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LAW ENFORCEMENT

Discovering,
deterring
frustrating,
rehabilitating,
punishing

people who violate the law

Ref: wikipedia



Predictive Policing is the usage of predictive
and analytical techniques in law enforcement
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https://issuu.com/rutgerrienks/docs/predictive_policing_rienks uk

Rutger Rienks, Predictive Policing: Taking a Chance for a Safer Future, 2015.



Brief history

Allan Touring: theory of computation

Claude Shannon: A Mathematical Theory of
Communication

Norbert Wiener: Cybernetics - Control and
Communication in the Animal and the Machine

The Touring test

Marvin Minsky’s analog neural networks (15t
revolution)

Dartmouth conference: Artificial intelligence with
aim of human like intelligence

Many small scale “toy” projects in robotics,
control and game solving

Failure of success and Minsky'’s criticism of
perceptron, lack of computational power, combinatorial
explosion, Moravec’s paradox: simple tasks are not
easy to solve




Expert systems useful in restricted domains

Knowledge based systems — integration of diverse
Information sources

The 2"9 neural network revolution starts

Robotics and the role of embodiment to achieve

Intelligence

Al and cybernetics research under new names such as
machine learning, computational intelligence, evolutionary
computing, neural networks, Bayesian networks, complex systems,
game theory, deep neural networks (3" generation) cognitive
systems

deep neural networks (4@ generation) and cognitive
systems, large scale data and computational frameworks, ML is
commoditized

http://en.wikipedia.org/wiki/Timeline_of_artificial _intelligence

http://en.wikipedia.org/wiki/History of artificial_intelligence



A copy of the
physical world
through digitization
makes it possible for
cyber-physical
systems to
communicate and
cooperate with each
other and with
humans in real time
and perform
decentralized
decision-making

https://en.wikipedia.org/wiki/Industry_4.0

B. Marr: Forbes, June 20, 2016, http://www.forbes.com/sites/bernardmarr/2016/06/20/what-everyone-must-know-about-industry-4-
0/#4c979f804e3b

http://www.enterrasolutions.com/2015/10/industry-4-0-facing-the-coming-revolution.html



It is a cognitive revolution that
could be even more disruptive
than earlier as it concerns not
only the industry but the whole
way we live our lives.
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signal processing — processing of data

= machine Iearning — ubiquitous learning from data

e cognltlve systems — making data relevant and
- understandable for people — and making people

= understand of the world

Modeling interaction and fusion of sensor
= signals (audio), related information, and
= Information from humans




research focus

CoSound

Processing of audio data and related information, such as
context, users’ states, interaction, intention, and goals with
the purpose of providing innovative services related to
relevant societal challenges in

Transforming big audio data into semantically
Interoperable data assets and knowledge: enrichment
and navigation in large sound archives such as broadcast

Experience economy and edutainment: new music
services based on mood, optimization of sound systems

Healthcare: Music interventions to improve quality of life in
relation to disorders such as e.g. stress, pain, and ADHD

User-driven optimization of hearing aids



research focus
MakeSense

Processing of sensor signals and related data streams with
the purpose of fostering innovative systems addressing
societal challenges in

Food: Grain analysis
Security: Explosives and drug detection

Health: blood and water analysis, intelligent drug delivery
and sensing, e-health

Energy: wind mill maintenance

Environment: exhaust gas analysis, large diesel engine
monitoring

Resource efficiency: waste sorting

Digital economy: event recommendation



What i1s machine learning?

Learning structures and patterns 1. Computer systems that

f f histori | data t liabl automatically improve through
orm_ rom nistorica ata 1o reliably experience, or learns from data.
predlCt outcome for new data. 2. Inferential process that operate

from representations that
encode probabilistic
dependencies among data

Computers only do what they are _ variables capturing the
) likelihoods of relevant states in
programmed to do. ML infers new the world.
relations and patterns, which were 3. Development of fundamental
statistical computational-
not programmed. They Iearn and information-theoretic laws that

adapt to changing environment. govern learning systems -
including computers, humans,

and other entities.

