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A brief overview of what’s to come

e Lecture |:Introduction and DG-FEM in ID

* Lecture 2: Implementation and

numerical aspects

* Lecture 3:Insight through theory

* Lecture 4: Nonlinear problems

* Lecture 5: Extension to two spatial dimensions

e Lecture 6:Introduction to mes

* Lecture 7: Higher order/Globa

N generation

problems

* Lecture 8: 3D and advanced topics
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Lecture 3

Let’s briefly recall what we know

Why high order methods ?

Part I:

v Constructing fluxes for linear systems

v Approximation theory on the interval

4
4
4
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Let us recall

We already know a lot about the basic DG-FEM

e Stability is provided by carefully choosing the
numerical flux.

e Accuracy appear to be given by the local solution
representation.

* We can utilize major advances on monotone
schemes to design fluxes.

* The scheme generalizes with very few changes to
very general problems -- multidimensional systems
of conservation laws.
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Let us recall

We already know a lot about the basic DG-FEM

e Stability is provided by carefully choosing the
numerical flux.

e Accuracy appear to be given by the local solution
representation.

* We can utilize major advances on monotone
schemes to design fluxes.

* The scheme generalizes with very few changes to
very general problems -- multidimensional systems
of conservation laws.

At least in principle -- but what can we actually prove !
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Why high-order accuracy ?

Let us just make sure we understand why high-order
accuracy/methods is a good idea

General concerns/criticism:

» High-order accuracy is not needed for real appl.

» T
» T
» T
» T

ne methods are not robust/flexible
ney only work for smooth problems
ney are hard to do in complex geometries

ney are too expensive

After having worked on these methods
for 15 years, | have heard them all
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Why high-order accuracy ?

How do | solve a wave-problem to a given accuracy,
, for a specific period of time, , most efficiently ?
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Why high-order accuracy ?

350¢ 3500
300 3000 —
250 2500 —
200 2000 —
150 1500 —
100 1000 —

50 500

05 0.25 05 0.75 1 0

High-order is impovrtant if

» High accuracy is required - and it increasingly is !
» Long time integration is needed

» High-dimensional problems (3D) are considered
» Memory restrictions become a bottleneck
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Added benefit of high-order support

b) . H, Component - n = 4 C)

Y/A
Y/A

High-order

takes ‘some’ of
the pain out of
grid generation

Y/A
Y/A
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But first a bit more on fluxes

Let us briefly look a little more carefully at linear

systems
ou ou OF; O0Fy;
Q()(% +V -F = Q()8t+ax+6y_o,

F = |F1, Fy] = [Ai(x)u, Az (z)u].

Prominent examples are
e Acoustics

e Electromagnetics

* Elasticity

In such cases we can derive exact upwind fluxes
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Linear systems and fluxes

Assume first that all coefficients vary smoothly

ou ou ou
Q@) 5 + Ai(w) 5 + Ax(w) 5 + Bl@)u =0,

The flux along a normal 72 is then
II = (hgp A () + Ny Az (x)) . n-F = I1lu.
Now diagonalize this as Ao
Q—IH _ SAS_l, u’ u” Ks
A=At 44~ ) )

and we obtain
(n-F) =098 (/1+8_1u_ + A_S_1u+) :
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Linear systems and fluxes

For non-smooth coefficients, it is a little more complex

Consider the problem u )\@ =0, z € [a,b).

ot ox

u
a b

Then we clearly have

b
%/ udr = —X(u(b,t) —u(a,t)) = f(a,t) — f(b,1),

b
%/ wdr = % (M —a)u™ + (b= M)u™) = A(u” —u").
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Linear systems and fluxes

Hence, by simple mass conservation, we achieve
~Au” —u")+(fT = f") =0

for a - z7,b— ™t

These are the Rankine-

ugoniot conditions

For the general system, these are

Vi: —\Qlu” —ut]+ [([Tu)” — (ITu)"] =0,

They must hold across each
wave and can be used to
connect across the interface u

Tuesday, August 18, 2009
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Linear systems and fluxes

