
Jan S Hesthaven
Brown University
Jan.Hesthaven@Brown.edu

DG-FEM for PDE’s
Lecture 7

DGFEM 2009

mailto:Jan.Hesthaven@Brown.edu
mailto:Jan.Hesthaven@Brown.edu


A brief overview of what’s to come

• Lecture 1: Introduction and DG-FEM in 1D

• Lecture 2: Implementation and numerical aspects

• Lecture 3: Insight through theory

• Lecture 4: Nonlinear problems

• Lecture 5: Extension to two spatial dimensions

• Lecture 6: Introduction to mesh generation

• Lecture 7: Higher order/Global problems

• Lecture 8: 3D and advanced topics



Lecture 7

✓ Let’s briefly recall what we know

✓ Brief overview of multi-D analysis

✓ Part I: Time-dependent problems

✓ Heat equations

✓ Extensions to higher order problems

✓ Part II: Elliptic problems

✓ Different formulations

✓ Stabilization

✓ Solvers and application examples



Lets summarize
We have a thorough understanding of 1st order 
problems

✓ For the linear problem, the error analysis and
     convergence theory is essentially complete. 
✓ The theoretical support for DG for conservation
      laws is very solid.
✓ Limiting is perhaps the most pressing open problem
✓ The extension to 2D is fairly straightforward
✓ .... and we have a nice and flexible way to implement
     it all

Time to move beyond the 1st order problem



Brief overview of multi-D analysis

In 1D we discussed that 

6.7 A few theoretical results 237

In later work [190], this result was improved to

‖u − uh‖Ω,h ≤ ChN+1/2‖u‖Ω,N+1,h,

provided the triangulation is quasi-uniform in the sense that the angles in all
triangles are bounded from below by a constant independent of the element
size, h. In [190], much broader results were obtained also, including error
estimates in general Lp-norms.

It remained unclear, however, whether this result in L2 was sharp or simply
a result of the analysis. In [272], this result was further improved to the optimal
result

‖u − uh‖Ω,h ≤ ChN+1‖u‖Ω,N+2,h,

provided the grid is quasi-uniform and that all edges are bounded away from
the characteristic direction (i.e., |α·n̂| > 0 for all outward pointing normals on
the element edges). In other words, this analysis does not capture the special
case where edges are aligned with the characteristic direction.

To understand whether there are potential problems in this special case,
let us consider an example, taken from [257].

Example 6.4. Consider the special case of the neutron equation as

∂u

∂y
= 0, x ∈ [0, 1]2,

and with
u(x, 0) = x.

It is easy to see that the exact solution is u(x, y) = x.
We now assume that Ω = [0, 1]2 is triangulated using a simple grid where

hx = h = 1/I and hy = h/2 with I being the number of cells along x. In other
words, the edge length along x is twice that along y, but otherwise the grid
is entirely regular.

To solve the problem, we will use the simplest possible formulation, based
on an N = 0 basis; that is, it is a finite volume method given on the cellwise
form ∫

∂Dk
n̂yu∗ dx = 0.

Using upwinding and exploiting the geometry of the grid, it is easy to see that
the local scheme is

ui,j+1 =
1
2

[
ui−1/2,j + ui+1/2,j

]
,

where we have defined the grid function

ui,j = uh

(
ih,

jh
2

)
for

{
i = 1/2, 3/2, 5/2, . . . , I − 1/2, j = 0, 2, 4, . . . , J
i = 0, 1, 2, . . . , I, j = 1, 3, 5, . . . , J − 1.

.. but this was a somewhat special case.

Question is -- is it possible in multi-D ?

Answer - No
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Induction now allows one to write down the exact numerical solution as

ui,j =
1
2j

j∑

q=0

(
j
q

)
uj/2−q+i,0 =

1
2j

j∑

q=0

(
j
q

)
|h(j/2 − q + i)|,

since u(x, 0) = x.
Note that along x = 0 and x = 1, the grid is, by necessity, aligned with the

characteristic direction. Let us therefore consider the solution u0,1−h/2 given
as

u0,J−1 =
1
2j

j∑

q=0

(
j
q

)
|h(j/2 − q)| =

J+1∑

j=1,3,5,...

h

2j

(
j − 1

(j − 1)/2

)
,

where we refer to [257] for a derivation of the last reduction. Using Stirling’s
formula, we have

(
a

a/2

)
=

a!
(a/2)!(a/2)!

≥ c2a+1a−1/2,

such that

u0,J−1 ≥ ch
J+1∑

j=1,3,5,...

1√
j − 1

≥ ch
√

J ≥ ch1/2,

as J ∝ h−1. Since the exact solution is u(0, y) = 0, this result also reflects the
pointwise error and indicates the possibility of losing optimality for certain
special grids.

The above example reflects that if n̂ ·α = 0, there may be a loss of optimal
convergence rate, at least for N = 0. In [257], this was used to construct a
problem, based on the above example with a grid with many vertical grid
lines, which demonstrates the loss of optimality in L2 and confirms that the
original result in [190] of

‖u − uh‖Ω,h ≤ ChN+1/2‖u‖Ω,N+1,h,

is in fact sharp. It should be emphasized, though, that the suboptimal be-
havior should be expected for very specific grids only and one can generally
expect optimal order for DG-FEM when solving problems with smooth solu-
tions on general unstructured grids. Furthermore, for linear problems one can
naturally guarantee that this special case does not happen by constructing
the grid appropriately. This conforms well with what we saw in the example
of Maxwell’s equations in Section 6.5. The above discussion does not cover the
central flux and, as we will see in Chapter 7, a loss of optimality in convergence
rate is often associated with this choice of flux.

The results in Section 6.6 show that these results, as in the one-dimensional
case, can be expected to carry over to nonlinear problems with smooth solu-
tions as long as monotone fluxes are used. The proof of this for the multidi-
mensional case is given in [337, 338], again assuming the use of upwind fluxes.

... but the optimal rate is often observed as 
initial error dominates over the accumulated 
error



The heat equation

Let us consider the heat equation

7

Higher-order equations

So far, we have only considered problems with first order spatial derivatives
(e.g., as in conservation laws), and shown the methods to perform well and in
agreement with the strong theoretical foundation. It is natural to ask whether
one can extend the formulation to include more general problem types. This
is the topic of this chapter and, as we will see shortly, the generalization to
deal with higher-order spatial operators is less direct than one would expect.
Let us consider the following simple example, taken from [288].

Example 7.1. Consider the linear heat equation

∂u

∂t
=

∂2u

∂x2
, x ∈ [0, 2π],

with periodic boundary conditions and u(x, 0) = sin(x). The exact solution is
easily found as

u(x, t) = e−t sin(x).

Based on the previous discussions of the discontinuous Galerkin methods, it
is tempting to simply write the heat equation as

∂u

∂t
− ∂

∂x
ux = 0,

and then identify ux as the flux in the first order equation. The resulting
scheme becomes

vk
h = Dru

k
h, Mk duk

h

dt
− Svk

h = −
∫

∂Dk
n̂ ·

(
vk

h − v∗) !k(x) dx,

in each element, k. A reasonable choice for the flux could be a simple central
flux (i.e., v∗ = {{vh}}) since the heat equation has no preferred direction of
propagation.
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in each element, k. A reasonable choice for the flux could be a simple central
flux (i.e., v∗ = {{vh}}) since the heat equation has no preferred direction of
propagation.

We can be tempted to write this as

and then just use our standard approach

Given the nature of the problem, a central flux 
seems reasonable 
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Table 7.1. Global L2-errors for solving the heat equation using K elements, each
with a local order of approximation, N , using the scheme in Example 7.1. A ‘–’
marks that the algorithm is unstable.

N\K 10 20 40 80 160

1 4.27E-1 4.34E-1 4.37E-1 4.38E-1 4.39E-1
2 5.00E-1 4.58E-1 4.46E-1 4.43E-1 4.42E-1
4 1.68E-1 1.37E-1 1.28E-1 1.26E-1 –
8 7.46E-3 8.60E-3 – – –

0 1.57 3.14 4.71 6.28
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

u(
x,
0.
8)

N=1

Exact

N=2

N=4

Fig. 7.1. Computed solutions to the heat equation using the scheme in Example
7.1 with K = 80 elements and different orders of approximation.

In Table 7.1 we show the global L2-error (i.e., the error measured in
‖ ·‖ Ω,h), under refinement both in K and N . The results are disappointing,
displaying both lack of convergence and/or regular instability at high resolu-
tions.

To further illustrate the problem, we show the computed solutions in
Fig. 7.1 for fixed K and increasing values of N . Increasing K yields simi-
lar results as expected from Table 7.1.

A careful analysis [335] reveals that the scheme is both inconsistent and
weakly unstable, consistent with the results in Table 7.1. The instability is
driven by roundoff errors, which, in combination with the weak nature of
the instability, explains why one does not observe the instability for some
low-resolution cases in Table 7.1.
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low-resolution cases in Table 7.1.

Lets see what happens when we run it

It does not work!

It is weakly unstable
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We need a new idea -- consider
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7.1 Higher-order time-dependent problems

From the above example it is clear that a new idea is required to use the
discontinuous Galerkin method for problems with higher spatial derivatives.
This new idea, first proposed in [22], is to rewrite the high spatial derivative
as a system of first-order equations; for example, if we need to solve the (well-
posed) problem

∂u

∂t
=

P∑

p=1

∂

∂x

(
ap

∂p−1u

∂xp−1

)
+ a0u,

subject to suitable boundary conditions, we discretizing the system

∂u

∂t
=

P∑

p=1

∂apqp−1

∂x
+ a0u,

with
∀p = 1, . . . , P − 1 : qp =

∂pq

∂xp
, q0 = u.

At first, this seems to introduce several disadvantages (e.g., the memory us-
age increases significantly with the use of the system rather than the scalar
formulation). Furthermore, it also appears to be more expensive to evaluate
the spatial derivative using a first-order derivative twice rather than a directly
defined second-order operator.

In the following, we nevertheless pursue this idea in some detail for different
type of problems to illustrate that this overhead is not as bad as it appears if
we choose the numerical fluxes using certain guidelines. Subsequently, we also
briefly revisit the issue of computational cost and consider a few special ways
of addressing this.

7.1.1 The heat equation

Let us first return to the heat equation discussed in Example 7.1 and follow
the idea introduced above. We consider

∂u

∂t
=

∂

∂x
a(x)

∂u

∂x
,

with u = 0 at the outer boundaries. It is easily shown that a(x) > 0 suffices
to guarantee well-posedness. We rewrite this problem as

∂u

∂t
=

∂

∂x

√
aq, q =

√
a
∂u

∂x
,

to recover a system of first order equations. This we can discretize using the
techniques developed for the conservation laws; that is, we assume that (u, q)
can be approximated as
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We know that DG is good for 1st order systems.

Since a(x)>0 we can write this as

Now follow our standard approach246 7 Higher-order equations

[
u(x, t)
q(x, t)

]
!

[
uh(x, t)
qh(x, t)

]
=

K⊕

k=1

[
uk

h(x, t)
qk
h(x, t)

]
=

K⊕

k=1

Np∑

i=1

[
uk

h(xi, t)
qk
h(xi, t)

]
!k
i (x),

where, as usual, we represent (u, q) by N -th-order piecewise polynomials on
K elements. We recover the strong form

Mk duk
h

dt
= S̃

√
aqk

h −
∫

∂Dk
n̂ ·

(
(
√

aqk
h) − (

√
aqk

h)∗
)
!k(x) dx,

Mkqk
h = S

√
auk

h −
∫

∂Dk
n̂ ·

(√
auk

h − (
√

auk
h)∗

)
!k(x) dx,

and the weak form

Mk duk
h

dt
= −(S

√
a)T qk

h +
∫

∂Dk
n̂ · (

√
aqk

h)∗!k(x) dx, (7.1)

Mkqk
h = −(S̃

√
a)T uk

h +
∫

∂Dk
n̂ · (

√
auk

h)∗!(x) dx.

As in Section 5.2, we have introduced the two special operators

S̃
√

a
ij =

∫

Dk
!k
i (x)

d
√

a(x)!k
j (x)

dx
dx, S

√
a

ij =
∫

Dk

√
a(x)!k

i (x)
d!k

j (x)
dx

dx.

We note that these operators are closely connected as

S̃
√

a
ij + S

√
a

ji =
[√

a(x)!i(x)!j(x)
]xr

xl

.

Before defining the numerical flux, it is worth making a few observations. In
general, it is reasonable that the numerical fluxes can have dependencies as

(
√

aqh)∗ = f((
√

aqh)−, (
√

aqh)+, (
√

auh)−, (
√

auh)+),

(
√

auh)∗ = g((
√

aqh)−, (
√

aqh)+, (
√

auh)−, (
√

auh)+).
The problem with this generic form is that the two first-order equations are
tightly coupled through the numerical flux and, hence, must be solved simul-
taneously as a globally coupled system. If, however, we restrict the generality
of the numerical flux as

(
√

aqh)∗ = f((
√

aqh)−, (
√

aqh)+, (
√

auh)−, (
√

auh)+),
(
√

auh)∗ = g((
√

auh)−, (
√

auh)+),

we see that qk
h can be recovered through a local operation. Hence, the auxiliary

function, q(x, t), is a truly local variable, used only on each element to compute
the derivatives and impose boundary conditions.

Keeping in mind the inherent properties of the heat equation (i.e., there
is no preferred direction of propagation), it is natural to consider the simple
central flux

(
√

aqh)∗ = {{
√

aqh}}, (
√

auh)∗ = {{
√

auh}}.
Semidiscrete stability of this scheme is established in the following.
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Treating this as a 1st order system we have

or the corresponding weak form

Here



The heat equation

How do we choose the fluxes?
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Problem: Everything couples -- loss of locality

However, if we restrict it as
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we can eliminate q-variable locally



The heat equation

Given the nature of the heat-equation, a natural flux
could be central fluxes
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But is it stable ?

Computing the local energy in a single element yields
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So this is stable!

How about boundary conditions
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(
√

auh)∗ = {{
√

auh}} +
1
2
[[
√

a]]u+
h ,

which reduces to the central flux for the continuous case above. This yields

Θr = −1
2
{{
√

a}}
(
u−

h q+
h + u+

h q−h
)

and, hence, stability by summation over all elements. !

Based on this, there is good reason to believe that the proposed scheme is
functional. To confirm this, let us consider the implementation of the scheme
outlined in the above.

HeatCRHS1D.m

function [rhsu] = HeatCRHS1D(u,time)

% function [rhsu] = HeatCRHS1D(u,time)
% Purpose : Evaluate RHS flux in 1D heat equation
% using central flux

Globals1D;

% Define field differences at faces
du = zeros(Nfp*Nfaces,K); du(:) = (u(vmapM)-u(vmapP))/2.0;

% impose boundary condition -- Dirichlet BC’s
uin = -u(vmapI); du(mapI) = (u(vmapI)-uin)/2.0;
uout = -u(vmapO); du(mapO)=(u(vmapO) - uout)/2.0;

% Compute q and form differences at faces
q = rx.*(Dr*u) - LIFT*(Fscale.*(nx.*du));
dq = zeros(Nfp*Nfaces,K); dq(:) = (q(vmapM)-q(vmapP))/2.0;

% impose boundary condition -- Neumann BC’s
qin = q(vmapI); dq(mapI) = (q(vmapI)- qin )/2.0;
qout = q(vmapO); dq(mapO) = (q(vmapO)-qout)/2.0;

% compute right hand sides of the semi-discrete PDE
rhsu = rx.*(Dr*q) - LIFT*(Fscale.*(nx.*dq));
return

In HeatCRHS1D.m, we show the routine to compute the right-hand side
for the semidiscrete discretization of the simplest problem with a(x) = 1. We
impose homogenous Dirichlet boundary conditions by defining the exterior
ghost states (u+

h , q+
h ),

u+
h = −u−

h , q+
h = q−h ⇒

{
{{uh}} = 0, [[uh]] = 2n̂−u−

h
{{qh}} = q−h , [[qh]] = 0.
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In a similar fashion, Neumann conditions are imposed as

u+
h = u−

h , q+
h = −q−h ⇒

{
{{uh}} = u−

h , [[uh]] = 0
{{qh}} = 0, [[qh]] = 2n̂−q−h .

If the boundary conditions are inhomogeneous, this is straightforwardly mod-
ified; that is,

u+
h = −u−

h + 2f(t), q+
h = q−h ,

for a Dirichlet boundary condition u(x, t) = f(t).

