A new ANEW: Evaluation of a word list for sentiment analysis in microblogs

Finn Årup Nielsen

AbstractSentiment analysis of microblogs such as Twitter has recently gained a fair amount of attention. One of the simplest sentiment analysis approaches compares the words of a posting against a labeled word list, where each word has been scored for valence, -- a "sentiment lexicon" or "affective word lists". There exist several affective word lists, e.g., ANEW (Affective Norms for English Words) developed before the advent of microblogging and sentiment analysis. I wanted to examine how well ANEW and other word lists performs for the detection of sentiment strength in microblog posts in comparison with a new word list specifically constructed for microblogs. I used manually labeled postings from Twitter scored for sentiment. Using a simple word matching I show that the new word list may perform better than ANEW, though not as good as the more elaborate approach found in SentiStrength.
Keywordssentiment analysis, Twitter, ANEW
TypeConference paper [With referee]
ConferenceMaking Sense of Microposts Workshop (MSM 2011)
Year2011    Month March
PublisherInformatics and Mathematical Modelling, Technical University of Denmark
AddressRichard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby
Electronic version(s)[pdf]
BibTeX data [bibtex]
IMM Group(s)Intelligent Signal Processing

Back  ::  IMM Publications