
Lecture - Implementation and numerical aspects

of DG-FEM in 2D

Ph.D. Course:
An Introduction to DG-FEM

for solving partial differential equations

Allan P. Engsig-Karup
Scientific Computing Section

DTU Informatics
Technical University of Denmark

August 24, 2009

Course content

The following topics are covered in the course

1 Introduction & DG-FEM in one spatial dimension

2 Implementation and numerical aspects (1D)

3 Insight through theory

4 Nonlinear problems

5 Extensions to two spatial dimensions

6 Introduction to mesh generation

7 Higher-order operators

8 Problem with three spatial dimensions and other advanced
topics

2 / 56

Requirements

What do we want?

! A flexible and generic framework useful for solving different
problems

! Easy maintenance by a component-based setup

! Splitting of the mesh and solver problems for reusability

! Easy proto-type implementation of solvers for users

3 / 56

Domain of interest

We want to solve a given problem in a domain Ω which is
approximated by the union of K nonoverlapping local elements Dk ,
k = 1, ...,K such that

Ω ∼= Ωh =
K
⋃

k=1

Dk

Thus, we need to deal with implementation issues with respect to
the local elements and how they are related.

The shape of the local elements can in principle be of any shape,
however, in practice we mostly consider d -dimensional simplexes
(e.g. triangles in two dimensions).

4 / 56

Sketch and notations for a two-dimensional domain

Consider a two-dimensional domain defined on x ∈ Ωh

a)Unstructured grid. b)Photo from a bird’s view.
Source: Google Earth.

Figure: Water area surrounding an artificial island called Middelgrunden
near the Copenhagen harbour in Denmark.

5 / 56

Sketch and notations for a two-dimensional domain

We choose to restrict ourselves to triangles in the following.

Dk

Dk+1

6/ 56

Local approximation in 2D

On each of the local elements, we choose to represent the solution
locally using Np grid points sufficient to form a complete
multi-dimensional polynomial basis of order N as

x ∈ Dk : ukh (x, t) =

Np
∑

n=1

ûkn (t)ψn(x) =

Np
∑

i=1

uki (t)l
k
i (x)

using either a modal or nodal representation.

On the triangle, the relation between number of points Np and
polynomial order N for a complete basis1 is

Np =
(N + 1)(N + 2)

2

1cf. Pascals triangle
7 / 56

Local approximation in 2D
For 2D discretizations we may require that our basis functions span
a complete 2D polynomial space of order N

PN = SPAN{xαyβ}, α, β ≥ 0, α + β ≤ N

which leads to a dimension of 1
2 (N + 1)(N + 2) basis functions as

deduced from Pascal’s triangle

1
x y

x2 xy y2

x3 x2y xy2 y3

...

Note: It is also possible to choice an incomplete basis, or an
extended basis. However, any choice of polynomial approximation
space will impact the accuracy and aliasing properties of the
scheme.

8 / 56

Local approximation in 2D
Similar to the 1D setup we want to map the local solutions to a
reference domain where we can define the local operations.

Introduce a linear mapping Ψ which takes a general straight-sided
triangle, x∈ Dk , to the reference triangle defined as

I = {r = (r , s)|(r , s) ≥ −1; r + s ≤ 0}

9 / 56

Local approximation in 2D

If Dk is spanned by three vertices v i , i = 1, 2, 3 then

x = λ2v1 + λ3v2 + λ1v3 = Ψ(r)
(

r

s

)

= λ2

(

−1
−1

)

+ λ3

(

1
−1

)

+ λ1

(

−1
1

)

= Ψ−1(x)

where the barycentric coordinates are defined as

λ1 =
s + 1

2
, λ2 = −

r + s

2
, λ3 =

r + 1

2

The constant metrics of the affine mapping can be found

∂x

∂r

∂r

∂x
=

[

xr xs
yr ys

] [

rx ry
sx sy

]

=

[

1 0
0 1

]

10 / 56

Local approximation in 2D
From which we can deduce the following relationships

rx = 1
J ys , ry = − 1

J xs , J = xrys − xsyr ,
sx = − 1

J yr , sy = 1
J xr

For any two straightsided triangles connected through Ψ(r)

xr =
v2 − v1

2
, xs =

v3 − v1

2
, vi =

(

x i

y i

)

Thus, for such cases the Jacobian can be expressed as

J =
1

4

(

x2 − x1

y2 − y1

)

·
(

y3 − y1

−(x3 − x1)

)

or more compactly

J = 1
4 t̂12 · n̂13 =

1
4 |̂t12||n̂13| cosϕ, 0 < ϕ < π

2

Thus J > 0 for straighsided triangles with vertices ordered
counter-clockwise.

