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Today!

» Presentation and practical details
» Introduction to DG-FEM methods

» Getting setup for hands-on exercises
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Course content

This course is organized by
Ass. Prof. Allan Peter Engsig-Karup
Building 321, r. 016
DTU Informatics, Scientific Computing Section, DTU,
Denmark.
Prof. Jan Hesthaven
Building 321, r. 010
Division of Applied Mathematics, Brown University, USA.

The course is sponsored by two PhD schools at Technical
University of Denmark

DTU Informatics Graduate School ITMAN

The Danish Center for Applied Mathematics and Mechanics,
DCAMM
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Course content

The following topics are covered in the course
Introduction & DG-FEM in one spatial dimension
Implementation and numerical aspects (1D)
Insight through theory
Nonlinear problems
Extensions to two spatial dimensions
Introduction to mesh generation
Higher-order operators

Problem with three spatial dimensions and other advanced
topics
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Course structure

Week 1:
Time Monday [ Thuesday [ Wednesday [ Thursday [ Friday
08.30-09.00 Breakfast
09.00-11.30 1 2 3 4 Project work
12.30-16.00 | Hands-on | Hands-on Hands-on Hands-on | Project work
Week 2:
Time Monday [ Thuesday [ Wednesday [ Thursday [ Friday
08.30-09.00 Breakfast
09.00-11.30 5 5+6 7 8 Project work
12.30-16.00 | Hands-on | Hands-on Hands-on Hands-on | Project work

Lectures: approx. 2.5 h/day, including 15 mins review + 15
mins break.

Hand-on exercises: approx. 3.5 h/day.




Learning objectives

A student who has met the objectives of the course will be able to:
Apply the basic ideas underlying discontinuous Galerkin
methods.
Apply the building blocks of DG-FEM methods for the
simulation of phenomena descibed by partial differential
equations.
Identify and exploit the properties and structure of the
underlying problem.
Be able to complete basic analysis to formulate a suitable
scheme for a new problem.
Implement such methods and extensions in Matlab using the
provided Matlab based toolbox.
Skillfully perform numerical experiments.
Analyse and explain the observed behavior of the methods
based on a basic theoretical insight.
Apply important principles underlying the use of modern

numerical methods in selected applications.
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Coursework and assessment

This 2-week course has approx. 70 scheduled hours
Breakfast and coffee/tee (0.5 hours/day)
Lectures (approx. 2 hours/day)
Discussions (as needed)
Hands-on computer exercises (approx. 4 hours/day)
Lunch (1 hours/day)

To pass the course and get a diploma the requirements are
Completing a written report for assessment of work

Satisfactory completion of assignment problems
(approx. 40 hours)

The assignment is divided in two parts
Each part will be available friday morning of each week

Initiate your work on the assignments



Practical details

Background

What is your background?

Why are you here?
Access to the databar terminals, software and Internet
Access to Matlab codes, http://www.nudg.org
Access to hands-on exercises/slides/ect.,
http://www2.imm.dtu.dk/~apek/DGFEMCourse2009/
Course material:

Nodal Discontinuous Galerkin Methods - Algorithms, Analysis,
and Applications
By J. S. Hesthaven & T. Warburton (2008), Springer.

General information
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http://www.nudg.org
http://www2.imm.dtu.dk/~apek/DGFEMCourse2009/

Course work

The work in the course should be carried out in teams

Two persons per team

Hands-on exercises and assignment work is made by the team
Everyone is encouraged to take the opportunity to

Interact!

Get to know each other!

Discuss the work!

Share experiences!
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Introduction

- djscussion of numerical
schemes and properties
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Our goals

For the application of numerical methods we want

» accuracy at minimal effort

v

flexibility to solve classes of problems with same code

v

easy problem prototyping and code maintenance
(avoid adhoc solutions)

v

ensure that numerical results can be thrusted (validation)
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Numerical solution of PDEs

To construct a numerical method for solving PDEs we need to
consider

How to represent the solution u(x, t) by an approximate
solution wup(x,t)?

In which sense will the approximate solution up(x, t) satisfy
the PDE?

The two choices separate and define the properties of different
numerical methods...
Bottom line is that we need ways to

Generate a (coupled) system of equations from the well-posed
PDE and incorporate boundary conditions

Solve the system and equations while minimizing
unavoidalable errors that are introduced in the process
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Conservation laws
Conservation laws appear in many brances of computational
science and engineering and are typically derived from physical
conservation principles, e.g. conservation of energy, momentum
and mass.

