
Formalization of a near-linear time algorithm for
solving the unification problem

Kasper F. Brandt <s152156@student.dtu.dk>

Master Thesis
Project title: Proof Assistants and Formal Verification

Supervisor: Jørgen Villadsen
Technical University of Denmark

January 28, 2018

Abstract
This thesis deals with formal verification of an imperatively formulated algo-
rithm for solving first-order syntactic unification based on sharing of terms
by storing them in a DAG. A theory for working with the relevant data
structures is developed and a part of the algorithm is shown equivalent with
a functional formulation.

1

Preface
This thesis is submitted as part of the requirements for acquiring a M.Sc.
in Engineering (Computer Science and Engineering) at the Technical Uni-
versity of Denmark.

- Kasper Fabæch Brandt, January 2018

2

Contents
1 Introduction 4

1.1 Aim & Scope . 4
1.2 Overview . 4

2 Theoretical background on unification 4
2.1 Martelli, Montanari / functional version in TRaAT 5

3 Formal verification with Isabelle 6
3.1 Formalization of imperative algorithms 6

3.1.1 The heap and references 6
3.1.2 Partial functions and induction on them 8

3.2 Working with the Heap monad 10

4 Formalization of the algorithms 10
4.1 The functional version . 10
4.2 The imperative version . 10
4.3 Theory about the imperative datastructures 11

5 Soundness of the imperative version 15
5.1 Conversion of imperative terms to functional terms 15
5.2 Soundness of imperative occurs 15

6 Conclusion 16
6.1 Discussion . 16
6.2 Future work . 17

7 References 17

Appendices 17

A Isabelle theory 17
A.1 Miscellaneous theory . 17
A.2 Functional version of algorithm 18
A.3 Theory about datastructures for imperative version 27
A.4 Imperative version of algorithm 75
A.5 Equivalence of imperative and functional formulation 76

3

1 Introduction

1.1 Aim & Scope

The aim of this project is to formalize an imperative algorithm for solving
first-order syntactic unification with better time complexity than the sim-
pler functional formulation. The goal is not to show anything about the
functional definition but rather to show equivalence between the imperative
and functional definition.

The algorithm in question is given in part 4.8 of Term Rewriting and All
That[1], henceforth known as TRaAT. The algorithm has a time complexity
that is practically linear for all practical problem sizes.

A "classical" functionally formulated algorithm (i.e. Martelli, Montanari[3]
derived) is already contained in the Isabelle distribution in the HOL-ex.
Unification theory, so showing theory about the functional formulation is
not considered necessary. The almost-linear algorithm however has so far
not been formalized in Isabelle.

1.2 Overview

This report will first go into some of the theory behind unification, then it
will discuss proving in Isabelle in relation to imperative algorithms. Then
there will be taken a look at how the algorithm is formalized and how the
equivalence is shown. Finally there will be some discussion about lessons
learned and further work.

2 Theoretical background on unification
Unification is the problem of solving equations between symbolic expres-
sions. Specifically this thesis focuses on what is known as first-order unifi-
cation. An example of an instance of a problem we would like to solve could
be:

f(g(x), x) ?= f(z, a)

z
?= y

What we are given here is a set of equations S = f(g(x), x) = f(z, a), z = y
with the variables x, y, z, constant a and functions f, g. The constituent
parts of each of the expressions are called terms.

Definition 1 (Term). A term is defined recursively as:

• A variable, an unbound value. The set of variables occuring in a term
t is denoted as V ar(t). In this treatment the lowercase letters x, y and
z to are used to denote variables.

4

• A function. A function consists of a function symbol and a list of
terms. the arity of the function is given by the length of the list. In
this treatment all occurrences of a function symbol are required to have
the same arity for the problem instance to be well-formed. Functions
are in this treatment denoted by the lowercase letters f and g

• A constant. Constants are bound values that cannot be changed. Con-
stants can be represented as functions of arity zero, which simplifies
analysis and datastructures, so this representation will be used here.
Constants are denoted by the lowercase letters a, b, c in this treatment.

The lowercase letter t is used to denote terms.

The goal is now to put the equations into solved form

Definition 2 (Solved form). A unification problem S = x1 = t1, . . . , xn = tn
is in solved form if all the variables xi are pairwise distinct and none of them
occurs in any of the terms ti.

2.1 Martelli, Montanari / functional version in TRaAT

The following algorithm is presented in TRaAT and is based on the algo-
rithm given by Martelli and Montanari[3]

{t ?= t}] S =⇒ S (Delete)

{f(tn) ?= f(un)}] S =⇒ {t1
?= u1, . . . , tn

?= un} ∪ S (Decompose)

{t ?= x}] S =⇒ {x ?= t} ∪ S if t 6∈ V (Orient)

{x ?= t}] S =⇒ {x ?= t} ∪ {x 7→ t}(S) (Eliminate)
if x ∈ V ar(S)− V ar(t)

TRaAT gives a formulation in ML. Besides minor syntactical differences
and raising an exception rather than returning None is it identical to the
formulation in appendix A.2.

One interesting thing to note here is the pattern match of function in
solve is given as

s o l v e ((T(f , t s) ,T(g , us)) : : S , s)=
i f f = g then so l v e (z ip (ts , us) @ S , s) e l s e r a i s e UNIFY

Since zip truncate additional elements this will cause erroneous unifica-
tion if the arity of the functions differ, so presumably this excepts the arity
of the same function to always match.

5

3 Formal verification with Isabelle

3.1 Formalization of imperative algorithms

The language for writing functions in Isabelle is a pure function language.
This means that imperative algorithms generally cannot be written directly.
Anything with side effects must be modeled as changes in a value repre-
senting the environment instead. Isabelle has some theories for working
with imperative algorithms in the standard library, namely in the session
HOL-Imperative_HOL which is based on [1].

3.1.1 The heap and references

One of the primary causes for side-effects in imperative programs is the usage
of a heap. A heap can formally be described as a mapping from addresses to
values, this is also how it is defined in the theory HOL-Imperative_HOL.Heap:

class heap = typerep + countable

type-synonym addr = nat — untyped heap references
type-synonym heap-rep = nat — representable values

record heap =
arrays :: typerep ⇒ addr ⇒ heap-rep list
refs :: typerep ⇒ addr ⇒ heap-rep
lim :: addr

datatype ′a ref = Ref addr — note the phantom type ’a

Arrays and references are treated separately by the theory for simplicity,
however this thesis makes no usage of arrays so they can be ignored here.
refs is the map of addresses to values. A uniform treatment of all types is
made possible by representing values as natural numbers. This is necessary
since a function cannot directly be polymorphic in Isabelle. For this to work
the types on the heap must be countable. This requirement is ensured by
the functions for dereferencing and manipulating references requiring the
type parameter ’a to be of typeclass heap, which requires it to be countable.

We should note the other requirement of a type representation. A type-
rep is an identifier associated with types that uniquely identifies the type.
For types defined the usual way such as with datatype these are automati-
cally defined. The reason for this requirement is that it is necessary to know
that the type stored in refs is the same as the one read to show anything
about the value.

6

The limit value of the heap is the highest address currently allocated.
While the typerep is part of the key for the map, the address does uniquely
determine a value as long as only the provided functions for manipulating
the heap are used rather than manipulating the fields of the record directly.
Heap.alloc is used for allocating a new reference, and this function returns
a new heap with an increased limit.

To illustrate how references can be used in practice we consider a very
simple example

datatype ilist = INil |
ICons nat × ilist ref

instantiation ilist :: heap begin
instance by countable-datatype

end

function length:: heap ⇒ ilist ⇒ nat where
length h INil = 0
| length h (ICons(-, lsr)) = 1 + length h (Ref.get h lsr)
by (pat-completeness, auto)

This defines a singly linked list and a function for getting the length of
one. It should be noted that length here is a partial function because it does
not terminate if given a circular list.

A bit more complicated example could be reversing a list,

fun cons:: heap ⇒ nat ⇒ ilist ref ⇒ (ilist ref × heap) where
cons h v ls = Ref.alloc (ICons(v, ls)) h

function rev0:: ilist ref ⇒ heap ⇒ ilist ⇒ (ilist ref × heap) where
rev0 l2 h INil = (l2, h)
| rev0 l2 h (ICons(v, lsr)) = (

let ls = Ref.get h lsr in
let (l2 ′, h ′) = cons h v l2 in
rev0 l2 ′ h ′ ls)

by (pat-completeness, auto)

definition rev where rev h = (let (nilr, h ′) = Ref.alloc INil h in rev0
nilr h)

It quickly becomes clear that this is very cumbersome to write when we
have to explicitly move the modified heap along. It should also be noted

7

that Imperative-HOL does not support code generation when used this way
if we wanted to use that.

The theory HOL-Imperative_HOL.Heap_Monad defines a monad over
the raw heap which makes makes it easier and clearer to use and also sup-
ports code generation, using this the code becomes

fun cons:: nat ⇒ ilist ref ⇒ ilist ref Heap where
cons v ls = ref (ICons(v, ls))

function rev0:: ilist ref ⇒ ilist ⇒ ilist ref Heap where
rev0 l2 INil = return l2
| rev0 l2 (ICons(v, lsr)) = do {

ls ← !lsr;
l2 ′← cons v l2;
rev0 l2 ′ ls}

by (pat-completeness, auto)

definition rev where rev l = do { nilr ← ref INil; rev0 nilr l }

This is much clearer, however it still does not work so well. For one code
generation still does not work, but a bigger problem is that the generated
theorems for evaluation of the function are useless.

3.1.2 Partial functions and induction on them

As stated earlier we cannot guarantee that an ilist does not link back to
itself. This is an inherent problem in using structures with references since
we cannot directly in the type definition state that it cannot contain cyclic
reference since that would require parameterization over the heap value.

So that means that we are stuck with working with partial functions. All
functions in Isabelle are actually total[2]. What happens when a function is
declared in Isabelle without a termination proof is that all the theorems for
evaluation, usually named as (function name).simps, becomes guarded with
an assertion that the value is in the domain of the function. The same is
true for the inductions rules. For example for the rev0 function given above
gets the following theorem statement for rev0.psimps:

rev0-dom (?l2.0, INil) =⇒ rev0 ?l2.0 INil = return ?l2.0
rev0-dom (?l2.0, ICons (?v, ?lsr)) =⇒ rev0 ?l2.0 (ICons (?v, ?lsr)) =

!?lsr >>= (λls. cons ?v ?l2.0 >>= (λl2 ′. rev0 l2 ′ ls))

The >>= operator indicates monadic binding, this is what the do notation
expands to. More importantly the theorems are guarded by the rev0-dom
predicate. Now we should have been able to show which values are in the
domain. This is done by adding the (domintros) attribute to the function

8

which generate introduction theorems for the domain predicate. However in
turns out that the function package has some limitations to this functional-
ity. In this case the two theorems generated are

rev0-dom (?l2.0, INil)

and

(
∧

x xa. rev0-dom (xa, x)) =⇒ rev0-dom (?l2.0, ICons (?v, ?lsr))

The first theorem is trivial. However the second one is useless, we
can only show that the predicate holds for a value if it holds for every
value. What we need to do here is to instead use the partial_function
command[4]. Unfortunately this does not support writing functions with
pattern matching as well as mutual recursion. The lack of pattern matching
directly in the definition is easily worked around by using an explicit case
statement, however it does make the definition somewhat more unwieldy as
well as making it harder for automated tools to work with it. To implement
mutually recursive functions it becomes necessary to explicitly use a sum
type instead.

The definition of the rev0 using this becomes
fun cons:: nat ⇒ ilist ref ⇒ ilist ref Heap where
cons v ls = ref (ICons(v, ls))

partial-function (heap) rev0:: ilist ref ⇒ ilist ⇒ ilist ref Heap where
[code]:

rev0 l2 l = (
case l of
INil ⇒ return l2
| ICons(v, lsr) ⇒ do {

ls ← !lsr;
l2 ′← cons v l2;
rev0 l2 ′ ls})

definition rev where rev l = do { nilr ← ref INil; rev0 nilr l }

This generates some more useful theorems, rev0.simps becomes:
rev0 ?l2.0 ?l = (case ?l of INil ⇒ return ?l2.0 | ICons (v, lsr) ⇒ !lsr >>=

(λls. cons v ?l2.0 >>= (λl2 ′. rev0 l2 ′ ls)))

Note that there is no guard this time. Induction rules for fixpoint in-
duction are also introduced, however for the concrete problems solved here
structural induction over the datatypes are used instead.

9

3.2 Working with the Heap monad

When it comes to working with functions defined using the Heap monad a
way to talk about the result is needed. The function execute :: ′a Heap ⇒
heap ⇒ (′a × heap) option. The result of execute is an option with a tuple
consisting of the result of the function and the updated heap. The reason it
is wrapped in option is that the heap supports exceptions. This feature is
not used anywhere in the theory developed but it does make it a bit more
cumbersome to use the heap monad.

The Heap-Monad theory also contains the predicate effect :: ′a Heap ⇒
heap ⇒ heap ⇒ ′a ⇒ bool. effect x h h’ r asserts that the result of x on the
heap h is r with the modified heap h’.

The lemmas and definitions related to the value of the heap are not
added to the simp method, which means that evaluating a function using
the Heap monad becomes a somewhat standard step of using (simp add:
lookup-def tap-def bind-def return-def execute-heap).

4 Formalization of the algorithms

4.1 The functional version

The functional algorithm is a completely straightforward translation of the
one given in ML in TRaAT. Besides syntactical difference the only difference
is that this version has the result of wrapped in an option and returns None
rather than raises an exception if the problem is not unifyable.

4.2 The imperative version

The imperative version is given as Pascal code in TRaAt so it needs some
adaption.

type termP = ^term
termsP = ^terms

term = record
stamp : i n t e g e r ;

i s : termP ;
case i s v a r : boolean o f

t rue : () ;
f a l s e : (fn : s t r i n g ; args : termsP)

end ;
terms = record t : termP ; next : termsP end ;

The most direct translation would be to also define terms as records in
Isabelle, however the record command does not currently support mutual
recursion so we have to do with a regular datatype definition. The definition
is given as

10

datatype i-term-d =
IVarD
| ITermD (string × i-terms ref option)

and i-terms = ITerms (i-term ref × i-terms ref option)
and i-term = ITerm (nat × i-term ref option × i-term-d)

type-synonym i-termP = i-term ref option
type-synonym i-termsP = i-terms ref option

The references do not have a "null-pointer". They can be invalid by
pointing to addresses higher than limit, but that is not really helpful since
they would become valid once new references are allocated. So pointers are
instead modeled by ref options where None represents a null pointer.

Since Isabelle does not have the sort of tagged union with explicit tag
as Pascal do the isvar field is not directly present, rather it is implicit in
whether the data part (i-term-d) is IVarD or ITermD.

The definition of union in TRaAT merely updates the is pointer, however
since the the values are immutable we must replace the whole record on
update, so for simplicity sake a term that points to another term is always
marked as IVarD, this does not matter to the algorithm since the function
list is never read from terms with non-null is pointer. In fact in the theory
about the imperative terms we consider a term with non-null is pointer and
ITermD as data part as invalid.

The functions from TRaAT are translated as outlined outlined in sec-
tion 3.1.

4.3 Theory about the imperative datastructures

The terms needs to represent an acyclic graph for the algorithm to terminate,
this is asserted by the mutually recursively defined predicates i-term-acyclic
and i-terms-acyclic:

inductive i-term-acyclic:: heap ⇒ i-termP ⇒ bool and
i-terms-acyclic:: heap ⇒ i-termsP ⇒ bool where

t-acyclic-nil: i-term-acyclic - None |
t-acyclic-step-link:
i-term-acyclic h t =⇒
Ref.get h tref = ITerm(-, t, IVarD) =⇒
i-term-acyclic h (Some tref) |

t-acyclic-step-ITerm:
i-terms-acyclic h tsref =⇒
Ref.get h tref = ITerm(-, None, ITermD(-, tsref)) =⇒

11

i-term-acyclic h (Some tref) |
ts-acyclic-nil: i-terms-acyclic - None |
ts-acyclic-step-ITerms:
i-terms-acyclic h ts2ref =⇒
i-term-acyclic h (Some tref) =⇒
Ref.get h tsref = ITerms (tref, ts2ref) =⇒
i-terms-acyclic h (Some tsref)

As noted earlier terms representing a function (with ITermD) are only
considered valid if the is pointer is null (i.e. None).

