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A brief overview of what’s to come

e Lecture |:Introduction and DG-FEM in ID

* Lecture 2: Implementation and

numerical aspects

* Lecture 3:Insight through theory

* Lecture 4: Nonlinear problems

* Lecture 5: Extension to two spatial dimensions

e Lecture 6:Introduction to mes

* Lecture 7: Higher order/Globa

N generation

problems

* Lecture 8: 3D and advanced topics



Lecture 7

Let’s briefly recall what we know

Brief overview of multi-D analysis
Part |: Time-dependent problems

v Heat equations

v Extensions to higher order problems

<



Lets summarize

We have a thorough understanding of |st order
problems

V' For the linear problem, the error analysis and
convergence theory is essentially complete.

v The theoretical support for DG for conservation
laws is very solid.

v Limiting is perhaps the most pressing open problem

v/ The extension to 2D is fairly straightforward

v ...and we have a nice and flexible way to implement
it all

Time to move beyond the |st order problem



Brief overview of multi-D analysis

In | D we discussed that

lu —upllon < CRN U)o, Nt2.n,

.. but this was a somewhat special case.
Question is -- is it possible in multi-D ?

Answer - No

hN—|—1/2

|u —up|lon < C ull2,N+1,n5

... but the optimal rate is often observed as
initial error dominates over the accumulated
error



The heat equation

Let us consider the heat equation

du 92
a_? - a—;;, x € [0, 27, w(z,t) = e 'sin(z).

We can be tempted to write this as

and then just use our standard approach

duk . «
vi:’])rulfw Mkd—th_svz:_‘/a[)kn.(v}k;_v )Ek(fb)dﬂf,
Given the nature of the problem, a central flux

seems reasonable v* = {{on}}



The heat equation

Lets see what happens when we run it

u(x,0.8)

N\K 10 20 40 30 160

1 4.27E-1 4.34E-1 437E-1  4.38E-1 4.39E-1
2 5.00E-1  4.58E-1 4.46E-1 4.43E-1 4.42E-1
4 1.68E-1 1.37E-1 1.28E-1 1.26E-1 —

3 7.46E-3  8.60E-3 — - -

It does not work!

It is weakly unstable

0 157 3.14 4.71 6.28



The heat equation

We need a new idea -- consider

o, o
8t_8xa$8:13’

We know that DG is good for |st order systems.

Since a(x)>0 we can write this as

ou 9, ou
E — %\/EQ7 q — \/5%7

Now follow our standard approach
u(z,t) | _ |un(x,t)| X ub(x,t)] K & uf (z;,1) (o
e | = e | = D e ] -2 o | 0

1 =1



The heat equation

Treating this as a |st order system we have

duf R x
ML = 8V | e (Vagh) - (Vagh)") € (a) da,

A (Vaul — (Vaup)®) €4 (@) da,

Dk

MEqy = SV uj — /

or the corresponding weak form

k
k duy

Mdt

= —(8V)"q), +/ - (Vag) €8 (z) de
oD

MEgh = —(SVH)Tul + - (Vaub) e(x) dx.
h

Dk:

Va(x)lk (x
= f?(w)d (dx)j()dx, SV = | alz)lk(z)—L-2

Dk



The heat equation

How do we choose the fluxes?

(Vagn)* = f(Vagn)™, (Vagn)™, (Vaur) ™, (Vaup)™),
(Vaun)* = g((vagn)™, (Vagn)™, (Vaup) ™, (vVauy)™).

duf . «
M = §vg [ (Vadk) — (Vagh)") @) do,

i (Vauh — (Vaub)®) €4(z) da,

Dk

MEgf = 8Vuy — /

Problem: Everything couples -- loss of locality

However, if we restrict it as

(Vagn)* = f(Vagn)™, (Vaagn)™, (Vaur) ™, (Vaup)™),
(Vaup)* = g((Vaun) ™, (Vauy)™),

we can eliminate g-variable locally



The heat equation

Given the nature of the heat-equation, a natural flux
could be central fluxes

(Vagn)" = {Vaa}}, (Vaun)* = {Vaun}}.

But is it stable ?

Computing the local energy in a single element yields
1 d

5&\\%”% + llanlp + 6r — 61 =0,

O = Vaung, — (Vagn) un, — (Vaup) qn.

