
Formalized Unification Algorithms

Kristoffer Hvidtfeldt

Kongens Lyngby 2017

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary

The goal of the thesis is to implement a unification algorithm from the book
"Term rewriting and all that" in the theorem prover Isabelle/HOL, so that
proofs of termination and correctness can be formalized. In doing so the unifi-
cation algorithm will be analyzed and compared to more traditional algorithms.

It will also give an opportunity to look at the challenges which arises when
implementing, proving and the formalizations of algorithms in Isabelle/HOL.

ii

Preface

This thesis was prepared at DTU Compute in fulfilment of the requirements for
acquiring an M.Sc. in Engineering.

The thesis deals with Unification and Formalization of Algorithms.

Lyngby, 01-July-2017

Kristoffer Hvidtfeldt

iv

Acknowledgements

I would like to thank my supervisor Jørgen Villadsen, and his two assigned
Ph.D. students, Anders Schlichtkrull and John Bruntse Larsen, who all helped
with the project.

I would also like to thank my friends for proof reading this thesis.

vi

Contents

Summary i

Preface iii

Acknowledgements v

1 Introduction 1

2 Theory 3
2.1 Formalization and Theorem Proving 3
2.2 Unification Algorithms . 5

2.2.1 Example: Exponential Unification 9
2.2.2 DAG based Unification 9

3 Analysis of the Problem 13
3.1 From Pascal to Isabelle/HOL . 13

4 Design & Implementation 15
4.1 Implementation . 15

4.1.1 Data Structure . 16
4.1.2 Find . 18
4.1.3 Union . 20
4.1.4 Occur Check . 20
4.1.5 Unify - The Core Algorithm 23

4.2 Formalization . 25
4.2.1 Formal Proof of Termination for Find 25

4.3 Testing . 28

viii CONTENTS

5 Discussion 31
5.1 Argument for Termination and Correctness 31
5.2 Proving for Not Well-formed input 34
5.3 Finding the Most General Unifier 35
5.4 Future Work . 36

6 Conclusion 37

A Code 39

B Test 45

Bibliography 49

Chapter 1

Introduction

Humans have for a long time been interested in describing the world formally
using logic, even before the birth of modern computer science. People such as
Leibniz, Frege and Boole all had an interest in creating a system that would
allow them to handle logical expressions like mathematicians handle arithmetic
expressions. They wanted a system for making computations on logical expres-
sions, where a singular truth value could be arrived at.
With the birth of computer science a need for such formalization arose, because
computers can only work and apply logic when given as clearly defined values
and with a clearly defined work flow. This has required the development of
different systems and methods to process logic into something workable by ma-
chines.
One of these important parts are unification algorithms. The first one was
presented by John Alan Robinson in 1965 as part of his resolution procedure,
which is an effective tool for creating proofs in both propositional and first-order
logic [BA12, chapter 4]. Unification algorithms are an important part of auto-
mated reasoning, the area of computer science dedicated to further understand-
ing of reasoning. It is used in automated processes like artificial intelligence, as
a better reasoning leads to better decisions.Unification algorithms have, as other
important algorithms, been formalized to ensure and prove their correctness.
However since most formalizations of unification algorithms focus on correctness
mainly, there are few formalizations of efficient unification algorithms in theorem
provers. This has inspired this thesis to look at other unification algorithms than

2 Introduction

those normally formalized. One such algorithm has been implemented in the
theorem prover ACL2 [JLRR06], but the algorithm has not been implemented
in Isabelle/HOL.
This thesis is centered on the formalization of unification algorithms in the
theorem prover Isabelle/HOL. It will focus on a worst case quadratic unifica-
tion algorithm, which will be implemented in Isabelle/HOL. The project goals
can be separated into three steps:

1. Implement a DAG-based unification algorithm in Isabelle/HOL.

2. Make the DAG-based unification algorithm have a quadratic worst-case
run-time.

3. Create formal proofs for Termination and Correctness for the DAG-based
unification algorithm using the tools present in Isabelle/HOL

The report will first go into the theory behind this report, such as the unification
theory and the original algorithm that inspire the implementation.
It will then make an analysis of the problems and challenges of implementing
this algorithm in Isabelle/HOL, as well as taken a look at other adaptations of
the algorithm.
The implemented algorithm will then be presented and discussed. When the
reader has become familiar with the implementation will there be taken a look
at the formalization of a termination proof in Isabelle/HOL. Testing of the
implementation will also be discussed.
Lastly before the thesis concludes, lessons learned and further work will be
discussed in detail.

Chapter 2

Theory

This chapter will be used to introduce notation and theory necessary for under-
standing the reasoning and implementations in this report.

First a description of the formalization process is given and it is explained how
it relates to the theorem prover Isabelle/HOL.
The next section contains a detailed explanation of the terminology used in this
report together with the basics of unification theory. It will also present an
example of a worst case for most standard unification algorithms to motivate
the possible need for effective unification algorithms.
And lastly the DAG (Directed Acyclic Graph) based unification algorithm is
presented. It is this algorithm which will be implemented in Isabelle/HOL.

2.1 Formalization and Theorem Proving

Formalization is the process of proving theorems using primitive axioms and
inference rules. This is done using formal systems. A formal system is a way to
calculate logic and contains:

1. A finite alphabet containing all symbols that may be used in the system.

4 Theory

2. A definition of how symbols of the alphabet should be used to create
statement, such that they are well-formed. If a statement is not well-
formed, it is not a part of the formal system. This is called the grammar
of the formal system.

3. A set of universally valid statements called axioms.

4. A list of inference rules used to create theorems out of axioms and other
proven theorems.

It is on the foundation of the axioms, which are known to always be true, that
other theorems are built. Different formal systems have been created. Some uses
a few axioms and a couple of inference rules while other uses a single inference
rule with a lot of axioms.

Formalization allows for a step by step approach to working with logic with
definable values. This enables computers to participate in the process of dis-
covering and validating mathematical and logical proofs. This has been used to
great effect in theorem provers, also called proof assistants. They are software
made to help logician and computer scientist to create formal proofs with the
assistance of a computer. They use a formal system and some highly efficient
search algorithms to help the proving process.
Modern theorem provers have on the basis of simple axioms reached a high level
of complexity in their formal systems. No theorem prover will accept a state-
ment unless it can be proven using its own axioms and inference rules.
Theorem proving can be separated into two major categories: Automated and
Interactive. Automated theorem provers use artificial intelligence to create for-
mal proofs without the help of a human, while an Interactive theorem prover
requires a human to guide the search. The Interactive theorem prover helps
structure the process of creating the proof for the human, easing the burden of
proving every single step and memorizing every remaining subgoal.

Common properties to show in the formalization of algorithms are Termination
and Correctness:
Proof of Termination shows that the algorithm will always terminate. This
might not be obvious in highly recursive or iterative algorithms.
Proof of Correctness show that the algorithms result at termination are always
inside expected parameters. This could for an example be an function multi-
plying natural numbers, will always result in a natural number, since their is no
way the number could become negative. Proving this formally would be a proof
of correctness.

Proof assistants are very likely going to be an important technique in mod-
ern mathematics. It will allow us to expand our trust in theorems proven

2.2 Unification Algorithms 5

long ago. Many famous theorems have been proven inside interactive theorem
provers [Pro] such as Isabelle/HOL [Isa] and Coq [Coq]. It might help expand
our knowledge as the tools become usable by leading mathematicians and logi-
cians. Some speculate that it will become a part of a mathematician standard
working environment [Thu94] and others that formalized proofs will be needed
for publication in the future [RN14].

2.2 Unification Algorithms

This report will mainly focus on what is called first-order unification. For un-
derstanding unification one first needs to understand the concept of terms and
substitution.

Terms

Terms are symbolic expressions used to model logical propositions. Terms are
in this notation defined recursively as:

• Variables (Var) are, as the name implies, unbounded values. The variables
are generally represented by the lower case letters {x, y, z, v}.

• Functions (Fun) consist of a function symbol to represent the function and
a list of terms. The length of the list is determined by the arity of the
function. Terms support a function to have varying arity. The function
symbols are generally the lower case letters {f, g, h}.

• Constants are bounded values that cannot be changed. They are some-
times omitted from notations, since they functionally are identical to a
function with no variables (0-ary). For easier representation, the lower
case letters {a, b, c} will be used to represent constants.

Terms can easily be represented as trees, where variables and constants are
leaves and functions are branches. The term f(x, y) can be seen modeled as a
tree in Figure 2.1.

6 Theory

Figure 2.1: An example of the term f(x, y) viewed as a tree.

Substitution

A substitution of terms is a set of variables paired with terms:

{(x1 → t1), ..., (xn → tn)}

Each pair represents a variable, xi, that should be substituted with a term, ti.
Substitutions are represented by lower case Greek letters like {λ, µ, σ, θ}.