So for the 3-wave problem we have
ANO™ (u* —u”) + [(ITu)* — (ITu)~| =0, Mook
([Tu)" — (ITu)™] =0, s
O (w —ut) + [(Tw)™ — (Tu)T] =0, o n

and the numerical flux is given as

(n-F)" = (Tu)” = (ITu)"™,

This approach is general and yields the exact
upwind fluxes -- but requires that the system
can be solved !
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Linear systems and fluxes -- an example

Consider

S S 4[] -

Following the general approach, we have

a (g —q )+ (Ulq)" — (IlIg)” =0,
—a*(q" —q") + (Illq)" — (IIq)" =0,

RN [ERN e
0 —at| |vt| =" | —atot |
Solving this yields Intermediate

a | :
wor = e (L)) T

with (g — i (Ag)* = i-

. 2a7at
qF —

at+a’
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Linear systems and fluxes -- an example

Consider Maxwell’s equations
e(x) 0 | 0 |E 01| 0 | FE _ 0
0 w)|ot|H| T 10|82 |H| T

The exact same approach leads to

1

=17y

(zmy+581). B =

— o ((ER + 501,

Now assume smooth materials:
H* = () + 5 [E] B = (B} + 5 [H]
We have recovered the LF flux!
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An example

Consider Maxwell’s equations

P L P .
ot oz "ot T T ox

On the DG form

dE} 1 1 R
o+ e DrHL = M [Ek(ﬂj)(ﬂ’? -4 )L;e
*x\ pk
Jkgk/\/l ]{ — H*)€"(2) dx,
with the flux
1
H —H* = Zt[H] - [E]),

E- —E* =

1 e
:2{{}f}} (3/ ngﬂ EE{H) J
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An example

MaxwellRHS1D.m
function [rhsE, rhsH] = MaxwellRHS1D(E,H,eps,mu)

% function [rhsE, rhsH] = MaxwellRHS1D(E,H,eps,mu)
% Purpose : Evaluate RHS flux in 1D Maxwell Impedance

Globals1D;

% Compute impedance
Zimp = sqrt(mu./eps);

% Define field differences at faces
dE = zeros(Nfp*Nfaces,K); dE(:) = E(vmapM)-E(vmapP) ;

dH = zeros(Nfp*Nfaces,K); dH(:) = H(vmapM)-H(vmapP) ; Compute inter'face

Zimpm = zeros(Nfp*Nfaces,K); Zimpm(:) = Zimp(vmapM);
Zimpp = zeros(Nfp*Nfaces,K); Zimpp(:) = Zimp(vmapP); g? impedance

Compute field jumps

Yimpm = zeros(Nfp*Nfaces,K); Yimpm(:) = 1./Zimpm(:);
1./Zimpp(:);

Boundary conditions
% Homogeneous boundary conditions, Ez=0
Ebc = -E(vmapB); dE (mapB) = E(vmapB) - Ebc; /
Hbc H(vmapB); dH (mapB) = H(vmapB) - Hbc;

% evaluate upwind fluxes Complete ﬂUXeS
fluxE = 1./(Zimpm + Zimpp) .*(nx.*Zimpp.*dH - dE);

fluxH = 1./(Yimpm + Yimpp) .*(nx.*Yimpp.*dE - dH);

% compute right hand sides of the PDE’s Complete ComPUtatlon
rhsE = (-rx.*(Dr*H) + LIFT*(Fscale.*fluxE))./eps;
rhsH = (-rx.*(Dr*E) + LIFT*(Fscale.*fluxH))./mu;

return

Yimpp = zeros(Nfp*Nfaces,K); Yimpp(:)
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An example

Test example is cavity problem

| Vacuum | Material
I I I

10’ . . 10’
10°} 10°|
-1
10 3 10—1
1072}
— = 1072
4107}
= 104 W 107
107} 107
1076} 107°
1077 : - 107° : -
10° 10’ 102 103 100 10’ 102 10°
K K
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Lets move on

At this point we have a good understanding of
stability for linear problems -- through the flux.

Lets now look at accuracy in more detail.