Heat1D.m

function [u,time] = Heat1D(u,FinalTime)

% function [u] = Heat1D(u,FinalTime)
% Purpose : Integrate 1D heat equation until
% FinalTime starting with initial condition, u.

Globals1D;
time = 0;

% Runge-Kutta residual storage
resu = zeros(Np, K);

% compute time step size
xmin = min(abs(x(1,:)-x(2,:)));
CFL=0.25;dt = CFL*(xmin)^2;
Nsteps = ceil(FinalTime/dt); dt = FinalTime/Nsteps;

% outer time step loop
for tstep=1:Nsteps
for INTRK = 1:5
timelocal = time + rk4c(INTRK)*dt;

% compute right hand side of 1D advection equations
[rhsu] = HeatCRHS1D(u,timelocal);

% initiate and increment Runge-Kutta residuals
resu = rk4a(INTRK)*resu + dt*rhsu;

% update fields
u = u+rk4b(INTRK)*resu;

end;
% Increment time
time = time+dt;

end
return
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Inhomogeneous BC

... and likewise for Neumann

Dirichlet

Neumann
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Back to the example
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Fig. 7.2. Convergence of the scheme for solving the heat equation using a central
flux.

Section 6.5 when solving Maxwell’s equations using a central flux. For the
heat problem, this behavior is confirmed in the following theorem [78]:

Theorem 7.3. Let εu = uh − u and εq = qh − q signify the pointwise errors
for the heat equation with periodic boundaries and a constant coefficient a(x),
computed with Eq. (7.1) and central fluxes. Then

‖εu(T )‖2
Ω,h +

∫ T

0
‖εq(s)‖2

Ω,h ds ≤ Ch2N ,

where C depends on the regularity of u, T , and N . For N even, C is O(h2).

The proof is technical and can be found in [78]. The computational results
confirm that the theorem is sharp and we can only in special cases expect
optimal convergence. However, we also note that the approximation error for
u and q is of the same order.

While this loss of optimal convergence rate may appear as a minor thing, it
suggests that one should consider alternative formulations. It is worth keeping
in mind that we have considerable freedom in choosing the numerical flux
and we can use the stability considerations to guide this choice. Additional
inspiration can be gained by recalling that upwind fluxes most often leads to
the schemes with optimal convergence rates.

From the proof of Theorem 7.2 we obtain at each interface a term like

Θ = uhqh
√

a − (
√

aqh)∗uh − (
√

auh)∗qh.

To guarantee stability, we must ensure

Θ−
r − Θ+

l ≥ 0

Looks good -

.. but an even/odd
pattern
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The heat equation
Can we do anything to improve on this?

Recall the stability condition
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Theorem 7.2. The discontinuous Galerkin scheme with central fluxes for the
heat equation is stable.

Proof. Let us first consider the situation in a single interval, k, bounded by
[xk

l , xk
r ]. We form the local elementwise operator

Bh(uh, qh;φh,πh) = φT
hM

d

dt
uh − φT

h S̃
√

aqh +
[
φh(

√
aqh) − (

√
aqh)∗

]xr

xl

+πT
hMqh − πT

hS
√

auh +
[
πh(

√
auh) − (

√
auh)∗

]xr

xl
,

where we have left out the k superscript for the local element for simplicity.
We first note that if (uh, qh) satisfies the numerical scheme, then

Bh(uh, qh;φh,πh) = 0, ∀(φh,πh) ∈ Vh,

where Vh is the space of N -th-order polynomials with support on the element,
D. If we now choose the test functions as

φh = uh, πh = qh,

and use that

uT
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aqh + qT
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auh = uT
h S̃
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√

a)T qh =
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auhqh
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we recover
1
2

d

dt
‖uh‖2

D + ‖qh‖2
D + Θr − Θl = 0,

where
Θ =

√
auhqh − (

√
aqh)∗uh − (

√
auh)∗qh.

First, assume that a(x) is continuous and use the central fluxes

(
√

aqh)∗ =
√

a{{qh}}, (
√

auh)∗ =
√

a{{uh}}.

Consider xr, where we have the term

Θr = −
√

a

2
(
u−

h q+
h + u+

h q−h
)
.

Summering over all elements, we immediately recover

1
2

d

dt
‖uh‖2

Ω,h + ‖qh‖2
Ω,h = 0,

and, thus, stability.
For the slightly more general case of a(x) being only piecewise smooth, we

consider the numerical flux

(
√

aqh)∗ = {{
√

aqh}} +
1
2
[[
√

a]]q+
h ,
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at each interface. One easily shows that this is guaranteed with the flux choice

(
√

auh)∗ =
√

a−u−
h , (

√
aqh)∗ = {{

√
a}}q+

h ,

or, alternatively, through

(
√

auh)∗ = {{
√

a}}u+
h , (

√
aqh)∗ =

√
a−q−h .

A slightly more symmetric solution is

(
√

auh)∗ = {{
√

auh}} + β̂ · [[
√

auh]], (
√

aqh)∗ = {{
√

aqh}}− β̂ · [[
√

aqh]],

Here, β̂ can be taken as n̂ or −n̂, where the essential property is the difference
in sign between the two fluxes.

These choice of these fluxes, leading to methods often known as the local
discontinuous Galerkin (LDG) methods, are remarkable in that they effec-
tively utilize upwinding, even if it is counter-intuitive to do so for a problem
like the heat equation. A careful inspection of the approach reveals, however,
that the upwinding is done in a very careful way, always doing upwinding for
uh and qh in opposite directions. This is essential for the stability. In HeatLD-
GRHS1D.m, we illustrate an implementation of this for solving the constant
coefficient heat equation.

HeatLDGRHS1D.m

function [rhsu] = HeatLDGRHS1D(u,time)

% function [rhsu] = HeatLDGRHS1D(u,time,a,ax)
% Purpose: Evaluate RHS flux in 1D heat equation using an LDG flux

Globals1D;

% Define field differences at faces
du = zeros(Nfp*Nfaces,K);
du(:) = (1.0+nx(:)).*(u(vmapM)-u(vmapP))/2.0;

% impose boundary condition -- Dirichlet BC’s
uin = -u(vmapI); du(mapI) = (1.0+nx(mapI)).*(u(vmapI)- uin)/2.0;
uout = -u(vmapO); du(mapO) = (1.0+nx(mapO)).*(u(vmapO)-uout)/2.0;

% Compute q
q = rx.*(Dr*u)- LIFT*(Fscale.*(nx.*du));
dq = zeros(Nfp*Nfaces,K);
dq(:) = (1.0-nx(:)).*(q(vmapM)-q(vmapP))/2.0;

% impose boundary condition -- Neumann BC’s
qin = q(vmapI); dq(mapI) = (1.0-nx(mapI)).*(q(vmapI)- qin)/2.0;
qout = q(vmapO); dq(mapO) = (1.0-nx(mapO)).*(q(vmapO)-qout)/2.0;
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These choice of these fluxes, leading to methods often known as the local
discontinuous Galerkin (LDG) methods, are remarkable in that they effec-
tively utilize upwinding, even if it is counter-intuitive to do so for a problem
like the heat equation. A careful inspection of the approach reveals, however,
that the upwinding is done in a very careful way, always doing upwinding for
uh and qh in opposite directions. This is essential for the stability. In HeatLD-
GRHS1D.m, we illustrate an implementation of this for solving the constant
coefficient heat equation.
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% compute right hand sides of the semi-discrete PDE
rhsu = rx.*(Dr*q) - LIFT*(Fscale.*(nx.*dq));
return

As elegant as this construction appears, the motivation for considering it
is whether one can improve the convergence rate for N being odd. In Fig. 7.3
we show results for solving the heat equation, and these appear to show that
optimal order of accuracy is restored.

This observation is confirmed by the following theorem, the proof of which
can be found in [78].

Theorem 7.4. Let εu = u − uh and εq = q − qh signify the pointwise errors
for the heat equation with periodic boundaries and a constant coefficient a(x),
computed with Eq. (7.1) and LDG fluxes. Then

‖εu(T )‖2
Ω,h +

∫ T

0
‖εq(s)‖2

Ω,h ds ≤ Ch2N+2,

where C depends on the regularity of u, T , and N .

Figure 7.3 also shows that one has to be careful to claim similar results
for nonperiodic cases. Indeed, extending the LDG fluxes directly to impose
Dirichlet boundary conditions on both ends of the domain appears to destroy
the optimal convergence rate. We are not aware of an analysis confirming this
or suggesting a way to overcome the loss of optimality for the general case
with nontrivial boundary conditions.

The analysis of the schemes (i.e., stability and error estimates) assumes
that all inner products are done exactly. As discussed at length in Chapter 5,
it is often computationally advantageous to avoid this and compute with
an aliased solution and stabilization if needed. However, in contrast to pure
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Fig. 7.3. On the left, we show convergence of scheme for solving the periodic heat
equation using an LDG flux. On the right is shown the result of the same scheme
used for solving the problem with homogeneous boundary conditions.
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7.1.2 Extensions to mixed and higher-order problems

With the approach for the heat equation in place, it is natural to consider
further extensions. For instance, a very important class of problems, known
as convection-diffusion problems, is of the type

∂u

∂t
+

∂

∂x
f(u) =

∂

∂x
a(x)

∂u

∂x
,

subject to appropriate boundary and initial conditions.
To develop a suitable discretization for such problems, we write it in first-

order form as
∂u

∂t
+

∂

∂x

(
f(u) −

√
aq

)
= 0, (7.2)

q =
√

a
∂u

∂x
,

by combining the knowledge we have from solving both conservation laws and
heat equations. We can now discretize this exactly as above. The only problem
that requires attention is the choice of the numerical fluxes, (f(u) −

√
aq)∗

and (
√

au)∗.
However, based on our past discussions, it is natural to use a monotone

flux for f∗; for example, a Lax-Friedrichs flux like

f(u)∗ = {{f(u)}} +
C

2
[[u]], C ≥ max |f ′(u)|.

Furthermore, for the parts corresponding to the dissipative operator, (
√

aq)∗
and (

√
au)∗, we rely on the results of the previous section and choose either a

central flux or the LDG flux, which, at least for the purely diffusive problem,
yields optimal convergence rates.

To illustrate the behavior of this mixed approach, let us consider the fol-
lowing example:

Example 7.5. We consider the solution of the viscous Burgers’ equation

∂u

∂t
+

∂

∂x

(
u2

2

)
= ε

∂2u

∂x2
, x ∈ [−1, 1],

which has an exact traveling wave solution

u(x, t) = − tanh
(

x + 0.5 − t

2ε

)
+ 1.

To solve this, we use a standard DG method with a Lax-Friedrichs flux for the
nonlinear flux, f(u) = u2/2, and central fluxes for the dissipative operator. In
BurgersRHS1D.m, we illustrate the implementation of this approach for the
evaluation of the right-hand side, with the exact solution being used to impose
boundary conditions.
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at each interface. One easily shows that this is guaranteed with the flux choice

(
√

auh)∗ =
√

a−u−
h , (

√
aqh)∗ = {{

√
a}}q+

h ,

or, alternatively, through

(
√

auh)∗ = {{
√

a}}u+
h , (

√
aqh)∗ =

√
a−q−h .

A slightly more symmetric solution is

(
√

auh)∗ = {{
√

auh}} + β̂ · [[
√

auh]], (
√

aqh)∗ = {{
√

aqh}}− β̂ · [[
√

aqh]],

Here, β̂ can be taken as n̂ or −n̂, where the essential property is the difference
in sign between the two fluxes.

These choice of these fluxes, leading to methods often known as the local
discontinuous Galerkin (LDG) methods, are remarkable in that they effec-
tively utilize upwinding, even if it is counter-intuitive to do so for a problem
like the heat equation. A careful inspection of the approach reveals, however,
that the upwinding is done in a very careful way, always doing upwinding for
uh and qh in opposite directions. This is essential for the stability. In HeatLD-
GRHS1D.m, we illustrate an implementation of this for solving the constant
coefficient heat equation.

HeatLDGRHS1D.m

function [rhsu] = HeatLDGRHS1D(u,time)

% function [rhsu] = HeatLDGRHS1D(u,time,a,ax)
% Purpose: Evaluate RHS flux in 1D heat equation using an LDG flux

Globals1D;

% Define field differences at faces
du = zeros(Nfp*Nfaces,K);
du(:) = (1.0+nx(:)).*(u(vmapM)-u(vmapP))/2.0;

% impose boundary condition -- Dirichlet BC’s
uin = -u(vmapI); du(mapI) = (1.0+nx(mapI)).*(u(vmapI)- uin)/2.0;
uout = -u(vmapO); du(mapO) = (1.0+nx(mapO)).*(u(vmapO)-uout)/2.0;

% Compute q
q = rx.*(Dr*u)- LIFT*(Fscale.*(nx.*du));
dq = zeros(Nfp*Nfaces,K);
dq(:) = (1.0-nx(:)).*(q(vmapM)-q(vmapP))/2.0;

% impose boundary condition -- Neumann BC’s
qin = q(vmapI); dq(mapI) = (1.0-nx(mapI)).*(q(vmapI)- qin)/2.0;
qout = q(vmapO); dq(mapO) = (1.0-nx(mapO)).*(q(vmapO)-qout)/2.0;
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heat equations. We can now discretize this exactly as above. The only problem
that requires attention is the choice of the numerical fluxes, (f(u) −

√
aq)∗

and (
√

au)∗.
However, based on our past discussions, it is natural to use a monotone

flux for f∗; for example, a Lax-Friedrichs flux like

f(u)∗ = {{f(u)}} +
C

2
[[u]], C ≥ max |f ′(u)|.

Furthermore, for the parts corresponding to the dissipative operator, (
√

aq)∗
and (

√
au)∗, we rely on the results of the previous section and choose either a

central flux or the LDG flux, which, at least for the purely diffusive problem,
yields optimal convergence rates.

To illustrate the behavior of this mixed approach, let us consider the fol-
lowing example:

Example 7.5. We consider the solution of the viscous Burgers’ equation

∂u

∂t
+

∂

∂x

(
u2

2

)
= ε

∂2u

∂x2
, x ∈ [−1, 1],

which has an exact traveling wave solution

u(x, t) = − tanh
(

x + 0.5 − t

2ε

)
+ 1.
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7.1 Higher-order time-dependent problems 257

−1 −0.5 0 0.5 1
−0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

x

u(
x,
t)

t=0.0 t=0.5
t=1.0

t=1.5

101 102

10−8

10−6

10−4

10−2

K

||u
−u

h||

N=1

N=2

N=3

N=4

Fig. 7.4. On the left, we illustrate the moving front solution to the viscous Burgers’
equation. On the right, we illustrate the convergence of the scheme, showing an
O(hN+1/2) convergence rate for all orders.

In Fig. 7.4 we show both a few snapshots of the solution with ε = 0.1 and
the convergence of the error in the maximum norm. The convergence rate
generally behaves as O(hN+1/2), although there appears to be an optimal
convergence rate [i.e., O(hN+1)], for N even. Note that the convergence rate
does not degrade to O(hN ), as for the pure heat problem with central fluxes.

The analysis of the stability of the discretization for such mixed problems
follows, to a large extent, from the results for the individual operators (i.e.,
the nonlinear stability through entropy conditions combined with the bounds
of the individual terms for the linear operators). The nonlinear stability for
the convection-diffusion problem is shown rigorously in [78].

The analysis of the error (i.e., a quantitative understanding of the conver-
gence rate of the scheme discussed in detail in Chapter 5), would suggest an
expected convergence rate of O(hN+1/2) from the use of the Lax-Friedrichs
flux, in agreement with what we found in the above example. The possible loss
of accuracy from the linear operator does not appear to impact this, although
this is based on experimental evidence only.

Let us briefly also consider general higher-order spatial operators and how
to discretize these. As an example, consider the problem

∂u

∂t
=

∂3u

∂x3
.

First, we need to understand what kind of boundary conditions are required
to ensure well-posedness in a finite domain. We can understand this through
the energy method

1
2

d

dt
‖u‖2

Ω =

[
u

∂2u

∂x2
− 1

2

(
∂u

∂x

)2
]xr

xl

,
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where Ω = [xl, xr]. To ensure well-posedness we need to impose boundary
conditions like

x = xl : On u or
∂2u

∂x2
and

∂u

∂x
,

x = xr : On u or
∂2u

∂x2
.

