The Linear Botlzmann Transport Equation

C. T. Kelley NC State University tim_kelley@ncsu.edu Research Supported by NSF, DOE, ARO, USACE

DTU ITMAN, 2011

A ₽

Outline

Linear Boltzmann Transport Equation Integral Equation Formulation S_N or Discrete Ordinates Discretization

・ロト ・回ト ・ヨト

< ≣ >

æ

<ロ> (日) (日) (日) (日) (日)

æ

Neutron Transport Equation

The monoenergetic transport equation in slab geometry with isotropic scattering is

$$\mu \frac{\partial I}{\partial x}(x,\mu) + I(x,\mu) = \frac{c(x)}{2} \int_{-1}^{1} I(x,\mu') \, d\mu' + q(x),$$

for $0 < x < \tau$ and $\mu \in [-1, 0) \cup (0, 1]$. Boundary Conditions:

$$I(0,\mu) = I_I(\mu), \mu > 0; I(\tau,\mu) = I_r(\mu), \mu < 0.$$

・ロト ・回ト ・ヨト ・ヨト

æ

Terms in the Equation

- ► I is intensity of radiation at point x at angle cos⁻¹(µ)
- $\blacktriangleright \ \tau < \infty$
- ▶ $c \in C([0, \tau])$ is mean number of secondaries per collision at x
- I_l and I_r are incoming intensities at the bounds
- $q \in C([0, \tau])$ is the source

Objective: Solve for I

< ≣ >

Integral Equation Formulation: I

Define the scalar flux

$$f(x) = \int_{-1}^{1} I(x, \mu') \, d\mu'.$$

If f is known we can write the transport equation as

$$\mu \frac{\partial I}{\partial x}(x,\mu) + I(x,\mu) = c(x)f(x)/2 + q(x).$$

We can solve this for I if we are given f.

・ロン ・回 と ・ヨン ・ヨン

3

Computing I if $\mu < 0$

If $\mu > 0$ we use the left boundary condition x = 0 and get

$$I(x,\mu) = \frac{1}{\mu} \int_0^x \exp(-(x-y)/\mu) \left(\frac{c(y)}{2}f(y) + q(y)\right) dy + \exp(-x/\mu)I_l(\mu), \ \mu > 0.$$

3

Computing *I* if $\mu > 0$

If $\mu <$ 0, we use the right boundary condition

$$\begin{split} I(x,\mu) &= -\frac{1}{\mu} \int_{-\infty}^{\tau} \exp(-(x-y)/\mu) \left(\frac{c(y)}{2} f(y) + q(y)\right) \, dy \\ &+ \exp((\tau-x)/\mu) I_r(\mu) \\ &= \frac{1}{|\mu|} \int_{-\infty}^{\tau} \exp(-|x-y|/|\mu|) \left(\frac{c(y)}{2} f(y) + q(y)\right) \, dy \\ &+ \exp(-|\tau-x|/|\mu|) I_r(\mu), \, \mu < 0. \end{split}$$

<ロ> (日) (日) (日) (日) (日)

æ

Equation for the Scalar Flux: I

Integrate over $\mu \in (0,1]$ to obtain

$$\int_0^1 I(x,\mu) \, d\mu = \int_0^x k(x,y) f(y) \, dy + g_I(y)$$

where

$$k(x,y) = \frac{1}{2} \int_{0}^{1} \exp(-|x-y|/\mu) \frac{d\mu}{\mu} c(y)$$

and

$$g_{l}(y) = \int_{0}^{x} \int_{0}^{1} \frac{1}{\mu} \exp(-(x-y)/\mu) \, d\mu q(y) \, dy + \int_{0}^{1} \exp(-x/\mu) I_{l}(\mu).$$

・ロト ・回ト ・ヨト ・ヨトー

æ

Equation for the Scalar Flux: II

Integrate over $\mu \in [-1, 0)$ to obtain

$$\int_{-1}^{0} I(x,\mu) \, d\mu = \int_{-1}^{\tau} k(x,y) f(y) \, dy + g_r(y)$$

where

$$g_r(y) = \int_x^\tau \int_{-1}^0 \frac{1}{\mu} \exp(-(x-y)/\mu \, d\mu q(y) \, dy \\ + \int_{-1}^0 \exp(-|\tau-x|/|\mu|) I_r(\mu) \, d\mu.$$

< ≣ >

Equation for the Scalar Flux: III

Let I be the solution of the transport equation and f the scalar flux.

We just proved

$$f - \mathcal{K}f = g$$

where the integral operator ${\boldsymbol{\mathcal{K}}}$ is defined by

$$(\mathcal{K}f)(x) = \int_0^\tau k(x,y)f(y),$$

and

$$g(x) = g_l(x) + g_r(x).$$

イロン イヨン イヨン イヨン

Why is this good?

