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A brief overview of what’s to come

• Lecture 1: Introduction and DG-FEM in 1D

• Lecture 2: Implementation and numerical aspects

• Lecture 3: Insight through theory

• Lecture 4: Nonlinear problems

• Lecture 5: Extension to two spatial dimensions

• Lecture 6: Introduction to mesh generation

• Lecture 7: Higher order/Global problems

• Lecture 8: 3D and advanced topics
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Lecture 4

✓ Let’s briefly recall what we know

✓ Part I: Smooth problems

✓ Conservations laws and DG properties

✓ Filtering, aliasing, and error estimates

✓ Part II: Nonsmooth problems

✓ Shocks and Gibbs phenomena

✓ Filtering and limiting

✓ TVD-RK and error estimates
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A brief summary

We now have a good understanding all key aspects
of the DG-FEM scheme for linear first order problems

• We understand both accuracy and stability and what
      we can expect.
• The dispersive properties are excellent.
• The discrete stability is a little less encouraging. 
     A scaling like

     is the Achilles Heel -- but there are ways!
∆t ≤ C h

aN2

... but what about nonlinear problems ?
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Conservation laws

Let us first consider the scalar conservation law

5

Nonlinear problems

So far, we have focused entirely on linear problems with constant or piecewise
constant coefficients. As we have seen, the methods and analysis for these
cases is relatively complete.

In this chapter we expand the discussion to include more complex prob-
lems – in particular, problems with smoothly varying coefficients and gen-
uinely nonlinear problems. As we will see, this introduces new elements that
need attention, and the analysis of the methods for such problems is more
complex. In fact, we will often not attempt to give a complete analysis but
merely outline the key results. However, the extension to strongly nonlinear
problems displays many unique features and the power and robustness of the
discontinuous Galerkin methods.

5.1 Conservation laws

Let us recall the basic scalar conservation law

∂u

∂t
+

∂f(u)
∂x

= 0, x ∈ [L,R] = Ω, (5.1)

u(x, 0) = u0(x),

where f(u) is the flux function, assumed to be convex, and we assume that
boundary conditions are given at inflow boundaries; that is, where

n̂ · ∂f

∂u
= n̂ · fu < 0.

Here n̂ is the outward pointing normal at ∂Ω. A fundamental property of Eq.
(5.1), used throughout the sciences as a way of expressing basic physical laws
of conservation of mass, momentum, and energy, is that

with boundary conditions specified at inflow
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The equation has a fundamental property116 5 Nonlinear problems

d

dt

∫ b

a
u(x)dx = f(u(a)) − f(u(b)); (5.2)

that is, the change of mass is exactly the difference between what enters and
what leaves any volume of interest, [a, b]. Furthermore, if the flux vanishes or
is periodic at the boundaries, there is conservation of the mass.

The linear constant coefficient case discussed so far is a special case of the
above with f(u) = au. In that case, the smoothness of the solution, u(x, t),
depends on the initial conditions only. However, for general nonlinear cases,
this is no longer true as nonsmooth solutions, known as shocks, may develop
even if the initial data are smooth.

A well-known example is f(u) = u2 (see e.g., [218, 301] for others and
more details). If we define the characteristic path, X(t), as

d

dt
X(t) = f ′(u(X, t)) = 2u(X, t), X(0) = x0,

and take ψ(t) = u(X, t) (i.e., the solution along the path), we have

dψ

dt
=

∂u

∂t
+ Xt

∂u

∂X
=

∂u

∂t
+

∂u2

∂X
= 0;

that is, ψ(t) is constant along these paths. If these paths do not cross, one
can uniquely determine the solution u(x, t) from the initial conditions.

Unfortunately, this assumption is generally not fulfilled. Consider the ini-
tial condition of u(x, 0) = − sin(πx) for x ∈ [−1, 1] and u(±1, t) = 0. Then all
information to the left of x = 0 will move to the right. To the right of x = 0,
however, it will move to the left. This leaves open the question of what exactly
happens where the characteristics meet. Since there is mass conservation, the
mass will continue to pile up at x = 0 and a shock forms. The solution in this
area looses smoothness, and we will therefore introduce the notion of weak
solutions to properly define a derivative of a nonsmooth function.

Let us define the C0 compactly supported test function, φ(x, t). The solu-
tion u(x, t) is a weak solution to the conservation law if it satisfies

∫ ∞

0

∫ ∞

−∞

(
u(x, t)

∂φ

∂t
+ f(u)

∂φ

∂x

)
dx dt = 0,

for all such smooth test functions and consistent initial conditions
∫ ∞

−∞
(u(x, 0) − u0(x)) φ(x, 0)dx = 0.

Unfortunately, this broader notion of a solution introduces other complica-
tions, as is it now easy to find examples of initial conditions that can result
in multiple weak solutions; that is, the weak solution is introduced at the ex-
pense of uniqueness.

Changes by inflow-outflow differences only
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Conservation laws

Importance ?

This is perhaps most basic physical model 
in continuum mechanics:

✓ Maxwell’s equations for EM
✓ Euler and Navier-Stokes equations of fluid/gas
✓ MHD for plasma physics
✓ Navier’s equations for elasticity
✓ General relativity
✓ Traffic modeling

Conservation laws are fundamental
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Conservation laws

One major problem with them:

Discontinuous solutions can form spontaneously 
even for smooth initial conditions

... and how do we compute a derivate of a step ?
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Conservation laws

One major problem with them:

Discontinuous solutions can form spontaneously 
even for smooth initial conditions

... and how do we compute a derivate of a step ?

Introduce weak solutions satisfying

116 5 Nonlinear problems
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where         is a smooth compact testfunction φ(x, t)
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Conservation laws

Now, we can deal with discontinuous solutions

... but we have lost uniqueness!

To recover this, we define a convex entropy

η(u), η′′(u) > 0

and an entropy flux

5.1 Conservation laws 117

Example 5.1. To illustrate the problem of uniqueness for the weak solutions,consider Burgers’ equation

∂u

∂t
+ 1

2
∂u2

∂x
= 0, x ∈ [−∞,∞],

with the initial conditions

u(x, 0) =
{

0, x ≤ 0
1, x > 0.

A weak solution can clearly be found by using the Rankine-Hugoniot conditionto give the shock speed of 1
2 :

uI(x, t) =
{

0, x ≤ t/2
1, x > t/2.

However, consider

uII(x, t) =






0, x ≤ 0
x/t, 0 ≤ x ≤ t
1, x ≥ t,

which is a valid piecewise solution to the equation in strong form, known as aclassic solution. Hence, we have two different solutions with the same initialconditions.

This lack of uniqueness leads to the natural question of which solution isthe physically relevant one. To answer this, we consider the viscosity solution,uε(x, t), defined as the solution to the equation

∂uε

∂t
+ ∂f(uε)

∂x
= ε

∂2uε

∂x2
,

with uε(x, 0) = u(x, 0). The physically relevant solution, u(x, t), is obtainedas the limit solution limε→0 uε(x, t) = u(x, t) – if it exists. However, provingexistence of this limit for general problems remains an open problem.A necessary condition for the viscosity limit to exist can be recoveredthrough an entropy condition. If we define the convex entropy, η(u), such thatη′′(u) > 0, and with the entropy flux

F (u) =
∫

u
η′(v)f ′(v) dv,

then if u(x, t) satisfies the entropy condition
∂η

∂t
+ ∂

∂x
F (u) ≤ 0, (5.3)

uniqueness is guaranteed provided f(u) is convex (i.e., f ′′(u) > 0). One easilyproves that all viscosity solutions satisfy Eq. (5.3) which becomes an equality

If one can prove that
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1, x ≥ t,

which is a valid piecewise solution to the equation in strong form, known as a
classic solution. Hence, we have two different solutions with the same initial
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This lack of uniqueness leads to the natural question of which solution is
the physically relevant one. To answer this, we consider the viscosity solution,
uε(x, t), defined as the solution to the equation
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∂f(uε)
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= ε
∂2uε

∂x2
,

with uε(x, 0) = u(x, 0). The physically relevant solution, u(x, t), is obtained
as the limit solution limε→0 uε(x, t) = u(x, t) – if it exists. However, proving
existence of this limit for general problems remains an open problem.

A necessary condition for the viscosity limit to exist can be recovered
through an entropy condition. If we define the convex entropy, η(u), such that
η′′(u) > 0, and with the entropy flux

F (u) =
∫

u
η′(v)f ′(v) dv,

then if u(x, t) satisfies the entropy condition
∂η

∂t
+

∂
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F (u) ≤ 0, (5.3)

uniqueness is guaranteed provided f(u) is convex (i.e., f ′′(u) > 0). One easily
proves that all viscosity solutions satisfy Eq. (5.3) which becomes an equality

uniqueness is restored (for f convex)
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Back to the scheme

Recall the two DG formulations

5.2 The basic schemes and their properties 119

φh ∈ Vh. As usual Vh is the space of all piecewise polynomial functions de-
fined on Ω. This results in the local semidiscrete weak formulation

∫

Dk

(
∂uk

h

∂t
$k
i (x) − fk

h (uk
h)

d$k
i

dx

)
dx = −

∫

∂Dk
n̂ · f∗$k

i (x) dx, (5.4)

and the corresponding strong form

∫

Dk

(
∂uk

h

∂t
+

∂fk
h (uk

h)
∂x

)
$k
i (x) dx =

∫

∂Dk
n̂ ·

(
fk

h (uk
h) − f∗) $k

i (x) dx. (5.5)

Furthermore, we have the numerical flux f∗, for which we generally use the
monotone Lax-Friedrichs flux

f∗(u−
h , u+

h ) = {{fh(uh)}} +
C

2
[[uh]],

where C = max |fu| is an upper bound on the (local) wave speed.
Using a simpler notation, we recover the semidiscrete schemes

Mk d

dt
uk

h + Sfk
h =

[
!k(x)(fk

h − f∗)
]xk

r

xk
l

,

for the strong form and

Mk d

dt
uk

h − ST fk
h = −

[
!k(x)f∗

]xk
r

xk
l

,

for the weak form. In both cases, we recall the vectors of nodal values

uk
h = [uk

h(xk
1), . . . , uk

h(xk
Np

)]T , fk
h = [fk

h (xk
1), . . . , fk

h (xk
Np

)]T .

Let us consider the schemes in a little more detail. If we multiply the weak
from by a smooth test function, φ = 1, we have

φT
hMk d

dt
uk

h − φT
hST fk

h = −φT
h

[
!k(x)f∗

]xk
r

xk
l

(5.6)

and, thus,

d

dt

∫ xk
r

xk
l

uh dx = f∗(xk
l ) − f∗(xk

r ).

This is exactly the discrete equivalent of the fundamental conservation prop-
erty of the continuous conservation law, Eq. (5.2); that is, the scheme is locally
conservative.

If we sum over all the elements, we recover

5.2 The basic schemes and their properties 119

φh ∈ Vh. As usual Vh is the space of all piecewise polynomial functions de-
fined on Ω. This results in the local semidiscrete weak formulation

∫

Dk

(
∂uk

h

∂t
$k
i (x) − fk

h (uk
h)

d$k
i

dx

)
dx = −

∫

∂Dk
n̂ · f∗$k

i (x) dx, (5.4)

and the corresponding strong form

∫

Dk

(
∂uk

h

∂t
+

∂fk
h (uk

h)
∂x

)
$k
i (x) dx =

∫

∂Dk
n̂ ·

(
fk

h (uk
h) − f∗) $k

i (x) dx. (5.5)

Furthermore, we have the numerical flux f∗, for which we generally use the
monotone Lax-Friedrichs flux

f∗(u−
h , u+

h ) = {{fh(uh)}} +
C

2
[[uh]],

where C = max |fu| is an upper bound on the (local) wave speed.
Using a simpler notation, we recover the semidiscrete schemes

Mk d

dt
uk

h + Sfk
h =

[
!k(x)(fk

h − f∗)
]xk

r

xk
l

,

for the strong form and

Mk d

dt
uk

h − ST fk
h = −

[
!k(x)f∗

]xk
r

xk
l

,

for the weak form. In both cases, we recall the vectors of nodal values

uk
h = [uk

h(xk
1), . . . , uk

h(xk
Np

)]T , fk
h = [fk

h (xk
1), . . . , fk

h (xk
Np

)]T .

Let us consider the schemes in a little more detail. If we multiply the weak
from by a smooth test function, φ = 1, we have

φT
hMk d

dt
uk

h − φT
hST fk

h = −φT
h

[
!k(x)f∗

]xk
r

xk
l

(5.6)

and, thus,

d

dt

∫ xk
r

xk
l

uh dx = f∗(xk
l ) − f∗(xk

r ).

This is exactly the discrete equivalent of the fundamental conservation prop-
erty of the continuous conservation law, Eq. (5.2); that is, the scheme is locally
conservative.

If we sum over all the elements, we recover

5.2 The basic schemes and their properties 119

φh ∈ Vh. As usual Vh is the space of all piecewise polynomial functions de-
fined on Ω. This results in the local semidiscrete weak formulation

∫

Dk

(
∂uk

h

∂t
$k
i (x) − fk

h (uk
h)

d$k
i

dx

)
dx = −

∫

∂Dk
n̂ · f∗$k

i (x) dx, (5.4)

and the corresponding strong form

∫

Dk

(
∂uk

h

∂t
+

∂fk
h (uk

h)
∂x

)
$k
i (x) dx =

∫

∂Dk
n̂ ·

(
fk

h (uk
h) − f∗) $k

i (x) dx. (5.5)

Furthermore, we have the numerical flux f∗, for which we generally use the
monotone Lax-Friedrichs flux

f∗(u−
h , u+

h ) = {{fh(uh)}} +
C

2
[[uh]],

where C = max |fu| is an upper bound on the (local) wave speed.
Using a simpler notation, we recover the semidiscrete schemes

Mk d

dt
uk

h + Sfk
h =

[
!k(x)(fk

h − f∗)
]xk

r

xk
l

,

for the strong form and

Mk d

dt
uk

h − ST fk
h = −

[
!k(x)f∗

]xk
r

xk
l

,

for the weak form. In both cases, we recall the vectors of nodal values

uk
h = [uk

h(xk
1), . . . , uk

h(xk
Np

)]T , fk
h = [fk

h (xk
1), . . . , fk

h (xk
Np

)]T .

Let us consider the schemes in a little more detail. If we multiply the weak
from by a smooth test function, φ = 1, we have

φT
hMk d

dt
uk

h − φT
hST fk

h = −φT
h

[
!k(x)f∗

]xk
r

xk
l

(5.6)

and, thus,

d

dt

∫ xk
r

xk
l

uh dx = f∗(xk
l ) − f∗(xk

r ).

This is exactly the discrete equivalent of the fundamental conservation prop-
erty of the continuous conservation law, Eq. (5.2); that is, the scheme is locally
conservative.

If we sum over all the elements, we recover

118 5 Nonlinear problems

for smooth solutions. Furthermore, a weak solution satisfying the entropy
condition is also a unique solution [290], provided the flux is convex. This
leaves open the question of how to determine whether a solution satisfies an
entropy condition.

Perhaps the most celebrated condition, known as the Lax entropy condi-
tion, for problems with a convex flux takes the following form [214]:

Theorem 5.2. Let u(x, t) be a weak solution and S be an (x, t)-curve along
which u has a discontinuity. Let (x0, t0) ∈ S and u− and u+ be the left and
right limits of u(x, t), respectively, at (x0, t0) and define

s =
f(u−) − f(u+)

u− − u+
.

Then u(x, t) satisfies the entropy condition at (x0, t0) if and only if

f ′(u−) > s > f ′(u+).

A discontinuity satisfying this is called a shock and s is the shock velocity.

Note that the shock speed is exactly what is obtained from the Rankine-
Hugoniot condition (see Section 2.4).

Hence, we must not only be careful with how to approximate the more
complex fluxes and nonlinear terms, but we must also consider that solutions
may lose smoothness and, thus, may lose uniqueness, unless some entropy
inequality can be established.

For more general fluxes (e.g., nonconvex fluxes), issues like existence and
uniqueness of solutions become significantly more complex, even for scalar
equations. For systems of equations, for example, the situation is even more
complicated, with a largely incomplete theory, and a detailed discussion is
well beyond the scope of this text. Good references regarding such issues are
[87, 115, 301].

In what remains we will, unless otherwise stated, simply assume that the
conservation laws are well-posed; that is, that a unique solution exist and that
this solution depend smoothly on the data.

5.2 The basic schemes and their properties

If we consider the scalar conservation law in Eq. (5.1) and follow the basic
guidelines from Chapter 2. We assume that

x ∈ Dk: uk
h(x, t)=

Np∑

i=1

uk(xi, t)!k
i (x), fk

h (uh(x, t))=
Np∑

i=1

fk(xi, t)!k
i (x),

are polynomial representations of the local solution and the local flux, respec-
tively, and require the local residual to be orthogonal to all test functions,

We shall be using a monotone flux, e.g., the LF flux

Recall also the assumption on the local solution

Note: fk(xi, t) = PN (fk)(xi, t)
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Properties of the scheme

Using our common matrix notation we have

5.2 The basic schemes and their properties 119
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Furthermore, we have the numerical flux f∗, for which we generally use the
monotone Lax-Friedrichs flux

f∗(u−
h , u+

h ) = {{fh(uh)}} +
C

2
[[uh]],

where C = max |fu| is an upper bound on the (local) wave speed.
Using a simpler notation, we recover the semidiscrete schemes
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,
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1), . . . , uk
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Np
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h = [fk

h (xk
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dt
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xk
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uh dx = f∗(xk
l ) − f∗(xk

r ).

This is exactly the discrete equivalent of the fundamental conservation prop-
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h = [fk

h (xk
1), . . . , fk

h (xk
Np

)]T .
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Multiply with a smooth testfunction from the left
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where C = max |fu| is an upper bound on the (local) wave speed.
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[
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for the weak form. In both cases, we recall the vectors of nodal values

uk
h = [uk

h(xk
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1), . . . , fk

h (xk
Np

)]T .
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and, thus,
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This is exactly the discrete equivalent of the fundamental conservation prop-
erty of the continuous conservation law, Eq. (5.2); that is, the scheme is locally
conservative.

