Comparing Structural Brain Connectivity by the Infinite Relational Model

Karen S. Ambrosen, Tue Herlau, Tim Dyrby, Mikkel N. Schmidt, Morten Mørup

AbstractThe growing focus in neuroimaging on analyzing brain connectivity calls for powerful and reliable statistical modeling tools. We examine the Infinite Relational Model (IRM) as a tool to identify and compare structure in brain connectivity graphs by contrasting its performance on graphs from the same subject versus graphs from different subjects. The inferred structure is most consistent between graphs from the same subject, however, the model is able to predict links in graphs from different subjects on par with results within a subject. The framework proposed can be used as a statistical modeling tool for the identification of structure and quantification of similarity in graphs of brain connectivity in general.
TypeConference paper [With referee]
ConferencePattern Recognition in Neuroimaging (PRNI), 2013 International Workshop on
Year2013    pp. 50-53
BibTeX data [bibtex]
IMM Group(s)Intelligent Signal Processing

Back  ::  IMM Publications