A form of total induction is required where we can take as induction
hypothesis that a predicate is true for every term "further down" in the
DAG. The base of this is the i-term-closure set. This is to be understood as
the transitive closure of referenced terms.

inductive-set i-term-closure for h:: heap and tp:: i-termP where
Some tr = tp =⇒ tr ∈ i-term-closure h tp |
tr ∈ i-term-closure h tp =⇒
Ref.get h tr = ITerm(-, Some is, -) =⇒
is ∈ i-term-closure h tp |

tr ∈ i-term-closure h tp =⇒
Ref.get h tr = ITerm(-, None, ITermD(-, tsp)) =⇒
tr2 ∈ i-terms-set h tsp =⇒
tr2 ∈ i-term-closure h tp

Related to this are the i-terms-sublists and i-term-chain. The former
gives the set of i-terms referenced from a i-terms, i.e. the sublists of the
list represented by the i-terms. The latter gives the set of terms traversed
through the is pointers from a given term. Derived from i-terms-sublists
is also define i-terms-set which is the set of terms referenced by the list.
Closure and sublists over i-terms are also defined

abbreviation i-term-closures where
i-term-closures h trs ≡ (∗

⋃
(i-term-closure h ‘ Some ‘ trs)∗)

UNION (Some ‘ trs) (i-term-closure h)

abbreviation i-terms-closure where
i-terms-closure h tsp ≡ i-term-closures h (i-terms-set h tsp)

abbreviation i-term-sublists where
i-term-sublists h tr ≡ i-terms-sublists h (get-ITerm-args (Ref.get h tr))

abbreviation i-term-closure-sublists where

12

i-term-closure-sublists h tp ≡ (∗
⋃

(i-term-sublists h ‘ i-term-closure h
tr)∗)

(
⋃
tr ′∈i-term-closure h tp. i-term-sublists h tr ′)

abbreviation i-terms-closure-sublists where
i-terms-closure-sublists h tsp ≡ (∗

⋃
(i-term-sublists h ‘ i-terms-closure

h tsp)∗)
i-terms-sublists h tsp ∪ (

⋃
tr∈i-terms-closure h tsp. i-term-sublists h

tr)

To meaningfully work with changes to the heap we need a predicate
asserting that the structure of a term graph is unchanged, this is captured
by heap-only-stamp-changed.

abbreviation i-term-closures where
i-term-closures h trs ≡ UNION (Some ‘ trs) (i-term-closure h)

abbreviation i-terms-closure where
i-terms-closure h tsp ≡ i-term-closures h (i-terms-set h tsp)

abbreviation i-term-sublists where
i-term-sublists h tr ≡ i-terms-sublists h (get-ITerm-args (Ref.get h tr))

abbreviation i-term-closure-sublists where
i-term-closure-sublists h tp ≡ (

⋃
tr ′∈i-term-closure h tp. i-term-sublists

h tr ′)

abbreviation i-terms-closure-sublists where
i-terms-closure-sublists h tsp≡ i-terms-sublists h tsp ∪ (

⋃
tr∈i-terms-closure

h tsp. i-term-sublists h tr)

More specifically it asserts that only changes to terms in the set trs are
made, and the only the stamp value is changed, and no changes are made to
any i-terms and nats. This is used as basis for a total induction rule where
the induction hypothesis asserts that the predicate is true for every term
further down the graph and every heap where that the closure of that term
is unchanged.

lemma acyclic-closure-ch-stamp-inductc ′ [consumes 1,
case-names var link args terms-nil terms]:

fixes h:: heap
and tr:: i-term ref

13

and P1:: heap ⇒ i-term ref set ⇒ i-term ref ⇒ bool
and P2:: heap ⇒ i-term ref set ⇒ i-termsP ⇒ bool

assumes acyclic: i-term-acyclic h (Some tr)
and var-case:

∧
h trs tr s.

Ref.get h tr = ITerm(s, None, IVarD) =⇒
P1 h trs tr

and link-case:
∧
h trs tr isr s.

(
∧
t2r h ′ trs ′.
trs ⊆ trs ′ =⇒
heap-only-stamp-changed trs ′ h h ′ =⇒
t2r ∈ i-term-closure h (Some isr) =⇒
P1 h ′ trs ′ t2r) =⇒

Ref.get h tr = ITerm(s, Some isr, IVarD) =⇒
P1 h trs tr

and args-case:
∧
h trs tr tsp s f.

(
∧
h ′ trs ′.
trs ⊆ trs ′ =⇒
heap-only-stamp-changed trs ′ h h ′ =⇒
P2 h ′ trs ′ tsp) =⇒

(
∧
h ′ trs ′ t2r0 t2r.
trs ⊆ trs ′ =⇒
heap-only-stamp-changed trs ′ h h ′ =⇒
t2r ∈ i-term-closure h (Some t2r0) =⇒
t2r0 ∈ i-terms-set h tsp =⇒
P1 h ′ trs ′ t2r) =⇒

Ref.get h tr = ITerm(s, None, ITermD(f, tsp)) =⇒
P1 h trs tr

and terms-nil-case:
∧
h trs. P2 h trs None

and terms-case:
∧
h trs tr tsr tsnextp.

(
∧
h ′ trs ′.
trs ⊆ trs ′ =⇒
heap-only-stamp-changed trs ′ h h ′ =⇒
P2 h ′ trs ′ tsnextp) =⇒

(
∧
h ′ trs ′ t2r.
trs ⊆ trs ′ =⇒
heap-only-stamp-changed trs ′ h h ′ =⇒
t2r ∈ i-term-closure h (Some tr) =⇒
P1 h ′ trs ′ t2r) =⇒

Ref.get h tsr = ITerms (tr, tsnextp) =⇒
P2 h trs (Some tsr)

shows P1 h trs tr

14

5 Soundness of the imperative version
It is shown that the imperative version of the occurs is equivalent to the
functional version. More specifically it is shown that given a wellformed
i-term then the imperative version of occurs gives the same result as the
functional version on the terms converted into their "functional" version. It
is not shown that functional terms converted into imperative still gives the
same result so it only shows soundness (relative to the functional formula-
tion).

5.1 Conversion of imperative terms to functional terms

The function i-term-to-term-p converts i-term and i-terms into term and
term list. The imperative terms does not contains names for the variables
so we have to invent names for them. This is done by naming them as x
followed by the heap address of the term.

i-term-to-term-p needs to be defined as a single function taking a sum
type of i-term and i-terms because of the limitation of partial_function
not allowing mutually recursive definitions. Separate i-term-to-term and i-
terms-to-terms functions are defined and simpler evaluation rules are shown.

It is also shown that the term conversion functions are unaffected by
changing the stamp of terms which is necessary in the proof for soundness
of the imperative occurs.

5.2 Soundness of imperative occurs

The i-occ-p of a term is shown to equivalent to the occurs function on the
term converted to its functional version given the following is satisfied:

1. The term, tr, must be acyclic

2. The variable to check for occuring, vr, must indeed be a variable

3. The stamp of all terms must be less than the current time

1. is asserted by i-term-acyclic and 3. is asserted by predicate stamp-
current-not-occurs.

To show this it was necessary to identify which invariants holds. On
entering with a term (representing occ) the above holds. When returning it
holds that

1. The result is the same as occurs on the converted term.

2. Only changes are made to terms in the closure of tr and only the stamp
is changed.

15

3. Either the stamp of all terms in the closure of tr are less than the
current time, or vr did occur in tr.

On entering with a term list, tsp, (this corresponds to the occs function)
the following holds

1. vr must be a variable under the current heap

2. For all terms in the list tsp the current stamp (i.e. time) does not
occur.

3. tsp is acyclic

When returning it holds that

1. The result is whether vr occurs in any of the terms in tsp converted
to functional terms.

2. Either the stamp of all terms in the closure of tsp are less than the
current time, or vr did occur in one of the terms of tsp.

Since this proofs demonstrates that the algorithm always have a value
when the requirements are fulfilled it also implicitly shows termination.

The final thing shown is that i-occurs is equivalent to the occurs function
on the term converted to its functional version. The requirements are the
same except that all stamps must be less than or equal to the time - since the
function is adding one to time before calling i-occ-p. Besides the equivalence
it is also shown that the resulting heap has 1 added to time and otherwise
the only changes are to the stamp of terms in the closure of tr, and that
the current time (after increment) either not occurs in the new heap or the
occurs check is true.

6 Conclusion

6.1 Discussion

It was originally the goal to show full equivalence between the imperative
DAG based algorithm and the functional algorithm. However it turned out
to be incredibly difficult to work with imperative algorithms this way. A de-
velopment of no less than 3300 lines of Isabelle code was necessary just to be
able to reasonably work with the data structures. To add to that the lack of
natural induction rules because of the partiality makes the function defini-
tions harder to work with, as well as the function definitions being unwieldy
because of the lack of support for mutual recursion and pattern matching
directly in the function definition for the partial_function method. The

16

fact that any updates to references changes the heap also makes it very diffi-
cult to work with because it must be shown for every function whether they
are affected by those specific changes to the heap.

Other approaches that might be worth looking into for working with
imperative algorithms are the support for Hoare triples and using refine-
ment frameworks. Hoare triples can often be more natural to work with
for imperative algorithms. Refinement frameworks allows defining an algo-
rithm in an abstract way and refining into equivalent concrete algorithms
that may be harder to work with directly. The latter was attempted in the
development of this thesis, however it was eventually dropped due to a large
amount of background knowledge necessary combined with a lack of good
documentation and examples.

6.2 Future work

Completeness of the occurs check relative to the functional definition as well
as an equivalence proof of solve and unify would be obvious targets for future
work. It may also be worth to look into the feasibility of other approaches.

7 References
[1] L. Bulwahn, A. Krauss, F. Haftmann, L. Erkök, and J. Matthews. Im-

perative Functional Programming with Isabelle/HOL. In Proceedings of
the 21st International Conference on Theorem Proving in Higher Order
Logics, TPHOLs ’08, pages 134–149, Berlin, Heidelberg, 2008. Springer-
Verlag.

[2] A. Krauss. Defining Recursive Functions in Isabelle/HOL. http://
isabelle.in.tum.de/dist/Isabelle2017/doc/functions.pdf, 08 2017.

[3] A. Martelli and U. Montanari. An efficient unification algorithm. ACM
Trans. Program. Lang. Syst., 4(2):258–282, Apr. 1982.

[4] M. Wenzel and T. Munchen. The Isabelle/Isar Reference Manual. http:
//isabelle.in.tum.de/dist/Isabelle2017/doc/isar-ref.pdf, 08 2017.

Appendices
A Isabelle theory

A.1 Miscellaneous theory
theory Unification-Misc
imports Main

17

http://isabelle.in.tum.de/dist/Isabelle2017/doc/functions.pdf
http://isabelle.in.tum.de/dist/Isabelle2017/doc/functions.pdf
http://isabelle.in.tum.de/dist/Isabelle2017/doc/isar-ref.pdf
http://isabelle.in.tum.de/dist/Isabelle2017/doc/isar-ref.pdf

begin

zipping two lists and retrieving one of them back by mapping fst or snd
results in the original list, possibly truncated
lemma sublist-map-fst-zip:
fixes xs:: ′a list
and ys:: ′a list

obtains xss
where (map fst (zip xs ys)) @ xss = xs

by (induct xs ys rule:list-induct2 ′, auto)

lemma sublist-map-snd-zip:
fixes xs:: ′a list
and ys:: ′a list

obtains yss
where (map snd (zip xs ys)) @ yss = ys

by (induct xs ys rule:list-induct2 ′, auto)

end

A.2 Functional version of algorithm
theory Unification-Functional
imports Main

Unification-Misc
begin

type-synonym vname = string × int

datatype term =
V vname
| T string × term list

type-synonym subst = (vname × term) list

definition indom :: vname ⇒ subst ⇒ bool where
indom x s = list-ex (λ(y, -). x = y) s

fun app :: subst ⇒ vname ⇒ term where
app ((y,t)#s) x = (if x = y then t else app s x) |
app [] - = undefined

fun lift :: subst ⇒ term ⇒ term where
lift s (V x) = (if indom x s then app s x else V x)
| lift s (T (f ,ts)) = T (f , map (lift s) ts)

fun occurs :: vname ⇒ term ⇒ bool where
occurs x (V y) = (x = y)
| occurs x (T (-,ts)) = list-ex (occurs x) ts

18

context
begin
private definition vars :: term list ⇒ vname set where
vars S = {x. ∃ t ∈ set S . occurs x t}

private lemma vars-nest-eq:
fixes ts :: term list
and S :: term list
and vn :: string

shows vars (ts @ S) = vars (T (vn, ts) # S)
unfolding vars-def
by (induction ts, auto)

private lemma vars-concat:
fixes ts:: term list
and S :: term list

shows vars (ts @ S) = vars ts ∪ vars S
unfolding vars-def
by (induction ts, auto)

private definition vars-eqs :: (term × term) list ⇒ vname set where
vars-eqs l = vars (map fst l) ∪ vars (map snd l)

lemma vars-eqs-zip:
fixes ts:: term list
and us:: term list
and S :: term list

shows vars-eqs (zip ts us) ⊆ vars ts ∪ vars us
using vars-concat sublist-map-fst-zip sublist-map-snd-zip vars-eqs-def
by (metis (no-types, hide-lams) Un-subset-iff sup.cobounded1 sup.coboundedI2)

private lemma vars-eqs-concat:
fixes ts:: (term × term) list
and S :: (term × term) list

shows vars-eqs (ts @ S) = vars-eqs ts ∪ vars-eqs S
using vars-concat vars-eqs-def by auto

private lemma vars-eqs-nest-subset:
fixes ts :: term list
and us :: term list
and S :: (term × term) list
and vn :: string
and wn :: string

shows vars-eqs (zip ts us @ S) ⊆ vars-eqs ((T (vn, ts), T (wn, us)) # S)
proof −
have vars-eqs ((T (vn, ts), T (wn, us)) # S) = vars ts ∪ vars us ∪ vars-eqs S
using vars-concat vars-eqs-def vars-nest-eq by auto

then show ?thesis

19

using vars-eqs-concat vars-eqs-zip by fastforce
qed

private definition n-var :: (term × term) list ⇒ nat where
n-var l = card (vars-eqs l)

private lemma var-eqs-finite:
fixes ts
shows finite (vars-eqs ts)

proof −
{
fix t
have finite ({x. occurs x t})
proof (induction t rule: occurs.induct)
case (1 x y)
then show ?case by simp

next
case (2 x fn ts)
have {x. occurs x (T (fn, ts))} = vars ts
using vars-def Bex-set-list-ex
by fastforce

then show ?case using vars-def 2 .IH by simp
qed

}
then show ?thesis
using vars-def vars-eqs-def by simp

qed

private lemma vars-eqs-subset-n-var-le:
fixes S1 :: (term × term) list
and S2 :: (term × term) list

assumes vars-eqs S1 ⊆ vars-eqs S2
shows n-var S1 ≤ n-var S2
using assms var-eqs-finite n-var-def
by (simp add: card-mono)

private lemma vars-eqs-psubset-n-var-lt:
fixes S1 :: (term × term) list
and S2 :: (term × term) list

assumes vars-eqs S1 ⊂ vars-eqs S2
shows n-var S1 < n-var S2
using assms var-eqs-finite n-var-def
by (simp add: psubset-card-mono)

private fun fun-count :: term list ⇒ nat where
fun-count [] = 0
| fun-count ((V -)#S) = fun-count S
| fun-count (T (-,ts)#S) = 1 + fun-count ts + fun-count S