To further illustrate the notation the substitution σ = {(x→ y)} can be applied
on the term t = f(x) such that it becomes tσ = f(y). A substitution is also
called a unifier when it used to unify two expression of terms. A larger example
could be:

T = f(g(x), x, y, z)

θ = {x→ y, z → h(y)}

Tθ = f(g(y), y, y, h(y))

Substitutions can also be composed. For an example can σ = {(x → y)} be
composed with the substitution µ = {(y → z)} and become:

σµ = {(x→ z), (y → z)}

This can also be used to update a substitution and thereby build substitution
while the algorithms run.

Unification

Unification is the process of unifying equations, called terms, so that they be-
come equivalent. This is generally speaking done by finding a substitution which,
when applied on the variables of the terms will result in them becoming identical.

2.2 Unification Algorithms 7

A unification algorithm commonly takes two terms and returns this substitution
if it exist. The substitution that unifies the terms is called a unifier.

The most common method of unification is to parse two terms stored in some
way as trees at the same time recursively. The two term trees are then parsed
at the same time. At each point one of the terms is substituted for the other if
they are different and it is possible. It is possible as long as both terms are not
constants, do not have different function symbols and one term does not exist
in the other. The substitution are then saved and returned as the unifier, if the
two terms were unifiable.

To illustrate, here is an example of a unification of f(y,x) and f(x,z). When an

Figure 2.2: An example of f(y,x) =? f(x,z). "=?" is used to indicate unification
between two terms.

algorithm starts, it will first compare the two function symbols to see if they
are the same. If they are not then the two functions can not be unified, since
functions of different names can not be unified. If they are identical the variables
of the functions are compared in the order they appear as arguments for the
function. In this example the algorithm will first try to unify x with y. Since

Figure 2.3: Figure 2.2 after the substitution {x→ y} has been applied.

these terms can be unified without any problem, the substitution [x → y] will
be applied on both terms, resulting in figure 2.3.
Then the algorithm will move to the second argument of both terms and try
to unify y with z. Again there are no problems, so now the substitution [x →

8 Theory

y, y → z] is applied to both terms. This results in figure 2.4. Since there are no

Figure 2.4: Figure 2.2 after the substitution [x→ y, y → z] has been applied.
Note that the two terms are now identical. That means they have
been successfully unified.

more arguments to the function and all other variables have been successfully
unified, the algorithm can return the substitution as a unifier, indicating that
f(y, x) and f(x, z) can indeed be unified by the unifier [x→ y, y → z].
Note that this is by no means the only possible unifier. [y → x, x → z] and
[z → y, y → x] are also unifiers in this case. Even [x → y, y → z, z → v] is a
unifier in this case, but this is not an ideal unifier.
The most general unifier (MGU) is a concept important for unification theory.
It is the minimal set of substitution required for two terms to be unified, i.e. it
is a unifier µ for a set of terms U = t1, ..., tn, such that any other unifier θ of U
can be expressed as:

θ = µλ (2.1)

for some substitution λ [BA12, p. 189].
For example: f(x, y) can be unified with f(z, v) with the substitution θ = [x→
y, y → z, z → v] but it would not be an MGU. An example of an MGU would
be µ = [x→ z, y → v] since this unify the two terms and nothing more.

Unification is used in the general resolution procedure which is the foundation
for logical programming, as seen in the programming language Prolog.

Occur Check

In unification theory occur check is an important concept. The occur check
checks whether a variable appears inside the function, which it is being unified
with. This is required to prohibit infinite terms like X = f(X), which results in
f(f(f(f(...)))). This can create cycles that could cause termination problems.
In some application, like Prolog, the occur check is omitted since the run-time
of the occur check can escalate as seen in the example in Section 2.2.1.

2.2 Unification Algorithms 9

2.2.1 Example: Exponential Unification

Here is an example of a worst-case run-time example of a standard substitution
unification algorithm:

The following two terms have to be unified:

f(x1, x2..., xn)

f(g(x0, x0), g(x1, x1), ..., g(xn−1, xn−1))

Most unification algorithms will first reduce the problem by recognizing that
the two function symbols f and f are identical. Then the problem becomes
to transform the variable input of the two functions such that they become
identical. Hence the unification algorithm will start unifying the variables of f.
First x1 will be substituted for g(x0, x0). The rest of the list will then replace
each instance of x1 with g(x0, x0). This means that x2 will be substituted with
g(g(x0, x0), g(x0, x0)). After only 3 terms have been unified, it has escalated in
size:

x1 →g(x0, x0),
x2 →g(g(x0, x0), g(x0, x0)),
x3 →g(g(g(x0, x0), g(x0, x0)), g(g(x0, x0), g(x0, x0)))

...
xn →g(g(g(g(g(g(· · ·

(2.2)

Especially the occur check at the last unification has a high run-time. Due
to the exponential nature of the term g(xn−1, xn−1), an occur check for xn on
g(xn−1, xn−1) will have to check identical terms for xn multiple times.

This results in both the worst-case run-time of substitution based algorithms
and the data space required to store terms becoming O(2n).

2.2.2 DAG based Unification

What if there was a way to eliminate the exponential worst-case run-time from
examples such as above? What if the algorithm could have a quadratic worst-
case run-time? This is the main idea for the algorithm that will be inspected in
this report.

10 Theory

Figure 2.5: A figure showing how large xn becomes at the end of unification

The unification algorithm, which forms the basis of this thesis, is taken from the
book "Term rewriting and all that" by Franz Baader and Tobias Nipkow [BN99,
chapter 4, p. 82]. It was originally implemented in Pascal.

Instead of storing terms as strings, trees or other typical classes, this algorithm
will store them as directed acyclic graphs (DAGs). A DAG is graph structure
where all edges are directed in such a way that no cycles exist in the graph.

Figure 2.6: An example of a simple DAG

DAGs share some of the properties that trees also uses. They are both con-
nected, directed, have a singular root node and contain no cycles.

The main difference between the trees and DAGS is that DAGs can have multiple
parent nodes. This allows paths to converge, unlike a tree that keeps expanding.
This allows every reference of a variable to be a single node in the DAG, as seen
in Figure 2.8.

2.2 Unification Algorithms 11

Figure 2.7: An example of the simple term f(x,y) represented as a DAG

Figure 2.8: The unification between f(y, x) and f(x, z) represented as a DAG,
before they have been unified. Note that the x from both functions
is the same node.

This algorithm will update the graph, instead of substituting every single in-
stance of the variable. The update adds extra edges that indicate which variables
have been unified with which terms. Look at Figure 2.9 for an example. The
graph can then be used as a look-up before comparing operations in the main
unification algorithm. The main unification algorithm is other wise structure in
a manner similar to other unification algorithms.

Figure 2.9: Figure 2.3 after unification. Notice the dotted lines, representing
the substitution [y → x, x→ z]

12 Theory

The graph will be able to reduce the data structure of the terms in regard to
size for the worst cases like the example in the previous section. Furthermore
the lookup function is also able to remove redundant substitutions.
It is worth highlighting that while this algorithm has a better worst-case run-
time compared to other unification algorithms, it has higher running time in
cases with a low degree of sharing [BN99]. This means that while worst-case
run-time will improve, it is not necessarily the case for the average run-time.

Chapter 3

Analysis of the Problem

This chapter addresses the challenges and problems, which are expected in re-
gard to the design and implementation of the Pascal algorithm in Isabelle/HOL.

It will take a look at the inherent difference in how the two languages grant
access to pointers and how this affects the design.

3.1 From Pascal to Isabelle/HOL

As Pascal is an imperative programming language and Isabelle/HOL uses func-
tional programming combined with logic, it is clear that an alteration of the
algorithm is necessary. The biggest change is in relation to pointers. While Pas-
cal allows for direct pointer manipulation, which the algorithm uses to create
its data-structure, Isabelle/HOL does not allow for direct pointer manipulation.
A method for representing pointers using functional programming concepts is
required, if the algorithm is to be implemented successfully in Isabelle/HOL.

This project is not the first effort to prove a pointer-based program in Is-
abelle/HOL. One way to represent pointers was used in "Proving Pointer Pro-
grams in Higher-Order Logic" by Farhad Mehta and Tobias Nipkow [MN05].

14 Analysis of the Problem

They defined a pointer as a reference:

datatype ’a ref = Null | Ref ’a

This is a standard representation of a pointer. Either it points to some data
of the type ’a, which in Isabelle/HOL means the type can be any type, or it is
Null.
They also mention a different approach that requires creating the reference
specific to type, so for example a term reference could look like:

datatype termref = Null | Var ’v | Fun ’f "’v list" ’a

This notation allows for terms to have the Null property of pointers, while
having a shorter notation than the first notation. This approach however does
not allow for the separation of terms and pointers which would require some
changes to the algorithm. The article by Mehta and Nipkow also mentions that
this approach has slightly less automatic proofs.