As expected, three conditions are needed, although it is essential that two be
imposed on the left-hand side of the domain.

To discretize this problem, we proceed as for the heat equation and write
it as a system of first-order equations in the form

∂u

∂t
=

∂q

∂x
, q =

∂p

∂x
, p =

∂u

∂x
.

This can now be discretized in a straightforward manner. Proving stability
can be done in exactly the same way as for the heat equation; that is, one
forms the elementwise operator, Bh(uh, qh, ph;φh,πh, θh), as the sum of the
three first order terms. Since Bh(uh, qh, ph;φh,πh, θh) = 0 for any N -th-order
polynomial (φh,πh, θh) ∈ Vh when (uh, qh, ph) is a solution, we can choose
(φh,πh, θh) = (uh,−ph, qh). A bit of manipulation yields a local elementwise
balance as

1
2

d

dt
‖uh‖2

Dk = Θr − Θl,

Θ =
p2

h

2
− uhqh + uh(qh)∗ + qh(uh)∗ − ph(ph)∗.

We can use this to guide the choice of fluxes leading to stable schemes; for
example, the use of central fluxes on all variables yields

Θ =
1
2

(
u+

h q−h + u−
h q+

h − p−h p+
h

)
,

which, after summation over all edges, vanishes. This establishes energy con-
servation in the periodic case, as for the continuous equation.

Similar to the heat equation, we can also use an LDG-type upwinding by
choosing

(uh)∗ = u−
h , (qh)∗ = q+

h , (ph)∗ = p−h ,

or
(uh)∗ = u+

h , (qh)∗ = q−h , (ph)∗ = p−h .

A slightly different way of writing this

(uh)∗ = {{uh}} + β̂ · [[uh]], (qh)∗ = {{qh}}− β̂ · [[qh]], (ph)∗ = p−h ,

where, again, β̂ = ±n̂. The key point here is that (ph)∗ has to be taken from
the left, in agreement with the discussion of the well-posedness of the con-
tinuous problem. In DispersiveLDGRHS1D.m, we illustrate how to implement
this for the dispersive problem, subject to periodic boundary conditions.

Which boundary conditions do we need?

must be bounded
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Write it as a 1st order system

To choose the fluxes, we consider the energy

Central fluxes yields
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this for the dispersive problem, subject to periodic boundary conditions.

0

Alternative
LDG-flux
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DispersiveLDGRHS1D.m

function [rhsu] = DispersiveLDGRHS1D(u,time)

% function [rhsu] = DispersiveLDGRHS1D(u,time)
% Purpose : Evaluate RHS flux in 1D u_xxx using LDG fluxes and
% periodic BC’s

Globals1D;

% Define field differences at faces, incl BC
du = zeros(Nfp*Nfaces,K); du(:) = u(vmapM)-u(vmapP);
uin = u(vmapO); du (mapI) = u(vmapI) - uin;
uout = u(vmapI); du (mapO) = u(vmapO) - uout;
fluxu = nx.*(1.0+nx).*du/2.0;

% Compute local variable p, define differences, incl BC
p = rx.*(Dr*u) - LIFT*(Fscale.*fluxu);
dp = zeros(Nfp*Nfaces,K); dp(:) = p(vmapM)-p(vmapP);
pin = p(vmapO); dp(mapI) = p(vmapI) - pin;
pout = p(vmapI); dp(mapO) = p(vmapO) - pout;
fluxp = nx.*(1.0-nx).*dp/2.0;

% Compute local variable q, define differences, incl BC
q = rx.*(Dr*p) - LIFT*(Fscale.*fluxp);
dq = zeros(Nfp*Nfaces,K); dq(:) = q(vmapM)-q(vmapP);
qin = q(vmapO); dq (mapI) = q(vmapI) - qin;
qout = q(vmapI); dq (mapO) = q(vmapO) - qout;
fluxq = nx.*(1.0-nx).*dq/2.0;

% compute right hand sides of the semi-discrete PDE
rhsu = rx.*(Dr*q) - LIFT*(Fscale.*fluxq);
return

Let us conclude with an example.

Example 7.6. We consider the solution of the dispersive equation

∂u

∂t
=

∂3u

∂x3
, x ∈ [−1, 1],

with periodic boundary conditions and u(x, 0) = cos(πx). One easily shows
that the exact solution is given as

u(x, t) = cos(π3t + πx).

This problem is solved using both the central fluxes and the upwind-style
LDG fluxes, with the convergence results shown in Fig. 7.5.
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Fig. 7.5. On the left, we show the convergence rate for the linear third-order disper-
sive equation, solved using a DG method with central fluxes, while the right shows
the results obtained using the LDG-style upwind fluxes.

As expected, we have suboptimal convergence for certain orders when us-
ing central fluxes, while the LDG flux delivers optimal rates of convergence.
However, it comes at a cost as the time-step has to be reduced by a factor of
2 for the LDG fluxes. We shall return to this caveat shortly.

The extension of the above techniques to general higher-order equations
and mixed equations is straightforward. Analysis and details of such extension
can be found in [219, 329, 330, 331, 332, 333], covering a variety of linear
and nonlinear problems. One should generally expect convergence rates of
O(hN+1/2) when combining a Lax-Freidrichs flux for the nonlinear flux and
an LDG flux for the linear operators.

While the careful attention to the design of the fluxes suffices to ensure
that all the auxiliary variables are local, one can still voice concern about
the computational cost of this approach. In particular, the computation of a
derivative of order s requires the computation of s first derivatives in contrast
to more standard methods where an s-th-order operator is defined and applied
once.

This concern has been addressed in recent work [124, 311] for the second
order diffusion operator and in [57] for more general operators. We illustrate
the basic idea of this alternative approach by the heat equation

∂u

∂t
=

∂2u

∂x2
,

with periodic conditions. On each element, Dk, we require that
(

φh,
∂uh

∂t

)

Dk
=

(
φh,

∂2uh

∂x2

)

Dk
,

for all polynomial test functions, φh ∈ Vh. Here, uh represent the usual local
polynomial approximation to u. Integration by parts twice now results in

Consider

Central flux LDG flux

Convergence behavior
exactly as for the 2nd
order problem
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Few comments

✓ The reformulation to a system of 1st order problems
     is entirely general for any order operator

✓ When combined with other operators, one chooses
     fluxes for each operator according to the analysis.

✓ The biggest problem is cost -- a 2nd order operator
      require two derivates rather than one.

✓ There are alternative ‘direct’ ways but they tend to 
     be problem specific



What about the time step ?

For 1st order problems we know 

A brief summary

We now have a good understanding all key aspects
of the DG-FEM scheme for linear first order problems

• We understand both accuracy and stability and what
      we can expect.
• The dispersive properties are excellent.
• The discrete stability is a little less encouraging. 
     A scaling like

     is the Achilles Heel -- but there are ways!

∆t ≤ C h
aN2

How we use it to solve problems implementation

This gets worse -

∆t ≤ C

(
h

N2

)p

p = order of operator

Options :
✓ Local time stepping
✓ Implicit time stepping

Explicit 
time-stepping
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Now we could consider solving a problem like

7.2 Elliptic problems 261

(
φh,

∂uh

∂t

)

Dk
=

(
d2φh

dx2
, uh

)

Dk
+

(
n̂ · ∂uh

∂x
,φh

)

∂Dk
−

(
n̂ · uh,

dφh

dx

)

∂Dk
.

To complete the scheme, we introduce the numerical fluxes for uh and (uh)x

to obtain
(

φh,
∂uh

∂t

)

Dk
=

(
∂2φh

∂x2
, uh

)

Dk
+ (n̂ · (uh)∗x,φh)∂Dk −

(
n̂ · u∗

h,
∂φh

∂x

)

∂Dk
.

The flux choices leading to stable schemes can then be found by energy meth-
ods or entropy inequalities, resulting in both central fluxes and LDG-type
fluxes being acceptable [57]. For even-order operators a stabilizing penalty
term is required, much as we will see in more detail in the next chapter. The
error analysis for this and more general higher-order operators indicates a sub-
optimal convergence rate for many cases, but computational results confirms
optimality. See [57] for the details.

The main advantage of this formulation is the reduction of the computa-
tional work as well as a more compact formulation since the fluxes only connect
to the neighboring elements. The impact of this on the spectral radius and,
thus, the timestep is not understood at this point. Another constraint of these
methods is their less systematic nature, requiring analysis for each new type
of equation.

7.2 Elliptic problems

With the ability to solve problems with higher spatial derivatives we can
consider problems of the type

∂u

∂t
=

∂2u

∂x2
− f(x),

with appropriate boundary and initial conditions. For this problem, any of
the methods discussed in the previous section can be applied.

If, however, we are interested in a steady-state solution (i.e., ut = 0), it is
more natural to consider the elliptic problem

∂2u

∂x2
= f(x),

and invert the discrete operator to recover the approximate solution, uh. We
recognize this as the classic Poisson problem. It is well known that under mild
conditions on f(x), this problem has a unique solution [59].

As an example, let us consider the following problem

∂2u

∂x2
= − sin(x), x ∈ [0, 2π],
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If, however, we are interested in a steady-state solution (i.e., ut = 0), it is
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= − sin(x), x ∈ [0, 2π],
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subject to u(0) = u(2π) = 0 and with the exact solution u(x) = sin(x). We
use HeatCRHS1D.m to build the discrete approximation

Auh = fh,

to the second order problem by simply calling HeatCRHS1D.m with the Np×K
size identity matrix, one unit-vector at a time.

When attempting to invert A, one quickly realizes, however, that the ma-
trix is singular. This is in contrast to the continuous problem, which is uniquely
solvable. The question arises of what is causing this sudden breakdown and
why we did not experience problems when solving the heat equation.

The singularity of the discrete operator indicates that it has at least
one zero eigenvalue – in contrast to the continuous case in which there are
none once the boundary conditions are enforced. To understand the severity
of the problem, we show in Fig. 7.6 the computed eigenvalues of A close to
the real axis, confirming that all eigenvalues are negative and real but also
that there is at least one zero eigenvalue. A closer inspection reveals that
there is exactly one such zero eigenvalue and in Fig. 7.6 we also show the
corresponding eigenvector, v, for N = 1, 2, 4 and K = 6.
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Fig. 7.6. Top left shows the eigenvalues of the discrete Poisson operator, confirming
that it is singular. In the remaining three figures is shown the corresponding singular
eigenmode for K = 6 and N = 1, N = 2, and N = 4, respectively in a clockwise
direction with N = 1 in the top right corner.

However, if we are interested in the steady state we 
may be better off considering

We can use any of the methods we just derived to
obtain the linear system
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Assume we use a central flux.

When we try to solve we discover that A is singular!

262 7 Higher-order equations

subject to u(0) = u(2π) = 0 and with the exact solution u(x) = sin(x). We
use HeatCRHS1D.m to build the discrete approximation

Auh = fh,

to the second order problem by simply calling HeatCRHS1D.m with the Np×K
size identity matrix, one unit-vector at a time.

When attempting to invert A, one quickly realizes, however, that the ma-
trix is singular. This is in contrast to the continuous problem, which is uniquely
solvable. The question arises of what is causing this sudden breakdown and
why we did not experience problems when solving the heat equation.

The singularity of the discrete operator indicates that it has at least
one zero eigenvalue – in contrast to the continuous case in which there are
none once the boundary conditions are enforced. To understand the severity
of the problem, we show in Fig. 7.6 the computed eigenvalues of A close to
the real axis, confirming that all eigenvalues are negative and real but also
that there is at least one zero eigenvalue. A closer inspection reveals that
there is exactly one such zero eigenvalue and in Fig. 7.6 we also show the
corresponding eigenvector, v, for N = 1, 2, 4 and K = 6.

−15 −12 −9 −6 −3 0 3
−0.01

−0.005

0

0.005

0.01

real(λ)

im
ag
(λ
)

0 1.57 3.14 4.71 6.28
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x

v

0 1.57 3.14 4.71 6.28
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x

v

0 1.57 3.14 4.71 6.28
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x

v

Fig. 7.6. Top left shows the eigenvalues of the discrete Poisson operator, confirming
that it is singular. In the remaining three figures is shown the corresponding singular
eigenmode for K = 6 and N = 1, N = 2, and N = 4, respectively in a clockwise
direction with N = 1 in the top right corner.

N=1

N=4 N=2

K=6

K=6 K=6



Elliptic problems

What is happening?

The discontinuous basis is too rich -- it allows one 
extra null vector:

A local null vector with {{u}}=0

What can we do ?

Change the flux by penalizing this mode
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The eigenvectors for the three different orders of approximation share some
distinct features. First, we notice that they are all piecewise linear inside the
elements, as required to ensure that their second derivative reduces to zero.
However, we also note that the eigenvectors v all share the property that

v− = −v+, (7.3)

at any internal interface. Since we are using a central flux, which vanishes
exactly for this choice of values, all the elements effectively decouple. On the
other hand, this condition is the same condition that we use to impose homo-
geneous Dirichlet boundary conditions so that at the interfaces it appears as if
we have the correct zero solution. It is the added freedom in the discontinuous
basis that comes back to bite us by allowing too much flexibility, which we
cannot control using the simple central flux.

This also explains why this particular spurious mode caused no problems
in the time-dependent problem as it is characterized by being constant in time
and very rapidly varying in space. As long as the solutions are well resolved,
this mode will not cause any problems. However, for marginally resolved prob-
lems, the situation may be a little more delicate and the spurious mode may
impact the accuracy. In such cases, the stabilization methods developed for
the elliptic case can also be useful to improve the accuracy for time-dependent
problems.

With this added understanding, we can ask ourselves what to do about
it. An obvious solution would be, at least asymptotically in N and/or h,
to disallow the eigenmode with the properties in Eq. (7.3) without it also
vanishing inside the element; that is, to remove the artificial null-space.

The discontinuous Galerkin (DG) method now shows one of its strengths
by allowing us to modify the choice of the numerical flux. In particular, let
us consider a set of numerical fluxes as

q∗ = {{q}}− τ [[u]], u∗ = {{u}}.

For τ = 0 this reduces to the central flux. The role of the added term is to
penalize the solution to disallow large jumps in u; clearly if we introduce one
of the null vectors with the property in Eq. (7.3), the added penalty term
would highlight the jump. The parameter τ is chosen to control this jump.

The minor change of the flux required is illustrated in HeatCstabRHS1D.m,
which should be compared with HeatCRHS1D.m discussed Section 7.1. Indeed,
as expected, taking τ > 0 makes A, the discrete approximation to the Poisson
equation, invertible by pushing the zero eigenmode out of the kernel.

HeatCstabRHS1D.m

function [rhsu] = HeatCstabRHS1D(u,time)

% function [rhsu] = HeatCstabRHS1D(u,time)
% Purpose : Evaluate RHS flux in 1D heat equation using stabilized
% central flux

The flexibility of DG shows its strength!
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Does it work?

266 7 Higher-order equations

Let us consider a simple example to illustrate the performance when
solving the one-dimensional Poisson equation.

Example 7.7. Consider the problem

d2u

dx2
= − sin(x), x ∈ [0, 2π],

with u(0) = u(2π) = 0.
The routine for setting up the discrete Poisson operator is shown in Pois-

sonCstabRHS1D.m, and in PoissonCstabDriver1D.m, we illustrate the driver
routine needed to solve the problem.

PoissonCstab1D.m

function [A] = PoissonCstab1D();

% function [A] = PoissonCstab1D();
% Purpose: Set up symmetric Poisson matrix with estabilized
% central fluxes

Globals1D;
A = zeros(K*Np); g = zeros(K*Np,1);

% Build matrix -- one column at a time
for i=1:K*Np

g(i) = 1.0;
gmat = reshape(g,Np,K);
Avec = PoissonCstabRHS1D(gmat);
A(:,i) = reshape(Avec,K*Np,1);
g(i)=0.0;

end
return

PoissonCDriver1D.m

% Driver script for solving the 1D Poisson equation
Globals1D;

% Polynomial order used for approximation
N =4;

% Read in Mesh
[Nv, VX, K, EToV] = MeshGen1D(0,2*pi,10);

% Initialize solver and construct grid and metric
StartUp1D;
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% Set RHS
f = -J.*((invV’*invV)*sin(x));

% Set up operator
[A] = PoissonCstab1D();

% Solve Problem
solvec = A\f(:);
u = reshape(solvec,Np,K);
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Fig. 7.7. On the left, we show the convergence rate for the solving the homogeneous
Poisson problem with a stabilized central flux. On the right is shown the sparsity
pattern for K = 20 and N = 3 of the discrete Poisson operator based on this flux.