20

private lemma fun-count-concat:
fixes ts:: term list
and us:: term list

shows fun-count (ts @ us) = fun-count ts + fun-count us
proof (induction ts)
case Nil
then show ?case
by force

next
case (Cons a ts)
show ?case
proof (cases a)
case (V -)
then have fun-count ((a # ts) @ us) = fun-count (ts @ us)
by simp

then show ?thesis
by (simp add: Cons.IH V)

next
case (T x)
then obtain fn ts ′ where ts ′-def : x=(fn, ts ′)
by fastforce

then have fun-count ((a # ts) @ us) = 1 + fun-count (ts @ us) + fun-count
ts ′

by (simp add: T)
then show ?thesis
by (simp add: Cons.IH T ts ′-def)

qed
qed

private definition n-fun :: (term × term) list ⇒ nat where
n-fun l = fun-count (map fst l) + fun-count (map snd l)

private lemma n-fun-concat:
fixes ts us
shows n-fun (ts @ us) = n-fun ts + n-fun us
unfolding n-fun-def using fun-count-concat
by simp

private lemma n-fun-nest-head:
fixes ts g us S
shows n-fun (zip ts us @ S) + 2 ≤ n-fun ((T (g, ts), T (g, us)) # S)

proof −
let ?trunc-ts = (map fst (zip ts us))
let ?trunc-us = (map snd (zip ts us))
have trunc-sum: n-fun ((T (g, ?trunc-ts), T (g, ?trunc-us)) # S) = 2 + n-fun

(zip ts us @ S)
using n-fun-concat n-fun-def by auto

obtain tsp where ts-rest: (map fst (zip ts us)) @ tsp = ts by (fact sublist-map-fst-zip)

21

obtain usp where us-rest: (map snd (zip ts us)) @ usp = us by (fact sublist-map-snd-zip)
have fun-count [T (g, ?trunc-ts)] + fun-count tsp = fun-count [T (g, ts)]
using ts-rest fun-count-concat
by (metis add.assoc add.right-neutral fun-count.simps(1) fun-count.simps(3))

moreover have fun-count [T (g, ?trunc-us)] + fun-count usp = fun-count [T (g,
us)]

using us-rest fun-count-concat
by (metis add.assoc add.right-neutral fun-count.simps(1) fun-count.simps(3))

ultimately have n-fun [(T (g, ?trunc-ts), T (g, ?trunc-us))] + fun-count tsp +
fun-count usp =

fun-count [T (g, ts)] + fun-count [T (g, us)]
by (simp add: n-fun-def)

then have n-fun ((T (g, ?trunc-ts), T (g, ?trunc-us)) # S) + fun-count tsp +
fun-count usp =

n-fun ((T (g, ts), T (g, us)) # S)
using n-fun-def n-fun-concat by simp

from this and trunc-sum show ?thesis by simp
qed

private abbreviation (noprint) liftmap v t S ′ ≡
map (λ(t1 , t2). (lift [(v, t)] t1 , lift [(v, t)] t2)) S ′

private lemma lift-elims:
fixes x :: vname
and t :: term
and t0 :: term

assumes ¬ occurs x t
shows ¬ occurs x (lift [(x, t)] t0)

proof (induction [(x, t)] t0 rule: lift.induct)
case (1 x)
then show ?case
by (simp add: assms indom-def vars-def)

next
case (2 f ts)
{
fix v
assume occurs v (lift [(x, t)] (T (f , ts)))
then have list-ex (occurs v) (map (lift [(x,t)]) ts)
by simp

then obtain t1 where t1-def : t1 ∈ set (map (lift [(x,t)]) ts) ∧ occurs v t1
by (meson Bex-set-list-ex)

then obtain t1 ′ where t1 = lift [(x,t)] t1 ′ ∧ t1 ′ ∈ set ts by auto

then have ∃ t1∈set ts. occurs v (lift [(x,t)] t1)
using t1-def by blast

}
then show ?case
using 2 .hyps by blast

qed

22

private lemma lift-inv-occurs:
fixes x :: vname
and v :: vname
and st :: term
and t :: term

assumes occurs v (lift [(x, st)] t)
and ¬ occurs v st
and v 6= x

shows occurs v t
using assms proof (induction t rule: occurs.induct)
case (1 v y)
have lift [(x, st)] (V y) = V y
using 1 .prems indom-def by auto

then show ?case
using 1 .prems(1) by auto

next
case (2 x f ts)
then show ?case
by (metis (mono-tags, lifting) Bex-set-list-ex imageE lift.simps(2) occurs.simps(2)

set-map)
qed

private lemma vars-elim:
fixes x st S
assumes ¬ occurs x st
shows vars (map (lift [(x,st)]) S) ⊆ vars [st] ∪ vars S ∧

x /∈ vars (map (lift [(x,st)]) S)
proof (induction S)
case Nil
then show ?case
by (simp add: vars-def)

next
case (Cons tx S)
moreover have vars (map (lift [(x, st)]) (tx # S)) =
vars [lift [(x,st)] tx] ∪ vars (map (lift [(x, st)]) S)
using vars-concat
by (metis append.left-neutral append-Cons list.simps(9))

moreover have vars [st] ∪ vars (tx # S) = vars [st] ∪ vars S ∪ vars [tx]
using vars-concat
by (metis append.left-neutral append-Cons sup-commute)

moreover {
fix v
assume v-mem-vars-lift: v ∈ vars [lift [(x,st)] tx]
have v-neq-x: v 6= x using lift-elims assms v-mem-vars-lift vars-def
by fastforce

moreover have v ∈ vars [st] ∪ vars [tx]
proof (cases)
assume occurs v st

23

then show ?thesis unfolding vars-def by simp
next
assume not-occurs-v-st: ¬occurs v st
have occurs v (lift [(x, st)] tx)
using v-mem-vars-lift vars-def by force

then have occurs v tx using lift-inv-occurs
using v-neq-x not-occurs-v-st by blast

then show ?thesis
by (simp add: vars-def)

qed
ultimately have v ∈ vars [st] ∪ vars [tx] ∧ v 6= x by simp

}
ultimately show ?case by blast

qed

private lemma n-var-elim:
fixes x st S
assumes ¬ occurs x st
shows n-var (liftmap x st S) < n-var ((V x, st) # S)

proof −
have

∧
l f . map fst (map (λ(t1 , t2). (f t1 , f t2)) l) = map f (map fst l)

by (simp add: case-prod-unfold)
moreover have

∧
l f . map snd (map (λ(t1 , t2). (f t1 , f t2)) l) = map f (map

snd l)
by (simp add: case-prod-unfold)

ultimately have lhs-split: vars-eqs (liftmap x st S) =
vars (map (lift [(x,st)]) (map fst S)) ∪ vars (map (lift [(x,st)]) (map snd S))
unfolding vars-eqs-def by metis

have vars-eqs ((V x, st) # S) = vars-eqs [(V x, st)] ∪ vars-eqs S
using vars-eqs-concat
by (metis append-Cons self-append-conv2)

moreover have vars-eqs [(V x, st)] = {x} ∪ vars [st]
unfolding vars-eqs-def using vars-def occurs.simps(1) by force

ultimately have rhs-eq1 : vars-eqs ((V x, st) # S) = {x} ∪ vars [st] ∪ vars-eqs
S

by presburger
then have rhs-eq2 :
vars-eqs ((V x, st) # S) = {x} ∪ vars [st] ∪ vars (map fst S) ∪ vars (map snd

S)
unfolding vars-eqs-def
by (simp add: sup.assoc)

from this lhs-split vars-elim assms
have vars-eqs (liftmap x st S) ⊆ vars [st] ∪ vars-eqs S ∧

x /∈ vars-eqs (liftmap x st S)
using vars-concat vars-eqs-def by (metis map-append)

moreover have x ∈ vars-eqs ((V x, st) # S)
by (simp add: rhs-eq2)

24

ultimately have vars-eqs (liftmap x st S) ⊂ vars-eqs ((V x, st) # S)
using rhs-eq1 by blast

then show ?thesis using vars-eqs-psubset-n-var-lt by blast
qed

function (sequential) solve :: (term × term) list × subst ⇒ subst option
and elim :: vname × term × (term × term) list × subst ⇒ subst option where
solve([], s) = Some s
| solve((V x, t) # S , s) = (

if V x = t then solve(S ,s) else elim(x,t,S ,s))
| solve((t, V x) # S , s) = elim(x,t,S ,s)
| solve((T (f ,ts),T (g,us)) # S , s) = (

if f = g then solve((zip ts us) @ S , s) else None)

| elim(x,t,S ,s) = (
if occurs x t then None
else let xt = lift [(x,t)]
in solve(map (λ (t1 ,t2). (xt t1 , xt t2)) S ,

(x,t) # (map (λ (y,u). (y, xt u)) s)))
by pat-completeness auto

termination proof (
relation

(λXX . case XX of Inl(l,-) ⇒ n-var l | Inr(x,t,S ,-) ⇒ n-var ((V x, t)#S))
<∗mlex∗>

(λXX . case XX of Inl(l,-) ⇒ n-fun l | Inr(x,t,S ,-) ⇒ n-fun ((V x, t)#S))
<∗mlex∗>

(λXX . case XX of Inl(l,-) ⇒ size l | Inr(x,t,S ,-) ⇒ size ((V x, t)#S))
<∗mlex∗>

(λXX . case XX of Inl(l,-) ⇒ 1 | Inr(x,t,S ,-) ⇒ 0) <∗mlex∗>
{},

auto simp add: wf-mlex mlex-less mlex-prod-def)
have

∧
v S . vars-eqs S ⊆ vars-eqs ((V v, V v)#S)

using vars-eqs-def vars-def by force
then show

∧
a b S . ¬ n-var S < n-var ((V (a, b), V (a, b)) # S) =⇒

n-var S = n-var ((V (a, b), V (a, b)) # S)
using vars-eqs-subset-n-var-le by (simp add: nat-less-le)

show
∧
a b S . ¬ n-var S < n-var ((V (a, b), V (a, b)) # S) =⇒
n-fun S 6= n-fun ((V (a, b), V (a, b)) # S) =⇒
n-fun S < n-fun ((V (a, b), V (a, b)) # S)

using n-fun-def by simp

have
∧
tx v. vars-eqs [(V v, T tx)] = vars-eqs [(T tx, V v)]

using vars-eqs-def
by (simp add: sup-commute)

then have
∧
tx v S . vars-eqs ((V v, T tx) # S) = vars-eqs ((T tx, V v) # S)

using vars-eqs-concat
by (metis append-Cons self-append-conv2)

then have
∧
a b v S . n-var ((V v, T (a, b)) # S) = n-var ((T (a, b), V v) #

25

S)
unfolding n-var-def vars-eqs-def
by presburger

then show
∧
a b aa ba S .

¬ n-var ((V (aa, ba), T (a, b)) # S) < n-var ((T (a, b), V (aa, ba)) # S)
=⇒

n-var ((V (aa, ba), T (a, b)) # S) = n-var ((T (a, b), V (aa, ba)) # S)
by simp

show
∧
a b aa ba S .

¬ n-var ((V (aa, ba), T (a, b)) # S) < n-var ((T (a, b), V (aa, ba)) # S)
=⇒

n-fun ((V (aa, ba), T (a, b)) # S) 6= n-fun ((T (a, b), V (aa, ba)) # S) =⇒
n-fun ((V (aa, ba), T (a, b)) # S) < n-fun ((T (a, b), V (aa, ba)) # S)

by (simp add: n-fun-def)

show
∧
ts g us S . ¬ n-var (zip ts us @ S) < n-var ((T (g, ts), T (g, us)) # S)

=⇒
n-var (zip ts us @ S) = n-var ((T (g, ts), T (g, us)) # S)

using vars-eqs-nest-subset vars-eqs-subset-n-var-le le-neq-implies-less by meson

have n-fun-nested-gt:
∧
ts g us S . n-fun (zip ts us @ S) < n-fun ((T (g, ts), T

(g, us)) # S)
using n-fun-nest-head
by (metis add-leD1 le-neq-implies-less add-2-eq-Suc ′ leD less-Suc-eq)

show
∧
ts g us S .

¬ n-var (zip ts us @ S) < n-var ((T (g, ts), T (g, us)) # S) =⇒
¬ n-fun (zip ts us @ S) < n-fun ((T (g, ts), T (g, us)) # S) =⇒
n-fun (zip ts us @ S) = n-fun ((T (g, ts), T (g, us)) # S)

using n-fun-nested-gt by meson

show
∧
ts g us S .

¬ n-var (zip ts us @ S) < n-var ((T (g, ts), T (g, us)) # S) =⇒
¬ n-fun (zip ts us @ S) < n-fun ((T (g, ts), T (g, us)) # S) =⇒
min (length ts) (length us) = 0

using n-fun-nested-gt by blast

show
∧
x t S .

¬ occurs x t =⇒
¬ n-var (liftmap x t S) < n-var ((V x, t) # S) =⇒
n-var (liftmap x t S) = n-var ((V x, t) # S)

using n-var-elim leD linorder-neqE-nat by blast

show
∧
x t S .

¬ occurs x t =⇒
¬ n-var (liftmap x t S) < n-var ((V x, t) # S) =⇒
n-fun (liftmap x t S) 6= n-fun ((V x, t) # S) =⇒
n-fun (liftmap x t S) < n-fun ((V x, t) # S)

using n-var-elim by simp

26

qed

end

end

A.3 Theory about datastructures for imperative version
theory ITerm
imports Main
HOL−Imperative-HOL.Ref
HOL−Imperative-HOL.Heap-Monad

begin

datatype i-term-d =
IVarD
| ITermD (string × i-terms ref option)

and i-terms = ITerms (i-term ref × i-terms ref option)
and i-term = ITerm (nat × i-term ref option × i-term-d)

instantiation i-term :: heap begin
instance by countable-datatype

end

instantiation i-terms :: heap begin
instance by countable-datatype

end

lemma typerep-term-neq-terms: TYPEREP(i-term) 6= TYPEREP(i-terms)
using typerep-i-terms-def typerep-i-term-def by fastforce

lemma typerep-term-neq-nat: TYPEREP(i-term) 6= TYPEREP(nat)
using typerep-i-term-def typerep-nat-def by fastforce

lemma typerep-terms-neq-nat: TYPEREP(i-terms) 6= TYPEREP(nat)
using typerep-i-terms-def typerep-nat-def by fastforce

definition is-IVar where is-IVar t =
(case t of ITerm(-, -, IVarD) ⇒ True | - ⇒ False)

definition get-ITerm-args where get-ITerm-args t =
(case t of ITerm(-, -, ITermD (-, tn)) ⇒ tn | - ⇒ None)

fun get-is where
get-is-def : get-is t (ITerm(-, is, -)) = is

fun get-stamp where
get-stamp-def : get-stamp (ITerm(s, -, -)) = s

lemma get-stamp-iff-ex:
fixes t s shows (get-stamp t = s) ←→ (∃ is d. t = ITerm(s, is, d))
by (cases t, cases, blast, force)

27

lemma get-ITerm-args-iff-ex:
shows (get-ITerm-args t = tsp) ←→

(∃ s is d. t = ITerm(s, is, d) ∧ (
(tsp = None ∧ d = IVarD) ∨
(∃ f . d = ITermD(f , tsp))))

proof −
obtain s is d where t = ITerm(s, is, d)
by (metis i-term.exhaust surj-pair)

then show ?thesis unfolding get-ITerm-args-def
by (cases d rule: i-term-d.exhaust; force)

qed

type-synonym i-termP = i-term ref option
type-synonym i-termsP = i-terms ref option

inductive i-term-acyclic:: heap ⇒ i-termP ⇒ bool and
i-terms-acyclic:: heap ⇒ i-termsP ⇒ bool where

t-acyclic-nil: i-term-acyclic - None |
t-acyclic-step-link:
i-term-acyclic h t =⇒
Ref .get h tref = ITerm(-, t, IVarD) =⇒
i-term-acyclic h (Some tref) |

t-acyclic-step-ITerm:
i-terms-acyclic h tsref =⇒
Ref .get h tref = ITerm(-, None, ITermD(-, tsref)) =⇒
i-term-acyclic h (Some tref) |

ts-acyclic-nil: i-terms-acyclic - None |
ts-acyclic-step-ITerms:
i-terms-acyclic h ts2ref =⇒
i-term-acyclic h (Some tref) =⇒
Ref .get h tsref = ITerms (tref , ts2ref) =⇒
i-terms-acyclic h (Some tsref)

lemma acyclic-terms-term-simp [simp]:
fixes tr :: i-term ref
and termsp
and terms
and s:: nat
and h:: heap

assumes acyclic: i-term-acyclic h (Some tr)
and get-tr : Ref .get h tr = ITerm (s, None, ITermD(f , termsp))

shows i-terms-acyclic h termsp
proof −
consider

(a) h ′ where h = h ′ ∧ (Some tr) = None |
(b) h ′ t tref s ′ where
h ′ = h ∧ (Some tr) = Some tref ∧
i-term-acyclic h t ∧