11 / 56

Local approximation in 2D
Furthermore, to determine boundary normal vectors make use of
the directional transformation via chain rule

[

∂x
∂y

]

=

[

rx sx
ry sy

] [

∂r
∂s

]

=
[

∇r ∇s
]

[

∂r
∂s

]

which is equivalent to the action of stretching and rotation
operations on the directional vector.

Thus, the normal vectors in the reference domain can be
transformed as follows

n1 =

(

0
−1

)

⇒ n̂1 = − ∇s
||∇s||

n2 =

(

1
1

)

⇒ n̂2 =
(∇r+∇s)
||∇r+∇s||

n3 =

(

−1
0

)

⇒ n̂3 = − ∇r
||∇r ||

12 / 56

Local approximation in 2D

For being able to setup our DG-FEM discretization in a generic
way, we need procedures for

! computing polynomial expansions

! numerical evaluations of integrals and derivatives

! computing geometric factors

This involves

! identifying an orthonormal polynomial reference basis ψn(r)
defined on the triangle I

! identifying families of point distributions that leads to good
behavior of the multi-dimensional interpolating polynomial
defined on I

13 / 56

Local approximation in 2D I

We need to define a reference basis on the reference triangle

I = {r = (r , s)|(r , s) ≥ −1; r + s ≤ 0}

To do this a collapsed coordinate system is introduced through the
mapping

a = 2
1 + r

1− s
, b = s

such that the reference triangle basis can be defined on a reference
quadrilateral

Iq = {r = (a, b)| − 1 ≤ (a, b) ≤ 1}

14 / 56

Local approximation in 2D II

which are suitable for using one-dimensional basis functions for the
construction of a multi-dimensional basis. In the collapsed
coordinate system the reference basis can be defined as

ψm(r) =
√
2P(0,0)

i (a)P(2i+1,0)
j (b)(1− b)i

where P
(α,β)
n (x) is the n’th order Jacobi polynomial.

This makes it possible to exploit the orthogonal properties of the
one-dimensional basis functions on the triangle.

>> P = Simplex2DP(a,b,i,j)

For the interpolations on the triangle to be well-behaved we need
to identify good positions for the Np points on I to avoid
ill-conditioning issues.

15 / 56

Warp & Blend procedure
The nodes on the simplex can be determined using an optimized
explicit Warp & Blend construction procedure [1], cf. Nodes2D.m.

Idea is to create for each edge a warp (deformation) function

w(r) =

Np
∑

i=1

(rLGLi − rEQUI
i)lEQUI

i (r), r ∈ [−1, 1]

that combined with a suitable blending function bj , j = 1, 2, 3, can
deform equidistant nodes on the simplex. Then, the sum
deformations

g(λ1, λ2, λ3) =
3

∑

j=1

(1 + (αλj)2)bjwj

form a set of α-optimized nodes suitable for interpolation. 16 / 56

Local approximation in 2D
For stable and accurate computations we need to ensure that the
generalized Vandermonde matrix V is well-conditioned. This
implies minimizing the Lebesque constant

Λ = max
r∈I

Np
∑

i=1

|li (r)|

and maximizing Det V.

0 5 10 15
100

101

102

103

104

N

κ(
V)

0 5 10 15
100

1050

10100

10150

N

D
et

 V

Warburton
Equi

17 / 56

Local approximation in 2D

N Fekete Warburton Warburton Blyth Et. al. Hesthaven Equidistant
αopt α = 0

Tabular Explicit Explicit Explicit Tabular Explicit
1 1.00 1.00 1.00 1.00 1.00 1.00
2 1.67 1.67 1.67 1.67 1.67 1.67
3 2.11 2.11 2.11 2.11 2.11 2.27
4 2.66 2.66 2.66 2.66 2.59 3.47
5 3.12 3.12 3.14 3.14 3.19 5.45
6 4.17 3.70 3.82 3.87 4.07 8.75
7 4.91 4.27 4.55 4.65 4.78 14.35
8 5.90 4.96 5.69 5.92 5.85 24.01
9 6.80 5.74 7.02 7.38 6.88 40.92
10 7.75 6.67 9.16 9.82 8.46 70.89
11 7.89 7.90 11.83 12.90 10.14 124.53
12 8.03 9.36 16.06 17.78 12.63 221.41
13 9.21 11.47 21.17 24.12 - 397.70
14 9.72 13.97 30.33 34.12 - 720.70
15 9.97 17.65 42.48 49.51 - 1315.9

Table: Comparison of Lebesque constants Λ for some popular symmetric
nodal distributions on the triangle with 1D optimal
Gauss-Lobatto-Legendre distributions on edges.