Recall

K
() ~ Qh — U Dk, U(Qj‘,t) = uh(xat) — @Ulfi(ﬂ?at),
k=1 k=1

we assume the local solution to be

Nyp Np
e DF = [of o] ufi(w,t) = 3 A (Ogn(a) = S ub (a0 (a).
n=1 1=1

modal basis nodal basis
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Local approximation

To simplify matters, introduce local affine mapping

1 +7r

: he, hF =af —af, re[-1,1]

reD¥: x(r)=af +

We have already introduced the Legendre polynomials
u(r) ~ up(r) = zp: Gy P 1 (1) = Zp:u(fri)&(r),

~

w=Vu, VL(r)=P(r), Vi; = Pj(r;).
and 7; are the Legendre Gauss Lobatto points:

It is robust -- but is it accurate ?
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A second look at approximation

We will need a little more notation

Regular energy norms

K
2 2
lullp, = [ w’da lullfn =D lullpe, llullpe = [ v’ dw.
0] D*
k=1

Sobolev norms

q K q

2 2

lullfg = > N5 ulbgn =D lullpe,, lulds, =D [u].,
la|=0 k=1 la|=0

Semi-norms

K
ulfyqn =D ulpe o Tulpe = 30 1l
k=1 al=q
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Approximation theory

Recall
K

K
0~ = U D¥ | u(x,t) >~ up(z,t) = @u'fl(az‘,t),

k=1 k=1

we assume the local solution to be
Np
v € DF = [af, af]  wp(w,t) =) Ak (tn(z) =) up(a), )l (z).
n=1 )

The question is in what sense is  w(z,t) ~ up(x, )

We have observed improved accuracy in two ways
¢ Increase K/decrease h
® Increase N

Tuesday, August 18, 2009



Approximation theory

Let us assume all elements have size h and consider

2 D1\Tr

v(r) =u(hr) =u(x); °

) 2

We consider expansions as

N
on(r) =Y 0nPu(r), Pu(r)= Pj%)a Tn = 2n2+ 1

Theorem 4.1. Assume that v € HP(l) and that v, represents a polynomial
projection of order N. Then

L@ i), S R

where

and 0 < q < p.
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Approximation theory

A sharper result can be obtained by using

Lemma 4.4. If v € HP(l), p > 1 then

/%

(N+1-—o0)!
‘2}“,07

(N +14 0 — 4q)!

09 — o2 5 <

where 0 = min(N + 1, p) and q < p.

Note that in the limit of N>>p we recover

[ — i@} o < N27PJy|,

A minor issues arises -- these results are based on
projections and we are using interpolations !
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Approximation theory

We consider , _
interpolation projection
" /

vn(r) = Y 05 Pa(r), Tn(r) = 5 Pu(r), v = )V,

n=0 n=0

Compare the two

00 N oe
(Vo)i = vn(ri) = Y 0nlu(ri) =) 0nlu(ri) + Y nPulr),
n=0 n=0 n=N-+1
Vo =Vv+ @nf)n(r),
n=N-+1
il = ~
vn(r) = p(r) + P~ (r)V Un P ()
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Approximation theory

Consider this term

o oo

P vt Y b= Y b (P (VTR

n=N-+1 n=N-+1

Caused by interpolation of high-

frequency unresolved modes

Aliasing

Caused by the grid
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Approximation theory

This has a some impact on the accuracy

Theorem 4.5. Assume that v € HP(l), p > %, and that vy represents a
polynomial interpolation of order N. Then

o= wp [ = BTl

where 0 < q < p.

To also account for the cell size we have

Theorem 4.7. Assume that u € Hp(Dk) and that up represents a piecewise
polynomial approximation of order N. Then

H’LL o uhHQ,q,h S Cha_q‘uLQ,a,h:

e = op s el o = s = bl
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Approximation theory

Combining everything, we have the general result

Theorem 4.8. Assume that w € HP(D®), p > 1/2, and that uj, represents a
piecewise polynomial interpolation of order N. Then

ho =4
NP—29—1/2

Hu i uhHQ,q,h S C ‘U|Q,a,h7

for 0 < q <o, and 0 = min(N + 1, p).

with h = maxy A"
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Lets summarize Part |

Fluxes:
For linear systems, we can derive exact upwind fluxes
using Rankine-Hugonoit conditions.