If we sum over all the elements, we recover
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)
dx = −

∫
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n̂ · f∗$k

i (x) dx, (5.4)

and the corresponding strong form

∫

Dk

(
∂uk

h
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∫
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n̂ ·
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h (uk
h) − f∗) $k
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Furthermore, we have the numerical flux f∗, for which we generally use the
monotone Lax-Friedrichs flux

f∗(u−
h , u+

h ) = {{fh(uh)}} +
C

2
[[uh]],

where C = max |fu| is an upper bound on the (local) wave speed.
Using a simpler notation, we recover the semidiscrete schemes

Mk d

dt
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h =

[
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r

xk
l

,

for the strong form and

Mk d

dt
uk

h − ST fk
h = −

[
!k(x)f∗

]xk
r

xk
l

,

for the weak form. In both cases, we recall the vectors of nodal values

uk
h = [uk

h(xk
1), . . . , uk

h(xk
Np

)]T , fk
h = [fk

h (xk
1), . . . , fk

h (xk
Np

)]T .

Let us consider the schemes in a little more detail. If we multiply the weak
from by a smooth test function, φ = 1, we have

φT
hMk d

dt
uk

h − φT
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h = −φT
h

[
!k(x)f∗
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xk
l

(5.6)

and, thus,

d

dt
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r
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l

uh dx = f∗(xk
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r ).

This is exactly the discrete equivalent of the fundamental conservation prop-
erty of the continuous conservation law, Eq. (5.2); that is, the scheme is locally
conservative.

If we sum over all the elements, we recover

Local/elementwise conservation
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Summing over all elements we have120 5 Nonlinear problems

K∑

k=1

d

dt

∫ xk
r

xk
l

uh dx =
∑

ke

n̂e · [[f∗(xk
e)]],

where ke are the number of interfaces, xk
e is the interface position, and n̂e is

an outward pointing normal at this edge. If we choose a reasonable flux (e.g.,
the Lax-Friedrichs flux or some other consistent monotone flux), and assume
periodic boundary conditions, we likewise recover global conservation since
the flux is unique at an interface by consistency.

Let us now consider the more general local smooth test function

x ∈ Dk : φh(x, t) =
Np∑

i=1

φ(xk
i , t)"k

i (x),

which we assume vanishes for large values of t. From Eq. (5.6), we recover
(

φh,
∂

∂t
uh

)

Dk
−

(
∂φh

∂x
, fh

)

Dk
= − [φhf∗]x

k
r

xk
l
.

Integration by parts in time yields

∫ ∞

0

[(
∂

∂t
φh, uh

)

Dk
+

(
∂φh

∂x
, fh

)

Dk
− [φhf∗]x

k
r

xk
l

]
dt + (φh(0), uh(0))Dk = 0.

Summing over all elements yields

∫ ∞

0

[(
∂

∂t
φh, uh

)

Ω,h

+
(

∂φh

∂x
, fh

)

Ω,h

]
dt

+(φh(0), uh(0))Ω,h =
∫ ∞

0

∑

ke

n̂e · [[φh(xk
e)f∗(xk

e)]] dt.

Since φh is a polynomial representation of a smooth test function, φ, it con-
verges as N increases and/or h decreases. Also, the global smoothness of φ
ensures that the right-hand side vanishes as for the constant test function
since the numerical flux is unique. Thus, if uh(x, t) converges almost every-
where to a function, u(x, t), then this is guaranteed to be a weak solution to
the conservation law [45]. This implies, among other things, that shocks will
move at the right speed.

Let us again consider the scalar conservation law

∂u

∂t
+

∂f

∂x
= 0,

and the local, strong semidiscrete form of the discretization

but the numerical flux is single valued, i.e.,
Global conservation

Let us now assume a general smooth test function
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ensures that the right-hand side vanishes as for the constant test function
since the numerical flux is unique. Thus, if uh(x, t) converges almost every-
where to a function, u(x, t), then this is guaranteed to be a weak solution to
the conservation law [45]. This implies, among other things, that shocks will
move at the right speed.

Let us again consider the scalar conservation law

∂u

∂t
+

∂f

∂x
= 0,

and the local, strong semidiscrete form of the discretization
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where ke are the number of interfaces, xk
e is the interface position, and n̂e is

an outward pointing normal at this edge. If we choose a reasonable flux (e.g.,
the Lax-Friedrichs flux or some other consistent monotone flux), and assume
periodic boundary conditions, we likewise recover global conservation since
the flux is unique at an interface by consistency.

Let us now consider the more general local smooth test function

x ∈ Dk : φh(x, t) =
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verges as N increases and/or h decreases. Also, the global smoothness of φ
ensures that the right-hand side vanishes as for the constant test function
since the numerical flux is unique. Thus, if uh(x, t) converges almost every-
where to a function, u(x, t), then this is guaranteed to be a weak solution to
the conservation law [45]. This implies, among other things, that shocks will
move at the right speed.

Let us again consider the scalar conservation law

∂u

∂t
+

∂f

∂x
= 0,

and the local, strong semidiscrete form of the discretization

so we obtain
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Integration by parts in time yields

Summing over all elements yields

120 5 Nonlinear problems

K∑

k=1

d

dt

∫ xk
r

xk
l

uh dx =
∑

ke

n̂e · [[f∗(xk
e)]],

where ke are the number of interfaces, xk
e is the interface position, and n̂e is

an outward pointing normal at this edge. If we choose a reasonable flux (e.g.,
the Lax-Friedrichs flux or some other consistent monotone flux), and assume
periodic boundary conditions, we likewise recover global conservation since
the flux is unique at an interface by consistency.

Let us now consider the more general local smooth test function

x ∈ Dk : φh(x, t) =
Np∑
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i (x),

which we assume vanishes for large values of t. From Eq. (5.6), we recover
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Since φh is a polynomial representation of a smooth test function, φ, it con-
verges as N increases and/or h decreases. Also, the global smoothness of φ
ensures that the right-hand side vanishes as for the constant test function
since the numerical flux is unique. Thus, if uh(x, t) converges almost every-
where to a function, u(x, t), then this is guaranteed to be a weak solution to
the conservation law [45]. This implies, among other things, that shocks will
move at the right speed.

Let us again consider the scalar conservation law

∂u

∂t
+

∂f

∂x
= 0,

and the local, strong semidiscrete form of the discretization

Since the test function is smooth, RHS vanishes

Solution is a weak solution

Shocks propagate a correct speed

Properties of the scheme

Integration by parts in time yields
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e)]],

where ke are the number of interfaces, xk
e is the interface position, and n̂e is

an outward pointing normal at this edge. If we choose a reasonable flux (e.g.,
the Lax-Friedrichs flux or some other consistent monotone flux), and assume
periodic boundary conditions, we likewise recover global conservation since
the flux is unique at an interface by consistency.

Let us now consider the more general local smooth test function
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the conservation law [45]. This implies, among other things, that shocks will
move at the right speed.

Let us again consider the scalar conservation law

∂u
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and the local, strong semidiscrete form of the discretization

Summing over all elements yields
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where ke are the number of interfaces, xk
e is the interface position, and n̂e is

an outward pointing normal at this edge. If we choose a reasonable flux (e.g.,
the Lax-Friedrichs flux or some other consistent monotone flux), and assume
periodic boundary conditions, we likewise recover global conservation since
the flux is unique at an interface by consistency.

Let us now consider the more general local smooth test function

x ∈ Dk : φh(x, t) =
Np∑
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which we assume vanishes for large values of t. From Eq. (5.6), we recover
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−
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Since φh is a polynomial representation of a smooth test function, φ, it con-
verges as N increases and/or h decreases. Also, the global smoothness of φ
ensures that the right-hand side vanishes as for the constant test function
since the numerical flux is unique. Thus, if uh(x, t) converges almost every-
where to a function, u(x, t), then this is guaranteed to be a weak solution to
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η′(uk
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∂
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h dx
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∂
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2
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dt
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[
F (uk

h)
]xk

r

xk
l

=
[
uk

h(x)(fk
h − f∗)

]xk
r

xk
l
.

At each interface we are left with conditions of the form

F (u−
h ) − F (u+

h ) − u−
h (f−

h − f∗) + u+
h (f+

h − f∗) ≥ 0,

to ensure nonlinear stability. Here, u−
h reflects solutions left of the interface

and u+
h solutions right of the interface. Using Eq. (5.7), we have

−g(u−
h ) + g(u+

h ) − f∗(u+
h − u−

h ) ≥ 0.

Now, we use the mean value theorem to obtain

g(u+
h ) − g(u−

h ) = g′(ξ)(u+
h − u−

h ) = f(ξ)(u+
h − u−

h ),

for some ξ ∈ [u−
h , u+

h ]. Combining this, we recover the condition

(f(ξ) − f∗)(u+
h − u−

h ) ≥ 0,

At each interface we have a term like

Use the mean value theorem to obtain
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This is an E-flux -- and all monotone fluxes satisfy this!

We have just proven that 
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which is a standard condition for a monotone flux – known as an E-flux. As
already discussed in Chapter 2, the Lax-Friedrichs flux and the other fluxes
discussed here satisfy this condition.

Thus, we have established the general result that

1
2

d

dt
‖uh‖Ω,h ≤ 0. (5.8)

This is a very strong result of nonlinear stability for the scheme without any
use of stabilization or control of the solutions.

Let us follow [187] and take this argument one step further. We define the
consistent entropy flux, F̂ , as

F̂ (x) = f∗(x)u(x) − g(x),
and consider the local cellwise entropy

1
2

d

dt
‖uk

h‖2
Dk −

∫

Dk

∂uk
h

∂x
fk

h dx +
[
uk

hf∗]xk
r

xk
l

=
d

dt

∫

Dk
η(uk

h) dx + F̂ (xk
r ) − F̂ (xk

l ) = 0.

The above is recognized as a cell entropy condition, and since the polynomial
solution, uk

h, is smooth, it is a strict equality. Let us also consider an interface

d

dt

∫

Dk
η(uk

h) dx + F̂ (xk
r ) − F̂ (xk

l )

=
d

dt

∫

Dk
η(uk

h) dx + F̂ (xk
r ) − F̂ (xk−1

r ) + F̂ (xk−1
r ) − F̂ (xk

l )

=
d

dt

∫

Dk
η(uk

h) dx + F̂ (xk
r ) − F̂ (xk−1

r ) + Φk = 0,

where

Φk = F̂ (xk−1
r ) − F̂ (xk

l ) = f∗(u−
h − u+

h ) + g(u+
h ) − g(u−

h ) ≥ 0.

The latter argument follows directly from the proof of Eq. (5.8) to establish
nonlinear stability. Hence, we have

d

dt

∫

Dk
η(uk

h) dx + F̂ (xk
r ) − F̂ (xk−1

r ) ≤ 0, (5.9)

which is a discrete cell entropy condition for the quadratic entropy, η. It can
be generalized in a straightforward manner to other convex entropy functions
as well as to multidimensional scalar problems. The result is much stronger
than nonlinear L2-stability, as it suffices to guarantee convergence for scalar
problems to the unique entropy solution under light additional conditions; for
example, the flux is convex and the solution is total variation bounded (see
Section 5.6 for more on this).

Nonlinear stability -- just by the monotone flux
✓ No limiting
✓ No artificial dissipation

This is a very strong result!
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Using similar arguments as above, one obtains 

A cell entrophy condition

If the flux is convex and the solution bounded

Convergence to the unique entropy solution
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Properties of the scheme

We have managed to prove

✓ Local conservation
✓ Global conservation
✓ Solution is a weak solution
✓ Nonlinear stability
✓ A cell entropy condition

No other known method can match this!

Note: Most of these results are only valid for scalar convex 
problems -- but this is due to an incomplete theory for 
conservation laws and not DG
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5.3 Aliasing, instabilities, and filter stabilization

In spite of such strong results, let us consider an example to emphasize that
caution is still needed.

Example 5.3. To keep things simple, we consider the problem

∂u

∂t
+

∂f

∂x
= 0, x ∈ [−1, 1],

subject to periodic boundary conditions and with the simple initial condition

u(x, 0) = sin(4πx).

As the flux, we use the variable coefficient function

f(u) = a(x)u(x, t), a(x) = (1 − x2)5 + 1.

As usual, we assume that

x ∈ Dk : uk
h(x, t) =

Np∑

i=1

uk
h(xk

i , t)#k
i (x).

Let us now consider three different ways of implementing this scheme.
The first one follows directly from the general discussion leading to the

local scheme

Mk d

dt
uk

h + Sfk
h =

1
2

∮ xk
r

xk
l

n̂ · [[fk
h ]]!k(x) dx,

using a central flux. We recall that

fk
h =

[
fk

h (xk
1), . . . , fk

h (xk
Np

)
]T

, fk
h (x, t) =

Np∑

i=1

fk
h (xk

i )#k
i (x),

and that fk
h (x) = PN (a(x)uk

h(x)) is the projection of the flux onto the space
of piecewise polynomial functions of order N .

In the second approach, we utilize knowledge of the flux and define a new
operator, Sk,a, as

Sk,a
ij =

∫ xk
r

xk
l

#k
i

d

dx
a(x)#k

j dx,

leading to the scheme

Mk d

dt
uk

h + Sk,auk
h =

1
2

∮ xk
r

xk
l

n̂ · [[a(x)uk
h]]!k(x) dx.
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Fig. 5.1. On the left, is shown the results obtained with the first two schemes
discussed in the example and the right illustrates the unstable result computed with
the last approach. In all cases, we use K = 5 elements of 16th order with results
shown at T = 10.5.

As a third alternative, we consider a slightly modified version of the first
scheme and express the flux, fk

h , as

x ∈ Dk : fk
h (x, t) =

Np∑

i=1

a(xk
i )uk

h(xi, t)!k
i (x);

that is, the flux is obtained by interpolation at the grid points, xk
i .

In Fig. 5.1 we show the results of the computations using K = 5 elements,
each of length 0.4 and with a local N = 16 order basis. Comparing the results
of the three schemes, one realizes that while the two first schemes work well
and are stable, the last one fails to maintain stability.

This example highlights that we need to be careful when implementing
these methods. Based on this example, one would be inclined to discard the
last approach. Indeed, using standard energy methods, one can prove both of
the first two methods to be stable and energy conserving, in agreement with
previous analysis.

However, the simple computation of the flux in the last scheme as

fk
h (x, t) =

Np∑

i=1

a(xk
i )uk

h(xk
i , t)!k

i (x),

has significant computational advantages over the two alternatives. For the
second formulation, it is a clear disadvantage, both in computational cost
and memory, that we need to define a new operator, Sa, for each individual
element. The difference between the first and the last scheme may appear
more subtle. In the former, we represent the flux as

Consider an example
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Fig. 5.1. On the left, is shown the results obtained with the first two schemes
discussed in the example and the right illustrates the unstable result computed with
the last approach. In all cases, we use K = 5 elements of 16th order with results
shown at T = 10.5.

As a third alternative, we consider a slightly modified version of the first
scheme and express the flux, fk
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h (x, t) =
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a(xk
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h(xi, t)!k
i (x);

that is, the flux is obtained by interpolation at the grid points, xk
i .

In Fig. 5.1 we show the results of the computations using K = 5 elements,
each of length 0.4 and with a local N = 16 order basis. Comparing the results
of the three schemes, one realizes that while the two first schemes work well
and are stable, the last one fails to maintain stability.

This example highlights that we need to be careful when implementing
these methods. Based on this example, one would be inclined to discard the
last approach. Indeed, using standard energy methods, one can prove both of
the first two methods to be stable and energy conserving, in agreement with
previous analysis.

However, the simple computation of the flux in the last scheme as

fk
h (x, t) =
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a(xk
i )uk

h(xk
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i (x),

has significant computational advantages over the two alternatives. For the
second formulation, it is a clear disadvantage, both in computational cost
and memory, that we need to define a new operator, Sa, for each individual
element. The difference between the first and the last scheme may appear
more subtle. In the former, we represent the flux as
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In spite of such strong results, let us consider an example to emphasize that
caution is still needed.

Example 5.3. To keep things simple, we consider the problem
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As the flux, we use the variable coefficient function

f(u) = a(x)u(x, t), a(x) = (1 − x2)5 + 1.

As usual, we assume that
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Let us now consider three different ways of implementing this scheme.
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Fig. 5.1. On the left, is shown the results obtained with the first two schemes
discussed in the example and the right illustrates the unstable result computed with
the last approach. In all cases, we use K = 5 elements of 16th order with results
shown at T = 10.5.

As a third alternative, we consider a slightly modified version of the first
scheme and express the flux, fk

h , as

x ∈ Dk : fk
h (x, t) =

Np∑

i=1

a(xk
i )uk

h(xi, t)!k
i (x);

that is, the flux is obtained by interpolation at the grid points, xk
i .

In Fig. 5.1 we show the results of the computations using K = 5 elements,
each of length 0.4 and with a local N = 16 order basis. Comparing the results
of the three schemes, one realizes that while the two first schemes work well
and are stable, the last one fails to maintain stability.

This example highlights that we need to be careful when implementing
these methods. Based on this example, one would be inclined to discard the
last approach. Indeed, using standard energy methods, one can prove both of
the first two methods to be stable and energy conserving, in agreement with
previous analysis.

However, the simple computation of the flux in the last scheme as

fk
h (x, t) =

Np∑

i=1

a(xk
i )uk

h(xk
i , t)!k

i (x),

has significant computational advantages over the two alternatives. For the
second formulation, it is a clear disadvantage, both in computational cost
and memory, that we need to define a new operator, Sa, for each individual
element. The difference between the first and the last scheme may appear
more subtle. In the former, we represent the flux as
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the first two methods to be stable and energy conserving, in agreement with
previous analysis.

However, the simple computation of the flux in the last scheme as

fk
h (x, t) =

Np∑

i=1

a(xk
i )uk

h(xk
i , t)!k

i (x),

has significant computational advantages over the two alternatives. For the
second formulation, it is a clear disadvantage, both in computational cost
and memory, that we need to define a new operator, Sa, for each individual
element. The difference between the first and the last scheme may appear
more subtle. In the former, we represent the flux as

Schemes I+II Schemes III

What is the problem ?

5.3 Aliasing, instabilities, and filter stabilization 123

5.3 Aliasing, instabilities, and filter stabilization

In spite of such strong results, let us consider an example to emphasize that
caution is still needed.

Example 5.3. To keep things simple, we consider the problem

∂u

∂t
+

∂f

∂x
= 0, x ∈ [−1, 1],

subject to periodic boundary conditions and with the simple initial condition

u(x, 0) = sin(4πx).

As the flux, we use the variable coefficient function

f(u) = a(x)u(x, t), a(x) = (1 − x2)5 + 1.

As usual, we assume that

x ∈ Dk : uk
h(x, t) =

Np∑

i=1

uk
h(xk

i , t)#k
i (x).

