Problem Set 1

Ph.D. Course 2009:
An Introduction to DG-FEM for solving partial
differential equations

If you have not already done so, please download all the Matlab codes
from the book from
http://www.nudg.org/

and store and unpack them in a directory you can use with Matlab.

To familarize ourselves with the setup for problems with one spatial
direction (1D), we consider the prototype model for hyperbolic PDEs: the
linear advection equation

Oy + cOpu =0 (1)

This equation describes translation of some quantity u(x,t) with constant
advection speed c.
Exact solutions to this equation can be shown to be of the form

u(z,t) = f(x — ct)

where f(-) is a function that defines the initial condition.

Open the three Matlab scripts AdveclDDriver.m, Advecl1D.m and Adve-
cRHS1D.m in your favorite Matlab editor. These scripts can be found in
Codes1D/ and they solve the PDE using a strong DG-FEM formulation
with a Lax-Friedrichs-type flux. The solver is initially setup for a finite
domain x € [0,2] with a boundary condition imposed at the left boundary
x =0 in AdvecRHS1D.m such that u(0,t) = g(t) with ¢(¢) defined using the
variable 'uin’ in the script (line 14).

The geometry of the domain, number of domains K and size of domain,
is controlled by the statement (in AdvecDriverlD.m, line 8)

[Nv, VX, K, EToV] = MeshGenl1D(0.0, 2.0, 10);

where the first two arguments are the left and right boundary, respectively,
and the last argument is the number of elements.

e Run AdveclDDriver.m and familiarize yourself with the different input
parameters, e.g. number of elements (K), polynomial order (N), time
step size (dt) (found in AdveclD.m, line 16) and initial condition f(x).
Change the code such that the numerical solution uy can be shown on
the fly for visual inspection.

To run the code, make sure that /CodeslD and /ServiceRoutines are
both in your path - use Matlab command addpath.

Scientific Computing Section, DTU Informatics, Kgs.-Lyngby, Denmark.

e Define a smooth initial function f(-) and describe how the numerical
solution behaves compared to the exact solution in time? For example,
do you observe losses in amplitude? Changes of initial solution profile?
What is the numerical advection speed? Change the numerical flux
type by changing « in AdvecRHS1D.m, line 9. Recall that a = 0 is an
upwind flux and o = 1 is a central flux.

e Define a smooth initial function and compute the global L?-error for
different sets of parameters (N,K) at the final time chosen. What
is the order of accuracy p in the global asymptotic error estimate
llu — up||lon < ChP for the upwind (o = 0) and central (o = 1)
schemes? To implement the global L?-norm for the error use the code
snippet below.

e Determine experimentally what is the power ¢ in the estimate ||u —
upllo,n < O(h9) and whether it depends on the flux.

e Change the time step in AdveclD.m manually and determine how the
stable time step size scale with the element size h and the polynomial
order N, i.e. What impact does this scaling have on the efficiency of
the scheme?

e Consider what changes are needed in the AdveclDxxx.m codes to solve
the linear advection equation with variable phase speed a = a(x).

err = ua - u; % compute point-wise error
M = inv(V*V?’);
for k =1 : K
errL2(k) = err(:,k)’*diag(J(:,k))*M*err(:,k);
end
errL2 = sqrt(sum(errL2)); % Global L"2-norm of error

e Define a nonsmooth initial function, e.g. a step function, and describe
how the numerical solution behaves compared to the exact solution
in time? (HINT: you will need to adjust the domain size, the initial
function and the definition of the left boundary condition.)

If time permits it

e Show using an Energy Method that solutions to the linear advection
equation conserves energy if u is assumed periodic.

e Using an energy technique, discuss how many boundary conditions are
needed in a finite domain at each end.

e To familiarize yourself with the derivation of DG-FEM schemes, derive
analytically a DG-FEM scheme for the linear advection equation and
try and compare with the implementation.

Scientific Computing Section, DTU Informatics, Kgs.-Lyngby, Denmark.