Accuracy:

Legendre polynomials are the right basis
Local accuracy depends on elementwise smoothness
Aliasing appears due to the grid but is under control
For smooth problems, we have a spectral method
Convergence can be recovered in two ways

Increase N

Decrease h

Convergence of the solution at all times ?
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Lecture 3

4

v
Part l;

v Convergence and error estimates
v Dispersive properties
v Discrete stability and how to overcome
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Lets recall convergence etc

We consider the system

ou ou
e +A% =0,

which we assume is wellposed in the sense

lu(?)|le < Cexplat)|lu(0)] o

The semi-discrete scheme is given as

duh
— + L = 0.
g T ntn

Inserting the exact solution u into the scheme yields

— + Lru =T (u(x,t)),
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Convergence and all that

Let us introduce the error
€(£B,t) — u(m,t) o uh(wat)a

What we really seek is convergence

Vie [0,T]: lim |e(t)|on—0.

dof — o0

This is often a little complicated to get to due to
the requirement for all t.

Let us get to it in a different way.
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Convergence and all that

Let us consider the error equation

d
pr + Lre =T (u(x,t)),

The solution is given as
e(t) —exp (—Lpt) e(0) = /o exp (Ln(s —1t)) 7T (u(s))ds,

Now consider

le()llen < lexp (=Lnt) e(0)|lon +

/0 exp (Ln(s — 1)) T (u(s)) ds

Q.1

/0 exp (Ln(s—1)) T (u(s)) ds

< / lexp (Ln(s—1)) [l nl T (w(s) |l on ds,
2.h 0
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Convergence and all that

So if we require consistency

{limdof—>oo HE( )HQ h —
limgof—oo || 7 (u(t))||0,n =

and stability

lim | exp(—Lpt) ||o.n < Crexplant), t >0,

dof — oo

we obtain convergence

Vi€ [0,T]: lim |e(t)||on— 0.

dof— o0

This is of course part of the celebrated Lax-Richtmyer
equivalence theorem
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Convergence and all that

Recall
eca ou ) ou 0
ot or
for which we proved stability as
1 d

Sl < ellunlp

This generalizes easily to systems when upwinding
is used on the characteristic variables.

Combining this with the accuracy analysis yields

hN
Np—5/2

Ju — unllon < ul2.p,hs

but we observed
[u(T) — up(T)||2,n < KVTHCL +TC).
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Error estimates

To get closer to the observed behavior, we need to be
a little more careful.

Define B(u, ) = (us, d) o + alug,v)o =0

1d
we have By, u)=0= = —|jul%;

2dt

For two different solutions we have

2(t) = uy (£) — us(t)

el =0, mEP Dlo = u(©) - ux(0)lo
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Error estimates

We will now mimic this for the semi-discrete problem

Br(un, on) = ((un)t, o) 2,n +al(un)z, on)o,n— (1 (aun — (au)*), én)oo,n = 0,

Let us use a central flux
(au)” = {{au}},

to obtain
Brun, é1) = (wn)er 01) 2+ al(un)es 1)z — 5 (lawn], D)oo = 0.
Observe
Br(u,¢p) =0, == By(e,dp) =0, c=u—u,.
Using

&5l
G Cn) = §%H5h||%,h°
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Error estimates

Now consider

1d

> dtHsNHQ n = Bn(Pnu —u,ep),

one proves (with some work)

B~ P, en)] < 5 (Haakh, Haaloo n + (e, n)oe)

< C|a|h2" Hull,noa1s

d _
== —[lenllan < Clalh® lullgnot;

== [len(D)]| < (C1 + CoT)R Y2,
Better -- but not quite there

Tuesday, August 18, 2009



Error estimates

The observe full order

|u(T) = un(T) | @n < B HH(C1 +TCo).

is in fact a special case !

It only works when

v/ When full upwinding on all characteristic variables
are used

V' Proof is only valid for the linear case
V' Proof relies on ID superconvergence results

In spite of this, optimal convergence is
observed in many problems - why ?
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Why often optimal anyway ?