M. I. Jordan and T. M. Mitchell. Machine learning: Trends, perspectives, and prospects. Science, July 2015.

Samuel J. Gershman, Eric J. Horvitz, Joshua B. Tenenbaum. Computational rationality: A converging paradigm for intelligence in brains,
minds, and machines. Science, July 2015.



Learning from data: human and machine
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Mathematical model
z=(x-y)*10™(floor(log1l0(x+y))+floor(logl0(x)+logl0O(y))+2)
+(X+y)*10™(floor(log10(x)+logl1l0(y))+1)

+(X*y), If x>y, and x>0, and y=0

Human assumptions and interpretation/description are maybe
very different



Learning from data: human and machine

Z
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How do we handle values outside observations: what happens if
values are negative?

Does the machine have the right flexibility and capacity?
What is human prior knowledge?
How does context provide additional constraints?

Can we learn anything from very limited data?



Deep Learning:
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Machine learning is very successful: playing GO

Policy network Value network e " .
*0: Google DeepMind 65 AlphaGo

Challenge Match

& - 15 March 201&
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Deep neural ‘value networks’

evaluate board positions and other R\ Y,
‘policy networks’ select moves. 3

Networks are trained by a novel
combination of supervised learning
from human expert games, and
reinforcement learning from games
of self-play.

Silver, David; Huang, Aja; Maddison, Chris J.; Guez, Arthur; Sifre, Laurent; Driessche, George van den; Schrittwieser, Julian; Antonoglou, loannis; Panneershelvam,
Veda. Mastering the game of Go with deep neural networks and tree search. Nature 529(7587): 484—-489, 2016



Machine learning is very successful: computer vision

bjt'ct recognition (1k ImageNet)

shallow model

nced

2012 - 2015

orange 0.73

isopod 0.56 -

bird 0.78

lemon 0.86 —+

M. 1. Jordan and T. M. Mitchell. Machine learning: Trends, perspectives, and prospects. Science, July 2015.



Machine learning is very successful: speech recognition
and chat bots

ofqmnuanammspaxhnungw&m.
CD-DNN-HMM invented, 2010
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Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent
Vanhoucke, Patrick Nguyen, Tara Sainath, and Brian Kingsbury. Deep Neural Networks for Acoustic Modeling in Speech
Recognition. IEEE Signal Processing Magazine, 82, Nov. 2012.

George Saon, Gakuto Kurata, Tom Sercu, Kartik Audhkhasi, Samuel Thomas, Dimitrios Dimitriadis, Xiaodong Cui,
Bhuvana Ramabhadran, Michael Picheny, Lynn-Li Lim, Bergul Roomi, Phil Hall. English Conversational Telephone Speech
Recognition by Humans and Machines, https://arxiv.org/abs/1703.02136, March 2017

W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, G. Zweig. Achieving Human Parity in
Conversational Speech Recognition, https://arxiv.org/abs/1610.05256, October 2016.



Private traits and attributes are predictable
from digital records of human behavior

Facebook Likes, can be used to automatically and
accurately predict a range of highly sensitive
personal attributes including: sexual orientation,
ethnicity, religious and political views, personality
traits, intelligence, happiness, use of addictive
substances, parental separation, age, and
gender.

Michal Kosinski, David Stillwell and Thore Graepel
PNAS April 9, 2013. 110 (15) 5802-5805



Machine learning is very successful for audio
classification

Audio Class

Music

Speech

Vehicle

Musical Instrument
Inside, small room

Boom

Fusillade

Swing music
Crumpling, crinkling

Lawn mower

Splinter
Pulleys
Creak
Gargling
Toothbrush

Number of examples

| 1,011,949
] 1,011,065
] 128,110
| 117,384
| 76.767 2.1 million
? 262 classes omitted .
] 1651 annotated
1o videos
[ I 7.
11836
[ 11629
< 250 classes omitted .
i 53 5.8 thousand
[ 1152 .
==y hours of audio
—
m— P
100 1000 10000 100000 1000000 D27 classes

of annotated
sounds

Table I: Comparison of performance of several DNN architectures
trained on 70M videos, each tagged with labels from a set of 3K. The
last row contains results for a model that was trained much longer
than the others, with a reduction in leaming rate after 13 million
steps.