- f is a function of x alone.
- Solving the equation for f allows us to recover I
- Analyzing the integral equation for f is easier than analyzing the integro-differential equation for I

<u>Theorem (Busbridge)</u>: If $||c||_{\infty} \leq 1$, then the transport equation has a unique solution and the source iteration

$$f_{n+1} = g + \mathcal{K} f_n$$

converges to the scalar flux f from any $f_0 \ge 0$.

- < ∃ >

æ

Problems?

- Approximating k is hard, so you can't discretize the equation for f directly.
- ► If c is close to 1 and \(\tau\) is large, source iteration will converge very slowly.

We can solve the first of these prolbems with a better formulation. Solving the second will have to wait for Krylov methods.

イロン イヨン イヨン イヨン

S_N or Discrete Ordinates Discretization: I

Angular Mesh:

- Composite Gauss rule with N_A points
- Subintervals: (-1, 0) and (0, 1)
- Nodes: $\{\mu_k\}_{i=1}^{N_A}$; Weights: $\{w_k\}_{i=1}^{N_A}$

▶ We use 20 point Gauss on each interval, so $N_A = 40$. Spatial mesh: $\{x_i\}_{i=1}^N$

$$x_i = au(i-1)/(N-1), ext{ for } i = 1, \dots, N; ext{ } h = au/(N-1);$$

イロン イヨン イヨン イヨン

æ

Discrete Transport Equation: I

Let $\Phi \in R^N$ be the approximation to the flux

 $\phi_i \approx f(x_i).$

and let $\Psi \in R^{N \times N_A}$ approximate I

 $\psi_i^j \approx I(x_i, \mu_j).$

We solve

$$\mu_j \frac{\psi_{i+1}^j - \psi_i^j}{h} + \frac{\psi_{i+1}^j + \psi_i^j}{2} = \frac{S_{i+1} + S_i}{2},$$

where . . .

- ∢ ≣ ▶

Discrete Transport Equation: II

the source is

$$S_i=\frac{c(x_i)\phi_i}{2}+q(x_i).$$

The boundary conditions are

$$\psi_1^j = I_L(\mu_j)$$
 for $mu_j > 0$

and

$$\psi_N^j = I_R(\mu_j)$$
 for $mu_j < 0$.

We discreteize the flux equation by discretizing the derivation, not trying to approximate k.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Forward Sweep

For $\mu_j > 0$ (i. e. $\frac{NA}{2} + 1 \le j \le NA$) we sweep forward from i = 1 to i = N,

$$(\mu_j + h/2) \psi_{i+1}^j = h \frac{S_{i+1} + S_i}{2} + (\mu_j - h/2) \psi_i^j,$$

so

$$\psi_{i+1}^{j} = (\mu_{j} + h/2)^{-1} \left(h \frac{S_{i+1} + S_{i}}{2} + (\mu_{j} - h/2) \psi_{i}^{j} \right),$$

for i = 1, ..., N - 1.

・ロト ・回ト ・ヨト ・ヨトー

æ

Forward Sweep Algorithm

This algorithm computes Ψ for $\mu_j > 0$ $\Psi(:, N_A/2 + 1 : N_A) =$ **Forward_Sweep**(Φ, I_R, I_L, q)

for
$$j = N_A/2 + 1 : N_A$$
 do
 $\psi_1^j = I_L(\mu_j)$
for $i = 1 : N - 1$ do
 $\psi_{i+1}^j = (\mu_j + h/2)^{-1} \left(h \frac{S_{i+1}+S_i}{2} + (\mu_j - h/2) \psi_i^j \right)$
end for
end for

イロン イボン イヨン イヨン 三日

Backward Sweep

For $\mu_j < 0$ (i. e. $1 \leq j \leq \frac{NA}{2}$) we sweep backward from i = N to i = 1

$$(-\mu_j + h/2)\psi_i^j = h\frac{S_{i+1} + S_i}{2} + (-\mu_j - h/2)\psi_{i+1}^j$$

so

$$\psi_i^j = (-\mu_j + h/2)^{-1} \left(h \frac{S_{i+1} + S_i}{2} + (-\mu_j - h/2) \psi_{i+1}^j \right)$$

for i = N - 1, ..., 1.

イロン イヨン イヨン イヨン

æ

Backward Sweep Algorithm

This algorithm computes Ψ for $\mu_j < 0$ $\Psi(:, 1: N_A/2) =$ **Backward_Sweep** (Φ, I_R, I_L, q)

for
$$j = 1 : N_A/2$$
 do
 $\psi_N^j = I_R(\mu_j)$
for $i = N - 1 : 1$ do
 $\psi_i^j = (-\mu_j + h/2)^{-1} \left(h\frac{S_{i+1}+S_i}{2} + (-\mu_j - h/2)\psi_{i+1}^j\right)$
end for
end for