28

Ref .get h tref = ITerm (s ′, t, IVarD) |
(c) h ′ tsref tref s ′ f ′ where
h ′ = h ∧ (Some tr) = Some tref ∧
i-terms-acyclic h tsref ∧
Ref .get h tref = ITerm (s ′, None, ITermD (f ′, tsref))

using i-term-acyclic.simps acyclic by fast
then show ?thesis using get-tr
by (cases, fastforce+)

qed

lemma acyclic-terms-terms-simp [simp]:
fixes tsr :: i-terms ref
and tthis:: i-term ref
and tnext:: i-termsP
and h:: heap

assumes acyclic: i-terms-acyclic h (Some tsr)
and get-termsr : Ref .get h tsr = ITerms (tthis, tnext)

shows i-terms-acyclic h tnext
proof −
consider (a) (Some tsr) = None |

(b) tref where
i-term-acyclic h (Some tref) ∧
Ref .get h tsr = ITerms (tref , None) |

(c) ts2ref tref where
i-terms-acyclic h ts2ref ∧
i-term-acyclic h (Some tref) ∧
Ref .get h tsr = ITerms (tref , ts2ref)

using acyclic i-terms-acyclic.simps[of h Some tsr] by fast
then show ?thesis using get-termsr ts-acyclic-nil
by (cases, fastforce+)

qed

lemma acyclic-term-link-simp:
fixes tr :: i-term ref
and tr ′:: i-term ref
and d:: i-term-d
and s:: nat
and h:: heap

assumes acyclic: i-term-acyclic h (Some tr)
and get-tr : Ref .get h tr = ITerm (s, Some tr ′, d)

shows i-term-acyclic h (Some tr ′)
proof −
consider (a) (Some tr) = None |

(b) t s ′ where
i-term-acyclic h t ∧
Ref .get h tr = ITerm (s ′, t, IVarD) |

(c) tsref s ′ f where
i-terms-acyclic h tsref ∧
Ref .get h tr = ITerm (s ′, None, ITermD (f , tsref))

29

using acyclic i-term-acyclic.simps[of h Some tr] by blast
then show ?thesis using get-tr
by cases (fastforce+)

qed

lemma acyclic-args-nil-is:
assumes i-term-acyclic h (Some tr)
and Ref .get h tr = ITerm(s, is, ITermD(f , tsp))

shows is = None
using assms by (cases h Some tr rule: i-term-acyclic.cases; fastforce)

lemma acyclic-heap-change-nt:
fixes tr :: i-term ref
and r :: ′a::heap ref
and v:: ′a::heap
and h:: heap

assumes acyclic: i-term-acyclic h (Some tr)
and ne-iterm: TYPEREP(′a) 6= TYPEREP(i-term)
and ne-iterms: TYPEREP(′a) 6= TYPEREP(i-terms)

shows i-term-acyclic (Ref .set r v h) (Some tr)
using acyclic

proof (induction h Some tr
arbitrary: tr
taking: λh tsp. i-terms-acyclic (Ref .set r v h) tsp
rule: ITerm.i-term-acyclic-i-terms-acyclic.inducts(1))

case (t-acyclic-step-link h is tr s)
show ?case proof (cases is)
case None
then have Ref .get (Ref .set r v h) tr = ITerm (s, None, IVarD)

using ne-iterm Ref .get-set-neq Ref .noteq-def t-acyclic-step-link.hyps(3) by
metis

then show ?thesis
using i-term-acyclic-i-terms-acyclic.t-acyclic-step-link t-acyclic-nil by blast

next
case (Some isr)
then have Ref .get (Ref .set r v h) tr = ITerm (s, Some isr , IVarD)

using ne-iterm Ref .get-set-neq Ref .noteq-def t-acyclic-step-link.hyps(3) by
metis

then show ?thesis
using Some i-term-acyclic-i-terms-acyclic.t-acyclic-step-link
t-acyclic-step-link.hyps(2) by blast

qed
next
case (t-acyclic-step-ITerm h tsref tr s f)
then have Ref .get (Ref .set r v h) tr = ITerm (s, None, ITermD (f , tsref))
using ne-iterm Ref .get-set-neq Ref .noteq-def by metis

then show ?case
using i-term-acyclic-i-terms-acyclic.t-acyclic-step-ITerm
t-acyclic-step-ITerm.hyps(2) by blast

30

next
case (ts-acyclic-nil h)
then show ?case
using i-term-acyclic-i-terms-acyclic.ts-acyclic-nil by blast

next
case (ts-acyclic-step-ITerms h ts2ref tref tsref)
then have Ref .get (Ref .set r v h) tsref = ITerms (tref , ts2ref)
using ne-iterms Ref .get-set-neq Ref .noteq-def by metis

then show ?case
using i-term-acyclic-i-terms-acyclic.ts-acyclic-step-ITerms ts-acyclic-step-ITerms.hyps(2)

ts-acyclic-step-ITerms.hyps(4) by blast
qed

lemma acyclic-heap-change-is-uc:
fixes tr :: i-term ref
and r :: i-term ref
and v:: i-term
and h:: heap

assumes acyclic: i-term-acyclic h (Some tr)
and get-r : Ref .get h r = ITerm(s, is, IVarD)
and v-val: v = ITerm(s ′, is, IVarD)

shows i-term-acyclic (Ref .set r v h) (Some tr)
using acyclic get-r

proof (induction h Some tr
arbitrary: tr
taking: λh tsp. Ref .get h r = ITerm (s, is, IVarD) −→ i-terms-acyclic (Ref .set

r v h) tsp
rule: ITerm.i-term-acyclic-i-terms-acyclic.inducts(1))

case (t-acyclic-step-link h tr-is tr s1)
then have case-get-r : Ref .get h r = ITerm (s, is, IVarD)
and get-tr : Ref .get h tr = ITerm (s1 , tr-is, IVarD)
and IH :

∧
tr . tr-is = Some tr =⇒

Ref .get h r = ITerm (s, is, IVarD) =⇒
i-term-acyclic (Ref .set r v h) (Some tr)

by blast+
have ∃ s0 . Ref .get (Ref .set r v h) tr = ITerm (s0 , tr-is, IVarD)
proof (rule case-split)
assume r = tr
then show ?thesis using get-tr case-get-r v-val by simp

next
assume r 6= tr
then show ?thesis using get-tr Ref .get-set-neq Ref .unequal by metis

qed
moreover have i-term-acyclic (Ref .set r v h) tr-is
using t-acyclic-nil IH case-get-r
by (metis option.exhaust-sel)

ultimately show ?case
using i-term-acyclic-i-terms-acyclic.t-acyclic-step-link by blast

next

31

case (t-acyclic-step-ITerm h tsref tr s1 f)
then have case-get-r : Ref .get h r = ITerm (s, is, IVarD)
and get-tr : Ref .get h tr = ITerm (s1 , None, ITermD (f , tsref))
and get-tsref : i-terms-acyclic (Ref .set r v h) tsref
by blast+

have tr 6= r
using get-tr case-get-r by force
then have ∃ s0 . Ref .get (Ref .set r v h) tr = ITerm (s0 , None, ITermD (f ,

tsref))
using get-tr by simp

then show ?case
using i-term-acyclic-i-terms-acyclic.t-acyclic-step-ITerm
get-tsref by blast

next
case (ts-acyclic-nil h)
then show ?case
by (simp add: i-term-acyclic-i-terms-acyclic.ts-acyclic-nil)

next
case (ts-acyclic-step-ITerms h ts2ref tref tsref)
then have get-tsref : Ref .get h tsref = ITerms (tref , ts2ref)
and IH1 : Ref .get h r = ITerm (s, is, IVarD) =⇒ i-terms-acyclic (Ref .set r v

h) ts2ref
and IH2 : Ref .get h r = ITerm (s, is, IVarD) =⇒ i-term-acyclic (Ref .set r v

h) (Some tref)
by blast+

have Ref .get (Ref .set r v h) tsref = ITerms (tref , ts2ref)
using get-tsref typerep-term-neq-terms Ref .get-set-neq Ref .noteq-def by metis

then show ?case
using i-term-acyclic-i-terms-acyclic.ts-acyclic-step-ITerms
IH1 IH2 by blast

qed

lemma i-terms-acyclic-induct [consumes 1 ,
case-names ts-acyclic-nil ts-acyclic-step]:

fixes h :: heap
and tsp :: i-terms ref option
and P :: heap ⇒ i-terms ref option ⇒ bool

assumes acyclic: i-terms-acyclic h tsp
and

∧
h. P h None

and
∧
h ts2ref tref tsref .
i-terms-acyclic h ts2ref =⇒
P h ts2ref =⇒ i-term-acyclic h (Some tref) =⇒
Ref .get h tsref = ITerms (tref , ts2ref) =⇒
P h (Some tsref)

shows P h tsp
using assms ts-acyclic-nil
by (induction taking: λh tp. True rule: i-term-acyclic-i-terms-acyclic.inducts(2),

blast+)

32

inductive-set i-terms-sublists for h:: heap and tsp:: i-termsP where
next:

(Some tsr ′) ∈ i-terms-sublists h tsp =⇒
Ref .get h tsr ′ = ITerms(-, tnext) =⇒
tnext ∈ i-terms-sublists h tsp |

self : tsp ∈ i-terms-sublists h tsp

lemma i-terms-sublists-mNone:
fixes h:: heap
and tsp:: i-termsP

assumes i-terms-acyclic h tsp
shows None ∈ i-terms-sublists h tsp
using assms

proof (induction rule: i-terms-acyclic-induct)
case (ts-acyclic-nil uy)
then show ?case
by (simp add: i-terms-sublists.intros(2))

next
case (ts-acyclic-step h tnext tref tsref)
have i-terms-acyclic h tnext =⇒
Ref .get h tsref = ITerms (tref , tnext) =⇒
None ∈ i-terms-sublists h (Some tsref)
using ts-acyclic-step.IH i-terms-sublists.intros
by (induction rule: i-terms-sublists.induct, blast+)

then show ?case using ts-acyclic-step by blast
qed

lemma i-terms-sublists-None-om:
fixes h:: heap
shows i-terms-sublists h None = {None}

proof −
{
fix tsp ts2p
have ts2p ∈ i-terms-sublists h tsp =⇒ ∃ tr . (Some tr) = ts2p =⇒ tsp 6= None
by (induction rule: i-terms-sublists.induct, blast+)

}
then show ?thesis
using i-terms-sublists.intros(2) these-empty-eq by fastforce

qed

lemma i-terms-sublists-subset:
fixes h:: heap
and tsr and tr

assumes Ref .get h tsr = ITerms (tr , tsp)
shows i-terms-sublists h tsp ⊆ i-terms-sublists h (Some tsr)

proof −
{
fix ts2p
have ts2p ∈ i-terms-sublists h tsp =⇒ ts2p ∈ i-terms-sublists h (Some tsr)

33

proof (induction rule: i-terms-sublists.inducts)
case (next tsr ′ uu tnext)
then show ?case using assms
using i-terms-sublists.intros(1) by blast

next
case self
then show ?case using assms
using i-terms-sublists.intros(1) i-terms-sublists.intros(2) by blast

qed
}
then show ?thesis by fast

qed

lemma i-terms-sublists-insert:
fixes h:: heap
and tsr and tr

assumes Ref .get h tsr = ITerms (tr , tsp)
shows i-terms-sublists h (Some tsr) = insert (Some tsr) (i-terms-sublists h tsp)

proof −
{
fix ts2p
have ts2p ∈ i-terms-sublists h (Some tsr) =⇒

ts2p = Some tsr ∨ ts2p ∈ i-terms-sublists h tsp
proof (induction rule: i-terms-sublists.inducts)
case (next tsr ′ tthis tnext)
then consider (a) Some tsr ′ = Some tsr | (b) Some tsr ′ ∈ i-terms-sublists h

tsp
by fast

then show ?case
proof (cases)
case a
then show ?thesis using next assms i-terms-sublists.self by force

next
case b
then show ?thesis using next assms i-terms-sublists.next by blast

qed
next
case self
then show ?case using assms by blast

qed
}
moreover have Some tsr ∈ i-terms-sublists h (Some tsr)
by (simp add: i-terms-sublists.intros(2))

ultimately show ?thesis
using assms i-terms-sublists.intros i-terms-sublists-subset by blast

qed

lemma i-terms-sublists-finite:
fixes h:: heap

34

and tsp:: i-termsP
assumes i-terms-acyclic h tsp
shows finite (i-terms-sublists h tsp)

using assms proof (induction rule:i-terms-acyclic-induct)
case (ts-acyclic-nil h)
then show ?case using i-terms-sublists-None-om by fastforce

next
case (ts-acyclic-step h ts2ref tref tsref)
then show ?case using i-terms-sublists-insert by fastforce

qed

lemma i-terms-sublists-acyclic:
fixes ts2p:: i-termsP
and tsp:: i-termsP
and h:: heap

assumes acyclic: i-terms-acyclic h tsp
and ts2p-mem: ts2p ∈ i-terms-sublists h tsp

shows i-terms-acyclic h ts2p
using ts2p-mem acyclic acyclic-terms-terms-simp
by (induction rule: i-terms-sublists.inducts, blast)

inductive-set i-terms-set for h:: heap and tsp:: i-termsP where
(Some tsr ′) ∈ i-terms-sublists h tsp =⇒
Ref .get h tsr ′ = ITerms(tp, -) =⇒
tp ∈ i-terms-set h tsp

lemma i-terms-set-def2 :
fixes h:: heap and tsp:: i-termsP
shows
i-terms-set h tsp = {tp.
∃ tsr ′ tnext. (Some tsr ′) ∈ i-terms-sublists h tsp ∧ Ref .get h tsr ′ = ITerms(tp,

tnext)}
using i-terms-set-def i-terms-setp.simps i-terms-sublistsp-i-terms-sublists-eq by

presburger

lemma i-terms-set-None-empty:
fixes h:: heap
shows i-terms-set h None = {}
using i-terms-sublists-None-om i-terms-set-def2
by auto

lemma i-terms-set-empty-iff :
fixes tsp:: i-termsP
and h:: heap

shows (i-terms-set h tsp = {}) = (tsp = None)
proof −
{
assume tsp 6= None
then obtain tsr tthisr tsnextp

35

where Some tsr = tsp
and Ref .get h tsr = ITerms(tthisr , tsnextp)

by (metis i-terms.exhaust old.prod.exhaust option.exhaust)
then have tthisr ∈ i-terms-set h tsp
using i-terms-set.simps i-terms-sublists.self by blast

then have i-terms-set h tsp 6= {} by blast
}
then show ?thesis
using i-terms-set-None-empty by blast

qed

lemma i-terms-set-insert:
fixes h:: heap
and tsr and tr

assumes Ref .get h tsr = ITerms (tr , tsp)
shows i-terms-set h (Some tsr) = insert tr (i-terms-set h tsp)
using assms i-terms-sublists-insert i-terms-set-def2 by auto

lemma i-terms-set-single:
fixes h:: heap
and tsr and tr

assumes Ref .get h tsr = ITerms (tr , None)
shows i-terms-set h (Some tsr) = {tr}
using assms i-terms-set-insert i-terms-set-None-empty by simp

lemma i-terms-set-finite:
fixes h:: heap
and tsp:: i-termsP

assumes i-terms-acyclic h tsp
shows finite (i-terms-set h tsp)

using assms proof (induction rule:i-terms-acyclic-induct)
case (ts-acyclic-nil h)
then show ?case
using i-terms-set-None-empty by simp

next
case (ts-acyclic-step h ts2ref tref tsref)
show ?case
by (simp add: i-terms-set-insert ts-acyclic-step.IH ts-acyclic-step.hyps(3))

qed

lemma i-term-acyclic-induct [consumes 1 , case-names nil var link args]:
fixes h:: heap
and tp:: i-term ref option
and P:: heap ⇒ i-term ref option ⇒ bool

assumes acyclic: i-term-acyclic h tp
and nil-case:

∧
h. P h None

and var-case:
∧
h tr s.