The problem is solved with different number of elements and orders of
approximation, and we show the results in Fig. 7.7, obtained with τ = 1 for
the stabilization parameter. The results indicate optimal rates of convergence,
O(hN+1).

One can naturally question whether the LDG flux, introduced to recover
optimal convergence in Section 7.1 for the heat equation, can also be used to
discretize the Poisson problem. This is naturally possible and we show in Fig.
7.8 the results of solving the problem in Example 7.5 using a local stabilized
flux of the kind

q∗h = {{qh}} + β̂ · [[qh]] − τ [[uh]], u∗
h = {{uh}}− β̂ · [[uh]],

with τ = 1 for all cases and β̂ = ±n̂. As in Fig. 7.7, we recover an optimal
convergence rate. The code used to solve the problem is a direct combination
of PoissonCstabRHS1D.m and HeatLDGRHS1D.m.

If we now compare the two plots of the nonzero elements in Fig. 7.7 and
Fig. 7.8, we note that the latter, based on the LDG fluxes, is considerably
sparser that the former, based on the central fluxes.

What about the other flux - the LDG flux?
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Consider the stabilized LDG flux
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101 102
10−12

10−10

10−8

10−6

10−4

10−2

100

K ∝ 1/h

|| u
 −

 u
h 

||

N=1

N=2

N=3

N=4

h2

h3

h4

h5

0 20 40 60 80

0

10

20

30

40

50

60

70

80

nz = 472

Fig. 7.8. On the left, we show the convergence rate for the solving the homogeneous
Poisson problem with a stabilized LDG flux. On the right is shown the sparsity
pattern of the discrete Poisson operator based on this flux.

To appreciate the source of this, consider the simplest schemes with N = 0.
In this case the scheme for element k becomes

q∗h(qk
h, qk+1

h , uk
h, uk+1

h ) − q∗h(qk
h, qk−1

h , uk
h, uk−1

h ) = hfk
h ,

u∗
h(uk

h, uk+1
h ) − u∗

h(uk
h, uk−1

h ) = hgk
h.

If we first consider the central flux with

q∗h(q−h , q+
h , u−

h , u+
h ) = {{qh}}− τ [[uh]], u∗

h(u−
h , u+

h ) = {{uh}},

we recover
uk+2

h − 2uk
h + uk−2

h

(2h)2
+ τ

uk+1
h − uk−1

h

h
= fk

h . (7.4)

One notices that the stencil is wider than would be expected; that is, the
standard second-order finite difference method uses only the nearest neighbors
in contrast to the central stencil in Eq. (7.4), which engages two levels of
elements.

If we instead consider the LDG flux

q∗h(q−h , q+
h , u−

h , u+
h ) = q−h − τ [[uh]], u∗

h(u−
h , u+

h ) = u+
h ,

we recover the stencil

uk+1
h − 2uk

h + uk−1
h

h2
+ τ

uk+1
h − uk−1

h

h
= fk

h . (7.5)

This leads to a more compact stencil by relying only on the nearest neighbors.
The sparsity patterns in Figs. 7.7 and 7.8 reflect how this carries over to the
general high-order case where the choice of the LDG flux generally leads to
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dramatic in terms of sparsity as LDG no longer guarantees nearest neigh-
bor connections on general grids, although it will remain sparser than the
multidimensional version of the central fluxes [252, 283].

The more compact discrete operator/stencil does, however, come at a price.
If we compute the condition number, κ, one observes that

κ(ALDG) ! 2κ(AC);

that is, the condition number of the LDG-based discrete operators is about
twice that of the operator based on central fluxes. The impact of this is a
slightly worse accuracy of direct solvers and increased iteration counts when
an iterative solver is used to solve the linear system.

Trying to balance sparsity and the conditioning, a possible compromise is
the internal penalty flux, defined as

q∗h = {{(uh)x}}− τ [[uh]], u∗
h = {{uh}}.

We note that for N = 0, the flux q∗h depends solely on the penalty term. This
indicates, as we will discuss shortly, that the value of τ plays a larger role for
the internal penalty flux than for the previous two cases.

Nevertheless, to first convince ourselves that this approach works, we re-
peat the problem in Example 7.5 using the internal penalty flux, and we show
the results in Fig. 7.9. As one could hope, we observe optimal rates of con-
vergence and, when comparing with Figs. 7.7 and 7.8, a sparsity pattern in
the discrete operator in between those obtained with the central flux and the
LDG flux. Furthermore, the condition number behaves as

κ(AC) ! κ(AIP );

that is, the internal penalty method appears to offer a suitable compromise
between central fluxes and LDG fluxes. An example of the implementation of
internal penalty flux is shown in PoissonIPstabRHS1D.m.
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Fig. 7.9. On the left, we show the convergence rate for the solving the homogeneous
Poisson problem with a stabilized internal penalty flux. On the right is shown the
sparsity pattern of the discrete Poisson operator based on this flux.
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Fig. 7.9. On the left, we show the convergence rate for the solving the homogeneous
Poisson problem with a stabilized internal penalty flux. On the right is shown the
sparsity pattern of the discrete Poisson operator based on this flux.

Mission 
accomplished
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Remaining question: How do you choose   ?τ

The analysis shows that:

✓ For the central flux,          suffices
✓ For the LDG flux,          suffices
✓ For the IP flux, one must require
 

τ > 0
τ > 0
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Let us now return to the question of how to choose the penalty parame-
ter, τ . As we will show rigorously in Section 7.2.2, for schemes based on central
or LDG fluxes, it suffices to take τ > 0 to ensure invertibility and a purely
negative real spectrum [13, 48, 49]. However, for the internal penalty-based
scheme, we must require that

τ ≥ C
(N + 1)2

h
, C ≥ 1,

to guarantee similar properties. The bound on C is derived in [281].
Whereas these results ensure invertibility and definiteness, the actual value

of τ may well affect both the conditioning and the accuracy of the scheme. In
fact, as we will see, the actual value of τ has quite a different impact on the
schemes.

PoissonIPstabRHS1D.m

function [rhsu] = PoissonIPstabRHS1D(u)

% function [rhsu] = PoissonIPstabRHS1D(u)
% Purpose : Evaluate RHS in 1D Poisson equation on symmetric form
% using stabilized internal penalty flux

Globals1D;

% Define field differences at faces
du = zeros(Nfp*Nfaces,K); du(:) = u(vmapM)-u(vmapP);

% impose boundary condition -- Dirichlet BC’s
uin = -u(vmapI); du(mapI) = u(vmapI)-uin;
uout = -u(vmapO); du(mapO) = u(vmapO)-uout;

% Compute q
fluxu = nx.*du/2.0;
ux = rx.*(Dr*u);
q = ux - LIFT*(Fscale.*fluxu);
dq = zeros(Nfp*Nfaces,K);
dq(:) = q(vmapM)-(ux(vmapM)+ux(vmapP))/2.0;

% impose boundary condition -- Neumann BC’s
qin = ux(vmapI); dq (mapI) = q(vmapI) - (ux(vmapI)+ qin )/2.0;
qout = ux(vmapO); dq (mapO) = q(vmapO) - (ux(vmapO)+ qout)/2.0;

% evaluate fluxes
hmin = 2.0/max(max(rx)); tau = Np^2/hmin;
fluxq = nx.*(dq+tau*nx.*du);

% compute right hand sides of the semi-discrete PDE
rhsu = J.*((invV’*invV)*(rx.*(Dr*q) - LIFT*(Fscale.*fluxq)));
return

These suffices to guarantee stability, 
but they may not give the best accuracy

Generally, a good choice is 
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What can we say more generally?

Consider
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37 % set up boundary condition
38 ubc = zeros(gauss.NGauss*Nfaces*K,1);
39 xbc = gauss.x(gauss.mapD); ybc = gauss.y(gauss.mapD);
40 ubc(gauss.mapD) = sin(pi*xbc).*sin(pi*ybc);
41 xbc = gauss.x(gauss.mapN); ybc = gauss.y(gauss.mapN);
42 ubc(gauss.mapN) = ...
43 gauss.nx(gauss.mapN).*(pi*cos(pi*xbc).*sin(pi*ybc)) + ...
44 gauss.ny(gauss.mapN).*(pi*sin(pi*xbc).*cos(pi*ybc));
45

46 ubc = Abc*ubc;
47

48 % solve linear system
49 solvec = (A+M)\(M*(-f(:)) + ubc);
50 u = reshape(solvec, Np, K);

In this particular example, we take a minor liberty with the evaluation of
the right-hand-side portion of the load vector by interpolating f at the ele-
mental Lagrange interpolation nodes and then evaluating the inner products.
Alternatively, one can evaluate f at cubature nodes in each element and then
evaluate the inner products accordingly.

7.2.2 A look at basic theoretical properties

To gain a better understanding of the behavior we have observed in the last
sections, let us develop some of the basic theory for DG approximations of
elliptic problems.

To keep things simple, we primarily discuss the different schemes in the
context of Poisson’s equation but conclude with a few remarks and references
for more general problems.

Recall the Poisson equation

−∇2u(x) = f(x), x ∈ Ω,

subject to homogeneous Dirichlet boundary conditions as

u(x) = 0, x ∈ ∂Ω.

Existence and uniqueness of solutions to this problem is well understood [59]
under light conditions on f and Ω. The variational formulation for finding
u ∈ H1

0 (Ω) is

a(u,φ) =
∫

Ω
∇u ·∇φ dx = (f, v)Ω , ∀φ ∈ H1

0 (Ω).

Here, H1
0 (Ω) is the space of functions u ∈ H1(Ω) for which u = 0 on ∂Ω.

This is the essential statement of coercivity.

288 7 Higher-order equations

Table 7.3. Overview of numerical flux choices

u∗
h q∗

h

Central flux {{uh}} {{qh}}− τ [[uh]]
Local DG flux (LDG) {{uh}} + β · [[uh]] {{qh}}− β[[qh]] − τ [[uh]]
Internal penalty flux (IP) {{uh}} {{∇uh}}− τ [[uh]]

We follow the approach outlined previously and rewrite the problem as a
first-order system

−∇ · q = f, q = ∇u. (7.7)
Let us now seek polynomial solutions, uh ∈ Vh = ⊕K

k=1PN (Dk), where we
recall that PN (Dk) is the space of N -th-order polynomials defined on Dk and
qh ∈ Uh = Vh × Vh := V2

h. Following the standard DG approach, we seek
(uh, qh) for all test functions (φh,πh) ∈ Vh × Uh such that

(qh,∇φh)Ω,h −
K∑

k=1

(n̂ · q∗
h,φh)∂Dk = (f,φh)Ω,h , (7.8)

(qh,πh)Ω,h =
K∑

k=1

(u∗
h, n̂ · πh)∂Dk − (uh,∇ · πh)Ω,h . (7.9)

We have introduced the numerical flux pair (u∗
h, q∗

h) to connect elements and
we summarize in Table 7.3 the choices discussed previously. Recall the stan-
dard notation that

{{u}} =
u− + u+

2
,

where u can be both a scalar or a vector. Similarly, we define the jumps along
a normal, n̂, in the standard notation as

[[u]] = n̂−u− + n̂+u+, [[u]] = n̂− · u− + n̂+ · u+.

We note that there are several lesser used alternatives to these three options
for the numerical fluxes and we refer to [13] for a complete discussion of these.

Primal forms and consistency

To get a better understanding of the different schemes, let us eliminate the
auxiliary variable, qh, to recover the primal form of the discretization. To
achieve this we need the following result:

Lemma 7.9. Assume that Ω has been triangulated into K elements, Dk. Then
K∑

k=1

(n̂ · u, v)∂Dk =
∮

Γ
{{u}} · [[v]] dx +

∮

Γi

{{v}}[[u]] dx,

where Γ represents the set of unique edges and Γi the set of unique purely
internal edges.
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Discretized as

Using one of the fluxes
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For the 3 discrete systems, one can prove (see text)

✓ They are all symmetric for any N
✓ The are all invertible provided stabilization is used
✓ The discretization is consistent
✓ The adjoint problem is consistent
✓ They have optimal convergence in L2

Many of these results can be extended to more 
general problems (saddle-point, non-coercive etc)

There are other less used fluxes also
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After things are discretized, we end up with
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systems are banded, making a direct solver the natural choice. However, for
the multidimensional case, the situation is more complex, as the linear systems
are sparse but with a structure that depends on the grid connectivity.

This is not intended to be a comprehensive review, but rather a study of
solver technology conveniently made available through Matlab. Further infor-
mation be found in some of the many excellent texts on computational linear
algebra [104, 141, 275, 308]. We will include some comments on our experi-
ence of their positive and negative aspects. At this time, it is unclear which
approach is best for general DG discretizations and we demur on some more
aggressive strategies such as the algebraic multigrid [119, 150, 245] and do-
main decomposition-based multilevel solvers [117, 133, 193, 213]. In addition,
we mostly discuss techniques that are suitable for solving the same linear sys-
tems with multiple different right-hand sides, as one might encounter when
implicitly timestepping partial differential equations.

As an example for experimentation, we consider the linear Poisson equa-
tion

∇2u = f(x, y) =
((

16 − n2
)
r2 +

(
n2 − 36

)
r4

)
sin (nθ), x2 + y2 ≤ 1,

where n = 12, r =
√

x2 + y2, θ = arctan (y, x) and the exact solution, u(x, y)
is imposed at the boundary of Ω.

Using a DG formulation with internal penalty fluxes and K = 512 ele-
ments, each of fourth order, we have a total of 7680 degrees of freedom. To
compute these, we need to solve Auh = fh for the solution vector u. The dis-
crete operator A, is a square matrix with a total of 284,100 nonzero entries,
reflecting a sparsity exceeding 95%.

7.3.1 Direct methods

We first consider the use of an LU-factorization of the matrix such that A =
LU , where the factor matrices are logically lower and upper triangular to allow
their efficient inversion. In Matlab the factorization and solution is achieved
with

>> [L, U] = lu(A);

>> u = U\(L\f);

This requires storage for the sparse matrices (A,L,U) which, in our test case,
required storage for 8,149,974 extra nonzeros in (L,U). It is evident that the
sparsity pattern of A is not compactly represented near the diagonal, so the
LU-factorization process creates factor matrices with significantly fill in; that
is, significantly more storage is required for L and U than for A. For smaller
problems, this is less of a problem, but as problems increase in size this growth
in memory usage becomes a significant concern.

We can solve this in two different ways

✓ Direct methods

✓ Iterative methods

The ‘right’ choice depends on things such as size, 
speed, sparsity etc
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Direct methods are ‘LU’ based
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Example:
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K=512
N=4

7680 DoF
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Fig. 7.14. On the left, we show the sparsity pattern of the discrete Poisson matrix
before reverse Cuthill-McKee reordering. On the right, we show the sparsity pattern
after the reordering.

To reduce the amount of fill in for the LU-factors, one can explore re-
ordering of the degrees of freedom to minimize the bandwidth of the matrix
as much a possible. A powerful approach for this is the reverse Cuthill-McKee
numbering system [125]. This is a built-in method in Matlab and provides a
permutation vector for a given sparse symmetric matrix to significantly reduce
the distance of any nonzero entry from the diagonal. To illustrate the effect
of this reordering, we contrast in Fig. 7.14 the sparsity patterns of A before
and after reordering.

To take advantage of this in the solution of the linear system, one can use
the following approach in which a permutation vector is computed, applied
to the row and column swaps to A, permute f , solve the two systems, and
permute the solution:

>> P = symrcm(A);
>> A = A(P,P);
>> rhs = rhs(P);
>> [L,U] = lu(A);
>> u = U\(L\f);
>> u(P) = u;

This simple procedure reduces the number of nonzeros in the LU-factors to
3,802,198 (i.e., a reduction of more than 50%). All subsequent tests use the
reordered A matrix.

We can further reduce the storage requirements by taking advantage of A
being a positive definite symmetric matrix and use a Cholesky factorization;
that is, find the matrix C such that A = CTC using

Reordering is needed !