18 / 56

Local approximation in 2D
The duality between using a modal or nodal interpolating
polynomial representation is related through the choice of modal
representation ψn(r) and the distinct nodal interpolation points
ri ∈ I , i = 1, ...,Np .

We can express the local approximations as

u(ri) ∼= uh(ri) =

Np
∑

n=1

ûnψn(ri) =

Np
∑

n=1

unln(ri), i = 1, ...,Np

Thus, we find the relationship for the modal and nodal coefficients

u = Vû

where

Vij = ψj(ri), ûi = ûi , ui = u(ri)

19 / 56

Local approximation in 2D

Modal basis:

Nodal basis:

20 / 56

Global approximation

The global solution u(x , t) can then be approximated by the direct
summations of the local elemental solutions

uh(x , t) =
k

⊕

k=1

ukh (x , t)

Recall, at the traces of adjacent elements there will be two distinct
solutions. Thus, there is an ambiguity in terms of representing the
solution.

21 / 56

How to satisfy the PDE
Consider the PDE for a general conservation law

∂tu+∇f (u) = 0, x ∈ Ω

For the approximation of the unknown solution we make use of the
expansion uh(x , t) and insert it into the PDE.

Doing this, result in an expression for the residual Rh(x , t). We
require that the test functions are orthogonal to the residual
function

Rh(x, t) = ∂tuh +∇f (uh)

in the Galerkin sense as
∫

Dk

Rh(x, t)ψn(x)dx = 0, 1 ≤ n ≤ Np

on each of the k = 1, ...,K elements.
22 / 56

Standard notation for elements

It is customary to refer to the interior information of the element
by a superscript ”-” and the exterior by a ”+”.

Furthermore, this notation is used to define the average operator

{{u}} ≡
u− + u+

2

where u can be both a scalar and a vector.

Jumps can be defined along an outward point normal n̂ (to the
element in question) as

[[u]] ≡ n̂−u− + n̂+u+

[[u]] ≡ n̂− · u− + n̂+ · u+

23/ 56

Local approximation

As we have seen, in a DG-FEM discretization we can apply a
polynomial expansion of arbitrary order within each element.

To exploit this in a code we need procedures for

! computing polynomial expansions (already in place)

! numerical evaluation of integrals and derivatives

! setting up means for stabilization through filtering

24 / 56

Element-wise operations
For implementations local operators needs to be defined.

Consider the mass matrix Mk for the k ’th straightsided element

Mk
ij =

∫

Dk

lki (x)l
k
j (x)dx = J k

∫

I

li(r)lj(r)dr = J kMij

with M the standard mass matrix constructed using an
orthonormal basis as

M = (VVT)−1

Consider the stiffness matrices ∇Sk = (Sk
x ,Sk

y)
T for the k ’th

element defined as

Sk
x ,ij =

∫

Dk

lki (x)
dlkj (x)

dx
dx = Sx ,ij

Sk
y ,ij =

∫

Dk

lki (x)
dlkj (x)

dy
dx = Sy ,ij

25 / 56

Element-wise operations
Reall, in 2D we have from the chain rule the directional mappings

Dx = rxDr + sxDs

Dy = ryDr + syDs

where relationships for the metrics was derived earlier.

The differentiation matrices on the simplex is similar to 1D case

Dr = V−1Vr , Ds = V−1Vs

where the gradients of the basis functions are needed

Vr ,(i ,j) =
∂ψj

∂r

∣

∣

∣

ri
= ar

∂ψj

∂a

∣

∣

∣

ai
, ar =

2
1−s

Vs,(i ,j) =
∂ψj

∂s

∣

∣

∣

ri
= as

∂ψj

∂a

∣

∣

∣

ai
+

∂ψj

∂b

∣

∣

∣

ai
, as = −2 (1+r)

(1−s)2

Then, the stiffness matrices can be determined as

Sx = M−1Dx , Sy = M−1Dy , Sr = M−1Dr , Ss = M−1Ds

26 / 56

Element-wise operations

For stabilization purposes filtering can also be employed in 2D.