Ref .get h tr = ITerm(s, None, IVarD) =⇒
P h (Some tr)

36

and link-case:
∧
h tr isr s.

P h (Some isr) =⇒
Ref .get h tr = ITerm(s, Some isr , IVarD) =⇒
P h (Some tr)

and args-case:
∧
h tr tsp s f .

(∀ tr2 ∈ i-terms-set h tsp. P h (Some tr2)) =⇒
i-terms-acyclic h tsp =⇒
Ref .get h tr = ITerm(s, None, ITermD(f , tsp)) =⇒
P h (Some tr)

shows P h tp
using acyclic

proof (induction h tp
taking: λh tp. ∀ tr2∈ i-terms-set h tp. P h (Some tr2)
rule: i-term-acyclic-i-terms-acyclic.inducts(1))

case (t-acyclic-nil h)
then show ?case by (fact nil-case)

next
case (t-acyclic-step-link h t tref uv)
then show ?case using var-case link-case
by (metis not-None-eq)

next
case (t-acyclic-step-ITerm h tsref tref uw ux)
then show ?case using args-case by blast

next
case (ts-acyclic-nil h)
then show ?case using i-terms-set-None-empty by blast

next
case (ts-acyclic-step-ITerms h ts2ref tref tsref)
then show ?case using i-terms-set-insert by fast

qed

lemma i-term-acyclic-induct ′ [consumes 1 , case-names var link args]:
fixes h:: heap
and tr :: i-term ref
and P:: heap ⇒ i-term ref ⇒ bool

assumes acyclic: i-term-acyclic h (Some tr)
and var-case:

∧
h tr s.

Ref .get h tr = ITerm(s, None, IVarD) =⇒
P h tr

and link-case:
∧
h tr isr s.

P h isr =⇒
Ref .get h tr = ITerm(s, Some isr , IVarD) =⇒
P h tr

and args-case:
∧
h tr tsp s f .

(∀ tr2 ∈ i-terms-set h tsp. P h tr2) =⇒
i-terms-acyclic h tsp =⇒
Ref .get h tr = ITerm(s, None, ITermD(f , tsp)) =⇒
P h tr

shows P h tr

37

proof −
{
fix tp
have i-term-acyclic h tp =⇒ tp = Some tr =⇒ P h tr
proof (induction h tp arbitrary:tr rule: i-term-acyclic-induct)
case (nil h)
then show ?case by fast

next
case (var h tr s)
then show ?case using var-case by blast

next
case (link h tr s isr d)
then show ?case using link-case by fast

next
case (args h tr tsp s f)
then show ?case using args-case by fast

qed
}
then show ?thesis
by (simp add: acyclic)

qed

lemma i-terms-set-acyclic:
fixes tr :: i-term ref
and tsp:: i-termsP
and s:: nat
and h:: heap

assumes acyclic: i-terms-acyclic h tsp
and tr-mem: tr ∈ i-terms-set h tsp

shows i-term-acyclic h (Some tr)
using tr-mem proof (cases rule: i-terms-set.cases)
case (1 tsr ′ tsnext)
then have ∗: Some tsr ′ ∈ i-terms-sublists h tsp
and ∗∗: Ref .get h tsr ′ = ITerms (tr , tsnext)
by blast+

from ∗ have i-terms-acyclic h (Some tsr ′)
using acyclic i-terms-sublists-acyclic by blast

then consider
(a) Some tsr ′ = None |
(b) tref tsref where

Some tsr ′ = Some tsref and
i-term-acyclic h (Some tref) and
Ref .get h tsref = ITerms (tref , None) |

(c) ts2ref tref tsref where
Some tsr ′ = Some tsref and
i-terms-acyclic h ts2ref and
i-term-acyclic h (Some tref) and
Ref .get h tsref = ITerms (tref , ts2ref)

using i-terms-acyclic.simps[of h Some tsr ′] by blast

38

then show ?thesis
proof (cases)
case a
then show ?thesis by simp

next
case b
then show ?thesis using ∗∗ by simp

next
case c
then have Some tsr ′ = Some tsref
and i-term-acyclic h (Some tref)
and Ref .get h tsref = ITerms (tref , ts2ref)
by blast+

then show ?thesis using ∗∗ by simp
qed

qed

inductive-set i-term-closure for h:: heap and tp:: i-termP where
Some tr = tp =⇒ tr ∈ i-term-closure h tp |
tr ∈ i-term-closure h tp =⇒
Ref .get h tr = ITerm(-, Some is, -) =⇒
is ∈ i-term-closure h tp |

tr ∈ i-term-closure h tp =⇒
Ref .get h tr = ITerm(-, None, ITermD(-, tsp)) =⇒
tr2 ∈ i-terms-set h tsp =⇒
tr2 ∈ i-term-closure h tp

abbreviation i-term-closures where
i-term-closures h trs ≡ UNION (Some ‘ trs) (i-term-closure h)

abbreviation i-terms-closure where
i-terms-closure h tsp ≡ i-term-closures h (i-terms-set h tsp)

abbreviation i-term-sublists where
i-term-sublists h tr ≡ i-terms-sublists h (get-ITerm-args (Ref .get h tr))

abbreviation i-term-closure-sublists where
i-term-closure-sublists h tp ≡ (

⋃
tr ′∈i-term-closure h tp. i-term-sublists h tr ′)

abbreviation i-terms-closure-sublists where
i-terms-closure-sublists h tsp ≡ i-terms-sublists h tsp ∪ (

⋃
tr∈i-terms-closure h

tsp. i-term-sublists h tr)

lemma i-term-closure-None:
fixes h:: heap
shows i-term-closure h None = {}

proof −
{
fix tp tr

39

have tr ∈ i-term-closure h tp =⇒ tp = None =⇒ False
by (cases rule: i-term-closure.induct, blast+)

}
then show ?thesis by auto

qed

lemma i-term-closure-var :
fixes tr :: i-term ref
and s:: nat
and h:: heap

assumes Ref .get h tr = ITerm (s, None, IVarD)
shows i-term-closure h (Some tr) = {tr}

proof −
{
fix tp tr x
have x ∈ i-term-closure h tp =⇒
tp = Some tr =⇒ Ref .get h tr = ITerm (s, None, IVarD) =⇒ x = tr
by (induction rule: i-term-closure.induct, fastforce+)

}
then show ?thesis using assms
using i-term-closure.intros(1) by blast

qed

lemma i-term-closure-link:
fixes tr :: i-term ref
and isr :: i-term ref
and d:: i-term-d
and s:: nat
and h:: heap

assumes Ref .get h tr = ITerm (s, Some isr , d)
shows i-term-closure h (Some tr) = insert tr (i-term-closure h (Some isr))

proof −
{
fix tp x
have x ∈ i-term-closure h tp =⇒
tp = Some tr =⇒
Ref .get h tr = ITerm (s, Some isr , d) =⇒
x = tr ∨ x ∈ i-term-closure h (Some isr)

proof (induction rule: i-term-closure.induct)
case (1 tr)
then show ?case by blast

next
case (2 tr ′ s ′ is uv)
then show ?case
proof (cases tr ′ = tr)
case True
then show ?thesis using 2 by (simp add: i-term-closure.intros(1))

next
case False

40

then show ?thesis using 2 i-term-closure.intros(2) by blast
qed

next
case (3 tr ′ s ′ f tsp tr2)
then have tr 6= tr ′ by fastforce
then show ?case using 3 i-term-closure.intros(3) by blast

qed
}
moreover {
fix x
assume x ∈ insert tr (i-term-closure h (Some isr))
then consider (a) x = tr | (b) x ∈ i-term-closure h (Some isr)
by blast

then have x ∈ i-term-closure h (Some tr)
proof (cases)
case a
then show ?thesis using i-term-closure.intros(1) by blast

next
case b
then show ?thesis proof (induction rule: i-term-closure.induct)
case (1 x)
then show ?case
using assms i-term-closure.intros(1) i-term-closure.intros(2) by blast

next
case (2 x s ′ is d)
then show ?case
using i-term-closure.intros(2) by blast

next
case (3 x s ′ f tsp tr2)
then show ?case
using i-term-closure.intros(3) by blast

qed
qed

}
ultimately show ?thesis using assms by fast

qed

lemma i-term-closure-args:
fixes tr :: i-term ref
and tsp:: i-termsP
and isr :: i-term ref
and f :: string
and s:: nat
and h:: heap

assumes Ref .get h tr = ITerm(s, None, ITermD(f , tsp))
shows i-term-closure h (Some tr) = insert tr (i-terms-closure h tsp)

proof −
{
fix tp x

41

have x ∈ i-term-closure h tp =⇒
tp = Some tr =⇒
Ref .get h tr = ITerm (s, None, ITermD(f , tsp)) =⇒
x = tr ∨ (∃ t2r ∈ i-terms-set h tsp. x ∈ i-term-closure h (Some t2r))

proof (induction rule: i-term-closure.induct)
case (1 tr)
then show ?case by blast

next
case (2 tr ′ s ′ is uv)
then show ?case
proof (cases tr ′ = tr)
case True
then show ?thesis using 2 by (simp add: i-term-closure.intros(1))

next
case False
then show ?thesis using 2 i-term-closure.intros(2) by blast

qed
next
case (3 tr ′ s ′ f tsp tr2)
then have

∧
tr ′′. tr2 ∈ i-term-closure h tr ′′ ∨ tr ′ /∈ i-term-closure h tr ′′

using i-term-closure.intros(3) by blast
then show ?case using 3 i-term-closure.intros(1) by fastforce

qed
}
then have i-term-closure h (Some tr) ⊆ insert tr (i-terms-closure h tsp)
by (simp add: assms subsetI)

moreover {
fix x
assume x ∈ insert tr (i-terms-closure h tsp)
then consider (a) x = tr | (b) ∃ t2r ∈ i-terms-set h tsp. x ∈ i-term-closure h

(Some t2r)
by blast

then have x ∈ i-term-closure h (Some tr)
proof (cases)
case a
then show ?thesis using i-term-closure.intros(1) by blast

next
case b
then obtain t2r where t2r ∈ i-terms-set h tsp ∧ x ∈ i-term-closure h (Some

t2r)
by blast

moreover have x ∈ i-term-closure h (Some t2r) =⇒
t2r ∈ i-terms-set h tsp =⇒
x ∈ i-term-closure h (Some tr)

proof (induction rule: i-term-closure.induct)
case (1 x)
then show ?case
using assms i-term-closure.intros(1) i-term-closure.intros(3) by fast

next

42

case (2 x s ′ is d)
then show ?case
using i-term-closure.intros(2) by blast

next
case (3 x s ′ f tsp tr2)
then show ?case
using i-term-closure.intros(3) by blast

qed
ultimately show ?thesis by blast

qed
}
then have insert tr (i-terms-closure h tsp) ⊆ i-term-closure h (Some tr) by blast
ultimately show ?thesis by blast

qed

lemma i-terms-closure-terms:
assumes Ref .get h tsr = ITerms(tthisr , tsnextp)
shows i-terms-closure h (Some tsr) =

(i-term-closure h (Some tthisr)) ∪ (i-terms-closure h tsnextp)
by (simp add: assms i-terms-set-insert)

lemma i-term-closure-sublists-terms:
assumes Ref .get h tsr = ITerms(tthisr , tsnextp)
shows i-terms-closure-sublists h (Some tsr) =
insert (Some tsr) (i-term-closure-sublists h (Some tthisr) ∪
i-terms-closure-sublists h tsnextp)

proof (intro Set.equalityI subsetI)
fix tsp ′

assume tsp ′ ∈ i-terms-closure-sublists h (Some tsr)
then consider (a) tsp ′ ∈ i-terms-sublists h (Some tsr) |

(b) tsp ′ ∈ (
⋃
tr∈i-terms-closure h (Some tsr). i-term-sublists h tr)

by blast
then show
tsp ′ ∈ insert (Some tsr) (i-term-closure-sublists h (Some tthisr) ∪
i-terms-closure-sublists h tsnextp)

proof (cases)
case a
then show ?thesis
using assms i-terms-sublists-insert by fast

next
case b
then show ?thesis
using assms i-terms-closure-terms by fastforce

qed
next
show

∧
x.

x ∈ insert (Some tsr) (i-term-closure-sublists h (Some tthisr) ∪
i-terms-closure-sublists h tsnextp) =⇒

x ∈ i-terms-closure-sublists h (Some tsr)

43

using assms i-terms-closure-terms i-terms-sublists-insert by force
qed

lemma i-terms-sublists-someE [elim]:
assumes tsr-sublist-tr : Some tsr ∈ i-term-sublists h tr
obtains s f is tsp0
where Ref .get h tr = ITerm (s, is, ITermD (f , tsp0))
and Some tsr ∈ i-terms-sublists h tsp0

proof −
obtain s is d where
t1 : Ref .get h tr = ITerm(s, is, d)
using get-stamp.cases by blast

have t2 : get-ITerm-args (Ref .get h tr) 6= None
using i-terms-sublists-None-om tsr-sublist-tr by force

with t1 obtain f tsp0 where t3 : d = ITermD(f , tsp0)
using tsr-sublist-tr get-ITerm-args-iff-ex by force

have get-ITerm-args (Ref .get h tr) = tsp0
by (simp add: get-ITerm-args-iff-ex t1 t3)

then have Some tsr ∈ i-terms-sublists h tsp0
using tsr-sublist-tr by blast

with t1 t3 that show ?thesis by presburger
qed

lemma i-term-closure-finite:
fixes tp:: i-termP
and h:: heap

assumes i-term-acyclic h tp
shows finite (i-term-closure h tp)
using assms proof (induction rule: i-term-acyclic-induct)
case (nil h)
then show ?case using i-term-closure-None by simp

next
case (var h tr s)
then show ?case using i-term-closure-var by force

next
case (link h tr s isr)
then show ?case using i-term-closure-link by force

next
case (args h tr tsp s f)
then show ?case using i-term-closure-args i-terms-set-finite by force

qed

lemma i-term-closure-acyclic:
fixes tp:: i-termP
and t2r :: i-term ref
and h:: heap

assumes acyclic: i-term-acyclic h tp
and t2r-mem: t2r ∈ i-term-closure h tp

shows i-term-acyclic h (Some t2r)

44

using acyclic t2r-mem acyclic
proof (induction rule: i-term-acyclic-induct)
case (nil h)
then show ?case using i-term-closure-None by simp

next
case (var h tr s)
then show ?case
using i-term-closure-var t-acyclic-nil t-acyclic-step-link by fast

next
case (link h tr s isr)
then show ?case
using i-term-closure-link acyclic-term-link-simp by fast

next
case (args h tr tsp s f)
then consider

(a) t2r = tr |
(b) t2r0 where t2r0 ∈ i-terms-set h tsp ∧ t2r ∈ i-term-closure h (Some t2r0)
using i-term-closure-args by blast

then show ?case proof (cases)
case a
then show ?thesis
by (simp add: args.prems(2))

next
case b
then have i-term-acyclic h (Some t2r0)
using i-terms-set-acyclic args.hyps(1) by blast

then show ?thesis
using args.IH b by blast

qed
qed

lemma i-term-acyclic-closure-induct [consumes 1 , case-names in-closure]:
fixes h:: heap
and tp:: i-termP
and P:: heap ⇒ i-termP ⇒ bool

assumes acyclic: i-term-acyclic h tp
and step:∧

h tp. (∧
t2r .
t2r ∈ i-term-closure h tp =⇒
Some t2r 6= tp =⇒
P h (Some t2r)) =⇒

P h tp
shows P h tp

proof −
have

∧
t2r . t2r ∈ i-term-closure h tp =⇒ P h (Some t2r)

using acyclic proof (induction h tp rule: i-term-acyclic-induct)
case (nil h)
then show ?case

45

using i-term-closure-None by simp
next
case (var h tr s)
then show ?case
using i-term-closure-var step by fastforce

next
case (link h tr isr s)
then consider (a) t2r = tr | (b) t2r ∈ i-term-closure h (Some isr)
using i-term-closure-link by blast

then show ?case proof (cases)
case a
then show ?thesis using i-term-closure-link step link.IH link.hyps
by (metis insertE)

next
case b
then show ?thesis
using link.IH by blast

qed
next
case (args h tr tsp s f)
then consider

(a) t2r = tr |
(b) t2r0 where t2r0 ∈ i-terms-set h tsp ∧ t2r ∈ i-term-closure h (Some t2r0)
using i-term-closure-args by blast
then show ?case proof (cases)
case a
then have

∧
t2r .

t2r ∈ i-term-closure h (Some tr) =⇒
Some t2r 6= Some tr =⇒
P h (Some t2r)

using args.IH args.hyps(2) i-term-closure-args by fast
then show ?thesis
using a step by blast

next
case b
then show ?thesis
using args.IH by blast

qed
qed
then show ?thesis
using step by blast

qed

lemma i-term-acyclic-closure-inductc [consumes 1 , case-names nil var link args]:
fixes h:: heap
and tp:: i-termP
and P:: heap ⇒ i-termP ⇒ bool

assumes acyclic: i-term-acyclic h tp
and nil-case:

∧
h. P h None

46

and var-case:
∧
h tr s.