Let us now consider three different ways of implementing this scheme.
The first one follows directly from the general discussion leading to the

local scheme

Mk d

dt
uk

h + Sfk
h =

1
2

∮ xk
r

xk
l

n̂ · [[fk
h ]]!k(x) dx,

using a central flux. We recall that

fk
h =

[
fk

h (xk
1), . . . , fk

h (xk
Np

)
]T

, fk
h (x, t) =

Np∑

i=1

fk
h (xk

i )#k
i (x),

and that fk
h (x) = PN (a(x)uk

h(x)) is the projection of the flux onto the space
of piecewise polynomial functions of order N .

In the second approach, we utilize knowledge of the flux and define a new
operator, Sk,a, as

Sk,a
ij =

∫ xk
r

xk
l

#k
i

d

dx
a(x)#k

j dx,

leading to the scheme

Mk d

dt
uk

h + Sk,auk
h =

1
2

∮ xk
r

xk
l

n̂ · [[a(x)uk
h]]!k(x) dx.
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Fig. 5.1. On the left, is shown the results obtained with the first two schemes
discussed in the example and the right illustrates the unstable result computed with
the last approach. In all cases, we use K = 5 elements of 16th order with results
shown at T = 10.5.

As a third alternative, we consider a slightly modified version of the first
scheme and express the flux, fk

h , as

x ∈ Dk : fk
h (x, t) =

Np∑

i=1

a(xk
i )uk

h(xi, t)!k
i (x);

that is, the flux is obtained by interpolation at the grid points, xk
i .

In Fig. 5.1 we show the results of the computations using K = 5 elements,
each of length 0.4 and with a local N = 16 order basis. Comparing the results
of the three schemes, one realizes that while the two first schemes work well
and are stable, the last one fails to maintain stability.

This example highlights that we need to be careful when implementing
these methods. Based on this example, one would be inclined to discard the
last approach. Indeed, using standard energy methods, one can prove both of
the first two methods to be stable and energy conserving, in agreement with
previous analysis.

However, the simple computation of the flux in the last scheme as

fk
h (x, t) =

Np∑

i=1

a(xk
i )uk

h(xk
i , t)!k

i (x),

has significant computational advantages over the two alternatives. For the
second formulation, it is a clear disadvantage, both in computational cost
and memory, that we need to define a new operator, Sa, for each individual
element. The difference between the first and the last scheme may appear
more subtle. In the former, we represent the flux as

is not

Aliasing
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Consider an example

So we should just forget about scheme III ?

It is, however, very attractive:
✓ Scheme II requires special operators for each element
✓ Scheme III requires accurate integration all the time

And for more general non-linear problems, the situation
is even less favorable.

Scheme III is simple and fast -- but (weakly) unstable!

May be worth trying to stabilize it
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fk
h (x, t) =

Np∑

i=1

fk
h (xk

i , t)!k
i (x);

that is, we must represent f(uh) as an N -th-order polynomial. This requires
that one projects f on the space of polynomials through the evaluation of the
inner product. In this particular case, a(x) itself is a 10th-order polynomial so
the product with uh(x, t) is an (N + 10)-th-order product, requiring a Gauss-
Lobatto quadrature of order 2N +10 (i.e., with approximately N +5 points).
For general nonlinear functions f(uh), the situation can be much worse and
the evaluation of this inner product becomes expensive.

In contrast to this approach, in the third approach we express the flux as

fk
h (x, t) = IN (a(x)uk

h(x, t)) =
Np∑

i=1

a(xk
i )uk

h(xk
i , t)!k

i (x),

where INv refers to an interpolation of order N on element k. In this case, we
simply read a(x)uh(x, t) at the Np points. This does not suffice to uniquely
specify an (N + 10)-th-order polynomial, and an aliasing error is introduced.
To illustrate how this can cause the instability consider

∂u

∂t
+

∂

∂x
(a(x)u) = 0.

For simplicity, but without loss of generality, we restrict the attention to one
domain with periodic boundary conditions and consider the scheme

∂uh

∂t
+

∂

∂x
IN (auh) = 0.

We rewrite this as

∂uh

∂t
+

1
2

∂

∂x
IN (auh) +

1
2
IN

(
a
∂uh

∂x

)

+
1
2
IN

∂

∂x
auh − 1

2
IN

(
a
∂uh

∂x

)

+
1
2

∂

∂x
IN (auh) − 1

2
IN

∂

∂x
auh = 0

or simplified as

∂uh

∂t
+ N1 + N2 + N3 = 0. (5.10)

The local discontinuous Galerkin scheme becomes

∫ 1

−1

(
∂uh

∂t
+ N1 + N2 + N3

)
!i(x) dx =

1
2

∮ 1

−1
n̂ · [[IN (auh)]]!i(x) dx (5.11)

5.3 Aliasing, instabilities, and filter stabilization 125

fk
h (x, t) =

Np∑

i=1

fk
h (xk

i , t)!k
i (x);

that is, we must represent f(uh) as an N -th-order polynomial. This requires
that one projects f on the space of polynomials through the evaluation of the
inner product. In this particular case, a(x) itself is a 10th-order polynomial so
the product with uh(x, t) is an (N + 10)-th-order product, requiring a Gauss-
Lobatto quadrature of order 2N +10 (i.e., with approximately N +5 points).
For general nonlinear functions f(uh), the situation can be much worse and
the evaluation of this inner product becomes expensive.

In contrast to this approach, in the third approach we express the flux as

fk
h (x, t) = IN (a(x)uk

h(x, t)) =
Np∑

i=1

a(xk
i )uk

h(xk
i , t)!k

i (x),

where INv refers to an interpolation of order N on element k. In this case, we
simply read a(x)uh(x, t) at the Np points. This does not suffice to uniquely
specify an (N + 10)-th-order polynomial, and an aliasing error is introduced.
To illustrate how this can cause the instability consider

∂u

∂t
+

∂

∂x
(a(x)u) = 0.

For simplicity, but without loss of generality, we restrict the attention to one
domain with periodic boundary conditions and consider the scheme

∂uh

∂t
+

∂

∂x
IN (auh) = 0.

We rewrite this as

∂uh

∂t
+

1
2

∂

∂x
IN (auh) +

1
2
IN

(
a
∂uh

∂x

)

+
1
2
IN

∂

∂x
auh − 1

2
IN

(
a
∂uh

∂x

)

+
1
2

∂

∂x
IN (auh) − 1

2
IN

∂

∂x
auh = 0

or simplified as

∂uh

∂t
+ N1 + N2 + N3 = 0. (5.10)

The local discontinuous Galerkin scheme becomes

∫ 1

−1

(
∂uh

∂t
+ N1 + N2 + N3

)
!i(x) dx =

1
2

∮ 1

−1
n̂ · [[IN (auh)]]!i(x) dx (5.11)

5.3 Aliasing, instabilities, and filter stabilization 125

fk
h (x, t) =

Np∑

i=1

fk
h (xk

i , t)!k
i (x);

that is, we must represent f(uh) as an N -th-order polynomial. This requires
that one projects f on the space of polynomials through the evaluation of the
inner product. In this particular case, a(x) itself is a 10th-order polynomial so
the product with uh(x, t) is an (N + 10)-th-order product, requiring a Gauss-
Lobatto quadrature of order 2N +10 (i.e., with approximately N +5 points).
For general nonlinear functions f(uh), the situation can be much worse and
the evaluation of this inner product becomes expensive.

In contrast to this approach, in the third approach we express the flux as

fk
h (x, t) = IN (a(x)uk

h(x, t)) =
Np∑

i=1

a(xk
i )uk

h(xk
i , t)!k

i (x),

where INv refers to an interpolation of order N on element k. In this case, we
simply read a(x)uh(x, t) at the Np points. This does not suffice to uniquely
specify an (N + 10)-th-order polynomial, and an aliasing error is introduced.
To illustrate how this can cause the instability consider

∂u

∂t
+

∂

∂x
(a(x)u) = 0.

For simplicity, but without loss of generality, we restrict the attention to one
domain with periodic boundary conditions and consider the scheme

∂uh

∂t
+

∂

∂x
IN (auh) = 0.

We rewrite this as

∂uh

∂t
+

1
2

∂

∂x
IN (auh) +

1
2
IN

(
a
∂uh

∂x

)

+
1
2
IN

∂

∂x
auh − 1

2
IN

(
a
∂uh

∂x

)

+
1
2

∂

∂x
IN (auh) − 1

2
IN

∂

∂x
auh = 0

or simplified as

∂uh

∂t
+ N1 + N2 + N3 = 0. (5.10)

The local discontinuous Galerkin scheme becomes

∫ 1

−1

(
∂uh

∂t
+ N1 + N2 + N3

)
!i(x) dx =

1
2

∮ 1

−1
n̂ · [[IN (auh)]]!i(x) dx (5.11)

5.3 Aliasing, instabilities, and filter stabilization 125

fk
h (x, t) =

Np∑

i=1

fk
h (xk

i , t)!k
i (x);

that is, we must represent f(uh) as an N -th-order polynomial. This requires
that one projects f on the space of polynomials through the evaluation of the
inner product. In this particular case, a(x) itself is a 10th-order polynomial so
the product with uh(x, t) is an (N + 10)-th-order product, requiring a Gauss-
Lobatto quadrature of order 2N +10 (i.e., with approximately N +5 points).
For general nonlinear functions f(uh), the situation can be much worse and
the evaluation of this inner product becomes expensive.

In contrast to this approach, in the third approach we express the flux as

fk
h (x, t) = IN (a(x)uk

h(x, t)) =
Np∑

i=1

a(xk
i )uk

h(xk
i , t)!k

i (x),

where INv refers to an interpolation of order N on element k. In this case, we
simply read a(x)uh(x, t) at the Np points. This does not suffice to uniquely
specify an (N + 10)-th-order polynomial, and an aliasing error is introduced.
To illustrate how this can cause the instability consider

∂u

∂t
+

∂

∂x
(a(x)u) = 0.

For simplicity, but without loss of generality, we restrict the attention to one
domain with periodic boundary conditions and consider the scheme

∂uh

∂t
+

∂

∂x
IN (auh) = 0.

We rewrite this as

∂uh

∂t
+

1
2

∂

∂x
IN (auh) +

1
2
IN

(
a
∂uh

∂x

)

+
1
2
IN

∂

∂x
auh − 1

2
IN

(
a
∂uh

∂x

)

+
1
2

∂

∂x
IN (auh) − 1

2
IN

∂

∂x
auh = 0

or simplified as

∂uh

∂t
+ N1 + N2 + N3 = 0. (5.10)

The local discontinuous Galerkin scheme becomes

∫ 1

−1

(
∂uh

∂t
+ N1 + N2 + N3

)
!i(x) dx =

1
2

∮ 1

−1
n̂ · [[IN (auh)]]!i(x) dx (5.11)

Consider

Discretized as

interpolation

Express this as

skew symmetric part

low order term

aliasing term
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The latter term causes no problems. However, the first term is of the form
∥∥∥∥IN

dv

dx
− d

dx
INv

∥∥∥∥
2

Ω

.

To understand this, let us bound it as
∥∥∥∥IN

dv

dx
− d

dx
INv

∥∥∥∥
2

Ω

≤
∥∥∥∥

dv

dx
− IN

dv

dx

∥∥∥∥
2

Ω

+
∥∥∥∥

dv

dx
− d

dx
INv

∥∥∥∥
2

Ω

.

Based on the polynomial approximation results discussed in Section 4.3, both
of these terms can be bounded for v ∈ Hp(Ω) as

∥∥∥∥
dv

dx
− IN

dv

dx

∥∥∥∥
Ω

≤ C
hσ−1

Np−1
|v|Ω,p,

for σ = min(N + 1, p). In a similar way, we have
∥∥∥∥

dv

dx
− d

dx
INv

∥∥∥∥
Ω

≤ ‖v − INv‖Ω,1 ≤ C
hσ−1

Np−1
|v|Ω,p.

Combining it all, we have

1
2

d

dt
‖uh‖Ω ≤ C1‖uh‖Ω + C2(h, a)N1−p|u|Ω,p.

This implies that if u is not sufficiently smooth we cannot control the last
term and an instability may appear; this is what is manifested in Example
5.3.

The above analysis reveals that the term leading to instability is of the
form

∥∥∥∥IN
dv

dx
− d

dx
INv

∥∥∥∥
Ω

;

that is, it reflects that the derivative of an interpolation is not the same as
the interpolation of the derivative and this causes the instability. This also
means that if u is smooth but underresolved, simply adding resolution may
cure the instability, as the commutation error in that case is further reduced.
A further discussion of these aspects can be found in [135, 159].

With the added understanding of this aliasing-driven instability, let us
now seek a solution that is more practical than to simply add more resolution.
A classic technique to deal with relatively weak instabilities is to add some
dissipation to the problem. To understand whether this suffices, let us consider
the slightly modified problem

∂uh

∂t
+

∂

∂x
IN (auh) = ε(−1)s̃+1

[
∂

∂x
(1 − x2)

∂

∂x

]s̃

uh. (5.13)
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or

Np∑

j=1

Mij
duj

dt
+(N1, !i)Ω +(N2, !i)Ω +(N3, !i)Ω =

1
2

∮ 1

−1
n̂ · [[IN (auh)]]!i(x) dx.

Multiplying by uh(xi) from the left and summing over all points yields

1
2

d

dt
‖uh‖2

Ω = −(N1, uh)Ω −(N2, uh)Ω −(N3, uh)Ω +
1
2

∮ 1

−1
n̂ · [[IN (auh)]]uh dx.

(5.12)
We consider the three terms individually

−2(N1, uh)Ω +
∮ 1

−1
n̂ · [[IN (auh)]]uh dx

= −
(

∂

∂x
IN (auh), uh

)

Ω

−
(
IN

(
a
∂uh

∂x

)
, uh

)

Ω

+
∮ 1

−1
n̂ · [[IN (auh)]]uh dx

=
(
IN (auh),

∂

∂x
uh

)

Ω

−
(
IN

(
a
∂uh

∂x

)
, uh

)

Ω

= 0,

where the boundary terms vanish after integration by parts and the volume
terms cancel by the property of the interpolation.

For the second term, we have

−2(N2, uh)Ω = −
(
IN

(
∂

∂x
auh

)
, uh

)

Ω

+
(
IN

(
a

∂

∂x
uh

)
, uh

)

Ω

= −
(
IN (a

∂

∂x
uh), uh

)

Ω

− (IN (axuh), uh)Ω

+
(
IN

(
a

∂

∂x
uh

)
, uh

)

Ω

= − (IN (axuh), uh)Ω

≤ max
x

|ax|‖uh‖2
Ω .

In other words, this term is not the source of the instability, as it is bounded
independently of N . Consider the last term of the form

−2(N3, uh)Ω = −
(

∂

∂x
IN (auh), uh

)

Ω

+
(
IN

∂

∂x
auh, uh

)

Ω

=
(
IN

∂

∂x
auh − ∂

∂x
IN (auh), uh

)

Ω

≤
∥∥∥∥IN

∂

∂x
auh − ∂

∂x
IN (auh)

∥∥∥∥
2

Ω

+ ‖uh‖2
Ω .

One obtains the estimate 

Aliasing driven instability 
if u is not sufficiently smooth

What can we do? -- add dissipation
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now seek a solution that is more practical than to simply add more resolution.
A classic technique to deal with relatively weak instabilities is to add some
dissipation to the problem. To understand whether this suffices, let us consider
the slightly modified problem

∂uh

∂t
+

∂

∂x
IN (auh) = ε(−1)s̃+1

[
∂

∂x
(1 − x2)

∂

∂x

]s̃

uh. (5.13)
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Right now it is, admittedly, not at all clear why the dissipative term takes
this particular form or even how to discretize it using a discontinuous Galerkin
method. We will return to this issue shortly. However, consider first the right-
hand side

ε(−1)s̃+1

(
uh,

[
∂

∂x
(1 − x2)

∂

∂x

]s̃

uh

)

Ω

,

which is the change introduced into the energy statement after the residual
statement, Eq. (5.12). Integration by parts s̃ times yields exactly

ε(−1)s̃+1

(
uh,

[
∂

∂x
(1 − x2)

∂

∂x

]s̃

uh

)

Ω

= −ε‖u(s̃)
h ‖2

Ω = −ε|uh|2Ω,s̃.

Including this into the stability analysis, we recover the modified energy state-
ment

1
2

d

dt
‖uh‖2

Ω ≤ C1‖uh‖2
Ω + C2N

2−2p|u|2Ω,p − C3ε|uh|2Ω,s̃.

Clearly, choosing ε ∝ N , the dissipative term dominates the unstable term
and guarantees stability. What remains an open question is how to implement
this term in the most efficient way.

To understand this, we first recall that the added term is a trick. It is some-
thing we do to stabilize the algorithm and it is not related to the physics of the
problem. In other words, we have the freedom to implement this dissipation
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This is only an order O(∆t) accurate approximation to the directly stabilized
scheme, Eq. (5.13), but that does not really matter. If we, furthermore, restrict
the attention to this second problem and advance it in time using a forward
Euler method, we recover

u∗
h = uh(t + ∆t) = uh(t) + ε∆t(−1)s̃+1

[
∂

∂x
(1 − x2)

∂

∂x

]s̃

uh(t). (5.15)

This is enough to stabilize!
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Combining it all, we have
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... but how do we implement this ?

Let us consider the split scheme
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Right now it is, admittedly, not at all clear why the dissipative term takes
this particular form or even how to discretize it using a discontinuous Galerkin
method. We will return to this issue shortly. However, consider first the right-
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which is the change introduced into the energy statement after the residual
statement, Eq. (5.12). Integration by parts s̃ times yields exactly

ε(−1)s̃+1

(
uh,

[
∂

∂x
(1 − x2)

∂

∂x

]s̃

uh

)

Ω

= −ε‖u(s̃)
h ‖2

Ω = −ε|uh|2Ω,s̃.

Including this into the stability analysis, we recover the modified energy state-
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Clearly, choosing ε ∝ N , the dissipative term dominates the unstable term
and guarantees stability. What remains an open question is how to implement
this term in the most efficient way.

To understand this, we first recall that the added term is a trick. It is some-
thing we do to stabilize the algorithm and it is not related to the physics of the
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and discretize the dissipative part in time
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So far, not much seems to have been achieved. Recall now, however, that we
can express

uh(x, t) =
Np∑

n=1

ûn(t)P̃n−1(x).