Filtering in 2D can be carried out by filtering the expansion
coefficients û of the reference basis as

Fu(x) =
N
∑

i=0

N−i
∑

j=0

σ
(

i+j
N

)

ûijφij (x)

In practice, this is implemented through a filter matrix

F = VΛV−1

where the diagonal spectral filter matrix is

Λmm = σ
(

i+j
N

)

, m = j + (N + 1)i + 1− i
2(i − 1),

with (i , j) ≥ 0, i + j ≤ N. See Filter2D.m.

27 / 56

Element-wise operations

A useful filter is the exponential cut-off filter

σ(i ,Nc , α, s) =

{

1 , 0 ≤ i < Nc

exp
(

−α
(

i−Nc
N−Nc

)s)

,Nc ≤ i ≤ N

where i is the modal index, 0 ≤ Nc ≤ N is the cut-off frequency
(order), α is a tunable parameter, and s is the filter order.

The filter function has the following asymptotic properties

lim
α→∞

σ(i ,Nc , α, s) → 0, s fixed,Nc ≤ i < N

lim
α→0

σ(i ,Nc , α, s) → 1, s fixed,Nc ≤ i < N

lim
s→∞

σ(i ,Nc , α, s) → 1, α fixed,Nc ≤ i < N

σ(i ,Nc , α, s) = exp(−α), i = N

which gives good control in fine-tuning of a damping profile.
28 / 56

Element-wise operations

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

η

σ
(η

)

(α,s)=(36,8) , Nc∈[0,0.75]

Nc

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

i

σ
(i)

(N,α, s,Nc) = (4, 36, 10, 0)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

η

σ
(η

)

(s,Nc)=(8,0) , α∈[2,36]

α

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

η

σ
(η

)

(α,Nc)=(36,0) , s∈[2,64]

s

Exponential cut-off filter damping profiles for different parameters.
29 / 56

Element-wise operations

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

i

σ
(i)

(N,α, s,Nc) = (10, 36, 3, 4)

0 1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 910

0

0.5

1

i

(N,α, s,Nc) = (10, 36, 3, 4)

j

σ
(i+

j)

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

i

σ
(i)

(N,α, s,Nc) = (10, 0, 0, 10)

0 1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 910

0

0.5

1

i

(N,α, s,Nc) = (10, 0, 0, 10)

j

σ
(i+

j)

Examples of exponential cut-off filter damping profiles.
30 / 56

Element-wise operations

Integration can be done using the mass matrix (matrix based) or
via numerical quadrature or cubature rules in respectively single or
multi-dimensions.

! Integration via the mass matrix requires its construction
! Integral is exact for polynomial orders of at most 2N with a

polynomial basis of order N .

! Integration via quadrature/cubature rules requires use of
specific nodes and weights

! quadrature/cubature nodes can be reached via interpolation

Pitfalls that might affect the overall accuracy of the scheme

! Aliasing errors in integrand

! Insufficient order of accuracy of rule in question

! Integrand cannot be represented exactly by a polynomial

31 / 56

Element-wise operations

To approximate multi-dimensional integrals, we can use cubature
rules which takes the general form

∫

I

f (r)dr ∼=
Nc
∑

i=1

f (rci)w
c
i

based on a set of Nc nodes, rci , and associated weights, w c
i .

The order of accuracy of a cubature rule is determined by the
maximum order polynomial that can be integrated exactly.

For the approximation of integrals, e.g. inner products, we need to
interpolate the integrand to the set of cubature integration points
to use the cubature rule.

See Cubature2D.m, which gives tabulated nodes and weights for
cubature rules on the triangle useful for the exact integration of
polynomials of a specified order N in the argument.

