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A brief overview of what’s to come

e Lecture |:Introduction and DG-FEM in ID

* Lecture 2: Implementation and

numerical aspects

* Lecture 3:Insight through theory

* Lecture 4: Nonlinear problems

* Lecture 5: Extension to two spatial dimensions

e Lecture 6:Introduction to mes

* Lecture 7: Higher order/Globa

N generation

problems

* Lecture 8: 3D and advanced topics
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Lecture 4

Let’s briefly recall what we know

Part |: Smooth problems
v Conservations laws and DG properties

V' Filtering, aliasing, and error estimates

<
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A brief summary

We now have a good understanding all key aspects
of the DG-FEM scheme for linear first order problems

* We understand both accuracy and stability and what
we can expect.
* The dispersive properties are excellent.
* The discrete stability is a little less encouraging.
A scaling like

At < C-L

alN?
is the Achilles Heel -- but there are ways!

... but what about nonlinear problems ?
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Conservation laws

Let us first consider the scalar conservation law

ou 0f(u) )
815 5. =0, x€|L,R] =12,
(ZC,O) — uo(a:),

with boundary conditions specified at inflow

ﬁ-%:ﬁ-fu<0.
ou

The equation has a fundamental property
d b
dt J,

Changes by inflow-outflow differences only
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Conservation laws

Importance !

This is perhaps most basic physical model
in continuum mechanics:

Maxwell’s equations for EM

Euler and Navier-Stokes equations of fluid/gas
MHD for plasma physics

Navier’s equations for elasticity

General relativity

Traffic modeling

Conservation laws are fundamental
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Conservation laws

One major problem with them:

Discontinuous solutions can form spontaneously
even for smooth initial conditions

...and how do we compute a derivate of a step !
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Conservation laws

One major problem with them:

Discontinuous solutions can form spontaneously
even for smooth initial conditions

...and how do we compute a derivate of a step !

Introduce weak solutions satisfying

[ [ (w0 + ) dedi=o
/_OO( (x,0) — uo(z)) ¢(x, 0)dz = 0.

where ¢#(z,t)is a smooth compact testfunction
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Conservation laws

Now, we can deal with discontinuous solutions

... but we have lost uniqueness!

To recover this, we define a convex entropy
n(w), n"(u)>0

and an entropy flux

F(u) = / ' (v) f(v) dv,

u

If one can prove that
on + 3F(u) <0
ot  Ow -

uniqueness is restored (for f convex)
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Back to the scheme

Recall the two DG formulations

Ouk dek o
L (Gt - a5 ) do=- [ ae s,

Ik OFk(yk
/D‘“ (% i f%gﬁu}l)> b ) d = /aDk - (fy (ug) — f7) 6 (2) da.

WVe shall be using a monotone flux, e.g., the LF flux

P ) = ()} + 5[]

Recall also the assumption on the local solution
Np

r € D ulf(z,1) :Z uF (x5, VO (), 7 (up(x, 1)) Zf x5, 1) (x

1=1

Note:  f*(zi,t) = Pn(f*)(wi, )
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Properties of the scheme

Using our common matrix notation we have

M’f—uh ST =~ ¢ @)

k

Lo

L )

l

x

?

= 3

MLt S5k = [0k - )]

x

wp = [ug (), up ()], f = R GED), SR @R

Multiply with a smooth testfunction from the left

k
r

STM ol — TS fh = o] [y

L

k
Ly
d k k

¢ =1 — a . up dz = f*(a7) — [ (z7).

Local/elementwise conservation
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Properties of the scheme

Summing over all elements we have

K g ok
. ~ * 7 k
> [ unde =Y 1 @)
k=1 l ke
but the numerical flux is single valued, i.e.,
Global conservation
Let us now assume a general smooth test function

NP
reD": Gu(z,t) =) ox), )6 (x),
1 =1

SO we obtain

9 Aoy, B .
<¢h7 &’%) . — (%’ h) . — = [€bhf ]:13 '

I
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Properties of the scheme

Integration by parts in time yields

/OOO th% ’LLh)Dk <% fh) — [onf*] ] dt + (¢1(0),un(0))pr = 0.

Summing over all elements yields

< [0 01
/ (at¢h’“h)gh (% ’fh)g,h] “

T (6 (0), u Qh—/ zne [on () £ (2] dt.