Architectures Steps Time AUC  d-prime  mAP
Fully Connected 5M 35h 0.851 1.471 0.058
AlexNet 5M &2h 0.894 1.764 0.115
VGG 5M 184¢h 0911 1.909 0.161
Inception V3 5M 137h 0918 1.969 0181
ResNet-30 5M 119h 0916 1.952 0.182
ResNet-30 178 0.212

356h C 0.926 )2041
C0.926 )
Mean average precision mAP is low because of low

class prior <10-4.

AUC is the area under curve of true positive rate vs.
false positive rate.

Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R. Channing Moore, Manoj Plakal, Marvin Ritter. Audio Set: An
ontology and human-labeled dataset for audio events, IEEE ICASSP 2017, New Orleans, LA, March 2017.

Shawn Hershey, Sourish Chaudhuri, Daniel P. W. Ellis, Jort F. Gemmeke, Aren Jansen, Channing Moore, Manoj Plakal, Devin Platt, Rif A. Saurous, Bryan
Seybold, Malcolm Slaney, Ron Weiss, Kevin Wilson. CNN Architectures for Large-Scale Audio Classification, ICASSP 2017, New Orleans, LA, March 2017.



What are the issues?

Massively missing data in specific applications.

Almost always need for specific small data for
personalization or adaptation to specific
situation.

Democratization of data: data should belong to
and made available by the creator/user.

Distributed storage and processing OpenPDS
and SafeAnswers (Yves-Alexandre de
Montjoye, Imperial College London)

Privacy may be achieved though privacy aware
learning e.g. using differential privacy
constraints.



Current challenges in machine learning

 Better semi-supervised learning integrating unsupervised and
unsupervised learning to lower requirements on number of data
samples.

« Better regularization and incorporation prior information
(compositionality, augmented data sets/dream networks).

 More efficient structures for learning to encoding relevant
information (independent components, sparsity, autoencoders).

« New (network) more efficient architectures and handling of
memory structure.

 More focus on robustness and sensitivity.

» Passive prediction is not enough to achieve real intelligent
behavior that is more autonomous.

« Better ability to discover causation.

 Learning from few examples like humans (shared
representations).
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(a) Original Input (b) Input intercepted by adversary Al

Corey Kereliuk, Bob L. Sturm, Jan Larsen: Deep Learning and Music Adversaries, IEEE Transactions on Multimedia, Nov. 2015

Corey Kereliuk, Bob L. Sturm, Jan Larsen: Deep Learning, Audio Adversaries, and Music Content Analysis, 2015 IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics, Oct. 2015

Corey Kereliuk, Bob L. Sturm, Jan Larsen: ?El Caballo Viejo? Latin Genre Recognition with Deep Learning and Spectral Periodicity, Fifth Biennial
International Conference on Mathematics and Computation in Music (MCM2015), 2015.



Adversarial
learning
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Fig. 5. Top left: spectrogram excerpt from GTZAN Classical “21” (Mozart, Symphony No. 39 Finale) that the DNN-based system in Fig. 2(b) classifies
as Classical. Top middle: spectrogram of adversarial example classified as Reggae. Top right: spectrogram of the difference of the two. Bottom: magnitude
spectrum of one frame (1024 samples) of the original (light blue), adversarial example (black), and difference (orange). Note that all excerpts in GTZAN have
a sampling rate of 22050 Hz. The SNR = 21.1dB.

Corey Kereliuk, Bob L. Sturm, Jan Larsen: Deep Learning and Music Adversaries, IEEE Transactions on Multimedia, Nov. 2015

Corey Kereliuk, Bob L. Sturm, Jan Larsen: Deep Learning, Audio Adversaries, and Music Content Analysis, 2015 IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics, Oct. 2015

Corey Kereliuk, Bob L. Sturm, Jan Larsen: ?El Caballo Viejo? Latin Genre Recognition with Deep Learning and Spectral Periodicity, Fifth Biennial
International Conference on Mathematics and Computation in Music (MCM2015), 2015.