While pointers in imperative programming load data directly from memory
using the address of the pointer, a data structure that can be passed between
functions will be needed in Isabelle/HOL. In the article "Formal Correctness of
a Quadratic Unification Algorithm" by José-Luis Ruiz-Reina, Francisco-Jesús
Martín-Mateos, José-Antonio Alonso and María-José Hidalgo [JLRR06], which
also tries to adapt the quadratic algorithm to another theorem prover called
ACL2, a structure for storing the DAG was shown. A DAG is stored as a list
of terms with a hidden numerical pointer value. They use an efficient storing
system, reducing each term down to the most essential information. This has
inspired the following design.

It is worth highlighting that, no matter how pointers are modelled in Isabelle/HOL,
the run-time of any implementation that uses pointers efficiently will not be as
fast in languages without pointers. The direct access to memory can be used
to great effect when working on improving run-times of algorithms in general.
This is the reason why languages like C and Pascal are used when implemen-
tations need the best run-time. The run-time of the implementation in ACL2
was tested against an implementation made in C, in "Formal Correctness of
a Quadratic Unification Algorithm" [JLRR06]. The result was clear - the C
implementation was twice as fast as the ACL2, but the ACL2 implementation
was still better than a standard unification algorithm in the worst-cases.

Chapter 4

Design & Implementation

This chapter presents the unification algorithm as it has been adapted to the
theorem prover Isabelle/HOL.

The initial section will start by going over the methods used by the main algo-
rithm. It presents essential parts of the code used and explains the motivation
behind design decisions.
A short description of the method used for testing the implementation will be
presented at the end.

4.1 Implementation

The different methods have been implemented three different keywords. Prim-
rec, which means primitive recursive function, has been used for the simplest
methods, like the heap handling methods. fun and function have been used for
the more complex methods.
Function has been used when Isabelle/HOL was not able to detect a guaranteed
termination, and it was necessary to give it a proof. Fun could be used as a
shorthand when Isabelle/HOL could the proof without help.

16 Design & Implementation

4.1.1 Data Structure

One of the main challenges is to transform the naturally imperative program-
ming structure of pointer of the algorithm to the functional nature of the Is-
abelle/HOL theorem prover. Farhad Mehta and Tobias Nipkow [MN05] have
already made a implementation of a pointer structure in Isabelle/HOL which
has been helpful in defining the data structure for the algorithm. The method
revolved around having pointers defined as references:

datatype ′a ref = Ref ′a |Null

It should be noted that this definition of a pointer is functionally identical to
the datatype option:

datatype ′a option = Some ′a |None

Which of these that are used is irrelevant, but ref is at least closer to the theory
of the algorithm.
Note also that while it would be more appropriate to use natural numbers as
the pointer values, since this is the type used in imperative languages, char list
has been used instead since it provides more readability to the examples.

The only type of reference that will be used through out the algorithm is term
references. Term references can take three forms:

Null |Ref (V ar ′v) |Ref(Fun ′f (′v list))

The original algorithm defined terms as records which held the type and other
values needed for variables and functions. Record is available in Isabelle/HOL,
but the type interface was selected instead. This was mostly due to a lack
of knowledge of how well record worked with the theorem proving aspect of
Isabelle/HOL. It might be worth trying to implement using record, if one was
interested in a more direct implementation of the algorithm.

The linked list property of terms is how list normally work in most functional
languages so terms could easily be defined as a normal list of pointer values.

So in the the pointer was implemented as a simple undefined value (’a) and
the heap was used as short hand for ”(′v × (′v,′ f) trm ref) list”. So the heap
contains a list of pointer values paired with references of terms.

4.1 Implementation 17

datatype (′v , ′f) trm =
Var ′v
| Fun ′f 〈 ′v list〉

datatype ′a ref = Null | Ref ′a

type-synonym (′v , ′b) heap = 〈(′v × (′v , ′b) trm ref) list〉

Figure 4.1: The implemented Data Structures

So f(x, y) would as a heap look like:

f(x, y)→ [(x,Null),

(y,Null),

(a,Ref(Fun f [x, y]))]

(4.1)

and g(f(x, y)) would look like:

g(f(x, y))→ [(x,Null),

(y,Null),

(a,Ref(Fun f [x, y])),

(b, Ref(Fun g [a])]

(4.2)

It is worth noting that all methods handle a variable that is not in the heap,
as if it was in the heap with the Null value. This is done since the meaning of
these two occurrences are identical.

To access the heap a couple of helper functions has been designed:

• Remove: Takes an element from a heap and a heap and returns a heap.
If the element is in the heap, the resulting heap will be the heap without
the element.

• Exist: Checks whether a term is reference to in a heap.

• Get: Returns the reference that a given pointer value has in a heap.

• Is_in: Returns true if and only if a given element appears in a given
heap.

18 Design & Implementation

primrec remove :: ′v × (′v , ′b) trm ref => (′v , ′b) heap => (′v , ′b) heap

where
remove m [] = []
| remove m (x#xs) = (if m = x then xs else x#(remove m xs))

primrec exist :: (′v , ′f) trm => (′v , ′f) heap => bool
where
exist m [] = False
| exist m (x#xs) = (if Ref m = (snd x) then True else (exist m xs))

primrec get :: 〈 ′v ⇒ (′v , ′f) heap ⇒ (′v , ′f) trm ref 〉

where
〈get x [] = Null 〉
| 〈get x (p#t) = (if x = fst p then snd p else get x t)〉

primrec is-in :: 〈 ′v × (′v , ′f) trm ref ⇒ (′v , ′f) heap ⇒ bool 〉
where

〈is-in x [] = False〉

| 〈is-in x (p#t) = (if x = p then True else is-in x t)〉

Figure 4.2: The implemented heap operations

All of these methods have worst-case run-time O(n) where n is the length of the
heap. Note that these functions are not optimally implemented. With a better
data-structure and some optimal helper methods, the rest of the algorithm will
run faster.

4.1.2 Find

The Find method is used to access the value stored at a pointer value in the
heap. It is important to treat the find call as one would a pointer in imperative
programming. Find takes a pointer together with the heap as input and returns
a term. That term is the last term in the path that the pointer points to in the
heap.
Find runs recursively through the heap until it hits Null or Ref(Fun ...). If
it hits Null, it returns the last pointer value wrapped in the Var tag. If it hits
Ref(Fun ...) it returns that Function. Note also that if pointer value x does
not exist in the heap, will it be taken as if it was set to Null and return the
value as a free variable, i.e Var x.

One of termination issues in the algorithm occurs in Find. A naive implemen-

4.1 Implementation 19

function(sequential) find :: 〈 ′v ⇒ (′v , ′f) heap ⇒ (′v , ′f) trm〉

where
〈find x [] = Var x 〉

| 〈find x h = (case get x h of
Null ⇒ Var x
| Ref (Fun f args) ⇒ Fun f args
| Ref (Var v) ⇒ find v h)〉

by pat-completeness auto
termination
sorry

Figure 4.3: A naive implementation of Find

tation of Find would run forever if the input heap where to contain a cycle,
like [x→ Ref(V ary), y → Ref(V arx)]. In this case would it call Find x [x→
Ref(Var y),y→ Ref(Var x)] and Find y [x→ Ref(Var y),y→ Ref(Var x)]
recursively forever.
Some modification can be made to the algorithm, such that it is guaranteed to
terminate no matter the input. One idea is to introduce a counter and a max
number of recursions, so that the algorithm will terminate when the algorithm
reaches a certain depth of recursion. The max value can be set based on the
size of the terms given such that if the max value is it certain that a loop has
occurred. While this can make sure that the algorithm terminate is it not very
efficient.
Another approach is to remove pointers from the heap when used. Since Find
operates on a copy of the heap, not the original, elements can be removed with-
out harming the general run of the algorithm. This results in the heap being
reduced in size for each iteration, thereby guaranteeing termination. In the
case of Find x [x→ Ref(Var y),y→ Ref(Var x)] would Find start first get
y and remove x→ Ref(Var y) from the heap. Then it would get x and remove
y→ Ref(Var x) from the heap, leaving it empty. Find would then return x,
which would be an acceptable result. This however means that while x and y
are unified, when Find is called on them, they return different values. While
this is technical wrong, it will not create any correctness issues for the main uni-
fication algorithm. Hence for this design the second option of removing pointers
is chosen. Even though this modification technically introduce problems with
correctness in the not well-formed cases, without them will arguing for termi-
nation in a formalized manner be difficult. The design can be seen in Figure
4.4.

