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Neutron Transport Equation

The monoenergetic transport equation in slab geometry with
isotropic scattering is

µ
∂I

∂x
(x , µ) + I (x , µ) =

c(x)

2

∫ 1

−1
I (x , µ′) dµ′ + q(x),

for 0 < x < τ and µ ∈ [−1, 0) ∪ (0, 1].
Boundary Conditions:

I (0, µ) = Il(µ), µ > 0; I (τ, µ) = Ir (µ), µ < 0.
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Terms in the Equation

I I is intensity of radiation at point x at angle cos−1(µ)

I τ <∞
I c ∈ C ([0, τ ]) is mean number of secondaries per collision at x

I Il and Ir are incoming intensities at the bounds

I q ∈ C ([0, τ ]) is the source

Objective: Solve for I
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Integral Equation Formulation: I

Define the scalar flux

f (x) =

∫ 1

−1
I (x , µ′) dµ′.

If f is known we can write the transport equation as

µ
∂I

∂x
(x , µ) + I (x , µ) = c(x)f (x)/2 + q(x).

We can solve this for I if we are given f .
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Computing I if µ < 0

If µ > 0 we use the left boundary condition x = 0 and get

I (x , µ) =
1

µ

∫ x

0
exp(−(x − y)/µ)

(
c(y)

2
f (y) + q(y)

)
dy

+ exp(−x/µ)Il(µ), µ > 0.
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Computing I if µ > 0

If µ < 0, we use the right boundary condition

I (x , µ) = − 1

µ

∫ τ

x
exp(−(x − y)/µ)

(
c(y)

2
f (y) + q(y)

)
dy

+ exp((τ − x)/µ)Ir (µ)

=
1

|µ|

∫ τ

x
exp(−|x − y |/|µ|)

(
c(y)

2
f (y) + q(y)

)
dy

+ exp(−|τ − x |/|µ|)Ir (µ), µ < 0.
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Equation for the Scalar Flux: I

Integrate over µ ∈ (0, 1] to obtain∫ 1

0
I (x , µ) dµ =

∫ x

0
k(x , y)f (y) dy + gl(y)

where

k(x , y) =
1

2

∫ 1

0
exp(−|x − y |/µ)

dµ

µ
c(y)

and

gl(y) =

∫ x

0

∫ 1

0

1

µ
exp(−(x − y)/µ) dµq(y) dy+

∫ 1

0
exp(−x/µ)Il(µ).
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Equation for the Scalar Flux: II

Integrate over µ ∈ [−1, 0) to obtain∫ 0

−1
I (x , µ) dµ =

∫ τ

x
k(x , y)f (y) dy + gr (y)

where

gr (y) =

∫ τ

x

∫ 0

−1

1

µ
exp(−(x − y)/µ dµq(y) dy

+

∫ 0

−1
exp(−|τ − x |/|µ|)Ir (µ) dµ.
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Equation for the Scalar Flux: III

Let I be the solution of the transport equation and f the scalar
flux.
We just proved

f −Kf = g

where the integral operator K is defined by

(Kf )(x) =

∫ τ

0
k(x , y)f (y),

and
g(x) = gl(x) + gr (x).
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Why is this good?

I f is a function of x alone.

I Solving the equation for f allows us to recover I

I Analyzing the integral equation for f is easier than analyzing
the integro-differential equation for I

Theorem (Busbridge): If ‖c‖∞ ≤ 1, then the transport equation
has a unique solution and the source iteration

fn+1 = g +Kfn

converges to the scalar flux f from any f0 ≥ 0.
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Problems?

I Approximating k is hard, so you can’t discretize the equation
for f directly.

I If c is close to 1 and τ is large, source iteration will converge
very slowly.

We can solve the first of these prolbems with a better formulation.
Solving the second will have to wait for Krylov methods.
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SN or Discrete Ordinates Discretization: I

Angular Mesh:

I Composite Gauss rule with NA points

I Subintervals: (−1, 0) and (0, 1)

I Nodes: {µk}NA
i=1; Weights: {wk}NA

i=1

I We use 20 point Gauss on each interval, so NA = 40.

Spatial mesh: {xi}Ni=1

xi = τ(i − 1)/(N − 1), for i = 1, . . . ,N; h = τ/(N − 1);
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Discrete Transport Equation: I

Let Φ ∈ RN be the approximation to the flux

φi ≈ f (xi ).

and let Ψ ∈ RN×NA approximate I

ψj
i ≈ I (xi , µj).

We solve

µj

ψj
i+1 − ψ

j
i

h
+
ψj

i+1 + ψj
i

2
=

Si+1 + Si

2
,

where . . .
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Discrete Transport Equation: II

the source is

Si =
c(xi )φi

2
+ q(xi ).

The boundary conditions are

ψj
1 = IL(µj) for muj > 0

and
ψj

N = IR(µj) for muj < 0.