8,7m extra non-zero 
entries in (L,U)

Cuthill-McKee ordering

3,7m extra non-zero 
entries in (L,U)
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Re-ordering:
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Fig. 7.14. On the left, we show the sparsity pattern of the discrete Poisson matrix
before reverse Cuthill-McKee reordering. On the right, we show the sparsity pattern
after the reordering.

To reduce the amount of fill in for the LU-factors, one can explore re-
ordering of the degrees of freedom to minimize the bandwidth of the matrix
as much a possible. A powerful approach for this is the reverse Cuthill-McKee
numbering system [125]. This is a built-in method in Matlab and provides a
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and after reordering.

To take advantage of this in the solution of the linear system, one can use
the following approach in which a permutation vector is computed, applied
to the row and column swaps to A, permute f , solve the two systems, and
permute the solution:

>> P = symrcm(A);
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>> rhs = rhs(P);
>> [L,U] = lu(A);
>> u = U\(L\f);
>> u(P) = u;

This simple procedure reduces the number of nonzeros in the LU-factors to
3,802,198 (i.e., a reduction of more than 50%). All subsequent tests use the
reordered A matrix.

We can further reduce the storage requirements by taking advantage of A
being a positive definite symmetric matrix and use a Cholesky factorization;
that is, find the matrix C such that A = CTC using

.. but A is SPD:
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Fig. 7.14. On the left, we show the sparsity pattern of the discrete Poisson matrix
before reverse Cuthill-McKee reordering. On the right, we show the sparsity pattern
after the reordering.

To reduce the amount of fill in for the LU-factors, one can explore re-
ordering of the degrees of freedom to minimize the bandwidth of the matrix
as much a possible. A powerful approach for this is the reverse Cuthill-McKee
numbering system [125]. This is a built-in method in Matlab and provides a
permutation vector for a given sparse symmetric matrix to significantly reduce
the distance of any nonzero entry from the diagonal. To illustrate the effect
of this reordering, we contrast in Fig. 7.14 the sparsity patterns of A before
and after reordering.

To take advantage of this in the solution of the linear system, one can use
the following approach in which a permutation vector is computed, applied
to the row and column swaps to A, permute f , solve the two systems, and
permute the solution:

>> P = symrcm(A);
>> A = A(P,P);
>> rhs = rhs(P);
>> [L,U] = lu(A);
>> u = U\(L\f);
>> u(P) = u;

This simple procedure reduces the number of nonzeros in the LU-factors to
3,802,198 (i.e., a reduction of more than 50%). All subsequent tests use the
reordered A matrix.

We can further reduce the storage requirements by taking advantage of A
being a positive definite symmetric matrix and use a Cholesky factorization;
that is, find the matrix C such that A = CTC usingCholesky decomp7.3 Intermission of solving linear systems 299

>> C = chol(A);
>> u = C\(C’\f);

In combination with the reordering, the number of extra nonzeros is reduced
to 1,901,109.

7.3.2 Iterative methods

For the direct methods discussed above, it is evident that the additional stor-
age requirement for the factors may become excessive. With this in mind, it is
reasonable to consider Krylov subspace iterative methods as a suitable alter-
native. Because matrix A is symmetric positive-definite, we use the conjugate
gradient (CG) method to solve the system to a chosen tolerance. Again, we
can use Matlab’s suite of iterative solvers to our advantage, allowing a solution
to be obtained by:

>> ittol = 1e-8; maxit = 1000;
>> u = pcg(A, f, ittol, maxit);

This solves the system using the CG method. There are no significant extra
storage requirements beyond the system matrix A and f , which is a definite
advantage. However, one also observes that it takes more than 100 times
longer to finish the required 818 iterations than when using the reordered
LU-factorization. In the iterative approach, each iteration involves one matrix-
vector between A and a residual vector along with a several less expensive
operations. Clearly, storage is traded for additional execution time.

We can seek to reduce the amount of solver time taken for the conjugate
gradient solver by choosing to solve

C−1Auh = C−1fh,

where we require that C−1v is easily evaluated for a given vector v and that the
preconditioner, C, approximates A well. A straightforward way to form such a
preconditioner is to compute the Cholesky factorization of A but drop entries
that do not appear in the original sparse pattern of A. Such an incomplete
Cholesky factorization and its use with the CG methods can be accomplished
in Matlab through

>> ittol = 1e-8; maxit = 1000;
>> Cinc = cholinc(OP, ’0’)
>> u = pcg(A, f, ittol, maxit, Cinc’, Cinc);

For our sample system, the zero-fill incomplete Cholesky factor requires the
storage of 154,082 entries, but the timing is improved by about a factor of
2 (i.e., it remains about 50 times slower than the reordered LU-factorization
method). However, notably the number of iterations is reduced to 138 from
818 when compared to the nonpreconditioned case.

1,9m extra non-zero 
entries in C
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If the problem is too large, iterative methods are 
the only choice
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>> C = chol(A);
>> u = C\(C’\f);

In combination with the reordering, the number of extra nonzeros is reduced
to 1,901,109.

7.3.2 Iterative methods

For the direct methods discussed above, it is evident that the additional stor-
age requirement for the factors may become excessive. With this in mind, it is
reasonable to consider Krylov subspace iterative methods as a suitable alter-
native. Because matrix A is symmetric positive-definite, we use the conjugate
gradient (CG) method to solve the system to a chosen tolerance. Again, we
can use Matlab’s suite of iterative solvers to our advantage, allowing a solution
to be obtained by:

>> ittol = 1e-8; maxit = 1000;
>> u = pcg(A, f, ittol, maxit);

This solves the system using the CG method. There are no significant extra
storage requirements beyond the system matrix A and f , which is a definite
advantage. However, one also observes that it takes more than 100 times
longer to finish the required 818 iterations than when using the reordered
LU-factorization. In the iterative approach, each iteration involves one matrix-
vector between A and a residual vector along with a several less expensive
operations. Clearly, storage is traded for additional execution time.

We can seek to reduce the amount of solver time taken for the conjugate
gradient solver by choosing to solve

C−1Auh = C−1fh,

where we require that C−1v is easily evaluated for a given vector v and that the
preconditioner, C, approximates A well. A straightforward way to form such a
preconditioner is to compute the Cholesky factorization of A but drop entries
that do not appear in the original sparse pattern of A. Such an incomplete
Cholesky factorization and its use with the CG methods can be accomplished
in Matlab through

>> ittol = 1e-8; maxit = 1000;
>> Cinc = cholinc(OP, ’0’)
>> u = pcg(A, f, ittol, maxit, Cinc’, Cinc);

For our sample system, the zero-fill incomplete Cholesky factor requires the
storage of 154,082 entries, but the timing is improved by about a factor of
2 (i.e., it remains about 50 times slower than the reordered LU-factorization
method). However, notably the number of iterations is reduced to 138 from
818 when compared to the nonpreconditioned case.

Example requires 818 iterations - 100 times slower 
than LU !

Solution: Preconditioning
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>> C = chol(A);
>> u = C\(C’\f);

In combination with the reordering, the number of extra nonzeros is reduced
to 1,901,109.

7.3.2 Iterative methods

For the direct methods discussed above, it is evident that the additional stor-
age requirement for the factors may become excessive. With this in mind, it is
reasonable to consider Krylov subspace iterative methods as a suitable alter-
native. Because matrix A is symmetric positive-definite, we use the conjugate
gradient (CG) method to solve the system to a chosen tolerance. Again, we
can use Matlab’s suite of iterative solvers to our advantage, allowing a solution
to be obtained by:

>> ittol = 1e-8; maxit = 1000;
>> u = pcg(A, f, ittol, maxit);

This solves the system using the CG method. There are no significant extra
storage requirements beyond the system matrix A and f , which is a definite
advantage. However, one also observes that it takes more than 100 times
longer to finish the required 818 iterations than when using the reordered
LU-factorization. In the iterative approach, each iteration involves one matrix-
vector between A and a residual vector along with a several less expensive
operations. Clearly, storage is traded for additional execution time.

We can seek to reduce the amount of solver time taken for the conjugate
gradient solver by choosing to solve

C−1Auh = C−1fh,

where we require that C−1v is easily evaluated for a given vector v and that the
preconditioner, C, approximates A well. A straightforward way to form such a
preconditioner is to compute the Cholesky factorization of A but drop entries
that do not appear in the original sparse pattern of A. Such an incomplete
Cholesky factorization and its use with the CG methods can be accomplished
in Matlab through

>> ittol = 1e-8; maxit = 1000;
>> Cinc = cholinc(OP, ’0’)
>> u = pcg(A, f, ittol, maxit, Cinc’, Cinc);

For our sample system, the zero-fill incomplete Cholesky factor requires the
storage of 154,082 entries, but the timing is improved by about a factor of
2 (i.e., it remains about 50 times slower than the reordered LU-factorization
method). However, notably the number of iterations is reduced to 138 from
818 when compared to the nonpreconditioned case.



Solving the systems

How to choose the preconditioning ?

.. more an art than a science !

Example - Incomplete Cholesky Preconditioning
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>> C = chol(A);
>> u = C\(C’\f);

In combination with the reordering, the number of extra nonzeros is reduced
to 1,901,109.

7.3.2 Iterative methods

For the direct methods discussed above, it is evident that the additional stor-
age requirement for the factors may become excessive. With this in mind, it is
reasonable to consider Krylov subspace iterative methods as a suitable alter-
native. Because matrix A is symmetric positive-definite, we use the conjugate
gradient (CG) method to solve the system to a chosen tolerance. Again, we
can use Matlab’s suite of iterative solvers to our advantage, allowing a solution
to be obtained by:

>> ittol = 1e-8; maxit = 1000;
>> u = pcg(A, f, ittol, maxit);

This solves the system using the CG method. There are no significant extra
storage requirements beyond the system matrix A and f , which is a definite
advantage. However, one also observes that it takes more than 100 times
longer to finish the required 818 iterations than when using the reordered
LU-factorization. In the iterative approach, each iteration involves one matrix-
vector between A and a residual vector along with a several less expensive
operations. Clearly, storage is traded for additional execution time.

We can seek to reduce the amount of solver time taken for the conjugate
gradient solver by choosing to solve

C−1Auh = C−1fh,

where we require that C−1v is easily evaluated for a given vector v and that the
preconditioner, C, approximates A well. A straightforward way to form such a
preconditioner is to compute the Cholesky factorization of A but drop entries
that do not appear in the original sparse pattern of A. Such an incomplete
Cholesky factorization and its use with the CG methods can be accomplished
in Matlab through

>> ittol = 1e-8; maxit = 1000;
>> Cinc = cholinc(OP, ’0’)
>> u = pcg(A, f, ittol, maxit, Cinc’, Cinc);

For our sample system, the zero-fill incomplete Cholesky factor requires the
storage of 154,082 entries, but the timing is improved by about a factor of
2 (i.e., it remains about 50 times slower than the reordered LU-factorization
method). However, notably the number of iterations is reduced to 138 from
818 when compared to the nonpreconditioned case.

Sparsity 
preserving

138 iterations - but still 50 times slower
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We finally supply a finite cut-off tolerance to the incomplete factorization
that limits the minimum of the entries that are added to the sparsity pattern
of the factor. Using a tolerance of 10−4 as in the following:

>> ittol = 1e-8; maxit = 1000; droptol = 1e-4;
>> Cinc = cholinc(A, droptol);
>> u = pcg(A, b, ittol, maxit, Cinc’, Cinc);

reduces the number of iterations to 17 and yields a dramatic reduction in
the execution time to just four times that of the direct solver. The amount
of extra storage increases to 197,927. This again highlights the ability to bal-
ance storage and performance by considering different solution techniques and
preconditioners.

It is important to appreciate that these results are specific to the problem
being considered. Generally, one should consider iterative problems for large
sparse problems for which excessive memory requirements would otherwise
be a bottleneck. A distinct problem for the straightforward use of iterative
methods is their inability to work with many right-hand sides at the same time.
This is in contrast to direct solvers where the reordering and factorization is
independent of the right-hand side. For further discussion and many more
details on these issues, we refer to [104, 141, 308, 275] and references therein.

7.4 The incompressible Navier-Stokes equations

The dynamics of an incompressible fluid flow in two spatial dimensions is
described by the Navier-Stokes equations as

∂u

∂t
+ (u ·∇) u = −∇p + ν∇2u, x ∈ Ω,

∇ · u = 0,

where u = (u, v), and p are the x-component of the velocity, the y-component
of the velocity, and the scalar pressure field, respectively. In conservative flux
form, the equations are

∂u

∂t
+ ∇ ·F = −∇p + ν∇2u,

∇ · u = 0,

with the flux F being

F = [F 1,F 2] =
[

u2 uv
uv v2

]
.

The equations are closed with initial conditions on the velocity fields and
boundary conditions. In particular, we shall assign different parts of the
boundary according to specific boundary conditions; for example, as inflow

Drop 
tolerance

17 iterations - only 2 times slower



Solving the systems

Choosing fast and efficient linear solvers is not 
easy -- but there are many options

✓ Direct solvers
✓MUMPS (multi-frontal parallel solver)
✓SuperLU (fast parallel direct solver)

✓ Iterative solvers
✓ Trilinos (large solver/precon library)
✓PETSc (large solver/precon library)

Very often you have to try several options and 
combinations to find the most efficient and robust one(s)



A few examples

So far we have seen lots of theory and “homework” 
problems.

To see that it also works for more complex 
problems - but still 2D - let us look at a few 
examples

✓Incompressible Navier-Stokes
✓Boussinesq problems
✓Compressible Euler equations



Incompressible fluid flow

Time-dependent Navier-Stokes equations

Written on conservation form 

• Water
• Low speed
• Bioflows
•  etc
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>> ittol = 1e-8; maxit = 1000;
>> Cinc = cholinc(OP, ’0’)
>> u = pcg(A, f, ittol, maxit, Cinc’, Cinc);

For our sample system, the zero-fill incomplete Cholesky factor requires the storage of 154,082
entries, but the timing is improved by about a factor of 2 (i.e., it remains about 50 times slower
than the reordered LU-factorization method). However, notably the number of iterations is reduced
to 138 from 818 when compared to the nonpreconditioned case.

We finally supply a finite cut-off tolerance to the incomplete factorization that limits the mini-
mum of the entries that are added to the sparsity pattern of the factor. Using a tolerance of 10−4

as in the following:

>> ittol = 1e-8; maxit = 1000; droptol = 1e-4;
>> Cinc = cholinc(A, droptol);
>> u = pcg(A, b, ittol, maxit, Cinc’, Cinc);

reduces the number of iterations to 17 and yields a dramatic reduction in the execution time to
just four times that of the direct solver. The amount of extra storage increases to 197,927. This
again highlights the ability to balance storage and performance by considering different solution
techniques and preconditioners.

It is important to appreciate that these results are specific to the problem being considered.
Generally, one should consider iterative problems for large sparse problems for which excessive
memory requirements would otherwise be a bottleneck. A distinct problem for the straightforward
use of iterative methods is their inability to work with many right-hand sides at the same time. This
is in contrast to direct solvers where the reordering and factorization is independent of the right-hand
side. For further discussion and many more details on these issues, we refer to [104, 141, 308, 275]
and references therein.

7.4 The incompressible Navier-Stokes equations

The dynamics of an incompressible fluid flow in two spatial dimensions is described by the Navier-
Stokes equations as

∂u

∂t
+ (u ·∇) u = −∇p + ν∇2u, x ∈ Ω,

∇ · u = 0,

where u = (u, v), and p are the x-component of the velocity, the y-component of the velocity, and
the scalar pressure field, respectively. In conservative flux form, the equations are

∂u

∂t
+∇ ·F = −∇p + ν∇2u,

∇ · u = 0,

with the flux F being
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F = [F 1,F 2] =
[

u2 uv
uv v2

]
.

The equations are closed with initial conditions on the velocity fields and boundary conditions. In
particular, we shall assign different parts of the boundary according to specific boundary conditions;
for example, as inflow ∂ΩI , outflow ∂ΩO, or walls ∂ΩW . The specific boundary conditions applied
on each subset of the boundary will be discussed later.

These equations constitute a mixture of a conservation law, diffusion, and constrained evolution.
The mixed nature of these equations makes discrete timestepping a more complicated affair than
has been case for the equations we have discussed previously. There are a number of different
procedures mentioned in the literature and we will make no effort to provide a thorough overview
of these techniques. Good starting points for such explorations are [97, 198].