20 Design & Implementation

function(sequential) find :: 〈 ′v ⇒ (′v , ′f) heap ⇒ (′v , ′f) trm〉

where
〈find x [] = Var x 〉

| 〈find x h = (case get x h of
Null ⇒ Var x
| Ref (Fun f args) ⇒ Fun f args
| Ref (Var v) ⇒ find v (remove (x , Ref (Var v)) h))〉

by pat-completeness auto

Figure 4.4: The implemented Find

A formal termination proof have been constructed for the implemented Find.
This can be seen in Section 4.2.1.

4.1.3 Union

The unin function is a simple, but crucial function that unifies two terms in the
graph. It takes the pointer value x that should be set and the term y that it
should be set to. It searches through the heap until it finds the pointer values
pair and then replaces the term. If the pointer value x is not in the heap, it is
inserted with the term y.

primrec unin :: 〈 ′v ⇒ (′v , ′f) trm ⇒ (′v , ′f) heap ⇒ (′v , ′f) heap〉

where
〈unin x y [] = [(x ,Ref y)]〉
| 〈unin x y (t#ts) = (if x=fst t then (x ,Ref y)#ts else t#(unin x y ts))〉

Figure 4.5: The implemented Union

Note the implementation of union is called unin because union is all ready
defined as a set operation. Also, Ref is added as a prefix to the given term to
convert it from a term to a term ref, since the heap is made of term ref.

4.1.4 Occur Check

Occur takes the heap, a variable pointer and a function pointer, and return
a Boolean depending on the whether or not the variable appears inside the

4.1 Implementation 21

function. A naive implementation of Occur would simply go through the entire
function and check if the variable ever appear as an argument.

function(sequential) occ :: 〈 ′v ⇒ ′v ⇒(′v , ′f) heap ⇒ bool 〉
and occs :: 〈 ′v ⇒ ′v list ⇒(′v , ′f) heap ⇒ bool 〉
where

〈occ u v h = (case ((find u h),(find v h)) of
(a,Var v) ⇒ False
| (a,Fun f args) ⇒ (occs u args h))〉

| 〈occs u [] h = False〉

| 〈occs u (v#vs) h = ((u = v) ∨ (occ u v h) ∨ occs u vs h)〉
by pat-completeness auto

termination
sorry

Figure 4.6: A naive implementation of Occur

This Occur check is not good enough if the algorithm is to be quadratic. Look
back at the example given on Section 2.2.1. In the last case where xn has to
be unified with g(xn−1, xn−1). Since the variable xn has to be unified with
a function g(xn−1, xn−1), an occur check to see if xn is in g(xn−1, xn−1) is
required. But by this time the term g(xn−1, xn−1) has blown up to the size of
2n. And the occur check has to visit each one of these functions to check if xn
is one of its argument. This should not be necessary since the high degree of
identical functions in the term should let the algorithm know which terms have
already been checked.

This can be solved by the DAG structure, since the identical terms are the exact
same term. So by introducing a value to terms, like a boolean visited that can
be set by Occur can the algorithm skip already checked terms and there possible
arguments.

22 Design & Implementation

Figure 4.7: A tree showing which nodes of a tree that would need to be checked
in the case if the example from Section 2.2.1

The quadratic algorithm from "Term rewriting and all that" solves this by
introducing a time and stamp solution, where each term is marked with a time
stamp which is updated each time it is visited by Occur. This is then compared
and updated by a time value unique for that run of Occur. This, unlike the
Boolean solution, does not need to be reset after each run of Occur.

However this design requires that Occur is only returning a Boolean. The prob-
lem of this comes from the fact that updating the heap is simple in Imperative
programming languages, but here it requires that the method both takes the
heap as input and as output. This would change the flow and control scheme of
the main Unify. Due to time constraints could this version not be implemented.

Figure 4.8: Figure 4.7, shown as the DAG it is stored as in the implementation.

So the solution used in the implementation was similar to what was used in Find.
Since the heap worked on by Occur is a copy of the original, the algorithm can

4.1 Implementation 23

freely manipulate the copy. So to mark a function as visited it is simply removed
from the heap. This prevents the Find from finding the same function multiple
times, and thus avoiding the problem discussed in Section 2.2.1.

function(sequential) occ :: 〈 ′v ⇒ ′v ⇒(′v , ′f) heap ⇒((′v , ′f) heap ×
bool)〉
and occs :: 〈 ′v ⇒ ′v list ⇒(′v , ′f) heap ⇒ ((′v , ′f) heap ×bool)〉
where

〈occ u v h = (case ((find u h),(find v h)) of
(a,Var v) ⇒ (h,False)
| (a,Fun f args) ⇒ (occs u args (remove (v , Ref (Fun f args)) h)))〉

| 〈occs u [] h = (h,False)〉
| 〈occs u (v#vs) h = (let oc= occ u v h

in (if (u = v) ∨ snd(oc)
then (fst(oc),True)
else occs u vs (fst(oc))))〉

by pat-completeness auto
termination
sorry

fun occurs :: 〈 ′v ⇒ ′v list ⇒(′v , ′f) heap ⇒ bool 〉
where

〈occurs u v h = snd(occs u v h)〉

Figure 4.9: The implemented Occur

4.1.5 Unify - The Core Algorithm

The main unification algorithm (Unify) takes two pointer values and a heap
as input, and returns a boolean telling whether or not there exists a viable
substitution and the heap modified by the unification algorithm. It is helped
by another function, Unifys, which takes two pointer value lists and a heap as
input. Unifys helps with the recursive part of the algorithm. They are defined
together with and in Isabelle/HOL since they are mutually recursive.

It starts by simply checking whether the two pointer values are identical. No
further actions are required if they are, and the algorithm can terminate since
the two values obvious are unified. Otherwise it continue with a case expression.

The unification algorithm then applies Find on each of the two pointer values.
The resulting terms are then used to decide between three cases: two Variables,
two Functions or one of each.

24 Design & Implementation

function(sequential) unify :: 〈 ′v ⇒ ′v ⇒ (′v , ′f) heap ⇒ ((′v , ′f) heap ×
bool)〉
and unifys :: 〈 ′v list ⇒ ′v list ⇒ (′v , ′f) heap ⇒ ((′v , ′f) heap × bool)〉
where

〈unify v u h = (if v=u then (h,True) else (case ((find v h),(find u h))
of

(Var v1 ,Var v2) ⇒
(if v1 = v2 then (h,True) else ((unin v1 (Var v2) h),True))

| (Var v2 ,Fun f args) ⇒
(if (occurs v2 args h) then (h,False) else ((unin v2 (Var u) h),True))
| (Fun f args,Var v2) ⇒
(if (occurs v2 args h) then (h,False) else ((unin v2 (Var v) h),True))
| (Fun f1 args1 ,Fun f2 args2) ⇒
(if f1=f2 then unifys args1 args2 (unin v (Var u) h) else (h,False))))〉

| 〈unifys [] [] h = (h,True)〉
| 〈unifys [] (v2#vs2) h = (h,False)〉
| 〈unifys (v1#vs1) [] h = (h,False)〉
| 〈unifys (v1#vs1) (v2#vs2) h =

(let u = unify v1 v2 h
in (if (snd u) then (unifys vs1 vs2 (fst u)) else u))〉

by pat-completeness auto
termination
sorry

Figure 4.10: The implemented Unify

If the Find function results in two variables (Var v1, Var v2), then since these
variables both have not been set to any term, v1 will, using Union, be set to
v2 in the heap. If the two variables are identical i.e v1 = v2 then the Union
function is unnecessary and the algorithm just returns the heap unchanged.

If the Find function results in one of each, the algorithm will try to substitute
the variable with function. This is only possible if the variable does not occur
inside the function. If this operation fails, i.e the occur check fails, then the
unification will result in a failure. A failure is represented by returning Boolean
value being false and the heap at the stage of the failure.

It is when the Find function results in two functions (Fun f1 args1, Fun f2 args2)
that the recursive component of the algorithm comes in. It will start by com-
paring f1 and f2. If they are not identical then since functions can not be
unified, the algorithm will terminate and return failure. If they are identical the
algorithm will start unifying the terms in the functions variable list, i.e. args1
and args2. It will go through the list in linear order. It terminates if any of the
unifications result in failure.

4.2 Formalization 25

4.2 Formalization

A formal proof has been found for the termination of the Find function using
the proof assisting tools of Isabelle/HOL. While fairly simple it serves as a
demonstration of how to prove termination in Isabelle/HOL.