Since P̃n(x) satisfies the Sturm-Liouville equation

d

dx
(1 − x2)

d

dx
P̃n + n(n + 1)P̃n = 0,

we obtain

u∗
h(x, t) " uh(x, t) + ε∆t(−1)s̃+1

Np∑

n=1

ûn(t)(n(n − 1))s̃P̃n−1(x)

"
Np∑

n=1

σ

(
n − 1

N

)
ûn(t)P̃n−1(x), ε ∝ 1

∆tN2s̃
.

We have introduced the filter function, σ(η), which must have a few obvious
properties; that is,

σ(η)






= 1, η = 0
≤ 1, 0 ≤ η ≤ 1
= 0, η > 1,

η =
n − 1

N
.

The first condition ensures that mean values are maintained and the second
condition expresses the dissipation of the high modes.

The above derivation indicates that

σ(η) = 1 − αη2s̃,

suffices for stabilization. A popular alternative to this is

σ(η) = exp(−αη2s̃),

known as an exponential filter. Both filters are filters of order 2s̃. In fact, the
first is simply a leading order approximation to the second one.

The actual choice of α is somewhat arbitrary; that is, choosing α = 0 means
no dissipation whereas taking α to be large results in increasing dissipation. A
choice often used is α " − log(εM ) " 36, where εM is the machine precision in
double precision. This choice means that σ(1) " εM in the exponential filter.

There is one very important difference between solving Eq. (5.14) and
applying the filter, σ, to the expansion coefficients. In the latter case, no
timestepping is required and, thus, there is no stability constraint as would
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and the Legendre polynomials satisfy  

so we obtain

The dissipation can be implemented as a filter
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be the case when solving Eq. (5.14). This makes the use of the filter a highly
advantageous way of introducing the dissipation needed for stabilization.

In the formulation developed in Chapter 3, the process of filtering reduces
to a matrix multiplication with a filter matrix, F , defined as

F = VΛV−1,

where the diagonal matrix, Λ, has the entries

Λii = σ

(
i − 1
N

)
, i = 1, . . . , Np.

A script for defining this is shown in Filter1D.m, assuming that we use a filter
of the form

σ(η) =
{

1, 0 ≤ η ≤ ηc = Nc
N

exp(−α((η − ηc)/(1 − ηc))s), ηc ≤ η ≤ 1,
(5.16)

To simplify matters, we define s = 2s̃; that is, it must be even. As discussed
above we use α = − log(εM ) and Nc represents a cutoff below which the low
modes are left untouched.

Filter1D.m

function [F] = Filter1D(N,Nc,s)

% function [F] = Filter1D(N,Nc,s)
% Purpose : Initialize 1D filter matrix of size N.
% Order of exponential filter is (even) s with cutoff at Nc;

Globals1D;
filterdiag = ones(N+1,1);
alpha = -log(eps);

% Initialize filter function
for i=Nc:N

filterdiag(i+1) = exp(-alpha*((i-Nc)/(N-Nc))^s);
end;

F = V*diag(filterdiag)*invV;
return;

To illustrate the dependence of the filter function on the choice of the
parameters α, Nc, and s, we show it in Fig. 5.2 for a number of variations.
The general trend is that increasing s and/or Nc decreases the dissipation
while increasing α has the opposite effect.
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Polynomial filter of order 2s:

Exponential filter of order 2s:

It is easily implemented as
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Fig. 5.3. On the left is shown the result of adding a weak filter to the third com-
putation discussed in Example 5.3, illustrating the stabilizing effect of the filter. On
the right is shown the temporal development of the total energy for different filter
strengths, highlighting the dissipative nature of the filter.

to apply the filter after each full timestep or even after several timesteps,
depending on the nature of the problem.

An obvious question raised by the above example is how to choose the filter
variables, s, Nc, and α for a particular problem. The best answer to this is

Filter as little as possible
.. but as much as is needed.

This is not quantitative but is perhaps the best guideline there is. Clearly, the
amount of filtering needed is highly problem dependent; for example, problems
with underresolved features/shocks and/or highly nonlinear terms are likely
to suffer more from instabilities than simpler types of problem. For specific
problems, it is, nevertheless, often an easy matter to choose suitable parame-
ters (e.g., start by filtering a small amount and then increase the amount of
filtering over a few runs until the scheme is stabilized). A good set of start-
ing parameters is α = 36, Nc = 0, and s = 16 for a reasonably resolved
computation.

While it is now clear that the simplest and fastest way of computing the
fluxes may require one to add some dissipation to the scheme, it is natural
to question whether there are other ways than through filtering. Indeed, a
second look at the operator associated with filtering,

[
d

dx
(1 − x2)

d

dx

]s̃

=
[
(1 − x2)

d2

dx2
− 2x

d

dx

]s̃

,

reveals that the dissipation is added in a nonuniform way; for example, it is
strongest around x = 0 and weaker around x = ±1, leading to the possibility
of over-dissipating in the center to ensure stability throughout the element.

A 2s-order filter is like adding a 2s dissipative term.

How much filtering: As little as possible
... but as much as needed
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Problems on non-conservative form

Often one encounters problems as

134 5 Nonlinear problems

provided φh is at least continuous. Then

1
N2s̃−1

Np∑

n=1

ns̃(n − 1)s̃

n3
≤ C

N
.

Thus, the stabilizing term vanishes and guarantees that if uh(x, t) converges
to u(x, t) for increasing N and/or decreasing h, then the solution is a weak
solution to the original conservation law (see [45] for more details on this).

It is worth emphasizing that other kinds of dissipative terms have the same
characteristics [235, 236] although these terms generally need to be added
directly to the equation rather than through the use of the filter matrix.

5.4 Problems on nonconservative form

In most of the discussions so far we have considered problems in conservation
form; that is

∂u

∂t
+

∂f

∂x
= 0.

However, one often encounters closely related problems in nonconservative
form as

∂u

∂t
+ a(x, t)

∂u

∂x
= 0, (5.17)

with a prominent example being the Hamilton-Jacobi equation encountered
in control theory, level set methods, and many other types of application.

It is worthwhile briefly to discuss how these kinds of problem fit into
the discontinuous Galerkin formulation. First, we can rewrite Eq. (5.17) in
inhomogeneous conservation form as

∂u

∂t
+

∂au

∂x
− ∂a

∂x
u = 0,

highlighting that |ax| ≤ C suffices to ensure well-posedness of the problem. If
a is sufficiently smooth, this is a reasonable approach. However, care must be
exercised in case steady-state solutions are required, as these must now sat-
isfy a balance equation and the discrete scheme must support such solutions.
This particular complication is discussed in detail in [327, 328] and references
therein.

A closely related approach is to borrow the results from Example 2.5 and
consider the direct discretization of Eq. (5.17) but with a numerical flux given
as

n̂ · (au)∗ =
2a+a−

a+ + a−u−,

which, in the case where a is smooth, reduces to a flux based on f = au
(a > 0).

✓ Discretize it directly with a numerical flux 
       based on f=au

✓ If a is smooth, solve 

✓ Introduce           and solve 
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5.5 Error estimates for nonlinear problems with smooth solutions 135

A third option, often used in the context of Hamilton-Jacobi equations, is
to introduce the new variable v = ∂u

∂x and differentiate Eq. (5.17) to obtain

∂v

∂t
+

∂av

∂x
= 0,

which can now be solved using a standard discretization. To recover a bound-
ary condition on v, we use that if u(x, t) = g(t) at an inflow boundary condi-
tion, Eq. (5.17) implies

v(x, t) =
∂u

∂x
= −1

a

dg(t)
dt

for v(x, t) at the boundary. Once v(x, t) is computed, u(x, t) can be recov-
ered directly by integration. In the context of Hamilton-Jacobi equations, this
approach is discussed further in [178, 216]. A different approach for Hamilton-
Jacobi equations, focusing on solving these directly rather than by reduction
to conservation form, is introduced in [56]. This results in methods similar to
the one discussed above for Eq. (5.17) but with a more complex dissipative
numerical flux.

5.5 Error estimates for nonlinear problems with smooth
solutions

Provided the solutions u and fluxes f are sufficiently smooth and that
monotone fluxes are used, there are no essential differences in the results
between the error analysis for the linear and nonlinear problems. We have
already established nonlinear stability in Section 5.2 and the error analysis,
following the approach in Section 4.5, yields the expected result [337].

Theorem 5.5. Assume that the flux f ∈ C3 and the exact solution u is suf-
ficiently smooth with bounded derivatives. Let uh be a piecewise polynomial
semidiscrete solution of the discontinuous Galerkin approximation to the one-
dimensional scalar conservation law; then

‖u(t) − uh(t)‖Ω,h ≤ C(t)hN+ν ,

provided a regular grid of h = max hk is used. The constant C depends on
u, N , and time t, but not on h. If a general monotone flux is used, ν = 1

2 ,
resulting in suboptimal order, while ν = 1 in the case an upwind flux is used.

It is worth noting the suboptimal convergence for a general flux, i.e., a global
Lax-Friedrichs flux. The reason for this, as discussed in Section 4.5, is that
to recover the optimal rate, one relies on an upwinded special projection that
allows the superconvergence result. Hence, to maintain this, one must use
upwind/streamline numerical fluxes such as Godonov, Engquist-Osher, Roe
fluxes, etc. [79, 218].

5.5 Error estimates for nonlinear problems with smooth solutions 135

A third option, often used in the context of Hamilton-Jacobi equations, is
to introduce the new variable v = ∂u

∂x and differentiate Eq. (5.17) to obtain

∂v

∂t
+

∂av

∂x
= 0,

which can now be solved using a standard discretization. To recover a bound-
ary condition on v, we use that if u(x, t) = g(t) at an inflow boundary condi-
tion, Eq. (5.17) implies

v(x, t) =
∂u

∂x
= −1

a

dg(t)
dt

for v(x, t) at the boundary. Once v(x, t) is computed, u(x, t) can be recov-
ered directly by integration. In the context of Hamilton-Jacobi equations, this
approach is discussed further in [178, 216]. A different approach for Hamilton-
Jacobi equations, focusing on solving these directly rather than by reduction
to conservation form, is introduced in [56]. This results in methods similar to
the one discussed above for Eq. (5.17) but with a more complex dissipative
numerical flux.

5.5 Error estimates for nonlinear problems with smooth
solutions

Provided the solutions u and fluxes f are sufficiently smooth and that
monotone fluxes are used, there are no essential differences in the results
between the error analysis for the linear and nonlinear problems. We have
already established nonlinear stability in Section 5.2 and the error analysis,
following the approach in Section 4.5, yields the expected result [337].

Theorem 5.5. Assume that the flux f ∈ C3 and the exact solution u is suf-
ficiently smooth with bounded derivatives. Let uh be a piecewise polynomial
semidiscrete solution of the discontinuous Galerkin approximation to the one-
dimensional scalar conservation law; then

‖u(t) − uh(t)‖Ω,h ≤ C(t)hN+ν ,

provided a regular grid of h = max hk is used. The constant C depends on
u, N , and time t, but not on h. If a general monotone flux is used, ν = 1

2 ,
resulting in suboptimal order, while ν = 1 in the case an upwind flux is used.

It is worth noting the suboptimal convergence for a general flux, i.e., a global
Lax-Friedrichs flux. The reason for this, as discussed in Section 4.5, is that
to recover the optimal rate, one relies on an upwinded special projection that
allows the superconvergence result. Hence, to maintain this, one must use
upwind/streamline numerical fluxes such as Godonov, Engquist-Osher, Roe
fluxes, etc. [79, 218].
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Basic results for smooth problems

5.5 Error estimates for nonlinear problems with smooth solutions 135
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Provided the solutions u and fluxes f are sufficiently smooth and that
monotone fluxes are used, there are no essential differences in the results
between the error analysis for the linear and nonlinear problems. We have
already established nonlinear stability in Section 5.2 and the error analysis,
following the approach in Section 4.5, yields the expected result [337].

Theorem 5.5. Assume that the flux f ∈ C3 and the exact solution u is suf-
ficiently smooth with bounded derivatives. Let uh be a piecewise polynomial
semidiscrete solution of the discontinuous Galerkin approximation to the one-
dimensional scalar conservation law; then

‖u(t) − uh(t)‖Ω,h ≤ C(t)hN+ν ,

provided a regular grid of h = max hk is used. The constant C depends on
u, N , and time t, but not on h. If a general monotone flux is used, ν = 1

2 ,
resulting in suboptimal order, while ν = 1 in the case an upwind flux is used.

It is worth noting the suboptimal convergence for a general flux, i.e., a global
Lax-Friedrichs flux. The reason for this, as discussed in Section 4.5, is that
to recover the optimal rate, one relies on an upwinded special projection that
allows the superconvergence result. Hence, to maintain this, one must use
upwind/streamline numerical fluxes such as Godonov, Engquist-Osher, Roe
fluxes, etc. [79, 218].

The result extends to systems provided flux splitting is 
possible to obtain an upwind flux -- this is true for
many important problems.
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Lets summarize Part I
We have achieved a lot

✓ The theoretical support for DG for conservation
      laws is very solid.
✓ The requirements for ‘exact’ integration is expensive.
✓ It seems advantageous to consider a nodal approach
     in combination with dissipation.
✓ Dissipation can be implemented using a filter
✓ There is a complete error-theory for smooth 
     problems.

... but we have ‘forgotten’ the unpleasant issue 

What about discontinuous solutions?
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Lecture 4

✓ Let’s briefly recall what we know

✓ Part I: Smooth problems

✓ Conservations laws and DG properties

✓ Filtering, aliasing, and error estimates

✓ Part II: Nonsmooth problems

✓ Shocks and Gibbs phenomena

✓ Filtering and limiting

✓ TVD-RK and error estimates

Tuesday, August 18, 2009



Gibbs Phenomenon

Let us first consider a simple approximation

136 5 Nonlinear problems

The extension of the above result to the system case introduces an ad-
ditional complication since the upwind direction is no longer immediately
identifiable. Hence, the general result for smooth solutions to one-dimensional
symmetrizable systems of conservation laws follows the result in Theorem 5.5
with ν = 1

2 [338].
Exceptions to this are cases where one can apply flux splitting to derive

the exact upwind fluxes, similar to the linear systems discussed in detail in
Section 2.4. The equivalent nonlinear condition is that the flux is homogeneous
of degree 1 (i.e., f(u) = fu(u)u and the flux Jacobian, fu(u), is symmetriz-
able). In such cases, which include many important problems such as the Euler
equations of gas dynamics and the equations of magnetohydrodynamics, opti-
mal convergence rates can be recovered by doing strict upwinding. The main
disadvantage of doing this is the associated cost for nonlinear problems.

5.6 Problems with discontinuous solutions

While we have discussed various aspects of nonlinear problems, we have
avoided one critical issue: what happens when discontinuities and shocks de-
velop in the solution? In particular, we need to understand what we can expect
regarding accuracy and stability in such situations.

Before considering the full problem, let us illustrate a fundamental problem
associated with the appearance of a shock. In Fig. 5.4 we show the polynomial
representation of the simple discontinuity

u(x) = −sign(x), x ∈ [−1, 1],

and plots of the pointwise error for increasing number of terms, N , in the
expansion. The results in Fig. 5.4 illustrate three unfortunate effects of the
shock:
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Fig. 5.4. On the left is shown the approximation of a sign function using a Legendre
expansion with increasing number of terms, illustrating the Gibbs phenomenon. On
the right is shown the pointwise error of the expansion.
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✓ Overshoot does not go away with N
✓ First order point wise accuracy
✓ Oscillations are global

Gibbs Phenomenon
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Gibbs Phenomenon

But do the oscillations destroy the nice behavior?

5.6 Problems with discontinuous solutions 137

• The reduction to first order pointwise accuracy away from the point of
discontinuity.

• The loss of pointwise convergence at the point of discontinuity.
• The introduction of artificial and persistent oscillations around the point

of discontinuity.

This phenomenon, classic by now, is known as the Gibbs phenomenon and its
behavior is well understood (see [135, 137]). The issue at hand is how to deal
with this. After all, it is the use of the high-order basis on the elements that
gives the high-order accuracy of the scheme for smooth solutions, as discussed
in Chapter 4.

Let us first return to the simpler case of

∂u

∂t
+ a(x)

∂u

∂x
= 0,

discussed in some detail previously. For this case we have established sta-
bility, possibly with the use of a filter, depending on the details of the flux
computation.

While we return to the impact of the filter shortly, let us attempt to
understand whether the combination of the Gibbs oscillation with propagation
destroys the solution globally – or rather reduces the accuracy to first order
with no hope of recovering a high-order accurate solution.

We write the problem on the skew-symmetric form (term N1 in Eq. (5.10))

∂u

∂t
+

1
2
a
∂u

∂x
+

1
2

∂au

∂x
− 1

2
axu =

∂u

∂t
+ Lu = 0,

and assume that a(x) is smooth. Both a(x) and u(x, t) are considered peri-
odic for simplicity. However, we assume that the initial condition, u(x, 0), is
nonsmooth to introduce the Gibbs phenomenon.

Introduce the adjoint problem

∂v

∂t
− L∗v = 0,

where (Lu, v)Ω = (u,L∗v)Ω . For solving the adjoint problem we assume
smooth initial conditions.

We immediately have that

d

dt
(u, v)Ω = 0 ⇒ (u(t), v(t))Ω = (u(0), v(0))Ω .

Assuming exact integration of all terms and central fluxes (i.e., no aliasing or
dissipation), we obtain a similar statement for the semidiscrete scheme

(uh(t), vh(t))Ω,h = (uh(0), vh(0))Ω,h.

Before proceeding, we need to be a bit careful about exactly what uh(0) means,
given that u(0) is assumed to be discontinuous. If we simply read this function

a(x) is smooth - but u(x,0) is not

Define the adjoint problem

solved with smooth v(x,0)

Clearly, we have
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Using central fluxes, we also have

Consider

138 5 Nonlinear problems

at the grid points, we have forever lost the information of the location of the
shock and the solution cannot be better than first order. We therefore assume
that uh(0) is understood to be the polynomial interpolation of the projection
of u(0). In that case, there is no quantization error caused by the grid.

Now, consider

(uh(0), vh(0))Ω,h = (u(0), v(0))Ω + (uh(0) − u(0), vh(0))Ω,h

+ (u(0), vh(0) − v(0))Ω,h.

First, one realizes that the second term on the right-hand side vanishes due
to Galerkin orthogonality. The last term can be controlled by the Cauchy-
Schwarz inequality and the smoothness of v(0) to obtain

(uh(0), vh(0))Ω,h ≤ (u(0), v(0))Ω + C(u)hN+1N−q|v(0)|Ω,q.