(Vagn)* = Vaflan . (Vaun)® = vaffuny. = - Y (gt b,

2

* 1iHuhH?;h + HQhH?Q,h =0, * Stablllt)’

2dt



The heat equation

So this is stable!

How about boundary conditions

Dirichlet Ul = —un. 4f =a, = {EZ:}%}} :% %Z:ﬁ]:g.n_u;

Newnamn —uf =, af =-a; = {{{o) 200 [l 5

Inhomogeneous BC
ul—’ib_ — —’LL}: _|_2f(t)7 Q}—: — Q}:a

... and likewise for Neumann



The heat equation

100
Back to the example
1072}
Looks good - |
?c 1075}
.. but an even/odd 2
1078}
pattern
10710t
10712 .
10’ 102
Ko 1/h

iEhcorensea il fo M= 81N ddiee— g 50 R ER DO 15 ERE TROKS
for the heat equation with periodic boundaries and a constant coefficient a(x),
computed with Eq. (7.1) and central fluzes. Then

m
lee( @)% + / lea(s)l1% 1 ds < CR2Y,

where C' depends on the regularity of u, T, and N. For N even, C is O(h?).



The heat equation

Can we do anything to improve on this?

Recall the stability condition

1d
5 7 llu

2 2
@/)ﬂ_@ 207
5 rllp + llanllp + l

O, -6 >0
O = Vaung, — (Vagn) un — (Vaur)*qn.

Stable choices

(Vaup)* = {Valul, (Vag)" =Va~g,.

(Vaun)* = Va~uy, (Vagy)* = {Valq},
{Vaup}} + B - [Vaun], (Vagn)* = {vVaa}} — B - [Vagn],
Upwind/downwind - LDG flux 3=



The heat equation

Back to the example 10°

10721

Looks good - .
107"}

107

lu—uy |

.. full order restored 8
107°}

107'°}

10712 :
10 107
K o« 1/h

Theorem 7.4. Let €, = u — up and €, = q — qp, signify the pointwise errors

for the heat equation with periodic boundaries and a constant coefficient a(x),
computed with Fq. (7.1) and LDG fluxes. Then

T
eI, + / lea(s)1% 5 ds < CRN2,

where C' depends on the reqularity of u, T', and N.



Higher order and mixed problems

We can now mix and match what we know

Consider @+2f( )_2 ( )@
ot oz’ "W T 9z or

and rewrite as

ou 0 x
E—I—%(f(u)—\/&q)zo, > (f(u) = Vag)

q= \/5%, > Vaw)’
X

Now choose fluxes as we know how

f@)* = () + 5[l € > max|f'(u)].
(Vaun)* = {VaPul, (Vag)* =Vaq; .



u(x,t)

-0.25

Higher order and mixed problems

Consider viscous Burgers equation

uy O (W) _0u ey
ot "oz \2) ‘o2 " T

D —1
u(x,t) = — tanh (QH_O ) + 1.

2e

2.25

1.75 ¢
1.5}
1.25 ¢

0.75 }
0.5}
0.25¢}




Higher order and mixed problems

Consider the 3rd order dispersive equation
ou  Ou

ot 0x3

Which boundary conditions do we need!?

1d, o | 0%u 1 [0u 21"
5 lull?, = [u(w -5 (%> ., must be bounded

2
E x = x: Onuor%amd%,
0%u

r=x,: Onuor —

0x2



Higher order and mixed problems

Write it as a | st order system
Ou_0o¢  _Op _ Ou
ot oz 1o P or
To choose the fluxes, we consider the energy

1d

2
. ]ﬁ . * * *
zdtHUhHDk e, — 6y, O = 5~ Undn + un(qn)” + an(un)”™ — pr(pn)”

Central fluxes yields

| . 1d

O = 2 (uhqh +uhqh phph)7 2dt“ hHDk =0
Alternative (un)* =uy, ()" =g, (pn)" =p;,
LD G-flux

(up)* =u, (qn)*=q;, (pn)* =p;.