4.2.1 Formal Proof of Termination for Find

Initial attempts at proving termination for Find used a different version of Find.
Instead of having it removing already visited parts of the copy of the heap, the
initial version had a Boolean check at the start of the Find that checked the
heap for cycles. It detected cycles by iteratively removing each node from the
graph that did not have an edge going into it. If the graph at the end was empty
then that meant there was no cycles. But if the number of nodes in the graph
did not decrease after an iterative cycle, that would then mean that there was
a cycle.

fun no-cycle1 :: 〈(′v , ′f) heap ⇒ (′v , ′f) heap ⇒ (′v , ′f) heap〉

where
〈no-cycle1 [] org = []〉

| 〈no-cycle1 ((a,b)#t) org =
(if exist (Var a) org
then (a,b)#(no-cycle1 t org) else no-cycle1 t org)〉

fun no-cycle :: 〈 (′v , ′f) heap ⇒ bool 〉
where
〈no-cycle [] = True〉

| 〈no-cycle orgL =
(let uptL=(no-cycle1 orgL orgL)
in (if length uptL<length orgL then no-cycle uptL else False))〉

Figure 4.11: An implementation of the cycle check

The problem was that the logical properties of no_cycle was not clear for
the search algorithms of Isabelle/HOL. For this version of Find, a couple of
lemmas would have been needed to help Isabelle/HOL see the properties of this
check, such that the lemmas could be used for the termination proof. Some
were implemented as seen in Appendix A, but a final termination proof for this
version of Find was not found.

Further formalization uses the implementation shown in 4.1.2, which uses the
remove function.

26 Design & Implementation

The termination proof of Find is not so simple that Isabelle/HOL can detect
the proof without some help from a user. This is because the program can not
see that with each new iteration of Find it nears termination. So a termination
proof is needed to show that Find does indeed terminate.

Termination proofs in Isabelle/HOL uses a list measures that convert the input
and output of functions into a sequence of natural numbers that can be sorted
in a lexicographic ordering. [Kra07] A lexicographical ordering is to sort a set of
sequences the following way: first sort the sequences comparing the first value
of the sequences, then sort them by the next value and so forth. An example
of a lexicographical ordering is an English dictionary containing all the English
words. Isabelle/HOL knows a function terminates as long as each recursion of
the function moves the lexicographical ordering toward 0.

To help Isabelle/HOL find the proof two lemmas have been constructed and
proved:

lemma is-in0 : get x h = Ref x2 =⇒
is-in (x ,Ref x2) h

apply (induct h,simp)
by (metis get .simps(2) is-in.simps(2) prod .exhaust-sel)

The first lemma states that if get when searching on x returns Ref y on the
heap h, then the pair (x,Ref y) is in h.

lemma remove1 : is-in x h =⇒(length(remove x h) < length h)
apply (induct h,simp)
by simp

The second lemma states that if remove is called on the pair x, which is in a
heap h, then the length of the heap after the remove operation will be smaller
than the length of the heap before the operation.

Both of these lemmas was easily proven using induction and the search algo-
rithms of Isabelle/HOL, especially the tool "Sledgehammer"

Now the termination proof can be created using these two properties. When
starting to make the proof in Isabelle/HOL, the program clearly defines what
subgoals that need to be proven for the theorem to be true. In this case there
are two subgoals:

First a measure is defined. A measure is a set of functions that can be applied
to the input and output of a recursive function and result in natural numbers.

4.2 Formalization 27

Figure 4.12: A screen shot of the output when selecting the beginning of the
termination proof for Find

This will be used to create the lexicographic termination order. For this proof
the only needed function is Length applied on the heap. The measure does not
really need a proof. It is more the user guiding the program toward the proof.

For the second property, it is very important what measure was chosen. This
is because the program now needs to be shown how this measure will be guar-
antee to decrease for every continuing iteration of the algorithm. In this case,
Isabelle/HOL requires proof that if Get x h result in Ref(Var x1), then the
Find method will still be one step closer to termination. It is here we use
the combination of the two proven lemmas, to show that if Get x h result in
Ref(Var x1) then if remove is called on (x,Ref(Var x1), the resulting heap
will be smaller.

termination find
proof
let ?R = measures [λ(M , N).length N]

show wf ?R
by simp

fix x x1 :: ′a
fix x2 :: (′a, ′b) trm
fix v :: (′a × (′a, ′b) trm ref)
fix va :: (′a, ′b) heap
show〈get x (v # va) = Ref x2 =⇒

x2 = Var x1 =⇒
((x1 , remove (x , Ref (Var x1)) (v # va)), x , v # va)

∈ measures [λ(M , y). length y]〉
apply auto
by (metis is-in0 prod .collapse remove1)

qed

Figure 4.13: Termination Proof for Find

This shows that even if Find does not terminate in the current iteration, the
length of the heap will converge towards 0, where termination is guaranteed.

28 Design & Implementation

Thus termination has been proven for the function Find.

4.3 Testing

To make sure the algorithm worked as expected a number of tests were defined.
These tests use the Value feature in Isabelle/HOL, which returns the value of
the functions. Each test has the expected output written as a comment next to
it. It should be noted that due to the complexity of some of the functions, the
char list was used to instead of the undefined ’a. Some early testing deviated
from expected results, which helped point out implementation mistakes. All
tests have been separated into their own .thy file called test.thy and can be seen
in Appendix B.

For each of the core functions a list of tests has been written for the testing.
These cases range from trivial to edge cases. The test cases of non-trivial func-
tions are:

• Find

– with empty heap.

– with a reference.

– with multiple references.

– without a reference.

– with a loop. Note that termination was most important for this case.

• Occur

– with an empty heap.

– with an occur.

– with an occur, requiring recursion.

– without an occur.

• Unify

– with an empty heap.

– with identical terms.

– with a variable and a function.

– with two variables.

– with two functions.

4.3 Testing 29

– with a variable and a function, containing that variable.

As a small note about char list in Isabelle/HOL; char list is indicated by two
’ apostrophe symbols on either side, not by " quotation marks as in most
other languages, since quotation marks are reserved to indicate functions in
Isabelle/HOL.
Since Isabelle/HOL does not build incomplete functions, like functions lacking
a termination proof such as Unify and Occur, it was necessary to start a proof
of these methods and then close them using the Isabelle/HOL symbol "sorry".
This allowed the function to be build and tested.

One of the more interesting tests is the case of "unify "x" "a" [("x",Ref(Var
"a")),("a",Ref(Fun "f" ["x"]))] which translate to unify x and f(x), when
they already are unified in the heap. In this case the algorithm would say this
is a current unification. While x and f(x) should never be unified doing a
well inputted run, this is a more grey area since they are already unified. This
presents a dilemma of proving for not well-formed inputs which will be discussed
further in Section 5.2.

30 Design & Implementation

Chapter 5

Discussion

In this chapter, we will discuss the findings, observations and challenges discov-
ered during the project.

First arguments for termination and correctness of the implementation will be
presented.
The next section elaborates on proving algorithms in Isabelle/HOL and the
challenges of proving an algorithm, which can take not well-formed input.
We will then take a look at the result of the algorithm and discuss the lack of an
easily readable MGU in both the original algorithm and in the implementation.
Lastly a list of missing features will be presented as inspiration for further work.

5.1 Argument for Termination and Correctness

We will now present some intuitive arguments for the Termination and Correct-
ness of the implementation, since no formal proof has been constructed for either
Termination or Correctness in Isabelle/HOL. This was due to time constraints.

32 Discussion

Termination

Termination proofs of other unification algorithms rely on the non-cyclic prop-
erty of the tree-like structure of terms, which ensures that when the terms are
processed top-down, an end is guaranteed.
This property is shared with the DAG structure used for terms in this algorithm.
Any DAG can be ordered and enumerated such that any node only has directed
edges going to nodes of ascending number. This guarantees that at some point
an end point of the graph is reached.

Figure 5.1: An example of an enumerated DAG. Note that the list to the right
shows the nodes and their edges represented as increments from
the current node. So for example [1,1] means that node 1 has an
edge to the enumerated node 1 after 1, i.e 2.

A concern one might have is that union would be able to extend the DAG
infinitely by linking to previously visited parts of the graph. This would create
a cycle which would cause non-termination.
This is however prevented by the occur check. For the cycle to be created a
variable would have to be unified with a previously used function. But since
the explicit purpose of the occur check is to prevent variables being unified with
functions in which the variables exist, any attempt to unify such a case will end
in the algorithm reporting failure and terminating.
However correctness can be affected, if Unify is given a heap already containing
a variable substituted for a function containing that variable. This will be
discussed further in Section 5.2.

Another concern might be that a loop could occur in the list of variable refer-
ences which could create a loop. Such a loop will not occur naturally due to
the use of Find before any Union call. As an example assume that someone
is actively trying to create a loop. This opponent wants to create a small loop
between x and y. So first x is unified with y. Now to create the loop, the
algorithm will need to run Union(y,x,h) where h is the heap that contains the
substitution {x → y}. But before each call to Union, Find is called to look-up

5.1 Argument for Termination and Correctness 33

the final value in the heap for any given value. This means that after x has
been unified with another term, it can never appear in Union after that point.
So such a loop can not occur in a natural run of the algorithm.
If such a loop should be presented as not well-formed input, the issue has al-
ready been addressed and handled in the Find method, so that it guarantees
termination.