Finally, since the approximation of the dual problem is stable and v(0) smooth,
we have

‖v(t) − vh(t)‖Ω,h ≤ C(t)
hN+1

Nq
|v(t)|Ω,q;

that is, we can safely exchange v for vh. This results in

(uh(t), v(t))Ω,h = (u(t), v(t))Ω + ε, (5.18)

where ε is very small and depends only on the smoothness of v(x, t).
Equation (5.18) is interesting, as it highlights, at least for the case of a

variable coefficient problem with nonsmooth initial conditions, the possibility
of recovering a high-order accurate solution, uh(x, t). The catch is that the
accuracy is not seen directly in the solution uh(x, t), but, rather, there exists
some smooth function, v(x, t), that allows one to extract a highly accurate
solution even after propagation in time.

While it is a surprising result, it is also an encouraging result. It clarifies
that the oscillations may look bad, but they do not destroy the attractive
basic properties of the schemes – in particular, the properties related to prop-
agation. In fact, the highly oscillatory result contains the information needed
to reconstruct a spectrally accurate solution.

Similar results to the one above are not known with rigor for general non-
linear problems although some experiments show similar properties for certain
problems (e.g., Burgers’ equation [287]). The retainment of the high-order in-
formation was also argued much earlier in [239]. It is worth noticing that there
are currently no general results showing that the higher-order information is
destroyed by the interaction of oscillations and the propagation (e.g., through
interacting shocks). It is, however, likely that the solutions with improved ac-
curacy has to be recovered through some process, as the direct solution is first
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of recovering a high-order accurate solution, uh(x, t). The catch is that the
accuracy is not seen directly in the solution uh(x, t), but, rather, there exists
some smooth function, v(x, t), that allows one to extract a highly accurate
solution even after propagation in time.

While it is a surprising result, it is also an encouraging result. It clarifies
that the oscillations may look bad, but they do not destroy the attractive
basic properties of the schemes – in particular, the properties related to prop-
agation. In fact, the highly oscillatory result contains the information needed
to reconstruct a spectrally accurate solution.

Similar results to the one above are not known with rigor for general non-
linear problems although some experiments show similar properties for certain
problems (e.g., Burgers’ equation [287]). The retainment of the high-order in-
formation was also argued much earlier in [239]. It is worth noticing that there
are currently no general results showing that the higher-order information is
destroyed by the interaction of oscillations and the propagation (e.g., through
interacting shocks). It is, however, likely that the solutions with improved ac-
curacy has to be recovered through some process, as the direct solution is first
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Combining it all, we obtain
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Gibbs Phenomenon

The solution is spectrally accurate !
     ... but it is ‘hidden’

This also shows that the high-order accuracy is
maintained -- ‘the oscillations are not noise’ !

How do we recover the accurate solution?
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order accurate in a pointwise sense, in agreement with the simpler analysis of
the linear problem. This has been demonstrated also for much more complex
problems [98, 99, 100].

5.6.1 Filtering

In light of the above, it is reasonable to consider ways to recover some of the
accuracy hidden in the oscillatory solutions. As it turns out, we already have
such a tool at our disposal.

Consider

uh(x) =
Np∑

n=1

ûnP̃n−1(x), ûn =
∫ 1

−1
u(x)P̃n−1(x) dx.

If u(x) has a discontinuity in [−1, 1], the analysis in Section 4.5 shows that

ûn " 1
n

.

Thus, a manifestation of the Gibbs phenomenon, or rather lack of regularity,
is a slow decay of the expansion coefficients. This suggests that we could
attempt to modify the expansion coefficients to decay faster in the hope of
recovering a more rapidly convergent expansion and, thus, a more accurate
approximation.

In Fig. 5.5 we illustrate the impact of using the exponential filter

σ(η) = exp(−αηs)

to obtain the filtered expansion

uF
h (x) =

Np∑

n=1

σ

(
n − 1

N

)
ûnP̃n−1(x).

In Section 5.3 this was used to recover stability by controlling the impact of
the aliasing errors.

We consider the sequence of functions

u(0) =
{
− cos(πx), −1 ≤ x ≤ 0
cos(πx), 0 < x ≤ 1,

u(i) =
∫ x

−1
u(i−1)(s) ds,

which is constructed such that u(p) ∈ Hp[−1, 1].
In Fig. 5.5 we show the pointwise error associated with three different filter

orders for four test functions (i.e., u(0) − u(3)). A number of observations are
worth making. For a function of fixed regularity (rows in Fig. 5.5), filtering can
dramatically improve the accuracy of the expansion away from the point of dis-
continuity. Also, increasing N and s decreases the size of the region around the
nonsmooth point, where the impact of filtering is less effective. On the other
hand, the order of the filter impacts the accuracy unfavorably, as illustrated

u(x) ∈ Hq ⇒ ûn ∝ n−q

Recall

One easily shows that
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Filtering

So there is a close connection between smoothness 
and decay for the expansion coefficients.

Perhaps we can ‘convince’ the expansion do
decay faster ?
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ûnP̃n−1(x).

In Section 5.3 this was used to recover stability by controlling the impact of
the aliasing errors.

We consider the sequence of functions

u(0) =
{
− cos(πx), −1 ≤ x ≤ 0
cos(πx), 0 < x ≤ 1,

u(i) =
∫ x

−1
u(i−1)(s) ds,

which is constructed such that u(p) ∈ Hp[−1, 1].
In Fig. 5.5 we show the pointwise error associated with three different filter

orders for four test functions (i.e., u(0) − u(3)). A number of observations are
worth making. For a function of fixed regularity (rows in Fig. 5.5), filtering can
dramatically improve the accuracy of the expansion away from the point of dis-
continuity. Also, increasing N and s decreases the size of the region around the
nonsmooth point, where the impact of filtering is less effective. On the other
hand, the order of the filter impacts the accuracy unfavorably, as illustrated

5.6 Problems with discontinuous solutions 139

order accurate in a pointwise sense, in agreement with the simpler analysis of
the linear problem. This has been demonstrated also for much more complex
problems [98, 99, 100].

5.6.1 Filtering

In light of the above, it is reasonable to consider ways to recover some of the
accuracy hidden in the oscillatory solutions. As it turns out, we already have
such a tool at our disposal.

Consider

uh(x) =
Np∑

n=1
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Example
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Fig. 5.5. In the left column is shown the pointwise error after the exponential filter
with s = 2 has been applied to the Legendre expansions of the four test functions.
We use N = 16, N = 64, and N = 256 for each function. The middle column shows
similar results for s = 6 and the right column displays the results for s = 10.

for the s = 2 filter (first column in Fig. 5.5), which limits the convergence rate
regardless of the regularity of the function being approximated. However, if s
is sufficiently large, this does not adversely impact the pointwise error when
filtering smooth functions. The results in Fig. 5.5 highlight that the filter does

u(0)

u(1)

u(2)

u(3)
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This achieves exactly what we hoped for

✓ Improves the accuracy away from the problem spot
✓ Does not destroy matter at the problem spot
      ... but does not help there.

This suggests a strategy:

✓ Use a filter to stabilize the scheme but do not
     remove the oscillations.
✓ Postprocess the data after the end of the 
     computation.
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Consider Burgers equation

5.6 Problems with discontinuous solutions 141

not only help to stabilize the computation but also recovers a much higher
convergence rate away from the point of discontinuity.

Hence, a possible model for computing with discontinuous solutions is to
simply stabilize the computation with the filter as much (or rather as little)
as is needed; that is, compute with the oscillations that clearly are not noise,
and then postprocess the solution when needed. To illustrate the prospects of
this approach, let us consider an example.

Example 5.6. We solve Burgers’ equation

∂u

∂t
+

∂u2

∂x
= 0, x ∈ [−1, 1],

with the discontinuous initial condition

u0(x) = u(x, 0) =

{
2, x ≤ −0.5
1, x > −0.5.

Using the Rankine-Hugoniot conditions, we easily find that the shock propa-
gates with the constant speed of 3; that is, the exact solution is

u(x, t) = u0(x − 3t),

which we also use to define the appropriate boundary conditions.
The Burgers’ equation is solved using a discontinuous Galerkin method on

strong form with aliasing in the computation of the flux and we add a filter
to ensure stability.

We use K = 20 equidistant elements, each with an N = 8 order polyno-
mial basis and a Lax-Friedrichs flux to connect the elements. To stabilize the
computation, we use an exponential filter with α = 36 and Nc = 0 (see Eq.
(5.16)), applied at every stage of the RK method.

In Fig. 5.6 we show the results obtained using three different filters of
decreasing strength. As we have already seen, using too low a filter order
results in an overly dissipated solution, similar to what we observe with a
second order filter. While the center of the shock is in the right place, the shock
is severely smeared out, although the solution is monotone. We also observe
a faceting of the solution, which is a characteristic of too strong filtering (see
[192] for a discussion of this). Nevertheless, away from the location of the
shock, we see better accuracy, improving with the distance to the shock.

Decreasing the strength of the filter results in a profound improvement of
the quality of the solution. Both with the sixth-order filter and the tenth-order
filter we see an excellent resolution of the shock as well as very high accuracy
away from the shock location. It is noteworthy that we find such high accuracy
even in regions where the shock has passed through. This confirms that the
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Fig. 5.6. Solution of Burgers’ equation with a shock using a filtering approach.
In all examples, we use K = 20 and N = 8 while varying the strength of the
filter. The left column shows the computed results and the right column displays
the pointwise error. Results are shown for T = 0.4. In the top row, we use a second
order exponential filter; in the middle row a sixth order filter; and in the bottom
row, a tenth-order filter.

effect of the oscillations do not destroy the accuracy in the smooth regions of
the solution.

Overfiltering leads to 
severe smearing.

Limited filtering looks
much better
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An alternative - Pade filtering
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Since the analysis in the above suggests that the oscillatory solutions con-
tain the information needed to reconstruct a spectrally accurate solution, it
is natural to attempt to develop such reconstruction techniques. During the
last decade, a number of techniques for recovering a solution with a higher
pointwise accuracy have been developed.

One can simply filter the computed solution in the hope of recovering
improved accuracy. The analysis of this approach is not complete for a poly-
nomial basis [162], but the analysis [313] for a simpler periodic case confirms
that spectral accuracy can be recovered everywhere except at the point(s) of
discontinuity. In a similar spirit, one can filter in physical space, often known
as mollification, and achieve comparable results [138, 298].

Similar results can be obtained (i.e., exponential convergence away from
the points of discontinuity), by reexpanding the computed solutions using
rational functions (e.g., Padé forms). In this case, one seeks two local poly-
nomials, RM and QL of order M and L, respectively, defined on Dk, such
that

x ∈ Dk : uk
h(x) =

RM (x)
QL(x)

,

where N ≥ M + L + 1. There are several ways of defining in which sense the
two expressions are the same, with the most obvious one being

∀m ∈ [0,M + L] :
∫

Dk

(
uk

hQL − RM

)
P̃m dx = 0.
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Example 5.7. We solve Burgers’ equation

∂u

∂t
+

∂u2

∂x
= 0, x ∈ [−1, 1],
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u0(x) = u(x, 0) = 0.5 + sin(πx).
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Fig. 5.7. On the left is shown the purely polynomial solution of Burgers’ equation
with N = 256 and the right shows the Padé-Legendre reconstructed solution with
M = 20 and L = 8.
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Fig. 5.8. Pointwise error for the reconstructed solution to Burgers’ equation. We
use N = 256 and M = 20 for the numerator and the three curves represent, from
top to bottom, L = 0, L = 4, and L = 8, respectively.

As evidence of the possibility of dramatically increasing the pointwise accu-
racy away from the shock, we show in Fig. 5.8 the pointwise error for M = 20
and for increasing values of L (i.e., by increasing the order of denominator in
the rational approximation). This clearly confirms the enhanced convergence
in the piecewise smooth regions away from the point of discontinuity.

These Padé-based expansion techniques are discussed at length in [108,
160, 161] for Legendre-Padé-reconstruction, relevant to the present discussion.

Whereas the above techniques offer significant improvements, they are
unable to recover spectral accuracy all the way up to and including the
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✓ Eliminates oscillations and improves accuracy
✓ .. but no improvement at the point

To fully recover, the 
shock location is 
required (see text).
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So for some/many problems, we could simply leave the 
oscillations -- and then postprocess.

However, for some applications (.. and advisors) this is 
not acceptable

✓ Unphysical values (negative densities)
✓ Artificial events (think combustion)
✓ Visually displeasing (.. for the advisor).

So we are looking for a way to completely remove
the oscillations:

Limiting
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We are interested in guaranteeing uniform boundedness

5.6 Problems with discontinuous solutions 145

point of discontinuity. To achieve this, one needs to also introduce knowl-
edge of the location of the discontinuity. If, however, this is available or com-
putable with sufficient accuracy, reprojection techniques, also known as Gibbs
reconstruction methods, enable the recovery of the full accuracy everywhere.
The basic idea of these techniques is to isolate smooth regions, x ∈ [a, b],
between the discontinuities and reexpand these as

x ∈ [a, b] : uh(x) =
Np∑

n=1

ûnP̃n−1(r(x)) =
M∑

m=0

v̂mP̃ (α,α)
m (r(x)),

where P̃ (α,α)
m (r) are the normalized symmetric Jacobi polynomials, also known

as Gegenbauer polynomials. The new expansion coefficients, v̂m, are found
through projection, using the orthonormality of the Gegenbauer basis in a
weighted norm. Under certain conditions on M and α, both of which are
functions of N , one can show spectral decay of v̂m and, thus, full recovery of
pointwise spectral accuracy for x ∈ [a, b]. For the details, we refer to the review
paper [137] and references therein. Large-scale applications of this technique
are considered in [98, 99, 100].

5.6.2 Limiting

While the use of a filter suffices to stabilize the computations and the post-
processing enables one to obtain accurate solutions, even for problems with
shocks, this approach falls short in one particular area: It does not eliminate
the artificial oscillations during the computations unless a second order filter
is used. However, as we have seen in the simple tests above, doing this leads
to a severe smearing of the shocks.

For certain applications, this may not pose a problem, but unfortunately,
it does present problems for many others; for example, if the solution is a tem-
perature or a density, the oscillations may cause these fields to take unphysical
values. Furthermore, there could be examples where a slightly higher value of
a field variable would change the solution dramatically (e.g., in a combustion
process where things could ignite artificially).

The ultimate solution would naturally be if one could develop a process
that would eliminate the oscillations entirely, without adversely impacting the
accuracy of the computation. To understand what is required to achieve this,
we follow the discussion in [60] loosely and return to the continuous viscosity
equation

∂

∂t
uε +

∂

∂x
f(uε) = ε

∂2

∂x2
uε. (5.19)

Apart from solution uniqueness, we must also ensure uniform boundedness to
guarantee existence of the solution; that is,

‖u‖L1 ≤ C, ‖u‖L1 =
∫

Ω
|u| dx.

Consider
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and define η(u) = |u|

We have
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To see that this holds for solutions to Eq. (5.19), we define η(u) = |u|.
Assuming simple periodic boundaries, we note that

−
∫

Ω
(η′(ux))xut dx =

∫

Ω

ux

|ux|
uxt dx =

d

dt

∫

Ω
|ux|dx =

d

dt
‖ux‖L1 .

Now, multiply Eq. (5.19) by −(η′(uε
x))x and integrate over the domain to

obtain

d

dt
‖uε

x‖L1 +
∫

Ω
−(η′(uε

x))xfx(uε) dx =
∫

Ω
−(η′(uε

x))xεuε
xx dx.

We realize that

−
∫

Ω
(η′(uε

x))xfx(uε) dx = −
∫

Ω
η′′(uε

x)uε
xxf ′(uε)uε

x dx = 0,

since η′′(u)u ≡ 0. Furthermore, we have

−
∫

Ω
(η′(uε

x))xεuε
xx dx = −

∫

Ω
εη′′(uε

x)(uε
xx)2 dx ≤ 0,

establishing uniform boundedness

d

dt
‖uε

x‖L1 ≤ 0.

To translate this into the discrete case, let us first consider the semidiscrete
case with a constant basis (i.e., a first-order finite volume scheme). In this
case, we have the one-dimensional method

h
duk

h

dt
+ f∗(uk

h, uk+1
h ) − f∗(uk

h, uk−1
h ) = 0, (5.20)

where we assume that the K cells are located equidistantly with a spacing of
h and f∗(a, b) is a monotone flux.

To mimic the continuous case, we define

vk
h = − 1

h

[
η′

(
uk+1

h − uk
h

h

)
− η′

(
uk

h − uk−1
h

h

)]

as a first-order approximation to −(η′(ux))x. Multiplying Eq. (5.20) by this
and summing all terms yields

d

dt
|uh|TV +

K∑

k=1

vk
h

(
f∗(uk

h, uk+1
h ) − f∗(uk

h, uk−1
h )

)
= 0,

where the discrete total variation norm is defined as
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and one easily proves
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We would like to repeat this for the discrete scheme.

Consider first the N=0 FV scheme
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|uh|TV =
K∑

k=1

|uk+1
h − uk

h|.

Consider the term

vk
h

(
f∗(uk

h, uk+1
h )− f∗(uk

h, uk−1
h )

)

= vk
h(f+(uk

h)− f+(uk−1
h )+ f−(uk+1

h )− f−(uk
h)),

where we have split the flux into increasing and decreasing components; that
is, for the Lax-Friedrichs flux,

f∗(a, b) =
f(a) + f(b)

2
+ n̂

C

2
(a − b),

then
f∗(a, b) =

{
f+(a) + f−(b), n̂ = 1
f−(a) + f+(b), n̂ = −1,

where
f+(a) =

1
2
(f(a) + Ca), f−(b) =

1
2
(f(b) − Cb).

Since f+ and −f− are nondecreasing due to monotonicity, one easily shows
that

vk
h(f+(uk

h) − f+(uk−1
h ) + f−(uk+1

h ) − f−(uk
h)) ≥ 0,

by considering the few possible combinations. Hence, we obtain

d

dt
|uh|TV ≤ 0,

and, thus, uniform boundedness. Similar results can be obtained with other
monotone fluxes.

To go beyond this simple case, we must consider the two key questions
of what happens when a higher-order basis is used and how does the time
integration come into play.

Postponing the latter question for a while, we first recall that a higher-
order basis may introduce oscillations and, thus, violate the bound on the
total variation. This severely complicates the analysis and a complete analysis
quickly becomes very technical.