A general nonlinear conservation law (3D) can be stated in
differential form as

Oru+V - F(u) = S(u)

or
et + OxF(u) + 8, G(u) + 8, H(u) = S(u)
where
up f 81 h s1
up f 8 ha $2
u= : , F(u) = : , G(u) = : , H(u) = : , S(u) =
Um fm g.m hm Sm

u(x, t) is a vector of conserved variables and F, G, H are flux

vectors. S is a source vector. 13 /41



Conservation laws

Examples of conservation laws
Euler equations of compressible gas dynamics (1D)

e+ ap” =0 (Mass)
aap” + Lpu +p) =0 (Momentum)
o(E
%’f + ( atp ) =0 (Energy)
p=(y—1)(E-3pu?),c= % (Ideal gas low)

Nonlinear shallow water equations (1D)

oh oh
%t 9 =0 (Mass)

a(hu?+ 5 gh?)

Ohu
+ Ox

S =0 (Momentum)

and many many more...
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Conservation laws

For now, we restrict ourselves to consider the one-dimensional
scalar conservation law

@ng— x €Q
ot " ox &

where f(u) is the flux function, g(x, t) is a source function.

Let's discuss basic ideas, advantages and disadvantages of different
classical numerical methods for solving this PDE...
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Finite Difference Method

Domain is represented by a set of collocation points
Solution is represented locally as a polynomial

2

2
x € LXK u(x, 1) = ai(t)(x — XK, Fu(x 1) =) bi()(x — xF)

i=0 i=0
PDE is satisfied in a point-wise manner

duh(Xk7 t) + fh(Xk+17 t) — fh(Xk_l’ t)

k
gk, ) =0
dt Bk + pk—1 g 1)

Rh(xk) =

Local smoothness requirement pose a problem for resolving
complex geometries, internal discontinuities and overall grid
structure.
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Finite Difference Method

Main benefits
Simple to understand
Straightforward implementation on structured meshes
High-order acurate approximations feasible
Method is local and can be made explicit in time
Simple techniques for local adaptivity (upwinding)

Extensive body of theoretical and practical work on these
methods since 1960’s

Main problems

Implementation complexity increases if geometric flexibility is
needed

Less well-suited for problems with discontinuities

Grid smoothness requirements
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Finite Volume Method

Domain is represented by non-overlapping cells
Solution is represented locally as a cell average

1/
k== / ukdx*
hk Qk

PDE is satisfied on conservation form

hk d; F(xRL2 ) f(xK12 1) = HRgk

The flux function needs to be reconstructed on cell interfaces
k12

f(xk71/27 t) _ ,_—(ukfl7 Elk), f‘(xk+1/27 t) _ F(Dk, uk+1)
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Finite Volume Method

Main benefits
Robust
Support resolution of complex geometries
Well-suited for hyperbolic conservation laws (local upwinding)
Method is local and can be made explicit in time
Method is locally conservative (due to telescopic property)
Extensive theoretical framework since 1970's

Main problems

Inability to achieve high-order accuracy in a staightforward
way on general grids due to requirement for extended stencils
(flux reconstruction problem)

Grid smoothness requirements
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Finite Element Method

<

Domain is represented by non-overlapping elements
Solution is represented globally using piecewise polynomials
K .
up(x) = D ulxe, )N(x),  N'(x) = &

k=1

PDE is satisfied in a global manner

' Ou,  Ofy > : . duy,
—_—+ — = N (x)dx = 0, =1,..K =>M—+4+S8Sf =M
/Qh<8t+6x &h (x)dx J dt+ h &h

The semi-discrete scheme is implicit by construction and
reduces overall efficiency
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Finite Element Method

Main benefits
Robust
High-order accuracy can be combined with complex
geometries
Well-suited for elliptic problems (global statement)
Extensive theoretical framework since 1970’s
Main problems
Not well-suited for problems with direction (global statement)

Implicit in time reduces overall efficiency
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Properties of numerical methods

Numerical methods for solving PDEs can in general be
characterized by the properties

Accuracy
Can we reduce the error? and how fast?

Flexbility
What is the range of problems that can be solved using the
chosen method?

Robustness
Can we always expect a solution from our numerical model?

Efficiency
How long does it take to compute our solution?