Correctness

Unlike termination where progress has been made in the implementation, a
couple large theorems and concepts need to be defined before one would be able
to prove the correctness of the implemented algorithm. Thus this section serves
to help further formalization of this algorithm.
Correctness for the unification can be broken down to:

1. It returns a boolean value which is True if and only if the two terms can
be unified and False if not.

2. It returns a Heap which contains the minimal amount of substitutions for
the two terms to be unified, i.e. an MGU.

The first property can also be written as:

Unify t1 t2 h = TRUE ⇔ ∃µ t1µ = t2µ (5.1)

The argumentation for this property will be split into two parts:

Unify t1 t2 h⇒ ∃µ t1µ = t2µ (5.2)

First I would argue that if the Unify function finds a substitution for t1 and
t2 then a substitution that makes t1 and t2 identical exists. This look trivial,
but it means we have to make sure that the substitution found by the function
successfully unifies the two terms.

∃µ t1µ = t2µ⇒ Unify t1 t2 h (5.3)

Secondly I would argue that if there exist a substitution that makes t1 and t2
identical then the Unify function will find a substitution for t1 and t2.

What a unifier, and more specifically what an MGU, is needs to be defined
clearly before the second property can be proven correct. A unifier would be

34 Discussion

defined as a heap h that when applied on two termst1 t2, would make them
identical:

Unifier t1 t2 h ⇔ Substitution t1 h = Substitution t2 h (5.4)

An MGU will then be defined as:

MGU t1 t2 h ⇔
(Unifier t1 t2 h ∧ (∀h1. Unifier t2 h1 ⇒ (∃h2. h1 = Union h h2))) (5.5)

With these definitions can the following theorem be proposed:

Unify t1 t2 h = s⇒ MGU s t1 t2 (5.6)

If Theorem 5.1 and Theorem 5.6 could both be proven would a correctness proof
have been constructed for the quadratic algorithm.

Note that the current implementation does not result in an MGU. This is dis-
cussed further in Section 5.3.

5.2 Proving for Not Well-formed input

A detail not considered at the start of the project was the concept of not well-
formed input that could be passed to the functions. E.g. the unify method
takes a heap and two pointer values as input. This heap as it is implemented
could contain cycles and thus be not well-formed. However cycles should not
occur when terms are expressed naturally, because their structure resembles a
tree. But if a user where to give not well-formed input such as seen in the
test showed in Figure it could easily result in an infinite loop that compromised
termination or correctness, depending on implementation.

An algorithm might be allowed to handle some not well-formed input in normal
software as long as it is guaranteedthat through natural use of the software the
algorithm will never receive these not well-formed inputs. In most imperative
programming languages the concept of private and public methods can be used
to achieve this effect. This concept does not exist in Isabelle/HOL.
The workarounds discovered were to either:

1. change the algorithm so that it can handle or discard this not well-formed
input. This has been applied to the find method in the design used in the
implementation. This raises the question of whether termination has been
proven for the original algorithm or whether it shows a weakness in the
original design?

5.3 Finding the Most General Unifier 35

2. to limit proofs to well-formed input. At the start of a proof an assumption
can be made that the input, which the method receives, is well-formed and
simply prove the theorem using this assumption. This should still be all
one theoretically needs to feel confident in one’s algorithm since the well-
formed input can be guaranteed through other means.

An alternative approach could also be to model the data structure in such a
way that there can not be not well-formed inputs. This could be done by using
the DAG structure of the heap with natural numbers as the pointer values. The
next step would be to sort the heap and let the value in the terms be how many
nodes forward the next value is. Since this approach resembles a DAG structure
and would eliminate the possibility of loops, it is a viable option. An example
of this DAG structure can be seen in Figure 5.1 on page 32.
However, a number of wrapper methods would be needed to sort and maintain
the DAG as the algorithm ran. The run-time of these methods have not been
derived and this data-structure has not been implemented.

5.3 Finding the Most General Unifier

A problem surrounding the implemented algorithm is that the requirements of
a unification algorithm is two fold:

1. It has to be able to answer whether it is possible to unify the two terms
or not.

2. It has to be able to return a most general unifier.

While the first requirement is solved, there are still some problems with the
second requirement. The current implementation abstracts the problem to a
point where reading the most general unifier is not a simple task. This is not
unique to this implementation. The original design from the book share this
design, returning only a Boolean value.

Some wrapper functions could make the algorithm easier to use. It would help
with an initial function that could take functions written as strings such as
"f(x)" and convert it into a heap the could be used as input for the algorithm
like "[(a,Ref(Fun f [x]))]". And it could also use a concluding function that
could take the result heap and clean it up so that could be an MGU. With these
wrapper functions could this algorithm be considered a complete unification
algorithm.

36 Discussion

An alternative implementation has been implemented, which works more like
a normal substitution unification algorithm. But instead of substituting each
time, it will instead use the Find on the substitution heap. The heap resulting
from this unification should be an MGU if the algorithm does indeed create a
most general unifer. Unfortunately, due to time constraints, this has not been
proven in this project.

5.4 Future Work

Here is a list of tasks this project did not get to, which could be worked on in
the future:

1. The formal proofs for correctness and termination still needs to be im-
plemented. While termination should be fairly easy to prove with a few
lemmas, correctness would need some work. One would have to define an
MGU, and prove the result always would be MGU.

2. In the book, where the initial algorithm was found, there are also details
for reducing the worst case run-time to it being almost linear. It should
be possible to modify the current implementation such that this would
also be the case in the implementation. Like the quadratic modifications,
these changes do not strictly increase run-time, but only guarantee better
worst case scenarios.

3. If the algorithm is to see any practical use, it will need a parser that can
take two normally written terms, preferably as strings, and parse them to
the heap format needed for the algorithm. Some experiments with this
has been made and can be seen in Appendix A. These experiments tried
to clean up the output heap.

4. If an interest in increasing the efficiency of the algorithm is taken, one
could take closer look at the data-structure used for the heap. Currently
a standard linked list is used, which does not have the best possible run-
times for operations like Union, Is_in and Remove. This hurts the general
run-time of Unify.

Chapter 6

Conclusion

A DAG-based unification algorithm from the book "Term rewriting and all
that" has been implemented in Isabelle/HOL. Due to the imperative nature of
the original algorithm, the data-structure and functions used has been refitted
for the not imperative language of Isabelle/HOL. A design for implementing the
DAG to store the terms has been inspired by the article "Formal Correctness
of a Quadratic Unification Algorithm". The goal of implementing a worst case
quadratic run-time algorithm was not met due to the use of data-structures
access functions with inefficient run-times.

While a formal proof was not made for neither the unification algorithm termi-
nation nor correctness, a formalization for termination of an auxiliary function
Find has been described. The formalization process leads to a discussion on for-
malizing algorithms in Isabelle/HOL. For future formalizations of algorithms it
is recommended that before the algorithm is implemented that the programmer
reflects over how to handle these not well-formed input. One such reflection is
whether the programmer wants to use assumptions in the proof construction or
he wants to implement the algorithm such that there are no wrong inputs. This
is a choice he has to make.

The formalization process also highlighted the not ideal unifier produced by the
original algorithm. It is understandable, since it originally only was intended
to return a Boolean. While this is all that might be needed in some cases, it

38 Conclusion

does make the algorithm less useful in other implementations where the unifier
is important. Further development could be to work on an efficient parsing of
the resulting heap, such that all unnecessary elements were removed. This could
allow the unification algorithm to result in a proper MGU.

Appendix A

Code

1

1 Datatypes

datatype (′v , ′f) trm =
Var ′v
| Fun ′f 〈 ′v list〉

datatype ′a ref = Null | Ref ′a

type-synonym (′v , ′b) heap = 〈(′v × (′v , ′b) trm ref) list〉

primrec remove :: ′v × (′v , ′b) trm ref => (′v , ′b) heap => (′v , ′b) heap
where
remove m [] = []
| remove m (x#xs) = (if m = x then xs else x#(remove m xs))

primrec exist :: (′v , ′f) trm => (′v , ′f) heap => bool
where
exist m [] = False
| exist m (x#xs) = (if Ref m = (snd x) then True else (exist m xs))

primrec get :: 〈 ′v ⇒ (′v , ′f) heap ⇒ (′v , ′f) trm ref 〉

where
〈get x [] = Null 〉

| 〈get x (p#t) = (if x = fst p then snd p else get x t)〉

primrec is-in :: 〈 ′v × (′v , ′f) trm ref ⇒ (′v , ′f) heap ⇒ bool 〉

where
〈is-in x [] = False〉

| 〈is-in x (p#t) = (if x = p then True else is-in x t)〉

2 Find

function(sequential) find :: 〈 ′v ⇒ (′v , ′f) heap ⇒ (′v , ′f) trm〉

where
〈find x [] = Var x 〉

| 〈find x h = (case get x h of
Null ⇒ Var x
| Ref (Fun f args) ⇒ Fun f args
| Ref (Var v) ⇒ find v (remove (x , Ref (Var v)) h))〉