32 / 56

Element-wise operations

A summary of useful scripts for the 2D element operators in Matlab

Vandermonde2D Compute V
GradVandermonde2D Compute gradients of modal basis Vr ,Vs

xytors Maps (x,y) to (r,s) coordinates in the triangles
Nodes2D Compute (x,y) nodes in equilateral triangle
rstoab Maps (r,s) to (a,b) ”collapsed” coordinates
Simplex2DP Orthonormal basis on the 2D simplex
GradSimplex2DP Derivatives of orthonormal basis on the 2D simplex
Dmatrices2D Compute Dr ,Ds

Filter2D Initialize 2D filter matrix
InterpMatrix2D Compute local 2D elemental interpolation matrix

A summary of useful scripts for the 2D element operations in
Matlab

Grad2D Compute 2D gradient
Div2D Compute 2D divergence of vector field
Curl2D Compute 2D curl operation

33 / 56

Element-wise operations

Examples of element-wise operations (2D) in Matlab

! Compute spatial derivatives ∇uh

>> [ux,uy] = Grad2D(u);

! Compute divergence of vector field ∇ · (uh, vh)T

>> [divu] = Div2D(u,v);

Prototyping and setup made simple!

34 / 56

Assembling the grid

35 / 56

Assembling the grid

We want to (semi-)automatically

1 Generate mesh for domain topology

2 Build local mesh data based on user input, e.g. x, y

3 Geometrical data, i.e. normals and metrics

4 Build index maps for easy user setup of boundary conditions

Note: Some user input may be required for stage 1 and stage 4.

Bookkeeping is the main problem....

36 / 56

Assembling the grid

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

Simple square mesh

1 2

34

D1

f1

f2f3
D2

f1

f2

f3

Now, we have (from some favorite mesh generator)
! Basic global mesh data tables, i.e. VX, VY and EToV

VX = [-1 1 1 -1];

VY = [-1 -1 1 1];

EToV = [1 2 4;

2 3 4];

37 / 56

More mesh data tables

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

Simple square mesh

1 2

34

D1

f1

f2f3
D2

f1

f2

f3

It is useful to define some additional mesh tables (Connect2D.m)
EToE = [1 2 1;

2 2 1]; % Element-To-Element Connectivity Table
EToF = [1 3 3;

1 2 2]; % Element-To-Face Connectivity Table

These tables are useful for the pre-processing of the standard
solver, e.g. index maps and local operators.

General rule: create mesh data tables as needed if it makes the
setup easier. 38 / 56

Local data

1 2 3 4

5 6 7

8 9

10

11

12

13

14

15

16

17

18

1920

On the reference triangle element I the nodes r = (r , s) are found
using the explicit Warp & Blend procedure

>> [x,y] = Nodes2D(N); [r,s] = xytors(x,y);

For all the local elements Dk , k = 1, ..,K , the local physical
coordinates xk = (xk , yk) can be determined alltogether as

>> v1 = EToV(:,1); v2 = EToV(:,2); v3 = EToV(:,3);
>> L1 = 0.5*(s+1); L2 = -0.5*(r+s); L3 = 0.5*(r+1);
>> x = L2*VX(v1) + L3*VX(v2) + L1*VX(v3);
>> y = L2*VY(v1) + L3*VY(v2) + L1*VY(v3);

This defines the set and ordering of the global nodal numbers.
39 / 56

Metrics of the mapping

The metric of the mapping can be calculated by utilizing the local
derivative operators Dr and Ds on the local coordinates (xk , yk)

function [rx,sx,ry,sy,J] = GeometricFactors2D(x,y,Dr,Ds)
% function [rx,sx,ry,sy,J] = GeometricFactors2D(x,y,Dr,Ds)
% Purpose : Compute the metric elements for the
% local mappings of the elements

% Calculate geometric factors
xr = Dr*x; xs = Ds*x; yr = Dr*y; ys = Ds*y; J = -xs.*yr + xr.*ys;
rx = ys./J; sx =-yr./J; ry =-xs./J; sy = xr./J;
return;

Note: Data for all elements are processed at once using
matrix-matrix products.

40 / 56

Geometric factors

1 2 3 4

5

6

7

8

9

10

11

12

13

14

15

16
17181920

21

22

23

24

For the DG-FEM setup we need locally at every node on each face
! the outward pointing normal vector n̂i , i = 1, 2, 3
! the surface Jacobians, J is , and the Jacobian of mapping, J

This defines the set and ordering of the global face nodal numbers.

n̂1 = −
∇s

||∇s||
= −

J

J1s

(

sx
sy

)

=
1

J1s

(

yr
−xr

)

||n̂1|| =
1

J1s

√

y2r + x2r = 1, J1s =
√

x2r + y2r

Surface jacobians and normal vector components computed in
Normals2D. 41 / 56

Index maps for imposing BCs I

For imposing boundary conditions on the local elements, we create
special index maps for imposing different types of boundary
conditions, cf. lecture on Mesh generation & Appendix B. Two
types of maps will be useful.