Since the test function is smooth, RHS vanishes

=== So|ution is a weak solution

== Shocks propagate a correct speed
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Properties of the scheme

Consider again
ou Of

ot  Ox

0,

Define the convex entropy
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Properties of the scheme

Consider the scheme

x

-~ 3

M St S = [ (7~ 1)

T

multiply with u from the left to obtain

Ldy
2 dt "n

T

et [ kgt do = [k @) - 1))

&I

Realize now that
%) %,
k k L / k k
/D Uh(f)xfh dﬂ?—/Dkn(uh)f( )(%uhdx

0
/(.. k k A k
/Dk s (“h)ax“h e /k oz’
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Properties of the scheme

This yields

1d x
I3 + [F )]

A N
AR A N

= [ui(@)(fF = )]0
At each interface we have a term like
F(uy) = Fuy) =, (fy =) +uy (f) = ) 20,
= —g(uy ) + g(ul) — f*(u —uy ) > 0.
Use the mean value theorem to obtain

g(uy) = g(uy) = g' (), —wy) = f(E)(uy —uy),

aw:[jwm%
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Properties of the scheme

Combining everything yields the condition

(f(&) = f )y, —uy,) 20,

This is an E-flux -- and all monotone fluxes satisfy this!

We have just proven that

I )
2 dt
Nonlinear stability -- just by the monotone flux
No limiting
No artificial dissipation

— ||l n =0

This is a very strong result!
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Properties of the scheme

It gets better -- define the flux

A

F(z) = f*(z)u(z) — g(z),

Using similar arguments as above, one obtains

d . .
— | n(up)dz + F(2y) = Fa; ™
dt Jp*

A cell entrophy condition

T —

If the flux is convex and the solution bounded

» Convergence to the unique entropy solution
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Properties of the scheme

We have managed to prove

Local conservation

Global conservation
Solution is a weak solution
Nonlinear stability

A cell entropy condition

No other known method can match this!

Note: Most of these results are only valid for scalar convex
pbroblems — but this is due to an incomplete theory for
conservation laws and not DG
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Consider an example

Consider
W 0 welLy, fw) =a(u(e), al@) = (1-27) 4L
e Scheme | M’“%uz +SfE = %]{x i - [FE]€F (z) da
fr () = Pn(a(z)uj(z)) Iz, t) th

e Scheme ||

d z,
k,a k k d a 1 LA
Sif = /:cf £ dxa( )45 dx. /\/lkauh + Skayf = 5}1{(}? 7 - [a(x)uf]€" (x) de.

1

e Scheme Il M 0uftssh= Qj{krﬁ-[[ff]]f’“(:c)drc,

p

reD": ff(x,t) = Za ¥ (xq, )05 (2);
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Consider an example

Schemes [+lI| Schemes ||

X 05} -
-]
~0.5 _

What is the problem ?
Iy (@ )=7’N( (z)up (@) N,
is not fii(z.t) = > _aled)us (vt
@) th Aliasing
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Consider an example

So we should just forget about scheme Il ?

It is, however, very attractive:
V' Scheme Il requires special operators for each element
V' Scheme lll requires accurate integration all the time

And for more general non-linear problems, the situation
is even less favorable.

Scheme lll is simple and fast -- but (weakly) unstable!

May be worth trying to stabilize it
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A second look

Consider
_8u + _8 (a(x)u) =0
ot Oz -

Discretized as 4, o .
ot T gg i aun) =0
Np

interpolation  ff(a,1) = T (a(e)uf (@, 1)) = 3 alak)uf (eh, )£ (2),

Express this as

aUh 1 0 1 auh
" 47T A il .
ot 29:° N (aun) + ot N (a . ) skew symmetric part
1 é9 1 é)ZLh
— I — — 7
TN aUn = 5IN (a—ax ) low order term
10 1 0
+55-In(aupn) — ;Inp-aup =0 aliasing term

2 0x 2 7 Ox
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A second look

One obtains the estimate

1d _
2d —Nunlle < Cillunlle + Ca(h, a) N*"Flulq,,.
| HINgauh = T (aun) 2 Aliasing driven instability
Ox Ox P

if u is not sufficiently smooth

What can we do! -- add dissipation

Qup 0 _ s41 | O A
T+ gDl =<1 | T —a) 2
1 d 2—2p
i%HuhHQ ClHuh||Q—|—CQN IU|Qp—035|Uh‘Qs

This is enough to stabilize!
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Filtering

So we can stabilize by adding dissipation as

0
8:1:

8uh (9 541
B %IN(auh) =¢e(—1)

o ]
(1_:62)(933] Up .

