunokuchi	
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 70, Topic: 0, Foil: 70	Nomi, Ishikawa, Japan 923-1292	

Domain Requirements

• Net Representation "In the Machine"

- The road net must be represented: segments, junctions and signals.
- Signals must be controlled.
- Segment, junction and signal states must be represented.
- Segment lengths and segment and junction (e.g., average) "traversal" times must be represented.
- Vehicle positions in segments and junctions must be represented.
- Vehicle positions must be monitored.
- We assume sensors to record and inform of "density" of vehicles at segment lanes in vicinity of junctions and leading into these.
- ... here follows precise requirements details ...

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
2.2 Domain Requirements			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	₩
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 71, Topic: 0, Foil: 71	1-1, Asanidal, Tatsunokucni Nomi, Ishikawa, Japan 923-1292	

• Traffic Monitoring Functions

- Functions shall regularly sample traffic density.
- There must be functions for inquiring about and reporting on unusual traffic situations (accidents, fog, road conditions in general).
- It is assumed that there are functions which otherwise report on the statues of the road net.
 - \star (That is, functions which relate to the net maintenance software.)
- ... here follows precise requirements dertails ...

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
.14.2.2 Domain Requirements			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ
nome/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 72, Topic: 0, Foil: 72	Nomi, Ishikawa, Japan 923-1292	

• Traffic Control Functions

The objective of the use of these functions is to ensure smooth traffic.

- Individual functions shall determine the setting of signals at junctions.
- Composite functions shall determine the setting of signals, say in "green waves" along routes
 - \star hence the road net representation must be augmented with information about
 - \diamond major and minor routes,
 - time of day preferred directions: am "into town", pm "out of town",
 - \diamond and the like.

• ... here follows precise requirements details ...

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	
2.3 Domain to Requirements Operations			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	₩	
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 73, Topic: 0, Foil: 73	Nomi, Ishikawa, Japan 923-1292		

Domain to Requirements Operations

- **Projection:** Only the junction and segment state attributes need be kept.
- **Instantiation:** The net is instantiated to a particular road net of a particular city, i.e., that of the client.
- **Determination:** Some segments are designated as priority segments, with determined directions being "favoured" for "green traffic flow" at determined time intervals of the day. Accordingly some junction state transitions are "favoured" over others.
- *Etcetera!*

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology
.14.3 'Traffic Simulation' Software			School of Information Sciences
			1-1, Asahidai, Tatsunokuchi
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 74, Topic: 0, Foil: 74	Nomi, Ishikawa, Japan 923-1292

'Traffic Simulation' Software

- We propose a software package to be developed for simulating road net traffic.
- In the domain there is, we assume, as yet no such simulation software.
- \bullet So we cannot domain describe what we mean by simulation —
- or rather: any such domain description becomes the domain requirements.

DTU

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
3.1 Net Representation		School of Information Sciences	₩	
			1-1, Asahidai, Tatsunokuchi	
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 75, Topic: 0, Foil: 75	Nomi, Ishikawa, Japan 923-1292	

Net Representation

- Net representation " in the machine":
 - \star The road net must be represented: segments, junctions and signals.
 - \star Segment, junction and signal states must be represented.
 - \star Segment lengths and segment and junction (e.g., average) "traversal" times must be represented.
 - \star Vehicle positions in segments and junctions must be represented.
- Assumptions: Vehicles, when moving, move at average speed plus/minus some minor deviations.

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology		
.14.3.2 Simulation Concepts			School of Information Sciences	#	
			1-1, Asahidai, Tatsunokuchi	÷÷	
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 76, Topic: 0, Foil: 76	Nomi, Ishikawa, Japan 923-1292		

Simulation Concepts

We suggest, not as part of the requirements, but as a software implementation idea, the following two ideas:

- Representation of segment geodetic profile:
 - \star A segment is decomposed into geodetic blocks.
 - \star The curvature of each block is represented by two 3D vectors, from which a Bezier curve for that block can be constructed.

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	
3.2 Simulation Concepts			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	₩	
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 77, Topic: 0, Foil: 77	Nomi, Ishikawa, Japan 923-1292		

- Representation of segment velocity profile:
 - \star A segment is decomposed into velocity blocks.
 - \star The increase/decrease of speed for each block can be represented by two 2D vectors, from which a Bezier velocity curve for that block can be constructed:
 - The computation of the curve will, depending on vector characteristics (long or short vectors), compute close, or less close, or "far away" points on the curve,
 - ♦ and we shall take the varying density of these computed points to designate positions of a vehicle at any one time,

 \diamond one vehicle per computation of the velocity curve.