Index maps collecting face nodes from volume nodes (sets of global
nodal numbers)

vmapM Vector of global nodal numbers at faces for interior values u− = u(vmapM)
vmapP Vector of global nodal numbers at faces for exterior values u+ = u(vmapP)
vmapB Vector of global nodal numbers at faces for boundary values u−(∂Ωh) = u(vmapB)

Index maps for modifying collected face nodes (sets of global face
nodal numbers), e.g.

mapM Vector of indices to global face nodal numbers of interior face values
mapP Vector of indices to global face nodal numbers of exterior face values
mapB Vector of indices to global face nodal numbers of boundary face values

42 / 56

Index maps for imposing BCs II

Index maps of type vmap can be used for creating/modification of
the face arrays of size Nfaces · K · Nfp.

Index maps of type map can be used for appropriate modification
of the face arrays.

Some standard index maps are setup in BuildMaps2D.m.

Special index maps can be created using a BCType table storing
information about the type of boundary for each face of every
element in the mesh.

Note: vmaps are volume index maps and maps are face maps.

43 / 56

Putting the pieces together...

44 / 56

Putting the pieces together in a code

Consider the 2D linear advection equation

∂tu + cx∂xu + cy∂yu = 0, x ∈ Ω

with IC conditions

u(x, 0) = sin
(

2π
Lx
x
)

sin
(

2π
Ly
y
)

The exact solution to this problem is given as

u(x, t) = sin
(

2π
Lx
(x − cx t)

)

sin
(

2π
Ly
(y − cy t)

)

, x ∈ ∂Ω

which is used for specifying boundary conditions x ∈ ∂Ωh where
n̂ · c < 0 (incoming characteristics).

45 / 56

Putting the pieces together in a code

The DG-FEM method for the 2D linear advection equation on the
k ’th element is

∫

Dk

lki (x)∂tu
k
hdx+

∫

Dk

lki (x)∇ · fkh dx = 0, fkh = cukh

where the local solution is approximated as

ukh (x, t) =

Np
∑

i=1

ukh (x
k
i , t)l

k
i (x)

By integration by parts twice and exchanging the numerical flux
∫

Dk

lki (x)∂tu
k
hdx+

∫

Dk

lki (x)∇ · fkdx =

∮

∂Dk

lki n̂ · (fkh − f∗h)dx

where i = 1, ...,Np .

46 / 56

Putting the pieces together in a code

By inserting the local approximation for the solution we can now
obtain the local semidiscrete scheme

Mk du
k
h

dt
+ (cxSx + cySy)u

k
h =

∮

∂Dk

lki n̂ · (fkh − f∗h)dx

Then, we need to pick a suitable numerical flux f∗h for the problem,
e.g. upwinding according to the characteristics

f
k,∗
h (uk,−h , uk,+h) =

{

cuk,−h , c · n̂ ≥ 0

cuk,+h , c · n̂ < 0

which leads to a stable scheme.

To solve the system in time, apply a suitable ODE solver, e.g. a
Runge-Kutta method.

47 / 56

Putting the pieces together in a code
To solve a semidiscrete problem of the form

duh
dt

= Lh(uh, t)

employ some appropriate ODE solver to deal with time, e.g. the
low-storage explicit fourth order Runge-Kutta method (LSERK4)2

p(0) = un

i ∈ [1, ..., 5] :

{

k(i) = aik
(i−1) +∆tLh(p(i−1), tn + ci∆t)

p(i) = p(i−1) + bik
(i)

un+1
h = p(5)

! For every element, the time step size ∆t has to obey a CFL
condition of the form

∆t ≤
C

a
min
k,i

∆xki

2See book p. 64.
48 / 56

Putting the pieces together in a code

To build your own solver using the DGFEM codes

AdvecDriver2D Matlab main function for solving the 2D advection equation.
Advec2D Matlab function for time integration of the semidiscrete PDE.
AdvecRHS2D Matlab function defining right hand side of semidiscrete PDE