.. but how do we implement this ?

Let us consider the split scheme

8,
ox

B _
Oun O 7 tup) =0, U (q)pH [

ot ox ot Ox

(1 — :L’Z) 0 ] Uup, .
and discretize the dissipative part in time

0
Ox

0

(1 —xz)axruh(t).

wh = up(t + At) = up(t) + eAt(—1)5H [
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Filtering

Now recall that

Np
=) din(t)Poc
n=1
and the Legendre polynomials satisfy
d o d - _
_ )P, =0,
d:c(l X )de +nn+1)P, =0

so we obtain
wi(z,t) ~ up(z,t) + eAt(—1)5 Z Gy () (n(n — 1))° Pp_q ()

- n—1Y\ . ~ 1
:Za( ~ )un(t)Pn_l(a:), e 0C N

The dissipation can be implemented as a filter
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Filtering

We will define a filter as

:]_’ T}:
a(n) <1, 0<
=0, n>

Polynomial filter of order 2s:

Exponential filter of order 2s:

It is easily implemented as

Tuesday, August 18, 2009
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Filtering

Does it work ?

No filter

No aliasing
and s=32

5 10 15
' Time

A 2s-order filter is like adding a 2s dissipative term.

How much filtering: As little as possible
... but as much as needed
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Problems on non-conservative form

Often one encounters problems as
Ou ou

-——-+-a(x,t)2%£

=0
Ot ’

v Discretize it directly with a numerical flux
based on f=au

V' If a is smooth, solve

o dau 0o
8t ox ox
V' Introduce v = 2% and solve
ov  Oav

o o
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Basic results for smooth problems

Theorem 5.5. Assume that the fluz f € C° and the exact solution u is suf-
fictently smooth with bounded derivatives. Let up be a piecewise polynomial
semudiscrete solution of the discontinuous Galerkin approximation to the one-
dimensional scalar conservation law; then

lu(t) — un(®)lln < CEORTT,

provided a reqular grid of h = maxh”® is used. The constant C depends on

u, N, and time t, but not on h. If a general monotone flux is used, v = %,

resulting tn suboptimal order, while v =1 in the case an upwind flur is used.

The result extends to systems provided flux splitting is
possible to obtain an upwind flux -- this is true for
many important problems.
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Lets summarize Part |

We have achieved a lot

The theoretical support for DG for conservation
aws is very solid.

The requirements for ‘exact’ integration is expensive.
It seems advantageous to consider a nodal approach
in combination with dissipation.

Dissipation can be implemented using a filter

There is a complete error-theory for smooth
problems.

... but we have ‘forgotten’ the unpleasant issue

What about discontinuous solutions?
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Lecture 4

4
4

Part ll: Nonsmooth problems
v Shocks and Gibbs phenomena
v Filtering and limiting

v TVD-RK and error estimates
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Gibbs Phenomenon

Let us first consider a simple approximation

u(x) = —sign(x), = € [-1,1],
=

wwﬂﬂ W L

Overshoot does not go away with N
First order point wise accuracy
Oscillations are global

E o _ ”m

Gibbs Phenomenon



Gibbs Phenomenon

But do the oscillations destroy the nice behavior?

ou ou ou
E—FCL(ZB)%—O, —E—I—LU—O,

a(x) is smooth - but u(x,0) is not

Define the adjoint problem

ov .
E—C ’U—O,

solved with smooth v(x,0)

Clearly, we have

d

S (wv)e =0 = (u(t),v(t))e = (u(0),v(0))e
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Gibbs Phenomenon

Using central fluxes, we also have
(un(t), vr(t))2,n = (un(0),va(0))2,n-

Consider

(un(0), 08 (0)) 2 = (u(0), v(0))2 + (up,(0) =BT (0) ) o

+ (u(0),v,(0) — v(0))2,n-
We also have
(ur(0),v(0))2,n < (1(0),v(0)) o 4+ Cu)h" TN~ v(0)]0,4.

lo(t) = vr ()]l 2.n < C(F)

Combining it all, we obtain

(un(t),v(t))2.n = (u(t),v(t))e + ¢,
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Gibbs Phenomenon

The solution is spectrally accurate !
... but it is ‘hidden’

This also shows that the high-order accuracy is
maintained -- ‘the oscillations are not noise’ !