by pat-completeness auto

3 Union

primrec unin :: 〈 ′v ⇒ (′v , ′f) trm ⇒ (′v , ′f) heap ⇒ (′v , ′f) heap〉

where
〈unin x y [] = [(x ,Ref y)]〉

| 〈unin x y (t#ts) = (if x=fst t then (x ,Ref y)#ts else t#(unin x y ts))〉

2

4 Occur check

function(sequential) occ :: 〈 ′v ⇒ ′v ⇒(′v , ′f) heap ⇒((′v , ′f) heap × bool)〉

and occs :: 〈 ′v ⇒ ′v list ⇒(′v , ′f) heap ⇒ ((′v , ′f) heap ×bool)〉

where
〈occ u v h = (case ((find u h),(find v h)) of

(a,Var v) ⇒ (h,False)
| (a,Fun f args) ⇒ (occs u args (remove (v , Ref (Fun f args)) h)))〉

| 〈occs u [] h = (h,False)〉

| 〈occs u (v#vs) h = (let oc= occ u v h
in (if (u = v) ∨ snd(oc)

then (fst(oc),True)
else occs u vs (fst(oc))))〉

by pat-completeness auto
termination

sorry

fun occurs :: 〈 ′v ⇒ ′v list ⇒(′v , ′f) heap ⇒ bool 〉

where
〈occurs u v h = snd(occs u v h)〉

5 Unification Algorithm

function(sequential) unify :: 〈 ′v ⇒ ′v ⇒ (′v , ′f) heap ⇒ ((′v , ′f) heap ×
bool)〉

and unifys :: 〈 ′v list ⇒ ′v list ⇒ (′v , ′f) heap ⇒ ((′v , ′f) heap × bool)〉

where
〈unify v u h = (if v=u then (h,True) else (case ((find v h),(find u h)) of

(Var v1 ,Var v2) ⇒
(if v1 = v2 then (h,True) else ((unin v1 (Var v2) h),True))

| (Var v2 ,Fun f args) ⇒
(if (occurs v2 args h) then (h,False) else ((unin v2 (Var u) h),True))

| (Fun f args,Var v2) ⇒
(if (occurs v2 args h) then (h,False) else ((unin v2 (Var v) h),True))

| (Fun f1 args1 ,Fun f2 args2) ⇒
(if f1=f2 then unifys args1 args2 (unin v (Var u) h) else (h,False))))〉

| 〈unifys [] [] h = (h,True)〉

| 〈unifys [] (v2#vs2) h = (h,False)〉

| 〈unifys (v1#vs1) [] h = (h,False)〉

| 〈unifys (v1#vs1) (v2#vs2) h =
(let u = unify v1 v2 h
in (if (snd u) then (unifys vs1 vs2 (fst u)) else u))〉

by pat-completeness auto
termination

sorry

3

6 Parser

fun parse-heap-mgu1 :: 〈 (′v , ′f) heap ⇒ (′v , ′f) heap ⇒ (′v × (′v , ′f) trm)
list〉

where
〈parse-heap-mgu1 [] h = []〉

| 〈parse-heap-mgu1 (p#t) h = (case p of
(a,Null) ⇒ (parse-heap-mgu1 t h)
| (a,Ref (Var v)) ⇒ (case (find v h) of

(Var v2) ⇒(a,Var v2)#(parse-heap-mgu1 t h)
| (Fun f args) ⇒ (a,Fun f args)#(parse-heap-mgu1 t h))

| (a,Ref (Fun f args)) ⇒ (parse-heap-mgu1 t h))〉

fun parse-heap-mgu :: 〈 (′v , ′f) heap ⇒ (′v × (′v , ′f) trm) list〉

where 〈parse-heap-mgu h = parse-heap-mgu1 h h 〉

7 Cycle Detection

fun no-cycle1 :: 〈(′v , ′f) heap ⇒ (′v , ′f) heap ⇒ (′v , ′f) heap〉

where
〈no-cycle1 [] org = []〉

| 〈no-cycle1 ((a,b)#t) org = (if exist (Var a) org then (a,b)#(no-cycle1 t org)
else no-cycle1 t org)〉

fun no-cycle :: 〈 (′v , ′f) heap ⇒ bool 〉

where
〈no-cycle [] = True〉

| 〈no-cycle orgL = (let uptL=(no-cycle1 orgL orgL)
in (if length uptL<length orgL then no-cycle uptL else False)
)〉

lemma no-cycleProof : length(no-cycle1 x org) ≤ length x
apply (induct x)
apply simp

using nat-le-linear by auto

lemma no-cycleProof2 : set(no-cycle1 ([(x ,y)]) org) ⊆ set ([(x ,y)])
by simp

lemma no-cycleProof3 : set(no-cycle1 ([a]) org) ⊆ set ([a])
by (metis list .sel(1) list .simps(3) no-cycle1 .elims no-cycleProof2)

lemma no-cycleProof1 : set(no-cycle1 x org) ⊆ set x
apply (induct x)
apply simp
by (smt contra-subsetD dual-order .trans list .discI list .inject list .set-intros(1)

no-cycle1 .elims set-ConsD set-subset-Cons subrelI)

4

8 Proofs

lemma remove-proof : length (remove m h) ≤ length h
by (induct h, simp, simp)

lemma is-in0 : get x h = Ref x2 =⇒
is-in (x ,Ref x2) h

apply (induct h,simp)
by (metis get .simps(2) is-in.simps(2) prod .exhaust-sel)

lemma is-in1 : get x h = Ref x2 =⇒
x2 = Var x1 =⇒
is-in (x ,Ref (Var x1)) h

apply (induct h,simp)
by (meson is-in0)

lemma remove1 : is-in x h =⇒(length(remove x h) < length h)
apply (induct h,simp)
by simp

termination find
proof

let ?R = measures [λ(M , N).length N]
show wf ?R

by simp
fix x x1 :: ′a
fix x2 :: (′a, ′b) trm
fix v :: (′a × (′a, ′b) trm ref)
fix va :: (′a, ′b) heap
show〈get x (v # va) = Ref x2 =⇒

x2 = Var x1 =⇒
((x1 , remove (x , Ref (Var x1)) (v # va)), x , v # va)

∈ measures [λ(M , y). length y]〉

apply auto
by (metis is-in0 prod .collapse remove1)

qed

44 Code

Appendix B

Test

1

1 Tests

1.1 Get

value get (′′x ′′) ([])
value get (′′x ′′) ([(′′x ′′,Ref (Var ′′y ′′))])
value get (′′y ′′) ([(′′x ′′,Ref (Var ′′y ′′))])

1.2 Remove

value remove (′′x ′′,Ref (Var ′′y ′′)) ([])
value remove (′′x ′′,Ref (Var ′′y ′′)) ([(′′x ′′,Ref (Var ′′y ′′))])
value remove (′′y ′′,Ref (Var ′′y ′′)) ([(′′x ′′,Ref (Var ′′y ′′))])
value remove (′′y ′′,Ref (Fun ′′f ′′ [′′x ′′])) ([(′′y ′′,Ref (Fun ′′f ′′ [′′x ′′]))])

1.3 Find

value find ′′x ′′ ([])
value find ′′x ′′ ([(′′x ′′,Ref (Var ′′y ′′))])
value find ′′x ′′ ([(′′x ′′,Ref (Fun ′′f ′′ []))])
value find ′′x ′′ ([(′′x ′′,Ref (Var ′′y ′′)),(′′y ′′,Ref (Var ′′z ′′))])
value find ′′z ′′ ([(′′x ′′,Ref (Var ′′y ′′)),(′′y ′′,Ref (Var ′′z ′′))])
value find ′′a ′′ ([(′′x ′′,Ref (Var ′′y ′′)),(′′y ′′,Ref (Var ′′z ′′))])
value find ′′a ′′ ([(′′a ′′,Ref (Var ′′y ′′)),(′′y ′′,Ref (Var ′′a ′′))])

1.4 Union

value unin ′′x ′′ (Var ′′y ′′) ([(′′x ′′,Ref (Var ′′y ′′)),(′′y ′′,Ref (Var ′′z ′′))])
value unin ′′z ′′ (Var ′′x ′′) ([(′′x ′′,Ref (Var ′′y ′′)),(′′y ′′,Ref (Var ′′z ′′))])