Higher order and mixed problems

Consider 3
Ou _ 8_7;’ rc[~1,1], Convergence behavior
o o exactly as for the 2nd
u(x, t) = cos(m3t + 7). order problem

Central flux LD G flux




Higher order and mixed problems

Few comments

v The reformulation to a system of Ist order problems
is entirely general for any order operator

v When combined with other operators, one chooses
fluxes for each operator according to the analysis.

v The biggest problem is cost -- a 2nd order operator
require two derivates rather than one.

V' There are alternative ‘direct’ ways but they tend to
be problem specific



What about the time step !

For |st order problems we know

Explicit
time-stepping

At < C-L

aN

This gets worse -

h p
szc( )
p = order of operator

Options :
V' Local time stepping
V' Implicit time stepping



Lecture 7

y
y

Part |l: Elliptic problems

v Different formulations
v Stabilization

v Solvers and application examples



Elliptic problems

Now we could consider solving a problem like

ou  O*u
o o2 )

However, if we are interested in the steady state we
may be better off considering

0%

dx?

We can use any of the methods we just derived to
obtain the linear system

Aup, :fhv



Elliptic problems

Assume we use a central flux.

When we try to solve we discover that A is singular!

0.01 — — 0.4 | | '
0.3} 1
0.005} 1 0.2y 1
— 0.1} ] N — I
<
% o Le o e o [ X ° e o oo 1 > 0 I T
. K=6
-0.005! ] -0.2} 1
-0.3} :
-0.01 . - - - - —0.4 - . .
-5 -12 -9 -6 -3 0 3 0 1.57 3.14 4.71 6.28
real()) X
0.4 : : : 0.4
0.3} ] 0.3}

-0.2¢t -0.2}
-0.3} 1 -0.3}

~0.4 - - - ~0.4
0 1.57 3.14 4.71 6.28 0

.28

N=4 2:?\/\/ \/\/ w o \/ \/ :
=oAL AV AV



Elliptic problems

What is happening?

The discontinuous basis is too rich -- it allows one
extra null vector:

A local null vector with {{u}}=0

What can we do ?

Change the flux by penalizing this mode

¢ =gy —7lul, w" = {ul
The flexibility of DG shows its strength!



Elliptic problems

Does it work?

d?u .
= —sin(z), z € 0,27, u(0) = u(2mw) = 0.
10°
N=1
1072} N=2 h2

10’ 102 0 20 40 60 80
Ko< 1/h nz =622

What about the other flux - the LDG flux!?



Elliptic problems

Consider the stabilized LD G flux

[[u=upl

1078}

10710t

10-12 . 80t . . .
107 102 0 20 40 60 80
Ke 1/h nz=472

Works fine as expected - but we also note
that A is much more sparse!



Elliptic problems

Why is one more sparse than the other?

Consider the N=0 case
ar(ar, ay hur, ui ) — g (g g g, up ) = b
wp (up, up v — uf (uy, uf =) = hgp.

Using the central flux yields

@i (ay  a > up) = Hanlt — mlun], wi(uyuy)) = {un

k+1

kTt ok 4ol uhtt gkl I
h BT Y% Y h  _ }If(/ Wide

h? h

Using the LDG flux yields

QZ(Qﬁyq;f,u;:auﬂ — Q}: - T[[uh]]v UZ(ULUJF) — ’UJZ,

WL oy g f S T
h I ) h

h? h

S




Elliptic problems

The sparsity is a good thing -- but it comes at a price
k(ArLpag) ~ 26(Ac);

We seek a flux balancing sparsity and conditioning?

n = W(un)zft = Tlun], up = Quntt.
Internal penalty flux

0

;Z HJ(AC) ~ K(A]p);

Mission
accomplished

50}
1 60t

| 70}

80L . . .
0 20 40 60 80
nz=586




Elliptic problems

Remaining question: How do you choose 7?7

The analysis shows that:

V' For the central flux,r > 0 suffices
Vv For the LDG flux, = > 0 suffices

v For the IP flux, one must require
(N 4 1)?

T>C

y 021

These suffices to guarantee stability,
but they may not give the best accuracy

2
Generally, a good choice is > oW Z D , C>1,



Elliptic problems

What can we say more generally?

Consider ,
—Vu(x) = f(x), =€ (2,

Discretizedas -V-gq=/, q=Vu.