Ref .get h tr = ITerm(s, None, IVarD) =⇒
P h (Some tr)

and link-case:
∧
h tr isr s.

(
∧
t2r . t2r ∈ i-term-closure h (Some isr) =⇒ P h (Some t2r)) =⇒

Ref .get h tr = ITerm(s, Some isr , IVarD) =⇒
P h (Some tr)

and args-case:
∧
h tr tsp s f .

(
∧
t2r0 t2r .
t2r ∈ i-term-closure h (Some t2r0) =⇒
t2r0 ∈ i-terms-set h tsp =⇒
P h (Some t2r)) =⇒

Ref .get h tr = ITerm(s, None, ITermD(f , tsp)) =⇒
P h (Some tr)

shows P h tp
proof −
have

∧
t2r . t2r ∈ i-term-closure h tp =⇒ P h (Some t2r)

using acyclic proof (induction h tp rule: i-term-acyclic-induct)
case (nil h)
then show ?case using i-term-closure-None by simp

next
case (var h tr s)
then show ?case using i-term-closure-var var-case by fast

next
case (link h tr isr s)
then consider (a) t2r = tr | (b) t2r ∈ i-term-closure h (Some isr)
using i-term-closure-link by blast

then show ?case proof (cases)
case a
then show ?thesis
using link.IH link.hyps link-case by blast

next
case b
then show ?thesis
using link.IH by blast

qed
next
case (args h tr tsp s f)
then consider

(a) t2r = tr |
(b) t2r0 where t2r0 ∈ i-terms-set h tsp ∧ t2r ∈ i-term-closure h (Some t2r0)
using i-term-closure-args by blast
then show ?case proof (cases)
case a
then have

∧
t2r .

t2r ∈ i-term-closure h (Some tr) =⇒
Some t2r 6= Some tr =⇒
P h (Some t2r)

using args.IH args.hyps(2) i-term-closure-args by fast

47

then show ?thesis
using a args.IH args.hyps(2) args-case by blast

next
case b
then show ?thesis
using args.IH by blast

qed
qed
then show ?thesis using acyclic nil-case i-term-closure.intros(1)
by (metis not-None-eq)

qed

lemma i-term-acyclic-closure-inductc ′ [consumes 1 , case-names var link args]:
fixes h:: heap
and tr :: i-term ref
and P:: heap ⇒ i-term ref ⇒ bool

assumes acyclic: i-term-acyclic h (Some tr)
and var-case:

∧
h tr s.

Ref .get h tr = ITerm(s, None, IVarD) =⇒
P h tr

and link-case:
∧
h tr isr s.

(
∧
t2r . t2r ∈ i-term-closure h (Some isr) =⇒ P h t2r) =⇒

Ref .get h tr = ITerm(s, Some isr , IVarD) =⇒
P h tr

and args-case:
∧
h tr tsp s f .

(
∧
t2r0 t2r .
t2r ∈ i-term-closure h (Some t2r0) =⇒
t2r0 ∈ i-terms-set h tsp =⇒
P h t2r) =⇒

Ref .get h tr = ITerm(s, None, ITermD(f , tsp)) =⇒
P h tr

shows P h tr
using assms
by (induction h (Some tr) arbitrary: tr rule: i-term-acyclic-closure-inductc) blast+

lemma i-term-closure-link-same-cyclic:
fixes tr :: i-term ref
and isr :: i-term ref
and d :: i-term-d
and s :: nat
and h :: heap

assumes Ref .get h tr = ITerm(s, Some isr , d)
and tr ∈ i-term-closure h (Some isr)

shows ¬i-term-acyclic h (Some tr)
proof −
have i-term-acyclic h (Some tr) =⇒
Ref .get h tr = ITerm(s, Some isr , d) =⇒
tr ∈ i-term-closure h (Some isr) =⇒
False

48

by (induction rule: i-term-acyclic-closure-inductc ′)
(simp, fastforce, force)

then show ?thesis using assms by blast
qed

lemma i-term-closure-args-same-cyclic:
fixes tr :: i-term ref
and tsp :: i-terms ref option
and f :: string
and s :: nat
and h :: heap

assumes Ref .get h tr = ITerm(s, None, ITermD(f , tsp))
and ∃ t2r ∈ i-terms-set h tsp. tr ∈ i-term-closure h (Some t2r)

shows ¬i-term-acyclic h (Some tr)
proof −
have i-term-acyclic h (Some tr) =⇒
Ref .get h tr = ITerm(s, None, ITermD(f , tsp)) =⇒
∃ t2r ∈ i-terms-set h tsp. tr ∈ i-term-closure h (Some t2r) =⇒
False
by (induction rule: i-term-acyclic-closure-inductc ′)

(simp, force, auto)
then show ?thesis using assms by blast

qed

lemma i-term-closure-trans:
fixes tr0 :: i-term ref
and tr1 :: i-term ref
and tr2 :: i-term ref
and h:: heap

assumes tr1-mem: tr1 ∈ i-term-closure h (Some tr0)
and tr2-mem: tr2 ∈ i-term-closure h (Some tr1)

shows tr2 ∈ i-term-closure h (Some tr0)
using tr1-mem tr2-mem proof (induction tr1 rule: i-term-closure.induct)
case (1 tr)
then show ?case by simp

next
case (2 tr uu is uv)
then show ?case
using i-term-closure-link by blast

next
case (3 tr uw ux tsp tr2)
then show ?case
using i-term-closure-args by fast

qed

definition is-closed where
is-closed h trs = (i-term-closures h trs = trs)

lemma i-term-closures-idem:

49

i-term-closures h (i-term-closures h trs) = i-term-closures h trs
proof −
have i-term-closures h (i-term-closures h trs) ⊇ i-term-closures h trs
using i-term-closure.intros(1) by fastforce

moreover {
fix tr
assume tr ∈ i-term-closures h (i-term-closures h trs)
then obtain tr0
where tr ∈ i-term-closure h (Some tr0)
and tr0-mem: tr0 ∈ i-term-closures h trs

by fast
then have tr ∈ i-term-closures h trs
proof (induction tr rule: i-term-closure.induct)
case (1 tr)
then show ?case
by blast

next
case (2 tr uu is uv)
then show ?case
by (metis UN-iff i-term-closure.intros(2))

next
case (3 tr uw ux tsp tr2)
then show ?case
by (metis (full-types) UN-iff tr0-mem i-term-closure.intros(3))

qed
}
ultimately show ?thesis by fastforce

qed

lemma i-terms-closure-is-closed:
shows is-closed h (i-terms-closure h tsp)
by (meson i-term-closures-idem is-closed-def)

lemma i-term-closure-is-closed:
shows is-closed h (i-term-closure h tp)

proof (cases tp)
case None
then show ?thesis unfolding is-closed-def
by (simp add: i-term-closure-None)

next
case (Some tr)
have i-term-closure h (Some tr) = i-term-closures h {tr}
by simp

then show ?thesis unfolding is-closed-def
using i-term-closures-idem Some by presburger

qed

definition i-term-closure-v where
i-term-closure-v h tp = Ref .get h ‘ i-term-closure h tp

50

inductive-set
i-term-chain for h:: heap and tr :: i-term ref where
link:
tr ′ ∈ i-term-chain h tr =⇒
Ref .get h tr ′ = ITerm(s, Some tnextr , d) =⇒
tnextr ∈ i-term-chain h tr |

self : tr ∈ i-term-chain h tr

lemma i-term-chain-dest:
fixes tr :: i-term ref
and d:: i-term-d
and s:: nat
and h:: heap

assumes Ref .get h tr = ITerm(s, None, d)
shows i-term-chain h tr = {tr}

proof −
{
fix x assume x ∈ i-term-chain h tr
then have x = tr
using assms by (induction rule: i-term-chain.induct, simp+)

}
then show ?thesis
using i-term-chain.self by blast

qed

lemma i-term-chain-link:
fixes tr :: i-term ref
and tr0 :: i-term ref
and s:: nat
and d:: i-term-d
and h:: heap

assumes Ref .get h tr = ITerm(s, Some tr0 , d)
shows i-term-chain h tr = insert tr (i-term-chain h tr0)

proof −
{
fix x
assume x ∈ i-term-chain h tr
then have x ∈ insert tr (i-term-chain h tr0)
proof (induction rule: i-term-chain.induct)
case (link tr ′ s tnextr d)
show ?case proof (cases tr ′=tr)
case True
then show ?thesis
using i-term-chain.self assms link.hyps(2) by auto

next
case False
then show ?thesis
using i-term-chain.link link.IH link.hyps(2) by blast

51

qed
next
case self
then show ?case by simp

qed
}
moreover
{
fix x
assume x ∈ insert tr (i-term-chain h tr0)
then consider (a) x = tr | (b) x ∈ i-term-chain h tr0 by blast
then have x ∈ i-term-chain h tr
proof (cases)
case a
then show ?thesis
by (simp add: i-term-chain.self)

next
case b
then show ?thesis
proof (induction rule: i-term-chain.induct)
case (link tr ′ s tnextr d)
then show ?case
using i-term-chain.link by blast

next
case self
then show ?case
using assms i-term-chain.link i-term-chain.self by blast

qed
qed

}
ultimately show ?thesis by blast

qed

lemma i-term-chain-acyclic:
fixes tr :: i-term ref
and tr ′:: i-term ref
and h:: heap

assumes acyclic: i-term-acyclic h (Some tr)
and tr ′-mem: tr ′ ∈ i-term-chain h tr

shows i-term-acyclic h (Some tr ′)
using acyclic tr ′-mem acyclic

proof (induction rule: i-term-acyclic-induct ′)
case (var h tr s)
then show ?case
using i-term-chain-dest t-acyclic-nil t-acyclic-step-link by fast

next
case (link h tr isr s)
then consider (a) tr ′ = tr | (b) tr ′ ∈ i-term-chain h isr
using i-term-chain-link by blast

52

then show ?case
proof (cases)
case a
then show ?thesis using link.prems(2) by simp

next
case b
moreover have i-term-acyclic h (Some isr)
using link.hyps link.prems(2) acyclic-term-link-simp
by blast

ultimately show ?thesis using link.IH by blast
qed

next
case (args h tr tsp s f)
then show ?case
using i-term-chain-dest t-acyclic-step-ITerm by fast

qed

lemma i-term-chain-subset-closure:
fixes tr :: i-term ref
and h:: heap

shows i-term-chain h tr ⊆ i-term-closure h (Some tr)
proof (intro subsetI)
fix tr ′ assume tr ′ ∈ i-term-chain h tr
then show tr ′ ∈ i-term-closure h (Some tr)
proof (induction tr ′ rule: i-term-chain.inducts)
case (link tr ′ s tnextr d)
then show ?case
using i-term-closure.intros(2) by blast

next
case self
then show ?case
using i-term-closure.intros(1) by blast

qed
qed

lemma i-term-chain-linkE :
assumes chain: tr ′ ∈ i-term-chain h tr
and diff : tr ′ 6= tr

obtains s tnextr d
where Ref .get h tr = ITerm(s, Some tnextr , d)
and tr ′ ∈ i-term-chain h tnextr

using assms proof (atomize-elim, induction rule: i-term-chain.induct)
case (link tr ′ s tnextr d)
show ?case
using i-term-chain.link i-term-chain.self link.IH link.hyps(1) link.hyps(2) by

blast
next
case self
then show ?case by blast

53

qed

fun i-maxstamp:: heap ⇒ i-termP ⇒ nat where
i-maxstamp h None = 0
| i-maxstamp h tp = Max (get-stamp ‘ i-term-closure-v h tp)

lemma i-maxstamp-is-max:
fixes t1p:: i-termP
and t2r :: i-term ref
and is:: i-termP
and d:: i-term-d
and h:: heap

assumes acyclic: i-term-acyclic h t1p
and t2r-get: Ref .get h t2r = ITerm(s, is, d)
and t2r-mem: t2r ∈ i-term-closure h t1p

shows s ≤ i-maxstamp h t1p
proof (cases t1p)
case None
then show ?thesis using t2r-mem i-term-closure-None by simp

next
case (Some t1r)
have ITerm(s, is, d) ∈ i-term-closure-v h t1p
unfolding i-term-closure-v-def
using t2r-get t2r-mem image-iff by fastforce

then have s ∈ get-stamp ‘ i-term-closure-v h t1p
by force

moreover have finite (get-stamp ‘ i-term-closure-v h t1p)
by (simp add: acyclic i-term-closure-finite i-term-closure-v-def)

ultimately show ?thesis
by (simp add: Some)

qed

lemma i-maxstamp-closure-trans:
fixes t1p:: i-termP
and t2r :: i-term ref
and is:: i-termP
and d:: i-term-d
and h:: heap

assumes acyclic: i-term-acyclic h t1p
and t2r-mem: t2r ∈ i-term-closure h t1p

shows i-maxstamp h (Some t2r) ≤ i-maxstamp h t1p
proof (cases t1p)
case None
then show ?thesis using t2r-mem i-term-closure-None by simp

next
case (Some t1r)
{
fix s assume s ∈ get-stamp ‘ i-term-closure-v h (Some t2r)
then have s ∈ get-stamp ‘ i-term-closure-v h t1p

54

unfolding i-term-closure-v-def
using i-term-closure-trans Some t2r-mem by blast

}
then have ∗: get-stamp ‘ i-term-closure-v h (Some t2r) ⊆ get-stamp ‘ i-term-closure-v

h t1p
by blast

moreover have finite (get-stamp ‘ i-term-closure-v h t1p)
by (simp add: acyclic i-term-closure-finite i-term-closure-v-def)

ultimately show ?thesis
by (simp add: Some)

(metis Max.antimono empty-iff i-term-closure.intros(1)
i-term-closure-v-def image-is-empty)

qed

definition heap-only-stamp-changed:: i-term ref set ⇒ heap ⇒ heap ⇒ bool where
heap-only-stamp-changed trs h h ′ = (∀ typ x.
heap.refs h typ x 6= heap.refs h ′ typ x −→

(typ 6= TYPEREP(i-term) ∧ typ 6= TYPEREP(i-terms) ∧ typ 6= TYPE-
REP(nat)) ∨

(∃ s s ′ is d. typ = TYPEREP(i-term) ∧
Ref x ∈ trs ∧
from-nat (heap.refs h typ x) = ITerm(s, is, d) ∧
from-nat (heap.refs h ′ typ x) = ITerm(s ′, is, d)))

abbreviation heap-only-stamp-changed-tr where
heap-only-stamp-changed-tr tr h ≡ heap-only-stamp-changed (i-term-closure h

(Some tr)) h

abbreviation heap-only-stamp-changed-ts where
heap-only-stamp-changed-ts tsp h ≡
heap-only-stamp-changed (i-terms-closure h tsp) h

lemma heap-only-stamp-ch-nt:
fixes trs:: i-term ref set
and r :: ′a::heap ref
and v:: ′a::heap
and h:: heap

assumes TYPEREP(′a) 6= TYPEREP(i-term)
and TYPEREP(′a) 6= TYPEREP(i-terms)
and TYPEREP(′a) 6= TYPEREP(nat)

shows heap-only-stamp-changed trs h (Ref .set r v h)
unfolding heap-only-stamp-changed-def Ref .set-def using assms by simp

lemma heap-only-stamp-ch-term:
fixes trs:: i-term ref set
and r :: i-term ref
and is:: i-termP
and d:: i-term-d
and s:: nat