How do we recover the accurate solution?
Recall

—1

Np 1
up(z) = Y in Py (z), G = / w(z)Po_1(z) d.
n=1

One easily shows that

u(x) € H? = 4, x n™4
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Filtering

So there is a close connection between smoothness
and decay for the expansion coefficients.

Perhaps we can ‘convince’ the expansion do
decay faster !

Consider

Example

(0) _ —cos(mz), -1 <2z <0 (4 _ C e
“ {cos(wx), 0<z<1, 1 “ (s) ds,

Tuesday, August 18, 2009



Filtering

10° 10°
1072 1072
107 107
107° L 107
-8 —8
o o
1 0—12 | 1 0—12
10—14 10—14
—16 . . \ —16
e 0y 0 05 1 105
X
10° 10°
107 F 107
107 ¢ 107
107° | 107
_8 —8
1 8—10 | ..: 8—10
1 0—12 | 1 0—12
1 0—14 | 1 0—14
10—16 | | | 10—16
-1 -05 0 05 1 -
X
10° 10°
107 F 107
107 a@@@ 107
10° | 10°°
-8 -8
ool o]
1 0—12 | 1 0—12
107" 107"
—16 . | \ —16
ey 0 05 7 102
X
10° 10°
1072 1072
107 107
10°° 107°
100 | 107°
1 0—10 | 1 0—10
1 0—12 | 1 0—12
10—14 10—14
10—16 | | 10—16
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Filtering

This achieves exactly what we hoped for

v/ Improves the accuracy away from the problem spot
v/ Does not destroy matter at the problem spot
... but does not help there.

This suggests a strategy:

V' Use a filter to stabilize the scheme but do not
remove the oscillations.

v Postprocess the data after the end of the
computation.
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Filtering

Consider Burgers equation..

-

8“ auQ 15 \H\H\‘\ f :
T 0, ze[-1,1], :
ot + ox el | L

1

0.5

|
-

2, x<-05 . o
i =0 =43 T30
u(x,t) = ug(x — 3t),
Overfiltering leadsto .~ -
severe smearing. : y

Limited filtering looks

much better R

Tuesday, August 18, 2009
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1.2

1

0.8

0.6F
0.4r
0.2

OF

otl— .. 1.9
-1 -08-06-04-02 0 02 04 06 08 1

Filtering

An alternative - Pade filtering

¥

2
-1 -08-06-04-02 0 02 04 06 08 1

10-14

1072 |

107 |

1076

1078 |

10710}

107121

-1 -08 -06 -04 -02 0O 02 04 06 08 1

To fully recover, the
shock location is
required (see text).

v Eliminates oscillations and improves accuracy
v ..but no improvement at the point
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Limiting

So for some/many problems, we could simply leave the
oscillations -- and then postprocess.

However, for some applications (.. and advisors) this is
not acceptable

V' Unphysical values (negative densities)
V' Artificial events (think combustion)
v Visually displeasing (.. for the advisor).

So we are looking for a way to completely remove

the oscillations:
Limiting
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Limiting

We are interested in guaranteeing uniform boundedness

luli < C, [l = / ul da.
(0

Consider
o o BL _
U+ o-f(u) =5 5w and define n(u) = |u
We have
_/(n’(ux))xutda: ‘ux‘uwtdaj —/ U |dx = —||uxHL1
2 Uy

and one easily proves

d
1 < 0.
s [
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Limiting

We would like to repeat this for the discrete scheme.

Consider first the N=0 FV scheme

du
— (up, up ™) — f (g, up ™) =0,

Multiply with

and sum over aII elements to get

dt \Uh\TV T Z Uh Ulfu Ulflﬂ) f*(u;€w UZ_I)) =0,
k=1
K
unlry =D lup ™t —ug|.

k=1
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Limiting

Using that the flux is monotone, one easily proves
vh (f° (U’E,U’Z“) f (u’fmuz ) >0
and therefore

_ <0,
dt’uh’TV ~

So for N=0 everything is fine -- but what about N>0

using a Forward Euler method in time, we get

h —kn _ , M n * s —1,n
S (@) (b ) < (k) =0
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Limiting

Resulting in

"y — @y + D =0,

However, the monotone flux is not enough to
guarantee uniform boundedness through & > (

That is the job of the limiter -- which must satisfy
Ensures uniform boundedness/control oscillations
Does not violate conservation

Does not change the formal/high-order accuracy

This turns out to be hard !
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Limiting