K

(@ Vor)on— Y (A-ahon)gps = (f101) o
k=1

K

(@p; Wh)n,h = Z (up, - ) gpr — (un, V - Wh)rz,h
k=1

Using one of the fluxes

up, a5
Central flux Hun}} {a,} — 7lun]
Local DG flux (LDG)  {{un}} + B [un]  {{an}} - Blan] — rlun]

Internal penalty flux (IP) H{un}} {Vurtt — 7[un]




Elliptic problems

For the 3 discrete systems, one can prove (see text)

v They are all symmetric for any N

v/ The are all invertible provided stabilization is used
Vv’ The discretization is consistent

v The adjoint problem is consistent

V' They have optimal convergence in L2

Many of these results can be extended to more
general problems (saddle-point, non-coercive etc)

There are other less used fluxes also



Solving the systems

After things are discretized, we end up with

Aup = f,
We can solve this in two different ways

Vv Direct methods

V' lterative methods

The ‘right’ choice depends on things such as size,
speed, sparsity etc



Solving the systems

Direct methods are ‘LU’ based

>> [L, U] = lu(A);
>> u = U\(L\f);

Example:

Viu= f(z,y) = ((16 —n?) r* 4+ (n® — 36) r*) sin (nd), z°+y* <1,

n =12, r = /22 + 12,0 = arctan (y, x)

K=512
N=4
7680 DoF



Solving the systems

Sparsity pattern of A

Sparsity pattern of reordered A

0 - - 0 :
1000t \\\ 1000\
2000 Y 2000} N
o N\ AN
X N
3000¢ N { 3000} N
.-\\ N
4000} T | 4000}
CINY LY
50007 AN \ \“\‘- 5000
P2
6000 R \ 1 6000}
7000} AN T { 7000}
| N . . .
0 2000 4000 6000 0 2000 4000 6000
nz = 300486 nz = 300486

8,7/m extra non-zero Cuthill-McKee ordering

entries in (L,U)
3,7m extra non-zero

Reordering is needed ! entries in (L,U)



Solving the systems

Re-ordering: >> P = symrcm(A);

>> A = A(P,P);
>> rhs = rhs(P);
>> [L,U] = lu(A);
>> u = U\(L\f);
>> u(P) = u;

.butAisSPD: A =C'C Cholesky decomp

>> C = chol(A);
>> u = C\(C'\f);

|, 9m extra non-zero
entries in C



Solving the systems

If the problem is too large, iterative methods are
the only choice

>> ittol = 1e-8; maxit = 1000:;
>> u = pcg(A, f, ittol, maxit);

Example requires 818 iterations - 100 times slower
than LU !

Solution: Preconditioning

CtAu, =C 1 f,,



Solving the systems

How to choose the preconditioning !
..more an art than a science !

Example - Incomplete Cholesky Preconditioning

>> ittol = le-8; maxit = 1000; Sparsity

>> Cinc = cholinc(OP, '0’) :
>> u = pcg(A, f, ittol, maxit, Cinc’, Cinc); preserving

| 38 iterations - but still 50 times slower

>> ittol = le-8; maxit = 1000; droptol = le-4;
>> Cinc = cholinc(A, droptol); Drop
>> u = pcg(A, b, ittol, maxit, Cinc’, Cinc); tc)lerance

| 7 iterations - only 2 times slower



Solving the systems

Choosing fast and efficient linear solvers is not
easy -- but there are many options

v’ Direct solvers
v MUMPS (multi-frontal parallel solver)
v SuperLU (fast parallel direct solver)

v Iterative solvers
v Trilinos (large solver/precon library)
v PETSc (large solver/precon library)

Very often you have to try several options and
combinations to find the most efficient and robust one(s)



A few examples

So far we have seen lots of theory and “homework”
problems.

To see that it also works for more complex
problems - but still 2D - let us look at a few
examples

v Incompressible Navier-Stokes
v Boussinesq problems
v Compressible Euler equations



Incompressible fluid flow

Time-dependent Navier-Stokes equations

ou 5 e Water
EJr(u-V)u——Vp—kuV u, € {2, St
V-u=0, e Bioflows
* etcC

Written on conservation form

0
_u_|_v.]-" :—Vp—l—l/v2u, f:[FhFQ]:[uQ uv].

ot 2
V-u =0,

uv v

Solved by stiffly stable time-splitting and pressure
projection



Incompressible fluid flow

The basics are

0(2) | &

Ny(u)=V.F; =

..and then take an inviscous time step

Yo — cpu” — aqu !