Note: Very often it is difficult to achieve all properties at once!

= Thus, we need to prioritize!

Choice is often dictacted by domain complexity and required
levels of accuracy.
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General properties of the numerical methods

Assesment of general properties of some classical numerical

methods
Complex High-order accuracy Explicit semi- Conservation Elliptic
geometries and hp-adaptivity discrete form laws problems
FDM X v v v v
FVM v X v v v)
FEM v v X v) v
DG-FEM v v v v )

We want a scheme which have the properties
The local high-order elements of FEM.
The geometric flexbility of FEM and FVM.
The local statement of the FVM.

These are exactly the components of the

Discontinuous Galerkin Method Finite Element Method
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A first look at DGFEM



Formulating a DG-FEM scheme

By subdividing the domain Q2 € [L, R] similar to FVM/FEM into a
union of non-overlapping elements D¥

K
Q=~Q, =[] D"
k=1

Dkfl Dk Dk+1
- + + x
L:x,1 xf_lzx,k xf:x,kJrl K =R
A —-
pktl

we have the basis for geometric flexibility (any type of grid).
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Formulating a DG-FEM scheme

We seek to represent the global solution using local high-order
polynomial approximations similar to FEM

K
u(x,t) = up(x, t) = EB uf(x, t),

N, ! Np
uf(x, £) = > i (E)ei(x) = Y uf(xf, £)li(x)
j=1 j=1

using either a modal or nodal form.
This is the basis for high-order accurate approximations.

Note: both low and high-order approximations then an option in
the scheme.
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Formulating a DG-FEM scheme

We want to find an approximation uy to the solution u of the
general scalar conservation law

Oru + Oxf(u) = g(x,t), x€Q
To do this, we form the local residual on the kK =1, .., K elements
x € DX i RE(x,t) = Oruf + OxfF — gf

and require this to vanish locally in a Galerkin sense
RE(x, t)IK(x)dx =0
Dk

This is the basis for a nodal DG-FEM scheme.

However, we are not done yet... all elements are disconnected due
to the local statement on the residual.
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Formulating a DG-FEM scheme

To connect elements, we apply Gauss's Theorem

RE(x, t)IK(x)dx = / [8tuh/k + Ocuplf — g,f/jk] dx =0
Dk Dk

to convert the term with a spatial derivative such that

/ [(%u,’; — ufoulf — gf Ijk] dx = —% A fiXlFdx
Dk oDk

where the boundary integral in 1D takes the form

j'{ el = | fi /k] — A (E)on,s — ()
oDk

The solution is not unique at interfaces between adjacent elements.

Dk+1

>—C>W«

We have multiple solutions! How can we address this problem?
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Formulating a DG-FEM scheme

Similar to FVM, we could introduce a numerical flux f* which
approximate the physical flux, i.e.

A

1

h-fk

to address the lack of solution uniqueness at the interfaces. We
require that the numerical flux is somehow defined in terms of
interior (-) and exterior (+) interface states

f* =f"(u,, u;r)

— - k+1,+
pDk—1 uf 1+ u Dk+1

k k,—
D url’
1

Clearly, the choice of the numerical flux must be important!
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Formulating a DG-FEM scheme

So, after having applied Gauss's Theorem we found

/ [atu,’;/jk — ufd, Ik — g /k] dx = —f A K dx
Dk Dk

With the introduction of a numerical flux *, the local scheme in
the weak form then becomes

K 1k k K 1k _ N gk
/Dk[atu,,/j uf oLl gh”dx__épkn.f/jdx
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Formulating a DG-FEM scheme

From the weak form

/ [0tk — ukott — ghtf] o = - 7{ B Flkdx
Dk ODk

we can generate a local linear system by inserting the polynomial

approximation u,’j arriving at the compact scheme

duk . .
ME—E = (S5)THy = Mgy = =70 + £,
where §;; is Kronecker's delta and the element mass and stiffness!
matrices have been introduced. These are defined from

dik

M= [ Gortase si= [ 05, ax

Yn classical finite element terminology, the discrete operator approximating
the first derivative is called a convection/advection matrix.
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Formulating a DG-FEM scheme

It is also possible to derive yet another scheme from the weak form

/ [atuﬁ/jk — upOlf — g,i‘/ﬂ dx = —f hF* 1 dx
Dk 9Dk

by applying Gauss's Theorem once more
/ [t + bl — gh1F] o = 7{ b (F5— ) lkdx
Dk oDk

This is the so-called strong form.