We discreteize the flux equation by discretizing the derivation, not
trying to approximate k.
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Forward Sweep

For µj > 0 (i. e. NA
2 + 1 ≤ j ≤ NA) we sweep forward from i = 1

to i = N,

(µj + h/2)ψj
i+1 = h

Si+1 + Si

2
+ (µj − h/2)ψj

i ,

so

ψj
i+1 = (µj + h/2)−1

(
h
Si+1 + Si

2
+ (µj − h/2)ψj

i

)
,

for i = 1, . . . ,N − 1.
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Forward Sweep Algorithm

This algorithm computes Ψ for µj > 0
Ψ(:,NA/2 + 1 : NA) = Forward Sweep(Φ, IR , IL, q)

for j = NA/2 + 1 : NA do
ψj

1 = IL(µj)
for i = 1 : N − 1 do
ψj

i+1 = (µj + h/2)−1
(
hSi+1+Si

2 + (µj − h/2)ψj
i

)
end for

end for
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Backward Sweep

For µj < 0 (i. e. 1 ≤ j ≤ NA
2 ) we sweep backward from i = N to

i = 1

(−µj + h/2)ψj
i = h

Si+1 + Si

2
+ (−µj − h/2)ψj

i+1

so

ψj
i = (−µj + h/2)−1

(
h
Si+1 + Si

2
+ (−µj − h/2)ψj

i+1

)
for i = N − 1, . . . , 1.
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Backward Sweep Algorithm

This algorithm computes Ψ for µj < 0
Ψ(:, 1 : NA/2) = Backward Sweep(Φ, IR , IL, q)

for j = 1 : NA/2 do
ψj

N = IR(µj)
for i = N − 1 : 1 do
ψj

i = (−µj + h/2)−1
(
hSi+1+Si

2 + (−µj − h/2)ψj
i+1

)
end for

end for
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Source Iteration Map

Given Φ, compute Ψ with a forward and backward sweep.
The source iteration map S : RN → RN is

S(Φ, IR , IL, q)i ≡
NA∑
j=1

ψj
i wj

and we have solve the transport equation when

Φ = S(Φ, IR , IL, q).
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Algorithmic Description

S = Source(Φ, IR , IL, q)

for i = 1 : N do
Si = c(xi )φi

2 + q(xi ).
end for
Ψ(:,NA/2 + 1 : NA) = Forward Sweep(Φ, IR , IL, q)
Ψ(:, 1 : NA/2) = Backward Sweep(Φ, IR , IL, q)
for i = 1 : N do
Si =

∑NA
j=1 ψ

j
i wj

end for
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Expression as a Linear System

Φ = MΦ + b

where

Mφ = Source(Φ, 0, 0, 0) and b = Source(0, IR , IL, q).

No matrix representation! You can only get the matrix-vector
product via the source iteration map.
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Recovering Intensities from Fluxes: I

Suppose you have computed Φ and want to approximate

I (x , νj) for j = 1, . . . ,Nout

where {νj} are some output angles. A typical scenario is
computing exit distributions

I (0,−νj) and I (τ, νj)

for a νj > 0, 1 ≤ j ≤ Nout .
One forward and one backward sweep will do this.
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Recovering Intensities from Fluxes: II

Right exit distribution: I (τ, νj), νj > 0

for j = 1 : Nout do
ψj

1 = IL(νj)
for i = 1 : N − 1 do
ψj

i+1 = (νj + h/2)−1
(
hSi+1+Si

2 + (νj − h/2)ψj
i+1

)
end for

end for
for j = 1 : Nout do

I (τ, νj) ≈ ψj
N

end for
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Recovering Intensities from Fluxes: III

Left exit distribution: I (0,−νj), νj > 0

for j = 1 : Nout do
ψj

N = IR(−νj)
for i = N − 1 : 1 do
ψj

i = (νj + h/2)−1
(
hSi+1+Si

2 + (νj − h/2)ψj
i+1

)
end for

end for
for j = 1 : Nout do

I (0,−νj) ≈ ψj
1

end for
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Example: Source Iteration

In this example
c(x) = ωe−x/s

and
IL ≡ 1, IR ≡ 0.

We consider two cases:

I τ = 5; ω = 1, and s = 1 (easy)

I τ = 100, ω = 1, and s =∞ (hard)

Source iteration terminates when ‖Φ− S(Φ)‖ < 10−14. 41
iterations for this example with Φ0 = 0.
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Results for Easy Problem: τ = 5; ω = 1, and s = 1

NA = 80; N = 4001

µ I (τ, µ) I (0,−µ)
0.05 6.0749e-06 5.8966e-01
0.10 6.9251e-06 5.3112e-01
0.20 9.6423e-06 4.4328e-01
0.30 1.6234e-05 3.8031e-01
0.40 4.3858e-05 3.3297e-01
0.50 1.6937e-04 2.9609e-01
0.60 5.7346e-04 2.6656e-01
0.70 1.5128e-03 2.4239e-01
0.80 3.2437e-03 2.2224e-01
0.90 5.9603e-03 2.0517e-01
1.00 9.7712e-03 1.9055e-01
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Comments

I These results agree to within one digit in the last place with
(Siewert et al)

I It will take many more source iterations to get converged
results for the hard problem.

I You may need a finer angular/spatial mesh for the harder
problem.
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Linear Boltzmann Transport Equation

I will give you a program gauss.m to generate the angular weights
and nodes. Use double 40 point Gauss for this exercies as a start.

I Write a source iteration code yourself. Make c(x), τ, nx , ψL,
and ψR inputs to the program.

I Duplicate the results from the lecture and do the hard
problem.

I Perform a grid refinement study on your results for the flux.
Increase the angular mesh to double 40 point and let
nx = 8001. Do you see any significant changes?
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