Universal Adversarial Learning

{a) CaffeNet (b) VGG-F ;
] S5 ' ; S il common newt carousel grey fox

(d)y VGG-19 (e) GoogleNet (1) ResNet-152

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, Pascal Frossard: Universal adversarial perturbations,
arXiv:1610.08401. 2017



What defines simple and complex problems -
and how do we solve them them?

active and
autonoumous

prediction

continuous learning
reflection
pro-activeness
engagement
experimentation

creativity

Unreasonable
effectiveness of

Mathematics E. wigner, 1960

Data Halevy, Norvig, Pereira, 2009
RNNS Karpathy, 2015

Experimentation and
interaction through

users-in-the-loop



Unsupervised learning

= Probabilistic modeling of structure in multivariate data

e Preprocessing, data reduction, outlier detection, noise
reduction, de-convolution, anomaly detection

e Explorative - hypothesis generating

e Clustering

e Linear factor
models (ICA,
NMF)

» Kernel methods
(nonlinear, non-
parametric)

e Autoencoder
deep neural
networks




Supervised learning

e Predictive inference - from sensory features to decisions
e Bayesian hypothesis testing

e Learning from data set of simultaneous sensory input
observations (features) and outcome (labels)

e Deep Neural
networks

e Non-prametric
Kernel machines

e Bayesian
learning




Semi-supervised learning

e Learning from combined labeled and unlabeled data
e Optimal use of inexpensive unlabeled data
e Quantification of robustness

Active learning

e Active learning — relates to semi-supervised learning in which
samples are initially unknown

» Methods help deciding which (expensive) samples improve
learning the most



The power of human data

Humans as a measurement device - why
— With the purpose of individualization and dynamical response
— With the purpose of group studies and population models
— For eliciting perceptual, affective, and cognitive aspects
— For other aspects e.g. behavioral and physical
— For quality measurement and control
— Provide information which can not be verbalized

Humans in the loop — how

— Direct measurement of physiological, cognitive and behavior states from
physical devices

— Indirect measurements from self-reports, experiments using direct, indirect and
related scaling methods

— Indirect measurement of unconscious/uncontrolled behavior

Humans in the loop - who
— End-user
— Experimenter
— Developer
— Expert user
— Collaborative, transfer learning for crowds of humans



Human interaction
with information
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General
framework

State of users’ mind

Users’ profile

Intention/task/objective

Context

Subjective
users’
assessments
or objective
performance
measurements

observation y

Probabilistic

Interface
model

object(s) features rep. object(s)

Systems/objects represented by features

Sequential
design

proposed
object(s),
feature(s),
user(s)



Interactive Learning / Sequential
Experimental Design

3

2_
Generalization 1l
Eliciting and learning the entire model / = |

. : . 5 Of = Y
objective function. a )SS[
3
Expected change in relative entropy is ° -1
derived from the posterior and predictive -2
distribution. R
Optimization - - -
-5 0 5

Learning and identifying optimum input, X
The Expected Improvement of a new Which of the four green parameters

settings/products/interface, X,
should the user assess (rate/
annotate/see/ hear) or where do we
need objective performance
measurements

candidate sample (green points) is derived
from the predictive distribution.

Probabilistic Model is a Gaussian Process



Opn oticon

) S PEOPLE FIRST
e Highly personalization

needs.
e Dynamic environment /
\\ and use with different
needs.

IDEX

HIGH DEFINITION HEARING

e Latent, convoluted
object functions which % .'
are difficult to express N o/
though verbal and motor

actions. . . .
- Users with disabilities — 2 Ptimization of

and often elderly people hearing aids

- provide inconsistent using Bayesian
and noisy irﬁéractions. S :
optimization

- -
-
Jens Brehm Nielsen, Jakob Nielsen: Efficient Individualization of Hearing and Processers Sound, ICASSP2013.
Jens Brehm Nielsen, Jakob Nielsen, Jan Larsen: Perception based Personalization of Hearing Aids using
Gaussian Process and Active Learning, IEEE Trans. ASLP, vol. 23, no. 1, pp. 162 — 173, Jan 2015.