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	
.14.3.3 Traffic Simulation Functions			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 78, Topic: 0, Foil: 78	Nomi, Ishikawa, Japan 923-1292	

Traffic Simulation Functions

- Initialise states of segments and junctions wrt. signals.
- Initialise states of segments and junctions wrt. vehicle positions.
 - \star That is: allow vehicles to start their journey

 \diamond along segments and in junctions when the simulation begins, and/or

- \diamond at different times during the simulation (say according to some time table).
- Schedule simulation interval and resolution (granularity, i.e., one unit of simulation time = R units or real time.⁴).
- "Play, stop, recommence" simulation.
- Change granularity while "playing".
- Insert vehicles during simulation.

+81-761-51-1275, Fax: +81-761-51-1149

E-mail: bjorner@gmail.com; URL: http://www.jaist.ac.jp/~bjorner

 $^{^{4}}R$ can be any real above 0. If R is less than 1 simulation is microscopic, if it is 1 simulation is "real", if it is larger than 1 simulation is macroscopic.

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	_
3.4 Domain to Requirements Operations			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ	
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 79, Topic: 0, Foil: 79	Nomi, Ishikawa, Japan 923-1292		
				1	

Domain to Requirements Operations

- **Projection:** We project away almost all but the net and time tables. We adhere to definition of traffic (i.e., TF).
- **Instantiation:** We instantiate to a specific net.
- **Determination:** We may decide to constrain to segment-determined constant velocity traffic.
- Etcetera!

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
14.4.1 Domain Description: An Extension			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	₩
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 80, Topic: 0, Foil: 80	Nomi, Ishikawa, Japan 923-1292	

'Transport Logistics' Software

- We propose a software package to be developed for
- supporting freight (incl. container) transport logistics.

Domain Description: An Extension

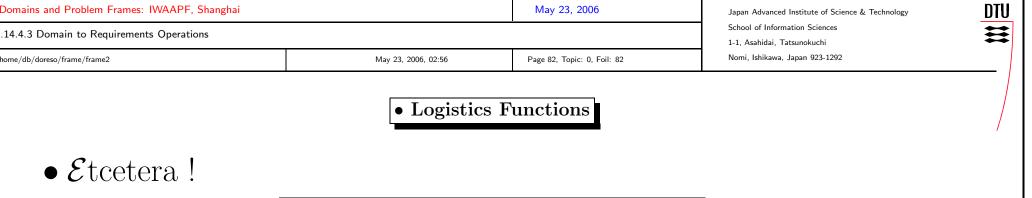
- In the domain planning a journey, for travelling (on a crucial trip) as a passenger on trains, by bus, airplane or by ship, usually requires the use of one or more time tables.
- Considerations of alternative routes, of multi modal travel, of cost: fast, perhaps expensive, hrried travel versus slower, perhaps less costly, and of overnight stays en route may be important.
- This applies to freight transport too: refrigeration of freight load, "first to market", etc.

+81-761-51-1275, Fax: +81-761-51-1149

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
4.2 Domain Requirements		School of Information Sciences	=	
			1-1, Asahidai, Tatsunokuchi	÷÷
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 81, Topic: 0, Foil: 81	Nomi, Ishikawa, Japan 923-1292	

Domain Requirements

• Net Representation "In the Machine"


- The multi modal net must be represented: segments and junctions
- \bullet Segment lengths and average traversal times and traversal costs of segments and junctions 5 must be represented —
- usually the latter (times and costs) are provided by transport vehicle (truck, train, boat and aircraft) time tables.
- We may thus discover that we need to **extend** our domain description:
 - Junction hubs, where freight is transferred from one modality transport to another, may need be further detailed, e.g., as to warehouse facilities (godowns), etc.

-761-51-1275, Fax: +81-761-51-1149

© Dines Bjørner, 2006

E-mail: bjorner@gmail.com; URL: http://www.jaist.ac.jp/~bjorner

⁵The traversal time and cost of junctions could be differentiated wrt. modalities: freight being unload/loaded when incoming and outgoing segment modalities are different, etc.

Domain to Requirements Operations

- **Projection:** The net, its segments and junctions, their length, time, and cost attributes. Also time tables. Most functions related to these.
- **Instantiation:** Maybe we instantiate to only a shipping net, or only a rail net?
- **Determination:** As a representation of the segment and junction traversal times we may rely on the time tables.
- Etcetera!