55

and s ′:: nat
and h:: heap

assumes Ref .get h r = ITerm(s, is, d)
and r ∈ trs

shows heap-only-stamp-changed trs h (Ref .set r (ITerm(s ′, is, d)) h)
unfolding heap-only-stamp-changed-def Ref .set-def using assms
by (simp add: Ref .get-def)

(metis addr-of-ref .simps addr-of-ref-inj)

lemma heap-only-stamp-ch-get-term:
fixes trs:: i-term ref set
and tr :: i-term ref
and h:: heap
and h ′:: heap

assumes heap-only-stamp-changed trs h h ′

and Ref .get h tr = ITerm(s, is, d)
shows ∃ s ′. Ref .get h ′ tr = ITerm(s ′, is, d)

proof (rule case-split)
assume heap.refs h TYPEREP(i-term) (addr-of-ref tr) =
heap.refs h ′ TYPEREP(i-term) (addr-of-ref tr)

then show ?thesis
using assms[unfolded heap-only-stamp-changed-def]
by (simp add: Ref .get-def)

next
assume heap.refs h TYPEREP(i-term) (addr-of-ref tr) 6=
heap.refs h ′ TYPEREP(i-term) (addr-of-ref tr)

then show ?thesis
using assms[unfolded heap-only-stamp-changed-def]
by (simp add: Ref .get-def , fastforce)

qed

lemma heap-only-stamp-ch-get-term ′:
fixes trs:: i-term ref set
and tr :: i-term ref
and h:: heap
and h ′:: heap

assumes heap-only-stamp-changed trs h h ′

and Ref .get h ′ tr = ITerm(s, is, d)
shows ∃ s ′. Ref .get h tr = ITerm(s ′, is, d)

proof (rule case-split)
assume heap.refs h TYPEREP(i-term) (addr-of-ref tr) =
heap.refs h ′ TYPEREP(i-term) (addr-of-ref tr)

then show ?thesis
using assms[unfolded heap-only-stamp-changed-def]
by (simp add: Ref .get-def)

next
assume heap.refs h TYPEREP(i-term) (addr-of-ref tr) 6=
heap.refs h ′ TYPEREP(i-term) (addr-of-ref tr)

then show ?thesis

56

using assms[unfolded heap-only-stamp-changed-def]
by (simp add: Ref .get-def , fastforce)

qed

lemma heap-only-stamp-ch-get-term-nclos:
fixes trs:: i-term ref set
and tr :: i-term ref
and h:: heap
and h ′:: heap

assumes heap-only-stamp-changed trs h h ′

and tr /∈ trs
shows Ref .get h ′ tr = Ref .get h tr

proof −
{
assume heap.refs h TYPEREP(i-term) (addr-of-ref tr) 6=
heap.refs h ′ TYPEREP(i-term) (addr-of-ref tr)

then have tr ∈ trs
using assms[unfolded heap-only-stamp-changed-def]
by (metis addr-of-ref .simps addr-of-ref-inj)

}
then show ?thesis
by (metis Ref .get-def assms(2) comp-apply)

qed

lemma heap-only-stamp-ch-get-terms:
fixes trs:: i-term ref set
and tsr :: i-terms ref
and h:: heap
and h ′:: heap

assumes heap-only-stamp-changed trs h h ′

shows Ref .get h tsr = Ref .get h ′ tsr
proof (rule case-split)
assume heap.refs h TYPEREP(i-terms) (addr-of-ref tsr) =
heap.refs h ′ TYPEREP(i-terms) (addr-of-ref tsr)

then show ?thesis
using assms[unfolded heap-only-stamp-changed-def]
by (simp add: Ref .get-def)

next
assume heap.refs h TYPEREP(i-terms) (addr-of-ref tsr) 6=
heap.refs h ′ TYPEREP(i-terms) (addr-of-ref tsr)

then show ?thesis
using assms[unfolded heap-only-stamp-changed-def] typerep-term-neq-terms by

fastforce
qed

lemma heap-only-stamp-ch-get-nat:
fixes ir :: nat ref
assumes heap-only-stamp-changed trs h h ′

shows Ref .get h ir = Ref .get h ′ ir

57

using assms[unfolded heap-only-stamp-changed-def]
by (simp add: Ref .get-def Ref .set-def , metis typerep-term-neq-nat)

lemma heap-only-stamp-ch-sublists:
fixes trs:: i-term ref set
and tr :: i-term ref
and tsp:: i-termsP
and f :: string
and s:: nat
and h:: heap
and h ′:: heap

assumes heap-only-stamp-changed trs h h ′

shows i-terms-sublists h tsp = i-terms-sublists h ′ tsp
proof −
{
fix x
have x ∈ i-terms-sublists h ′ tsp =⇒ x ∈ i-terms-sublists h tsp
proof (induction rule: i-terms-sublists.induct)
case (next tsr ′ tthis tnext)
then have Ref .get h tsr ′ = ITerms (tthis, tnext)
using heap-only-stamp-ch-get-terms assms
by presburger

then show ?case
using i-terms-sublists.next next.IH next.prems by blast

next
case self
then show ?case
using i-terms-sublists.self by blast

qed
}
moreover
{
fix x
have x ∈ i-terms-sublists h tsp =⇒ x ∈ i-terms-sublists h ′ tsp
proof (induction rule: i-terms-sublists.induct)
case (next tsr ′ tthis tnext)
then have Ref .get h ′ tsr ′ = ITerms (tthis, tnext)
using heap-only-stamp-ch-get-terms assms
by simp

then show ?case
using i-terms-sublists.next next.IH next.prems by blast

next
case self
then show ?case
using i-terms-sublists.self by blast

qed
}
ultimately show ?thesis
by auto

58

qed

lemma heap-only-stamp-ch-terms-set:
fixes trs:: i-term ref set
and tr :: i-term ref
and tsp:: i-termsP
and f :: string
and s:: nat
and h:: heap
and h ′:: heap

assumes heap-only-stamp-changed trs h h ′

shows i-terms-set h tsp = i-terms-set h ′ tsp
using assms heap-only-stamp-ch-sublists i-terms-set-def2
heap-only-stamp-ch-get-terms by auto

lemma heap-only-stamp-ch-diff-in-clos:
fixes tr0 :: i-term ref
and tr1 :: i-term ref
and h0 :: heap
and h1 :: heap

assumes hosc: heap-only-stamp-changed-tr tr0 h h ′

and get-tr1 : Ref .get h tr1 6= Ref .get h ′ tr1
shows tr1 ∈ i-term-closure h (Some tr0)
using heap-only-stamp-changed-def

proof −
have heap.refs h TYPEREP(i-term) (addr-of-ref tr1) 6=
heap.refs h ′ TYPEREP(i-term) (addr-of-ref tr1)
using get-tr1
by (metis Ref .get-def comp-apply)

then have Ref (addr-of-ref tr1) ∈ i-term-closure h (Some tr0)
using hosc[unfolded heap-only-stamp-changed-def] by blast

then show ?thesis
by (metis addr-of-ref .simps addr-of-ref-inj)

qed

lemma heap-only-stamp-ch-antimono:
assumes heap-only-stamp-changed trs ′ h h ′

and trs ′ ⊆ trs
shows heap-only-stamp-changed trs h h ′

proof −
{
fix typ x
assume heap.refs h typ x 6= heap.refs h ′ typ x
then consider

(a) (typ 6= TYPEREP(i-term) ∧ typ 6= TYPEREP(i-terms) ∧ typ 6= TYPE-
REP(nat)) |

(b) s s ′ is d where
typ = TYPEREP(i-term) ∧
Ref x ∈ trs ′ ∧

59

from-nat (heap.refs h typ x) = ITerm(s, is, d) ∧
from-nat (heap.refs h ′ typ x) = ITerm(s ′, is, d)

using assms[unfolded heap-only-stamp-changed-def]
by blast
then have (typ 6= TYPEREP(i-term) ∧ typ 6= TYPEREP(i-terms) ∧ typ 6=

TYPEREP(nat)) ∨
(∃ s s ′ is d. typ = TYPEREP(i-term) ∧
Ref x ∈ trs ∧
from-nat (heap.refs h typ x) = ITerm(s, is, d) ∧
from-nat (heap.refs h ′ typ x) = ITerm(s ′, is, d))

proof (cases)
case a
then show ?thesis by blast

next
case b
then show ?thesis
using assms(2) i-term-closure-trans by blast

qed
}
then show ?thesis
using heap-only-stamp-changed-def by blast

qed

lemma heap-only-stamp-ch-closantimono:
assumes heap-only-stamp-changed-tr tr ′ h h ′

and tr ′ ∈ i-term-closure h (Some tr)
shows heap-only-stamp-changed-tr tr h h ′

using assms heap-only-stamp-ch-antimono i-term-closure-trans by blast

lemma heap-only-stamp-ch-closure:
assumes heap-only-stamp-changed trs h h ′

shows i-term-closure h ′ (Some tr) = i-term-closure h (Some tr)
proof −
{
fix x
have x ∈ i-term-closure h ′ (Some tr) =⇒ x ∈ i-term-closure h (Some tr)
proof (induction rule: i-term-closure.induct)
case (1 tr ′)
then show ?case
by (simp add: i-term-closure.intros(1))

next
case (2 tr ′ s is uv)
then obtain s ′ where Ref .get h tr ′ = ITerm (s ′, Some is, uv)
using assms heap-only-stamp-ch-get-term ′ by blast

then show ?case
using 2 .IH i-term-closure.intros(2) by blast

next
case (3 tr ′ s f tsp tr2)
obtain s ′ where ∗∗: Ref .get h tr ′ = ITerm (s ′, None, ITermD (f , tsp))

60

using 3 .IH 3 .hyps(2) assms heap-only-stamp-ch-get-term ′ by blast
have tr2 ∈ i-terms-set h tsp
using heap-only-stamp-ch-terms-set[OF assms] 3 .hyps(3) by simp

then show ?case
using ∗∗ 3 .IH i-term-closure.intros(3) by blast

qed
}
moreover {
fix x
have x ∈ i-term-closure h (Some tr) =⇒ x ∈ i-term-closure h ′ (Some tr)
proof (induction rule: i-term-closure.induct)
case (1 tr ′)
then show ?case
by (simp add: i-term-closure.intros(1))

next
case (2 tr ′ s is uv)
then obtain s ′ where Ref .get h ′ tr ′ = ITerm (s ′, Some is, uv)
using assms heap-only-stamp-ch-get-term by blast

then show ?case
using 2 .IH i-term-closure.intros(2) by blast

next
case (3 tr ′ s f tsp tr2)
obtain s ′ where ∗∗: Ref .get h ′ tr ′ = ITerm (s ′, None, ITermD (f , tsp))
using 3 .IH 3 .hyps(2) assms heap-only-stamp-ch-get-term by blast

have tr2 ∈ i-terms-set h ′ tsp
using heap-only-stamp-ch-terms-set[OF assms] 3 .hyps(3) by simp

then show ?case
using ∗∗ 3 .IH i-term-closure.intros(3) by blast

qed
}
ultimately show ?thesis by blast

qed

lemma heap-only-stamp-ch-terms-closure:
assumes heap-only-stamp-changed trs h h ′

shows i-terms-closure h ′ tsp = i-terms-closure h tsp
using assms heap-only-stamp-ch-closure heap-only-stamp-ch-terms-set by auto

lemma heap-only-stamp-ch-sym [sym]:
assumes heap-only-stamp-changed trs h h ′

shows heap-only-stamp-changed trs h ′ h
using assms unfolding heap-only-stamp-changed-def
by (subst eq-sym-conv, blast)

lemma heap-only-stamp-ch-trans [trans]:
assumes heap-only-stamp-changed trs h0 h1
and heap-only-stamp-changed trs h1 h2

shows heap-only-stamp-changed trs h0 h2
unfolding heap-only-stamp-changed-def

61

proof (intro allI impI)
fix typ :: typerep
and x :: nat

assume ∗: heap.refs h0 typ x 6= heap.refs h2 typ x
show (typ 6= TYPEREP(i-term) ∧ typ 6= TYPEREP(i-terms) ∧ typ 6= TYPE-

REP(nat)) ∨
(∃ s s ′ is d.
typ = TYPEREP(i-term) ∧
Ref x ∈ trs ∧
from-nat (heap.refs h0 typ x) = ITerm(s, is, d) ∧
from-nat (heap.refs h2 typ x) = ITerm(s ′, is, d))

proof (rule case-split)
assume typ 6= TYPEREP(i-term) ∧ typ 6= TYPEREP(i-terms) ∧ typ 6= TYPE-

REP(nat)
then show ?thesis by simp

next
assume ∗∗: ¬(typ 6= TYPEREP(i-term) ∧ typ 6= TYPEREP(i-terms) ∧ typ 6=

TYPEREP(nat))
from ∗ consider

(a) heap.refs h0 typ x 6= heap.refs h1 typ x |
(b) heap.refs h0 typ x = heap.refs h1 typ x and

heap.refs h1 typ x 6= heap.refs h2 typ x
by fastforce

then show ?thesis
proof (cases)
case a
then obtain s0 s1 is d where
from-nat (heap.refs h0 typ x) = ITerm(s0 , is, d) and
from-nat (heap.refs h1 typ x) = ITerm(s1 , is, d)
using ∗∗ assms(1)[unfolded heap-only-stamp-changed-def] by blast

moreover from this a obtain s2 where
from-nat (heap.refs h1 typ x) = ITerm(s1 , is, d) and
from-nat (heap.refs h2 typ x) = ITerm(s2 , is, d)
using ∗∗ assms(2)[unfolded heap-only-stamp-changed-def]
by (cases heap.refs h1 typ x = heap.refs h2 typ x) fastforce+

ultimately show ?thesis
using a assms(1) heap-only-stamp-changed-def by blast

next
case b
then obtain s1 s2 is d where
from-nat (heap.refs h1 typ x) = ITerm(s1 , is, d) and
from-nat (heap.refs h2 typ x) = ITerm(s2 , is, d)
using ∗∗ assms(2)[unfolded heap-only-stamp-changed-def] by blast

moreover from this b obtain s0 where
from-nat (heap.refs h0 typ x) = ITerm(s0 , is, d) and
from-nat (heap.refs h1 typ x) = ITerm(s1 , is, d)
using ∗∗ assms(2)[unfolded heap-only-stamp-changed-def] by fastforce

ultimately show ?thesis
using assms(1) assms(2) b(2) heap-only-stamp-ch-closure heap-only-stamp-changed-def