7.4.1 Temporal splitting scheme

We consider here the stiffly stable timestepping method [196, 282] in which each timestep breaks
into three stages. The first stage amounts to explicitly integrating the conservation law component
of the equations using an Adams-Bashforth second-order scheme. The second stage involves the
projection of the updated velocity components onto the space of weakly divergence-free functions
and in the final stage, the viscous term is treated implicitly.

First define the nonlinear functions, N (u) = (Nx, Ny) = ∇ · F , as

Nx (u) = ∇ · F 1 =
∂

(
u2

)

∂x
+

∂ (uv)
∂y

, Ny (u) = ∇ · F 2 =
∂ (uv)

∂x
+

∂
(
v2

)

∂y
, (7.21)

and express the first part of the timestep as

γ0ũ− α0un − α1un−1

∆t
= −β0N (un)− β1N (un−1) . (7.22)

This method is second order in time for the velocity (see [143] for details). However, it is not self-
starting, in contrast to the Runge-Kutta schemes we have used thus far. For the first timestep we
choose the coefficients α0,α1,β0,β1 to reduce the scheme to the forward Euler method,

γ0 = 0, α0 = 1, α1 = 0, β0 = 1, β1 = 0,

consistent with the assumption that u0 and v0 are provided as initial conditions. The subsequent
timesteps are done with

γ0 =
3
2
, α0 = 2, α1 = −1

2
, β0 = 2, β1 = −1,

reflecting a second-order Adams-Bashforth method.
In the second stage, the pressure projection step, the intermediate velocities ũ are updated using

γ0

˜̃u− ũ

∆t
= −∇p̄n+1.

To close this system we seek p̄n+1 such that the divergence of ˜̃u is zero by solving for p̄n+1 as

Solved by stiffly stable time-splitting and pressure
projection
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>> ittol = 1e-8; maxit = 1000;
>> Cinc = cholinc(OP, ’0’)
>> u = pcg(A, f, ittol, maxit, Cinc’, Cinc);

For our sample system, the zero-fill incomplete Cholesky factor requires the storage of 154,082
entries, but the timing is improved by about a factor of 2 (i.e., it remains about 50 times slower
than the reordered LU-factorization method). However, notably the number of iterations is reduced
to 138 from 818 when compared to the nonpreconditioned case.

We finally supply a finite cut-off tolerance to the incomplete factorization that limits the mini-
mum of the entries that are added to the sparsity pattern of the factor. Using a tolerance of 10−4

as in the following:

>> ittol = 1e-8; maxit = 1000; droptol = 1e-4;
>> Cinc = cholinc(A, droptol);
>> u = pcg(A, b, ittol, maxit, Cinc’, Cinc);

reduces the number of iterations to 17 and yields a dramatic reduction in the execution time to
just four times that of the direct solver. The amount of extra storage increases to 197,927. This
again highlights the ability to balance storage and performance by considering different solution
techniques and preconditioners.

It is important to appreciate that these results are specific to the problem being considered.
Generally, one should consider iterative problems for large sparse problems for which excessive
memory requirements would otherwise be a bottleneck. A distinct problem for the straightforward
use of iterative methods is their inability to work with many right-hand sides at the same time. This
is in contrast to direct solvers where the reordering and factorization is independent of the right-hand
side. For further discussion and many more details on these issues, we refer to [104, 141, 308, 275]
and references therein.

7.4 The incompressible Navier-Stokes equations

The dynamics of an incompressible fluid flow in two spatial dimensions is described by the Navier-
Stokes equations as

∂u

∂t
+ (u ·∇) u = −∇p + ν∇2u, x ∈ Ω,

∇ · u = 0,

where u = (u, v), and p are the x-component of the velocity, the y-component of the velocity, and
the scalar pressure field, respectively. In conservative flux form, the equations are

∂u

∂t
+∇ ·F = −∇p + ν∇2u,

∇ · u = 0,

with the flux F being
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>> ittol = 1e-8; maxit = 1000;
>> Cinc = cholinc(OP, ’0’)
>> u = pcg(A, f, ittol, maxit, Cinc’, Cinc);

For our sample system, the zero-fill incomplete Cholesky factor requires the storage of 154,082
entries, but the timing is improved by about a factor of 2 (i.e., it remains about 50 times slower
than the reordered LU-factorization method). However, notably the number of iterations is reduced
to 138 from 818 when compared to the nonpreconditioned case.

We finally supply a finite cut-off tolerance to the incomplete factorization that limits the mini-
mum of the entries that are added to the sparsity pattern of the factor. Using a tolerance of 10−4

as in the following:

>> ittol = 1e-8; maxit = 1000; droptol = 1e-4;
>> Cinc = cholinc(A, droptol);
>> u = pcg(A, b, ittol, maxit, Cinc’, Cinc);

reduces the number of iterations to 17 and yields a dramatic reduction in the execution time to
just four times that of the direct solver. The amount of extra storage increases to 197,927. This
again highlights the ability to balance storage and performance by considering different solution
techniques and preconditioners.

It is important to appreciate that these results are specific to the problem being considered.
Generally, one should consider iterative problems for large sparse problems for which excessive
memory requirements would otherwise be a bottleneck. A distinct problem for the straightforward
use of iterative methods is their inability to work with many right-hand sides at the same time. This
is in contrast to direct solvers where the reordering and factorization is independent of the right-hand
side. For further discussion and many more details on these issues, we refer to [104, 141, 308, 275]
and references therein.

7.4 The incompressible Navier-Stokes equations

The dynamics of an incompressible fluid flow in two spatial dimensions is described by the Navier-
Stokes equations as

∂u

∂t
+ (u ·∇) u = −∇p + ν∇2u, x ∈ Ω,

∇ · u = 0,

where u = (u, v), and p are the x-component of the velocity, the y-component of the velocity, and
the scalar pressure field, respectively. In conservative flux form, the equations are

∂u

∂t
+∇ ·F = −∇p + ν∇2u,

∇ · u = 0,

with the flux F being
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F = [F 1,F 2] =
[

u2 uv
uv v2

]
.

The equations are closed with initial conditions on the velocity fields and boundary conditions. In
particular, we shall assign different parts of the boundary according to specific boundary conditions;
for example, as inflow ∂ΩI , outflow ∂ΩO, or walls ∂ΩW . The specific boundary conditions applied
on each subset of the boundary will be discussed later.

These equations constitute a mixture of a conservation law, diffusion, and constrained evolution.
The mixed nature of these equations makes discrete timestepping a more complicated affair than
has been case for the equations we have discussed previously. There are a number of different
procedures mentioned in the literature and we will make no effort to provide a thorough overview
of these techniques. Good starting points for such explorations are [97, 198].

7.4.1 Temporal splitting scheme

We consider here the stiffly stable timestepping method [196, 282] in which each timestep breaks
into three stages. The first stage amounts to explicitly integrating the conservation law component
of the equations using an Adams-Bashforth second-order scheme. The second stage involves the
projection of the updated velocity components onto the space of weakly divergence-free functions
and in the final stage, the viscous term is treated implicitly.

First define the nonlinear functions, N (u) = (Nx, Ny) = ∇ · F , as

Nx (u) = ∇ · F 1 =
∂

(
u2

)

∂x
+

∂ (uv)
∂y

, Ny (u) = ∇ · F 2 =
∂ (uv)

∂x
+

∂
(
v2

)

∂y
, (7.21)

and express the first part of the timestep as

γ0ũ− α0un − α1un−1

∆t
= −β0N (un)− β1N (un−1) . (7.22)

This method is second order in time for the velocity (see [143] for details). However, it is not self-
starting, in contrast to the Runge-Kutta schemes we have used thus far. For the first timestep we
choose the coefficients α0,α1,β0,β1 to reduce the scheme to the forward Euler method,

γ0 = 0, α0 = 1, α1 = 0, β0 = 1, β1 = 0,

consistent with the assumption that u0 and v0 are provided as initial conditions. The subsequent
timesteps are done with

γ0 =
3
2
, α0 = 2, α1 = −1

2
, β0 = 2, β1 = −1,

reflecting a second-order Adams-Bashforth method.
In the second stage, the pressure projection step, the intermediate velocities ũ are updated using

γ0

˜̃u− ũ

∆t
= −∇p̄n+1.

To close this system we seek p̄n+1 such that the divergence of ˜̃u is zero by solving for p̄n+1 as

Solved by stiffly stable time-splitting and pressure
projection



Incompressible fluid flow
The basics are
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∂ΩI , outflow ∂ΩO, or walls ∂ΩW . The specific boundary conditions applied
on each subset of the boundary will be discussed later.

These equations constitute a mixture of a conservation law, diffusion, and
constrained evolution. The mixed nature of these equations makes discrete
timestepping a more complicated affair than has been case for the equations
we have discussed previously. There are a number of different procedures
mentioned in the literature and we will make no effort to provide a thorough
overview of these techniques. Good starting points for such explorations are
[97, 198].

7.4.1 Temporal splitting scheme

We consider here the stiffly stable timestepping method [196, 282] in which
each timestep breaks into three stages. The first stage amounts to explicitly
integrating the conservation law component of the equations using an Adams-
Bashforth second-order scheme. The second stage involves the projection of
the updated velocity components onto the space of weakly divergence-free
functions and in the final stage, the viscous term is treated implicitly.

First define the nonlinear functions, N (u) = (Nx, Ny) = ∇ ·F , as

Nx (u) = ∇ · F 1 =
∂

(
u2

)

∂x
+

∂ (uv)
∂y

, Ny (u) = ∇ · F 2 =
∂ (uv)

∂x
+

∂
(
v2

)

∂y
,

(7.21)

and express the first part of the timestep as

γ0ũ − α0un − α1un−1

∆t
= −β0N (un) − β1N (un−1) . (7.22)

This method is second order in time for the velocity (see [143] for details).
However, it is not self-starting, in contrast to the Runge-Kutta schemes
we have used thus far. For the first timestep we choose the coefficients
α0,α1,β0,β1 to reduce the scheme to the forward Euler method,

γ0 = 0, α0 = 1, α1 = 0, β0 = 1, β1 = 0,

consistent with the assumption that u0 and v0 are provided as initial condi-
tions. The subsequent timesteps are done with

γ0 =
3
2
, α0 = 2, α1 = −1

2
, β0 = 2, β1 = −1,

reflecting a second-order Adams-Bashforth method.
In the second stage, the pressure projection step, the intermediate veloci-

ties ũ are updated using

γ0

˜̃u − ũ

∆t
= −∇p̄n+1.

.. and then take an inviscous time step
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∂ΩI , outflow ∂ΩO, or walls ∂ΩW . The specific boundary conditions applied
on each subset of the boundary will be discussed later.

These equations constitute a mixture of a conservation law, diffusion, and
constrained evolution. The mixed nature of these equations makes discrete
timestepping a more complicated affair than has been case for the equations
we have discussed previously. There are a number of different procedures
mentioned in the literature and we will make no effort to provide a thorough
overview of these techniques. Good starting points for such explorations are
[97, 198].

7.4.1 Temporal splitting scheme

We consider here the stiffly stable timestepping method [196, 282] in which
each timestep breaks into three stages. The first stage amounts to explicitly
integrating the conservation law component of the equations using an Adams-
Bashforth second-order scheme. The second stage involves the projection of
the updated velocity components onto the space of weakly divergence-free
functions and in the final stage, the viscous term is treated implicitly.

First define the nonlinear functions, N (u) = (Nx, Ny) = ∇ ·F , as

Nx (u) = ∇ · F 1 =
∂

(
u2

)

∂x
+

∂ (uv)
∂y

, Ny (u) = ∇ · F 2 =
∂ (uv)

∂x
+

∂
(
v2

)

∂y
,

(7.21)

and express the first part of the timestep as

γ0ũ − α0un − α1un−1

∆t
= −β0N (un) − β1N (un−1) . (7.22)

This method is second order in time for the velocity (see [143] for details).
However, it is not self-starting, in contrast to the Runge-Kutta schemes
we have used thus far. For the first timestep we choose the coefficients
α0,α1,β0,β1 to reduce the scheme to the forward Euler method,

γ0 = 0, α0 = 1, α1 = 0, β0 = 1, β1 = 0,

consistent with the assumption that u0 and v0 are provided as initial condi-
tions. The subsequent timesteps are done with

γ0 =
3
2
, α0 = 2, α1 = −1

2
, β0 = 2, β1 = −1,

reflecting a second-order Adams-Bashforth method.
In the second stage, the pressure projection step, the intermediate veloci-

ties ũ are updated using

γ0

˜̃u − ũ

∆t
= −∇p̄n+1.

The pressure is computed to ensure incompressibility
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To close this system we seek p̄n+1 such that the divergence of ˜̃u is zero by
solving for p̄n+1 as

−∇2p̄n+1 = − γ0

∆t
∇ · ũ. (7.23)

This Poisson problem is closed with Neumann boundary conditions at inflow
and wall boundaries derived from the equation as

n̂ ·∇p̄n+1 =
∂p̄n+1

∂n̂
(7.24)

= −β0n̂ ·
(

Dun

Dt
− ν∇2un

)
− β1n̂ ·

(
Dun−1

Dt
− ν∇2un−1

)

= −β0n̂ ·
(

Dun

Dt
+ ν∇× ωn

)
− β1n̂ ·

(
Dun−1

Dt
+ ν∇× ωn−1

)

where
Du

Dt
=

∂u

∂t
+ ∇ ·F (u),

is the material derivative and ωn := ∇×un is the vorticity at time t = tn. At
outflow boundaries, Dirichlet pressure boundary conditions can be specified.

We then use p̄n+1 to update the intermediate velocity by

˜̃u = ũ − ∆t

γ0
∇p̄n+1.

Finally, the timestep is completed by solving:

γ0

(
un+1 − ˜̃u

∆t

)
= ν∇2un+1, (7.25)

which expressed as implicit Helmholtz equations for the velocity components

−∇2un+1 +
γ0

ν∆t
un+1 =

γ0

ν∆t
˜̃u.

Adding the convection equations, Eq. (7.22), the pressure projection equation,
Eq. (7.23), and the viscous equations, Eq. (7.25), the effective equation to be
integrated is

γ0un+1 − α0un − α1un−1

∆t
= −∇p̄n+1 − β0N (un) − β1N (un−1) + ν∇2un+1.

7.4.2 The spatial discretization

After the temporal discretization, there are a number of possible strategies for
handling the spatial derivatives. For the nonlinear advection, Eq. (7.22), we
employ an upwind DG treatment to improve stability in advection dominated
flows. For the pressure correction step, Eq. (7.23) we use an internal penalty
formulation, with sufficient stabilization to avoid spurious solution jumps be-
tween elements. A basic treatment of the Neumann pressure condition, Eq.
(7.24), is outlined. Likewise, for the viscous correction step, Eq. (7.25), we
again consider an internal penalty DG formulation.
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.. and the viscous part is updated
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The Kovasznay flow solution

The first test case is the Kovasznay [207] analytical solution for laminar flow behind a two-
dimensional grid. This is a steady-state solution, so it does not provide a rigorous test of the
timestepping method. However, it does provide a valuable validation of the treatment of the non-
linear terms, the pressure treatment, and the viscous terms.
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Fig. 7.15. On the left is shown the geometry for the Kovasznay solution; the remaining contours show the
exact solution to the incompressible Navier-Stokes equations.

The proposed solution is an exact, steady-state solution for the incompressible Navier-Stokes
equations given by

λ :=
1
2ν
−

√
1

4ν2
+ 4π2,

u = 1− eλx cos (2πy),

v =
λ

2π
eλx sin (2πy),

p =
1
2

(
1− e2λx

)
.

The solution is used to apply Dirichlet boundary conditions for the velocity at the inflow boundary
shown in Fig. 7.15 as well as Neumann boundary conditions for the velocity at the outflow boundary.
Similarly, we use the definition of the pressure for Dirichlet boundary conditions at the outflow. For
the Neumann pressure boundary condition at the inflow, we apply the formula in Eq. (7.24).

To test the algorithm, we perform an experimental convergence analysis for polynomials up to
eighth order. The simulation is performed for one time unit with the viscosity set to ν = 1

40 . The
base mesh is shown in Fig. 7.16 and two uniform element refinements were applied to the mesh.

In Table 7.4 we show the errors tabulated by polynomial order and mesh size for the horizontal
velocity component u and the pressure p. Results for v are similar. For N > 1, we see convincing
convergence in all cases and, in general, the rate of convergence is between O(hN ) and O(hN+1)
and typically close to O(hN+1/2), as should be expected from the general theory in Section 6.7.
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Fig. 7.16. Sequence of three meshes used to perform convergence analysis for the Kovasznay solution.