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
Requirements Prescription of Shared Software			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	₩
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 83, Topic: 0, Foil: 83	Nomi, Ishikawa, Japan 923-1292	

Requirements Prescription of Shared Software

- All four rough sketch requirements prescriptions projected into their requirements a core of the net, its segments and junctions.
- We therefore conclude
 - \star that a repository, i.e., a database, is needed,
 - \star one in which segments and junctions are stored.
 - \star A repository (software system) which allows
 - flexible representation of segment and junction attributes and
 their initialisation, retrieval and update.
 - \star So we decide on using some relational database management system.

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	
.15.1.1 Informal Rough Sketch			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ	
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 84, Topic: 0, Foil: 84	Nomi, Ishikawa, Japan 923-1292		

Net Repository (i.e., Net Database)

Informal Rough Sketch

- Segment representations are in the form of relation tuples.
- Segment attributes are attributes of relations.
- Junction representations are in the form of relation tuples.
- Junction attributes are attributes of relations.

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	
1.2 Formalisation — a Sketch		School of Information Sciences 1-1, Asahidai, Tatsunokuchi	DTU Ħ		
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 85, Topic: 0, Foil: 85	Nomi, Ishikawa, Japan 923-1292		

SR = ST-set

- JR = JT-set
- ST :: si:Si ftj:Jip m:M le:L ti:TI k:K f:F s σ :S Σ s ω :S Ω
- JT :: ji:Ji si:Si-set m:M ti:TI k:K f:F j σ :J Σ j ω :J Ω
- This is noit quite first normal form relational representation.
- A junction connected to n segments and with a state-space of m possible states in (primitive) first normal form would require $m \times n$ tuples.
- Of course "smarter" ways of representing sets of segment identifiers and state space (ω) can be devised. That is not a requirements issue, but a software design issue.

-761-51-1275, Fax: +81-761-51-1149

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	
.15.2.1 Rough Sketch Ideas			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ	
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 86, Topic: 0, Foil: 86	Nomi, Ishikawa, Japan 923-1292		

Repository Functions

Rough Sketch Ideas

- The observer functions of the domain description are now simple tuple projections.
- Query facilities offered by the relational DBMS⁶ being deployed can be used in connection with many of the functions transformed from the domain description into the specific domain requirements prescriptions. They are the functions that make "heavy" use of observer functions.
- The various domain requirements prescriptions additionally prescribe repository initialisation and refreshment (i.e., update) functions and again their design and implementation can be greatly facilitated by the update functions of the chosen relational DBMS.
- Of course, queries "against" an RDBMS really deposit results in a designated workspace and displays this on the GUI.

+81-761-51-1275, Fax: +81-761-51-1149

© Dines Bjørner, 2006

E-mail: bjorner @gmail.com; URL: http://www.jaist.ac.jp/~bjorner

⁶DBMS: Database Management System, like Frontbase www.frontbase.com the best, or DB2 www.ibm.com/db2 or SQL www.oracle.com.

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
2.2 Specific Function Signatures			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 87, Topic: 0, Foil: 87	Nomi, Ishikawa, Japan 923-1292	

Specific Function Signatures

value

obs_Jip: $S \rightarrow Jip$ sql_project: RelNm×{|"si=seg_name"|}×{|"ftj"|}×Wn \rightarrow Jip×GUI

- The former function is the "further undefined" domain specification observer function.
- The latter function "approximates" an SQL query where we do not show the functional arguments for the RDBMS and the workspace.

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
.15.2.3 "General" Function Signatures			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 88, Topic: 0, Foil: 88	Nomi, Ishikawa, Japan 923-1292	

"General" Function Signatures

- We intimate database
 - \star retrieve (query, observer),
 - \star initialise, and
 - \star refresh (update),

function signatures:

value

query: retrive_function × RDBMS × Wn \rightarrow GUI init: (S|J)-set × RDBMS \rightarrow RDBMS × GUI refresh: (S|J)-set × RDBMS \rightarrow RDBMS × GUI

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
What Have we Covered			School of Information Sciences	=
			1-1, Asahidai, Tatsunokuchi	**
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 89, Topic: 0, Foil: 89	Nomi, Ishikawa, Japan 923-1292	

- We have given a rather large fragment of a **domain description**.
- We have postulated and given small fragments of four **domain requirement prescriptions**.
- We have indicated how these domain requirements were "derived" from the domain description.
- We have formalised the domain description.
- We hardly formalises the domain requirements. But could (easily) do that!
- The four domain requirements reflect **different problem frames**.

