On the relevance of spectral features for instrument classification

Andreas Brinch Nielsen, Sigurdur Sigurdsson, Lars Kai Hansen, Jerónimo Arenas-García

AbstractAutomatic knowledge extraction from music signals is a key
component for most music organization and music information
retrieval systems. In this paper, we consider the problem
of instrument modelling and instrument classification from
the rough audio data. Existing systems for automatic instrument
classification operate normally on a relatively large
number of features, from which those related to the spectrum
of the audio signal are particularly relevant. In this
paper, we confront two different models about the spectral
characterization of musical instruments. The first assumes
a constant envelope of the spectrum (i.e., independent from
the pitch), whereas the second assumes a constant relation
among the amplitude of the harmonics. The first model is related
to the Mel Frequency Cepstrum Coefficients (MFCCs),
while the second leads to what we will refer to as Harmonic
Representation (HR). Experiments on a large database of real
instrument recordings show that the first model offers a more
satisfactory characterization, and therefore MFCCs should be
preferred to HR for instrument modelling/classification.
Keywordsmusical instrument modelling, harmonics structure, feature extraction
TypeConference paper [With referee]
ConferenceIEEE International Conference on Acoustics, Speech, and Signal Processing
Year2007    Month April
PublisherHonolulu, Hawaii
Electronic version(s)[pdf]
BibTeX data [bibtex]
IMM Group(s)Intelligent Signal Processing

Back  ::  IMM Publications