Maciej Korzepa, Michael Kai Petersen, Benjamin Johansen, Jan Larsen, Jakob Eg Larsen: Learning
soundscapes from OPN sound navigator, poster 2017.



Pairwise (2AFC) personalization of
hearing aids
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Pairwise (2AFC) personalizat

hearing aids
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J. B. B. Nielsen, J. Nielsen, J. Larsen, Perception-based Personalization of Hearing Aids using Gaussian
Processes and Active Learning, IEEE Transactions on Audio, Speech, and Language Processing, vol. 23(1),

pp. 162-173, IEEE, 2015.
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Semi-automatic machine learning can be used to predict

information in the enture archive based on limited number of
annota_tiong

Smart crowdsourcing exploits machine learning to predict

information in the entire archive based on ‘crowd annotators’ —
annotations. The individual clip is selected based on
uncertain information about the Ilabel, the annotators’
gualifications and engagement based on active learning

mechanisms.



What i1s the solution?

& Deep Learning: the main thesi
1S

= = touch..)) ¥
achine cognition (natyura| language, reasoning

attention, memory/learning,

!(nowledge, decision making, action
interactio n/conversation, =]

. N

Al that is flexible, general, adaptive, learning from 13

ng + Reinforcement/Unsupervised Learning

Li Deng, Microsoft Research at ICASSP 2016,
Shanghai.

* Four key ingredients for ML towards Al

Lots & lots of data
Very flexible models

Enough computing power

Powerful priors that can defeat the curse of
dimensionality

Geoff Hinton, Yoshua Bengio & Yann LeCun,
Deep Learning Tutorial, NIPS 2015, Montreal.

Computational rationality: A
converging paradigm for intelligence
in brains, minds, and machines

Samuel . hman,"” Eric J. Horvitz,** Joshua B. Tenenbaum™*

After growing up together, and mostly growing apart in the second half of the 20th century,
the fields of artificial intelligence (Al), cognitive science, and neuroscience are
reconverging on a shared view of the computational foundations of intelligence that
promotes valuable cr sciplinary exchanges on questions, methods, and results.
We chart advances over the past several decades that address challenges of perception
and action under uncertainty through the lens of computation. Advances include the
development of representations and inferential procedures for large-scale probabilistic
inference and machinery for enabling reflection and decisions about tradeoffs in effort,
precision, and timeliness of computations. Th tools are deployed toward the goal of
computational rationality: identifying d ions highest ted utility, while
taking into consideration the costs of computation in complex re orld problems in
which most relevant calculations can only be approximated. We highlight key concepts with
examples that show the potential for interchange between computer science, cognitive
nce, and neuroscience.




Deep ANN, kernel methods, topic
modeling/factor models

Ability to fuse noisy information and predict
target parameters in changing environments
under domain constraints and in simulated

situations

Bayesian

. Goal-driven online learning
optimization

communication systems

Ability to optimize Ability to learning human
system with incomplete ;.0 actions on all levels
or complex

mechanisms



Potentials

eDiscovery of pattern in large unstructured data
e.g. emails, social, behavioral, economical
transaction, sound, images

e Anomaly detection
eEXxplaining causes, facts and sequences of events

eRobust and labor in-expensive predictive
analysis and search for specific objects, events
In multimodal data (audio, video, images etc.)

eBetter involvement and integration of LEA
personnel, general public, organizations and
tasks (forensics, investigation, indictment,
policing, intelligence, pro-activiness)

e Standardized tool but specialized solutions



On Collaboration — matching expectations
LEAS

University &
knowledge institutions

Primary objective

international, open, independent
knowledge production driven by curiosity

focus on most difficult problems

scientific publications: methods,
principles, general/universal knowledge

teaching incl. continuing education

long term perspective

Secondary objectives

innovation activities

contribution to solving societal challenges
aka scientific social responsibility

communication and dissemination

access to data, knowledge, and
collaboration partners

access to technology and facilities

Primary objectives

preventing crimes

focus on relevant problems
with high potential impact

specific robust solutions with
high quality

shorter term perspective

Secondary objectives

recruitment
competence building
international networks

access, development and
integration of newest methods,
technology and tools
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