To appreciate the challenges in this, let us consider a high-order scheme
but require that the local means, or cell averages, ūk

h are uniformly bounded.
In this case, we consider

h
dūk

h

dt
+ f∗(uk

r , uk+1
l ) − f∗(uk

l , uk−1
r ) = 0,

where we have introduced the notation of uk
l and uk

r as the left and right
limit value of uk

h, respectively. If we use a first-order forward Euler method to
integrate in time, we have

Multiply with 

and sum over all elements to get
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Using that the flux is monotone, one easily proves
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where we have split the flux into increasing and decreasing components; that
is, for the Lax-Friedrichs flux,

f∗(a, b) =
f(a) + f(b)

2
+ n̂

C

2
(a − b),

then
f∗(a, b) =

{
f+(a) + f−(b), n̂ = 1
f−(a) + f+(b), n̂ = −1,

where
f+(a) =

1
2
(f(a) + Ca), f−(b) =

1
2
(f(b) − Cb).

Since f+ and −f− are nondecreasing due to monotonicity, one easily shows
that

vk
h(f+(uk

h) − f+(uk−1
h ) + f−(uk+1

h ) − f−(uk
h)) ≥ 0,

by considering the few possible combinations. Hence, we obtain

d

dt
|uh|TV ≤ 0,

and, thus, uniform boundedness. Similar results can be obtained with other
monotone fluxes.

To go beyond this simple case, we must consider the two key questions
of what happens when a higher-order basis is used and how does the time
integration come into play.

Postponing the latter question for a while, we first recall that a higher-
order basis may introduce oscillations and, thus, violate the bound on the
total variation. This severely complicates the analysis and a complete analysis
quickly becomes very technical.

To appreciate the challenges in this, let us consider a high-order scheme
but require that the local means, or cell averages, ūk

h are uniformly bounded.
In this case, we consider

h
dūk

h

dt
+ f∗(uk

r , uk+1
l ) − f∗(uk

l , uk−1
r ) = 0,

where we have introduced the notation of uk
l and uk

r as the left and right
limit value of uk

h, respectively. If we use a first-order forward Euler method to
integrate in time, we have

≥ 0

and therefore

So for N=0 everything is fine -- but what about N>0
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dūk

h

dt
+ f∗(uk

r , uk+1
l ) − f∗(uk

l , uk−1
r ) = 0,

where we have introduced the notation of uk
l and uk

r as the left and right
limit value of uk

h, respectively. If we use a first-order forward Euler method to
integrate in time, we have

148 5 Nonlinear problems

h

∆t

(
ūk,n+1 − ūk,n

)
+ f∗(uk,n

r , uk+1,n
l ) − f∗(uk,n

l , uk−1,n
r ) = 0,

and with a monotone flux, one can show that [60]

|ūn+1|TV − |ūn|TV + Φ = 0,

where

Φ =
K∑

k=1

(
η′(ūk+1/2,n) − η′(ūk+1/2,n)

) (
p(uk+1,n) − p(uk,n)

)

+
∆t

h

K∑

k=1

(
η′(ūk−1/2,n) − η′(ūk+1/2,n)

) (
f+(uk,n

r ) − f+(uk−1,n
r )

)

−∆t

h

K∑

k=1

(
η′(ūk+1/2,n) − η′(ūk−1/2,n)

) (
f−(uk+1,n

l ) − f−(uk,n
l )

)
.

Here η(u) = |u|,

η′(ūk+1/2,n) = η′
(

ūk+1,n − ūk,n

h

)
,

and
p(uk,n) = ūk − ∆t

h
f+(uk,n

r ) +
∆t

h
f−(uk,n

l ).

By the properties of η′(u) = sign(u), we see that the solution is total variation
diminishing in the mean (TVDM) (i.e., Φ ≥ 0), if

sign(ūk+1,n − ūk,n) = sign(p(uk+1,n) − p(uk,n)), (5.21)
sign(ūk,n − ūk−1,n) = sign(uk,n

r − uk−1,n
r ), (5.22)

sign(ūk+1,n − ūk,n) = sign(uk+1,n
l − uk,n

l ). (5.23)

Unfortunately, there is no guarantee that the numerical solution is restricted
to behave like this, so to ensure total variation stability it must be enforced
directly. This is the role of the limiter – also known as a slope limiter, Π.
When designing a slope limiter, it must have the following properties:

• It does not violate conservation.
• It ensures that the three constraints are satisfied.
• It does not change the formal accuracy of the method.

While the first two are easy to satisfy, the third property causes problems. To
see this, let us consider a simple example.

Example 5.8. We solve the simple problem

∂u

∂t
+

∂u

∂x
= 0, x ∈ [−1, 1],

using a Forward Euler method in time, we get
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) (
f+(uk,n

r ) − f+(uk−1,n
r )

)

−∆t

h

K∑

k=1

(
η′(ūk+1/2,n) − η′(ūk−1/2,n)

) (
f−(uk+1,n

l ) − f−(uk,n
l )

)
.

Here η(u) = |u|,

η′(ūk+1/2,n) = η′
(
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sign(ūk,n − ūk−1,n) = sign(uk,n

r − uk−1,n
r ), (5.22)

sign(ūk+1,n − ūk,n) = sign(uk+1,n
l − uk,n

l ). (5.23)

Unfortunately, there is no guarantee that the numerical solution is restricted
to behave like this, so to ensure total variation stability it must be enforced
directly. This is the role of the limiter – also known as a slope limiter, Π.
When designing a slope limiter, it must have the following properties:

• It does not violate conservation.
• It ensures that the three constraints are satisfied.
• It does not change the formal accuracy of the method.

While the first two are easy to satisfy, the third property causes problems. To
see this, let us consider a simple example.

Example 5.8. We solve the simple problem

∂u

∂t
+

∂u

∂x
= 0, x ∈ [−1, 1],

Resulting in

However, the monotone flux is not enough to 
guarantee uniform boundedness through Φ ≥ 0

That is the job of the limiter -- which must satisfy

✓ Ensures uniform boundedness/control oscillations
✓ Does not violate conservation
✓ Does not change the formal/high-order accuracy

This turns out to be hard !
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Two tasks at hand

✓ Detect troubled cells
✓ Limit the slope to eliminate oscillations

Define the minmod function

5.6 Problems with discontinuous solutions 149
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Fig. 5.9. Solution to linear wave equation using N = 1 and K = 50 and a simple
slope limiter. The dashed line is the exact solution at T = 10 and the solid line is
the computed solution.

with periodic boundary conditions and initial conditions, u(x, 0) = sin(πx).
Figure 5.9 shows the solution computed for this problem using 50 elements,

each with an N = 1 basis and a basic slope limiter. The loss of accuracy around
the smooth extrema is noticeable and is caused by the slope limiter.

This example highlights a significant problem with slope limiters, as they
reduce the accuracy in smooth regions of the solution. Unfortunately, this
cannot be avoided. Consider an approximation, uh, to a smooth solution, u(x).
If u(x) locally is monotone, then uh will behave locally like a straight line and
it is easy to see that Eqs. (5.21)-(5.23) are trivially obeyed. However, if u(x)
has a local smooth extrema, then the conditions are not necessarily fulfilled.
In this case, the solution is wrongfully identified as having an oscillation and
the limiter will alter the local solution and reduce the formal accuracy to first
order. This is a general property of slope limiters if the solution is required
to be TVDM. Naturally, for the simple example above, there is no need to
use a slope limiter. However, a similar effect will occur in any computation of
problems with shocks and regions of smooth behavior.

To find a practical way of modifying the local mean of the solution to
guarantee the TVDM property, we define the minmod function

m(a1, . . . , am) =
{

smin1≤i≤m |ai|, |s| = 1
0, otherwise, s =

1
m

m∑

i=1

sign(ai).

(5.24)
To appreciate what this function does, consider a situation where we have
three arguments, (a1, a2, a3). Then m(a1, a2, a3) will return a zero unless theIf a are slopes, the minmod function
✓ Returns the minimum slope is all have the same sign
✓ Returns slope zero if the slopes are different
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Let us assume N=1 in which case the solution is

150 5 Nonlinear problems

three arguments have the same sign. In this special case, it will return the
smallest of the three arguments with the correct sign. Thus, if the three ar-
guments are taken as the slope of the solution in three elements, the minmod
function will set the slope to zero when the signs of the slopes are not the
same, indicating an oscillation, and otherwise return the smallest slope. The
minmod function acts both as a problem identifier and slope limiter.

minmod.m

function mfunc = minmod(v)

% function mfunc = minmod(v)
% Purpose: Implement the midmod function v is a vector

m = size(v,1); mfunc = zeros(1,size(v,2));
s = sum(sign(v),1)/m;

ids = find(abs(s)==1);
if(~isempty(ids))
mfunc(ids) = s(ids).*min(abs(v(:,ids)),[],1);

end
return;

We can now define the interface fluxes as

vk
l = ūk

h − m(ūk
h − uk

l , ūk
h − ūk−1

h , ūk+1
h − ūk

h), (5.25)
vk

r = ūk
h + m(uk

r − ūk
h, ūk

h − ūk−1
h , ūk+1

h − ūk
h). (5.26)

Inserting these into Eqs. (5.21)-(5.23) reveal that they suffice to guarantee the
TVDM property of the solution for sufficiently small timestep, ∆t.

This can be explored to define families of slope limiters with slightly dif-
ferent properties. As a first step, assume that the solution is represented by a
piecewise linear solution; that is,

uk
h(x) = ūk

h + (x − xk
0)(uk

h)x,

where xk
0 represents the center coordinate of Dk. We define the slope limited

solution

Π1uk
h(x) = ūk

h + (x − xk
0)m

(
(uk

h)x,
ūk+1

h − ūk
h

h/2
,
ūk

h − ūk−1
h

h/2

)
, (5.27)

which can be shown to satisfy Eqs. (5.21)-(5.23). A slightly more dissipa-
tive limiter is the classic MUSCL (Monotone Upstream-centered Scheme for
Conservation Laws) limiter [218, 301].

Π1uk
h(x) = ūk

h + (x − xk
0)m

(
(uk

h)x,
ūk+1

h − ūk
h

h
,
ūk

h − ūk−1
h

h

)
, (5.28)
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h − m(ūk
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h − ūk−1
h

h

)
, (5.28)

150 5 Nonlinear problems

three arguments have the same sign. In this special case, it will return the
smallest of the three arguments with the correct sign. Thus, if the three ar-
guments are taken as the slope of the solution in three elements, the minmod
function will set the slope to zero when the signs of the slopes are not the
same, indicating an oscillation, and otherwise return the smallest slope. The
minmod function acts both as a problem identifier and slope limiter.

minmod.m

function mfunc = minmod(v)

% function mfunc = minmod(v)
% Purpose: Implement the midmod function v is a vector

m = size(v,1); mfunc = zeros(1,size(v,2));
s = sum(sign(v),1)/m;

ids = find(abs(s)==1);
if(~isempty(ids))
mfunc(ids) = s(ids).*min(abs(v(:,ids)),[],1);

end
return;

We can now define the interface fluxes as

vk
l = ūk
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We have the classic MUSCL limiter

or a sligthly less dissipative limiter

There are many other types but they are similar
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Consider
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h

∆t

(
ūk,n+1 − ūk,n

)
+ f∗(uk,n

r , uk+1,n
l ) − f∗(uk,n

l , uk−1,n
r ) = 0,

and with a monotone flux, one can show that [60]

|ūn+1|TV − |ūn|TV + Φ = 0,

where

Φ =
K∑

k=1

(
η′(ūk+1/2,n) − η′(ūk+1/2,n)

) (
p(uk+1,n) − p(uk,n)

)

+
∆t

h

K∑

k=1

(
η′(ūk−1/2,n) − η′(ūk+1/2,n)

) (
f+(uk,n

r ) − f+(uk−1,n
r )

)

−∆t

h

K∑

k=1

(
η′(ūk+1/2,n) − η′(ūk−1/2,n)

) (
f−(uk+1,n

l ) − f−(uk,n
l )

)
.

Here η(u) = |u|,

η′(ūk+1/2,n) = η′
(

ūk+1,n − ūk,n

h

)
,

and
p(uk,n) = ūk − ∆t

h
f+(uk,n

r ) +
∆t

h
f−(uk,n

l ).

By the properties of η′(u) = sign(u), we see that the solution is total variation
diminishing in the mean (TVDM) (i.e., Φ ≥ 0), if

sign(ūk+1,n − ūk,n) = sign(p(uk+1,n) − p(uk,n)), (5.21)
sign(ūk,n − ūk−1,n) = sign(uk,n

r − uk−1,n
r ), (5.22)

sign(ūk+1,n − ūk,n) = sign(uk+1,n
l − uk,n

l ). (5.23)

Unfortunately, there is no guarantee that the numerical solution is restricted
to behave like this, so to ensure total variation stability it must be enforced
directly. This is the role of the limiter – also known as a slope limiter, Π.
When designing a slope limiter, it must have the following properties:

• It does not violate conservation.
• It ensures that the three constraints are satisfied.
• It does not change the formal accuracy of the method.

While the first two are easy to satisfy, the third property causes problems. To
see this, let us consider a simple example.

Example 5.8. We solve the simple problem

∂u

∂t
+

∂u

∂x
= 0, x ∈ [−1, 1],

5.6 Problems with discontinuous solutions 149

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

u(
x,
t)

Fig. 5.9. Solution to linear wave equation using N = 1 and K = 50 and a simple
slope limiter. The dashed line is the exact solution at T = 10 and the solid line is
the computed solution.

with periodic boundary conditions and initial conditions, u(x, 0) = sin(πx).
Figure 5.9 shows the solution computed for this problem using 50 elements,

each with an N = 1 basis and a basic slope limiter. The loss of accuracy around
the smooth extrema is noticeable and is caused by the slope limiter.

This example highlights a significant problem with slope limiters, as they
reduce the accuracy in smooth regions of the solution. Unfortunately, this
cannot be avoided. Consider an approximation, uh, to a smooth solution, u(x).
If u(x) locally is monotone, then uh will behave locally like a straight line and
it is easy to see that Eqs. (5.21)-(5.23) are trivially obeyed. However, if u(x)
has a local smooth extrema, then the conditions are not necessarily fulfilled.
In this case, the solution is wrongfully identified as having an oscillation and
the limiter will alter the local solution and reduce the formal accuracy to first
order. This is a general property of slope limiters if the solution is required
to be TVDM. Naturally, for the simple example above, there is no need to
use a slope limiter. However, a similar effect will occur in any computation of
problems with shocks and regions of smooth behavior.

To find a practical way of modifying the local mean of the solution to
guarantee the TVDM property, we define the minmod function

m(a1, . . . , am) =
{

smin1≤i≤m |ai|, |s| = 1
0, otherwise, s =

1
m

m∑

i=1

sign(ai).

(5.24)
To appreciate what this function does, consider a situation where we have
three arguments, (a1, a2, a3). Then m(a1, a2, a3) will return a zero unless the

Smooth initial condition

Reduction to 1st order at local smooth extrema
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Introduce the TVB minmod

5.6 Problems with discontinuous solutions 153

% Check to see if any elements require limiting
if(~isempty(ids))
% create piecewise linear solution for limiting on specified elements
uhl = invV*u(:,ids); uhl(3:Np,:)=0; ul = V*uhl;

% apply slope limiter to selected elements
ulimit(:,ids) = SlopeLimitLin(ul,x(:,ids),vkm1(ids),vk(ids),vkp1(ids));

end
return;

This may improve the accuracy in smooth regions of the solution, but
it does not overcome the loss of accuracy around local extrema. One way
to address this is to relax the condition on decay of the total variation and
require that the total variation of the mean is just bounded, called the TVBM
condition. Following [285], this can be achieved by slightly modifying the
definition of the minmod function, m(·), as

m̄(a1, . . . , am) = m
(
a1, a2 + Mh2sign(a2), . . . , am + Mh2sign(am)

)
, (5.29)

where M is a constant that should be an upper bound on the second derivative
at the local extrema. This is naturally not easy to estimate a priori. Too small
a value of M implies higher local dissipation and order reduction, whereas too
high a value of M reintroduces the oscillations.

minmodB.m

function mfunc = minmodB(v,M,h)

% function mfunc = minmodB(v,M,h)
% Purpose: Implement the TVB modified midmod function. v is a vector

mfunc = v(1,:);
ids = find(abs(mfunc) > M*h.^2);

if(size(ids,2)>0)
mfunc(ids) = minmod(v(:,ids));

end
return

To implement this, one simply exchanges the use of the minmod function
in SlopeLimitLin.m with the above approach, implemented in minmodB.m.

Example 5.9. We repeat the solution of the linear problem

∂u

∂t
+

∂u

∂x
= 0, x ∈ [−1, 1],
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Fig. 5.10. Solution to the linear wave equation using N = 1 and K = 50 and a
TVBM slope limiter with M = 20. The dashed line is the exact solution at t = 10
and the solid line the computed solution. To appreciate the effect of the TVBM
limiter, compare the results in Fig. 5.9.

with periodic boundary conditions and initial conditions, u(x, 0) = sin(πx),
using the modified slope limiter based on m̄. In Fig. 5.10 we show the solution
computed for this problem using 50 elements, each with an N = 1 basis. The
modified minmod function is used with M = 20 to restore high-order accuracy
around the smooth extrema.

To illustrate the performance of the different limiters and compare the
results with those obtained with the use of filtering, let us consider another
example.

Example 5.10. We again solve Burgers’ equation

∂u

∂t
+

∂u2

∂x
= 0, x ∈ [−1, 1],

with the discontinuous initial condition

u0(x) = u(x, 0) =
{

2, x ≤ −0.5
1, x > −0.5.

Recall from Example 5.6 that the exact solution is given as

u(x, t) = u0(x − 3t).

The Burgers’ equation is solved using a DG method on strong form with
aliasing in the computation of the flux. No filtering is applied, but the solution
is limited using different types of limiters.
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Consider Burgers equation

5.6 Problems with discontinuous solutions 141

not only help to stabilize the computation but also recovers a much higher
convergence rate away from the point of discontinuity.

Hence, a possible model for computing with discontinuous solutions is to
simply stabilize the computation with the filter as much (or rather as little)
as is needed; that is, compute with the oscillations that clearly are not noise,
and then postprocess the solution when needed. To illustrate the prospects of
this approach, let us consider an example.

Example 5.6. We solve Burgers’ equation

∂u

∂t
+

∂u2

∂x
= 0, x ∈ [−1, 1],

with the discontinuous initial condition

u0(x) = u(x, 0) =

{
2, x ≤ −0.5
1, x > −0.5.