Table 7.4. Maximum nodal errors for the Kovasznay solution. The maximum pointwise error for u and p
on the sequence of meshes shown in Fig. 7.16 with different order approximations. Similar results are found
for v.

Error in u Error in p
N h h/2 h/4 Rate h h/2 h/4 Rate
1 1.32E+00 7.05E-01 1.23E-01 1.71 3.13E+00 1.53E+00 3.48E-01 1.59
2 5.01E-01 9.67E-02 1.45E-02 2.55 1.47E+00 2.54E-01 2.08E-02 3.07
3 2.41E-01 2.74E-02 1.89E-03 3.49 5.02E-01 2.79E-02 2.42E-03 3.85
4 6.40E-02 3.34E-03 1.00E-04 4.66 9.31E-02 8.87E-03 2.02E-04 4.42
5 1.87E-02 6.92E-04 8.96E-06 5.51 6.15E-02 1.02E-03 1.89E-05 5.84
6 9.07E-03 5.41E-05 6.93E-07 6.84 1.23E-02 2.17E-04 2.63E-06 6.09
7 1.43E-03 1.37E-05 4.03E-08 7.56 4.73E-03 4.67E-05 1.29E-07 7.58
8 5.91E-04 1.02E-06 7.17E-09 8.16 1.52E-03 3.54E-06 1.97E-08 8.12

Vortex problem

The vortex problem is, in contrast to the Kovasznay solution above, a time-dependent flow. The
solution is set up so that the viscous terms balance the temporal derivatives in the momentum
equation and the nonlinear terms balance the gradient of the pressure. The solution is known
everywhere for all time and is given by

u = − sin (2πy)e−ν4π2t,

v = sin (2πx)e−ν4π2t,

p = − cos (2πx) cos (2πy)e−ν8π2t.

We use the exact solution to specify the velocity and pressure boundary conditions, excluding
the Neumann pressure boundary conditions at the inflows shown in Fig. 7.17, where Eq. (7.24)
is applied. A minor difference from the previous test case is that the temporal derivative of the
normal component of velocity is required for the pressure boundary equation, and this is computed
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Fig. 7.18. The top image illustrates the geometry of the domain used for cylinder flow simulations and
the bottom two images show a sequence of meshes used to perform convergence analysis.

26

27 PR = PR(vmapC); nxC = nx(mapC); nyC = ny(mapC); sJC = sJ(mapC);
28

29 hforce = -PR.*nxC + nu*( nxC.*(2*dUxdx) + nyC.*(dUydx + dUxdy) );
30 vforce = -PR.*nyC + nu*( nxC.*(dUydx+dUxdy) + nyC.*(2*dUydy) );
31

32 hforce = reshape(hforce, Nfp, length(mapC)/Nfp);
33 vforce = reshape(vforce, Nfp, length(mapC)/Nfp);
34 sJC = reshape( sJC, Nfp, length(mapC)/Nfp);
35

36 % compute weights for integrating (1,hforce) and (1,vforce)
37 V1D = Vandermonde1D(N, r(Fmask(:,1)));
38 MM1D = inv(V1D)’/V1D;
39 w = sum(MM1D, 1);
40

41 % Compute drag coefficient
42 Cd = sum(w*(sJC.*hforce));
43

44 % Compute lift coefficient
45 Cl = sum(w*(sJC.*vforce));

7.5 The compressible Navier-Stokes equations 293

Fig. 7.19. Simulation results for a K = 236, N = 10 study of the unsteady cylinder test case.

At approximately the same time, an approach, even closer to the spirit of DG methods, was
outlined as a constructive penalty formulation that provably achieved a stable coupling between
high-order elements treated in a pseudo-spectral manner [152, 153, 157]. This approach is very
similar to DG methods with weakly imposed boundary conditions but with the equations being
satisfied in a pointwise collocation sense as illustrated in Example 2.2.

The emergence of schemes based on more classic DG formulations happened almost simultane-
ously with the two previous developments. The first schemes seem to have been proposed indepen-
dently in [22, 23] and in [228, 230] for triangular meshes. This was extended to meshes of mixed
element types in [323] and time-dependent meshes in [229]. These efforts established that the DG
method could successfully resolve shock structures in a number of numerical simulations of complex
phenomena and applications.

The DG-based approach has met a certain amount of popularity and further practical results
have been obtained with these methods in [37, 38], in which a dynamic order adaptive refinement
algorithm is explored to resolve shock structures.

There are, however, some significant challenges for large-scale time-dependent simulations. The
presence of the second-order differential operators can induce very small timesteps, which we inci-
dentally avoided in the incompressible Navier-Stokes case by employing a semi-implicit time inte-
grator. In the case of the compressible Navier-Stokes equations, the diffusion operator is no longer
linear and additional consideration are required. In [116] a similar semi-implicit philosophy is ex-
plored and in [191], it was demonstrated how one can address this problem by using an implicit
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This code first computes the gradient of the velocity, extracts out the velocities on the cylinder
boundary, and then evaluates the above integrands. Finally, the integrations are performed around
the cylinder to obtain the estimates for lift and drag.

In addition, we measure the drop in pressure between the leading point of the cylinder and the
trailing point; that is, we compute

∆p = p (−0.05, 0)− p (0.05, 0) .

Once the simulation is complete, the maximum lift and drag is identified and the times at which
these maxima were achieved were compared with the reference values from [189]. In Table 7.6 we
show excellent agreement with the reference values, despite the code only using a few hundred
triangles with N = 6 compared to the many thousands of degrees of freedom used to compute the
reference values with a low-order finite element code.

Table 7.6. Maximum lift, drag coefficients, and final time pressure drop for the cylinder in the channel
test case.

K N tCd Cd tCl Cl ∆p (t = 8)
115 6 3.9394263 2.9529140 5.6742937 0.4966074 -0.1095664
460 6 3.9363751 2.9509030 5.6930431 0.4778757 -0.1116310
236 8 3.9343595 2.9417190 5.6990205 0.4879853 -0.1119122
236 10 3.9370396 2.9545659 5.6927772 0.4789706 -0.1116177
[189] N/A 3.93625 2.950921575 5.693125 0.47795 -0.1116

In Fig. 7.19 we show a snapshot of the computed solution as an illustration of the complexity
of the computed flows.

7.5 The compressible Navier-Stokes equations

Let us finally return to the problem of fully compressible gas dynamics, already discussed in Section
6.6 for the inviscid case, and consider the time-dependent compressible Navier-Stokes equations.
This serves as an application of DG methods to problems that involve a combination of a hyperbolic
system of nonlinear conservation laws with second-order dissipative terms. Both the compressible
Euler equations discussed in Section 6.6 and the incompressible Navier-Stokes equations from Sec-
tion 7.4 are special cases of these equations, obtained by dropping the viscous terms and enforcing
the velocity field to be incompressible, respectively.

During the last two decades, a number of techniques, all related to the basic DG formulation,
have been considered for effectively handling the combined hyperbolic/parabolic nature of these
equations in a high-order accurate scheme. The focus on high-order accuracy was to enable the
efficient modeling of boundary layers, shear layers, and complex vortical solutions typical of these
equations. One of the first methods to achieve high-order accuracy for these equations involved
the use of a staggered-grid Chebyshev multidomain method [202, 203, 204]. The approach relied
heavily on the use of quadrilateral elements and strong imposition of fluxes, but showed the power
of high-order elements to resolve solution structures inherent for these equations.
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where it has been assumed that d(x) has continuous first derivatives. At the free surface, we
can similarly determine a kinematic free surface condition by determining the rate of change
of z = η(x, t) as

∂tη − ∂zΦ + ∇η · ∇Φ =0 , z = η. (2.4)

We also need a dynamic free surface condition, which is given by Bernoulli’s equation having
set the atmospheric pressure to zero

∂tΦ + gη +
1

2

(

∇Φ · ∇Φ +( ∂zΦ)2
)

= 0, z = η. (2.5)

Following Zakharov (1968), Dommermuth and Yue (1987) and Witting (1984), the free
surface conditions can be reformulated by introducing variables defined directly at the free
surface

ũ ≡ (∇Φ)z=η , w̃ ≡ (∂zΦ)z=η , Φ̃ ≡ (Φ)z=η . (2.6)

The spatial and temporal differentiation of the free surface variables are by the chain rule
given as

∇Φ̃ =( ∇Φ)z=η + (∂zΦ)z=η ∇η,

∂tΦ̃ =( ∂tΦ)z=η + ∂tη (∂zΦ)z=η ,

which by using Eq. (2.4) and Eq. (2.6) can be expressed as

Ũ ≡ ∇Φ̃ = ũ + w̃∇η, (2.7)

∂tΦ̃ =( ∂tΦ)z=η + w̃2 − w̃∇η · ũ. (2.8)

Now, we can reformulate the dynamic condition Eq. (2.5) using Eq. (2.7) and (2.8) into

∂tΦ̃ + gη +
1

2

(

∇Φ̃ · ∇Φ̃ − w̃2(1 + ∇η · ∇η)
)

= 0, (2.9)

and by applying the ∇-operator and changing notation we obtain

∂tŨ + ∇

(

gη +
1

2

(

Ũ · Ũ − w̃2(1 + ∇η · ∇η)
)
)

= 0. (2.10)

Finally, the kinematic free surface condition Eq. (2.4) can be expressed as

∂tη + ∇η · ∇Φ̃ − w̃ (1 + ∇η · ∇η) = 0, (2.11)

or in the form used by Madsen et al. (2002) as

∂tη − w̃ + ∇η ·
(

Ũ − w̃∇η
)

= 0, (2.12)

which is then stated in terms of η, w̃ and Ũ .
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which by using Eq. (2.4) and Eq. (2.6) can be expressed as

Ũ ≡ ∇Φ̃ = ũ + w̃∇η, (2.7)

∂tΦ̃ =( ∂tΦ)z=η + w̃2 − w̃∇η · ũ. (2.8)

Now, we can reformulate the dynamic condition Eq. (2.5) using Eq. (2.7) and (2.8) into

∂tΦ̃ + gη +
1

2

(

∇Φ̃ · ∇Φ̃ − w̃2(1 + ∇η · ∇η)
)

= 0, (2.9)

and by applying the ∇-operator and changing notation we obtain

∂tŨ + ∇

(

gη +
1

2

(

Ũ · Ũ − w̃2(1 + ∇η · ∇η)
)
)

= 0. (2.10)

Finally, the kinematic free surface condition Eq. (2.4) can be expressed as

∂tη + ∇η · ∇Φ̃ − w̃ (1 + ∇η · ∇η) = 0, (2.11)

or in the form used by Madsen et al. (2002) as

∂tη − w̃ + ∇η ·
(

Ũ − w̃∇η
)

= 0, (2.12)

which is then stated in terms of η, w̃ and Ũ .
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2.2 Boussinesq-type formulations

To summarize the results given in the former section, we show for clarity which equations we
intend to solve. The starting point for the current work was the original velocity formulation,
which we refer to as the rotational velocity formulation since by the approximation Eq. (2.13)
the irrotational free assumption for the vorticity in the vertical is no longer required to be
satisfied. However, with the intent to simplify the equations, Fuhrman (2004) re-introduced
the rotation free constraint, substituting ∂yu = ∂xv into the truncated equations, and as a
side-effect found that the equation system became more stable numerically. We refer to this
formulation as the irrotational velocity formulation. Finally, Jamois et al. (2006) restated
and solved the high-order Boussinesq equation system numerically in terms of what we will
refer to as the potential formulation. The obvious advantage of the latter approach is that
the number of unknowns and the complexity of the system reduces significantly leaving
the method much more attractive to solve numerically in comparison with the velocity
formulations. However, the present work has primarily been based on the rotational version
as this formulation was used as the starting point for the current work.

2.2.1 Velocity formulations

The velocity formulations are given in terms of the exact free surface conditions Eq. (2.10)
and Eq. (2.12) as

∂tη = w̃ − ∇η ·
(

Ũ − w̃∇η
)

,

∂tŨ = −∇

(

gη +
1

2

(

Ũ · Ũ − w̃2(1 + ∇η · ∇η)
)
)

,

and the vertical free surface velocity w̃ can be determined in two steps by first solving for
the auxiliary variables û∗, ŵ∗ by solving both Eq. (2.7) and the kinematic condition at the
sea bed Eq. (2.54) as a coupled system. The known values of Ũ are related to the auxiliary
variables through the definition in Eq. (2.7) combined with Eq. (2.50), Eq. (2.51). From
the solution we can determine w̃ using Eq. (2.51). Using a compact notation this procedure
for the rotational velocity formulation amounts to first solving the 3x3 block system





Ũ
Ṽ
0



 =





A11 − ∂xη · B11 A2 − ∂xη · B12 B11 + ∂xη · A1

A2 − ∂yη · B11 A22 − ∂yη · B12 B12 + ∂yη · A1

A01 + S01 A02 + S02 B0 + S03









û∗

v̂∗

ŵ∗



 , (2.58)

or for the irrotational formulation where the irrotational condition for the vertical vorticity
component ∂yu = ∂xv has been applied to simplify the equation system into





Ũ
Ṽ
0



 =





A1 − ∂xη · B11 −∂xη · B12 B11 + ∂xη · A1

−∂yη · B11 A1 − ∂yη · B12 B12 + ∂yη · A1

A01 + S1 A02 + S2 B0 + S03









û∗

v̂∗

ŵ∗



 , (2.59)2.2 Boussinesq-type formulations 19

and then determine w̃ from the solution of one of above using

w̃ = −B11û
∗ − B12v̂

∗ + A1ŵ
∗. (2.60)

The continuous differential operators characterized by the subscripted letters A, B, and S
are for brevity all given in Appendix A.

In the general case the global operators in Eq. (2.58) and Eq. (2.59) are unsymmetric and
the last row of block operators has no time-dependency. However, for the linearized version
of these operators, a flat sea bed, and an expansion level ẑ = −0.5d the resulting global
operators become block symmetric. As a result the kinematic condition at the sea bed (last
equation in Eq. (2.58) or (2.59)) can be added to Eq. (2.60) which then simplifies into a
single operation w̃ = (A1 + B0)ŵ∗.

2.2.2 Potential formulation

The potential formulation is given in terms of the exact free surface conditions Eq. (2.9)
and Eq. (2.11) as

∂tη = −∇η · ∇Φ̃ + w̃ (1 + ∇η · ∇η) ,

∂tΦ̃ = −gη −
1

2

(

∇Φ̃ · ∇Φ̃ − w̃2(1 + ∇η · ∇η)
)

.

As explained in the former subsection we can solve for the vertical free surface velocity w̃
by a two step procedure, where the first step is to solve the Laplace problem in the interior
as follows (notation deviates from the one used in Jamois et al. (2006))

[

Φ̃
0

]

=

[

A1 B1

B2 + S3 B0 + S03

] [

φ̂∗

ŵ∗

]

, (2.61)

and subsequently obtain the solution for w̃ from

w̃ = −B3φ̂
∗ + A1ŵ

∗. (2.62)

The continuous differential operators characterized by the subscripted letters A, B, and S
are for brevity all given in Appendix A.

Since the algebraic system Eq. (2.61) is expressed in terms of the scalar velocity potential
it therefore remains unchanged whether the problem is solved in one or two horizontal
dimensions.

The potential formulation was recently presented and applied in Jamois et al. (2006). The
derivation for the potential formulation has been included in the former sections for com-
pleteness, since it is considered to be more general than the equivalent velocity formulation.

Similar to the velocity formulations, the global operator in Eq. (2.61) is generally unsym-
metric and the last row of block operators has no time-dependency.
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Appendix A

Differential Boussinesq operators

A number of differential operators arise as a result of the derivation procedure for the
high-order Boussinesq formulation given in Section 2.1. The definitions of these contin-
uous differential operators for use with either of the three different formulations in two
horizontal dimensions are given here for the Padé (4,4) versions. The Padé (2,2) versions are
straightforwardly obtained by truncating the high-order terms and changing the coefficients
αi, βi, γi, ci, si appropriately. The continuous operators are determined using the power rules
of ∇ given in Eq. (2.23). All coefficients and variables used in the definitions have been
introduced in Section 2.1. The operators for two horizontal dimensions reduce in the obvious
way to the operators for one horizontal dimension.