1.5 Occur

value occur ′′y ′′ ′′x ′′ []
value occur ′′y ′′ ′′x ′′ [(′′x ′′,Null),(′′y ′′,Null)]
value occur ′′y ′′ ′′x ′′ [(′′x ′′,Null),(′′y ′′,Ref (Fun ′′a ′′ []))]
value occur ′′x ′′ ′′y ′′ [(′′x ′′,Null),(′′y ′′,Ref (Fun ′′f ′′ []))]
value occur ′′x ′′ ′′y ′′ [(′′x ′′,Null),(′′y ′′,Ref (Fun ′′f ′′ [′′x ′′]))]
value occur ′′x ′′ ′′y ′′ [(′′x ′′,Null),

(′′y ′′,Ref (Fun ′′f ′′ [′′z ′′])),
(′′z ′′,Ref (Fun ′′f ′′ [′′x ′′]))]

value occur ′′x ′′ ′′y ′′ [(′′x ′′,Null),
(′′y ′′,Ref (Var ′′z ′′)),
(′′z ′′,Ref (Fun ′′f ′′ [′′x ′′]))]

1.6 Unification

value unify ′′y ′′ ′′x ′′

[]

2

value unify ′′y ′′ ′′x ′′

[(′′x ′′,Null),
(′′y ′′,Null)]

value unify ′′x ′′ ′′x ′′

[(′′x ′′,Null)]
value unify ′′x ′′ ′′a ′′

[(′′x ′′,Null),
(′′a ′′,Ref (Fun ′′f ′′ []))]

value unify ′′x ′′ ′′a ′′

[(′′x ′′,Null),
(′′a ′′,Ref (Fun ′′f ′′ [′′x ′′]))]

value unify ′′x ′′ ′′a ′′

[(′′x ′′,Ref (Var ′′a ′′)),
(′′a ′′,Ref (Fun ′′f ′′ [′′x ′′]))]

value unify ′′a ′′ ′′b ′′

[(′′a ′′,Ref (Fun ′′f ′′ [])),
(′′b ′′,Ref (Fun ′′f ′′ []))]

value unify ′′x ′′ ′′a ′′

[(′′x ′′,Null),
(′′a ′′,Ref (Fun ′′f ′′ [′′x ′′]))]

value unify ′′a ′′ ′′b ′′

[(′′a ′′,Ref (Fun ′′f ′′ [′′x ′′])),
(′′b ′′,Ref (Fun ′′f ′′ [′′x ′′]))]

value unify ′′a ′′ ′′b ′′

[(′′a ′′,Ref (Fun ′′f ′′ [′′x ′′, ′′y ′′])),
(′′b ′′,Ref (Fun ′′f ′′ [′′z ′′, ′′v ′′]))]

value unify ′′a ′′ ′′b ′′

[(′′x ′′,Null),(′′y ′′,Null),(′′z ′′,Null),(′′v ′′,Null),
(′′a ′′,Ref (Fun ′′f ′′ [′′x ′′, ′′y ′′])), (∗Should return: False,∗)
(′′b ′′,Ref (Fun ′′g ′′ [′′z ′′, ′′v ′′]))]

value unify ′′a ′′ ′′b ′′

[(′′a ′′,Ref (Fun ′′f ′′ [′′x ′′, ′′x ′′])),
(′′b ′′,Ref (Fun ′′f ′′ [′′z ′′, ′′v ′′]))]

value unify ′′a ′′ ′′b ′′

[(′′x ′′,Null),(′′y ′′,Null),(′′z ′′,Null),(′′v ′′,Null),
(′′a ′′,Ref (Fun ′′f ′′ [′′x ′′, ′′y ′′, ′′z ′′])),
(′′b ′′,Ref (Fun ′′f ′′ [′′z ′′, ′′v ′′, ′′x ′′]))]

value unify ′′a ′′ ′′b ′′

[(′′x ′′,Null),(′′y ′′,Null),(′′z ′′,Null),
(′′a ′′,Ref (Fun ′′f ′′ [′′x ′′, ′′y ′′, ′′z ′′])),
(′′b ′′,Ref (Fun ′′f ′′ [′′c ′′, ′′z ′′, ′′x ′′])),
(′′c ′′,Ref (Fun ′′g ′′ []))]

value unify ′′a ′′ ′′b ′′

3

[(′′x ′′,Null),(′′y ′′,Null),(′′z ′′,Null),
(′′a ′′,Ref (Fun ′′f ′′ [′′x ′′, ′′y ′′, ′′z ′′])),
(′′b ′′,Ref (Fun ′′f ′′ [′′c ′′, ′′z ′′, ′′x ′′])),
(′′c ′′,Ref (Fun ′′g ′′ [′′z ′′]))]

value unify ′′x ′′ ′′y ′′

[(′′y ′′,Ref (Var ′′x ′′)),
(′′x ′′,Ref (Var ′′y ′′))]

value unify ′′a ′′ ′′b ′′

[(′′y ′′,Null),(′′x ′′,Null),(′′z ′′,Null),
(′′a ′′,Ref (Fun ′′f ′′ [′′c ′′, ′′x ′′])),
(′′b ′′,Ref (Fun ′′f ′′ [′′d ′′, ′′d ′′])),
(′′c ′′,Ref (Fun ′′g ′′ [′′z ′′])),
(′′d ′′,Ref (Fun ′′g ′′ [′′y ′′]))]

1.7 Cycle

value no-cycle []
value no-cycle [(′′a ′′,Ref (Var ′′b ′′))]
value no-cycle [(′′a ′′,Ref (Var ′′a ′′))]
value no-cycle [(′′a ′′,Ref (Var ′′b ′′)),(′′b ′′,Ref (Var ′′a ′′))]
value no-cycle [(′′a ′′,Ref (Var ′′b ′′)),(′′b ′′,Ref (Var ′′c ′′)),

(′′c ′′,Ref (Var ′′a ′′))]

1.8 Parser

definition test-mgu :: (char list ,char list) heap
where test-mgu=fst (unify ′′a ′′ ′′b ′′

[(′′y ′′,Null),(′′x ′′,Null),(′′z ′′,Null),
(′′a ′′,Ref (Fun ′′f ′′ [′′c ′′, ′′x ′′])),
(′′b ′′,Ref (Fun ′′f ′′ [′′d ′′, ′′d ′′])),
(′′c ′′,Ref (Fun ′′g ′′ [′′z ′′])),
(′′d ′′,Ref (Fun ′′g ′′ [′′y ′′]))])

value test-mgu
value parse-heap-mgu test-mgu

Bibliography

[BA12] Mordechai Ben-Ari. Mathematical Logic for Computer Science.
Springer, third edition edition, 2012.

[BN99] Franz Baader and Tobias Nipkow. Term rewriting and all that.
Springer, 1999.

[Coq] Description of Coq. https://coq.inria.fr/about-coq. [accessed
26-06-2017].

[Isa] Description of Isabelle/HOL. http://isabelle.in.tum.de/
overview.html. [accessed 26-12-2017].

[JLRR06] José-Antonio Alonso María-José Hidalgo José-Luis Ruiz-Reina,
Francisco-Jesús Martín-Mateos. Formal correctness of a quadratic
unification algorithm. Journal of Automated Reasoning, 37(1-2):67–
92, August 2006.

[Kra07] Alexander Krauss. Dening recursive functions in Isabelle/HOL. De-
partment of Informatics, Technische Universität München, 2007.

[MN05] Farhad Mehta and Tobias Nipkow. Proving pointer programs in
higher-order logic. Information and Computation, 199(1):200 – 227,
2005.

[Pro] Formalizing 100 Theorem. http://www.cs.ru.nl/~freek/100/.
[accessed 26-06-2017].

[RN14] Herman Geuvers Rob Nederpelt. Type theory and formal proof. Cam-
bridge University Press, page 385, 2014.

https://coq.inria.fr/about-coq
http://isabelle.in.tum.de/overview.html
http://isabelle.in.tum.de/overview.html
http://www.cs.ru.nl/~freek/100/

50 BIBLIOGRAPHY

[Thu94] William P. Thurston. On proof and progress in mathematics. Bulletin
(New Series) of the American Mathematical Society, 30(2):161–177,
April 1994.

	Summary
	Preface
	Acknowledgements
	Contents
	1 Introduction
	2 Theory
	2.1 Formalization and Theorem Proving
	2.2 Unification Algorithms
	2.2.1 Example: Exponential Unification
	2.2.2 DAG based Unification

	3 Analysis of the Problem
	3.1 From Pascal to Isabelle/HOL

	4 Design & Implementation
	4.1 Implementation
	4.1.1 Data Structure
	4.1.2 Find
	4.1.3 Union
	4.1.4 Occur Check
	4.1.5 Unify - The Core Algorithm

	4.2 Formalization
	4.2.1 Formal Proof of Termination for Find

	4.3 Testing

	5 Discussion
	5.1 Argument for Termination and Correctness
	5.2 Proving for Not Well-formed input
	5.3 Finding the Most General Unifier
	5.4 Future Work

	6 Conclusion
	A Code
	B Test
	Bibliography