Using the Rankine-Hugoniot conditions, we easily find that the shock propa-
gates with the constant speed of 3; that is, the exact solution is

u(x, t) = u0(x − 3t),

which we also use to define the appropriate boundary conditions.
The Burgers’ equation is solved using a discontinuous Galerkin method on

strong form with aliasing in the computation of the flux and we add a filter
to ensure stability.

We use K = 20 equidistant elements, each with an N = 8 order polyno-
mial basis and a Lax-Friedrichs flux to connect the elements. To stabilize the
computation, we use an exponential filter with α = 36 and Nc = 0 (see Eq.
(5.16)), applied at every stage of the RK method.

In Fig. 5.6 we show the results obtained using three different filters of
decreasing strength. As we have already seen, using too low a filter order
results in an overly dissipated solution, similar to what we observe with a
second order filter. While the center of the shock is in the right place, the shock
is severely smeared out, although the solution is monotone. We also observe
a faceting of the solution, which is a characteristic of too strong filtering (see
[192] for a discussion of this). Nevertheless, away from the location of the
shock, we see better accuracy, improving with the distance to the shock.

Decreasing the strength of the filter results in a profound improvement of
the quality of the solution. Both with the sixth-order filter and the tenth-order
filter we see an excellent resolution of the shock as well as very high accuracy
away from the shock location. It is noteworthy that we find such high accuracy
even in regions where the shock has passed through. This confirms that the
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Too dissipative limiting
leads to severe smearing.

.. but no oscillations!
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Fig. 5.11. Solution of Burgers’ equation with a shock using limiting. In all examples,
we use linear elements and propagate the solution until T = 0.4. The dashed curves
are the exact solution. The left column shows the computed results and the right
column displays the pointwise error. In the first row, we show the results with K = 20
and a MUSCL limiter, Eq. (5.28). The second row shows the results obtained with
K = 100, while in the third row we show the results recovered with K = 100 but
the more aggressive Π1 limiter, Eq. (5.27).

We first consider the case where the local basis is piecewise linear (i.e.,
N = 1), and we use a Lax-Friedrichs flux to connect the elements.

In Fig. 5.11 we show the results of using different number of elements and
limiter types, all computed with a local first-order basis. As expected, the

K=20

K=100

K=100
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But what about N>1?

✓ Compare limited and nonlimited interface values
✓ If equal, no limiting is needed.
✓ If different, reduce to N=1 and apply slope limiting156 5 Nonlinear problems
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Fig. 5.12. Solution of Burgers’ equation with a shock using limiting. We use K = 20
and N = 8 order elements and the generalized slope limiter, ΠN . The results are
shown at T = 0.4, with the dashed curve being the exact solution and the right
figure showing the pointwise error.

solutions are oscillation free and increasing K indicates a clear convergence to
the exact solution. Comparing with the results in Fig. 5.6, we see a significant
smearing of the shock as a result of the limiter. Using the more aggressive Π1

limiter improves matters slightly. However, for the same number of degrees
of freedom, the results obtained by limiting or filtering are comparable in
accuracy.

If we increase the order of the local basis and use the generalized slope
limiter, ΠN , we obtain the results shown in Fig. 5.12. Close to the shock, the
results are as in Fig. 5.11 with K = 20 and while away from the shock the
accuracy is dramatically improved in this case.

For this test case we should keep in mind that a piecewise constant basis
is essentially optimal for the problem at hand; that is, the benefits for using a
higher-order basis are limited. However, this last example shows the potential
for using a higher-order basis and a more advanced slope limiter to maintain
high accuracy in the smooth regions of the solution.

Another attempt to derive a slope limiter, which does not impact the high-
order accuracy around extrema, has been made in [28]. This approach utilizes
a hierarchical slope limiting of the modal coefficients in the following way:

• Compute ûk = V−1uk.
• For n = N, . . . , 1, compute

√
(2n + 1)(2n + 3)v̂k

n = m
(√

(2n + 1)(2n + 3)ûk
n, ûk+1

n−1 − ûk
n−1, û

k
n−1 − ûk−1

n−1

)
.

• Repeat until v̂k
n = ûk

n (i.e., no limiting on that coefficient) or n = 1, in
which case the solution is reduced to the cell-averaged solution.
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General remarks on limiting

✓ The development of a limiting technique that avoid
     local reduction to 1st order accuracy is likely the
     most important outstanding problem in DG

✓ There are a number of techniques around but they
      all have some limitations -- restricted to simple/
      equidistant grids, not TVD/TVB etc

✓ The extensions to 2D/3D and general grids are very
      challenging
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Consider again the semi-discrete scheme

5.7 Strong stability-preserving Runge-Kutta methods 157

The constant in the limiter comes from the identity

2P̃n =
√

γnγn+1P̃
′
n+1 −

√
γnγn−1P̃

′
n−1,

i.e., it is a leading term approximation of the derivative. Generally, this limiter
works well although there is no proof of TVDM/TVBM properties and there
are cases where it destroys the formal accuracy of the scheme [120, 212]. A
recent extension is discussed in [209].

5.7 Strong stability-preserving Runge-Kutta methods

A subtlety that may have escaped even the careful reader is the fact that all
analysis and results on limiting were obtained under the assumption that a
first-order forward Euler method was used to integrate in time. As one of the
strengths of the DG formulation is the ability to compute with high-order
accuracy, a requirement of first order in time is clearly not satisfactory. The
question becomes whether one can design high-order temporal integration
schemes that maintain the TVDM or TVBM property, provided this can be
shown for the first-order forward Euler method.

Consider the semidiscrete scheme

d

dt
uh = Lh(uh, t),

and assume that we can establish the TV property using a forward Euler
method; that is,

un+1
h = un

h + ∆tLh(un
h, tn), |un+1

h |TV ≤ |un
h|TV .

Let us consider an explicit RK method with s stages of the form





v(0) = un
h

i = 1, . . . , s : v(i) =
∑i−1

j=0 αijv(j) + βij∆tLh(v(j), tn + γj∆t)
un+1

h = v(s)

. (5.30)

Clearly, we must find (αij ,βij , γj) such that the order conditions (see, e.g.,
[40, 143, 144]) are satisfied, and if additional degrees of freedom are available,
we can attempt to optimize the scheme in some way. For consistency, we must
have

i−1∑

l=0

αil = 1.

A closer look at the form of the RK method in Eq. (5.30) reveals that if
(αij ,βij) are all positive, the RK method is simply a convex combination of
forward Euler steps since we can write the stages as
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For which we just discussed TVD/TVB schemes as

.. but this is just 1st order in time -- we want 
    high-order accuracy

Do we have to redo it all ?
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v(i) =
i−1∑

j=0

αij

(
v(j) +

βij

αij
∆tLh(v(j), tn + γj∆t)

)
.

If the scheme is TVD/TVB for ∆tE using an Euler method, we can directly
rely on that result at high order also, provided we use a maximum timestep

∆tRK ≤ min
ij

αij

βij
∆tE .

When optimizing the scheme, the objective should be to maximize the fraction
in front of ∆tE to minimize the cost of the time integration.

Methods of this kind are known as strong stability-preserving Runge-Kutta
(SSP-RK) or TVD-RK methods and can be used with advantage for problems
with strong shocks and discontinuities, as they guarantee that no additional
oscillations are introduced as part of the time-integration process.

For a second-order two-stage SSP-RK scheme, the optimal scheme is [139,
140]

v(1) = un
h + ∆tLh(un

h, tn), (5.31)

un+1
h = v(2) =

1
2

(
un

h + v(1) + ∆tLh(v(1), tn + ∆t)
)

,

and the optimal third-order three-stage SSP-RK scheme is given as

v(1) = un
h + ∆tLh(un

h, tn),

v(2) =
1
4

(
3un

h + v(1) + ∆tLh(v(1), tn + ∆t)
)

, (5.32)

un+1
h = v(3) =

1
3

(
un

h + 2v(2) + 2∆tLh

(
v(2), tn +

1
2
∆t

))
.

Both schemes are optimal in the sense that the maximum timestep is the same
as that of the forward Euler method.

Unfortunately, one can show [139] that it is not possible to construct
fourth-order four-stage SSP-RK schemes where all coefficients are positive.
However, one can derive a fourth-order scheme by allowing a fifth stage [292].
The optimal scheme is given as

v(1) = un
h + 0.39175222700392∆tLh(un

h, tn),
v(2) = 0.44437049406734un

h + 0.55562950593266v(1)

+0.36841059262959∆tLh(v(1), tn + 0.39175222700392∆t),
v(3) = 0.62010185138540un

h + 0.37989814861460v(2)

+0.25189177424738∆tLh(v(2), tn + 0.58607968896780∆t),
v(4) = 0.17807995410773un

h + 0.82192004589227v(3) (5.33)
+ 0.54497475021237∆tLh(v(3), tn + 0.47454236302687∆t),

Assume we can find a ERK method on the form

Coefficients found to satisfy order conditions

Write this as

Clearly if αij ,βij > 0

TVD Runge-Kutta methods
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Both schemes are optimal in the sense that the maximum timestep is the same
as that of the forward Euler method.

Unfortunately, one can show [139] that it is not possible to construct
fourth-order four-stage SSP-RK schemes where all coefficients are positive.
However, one can derive a fourth-order scheme by allowing a fifth stage [292].
The optimal scheme is given as
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v(4) = 0.17807995410773un

h + 0.82192004589227v(3) (5.33)
+ 0.54497475021237∆tLh(v(3), tn + 0.47454236302687∆t),

Assume we can find a ERK method on the form

Coefficients found to satisfy order conditions

Write this as

Clearly if αij ,βij > 0

The scheme is a convex combination of Euler steps
and the stability of the high-order methods follows
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... but do such schemes exits ?

158 5 Nonlinear problems

v(i) =
i−1∑

j=0

αij

(
v(j) +

βij

αij
∆tLh(v(j), tn + γj∆t)

)
.

If the scheme is TVD/TVB for ∆tE using an Euler method, we can directly
rely on that result at high order also, provided we use a maximum timestep

∆tRK ≤ min
ij

αij

βij
∆tE .

When optimizing the scheme, the objective should be to maximize the fraction
in front of ∆tE to minimize the cost of the time integration.

Methods of this kind are known as strong stability-preserving Runge-Kutta
(SSP-RK) or TVD-RK methods and can be used with advantage for problems
with strong shocks and discontinuities, as they guarantee that no additional
oscillations are introduced as part of the time-integration process.

For a second-order two-stage SSP-RK scheme, the optimal scheme is [139,
140]

v(1) = un
h + ∆tLh(un

h, tn), (5.31)

un+1
h = v(2) =

1
2

(
un

h + v(1) + ∆tLh(v(1), tn + ∆t)
)

,

and the optimal third-order three-stage SSP-RK scheme is given as

v(1) = un
h + ∆tLh(un

h, tn),

v(2) =
1
4

(
3un

h + v(1) + ∆tLh(v(1), tn + ∆t)
)

, (5.32)

un+1
h = v(3) =

1
3

(
un

h + 2v(2) + 2∆tLh

(
v(2), tn +

1
2
∆t

))
.

Both schemes are optimal in the sense that the maximum timestep is the same
as that of the forward Euler method.

Unfortunately, one can show [139] that it is not possible to construct
fourth-order four-stage SSP-RK schemes where all coefficients are positive.
However, one can derive a fourth-order scheme by allowing a fifth stage [292].
The optimal scheme is given as

v(1) = un
h + 0.39175222700392∆tLh(un

h, tn),
v(2) = 0.44437049406734un

h + 0.55562950593266v(1)

+0.36841059262959∆tLh(v(1), tn + 0.39175222700392∆t),
v(3) = 0.62010185138540un

h + 0.37989814861460v(2)

+0.25189177424738∆tLh(v(2), tn + 0.58607968896780∆t),
v(4) = 0.17807995410773un

h + 0.82192004589227v(3) (5.33)
+ 0.54497475021237∆tLh(v(3), tn + 0.47454236302687∆t),
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2nd order

3rd order

No 4th order, 4 stage scheme is possible - but 
there are other options (not implicit)

With filter/limiting
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un+1
h = v(5) = 0.00683325884039un

h + 0.51723167208978v(2)

+0.12759831133288v(3) + 0.34833675773694v(4)

+0.08460416338212∆tLh(v(3), tn + 0.47454236302687∆t)
+ 0.22600748319395∆tLh(v(4), tn + 0.93501063100924∆t).

The additional work is partially offset by the maximum timestep being ap-
proximately 50% larger than for the forward Euler method. Other SSP-RK
methods are known (e.g., low-storage forms and SSP multistep schemes). We
refer to [140] for an overview of these methods and more references.

If a filter or limiter is used, it must be applied at each stage of the SSP-RK
scheme; for example,

v(i) = Πp

(
i−1∑

l=0

αilv
(l) + βil∆tLh(v(l), tn + γl∆t)

)
.

To illustrate the problems that may arise by using a poorly chosen time-
integration method, let us consider a well-known example, taken from [139].

Example 5.11. We solve Burgers’ equation

∂u

∂t
+

∂u2

∂x
=

∂u

∂t
+ L(u) = 0, x ∈ [−1, 1],

with the discontinuous initial condition

u0(x) = u(x, 0) =
{

2, x ≤ −0.5
1, x > −0.5

and the exact solution

u(x, t) = u0(x − 3t).

Burgers’ equation is solved using a DG method on strong form with a MUSCL
limiter and Lax-Friedrichs fluxes. We use a linear local basis and K = 100
elements.

As the first time-integration method, we consider the second-order, two-
stage RK method of the form

v(1) = un
h − 20∆Lh(un

h),

un+1
h = un

h +
∆t

40

(
41Lh(un

h) − Lh(v(1))
)

.

This is perhaps not a standard second-order RK method, but it is certainly a
valid one. As an alternative, we use the second-order SSP-RK method given
in Eq. (5.31). Both methods are run at the same timestep although the latter
is stable at a larger timestep.
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5.6 Problems with discontinuous solutions 141

not only help to stabilize the computation but also recovers a much higher
convergence rate away from the point of discontinuity.

Hence, a possible model for computing with discontinuous solutions is to
simply stabilize the computation with the filter as much (or rather as little)
as is needed; that is, compute with the oscillations that clearly are not noise,
and then postprocess the solution when needed. To illustrate the prospects of
this approach, let us consider an example.

Example 5.6. We solve Burgers’ equation

∂u

∂t
+

∂u2

∂x
= 0, x ∈ [−1, 1],

with the discontinuous initial condition

u0(x) = u(x, 0) =

{
2, x ≤ −0.5
1, x > −0.5.

Using the Rankine-Hugoniot conditions, we easily find that the shock propa-
gates with the constant speed of 3; that is, the exact solution is

u(x, t) = u0(x − 3t),

which we also use to define the appropriate boundary conditions.
The Burgers’ equation is solved using a discontinuous Galerkin method on

strong form with aliasing in the computation of the flux and we add a filter
to ensure stability.

We use K = 20 equidistant elements, each with an N = 8 order polyno-
mial basis and a Lax-Friedrichs flux to connect the elements. To stabilize the
computation, we use an exponential filter with α = 36 and Nc = 0 (see Eq.
(5.16)), applied at every stage of the RK method.

In Fig. 5.6 we show the results obtained using three different filters of
decreasing strength. As we have already seen, using too low a filter order
results in an overly dissipated solution, similar to what we observe with a
second order filter. While the center of the shock is in the right place, the shock
is severely smeared out, although the solution is monotone. We also observe
a faceting of the solution, which is a characteristic of too strong filtering (see
[192] for a discussion of this). Nevertheless, away from the location of the
shock, we see better accuracy, improving with the distance to the shock.

Decreasing the strength of the filter results in a profound improvement of
the quality of the solution. Both with the sixth-order filter and the tenth-order
filter we see an excellent resolution of the shock as well as very high accuracy
away from the shock location. It is noteworthy that we find such high accuracy
even in regions where the shock has passed through. This confirms that the
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Use ‘standard’ 2nd order ERK
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un+1
h = v(5) = 0.00683325884039un

h + 0.51723167208978v(2)

+0.12759831133288v(3) + 0.34833675773694v(4)

+0.08460416338212∆tLh(v(3), tn + 0.47454236302687∆t)
+ 0.22600748319395∆tLh(v(4), tn + 0.93501063100924∆t).

The additional work is partially offset by the maximum timestep being ap-
proximately 50% larger than for the forward Euler method. Other SSP-RK
methods are known (e.g., low-storage forms and SSP multistep schemes). We
refer to [140] for an overview of these methods and more references.

If a filter or limiter is used, it must be applied at each stage of the SSP-RK
scheme; for example,

v(i) = Πp

(
i−1∑

l=0

αilv
(l) + βil∆tLh(v(l), tn + γl∆t)

)
.

To illustrate the problems that may arise by using a poorly chosen time-
integration method, let us consider a well-known example, taken from [139].

Example 5.11. We solve Burgers’ equation

∂u

∂t
+

∂u2

∂x
=

∂u

∂t
+ L(u) = 0, x ∈ [−1, 1],

with the discontinuous initial condition

u0(x) = u(x, 0) =
{

2, x ≤ −0.5
1, x > −0.5

and the exact solution

u(x, t) = u0(x − 3t).

Burgers’ equation is solved using a DG method on strong form with a MUSCL
limiter and Lax-Friedrichs fluxes. We use a linear local basis and K = 100
elements.

As the first time-integration method, we consider the second-order, two-
stage RK method of the form

v(1) = un
h − 20∆Lh(un

h),

un+1
h = un

h +
∆t

40

(
41Lh(un

h) − Lh(v(1))
)

.

This is perhaps not a standard second-order RK method, but it is certainly a
valid one. As an alternative, we use the second-order SSP-RK method given
in Eq. (5.31). Both methods are run at the same timestep although the latter
is stable at a larger timestep.

Compare to 2nd order TVD-RK

MUSCL limiting in space, i.e., no oscillations
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Fig. 5.13. Solution of Burgers’ equation with a shock using limiting. We use K =
100 and N = 1 order elements and the MUSCL slope limiter. The results are shown
at T = 0.4. On the left is shown the result computed using a generic second-order
RK method and the figure on the right shows the nonoscillatory results obtained by
the use of the SSP-RK2 method.

The results in Fig. 5.13 highlight the possibility of generating spurious
oscillations in the solution solely by failing to use a suitable timestepping
method.

