
Introduction to mesh
generation (in Matlab)

By Allan P. Engsig-Karup

2/18

Overview

§  Introduction to mesh generation
§  Introduction to DistMesh for Matlab

§  Goal: Introduce you to DistMesh for use
with DG-FEM based models.

3/18

Why do we need a mesh?

§  We need to represent the (usually finite) physical domain
in some way discretely for numerical computations.

§  In sub domain methods, e.g. Finite volume or FEM
methods, it is possible to independently consider the
problem solution procedure and mesh generation as two
distinct problems.

§  This is very convenient if we want to solve more than
one problem governed by the same PDEs!

4/18

What defines a mesh?
§  Here we define a mesh as a discrete

representation Ωh of some spatial
domain or topology Ω.

§  A mesh can be sub divided into K
smaller non-overlapping sub domains
 such that .

§  Mesh generation can be a demanding
and non-trivial task. E.g. for complex
geometries or objects.

§  Unstructured triangular meshes have
good support for representing complex
domains (or geometries) and mesh
adaption (coarsening/refinement).

k
hΩ k

h

K

k
h Ω=Ω

=1


F-15. From: www.USEMe.org

Example. Triangulation.

5/18

What defines a mesh?

§  A mesh can be completely defined in terms of (unique)
vertices and a mesh element table (triangulation).

§  For the purpose of specifying appropriate boundary
conditions we may for convenience use a boundary type
table.

§  Simple meshes can be created manually by hand.
However, automatic mesh generation is generally faster
and more efficient, although may require some user
input for handling complex meshes.

§  Note: Mesh data can conveniently be stored for reuse
several times.

6/18

Mesh generators available?

§  Lots of standard mesh generators available! These
generators can be used to solve a given mesh
generation problem. (but may require a translation script)

§  An example of a free software distribution for generating
unstructured and triangular meshes is DistMesh
(Matlab).

7/18

Introduction to DistMesh for Matlab

§  Persson, P.-O. and Strang, G. 2004 A simple mesh
generator in Matlab. SIAM Review.
Download scripts at:
http://www-math.mit.edu/~persson/mesh/index.html

§  A simple algorithm that combines a physical principle of
force equilibrium in a truss structure with a mathematical
representation of the geometry using signed distance
functions.

8/18

Introduction to DistMesh for Matlab
§  Algorithm (Conceptual);

Step 1. Define a domain using signed distance functions.
Step 2. Distribute a set of nodes interior to the domain.
Step 3. Move interior nodes to obtain force equilibirum.
Step 4. Apply terminate criterion when all nodes are fixed in space.

§  Post-processing steps (Preparation);

Step 5. Validate output!
Step 6. Reorder element vertices to be defined anti-clockwise for

 use with DG-FEM.
Step 7. Setup boundary table.
Step 8. Store mesh for reuse.

9/18

Introduction to DistMesh for Matlab

Signed distance function, d(x);

Define metric using an appropriate norm. E.g. The usual

Euclidian metric.

⎪
⎩

⎪
⎨

⎧

Ω∉>

Ω∂∈

Ω∈<

=

(exterior),0
(boundary),0
(interior),0

)(
x
x
x

xd

d<0 d>0

d=0
Ω	

∂Ω	

10/18

Introduction to DistMesh for Matlab

§  Combine geometries defined by distance functions using
the Union, difference and intersection operations (set
theory);

Union:

Difference:

Intersection;

))(),(min(21 xdxd

max(d1(x),−d2 (x))∪
max(−d1(x),d2 (x))

))(),(max(21 xdxd

11/18

Example 1. Create a uniform mesh using DistMesh.

Square with hole

Using DistMesh (in Matlab) in only 3 lines of code:

>> fd=inline('ddiff(drectangle(p,-1,1,-1,1),dcircle(p,0,0,0.4))','p');
>> pfix = [-1,-1;-1,1;1,-1;1,1];
>> [p,t] = distmesh2d(fd,@huniform,0.125,[-1,-1;1,1],pfix);

Introduction to DistMesh for Matlab

Visualized distance function Mesh

12/18

DistMesh output; (two tables)

 p Unique vertice coordinates
 t Element to Vertice table
 (not reordered automatically by DistMesh)

From this we can determine, e.g.

 >> K=size(t,1); %Number of elements
 >> Nv=size(p,1); %Number of vertices in mesh
 >> Nfaces=size(t,2); %Number of faces/element
 >> VX = p(:,1); %Vertice x-coordinates

 >> VY = p(:,2); %Vertice y-coordinates
 >> EToV = t; %Element to Vertice table

Introduction to DistMesh for Matlab

13/18

Introduction to DistMesh for Matlab

DG-FEM convention for standard element definitions;

§  Vertices are numbered anti-clockwise.
§  Faces are numbered anti-clockwise with the first face

beeing the one that connects the first two vertices.

14/18

-1

-0.5

0

0.5

1

-1
-0.5

0
0.5

1
1

1.5

2

2.5

x

Element size function

y

Si
ze

*h
0

Example 2. Create a refined mesh using DistMesh.

Square with hole

>> fd = inline('ddiff(drectangle(p,-1,1,-1,1),dcircle(p,0,0,0.4))','p');
>> pfix = [-1,-1;-1,1;1,-1;1,1];
>> fh = inline(['min(sqrt(p(:,1).^2 + p(:,2).^2) , 1)'],'p');
>> [p,t] = distmesh2d(fd,fh,0.125/2.5,[-1,-1;1,1],pfix);

Introduction to DistMesh for Matlab

Visualized element size function Mesh

15/18

Element size function in DistMesh;

From former example;

>> fh = inline(['min(sqrt(p(:,1).^2 + p(:,2).^2) , 1)'],'p');
>> [p,t] = distmesh2d(fd,fh,h0,[-1,-1;1,1],pfix);

§  Function fh Defines relative sizes of elements in final mesh.

(fh=constant result in uniform distribution)
§  The initial characteristic size of the elements is h0.
§  In final distribution, the characteristic size of the smallest elements in the mesh

will be approx. h0;

-1

-0.5

0

0.5

1

-1
-0.5

0
0.5

1
1

1.5

2

2.5

x

Element size function

y

Si
ze

*h
0

Introduction to DistMesh for Matlab

Visualized element size function Mesh

16/18

Example 3. Selecting boundary nodes.

Square with hole

>> fdInner = inline(’dcircle(p,0,0,0.4)’,’p’);
>> nodesInner = find(abs(fdInner([p]))<1e-3);
>> fdOuter = inline(’drectangle(p,-1,1,-1,1)’,’p’);
>> nodesOuter = find(abs(fdOuter([p]))<1e-3);
>> nodesB = find(abs(fd([p]))<1e-3);

Introduction to DistMesh for Matlab

Inner boundary nodes Outer boundary nodes

Nodes can be selected using
distance functions;
|d| = 0 or |d| < tol

17/18

Example 4. Updating boundary table.

Square with hole

>> BCcode = 99;
>> BCType = zeros(size(EToV')); % empty BCType table
>> BCType = CorrectBCTable(K,EToV,BCType,nodesB,BCcode);

The BCType boundary table can be used to create different maps
(see the script BuildBCMaps2D.m, Section 6.4 in the textbook) for
imposing different types of boundary conditions.

Introduction to DistMesh for Matlab

18/18

Final remarks
These notes together with example scripts for
DistMesh can be found at my webpage:

 http://www.imm.dtu.dk/~apek/

Feel free to contact me at apek@imm.dtu.dk