Two tasks at hand

V' Detect troubled cells
V' Limit the slope to eliminate oscillations

Define the minmod function

[ sminj<j<i |ai], |s| =1 1l
m(ay,...,am) = {O, otherwise, °— m Z;sgn(ai).
1=

If a are slopes, the minmod function
v/ Returns the minimum slope is all have the same sign
V' Returns slope zero if the slopes are different
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Limiting

Let us assume N=1I in which case the solution is

up, (%) =y, + (¢ — 25) (up)a,

We have the classic MUSCL limiter

_k+1 ok ok k-1
- u, T —auf ul —u
T uf (x) = af 4+ (z — z8)m ((uﬁ)x, h h _h h > :

h ’ h
or a sligthly less dissipative limiter

I A |
~ uryTt —at uy —u
Hluéﬁz(x) :ulfz+(aj_xl({):)m ((ulfi)xv : h/2 h? : h/2h ) :

There are many other types but they are similar
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Limiting

Consider

8“ au ° ° ° ° °
5 T 5, = 0 TE€[-L1, Smooth initial condition

1.5

1}

1 05 0 0.5 1

Reduction to |Ist order at local smooth extrema
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Limiting

Introduce the TVB minmod

m(a1,...,an) =m (a1, as + Mh%sign(az), ..., an + Mh’sign(an)),

M estimates maximum curvature

1.5

-1 -0.5 0 0.5 1
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Limiting

Consider Burgers equation *

1072
2 =- -, 107
\ _1106
1.5 ! S5 4n-8
a’U/ 8“2 _ \‘ é 12_10
o + — (L S [__]w 1]7 F(g-:Z() \ »
t Ox ! —x 10

10714

033 205 0 05 7 107 05 0 05 ]

X X

2’ T S _05 25 10°

uo(x) = u(x,0) = { L z>—05 - _I w:
u(, ) = uo(z — 3t). " K=100 k I

1 10712
1074
0.5 10716

Too dissipative limiting
leads to severe smearing. - e
TR | K=100 L
.. but no oscillations! 1 o

0.5 10-16

|
-
o
[¢)]
o
o
[¢)]
-

|
-

|
o
[&)]
o
o
(4]
-

o
(6]
o
o
(63}
-
|
-
o
(63}
o
o
(63}
-
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Limiting

But what about N>|?

v/ Compare limited and nonlimited interface values
V' If equal, no limiting is needed.
V' If different, reduce to N=1I and apply slope limiting

2.5 : : : 10°

T

1.5}

05 : : :
—1 ~0.5 0 0.5 1
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Limiting

General remarks on limiting

V' The development of a limiting technique that avoid
local reduction to |st order accuracy is likely the
most important outstanding problem in DG

v/ There are a number of techniques around but they
all have some limitations -- restricted to simple/

equidistant grids, not TVD/TVB etc

v/ The extensions to 2D/3D and general grids are very
challenging
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TVD Runge-Kutta methods

Consider again the semi-discrete scheme

d
Euh — [:h(uhv t)v

For which we just discussed TVD/TVB schemes as
up Tt =g A ALy (up, t7), up ey < Juplry.

.. but this is just |st order in time -- we want
high-order accuracy

Do we have to redo it all ?
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TVD Runge-Kutta methods

Assume we can find a ERK method on the form

(p(0) = uy
{ 1= 1, ey S ’U(Z) — Z;;é Oéij?}(j) -+ ﬂijAtLh(U(ﬂ,tn + ’)/jAt) .
Lt = o

Coefficients found to satisfy order conditions

Write this as
1—1
v =) o (v(j) L ALy (v, 1" + %’At)> |
=0

Qi j
Clearly if «ij,0i; >0 ==

The scheme is a convex combination of Euler steps
and the stability of the high-order methods follows
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TVD Runge-Kutta methods

... but do such schemes exits ?

vV = w4+ ALL, (uf, t7),

1
up =0 = = (w4 0D + ALy (0D, + A1)

2nd order

U(l) = ’LLZ’ + Atﬁh(“%a tn)7

1
3rd order +® = = (3u? + 0 + AtL, (v " + A1) |
4 h

1 1
up = 03 = 3 (UZ + 202 4 2ALL, <U(2),t” + §At>> .

No 4th order, 4 stage scheme is possible - but
there are other options (not implicit)

With filter/limiting (“ ) |

Z ozilv@ + B AtLy, (U(l), t" + ’YlAt)
=0
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TVD Runge-Kutta methods

Example
8u+8u2—0 e [—1,1]
at | or L
2, < -—-0.5

uo(z) = u(x,0) = { u(z,t) = ug(x — 3t),

1, x> —-0.5.