5.8 A few general results

With all the pieces in place, one can establish a number of more general re-
sults regarding convergence for nonlinear scalar conservation laws with convex
fluxes. For completeness, we will summarize a few of them here without proofs.

Theorem 5.12. Assume that the limiter, Π, ensures the TV DM property;
that is,

vh = Π(uh) ⇒ |vh|TV ≤ |uh|TV ,

and that the SSP-RK method is consistent.
Then the DG-FEM with the SSP-RK solution is TV DM as

∀n : |un
h|TV ≤ |u0

h|TV .

This is an almost immediate consequence of the results we have discussed
above.

Furthermore, we have similar results as follows:

Theorem 5.13. Assume that the limiter, Π, ensures the TV BM property
and that the SSP-RK method is consistent.

The oscillation is caused by time-stepping!

The 2nd order ERK is a bit unsual and ‘reasonable’ 
ERK method typically do not show this.

However, only with TVD-RK can one guarantee it
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Then the DG-FEM with the SSP-RK solution is TV DM as
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h|TV ≤ |u0
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This is an almost immediate consequence of the results we have discussed
above.

Furthermore, we have similar results as follows:

Theorem 5.13. Assume that the limiter, Π, ensures the TV BM property
and that the SSP-RK method is consistent.

5.9 The Euler equations of compressible gas dynamics 161

Then the DG-FEM with the SSP-RK solution is TV BM as

∀n : |un
h|TV ≤ |u0

h|TV + CM,

where the constant, C, depends only on the order of approximation, N , and
M is the constant in the TVBM limiter, Eq. (5.29).

These results allow one to prove the fundamental convergence theorem [60]

Theorem 5.14. Assume that the slope limiter, Π, ensures that uh is TV DM
or TV BM and that the SSP-RK method is consistent.

Then there is a subsequence, {ū′
h}, of the sequence {ūh} generated by the

scheme that converges in L∞(0, T ;L1) to a weak solution of the scalar con-
servation law.

Moreover, if a TV BM limiter is used, the weak solution is the entropy
solution and the whole sequence converges.

Finally, if the generalized slope limiter guarantees that

‖ūh − Πūh‖L1 ≤ Ch|ūh|TV ,

then the above results hold not only for the sequence of cell averages, {ūh},
but also for the sequence of functions, {uh}.

If one further makes assumptions of smoothness, the semidiscrete results dis-
cussed in Section 5.5 are extended to the fully discrete case in [337, 338], based
on a second-order SSP-RK method, resulting in the expected additional error
term of O(∆t2).

5.9 The Euler equations of compressible gas dynamics

To conclude this chapter, let us consider a more elaborate example to see how
all the pieces come together. We consider the one-dimensional equations of
gas dynamics, known as the Euler equations. These are a set of three coupled
nonlinear conservation laws given as

∂ρ

∂t
+

∂ρu

∂x
= 0,

∂ρu

∂t
+

∂(ρu2 + p)
∂x

= 0,

∂E

∂t
+

∂(E + p)u
∂x

= 0,

where we have the conserved variables of density, ρ, momentum, ρu, and
energy, E. The energy and the pressure are related through the ideal gas law
as
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p = (γ − 1)
(

E − 1
2
ρu2

)
, c =

√
γp

ρ
,

and the local speed of sound c. In both cases, γ is a constant related to the
type of fluid. We take it to be γ = 7/5, which is typical for atmospheric gases.

In EulerRHS1D.m, we show the implementation needed to evaluate the
right-hand side of the Euler equations, using a Lax-Friedrichs flux.

EulerRHS1D.m

function [rhsrho, rhsrhou, rhsEner] = EulerRHS1D(rho, rhou ,Ener)

% function [rhsrho, rhsrhou, rhsEner] = EulerRHS1D(rho, rhou ,Ener)
% Purpose : Evaluate RHS flux in 1D Euler

Globals1D;

% compute maximum velocity for LF flux
gamma = 1.4;
pres = (gamma-1.0)*(Ener - 0.5*(rhou).^2./rho);
cvel = sqrt(gamma*pres./rho); lm = abs(rhou./rho)+cvel;

% Compute fluxes
rhof = rhou; rhouf=rhou.^2./rho+pres; Enerf=(Ener+pres).*rhou./rho;

% Compute jumps at internal faces
drho =zeros(Nfp*Nfaces,K); drho(:) = rho(vmapM)- rho(vmapP);
drhou =zeros(Nfp*Nfaces,K); drhou(:) = rhou(vmapM)- rhou(vmapP);
dEner =zeros(Nfp*Nfaces,K); dEner(:) = Ener(vmapM)- Ener(vmapP);
drhof =zeros(Nfp*Nfaces,K); drhof(:) = rhof(vmapM)- rhof(vmapP);
drhouf=zeros(Nfp*Nfaces,K); drhouf(:) =rhouf(vmapM)-rhouf(vmapP);
dEnerf=zeros(Nfp*Nfaces,K); dEnerf(:) =Enerf(vmapM)-Enerf(vmapP);
LFc =zeros(Nfp*Nfaces,K); LFc(:) =max(lm(vmapP),lm(vmapM));

% Compute fluxes at interfaces
drhof(:) = nx(:).*drhof(:)/2.0-LFc(:)/2.0.*drho(:);
drhouf(:)=nx(:).*drhouf(:)/2.0-LFc(:)/2.0.*drhou(:);
dEnerf(:)=nx(:).*dEnerf(:)/2.0-LFc(:)/2.0.*dEner(:);

% Boundary conditions for Sod’s problem
rhoin = 1.000; rhouin = 0.0;
pin = 1.000; Enerin = pin/(gamma-1.0);
rhoout = 0.125; rhouout = 0.0;
pout = 0.100; Enerout = pout/(gamma-1.0);

% Set fluxes at inflow/outflow
rhofin =rhouin; rhoufin=rhouin.^2./rhoin+pin;
Enerfin=(pin/(gamma-1.0)+0.5*rhouin^2/rhoin+pin).*rhouin./rhoin;
lmI=lm(vmapI)/2; nxI=nx(mapI);
drho (mapI)=nxI*(rhof (vmapI)-rhofin )/2.0-lmI*(rho(vmapI) -rhoin);
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% Generate simple mesh
[Nv, VX, K, EToV] = MeshGen1D(0.0, 1.0, 250);

% Initialize solver and construct grid and metric
StartUp1D;
gamma = 1.4;

% Set up initial conditions -- Sod’s problem
MassMatrix = inv(V’)/V;
cx = ones(Np,1)*sum(MassMatrix*x,1);

rho = ones(Np,K).*( (cx<0.5) + 0.125*(cx>=0.5));
rhou = zeros(Np,K);
Ener = ones(Np,K).*((cx<0.5) + 0.1*(cx>=0.5))/(gamma-1.0);
FinalTime = 0.2;

% Solve Problem
[rho,rhou,Ener] = Euler1D(rho,rhou,Ener,FinalTime);

We use this to solve a classic test problem, known as Sod’s problem. The
problem is set in x ∈ [0, 1] with the initial conditions

ρ(x, 0) =
{

1.0, x < 0.5
0.125, x ≥ 0.5,

ρu(x, 0) = 0 E(x, 0) =
1

γ − 1

{
1, x < 0.5
0.1, x ≥ 0.5.

The problem has an exact solution by solving Riemann problems.
In Fig. 5.14 we show the computed results with N = 1 and K = 250 ele-

ments, compared with the exact solution at T = 0.2. We observe an excellent
resolution of the shocks but also some smearing of the contact discontinuities.
In Fig. 5.15 we illustrate the general convergence by using K = 500 elements,
showing decreased smearing of contacts.

5.10 Exercises

1. Consider a smooth nonlinear problem, known as the shallow water system,
as

∂h

∂t
+

∂hu

∂x
= 0,

∂u

∂t
+ G

∂h

∂x
+ u

∂u

∂x
= 0,

where h(x, t) is the water height and u(x, t) is the velocity. This model
can be used to model water waves on shallow water.
It has an exact solution of the form

h(x, t) = ξ2, u(x, t) = 2
√

Gξ − 2
√

GH,

Mass

Momentum

Energy

Sod’s Problem

Ideal gas
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Fig. 5.14. Solution of Sod’s shock tube problem at T = 0.2 with K = 250 linear
elements and the MUSCL TVBM limiter. Shown is the computed density (ρ), the
velocity, (u), the pressure, (p), and the local Mach number (M). The dashed lines
represent the exact solution.

where

ξ(x, t) =
x + 2

√
GHt

1 + 3
√

Gt
.

H is the steady-state water height and G is the constant of gravity.
a) Design and implement a DG-FEM method for this problem. Motivate

the choice of numerical flux and general formulation of the scheme.
b) Determine the fastest wave velocity of the system. What role does

that play in determining the stable timestep for an RK method?
c) Validate the accuracy of the code; that is, show that ‖ε‖Ω,h ≤ Chs.

What is s and can you determine how C depends on time and N?

2. Consider the linear wave problem

∂u

∂t
+ a(x)

∂u

∂x
= 0, x ∈ [−1, 1],

K=250
N=1

MUSCL
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Fig. 5.15. Solution of Sod’s shock tube problem at T = 0.2 with K = 500 linear
elements and the MUSCL TVBM limiter. Shown is the computed density (ρ), the
velocity, (u), the pressure, (p), and the local Mach number (M). The dashed lines
represent the exact solution.

where
a(x) =

1
π

sin(πx − 1).

If the initial condition is

u(x, 0) = f(x) = sin(x),

the exact solution to the linear problem is

u(x, t) = f

(
2 tan−1

[
e−t tan

(
πx − 1

2

)]
+ 1

)
.

a) Confirm that u(x, t) is an exact solution and that the solution asymp-
totes to a constant. Find the constant.

b) Formulate a DG-FEM method with exact integration for solving the
problem and implement the scheme. Use the exact solution as the
boundary condition at x = −1 and confirm the accuracy of the scheme.
Is it as expected?

K=500
N=1

MUSCL
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Fluxes - a second look

For the linear problem

218 6 Beyond one dimension

schemes – in particular, in the context of finite volume methods. For a thor-
ough and rigorous discussion and many details on this topic we refer to the ex-
cellent texts [218, 301]. A comparative study of a number of different fluxes in
the context of a DG-FEM solution of the Euler equations is presented in [263].

Before discussing some specific numerical fluxes for the Euler equations,
let us revisit the general problem of the flux construction. In Section 2.4 we
discussed in detail the construction of a proper numerical upwind flux for the
linear hyperbolic problem

∂u

∂t
+ A∂u

∂x
= 0.

The extension to the two-dimensional case

∂u

∂t
+ Ax

∂u

∂x
+ Ay

∂u

∂y
= 0,

is straightforward by considering the Rankine-Hugoniot wave problems asso-
ciated with the direction matrix,

Â = n̂xAx + n̂yAy.

Examples and further discussions of this for the linear problem are found in
Section 6.5.

For the nonlinear problem, however, the situation is more complicated. In
Section 2.4 we could, for the linear problem, extract exactly how the waves of
the system would interact and, hence, recover the numerical flux from the left
and right states of the system. The analytic solution of this basic problem,
known as the Riemann problem for general conservation laws, is not possible
for a general conservation law and its numerical solution is often prohibitively
expensive.

It is therefore natural to seek an approximate solution to this Riemann
problem, leading to what is known as approximate Riemann solvers. If we
consider the conservation law

∂u

∂t
+

∂f(u)
∂x

= 0,

it seems appropriate to approximate the numerical flux by linearization as

f∗ = Âu∗, (6.10)

where, clearly, both Â and u∗ depend on u− and u+ (i.e., the left and right
states).

If we now assume that Â is diagonizable

Âri = λiri,

where the eigenvalues, λi, are purely real due to the wavelike nature of the
problem, we can follow the ideas in Section 2.4 and write

we could derive the exact upwind flux - Riemann Pro.

Let us now consider a general nonlinear problem
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For this we have used Lax-Friedrich fluxes -- but when 
used with limiting, this is too dissipative.

We need to consider alternatives
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where, clearly, both Â and u∗ depend on u− and u+ (i.e., the left and right
states).

If we now assume that Â is diagonizable
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Use these waves to represent the solution
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u+ − u− =
∑

i

αiri.

Based on this, one easily shows that the solution to the linearized Riemann
problem is given as

u∗ = u− +
∑

λi≤0

αiri = u+ −
∑

λi≥0

αiri.

Multiply this with Â and take the average of the two expressions to recover

Âu∗ = Â{{u}} +
1
2
|Â|[[u]], (6.11)

where
|Â| = S|Λ|S−1,

where Â = SΛS−1.
For the nonlinear case, we must place certain conditions on the definition

of Â. It is reasonable to require consistency in the sense that

Â(u−,u+) → ∂f(u)
∂u

when (u−,u+) → u.

Furthermore, we must require that Â(u−,u+) is diagonizable and has purely
real eigenvalues. Consider the jump in flux as

f(u+) − f(u−) =
∫ 1

0

df(u(ξ))
dξ

dξ =
∫ 1

0

df(u(ξ))
du

du

dξ
dξ.

We now assume a linear dependence, often known as Roe linearization after
[273], as

u(ξ) = u− + (u+ − u−)ξ,

which, after insertion in the above expression, yields the Roe condition

f(u+) − f(u−) = Â
(
u+ − u−)

, (6.12)

where

Â =
∫ 1

0

df(u(ξ)
du

dξ. (6.13)

This suggests that the most natural extension of Eq. (6.11) to the nonlinear
conservation law follows directly as

f∗ = {{f}} +
1
2
|Â|[[u]].

Note in particular that for the scalar problem, this is the local Lax-Friedrichs
flux. Unfortunately, the exact evaluation of Â using Eq. (6.13) is only possible

Taking the average gives
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.. but what is    ?    Â
We must require that

.. consistency:

.. diagonizable:
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Furthermore, we must require that Â(u−,u+) is diagonizable and has purely
real eigenvalues. Consider the jump in flux as

f(u+) − f(u−) =
∫ 1

0

df(u(ξ))
dξ

dξ =
∫ 1

0

df(u(ξ))
du

du

dξ
dξ.

We now assume a linear dependence, often known as Roe linearization after
[273], as

u(ξ) = u− + (u+ − u−)ξ,

which, after insertion in the above expression, yields the Roe condition

f(u+) − f(u−) = Â
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Âu∗ = Â{{u}} +
1
2
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where Â = SΛS−1.
For the nonlinear case, we must place certain conditions on the definition
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Furthermore, we must require that Â(u−,u+) is diagonizable and has purely
real eigenvalues. Consider the jump in flux as

f(u+) − f(u−) =
∫ 1

0

df(u(ξ))
dξ

dξ =
∫ 1

0

df(u(ξ))
du

du

dξ
dξ.

We now assume a linear dependence, often known as Roe linearization after
[273], as

u(ξ) = u− + (u+ − u−)ξ,

which, after insertion in the above expression, yields the Roe condition

f(u+) − f(u−) = Â
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∂u

when (u−,u+) → u.

Furthermore, we must require that Â(u−,u+) is diagonizable and has purely
real eigenvalues. Consider the jump in flux as

f(u+) − f(u−) =
∫ 1

0

df(u(ξ))
dξ

dξ =
∫ 1

0

df(u(ξ))
du

du

dξ
dξ.

We now assume a linear dependence, often known as Roe linearization after
[273], as

u(ξ) = u− + (u+ − u−)ξ,

which, after insertion in the above expression, yields the Roe condition

f(u+) − f(u−) = Â
(
u+ − u−)

, (6.12)

where

Â =
∫ 1

0

df(u(ξ)
du

dξ. (6.13)

This suggests that the most natural extension of Eq. (6.11) to the nonlinear
conservation law follows directly as

f∗ = {{f}} +
1
2
|Â|[[u]].

Note in particular that for the scalar problem, this is the local Lax-Friedrichs
flux. Unfortunately, the exact evaluation of Â using Eq. (6.13) is only possible

Roe linearization
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Fluxes - a second look
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One clear option
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Like LF in 1D

.. but not computable in general

Approximations
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in special cases, some of which we will discuss shortly. However, there are
several suitable approximate choices, such as

Â = fu({{u}}),

or
Â = {{fu}}.

In this latter case, one has to be careful to ensure that the flux Jacobian Â
has purely real eigenvalues.

Before we continue, it is illustrative to derive the Roe condition, Eq.
(6.12), in a slightly different way. If we assume that the Riemann problem is
dominated by one strong wave, propagating with speed s, then the Rankine-
Hugoniot condition (see Section 2.4) would require that

f(u+) − f(u−) = s
(
u+ − u−)

.

If the solution should also be a solution to the linearized Riemann problem,
we recover a similar statement from Eq. (6.10)

Â
(
u+ − u−)

= s
(
u+ − u−)

,

from which the Roe condition follows directly. Hence, the condition reflects
an assumption that the solution is dominated by one strong wave. This is a
reasonable condition except in those rare cases where strong shocks interact.
In such rare cases, a Riemann solver based on the above principle will be less
effective.

Let us now return to specifics of the Euler equations and consider a couple
of more advanced choices. In [273], a very elegant approach was introduced
to enable the integration of the flux Jacobian and from this, the accurate
realization of Â. For the two-dimensional case, the Euler system is linearized
along a normal direction. The key issue is to identify the locally linearized
mean state, used to define Â.

We use a rotation matrix to compute the normal and tangential compo-
nents of the momentum and then compute the two flux vector functions in
EulerRoe2D.m.

EulerRoe2D.m

9 % Rotate "-" trace momentum to face normal-tangent coordinates
10 rhouM = QM(:,:,2); rhovM = QM(:,:,3); EnerM = QM(:,:,4);
11 QM(:,:,2) = nx.*rhouM + ny.*rhovM;
12 QM(:,:,3) = -ny.*rhouM + nx.*rhovM;
13

14 % Rotate "+" trace momentum to face normal-tangent coordinates
15 rhouP = QP(:,:,2); rhovP = QP(:,:,3); EnerP = QP(:,:,4);
16 QP(:,:,2) = nx.*rhouP + ny.*rhovP;
17 QP(:,:,3) =-ny.*rhouP + nx.*rhovP;
18
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Summary
Dealing with discontinuous problems is a challenge

✓ The Gibbs oscillations impact accuracy
✓ .. but it does not destroy it, it seems
✓ So they should not just be removed
✓ One can the try to postprocess by filtering or
      other techniques.
✓ For some problems, true limiting is required
✓ Doing this right is complicated -- and open
✓ TVD-RK allows one to prove nonlinear results
✓ ... and it all works :-)

Time to move beyond 1D - Next week !
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