DGFEM Toolbox\2D

AdvecDriver2D Advec2D AdvecRHS2D

! Programming effort comparable to 1D case

49 / 56

Element-wise operations

A summary of preprocessing scripts for 2D DG-FEM computations
in Matlab

Globals2D Define list of globals variables
Startup2D Main script for pre-processing
MeshGenDistMesh2D Generates a simple square grid using DistMesh
BuildMaps2D Automatically create index maps from conn. and bc tables
BuildBCMaps2D Construct special index maps for imposing BC’s
Normals2D Compute outward pointing normals at elements faces
Connect2D Build global connectivity arrays for 2D grid
GeometricFactors2D Compute metrics of local mappings
Lift2D Compute surface integral term in DG formulation
dtscale2D Compute characteristic inscribed circle diameter for grid
(Hrefine2D) Apply non-conforming refinement to specific elements

50 / 56

Element-wise operations

How to use create a simple square initial mesh in Matlab

>> NN = 3; % numbers of vertices on an edge, adjustable
>> X = linspace(-1,1,NN);
>> [VX,VY]= meshgrid(X,X);
>> VX = VX(:)’;
>> VY = VY(:)’;
>> EToV = delaunay(VX,VY);
>> triplot(EToV,VX,VY,’k’) % show mesh
>> K = size(EToV,1);
>> Nv = length(VX(:));

Note: more on mesh generation in the Lecture on mesh generation
tomorrow.

51 / 56

Element-wise operations

How to use hrefine.m for hp-convergence tests

>> refineflag = 1:K; % mark elements for refinement
>> Hrefine2D(refineflag); % modify EToV

Variables and mesh tables in global scope via Globals2D.m, thus
only need to state which elements needs to be refined through the
refineflag vector.

Note: Hrefine2D.m can be used for non-conforming refinement if
the code are setup to exploit this.

52 / 56

Putting the pieces together in a code I

% Driver script for solving the 2D advection equation
Globals2D;

% Polynomial order used for approximation
N = 6;

% Create Mesh
NN = 6;
X = linspace(-1,1,NN);
[VX,VY]= meshgrid(X,X); VX = VX(:)’; VY = VY(:)’;
EToV = delaunay(VX,VY);
K = size(EToV,1); Nv = length(VX(:));

% Initialize solver and construct grid and metric
StartUp2D;

% Set initial conditions
Lx = 2; Ly = 2; u = sin(2*pi/Lx*x).*sin(2*pi/Ly*y);
cx = 1; cy = 0.1; % advection speed vector

% Solve Problem
FinalTime = 1;
[u,time] = Advec2D(u, FinalTime, cx, cy);

53 / 56

Putting the pieces together in a code I

function [u,time] = Advec2D(u, FinalTime, cx, cy, alpha)
% function [u,time] = Advec2D(u, FinalTime, cx, cy)
% Purpose : Integrate 2D advection equation until FinalTime starting with
% initial cocndition u
Globals2D;
time = 0;

% Runge-Kutta residual storage
resu = zeros(Np,K);

% compute time step size
rLGL = JacobiGQ(0,0,N); rmin = abs(rLGL(1)-rLGL(2));
dtscale = dtscale2D; dt = min(dtscale)*rmin*2/3

% outer time step loop
tstep = 0;
while (time<FinalTime)

tstep= tstep+1;
if(time+dt>FinalTime), dt = FinalTime-time; end

for INTRK = 1:5
timelocal = time + rk4c(INTRK)*dt;
[rhsu] = AdvecRHS2Dupwind(u, timelocal, cx, cy);
resu = rk4a(INTRK)*resu + dt*rhsu;
u = u+rk4b(INTRK)*resu;

end
% Increment time
time = time+dt;

end
return

54 / 56

Putting the pieces together in a code I

100 101 102 103

10−8

10−6

10−4

10−2

100

K1/2

||u
−u

h||

 N=1

Linear Advection 2D, Upwind flux

 N=2

 N=3

! Upwind flux gives as expected ideal convergence O(hN+1)

! Advection speed vector, c = (1.0, 0.1)

! Dirichlet boundary conditions specified where characteristics
are incoming

! Hrefine2D.m used to generate fine meshes from initial coarse
mesh.

55 / 56

References I

T. Warburton.
An explicit construction for interpolation nodes on the simplex.

J. Engineering Math., 56(3):247–262, 2006.

56 / 56