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
.17 Domains, Requirements and Problem Frames			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 90, Topic: 0, Foil: 90	Nomi, Ishikawa, Japan 923-1292	

Domains, Requirements and Problem Frames

- We claim to have intimated the following problem frames (PF):
 - *** Maintenance**: Weak Reactive⁷ \oplus II PF
 - * Traffic Control: Strong Reactive⁸ \oplus II PF.
 - * Simulation: Computation \oplus Virtual Real-time \oplus II PF.
 - * **Logistics**: **Computation** \oplus II PF.
 - *** Common Software**: **II: Information Intensive** PF.

+81-761-51-1275, Fax: +81-761-51-1149

© Dines Bjørner, 2006

E-mail: bjorner@gmail.com; URL: http://www.jaist.ac.jp/~bjorner

⁷Weak reactive: Non real-time

⁸Strong reactive: "Critical" (i.e., hard) real-time

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
1 General Observations			School of Information Sciences	Ħ
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 91, Topic: 0, Foil: 91	1-1, Asahidai, Tatsunokuchi Nomi, Ishikawa, Japan 923-1292	-

The Triptych and the Problem Frame Approaches General Observations

- The triptych approach advises that software development includes: \star domain engineering (DE),
 - \star requirements engineering (**RE**), and
 - \star software design (SD).
- The triptych approach **does not replace** the PF approach.
- To me the triptych approach **augments**, **supplements** the PF approach.

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
.18.2 Specific Observations			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 92, Topic: 0, Foil: 92	Nomi, Ishikawa, Japan 923-1292	

Specific Observations

• The triptych approach

 \star does not mandate strict linear adherence to \mathbf{DE} \rightarrow \mathbf{RE} \rightarrow \mathbf{SD}

 \star but assumes $\mathbf{DE} \leftrightarrow \mathbf{RE} \leftrightarrow \mathbf{SD} \leftrightarrow \mathbf{DE}$ iteration.

• In fact:

 \star It is impossible to "discover"

 \diamond all that is relevant about the domain

 \diamond before proceeding to understand the requirements,

and

 \diamond all that is relevant about the requirements

 \diamond before proceeding to design the software,

 $\star \mathcal{E}$ tcetera!

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	
1 The Grand Challenge of VSTTE			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	DTU #	
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 93, Topic: 0, Foil: 93	Nomi, Ishikawa, Japan 923-1292		

Grand Challenges of Computing Scie	ence
The Grand Challenge of VSTTE	

- The GC of $VSTTE^9$ to me
 - \star appears to focus on "a million lines" of program code
 - \star that to me appears to be verified
 - \star with respect to program code annotations
 - \star where it is not clear to what extent those annotations
 - \star relate to properties of the code,
 - \star to requirements, and
 - \star to domain assumptions.

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	
.19.2 The Grand Challenge of Ubiquitous Computing			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	Ħ	
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 94, Topic: 0, Foil: 94	Nomi, Ishikawa, Japan 923-1292		

The Grand Challenge of Ubiquitous Computing

- The grand challenge of **ubiquitous computing** appears to offer a very nice opportunity for a "foothill"¹⁰ experimental project.
 - ***** Take the proposed **Automated Highway** project.
 - \star As it could be conceived one is thinking of deploying computers and communication wherever feasible (sometime in future) in the safe and efficient driving of cars, in sorting out cross traffic, etc.
 - \star So here a far more detailed domain description of transportation nets than intimated here is needed.
 - \star Etcetera!

+81-761-51-1275, Fax: +81-761-51-1149

¹⁰ "Foothill" project: This is one of those terible "americanisms": apparently used to characterise a pre-cursor like, or aerhaps rather initial stage project.

ains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU	
Conclusion			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	₩	
/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 95, Topic: 0, Foil: 95	Nomi, Ishikawa, Japan 923-1292		
				1	

Conclusion

• So I immodestly propose

 \star that research into and use of the PF approach be augmented by research into and use of the triptych approach,

and

- * to adjoin the ("otherwise") highly laudable VSTTE effort
 * with some serious, viz., triptych-oriented program code development.
- I hope to be able to contribute to the grand challenge of ubiquitous computing.

Domains and Problem Frames: IWAAPF, Shanghai		May 23, 2006	Japan Advanced Institute of Science & Technology	DTU
.20 Conclusion			School of Information Sciences 1-1, Asahidai, Tatsunokuchi	₩
home/db/doreso/frame/frame2	May 23, 2006, 02:56	Page 96, Topic: 0, Foil: 96	Nomi, Ishikawa, Japan 923-1292	

Thanks