At

= —BoN(u") — BN (u" 1) .

The pressure is computed to ensure incompressibility

_ —Vﬁn—l_l. _VQpn—l—l _ _mv 1. ,12’1/ — § — gvﬁn—i—l.
At 70

u— 1
Y0 Al

..and the viscous part is updated

u" !t —
Y0 ( ) = VV2u”+1,

At



Incompressible fluid flow

Kovasznay solution

- 77m| x-velocity y-velocity Pressure
| -~ “Inflow 15 15 15
{ 1 1 1
{ 0.5 0.5 0.5
) \ 0 0 0
|
Lo -t 05 -0.5 -0.5
-05 0 05 1 -0.5 0 0.5 -0.5 0 0.5 1 -0.5 0 0.5 1
).2 T Wall
)1 \ - — —Inflow
0 \ O Outflow
)1 \ —— Cylinder
)2 : 1 1 1 1 1
0 0.5 1 1.5 2
o T T T T T ] 05
Ak E
oF i
Ak E
2¢ I L I I | ]
0 0.5 1 1.5 2
of T T T T T ] 05
Ar i
oF i
AR E
2r | L I | | ]
0 0.5 1 1.5 2
K N te, Cyq te, C Ap (t = 8)
115 6 ||3.9394263|2.9529140 ||5.6742937|0.4966074(/-0.1095664 0.3
460 | 6 |[3.9363751(2.9509030 |[|5.6930431|0.4778757||-0.1116310
236 | 8 3.9343595|2.9417190 ||5.6990205|0.4879853|(-0.1119122 0
236 | 10 ||3.9370396|2.9545659 ||5.6927772|0.4789706|[-0.1116177
[189]|N/A|]3.93625 [2.950921575|[5.693125 [0.47795 ||-0.1116

h

Error in u

h)2

h/4

Rate

h

Error in

h)2

p
h/4

Rate

oI e N e P

1.32E+00
5.01E-01
2.41E-01
6.40E-02
1.87E-02
9.07E-03
1.43E-03
5.91E-04

7.05E-01
9.67E-02
2.74E-02
3.34E-03
6.92E-04
5.41E-05
1.37E-05
1.02E-06

1.23E-01
1.45E-02
1.89E-03
1.00E-04
8.96E-06
6.93E-07
4.03E-08
7.17E-09

1.71
2.55
3.49
4.66
5.51
6.84
7.56
8.16

3.13E4-00
1.47TE+00
5.02E-01
9.31E-02
6.15E-02
1.23E-02
4.73E-03

1.52E-03

1.53E4-00
2.54E-01
2.79E-02
8.87E-03
1.02E-03
2.17E-04
4.67E-05
3.54E-06

von Karman flow

x-velocity

0.5

Pressure

RS R

4]

08

1 158

2

y-velocity

3.48E-01
2.08E-02
2.42E-03
2.02E-04
1.89E-05
2.63E-06
1.29E-07
1.97E-08

1.59
3.07
3.85
4.42
5.84
6.09
7.58
8.12

0.5
-0.2

-0.4
-0.6

-0.8
-0.5

Vorticity




Fluid-structure interaction

Boussinesq modeling
The basis assumption of this approach is to approximate the vertical
variation using an expansion in z.

Z
l‘ g
w Free surface
SWL5 7 X
s
p AL e T
Expansion level
Bottom
y i

-d(X) = N NI




Fluid-structure interaction

Under certain assumptions, the proper model (a high-
order Boussinesq model) becomes

2 L o
6’tU+V<gn+§(U-U—ﬁﬂ(l%—Vn-Vn))) =}

0t77—1D+V77-([7—1DV77):0,

(2 I A0 o — 0, - Bio B+ O:n - Ax ] i
V | = — G o B Al =G0 o150 15 —F Gl o /A UE
{8 A Ao + S Ao + S By + Sos g el

w = —Btu" — Bttt + Aw”.