From this we can generate a local linear system of the form

We now have two basic DG-FEM schemes. How will they perform?
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The first examples...
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Examples: error behavior

Consider the simple advection equation on a periodic domain

Oru — 2w0xu = 0,

x € [0,2n],

u(x,0) = sin(/x),

Exact solution is then u(x, t) = sin(/(x — 27t))).

Errors at final time T = .

/_271'

N\ K 2 4 8 16 32 64 Convergence rate
1 - 4.0E-01 9.1E-02 2.3E-02 5.7E-03 1.4E-03 2.0

2 2.0E-01 4.3E-02 6.3E-03 8.0E-04 1.0E-04 1.3E-05 3.0

4 3.3E-03 3.1E-04  9.9E-06 3.2E-07 1.0E-08 3.3E-10 5.0

8 2.1E-07 2.5E-09 4.8E-12 2.2E-13 5.0E-13 6.6E-13 =~ 9.0

Error is seen to behave as

lu — up|lg,n < CAVHY

Clearly, paths to convergence are based on adjusting the size of

elements (h-convergence), the polynomial order (p-convergence) or

combinations hereoff.
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Examples: error behavior

Consider the linear shallow water equations in one horizontal
dimension on a periodic domain

sl sl

Tests of h— and p-refinement

107

Error

10" —e—h-version (P=2)
—s—h-version (P=4)
—e—h-version (P=6)

0| [—=—h-version (P=1)
10 | ——p-version (K=20)
10! 10° 10° 0 50 100 150 200 250 300 350
Number of degrees of freedom Number of degrees of freedom

Again, the error behaves as

llu— uplla,n < ChNHL
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Example - High-order makes the difference

50

—e—h-version (P=2)
—— p-version (K=20)
40| —— p-version (K=10)

w
o

CPU time
N
=)

l @%@i@

0 Y . .
0 50 100 150 200 250
Integration time [wave periods]

Figure: Optimized CPU-time vs. integration time for a fixed relative error
in amplitude of 5%.

Conclusion: a significant improvement in performance can be
achieved using high-order elements over long times of
integration.
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Numerical solution of PDEs

Important reasons for the interest in DG-FEM methods are
Need for numerical methods of high accuracy in space and
time
Support for locally adaptive numerical solutions

hp-adaptivity, meshes can be both non-conforming and
unstructured.

General and very flexible framework for solving large classes of
PDEs

Conceptually no difference between 1-D, 2-D or N-D
The method is local (to the elements)

Note: For a high-order accurate method demand asymptotic
behavior O(hP) of truncation error for h — 0 for p > 2.
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A brief history

DG-FEM was first proposed by Reed & Hill in 1973 for a
neutron transport equation

ou+V-(au)="f

First analysis by Lesaint & Raviart (1974) showing in general
O(h") and optimal O(hN*1) for special meshes.

Sharp analysis by Johnson (1986) showed O(hN+1/2) for
general meshes

However, the schemes did not enjoy much use until further
developments...
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A brief history

Extension from scalar conservation laws to systems
1980s-late 1990s, Cockburn/Shu

Development of limiters and RKDG for problems with
discontinuities
Late 1980s, Shu/Cockburn

Nodes, modes and large codes
from 1995, Warburton/Karniadakis

Maxwell’s eqations, MHD, water waves, elasticity, etc.
- last decade has seen an explosion in development and
applications

Higher order problems

Interior-Penalty (IP), Arnold (1982)
Bassi-Rebay (BR), Bassi & Rebay (1997)
Local Discontinuous Galerkin (LDG), Cockburn & Shu (1998)
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A brief history

The last decade has seen an explosion in activities
Hamilton-Jacobi equations
Non-coercive problems and spectral accuracy
Adaptive solution techniques
Improved solvers
Advanced time-integration methods
Large-scale production codes

etc.
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Brief summary

We have established basic understanding of DG-FEM
How to formulate DG-FEM schemes
Local expansions to achieve a high-order accurate basis
Geometric flexibility in the spirit of FEM/FVM
Explicit scheme and 'problem control’ in the spirit of FVM

However, many questions remains
How do we choose the numerical flux?
Is the scheme stable?
How does the idea generalize to multi-dimensions?
What is the price?
etc...

41 /41