Assume stability

lim H exp (—,Cht) HQ,h < (Y}, eXp(()zht), t >0,

dof — o0
@h(s — 1)) 7T (u(s)) ds .
\

Recall

le(®)l2,n

Error
Error in |.C. accumulation
&G
lu — unl|2qn <C ul2,0,h; o = min(N + 1,p).

NP—29—1/2
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Dispersive properties

Consider again
@ + a@ =0
ot ox
u(x,0) = exp(ilx),

= u(x,t) = exp(i(lex — wt)),

The scheme is given as

—/\/lduh aSub = ex [(auf) — (auf)],, — o [(auf) — (auf)"] .,

1l — «

(au)” = {{auj} + |al [u].

Look for solutions of the form

uk (2% t) = UY expli(lz® — wt)],
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Dispersive properties

We recover

28 — aen (eny —exp(iL(N +1))e}))
+ (2—a)eg (ey —exp(—iL(N +1))ey)] Ui =iQMUYF.

Where Lo b, wh
N +1 ANN+1 a

S — DoF length
p—h/(N+1) = DoF per wavelengt

So for a fixed L we solve the eigenvalue problem

..and the eigenvalue will tell us how the
wave propagates
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Dispersive properties

Upwind fluxes

5 , , , , , , , , , 0
45 -
_ ~1}
Al N=6 |
3.5} ] —2f
. 3l -1 Al
< 25} — 15
G 2_ ’¢’ i _4'
1.5} N=1 . -5F
N _
0.5} 6
00 07 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Lin Lin
C | fl ‘
entra uxes

N=2

0 0.2 0.4 0.6 0.8 1
L/m
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Dispersive properties

There are some analytic results available (upwind)

(R(Z’h) — R(lh)( ~ % [ (QNNJi 1>!] 2 (IR)2N+3,

~‘1 N!
2

"2 |eN+ 1)!] (1= ) e

The dispersive accuracy is excellent! )
exp(ilh) — exp(ilh)
exp(ilh)

PN =

Y

Define the relative phase error

(2N +1 < lh— C(Ih)'/3, no convergence
PN =2 4 lh—o(lh)1/3 <2N+1< lh—l—o(lh)1/3, (’)(N_l/?’) convergence
| 2N + 1> A, O(hl/ (2N + 1))*N T2 convergence

h )
Convergence for 2~ —=2mp % o =

N +1
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Discrete stability

So far we have not done anything to discretize time.

ou ou duy,
at CL% 0 = W—l—ﬁhu,h—o

We shall consider the use of ERK methods

Tuesday, August 18, 2009

k(l) —Eh (u ,tn ,

1 1
k2 =, (u + 2Atk(1) £+ 2At)

2
kY =, (uh + Atk(3>,t” + At) ,

1 1
LG = <u + = Atk<2> "+ At)

1
it =+ At (K0 + 26 4 260 4 k),

6



Discrete stability

and also a Low Storage form
p” = u",

| JED = a4+ ALy, (pUD 10 + ¢ At)
ve L8]0 ) L ()
o, —Pp + bzk )

uz+1 _ p(5).
4 r T T ; ;
Consider 3l Unstable |
| "LSERK ERK |
us = A\u, Real(A) <0, _ 1 -

Stable Stable

The stability region

ot

defines the timestep 3}

that gives stability. I B S R
ReAt
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Discrete stability

Consider
2a
Lhn="MTS—¢g],
h
We have K2 5  h? >
— | Lulli = — sup |[|[Lhusl|
4a? T 40 1 !
< |D,|[f + IMTYEIF +2 sup (Drup, M~ Eup),

|un =1

< CiN*+ CyN? + C3N3 < CN*%,

So we should expect

a
L[:}L“[)k f; (:7;52;]\[2

Which would indicate At < C L
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Discrete stability

The structure also matters

250 250 250
a=10 ) a=0.5 o =0.0

125 125 125
- : > . > Y
< < <
g 0 | | £ o | | € |
E | | E )| E © .
-125 -125 -125

-250 -250 -250

-160 -120 -80 -40 0 20 -160 -120 -80 -40 0 20 -160 -120 -80 -40 0 20

Re(A,) Re(A,) Re(A,)
10°

The estimate

>
A
A

>

is sharp !