Fluid-structure interaction

Where we have high-order derivates since

A()l — )\aaz + 73)\3((9%133: =+ a:1cyy) =+ 75)\5(ax:cacxa: =+ zaasazazyy + aa:yyyy);
Ao = )‘ay + 73)‘3(8:6:1:34 + ayyy) T '75>\5 (893:1::1:96:1; + Qamyyy + ayyyyy)v
A1 =1 — (0 + 8yy) + (O + 2052y + ayyyy)a

By =1+ 72)\2(833:1; + ayy) T ”74)‘4(85696:1::6 + Qaw:cyy + ayyyy)v
Bll — 616)33 _ 63((9%%33 + aa:yy) + 55(({9%%%%% + Qaa:azxyy + aa:yyyy)a
By = 610y — B3 (amy + ayyy) + s (ax:vmy + 20zuyyy) + ayyyyy)a

S1 = 0,d - Cq,

Ci =1 — o\ (0pp + 0ypy) + AN (Opwzzs + 20320y + Oy )-
82 _ ay . Cl) 1 2 Yy 4 Yy Yyyyy

A bit on the complicated side !



A couple of 2D(1D) tests

Submerged bar (K=110, P=8) - comparlson

with experimental data

x =105
_ EXP
0.025 DG
0.015| N A A
|I1 I".I If' \ |'1 I :'I Ill'l 1'I \
0.005f \ V| f [
I\ J’ 1' | { \ { \
I‘. IIl I'|I : ‘l\ |I Il', : \ |
~0.005} | | (ERY SRRSO (VTR N (RSORIR
\/ v VOV
~0.015|
30 a2 34 36 38 40 E
t(s) =
x=135
EXP
0.025 | ﬂ ﬂl |ﬂ| — Dpa
TT
oo | ]
€ ooosf | | || b || ] - ||
= A | A
—-0.005¢ k’llll '\\-.’:IJI I'\\\)!JI I'\\\JJ! "..\.\.\ J.'ll
~0.015}
30 32 34 36 38 40

3450 7 8
Source region
T 01 /4
v -0.2 ¢ Sponge layer 120 1:10 fXSpongelaj.rer
0.3 _ 7
D T ]
-10 0 10 20 30
x=17.3
% [m
0.025 —Ee il
A i { T
0.015f Ll I il l:l
| H | | f | |
0.005 | TR R |
L ~1 A1l A1l ! Wave harmonics
ANAT A A A
—0.005-1 | I." { | ’/ l |'I 0.012 i 1st
|.| |:f III |i j | |J { { Pl ﬂ 2n d
~0.015} | / v v Y = 001p A ' irj
— 4 r
30 32 34 36 38 40 g 0.008 Sth
t(s) E S | e st
£ 0.006 5o 2nd
< S5 o 3rd
T 0.004 4rd
- 5th
0.002
s i
0 5 10 15 20

Distance (m)



A couple of 3D(2D) tests

g (e —




Compressible fluid flow

Time-dependent Euler equations

Ja  OF  O&
ot  Ox Oy e Gas
* High speed

U ()
P p P * etc
a= || F=| PP | q-= puv
pv |’ puv ! O
E u(FE + p) v (E + p)

Formulation is straightforward

dq Oodp 0oy, % ) ) )
o On — ¥ = — G- +F G de — 0.
/D"" ( By Oh L Gy, 9y dx + o (nzFp + 1y Gp)" dpdx =0

(1T + 2y G = P} + 7 (G} + 5 - ]

Challenge: Shocks -- this requires
limiting/filtering



Compressible fluid flow

Density

2.

Density

VAN
SEORX
= QN
Vang

YAVAVAY
1% VAVAVAVAVAVAV
<IN i AN

TAVA
)

S RSN S S S S NS S S TSNS
\\/ \> é"() Vggn "’33‘1"%',%1% ggg%yn}vg%}g}ggggvgg&vgyb
& A v
S50 N R
avAVAYR,

KBS

<IN
=
=5

K

g
ﬁ‘

Kl
SRR

I
AR

107 F
10'3_— -
B n
g0 E
= .
E -
w [
=
1o§ .
: | |
- n
10°F
_IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
1 2 3 4 5 3 7 g



Remarks

We are done with all the basic now ! -- and we have
started to see it work for us

What we need to worry about is:

V' The need for 3D
v The need for speed
v Software beyond Matlab

Tomorrow !