The differential operators for the rotational velocity formulation are given as

A01 = λ∂x + γ3λ
3(∂xxx + ∂xyy) + γ5λ

5(∂xxxxx + 2∂xxxyy + ∂xyyyy), (A.1)

A02 = λ∂y + γ3λ
3(∂xxy + ∂yyy) + γ5λ

5(∂xxxxy + 2∂xxyyy + ∂yyyyy), (A.2)

A1 = 1 − α2(∂xx + ∂yy) + α4(∂xxxx + 2∂xxyy + ∂yyyy), (A.3)

A11 = 1 − α2(∂xx) + α4(∂xxxx + ∂xxyy), (A.4)

A2 = −α2(∂xy) + α4(∂xxxy + ∂xyyy), (A.5)

A22 = 1 − α2(∂yy) + α4(∂xxyy + ∂yyyy), (A.6)

B0 = 1 + γ2λ
2(∂xx + ∂yy) + γ4λ

4(∂xxxx + 2∂xxyy + ∂yyyy), (A.7)

B11 = β1∂x − β3(∂xxx + ∂xyy) + β5(∂xxxxx + 2∂xxxyy + ∂xyyyy), (A.8)

B12 = β1∂y − β3(∂xxy + ∂yyy) + β5(∂xxxxy + 2∂xxyyy + ∂yyyyy), (A.9)

(A.10)

with the following operators for handling a mildly varying sea bed

S01 = ∂xd · C11 + ∂yd · C2, (A.11)

S02 = ∂xd · C2 + ∂yd · C22, (A.12)

S03 = −∂xd · C13 − ∂yd · C23, (A.13)
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where

C11 = 1 − c2λ
2(∂xx) + c4λ

4(∂xxxx + ∂xxyy), (A.14)

C2 = −c2λ
2(∂xy) + c4λ

4(∂xxxy + ∂xyyy), (A.15)

C13 = λ∂x − s3λ
3(∂xxx + ∂xyy) + s5λ

5(∂xxxxx + 2∂xxxyy + ∂xyyyy), (A.16)

C22 = 1 − c2λ
2(∂yy) + c4λ

4(∂xxyy + ∂yyyy), (A.17)

C23 = λ∂y − s3λ
3(∂xxy + ∂yyy) + s5λ

5(∂xxxxy + 2∂xxyyy + ∂yyyyy). (A.18)

For the irrotational velocity formulation the operators for handling a mildly varying sea bed
are given as

S1 = ∂xd · C1, (A.19)

S2 = ∂yd · C1, (A.20)

where

C1 = 1 − c2λ
2(∂xx + ∂yy) + c4λ

4(∂xxxx + 2∂xxyy + ∂yyyy). (A.21)

In the potential formulation we have introduced the following differential operators

B1 = β1 − β3(∂xx + ∂yy) + β5(∂xxxx + 2∂xxyy + ∂yyyy), (A.22)

B2 = λ(∂xx + ∂yy) + γ3λ
3(∂xxxx + 2∂xxyy + ∂yyyy)

+ γ5λ
5(∂xxxxxx + 3∂xxxxyy + 3∂xxyyyy + ∂yyyyyy), (A.23)

B3 = β1(∂xx + ∂yy) − β3(∂xxxx + 2∂xxyy + ∂yyyy)

+ β5(∂xxxxxx + 3∂xxxxyy + 3∂xxyyyy + ∂yyyyyy), (A.24)

and the following additional operator for handling a mildly varying sea bed

S3 = ∂xd · C3 + ∂yd · C4, (A.25)

where

C3 = ∂x − c2λ
2(∂xxx + ∂xyy) + c4λ

4(∂xxxxx + 2∂xxxyy + ∂xyyyy), (A.26)

C4 = ∂y − c2λ
2(∂yyy + ∂xxy) + c4λ

4(∂xxxxy + 2∂xxyyy + ∂yyyyy). (A.27)

Note, that many of the terms involved in the differential operators above can be formed
using products of the Laplacian operator L = ∂xx + ∂yy. For example, the term ∂xxxxx +
∂xxxyy + ∂xyyyy = ∂x(∂xx + ∂yy)2, which appears in A01. This can be exploited in a practical
implementation to reduce memory storage and increase efficiency.
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A couple of 3D(2D) tests
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Fig. 6.9. On the left is shown the discrete L2-error for Ez
h at T = 10, obtained using a DG-FEM with

central fluxes, for different values of N and K. As a measure of average cell size, we use
√

K. On the right
we show similar results obtained using an upwind flux.

∂ρu

∂t
+

∂ρu2 + p

∂x
+

∂ρuv

∂y
= 0,

∂ρv

∂t
+

∂ρuv

∂x
+

∂ρv2 + p

∂y
= 0,

∂E

∂t
+

∂u (E + p)
∂x

+
∂v (E + p)

∂y
= 0,

where ρ is the density of the gas, (ρu, ρv) are the x- and y-components of the momentum, p is
the internal pressure of the gas, and E is the total energy of the gas. The total energy of the gas
is the sum of the potential energy due to the internal pressure and the kinetic energy due to its
momentum, given by

E =
p

γ − 1
+

ρ

2
(
u2 + v2

)
,

where γ is a constant dependent on the type of gas. For this example, we will consider a monoatomic
gas with γ = 1.4. The above equations neglect the effects of viscosity and thermal diffusion, which
we will be incorporated into a later example that concerns the Navier-Stokes equations for a com-
pressible fluid (see Section 7.5).

To provide some insight into a relatively general numerical discretization for a wide class of
nonlinear conservation laws, with Euler’s equations as the guiding example, we rewrite the equations
in vector form:

∂q
∂t

+
∂F
∂x

+
∂G
∂y

= 0,

where

q =





ρ
ρu
ρv
E



 , F =





ρu
ρu2 + p

ρuv
u (E + p)



 , G =





ρv
ρuv

ρv2 + p
v (E + p)



 ,
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represent the state vector and the two nonlinear fluxes, respectively. These vector flux functions
are implemented in a straightforward manner by first extracting the primitive variables (ρ, u, v, p)
from the conserved variable state vector q at each volume element node in EulerFluxes2D.m. We
have chosen to store the state vector as a three-dimensional array, Q, of size Np ×K × 4, with the
last dimension being the number of conserved variables.

EulerFluxes2D.m

6 % extract conserved variables
7 rho = Q(:,:,1); rhou = Q(:,:,2); rhov = Q(:,:,3); Ener = Q(:,:,4);
8

9 % compute primitive variables
10 u = rhou./rho; v = rhov./rho; p = (gamma-1)*(Ener - 0.5*(rhou.*u + rhov.*v));

Combinations of the primitive and conserved variables are then used to evaluate the vector flux
functions F and G in a straightforward manner.

EulerFluxes2D.m

12 % compute flux functions
13 F = zeros(size(Q));
14 F(:,:,1) = rhou; F(:,:,2) = rhou.*u + p; F(:,:,3) = rhov.*u; F(:,:,4) = u.*(Ener+p);
15

16 G = zeros(size(Q));
17 G(:,:,1) = rhov; G(:,:,2) = rhou.*v; G(:,:,3) = rhov.*v + p; G(:,:,4) = v.*(Ener+p);

Following the previous discussions, we represent the state vector as a piecewise N -th-order
polynomial, qh, and require it to satisfy a DG statement on weak form for all test functions φh ∈ Vh,
as ∫

Dk

(
∂qh

∂t
φh − Fh

∂φh

∂x
−Gh

∂φh

∂y

)
dx +

∮

∂Dk
(n̂xFh + n̂yGh)∗ φhdx = 0.

For the numerical flux, we use the local Lax-Friedrichs flux

(n̂xFh + n̂yGh)∗ = n̂x{{Fh}} + n̂y{{Gh}} +
λ

2
· [[qh]].

The dissipative nature of this flux will smear shocks in strongly supersonic and transitional flows but
will serve adequately for most subsonic and weakly supersonic flows. To complete the computation
of the fluxes, we recover an approximate local maximum linearized acoustic wave speed

λ = max
s∈[q−h ,q+

h ]

(
|u(s)| +

√∣∣∣∣
γp(s)
ρ(s)

∣∣∣∣

)
.

EulerRHS2D.m contains an implementation of the right-hand-side terms. First, we compute the
volume terms for each component of the state vector, taking advantage of the local differentiation
matrices common to all elements and applying the chain rule to compute the Cartesian derivatives
of the fields.
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represent the state vector and the two nonlinear fluxes, respectively. These vector flux functions
are implemented in a straightforward manner by first extracting the primitive variables (ρ, u, v, p)
from the conserved variable state vector q at each volume element node in EulerFluxes2D.m. We
have chosen to store the state vector as a three-dimensional array, Q, of size Np ×K × 4, with the
last dimension being the number of conserved variables.

EulerFluxes2D.m

6 % extract conserved variables
7 rho = Q(:,:,1); rhou = Q(:,:,2); rhov = Q(:,:,3); Ener = Q(:,:,4);
8

9 % compute primitive variables
10 u = rhou./rho; v = rhov./rho; p = (gamma-1)*(Ener - 0.5*(rhou.*u + rhov.*v));

Combinations of the primitive and conserved variables are then used to evaluate the vector flux
functions F and G in a straightforward manner.

EulerFluxes2D.m

12 % compute flux functions
13 F = zeros(size(Q));
14 F(:,:,1) = rhou; F(:,:,2) = rhou.*u + p; F(:,:,3) = rhov.*u; F(:,:,4) = u.*(Ener+p);
15

16 G = zeros(size(Q));
17 G(:,:,1) = rhov; G(:,:,2) = rhou.*v; G(:,:,3) = rhov.*v + p; G(:,:,4) = v.*(Ener+p);

Following the previous discussions, we represent the state vector as a piecewise N -th-order
polynomial, qh, and require it to satisfy a DG statement on weak form for all test functions φh ∈ Vh,
as ∫

Dk

(
∂qh

∂t
φh − Fh

∂φh

∂x
−Gh

∂φh

∂y

)
dx +

∮

∂Dk
(n̂xFh + n̂yGh)∗ φhdx = 0.

For the numerical flux, we use the local Lax-Friedrichs flux

(n̂xFh + n̂yGh)∗ = n̂x{{Fh}} + n̂y{{Gh}} +
λ

2
· [[qh]].

The dissipative nature of this flux will smear shocks in strongly supersonic and transitional flows but
will serve adequately for most subsonic and weakly supersonic flows. To complete the computation
of the fluxes, we recover an approximate local maximum linearized acoustic wave speed

λ = max
s∈[q−h ,q+

h ]

(
|u(s)| +

√∣∣∣∣
γp(s)
ρ(s)

∣∣∣∣

)
.

EulerRHS2D.m contains an implementation of the right-hand-side terms. First, we compute the
volume terms for each component of the state vector, taking advantage of the local differentiation
matrices common to all elements and applying the chain rule to compute the Cartesian derivatives
of the fields.

Formulation is straightforward

Challenge: Shocks -- this requires 
limiting/filtering
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Fig. 6.9. On the left is shown the discrete L2-error for Ez
h at T = 10, obtained using a DG-FEM with

central fluxes, for different values of N and K. As a measure of average cell size, we use
√

K. On the right
we show similar results obtained using an upwind flux.

∂ρu

∂t
+

∂ρu2 + p

∂x
+

∂ρuv

∂y
= 0,

∂ρv

∂t
+

∂ρuv

∂x
+

∂ρv2 + p

∂y
= 0,

∂E

∂t
+

∂u (E + p)
∂x

+
∂v (E + p)

∂y
= 0,

where ρ is the density of the gas, (ρu, ρv) are the x- and y-components of the momentum, p is
the internal pressure of the gas, and E is the total energy of the gas. The total energy of the gas
is the sum of the potential energy due to the internal pressure and the kinetic energy due to its
momentum, given by

E =
p

γ − 1
+

ρ

2
(
u2 + v2

)
,

where γ is a constant dependent on the type of gas. For this example, we will consider a monoatomic
gas with γ = 1.4. The above equations neglect the effects of viscosity and thermal diffusion, which
we will be incorporated into a later example that concerns the Navier-Stokes equations for a com-
pressible fluid (see Section 7.5).

To provide some insight into a relatively general numerical discretization for a wide class of
nonlinear conservation laws, with Euler’s equations as the guiding example, we rewrite the equations
in vector form:

∂q
∂t

+
∂F
∂x

+
∂G
∂y

= 0,

where

q =





ρ
ρu
ρv
E



 , F =





ρu
ρu2 + p

ρuv
u (E + p)



 , G =





ρv
ρuv

ρv2 + p
v (E + p)



 ,
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represent the state vector and the two nonlinear fluxes, respectively. These vector flux functions
are implemented in a straightforward manner by first extracting the primitive variables (ρ, u, v, p)
from the conserved variable state vector q at each volume element node in EulerFluxes2D.m. We
have chosen to store the state vector as a three-dimensional array, Q, of size Np ×K × 4, with the
last dimension being the number of conserved variables.

EulerFluxes2D.m

6 % extract conserved variables
7 rho = Q(:,:,1); rhou = Q(:,:,2); rhov = Q(:,:,3); Ener = Q(:,:,4);
8

9 % compute primitive variables
10 u = rhou./rho; v = rhov./rho; p = (gamma-1)*(Ener - 0.5*(rhou.*u + rhov.*v));

Combinations of the primitive and conserved variables are then used to evaluate the vector flux
functions F and G in a straightforward manner.

EulerFluxes2D.m

12 % compute flux functions
13 F = zeros(size(Q));
14 F(:,:,1) = rhou; F(:,:,2) = rhou.*u + p; F(:,:,3) = rhov.*u; F(:,:,4) = u.*(Ener+p);
15

16 G = zeros(size(Q));
17 G(:,:,1) = rhov; G(:,:,2) = rhou.*v; G(:,:,3) = rhov.*v + p; G(:,:,4) = v.*(Ener+p);

Following the previous discussions, we represent the state vector as a piecewise N -th-order
polynomial, qh, and require it to satisfy a DG statement on weak form for all test functions φh ∈ Vh,
as ∫

Dk

(
∂qh

∂t
φh − Fh

∂φh

∂x
−Gh

∂φh

∂y

)
dx +

∮

∂Dk
(n̂xFh + n̂yGh)∗ φhdx = 0.

For the numerical flux, we use the local Lax-Friedrichs flux

(n̂xFh + n̂yGh)∗ = n̂x{{Fh}} + n̂y{{Gh}} +
λ

2
· [[qh]].

The dissipative nature of this flux will smear shocks in strongly supersonic and transitional flows but
will serve adequately for most subsonic and weakly supersonic flows. To complete the computation
of the fluxes, we recover an approximate local maximum linearized acoustic wave speed

λ = max
s∈[q−h ,q+

h ]

(
|u(s)| +

√∣∣∣∣
γp(s)
ρ(s)

∣∣∣∣

)
.

EulerRHS2D.m contains an implementation of the right-hand-side terms. First, we compute the
volume terms for each component of the state vector, taking advantage of the local differentiation
matrices common to all elements and applying the chain rule to compute the Cartesian derivatives
of the fields.
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EulerRHS2D.m contains an implementation of the right-hand-side terms. First, we compute the
volume terms for each component of the state vector, taking advantage of the local differentiation
matrices common to all elements and applying the chain rule to compute the Cartesian derivatives
of the fields.

Formulation is straightforward
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Fig. 6.14. Sequence of solutions to the Mach 3 forward facing step test case (with uniformly refined meshes
of size K=381, 1524, 6096, and 24384) using the Tu and Aliabadi limiter with an N = 1 DG method. Thirty
equally spaced Mach contours are plotted in the range [0.090388, 6.2365].

extension of this result to the multidimensional case is, as it turns out, technically more complex
than the one-dimensional case, but the main results remain unchanged with one essential exception.

The analysis of the error estimates for linear problems is typically done for the equation

α ·∇u + βu = f, x ∈ Ω ⊂ R2,

which is in fact the neutron transport equation for which the first DG-FEM was introduced in [269].
In early work [217], it was shown that if u is smooth and Ω is tiled with rectangular elements, each
using an N -th-order tensor basis, the scheme exhibits optimal convergence; that is,



Remarks

We are done with all the basic now ! -- and we have 
started to see it work for us

What we need to worry about is:

✓The need for 3D
✓The need for speed
✓Software beyond Matlab

Tomorrow !