101 102 103
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Discrete stability

General guidelines

hkz

1
a )1

ou ou 1 . RF
ar TAG =0 = A O ey (A

There are tricks to play to improve on this
Mappings to improve the scaling
Covolume filtering techniques
Local time-stepping

See text for a discussion of other methods
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Local time-stepping

Problem: Small cells, even just one, cause a very small
global time-step in an explicit scheme.

N2
I At < C\/euAx ~ 01«/€,LLT

A significant problem for large scale complex applications

Old idea: take only time-steps required by local restrictions.

Old problems: accuracy and stability

Tuesday, August 18, 2009



Local time-stepping

Substantial recent work by
Cohen, Grote, Lanteri, Piperno, Gassner, Munz etc

Most of the recent work is based on LF-like schemes,
restricted to 2nd order in time.

Layout for multi-rate local time-stepping

tn+1 tn+1
tn+-3/4

tn+—1/2

tn+—1/4

t t

At 2 At 4 At
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Local time-stepping

Recall the ERK scheme

- el T e e
- = - L ] S
- " il T, e T
- - -
- Y o Sy o S,
F 5 i' b - .
. Fe L ] o~ L)
& L r a P e
‘i_'ii. ii' ii

We consider a multi-step scheme

AB At LSERK At

o8l |——aAm o
—— AB3 P
06} aBt| \
At 04f f,f’/ I"7
u ., =u,+ ) [23F (u,)-16F(u, )+5F(u,_, )] ol /

. |

02} "-‘I‘

04t I‘\\\ \\

06+ . rﬂ

o8t \h""k-‘_,_,-"" ™
15 1 05 0 05
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Local time-stepping

Challenge: Achieving this at high-order accuracy

tn+ 1 tn+ 1

t1n

t, @ -_— t

t1n

tn' 1 tn— 1
tn-2

, , At
For all interior cells «..=u, +E[23F(un)—16F(un_1)+5F(un_z)]

. At
At interface cells U,y = U, +E[17F (u,)=TF (u, )+ 2F(u,.,)]

This generalizes to many levels and arbitrary time-step fractions
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Local time-stepping

4.0

w
(<)

Normalized Execution Time
n
o

—
o

0.0
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Local Time-Stepping Levels

Four Time-Level Local Time-Stepping

Bistatic RCS for Ogive (nose-on)

-40

RCS (dB)

— 2levels, 2At

1level, At

3 levels, 4At
4 levels, 8At

0 90
One time level:

- N, = 23742

Two time levels:

- N_ = 151 (<1
= 23591 (99

%
%

I
2
|

)

Three time levels:

- N, = 151 (<1%)
- N, = 1959 (8%)
- N, = 21632 (91%)

Four time levels:

- N, = 151 (<1%)
- N, = 1959 (8%)
- N, = 12622 (53%)
- N, = 9010 (38%)

180 270 360
Azimuth (deg)

Computations by
HyperComp Inc



Local time-stepping

Segmentation is done in preprocessing

Level distribution 3D cavity

250
200
150
100
50
0

Level distribution airplane

Elements

35000
30000
25000
20000+

. 15000+
|deally suited for local DG scheme 10000-

5000+
0

2
c
@
£
3
11}

1 2 3 4 65 6 7 8 9
Known problems:

No known stability proof
Time-step is not optimal (about 80%)
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Local time-stepping

The potential speed up is considerable -- and the
more complex the better !

Example Simulation time with
Adams-Bashford Adams-Bashford LSERK
(global time step) (local time step) (global time step)
Resonator 100% 45%
3dB-Coupler | 100% 45%
Airplane 100% 45%

Computations by Nico Godel, Hamburg
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A brief summary

We now have a good understanding all key aspects of
the DG-FEM scheme for linear first order problems

* We understand both accuracy and stability and what
we can expect.
* The dispersive properties are excellent.
* The discrete stability is a little less encouraging.
A scaling like

At < C-L

alN?
is the Achilles Heel -- but there are ways!

... but what about nonlinear problems ?
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