Use ‘standard’ 2nd order ERK

v = uf — 20AL, (u}),

At
up =l + 0 (41£h(u2’) — Eh(v(l))) :

Compare to 2nd order TVD-RK

MUSCL limiting in space, i.e., no oscillations
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TVD Runge-Kutta methods

2.5 : : : 2.5
2 Aﬁ 12 -
I \l
I I
| |
1.5¢ I 1 1.5} |
I
11 | 1t |
0.5 - - - 0.5 - - -
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

X X

The oscillation is caused by time-stepping!

The 2nd order ERK is a bit unsual and ‘reasonable’
ERK method typically do not show this.

However, only with TVD-RK can one guarantee it
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A few theoretical results

Theorem 5.12. Assume that the limaiter, I1I, ensures the T'V DM property;
that 1s,

Wl — s e = o = e

and that the SSP-RK method is consistent.
Then the DG-FEM with the SSP-RK solution is TV DM as

Vn: |uhlry < luplrv.

Theorem 5.14. Assume that the slope limiter, II, ensures that up, is TV DM
or T'V.BM and that the SSP-RK method is consistent.
Then there is a subsequence, {uy }, of the sequence {un} generated by the

scheme that converges in L>(0,T;LY) to a weak solution of the scalar con-
servation law.

Moreover, if a TV BM Limiter is used, the weak solution 1is the entropy
solution and the whole sequence converges.

Finally, of the generalized slope limiter guarantees that

|lan — Hag||pr < Chlag|rv,

then the above results hold not only for the sequence of cell averages, {up},
but also for the sequence of functions, {up}.
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Solving the Euler equations

dp  Opu M

oar Pt ass
8t+-&x 0,

0 O(pu?

it lu”+p) _ 0, Momentum
ot Ox

OF OE+pu

v 50 =0 Energy
p=(-0(E-gm). =\ /2 Ideal gas

Sod’s Problem

pu(z,0) =0 E(z,0) = - 0.1, x>0.5.

(2,0) = 1.0, x < 0.5 1 1, x < 0.5
PAEE)=30.125, o> 0.5, Y1
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Solving the Euler equations

1

0.8t

K=250
- MUSCL

0.8 1
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Solving the Euler equations

0.8|
0.8} 0.6l
. 0.6] 0.4} K=500
0.4} 0.2} N=
MUSCL
%0 o2 §.4 06 08 1
1
1 0.8
0.8 06l
2 0.6 ' s o4l
0.4] I ol
0.2} L 0
% 02 04 06 08 1 % 02 04 06 08 1
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Fluxes - a second look

For the linear problem

ou ou ou
EJrAx% +Ay8—y =0,

we could derive the exact upwind flux - Riemann Pro.

Let us nhow consider a general nonlinear problem

ou Of(u)

ot  Ox =0,

For this we have used Lax-Friedrich fluxes -- but when
used with limiting, this is too dissipative.

We need to consider alternatives
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Fluxes - a second look

Let us locally assume that
fr=Au,

where A and u* depends on u™

A

Let us assume that 4 can diagonalized as
./Zl’l"z' = )\Z"I“i,

Use these waves to represent the solution

ut=u + E a;r; =ut — g 0T

)\iSO )\7;20
Taking the average gives
. . 1 . N
Au® = Af{ul} + - |Al[u] A = 848~
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Fluxes - a second look

.. but what isfl?

We must require that

. consistency:  A(u,u’) >a£/(:”)
..diagonizable: A =sAS1!.
Write

f(u+)_f(u_):/0 df(;bg(f)) d€:/0 df%&))cjiz g
Assume:

uw(é) =u + (v —u")E,
Roe linearization
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Fluxes - a second look

This results in the Roe condition

~ ~ Ldf(u
fut) - fu)=A (u+ — u_) : A= /0 féu(f) dg.

One clear option
£ = UFW + 5 Al
Like LF in ID

.. but not computable in general

Approximations

AN

A={ful}
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Summary

Dealing with discontinuous problems is a challenge

The Gibbs oscillations impact accuracy

.. but it does not destroy it, it seems

So they should not just be removed

One can the try to postprocess by filtering or
other techniques.

For some problems, true limiting is required

Doing this right is complicated -- and open

TVD-RK allows one to prove nonlinear results

...and it all works :-)

Time to move beyond |ID - Next week !
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