- ∢ ≣ ▶

æ

Source Iteration Map

Given Φ , compute Ψ with a forward and backward sweep. The source iteration map $S : \mathbb{R}^N \to \mathbb{R}^N$ is

$$\mathcal{S}(\Phi, I_R, I_L, q)_i \equiv \sum_{j=1}^{N_A} \psi_i^j w_j$$

and we have solve the transport equation when

$$\Phi = \mathcal{S}(\Phi, I_R, I_L, q).$$

æ

Algorithmic Description

$$\begin{split} \mathcal{S} &= \mathbf{Source}(\Phi, I_R, I_L, q) \\ & \text{for } i = 1 : N \text{ do} \\ & S_i = \frac{c(x_i)\phi_i}{2} + q(x_i). \\ & \text{end for} \\ & \Psi(:, N_A/2 + 1 : N_A) = \mathbf{Forward}_{\mathbf{Sweep}}(\Phi, I_R, I_L, q) \\ & \Psi(:, 1 : N_A/2) = \mathbf{Backward}_{\mathbf{Sweep}}(\Phi, I_R, I_L, q) \\ & \text{for } i = 1 : N \text{ do} \\ & S_i = \sum_{j=1}^{N_A} \psi_j^j w_j \\ & \text{end for} \end{split}$$

・ロト ・回ト ・ヨト

< ≣ >

æ

Expression as a Linear System

$$\Phi = M\Phi + b$$

where

$$M\phi =$$
Source $(\Phi, 0, 0, 0)$ and $b =$ **Source** $(0, I_R, I_L, q)$.

No matrix representation! You can only get the matrix-vector product via the source iteration map.

Recovering Intensities from Fluxes: I

Suppose you have computed $\boldsymbol{\Phi}$ and want to approximate

$$I(x, \nu_j)$$
 for $j = 1, \ldots, N_{out}$

where $\{\nu_j\}$ are some output angles. A typical scenario is computing exit distributions

$$I(0, -\nu_j)$$
 and $I(\tau, \nu_j)$

for a $\nu_j > 0$, $1 \le j \le N_{out}$. One forward and one backward sweep will do this.

・ロン ・四と ・日と ・日と

æ

Recovering Intensities from Fluxes: II

Right exit distribution:
$$I(\tau, \nu_j), \nu_j > 0$$

for $j = 1 : N_{out}$ do
 $\psi_1^j = I_L(\nu_j)$
for $i = 1 : N - 1$ do
 $\psi_{i+1}^j = (\nu_j + h/2)^{-1} \left(h\frac{S_{i+1}+S_i}{2} + (\nu_j - h/2)\psi_{i+1}^j\right)$
end for
end for
for $j = 1 : N_{out}$ do
 $I(\tau, \nu_j) \approx \psi_N^j$
end for

æ

Recovering Intensities from Fluxes: III

Left exit distribution:
$$I(0, -\nu_j), \nu_j > 0$$

for $j = 1 : N_{out}$ do
 $\psi_N^j = I_R(-\nu_j)$
for $i = N - 1 : 1$ do
 $\psi_i^j = (\nu_j + h/2)^{-1} \left(h\frac{S_{i+1}+S_i}{2} + (\nu_j - h/2)\psi_{i+1}^j\right)$
end for
end for
for $j = 1 : N_{out}$ do
 $I(0, -\nu_j) \approx \psi_1^j$
end for

<ロ> (日) (日) (日) (日) (日)

æ

Example: Source Iteration

In this example

$$c(x) = \omega e^{-x/s}$$

and

$$I_L \equiv 1, I_R \equiv 0.$$

We consider two cases:

•
$$au = 5$$
; $\omega = 1$, and $s = 1$ (easy)

• $\tau = 100$, $\omega = 1$, and $s = \infty$ (hard)

Source iteration terminates when $\|\Phi - S(\Phi)\| < 10^{-14}$. 41 iterations for this example with $\Phi_0 = 0$.

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Results for Easy Problem: $\tau = 5$; $\omega = 1$, and s = 1

$$N_A = 80; N = 4001$$

μ	$I(au,\mu)$	$I(0,-\mu)$
0.05	6.0749e-06	5.8966e-01
0.10	6.9251e-06	5.3112e-01
0.20	9.6423e-06	4.4328e-01
0.30	1.6234e-05	3.8031e-01
0.40	4.3858e-05	3.3297e-01
0.50	1.6937e-04	2.9609e-01
0.60	5.7346e-04	2.6656e-01
0.70	1.5128e-03	2.4239e-01
0.80	3.2437e-03	2.2224e-01
0.90	5.9603e-03	2.0517e-01
1.00	9.7712e-03	1.9055e-01

イロト イヨト イヨト イヨト

æ

Comments

- These results agree to within one digit in the last place with (Siewert et al)
- It will take many more source iterations to get converged results for the hard problem.
- You may need a finer angular/spatial mesh for the harder problem.

▲祠 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Linear Boltzmann Transport Equation

I will give you a program gauss.m to generate the angular weights and nodes. Use double 40 point Gauss for this exercise as a start.

- Write a source iteration code yourself. Make c(x), τ, nx, ψ_L, and ψ_R inputs to the program.
- Duplicate the results from the lecture and do the hard problem.
- Perform a grid refinement study on your results for the flux. Increase the angular mesh to double 40 point and let nx = 8001. Do you see any significant changes?