62

by blast
qed

qed
qed

lemma heap-only-stamp-ch-refl:
shows heap-only-stamp-changed trs h h
by (simp add: heap-only-stamp-changed-def)

lemma heap-only-stamp-ch-term-terms-acyclic:
assumes heap-only-stamp-changed trs h h ′

shows (i-term-acyclic h tp −→ i-term-acyclic h ′ tp) ∧
(i-terms-acyclic h tsp −→ i-terms-acyclic h ′ tsp)

proof −
have (i-term-acyclic h tp −→ heap-only-stamp-changed trs h h ′−→ i-term-acyclic

h ′ tp) ∧
(i-terms-acyclic h tsp −→ heap-only-stamp-changed trs h h ′−→ i-terms-acyclic

h ′ tsp)
proof (induction rule: i-term-acyclic-i-terms-acyclic.induct)
case (t-acyclic-nil h)
then show ?case
by (simp add: i-term-acyclic-i-terms-acyclic.t-acyclic-nil)

next
case (t-acyclic-step-link h t tref s)
show ?case
proof (intro impI)
assume hosc: heap-only-stamp-changed trs h h ′

then obtain s ′ where Ref .get h ′ tref = ITerm (s ′, t, IVarD)
using heap-only-stamp-ch-get-term t-acyclic-step-link.hyps(2) by blast

then show i-term-acyclic h ′ (Some tref)
using hosc i-term-acyclic-i-terms-acyclic.t-acyclic-step-link t-acyclic-step-link.IH
by blast

qed
next
case (t-acyclic-step-ITerm h tsref tref s f)
show ?case
proof (intro impI)
assume hosc: heap-only-stamp-changed trs h h ′

then obtain s ′ where Ref .get h ′ tref = ITerm (s ′, None, ITermD (f , tsref))
using heap-only-stamp-ch-get-term t-acyclic-step-ITerm.hyps(2) by blast

then show i-term-acyclic h ′ (Some tref)
using hosc i-term-acyclic-i-terms-acyclic.t-acyclic-step-ITerm t-acyclic-step-ITerm.IH
by blast

qed
next
case (ts-acyclic-nil uy)
then show ?case
by (simp add: i-term-acyclic-i-terms-acyclic.ts-acyclic-nil)

next

63

case (ts-acyclic-step-ITerms h ts2ref tref tsref)
show ?case
proof (intro impI)
assume hosc: heap-only-stamp-changed trs h h ′

have Ref .get h ′ tsref = ITerms (tref , ts2ref)
using heap-only-stamp-ch-get-terms hosc ts-acyclic-step-ITerms.hyps(3) by

auto
then show i-terms-acyclic h ′ (Some tsref)
using hosc i-term-acyclic-i-terms-acyclic.ts-acyclic-step-ITerms
ts-acyclic-step-ITerms.IH by blast

qed
qed
then show ?thesis using assms by blast

qed

lemma heap-only-stamp-ch-term-acyclic:
assumes i-term-acyclic h tp
and heap-only-stamp-changed trs h h ′

shows i-term-acyclic h ′ tp
using assms heap-only-stamp-ch-term-terms-acyclic by blast

lemma heap-only-stamp-ch-terms-acyclic:
assumes i-terms-acyclic h tsp
and heap-only-stamp-changed trs h h ′

shows i-terms-acyclic h ′ tsp
using assms heap-only-stamp-ch-term-terms-acyclic by blast

lemma heap-only-stamp-ch-terms-set-antimono:
assumes hosc: heap-only-stamp-changed-tr tr ′ h h ′

and Ref .get h tr = ITerm(s, None, ITermD(f , tsp))
and tr ′ ∈ i-terms-set h tsp

shows heap-only-stamp-changed-tr tr h h ′

unfolding heap-only-stamp-changed-def
proof (intro allI impI)
fix typ x
assume refs h typ x 6= refs h ′ typ x
then consider

(a) typ 6= TYPEREP(i-term) ∧ typ 6= TYPEREP(i-terms) ∧ typ 6= TYPE-
REP(nat) |

(b) s s ′ is d where typ = TYPEREP(i-term) and
Ref x ∈ i-term-closure h (Some tr ′) and
from-nat (refs h typ x) = ITerm (s, is, d) and
from-nat (refs h ′ typ x) = ITerm (s ′, is, d)

using hosc[unfolded heap-only-stamp-changed-def] by blast
then show typ 6= TYPEREP(i-term) ∧ typ 6= TYPEREP(i-terms) ∧ typ 6=

TYPEREP(nat) ∨
(∃ s s ′ is d.

typ = TYPEREP(i-term) ∧
Ref x ∈ i-term-closure h (Some tr) ∧

64

from-nat (refs h typ x) = ITerm (s, is, d) ∧
from-nat (refs h ′ typ x) = ITerm (s ′, is, d))

proof (cases)
case a
then show ?thesis by simp

next
case b
then show ?thesis using assms[unfolded heap-only-stamp-changed-def]
by (meson i-term-closure.intros(1) i-term-closure.intros(3) i-term-closure-trans)

qed
qed

lemma heap-only-stamp-ch-tr-sym [sym]:
assumes heap-only-stamp-changed-tr tr h h ′

shows heap-only-stamp-changed-tr tr h ′ h
using assms heap-only-stamp-ch-closure heap-only-stamp-ch-sym by presburger

lemma heap-only-stamp-ch-ts-sym [sym]:
assumes heap-only-stamp-changed-ts tsp h h ′

shows heap-only-stamp-changed-ts tsp h ′ h
using assms heap-only-stamp-ch-sym heap-only-stamp-ch-terms-closure by presburger

lemma heap-only-stamp-ch-tr-trans [trans]:
assumes heap-only-stamp-changed-tr tr h0 h1
and heap-only-stamp-changed-tr tr h1 h2

shows heap-only-stamp-changed-tr tr h0 h2
by (metis (no-types) assms heap-only-stamp-ch-closure heap-only-stamp-ch-trans)

lemma heap-only-stamp-ch-ts-trans [trans]:
assumes heap-only-stamp-changed-ts tsp h0 h1
and heap-only-stamp-changed-ts tsp h1 h2

shows heap-only-stamp-changed-ts tsp h0 h2
by (metis (no-types, lifting) assms heap-only-stamp-ch-terms-closure

heap-only-stamp-ch-trans)

definition heap-only-nonterm-changed where
heap-only-nonterm-changed h h ′ = (∀ typ x.
heap.refs h typ x 6= heap.refs h ′ typ x −→
(typ 6= TYPEREP(i-term) ∧ typ 6= TYPEREP(i-terms)))

lemma heap-only-nonterm-chI :
fixes r :: ′a::heap ref
assumes TYPEREP(′a) 6= TYPEREP(i-term) ∧ TYPEREP(′a) 6= TYPE-

REP(i-terms)
shows heap-only-nonterm-changed h (Ref .set r v h)
unfolding heap-only-nonterm-changed-def using assms
by (simp add: Ref .set-def)

lemma heap-only-nonterm-ch-get:

65

fixes r :: ′a::heap ref
assumes hosc: heap-only-nonterm-changed h h ′

and nt: TYPEREP(′a) = TYPEREP(i-term) ∨ TYPEREP(′a) = TYPE-
REP(i-terms)
shows Ref .get h r = Ref .get h ′ r
unfolding Ref .get-def comp-def
using hosc[unfolded heap-only-nonterm-changed-def , rule-format,

of TYPEREP(′a) addr-of-ref r] nt by fastforce

lemmas
heap-only-nonterm-ch-get-term =
heap-only-nonterm-ch-get[of - - tr , OF - refl[THEN disjI1]] and

heap-only-nonterm-ch-get-terms =
heap-only-nonterm-ch-get[of - - tsr , OF - refl[THEN disjI2]]
for tr tsr

lemma heap-only-nonterm-ch-sym[sym]:
assumes heap-only-nonterm-changed h h ′

shows heap-only-nonterm-changed h ′ h
using assms unfolding heap-only-nonterm-changed-def
by (subst eq-sym-conv)

lemma
assumes heap-only-nonterm-changed h h ′

shows heap-only-nonterm-ch-term-acyclic:
i-term-acyclic h tr =⇒ i-term-acyclic h ′ tr

and heap-only-nonterm-ch-terms-acyclic:
i-terms-acyclic h tsp =⇒ i-terms-acyclic h ′ tsp

unfolding conjunction-def
proof (atomize, unfold atomize-conj[unfolded conjunction-def], goal-cases)
case 1
have (i-term-acyclic h tr −→ heap-only-nonterm-changed h h ′ −→ i-term-acyclic

h ′ tr) ∧
(i-terms-acyclic h tsp −→ heap-only-nonterm-changed h h ′ −→ i-terms-acyclic

h ′ tsp)
proof ((

induction
rule: i-term-acyclic-i-terms-acyclic.induct;

intro impI),
goal-cases nil link args terms-nil terms-next)

case (nil h)
then show ?case
by (simp add: i-term-acyclic-i-terms-acyclic.t-acyclic-nil)

next
case (link h t tref s)
haveRef .get h ′ tref = ITerm (s, t, IVarD)
using heap-only-nonterm-ch-get i-term-acyclic-i-terms-acyclic.t-acyclic-step-link
by (metis link(3) link(4))

66

then show ?case
using link(2)[rule-format, OF link(4), THEN t-acyclic-step-link]
by blast

next
case (args h tsref tref s f)
have Ref .get h ′ tref = ITerm (s, None, ITermD (f , tsref))
using heap-only-nonterm-ch-get[OF args(4)] args(3) by metis

then show ?case
using args(2)[rule-format, OF args(4), THEN t-acyclic-step-ITerm]
by blast

next
case (terms-nil h)
then show ?case
by (simp add: ts-acyclic-nil)

next
case (terms-next h ts2ref tref tsref)
then have Ref .get h ′ tsref = ITerms (tref , ts2ref)
using heap-only-nonterm-ch-get by metis

then show ?case using terms-next ts-acyclic-step-ITerms by blast
qed
then show ?case
using assms by fast

qed

lemma heap-only-nonterm-ch-sublists:
assumes heap-only-nonterm-changed h h ′

shows i-terms-sublists h tsp = i-terms-sublists h ′ tsp
proof −
{
fix tsp ′ and
h:: heap and
h ′:: heap

assume tsp ′ ∈ i-terms-sublists h tsp
and heap-only-nonterm-changed h h ′

then have tsp ′ ∈ i-terms-sublists h ′ tsp
proof (induction rule: i-terms-sublists.induct)
case (next tsr ′ uu tnext)
have Some tsr ′ ∈ i-terms-sublists h ′ tsp
by (metis next.IH next.prems)

then show ?case
by (metis (no-types) heap-only-nonterm-ch-get-terms i-terms-sublists.next

next.hyps(2) next.prems)
next
case self
then show ?case
using i-terms-sublists.self by auto

qed
}
then show ?thesis using assms assms[symmetric] by blast

67

qed

lemma heap-only-nonterm-ch-terms-set:
assumes heap-only-nonterm-changed h h ′

shows i-terms-set h tsp = i-terms-set h ′ tsp
unfolding i-terms-set-def2
using assms heap-only-nonterm-ch-get-terms heap-only-nonterm-ch-sublists by

auto

lemma heap-only-nonterm-ch-closure:
assumes heap-only-nonterm-changed h h ′

shows i-term-closure h tp = i-term-closure h ′ tp
proof −
{
fix tr
and h :: heap
and h ′ :: heap

assume tr ∈ i-term-closure h tp
and heap-only-nonterm-changed h h ′

then have tr ∈ i-term-closure h ′ tp
proof (induction rule: i-term-closure.induct)
case (1 tr)
then show ?case
by (simp add: i-term-closure.intros(1))

next
case (2 tr uu is uv)
have tr ∈ i-term-closure h ′ tp
by (metis 2 .IH 2 .prems)

then show ?case
by (metis (no-types) 2 .hyps(2) 2 .prems

heap-only-nonterm-ch-get-term i-term-closure.intros(2))
next
case (3 tr uw ux tsp tr2)
show ?case
using 3 .IH 3 .hyps(2) 3 .hyps(3) 3 .prems heap-only-nonterm-ch-get-term
heap-only-nonterm-ch-terms-set i-term-closure.intros(3)

by fastforce
qed

}
then show ?thesis using assms assms[symmetric] by blast

qed

lemma acyclic-closure-ch-stamp-inductc ′ [consumes 1 ,
case-names var link args terms-nil terms]:

fixes h:: heap
and tr :: i-term ref
and P1 :: heap ⇒ i-term ref set ⇒ i-term ref ⇒ bool
and P2 :: heap ⇒ i-term ref set ⇒ i-termsP ⇒ bool

assumes acyclic: i-term-acyclic h (Some tr)

68

and var-case:
∧
h trs tr s.

Ref .get h tr = ITerm(s, None, IVarD) =⇒
P1 h trs tr

and link-case:
∧
h trs tr isr s.

(
∧
t2r h ′ trs ′.
trs ⊆ trs ′ =⇒
heap-only-stamp-changed trs ′ h h ′ =⇒
t2r ∈ i-term-closure h (Some isr) =⇒
P1 h ′ trs ′ t2r) =⇒

Ref .get h tr = ITerm(s, Some isr , IVarD) =⇒
P1 h trs tr

and args-case:
∧
h trs tr tsp s f .

(
∧
h ′ trs ′.
trs ⊆ trs ′ =⇒
heap-only-stamp-changed trs ′ h h ′ =⇒
P2 h ′ trs ′ tsp) =⇒

(
∧
h ′ trs ′ t2r0 t2r .
trs ⊆ trs ′ =⇒
heap-only-stamp-changed trs ′ h h ′ =⇒
t2r ∈ i-term-closure h (Some t2r0) =⇒
t2r0 ∈ i-terms-set h tsp =⇒
P1 h ′ trs ′ t2r) =⇒

Ref .get h tr = ITerm(s, None, ITermD(f , tsp)) =⇒
P1 h trs tr

and terms-nil-case:
∧
h trs. P2 h trs None

and terms-case:
∧
h trs tr tsr tsnextp.

(
∧
h ′ trs ′.
trs ⊆ trs ′ =⇒
heap-only-stamp-changed trs ′ h h ′ =⇒
P2 h ′ trs ′ tsnextp) =⇒

(
∧
h ′ trs ′ t2r .
trs ⊆ trs ′ =⇒
heap-only-stamp-changed trs ′ h h ′ =⇒
t2r ∈ i-term-closure h (Some tr) =⇒
P1 h ′ trs ′ t2r) =⇒

Ref .get h tsr = ITerms (tr , tsnextp) =⇒
P2 h trs (Some tsr)

shows P1 h trs tr
proof −
{
fix tp
have i-term-acyclic h tp =⇒

(
∧

tr h ′ trs ′.
tr ∈ i-term-closure h tp =⇒
heap-only-stamp-changed trs ′ h h ′ =⇒
P1 h ′ trs ′ tr ∧
(∀ s f tsp0 tsp.
Ref .get h tr = ITerm(s, None, ITermD(f , tsp0)) −→
tsp ∈ i-terms-sublists h tsp0 −→

69

P2 h ′ trs ′ tsp))
proof (induction

taking: λh tsp. (∀ trs ′ h ′.
heap-only-stamp-changed trs ′ h h ′ −→ (

(∀ tsp ′.
tsp ′ ∈ i-terms-closure-sublists h tsp −→
P2 h ′ trs ′ tsp ′) ∧

(∀ tr .
tr ∈ i-terms-closure h tsp −→
P1 h ′ trs ′ tr)))

rule: i-term-acyclic-i-terms-acyclic.inducts(1))
case (t-acyclic-nil uu)
then show ?case
by (simp add: i-term-closure-None)

next
case (t-acyclic-step-link h t tref s tr h ′ trs)
consider (a) t = None |

(b) tr ∈ i-term-closure h t |
(c) isr where t = Some isr and tr = tref
using i-term-closure-link t-acyclic-step-link.hyps(2)
t-acyclic-step-link.prems(1) by blast

then show ?case
proof (cases)
case (a)
then show ?thesis
using heap-only-stamp-ch-get-term i-term-closure-var t-acyclic-step-link.hyps(2)

t-acyclic-step-link.prems(1) t-acyclic-step-link.prems(2) var-case by
fastforce

next
case (b)
then show ?thesis using t-acyclic-step-link by blast

next
case (c)
have

∧
t2r h ′a trs ′. trs ⊆ trs ′ =⇒ heap-only-stamp-changed trs ′ h ′ h ′a =⇒

t2r ∈ i-term-closure h ′ (Some isr) =⇒ P1 h ′a trs ′ t2r
proof −
fix t2r h ′a trs ′

assume trs-subset-trs ′: trs ⊆ trs ′

and hosc-h ′-h ′a: heap-only-stamp-changed trs ′ h ′ h ′a
and tr2-clos ′-isr : t2r ∈ i-term-closure h ′ (Some isr)

have ∗: t2r ∈ i-term-closure h t
using c(1) heap-only-stamp-ch-closure
t-acyclic-step-link.prems(2) tr2-clos ′-isr by blast

have heap-only-stamp-changed trs ′ h h ′

using t-acyclic-step-link(5) trs-subset-trs ′

heap-only-stamp-ch-antimono by blast
then have ∗∗: heap-only-stamp-changed trs ′ h h ′a
using hosc-h ′-h ′a heap-only-stamp-ch-trans by blast

show P1 h ′a trs ′ t2r using t-acyclic-step-link.IH [OF ∗ ∗∗]

70

by simp
qed
moreover obtain s ′ where Ref .get h ′ tr = ITerm (s ′, Some isr , IVarD)
using heap-only-stamp-ch-get-term[OF t-acyclic-step-link(5) t-acyclic-step-link(2)]

c by blast
ultimately have P1 h ′ trs tr using link-case by meson
then show ?thesis
using c(2) t-acyclic-step-link.hyps(2) by auto

qed
next
case (t-acyclic-step-ITerm h tsref tref s f tr h ′ trs)
then have get-tref : Ref .get h tref = ITerm (s, None, ITermD (f , tsref))
and tr-clos-tref : tr ∈ i-term-closure h (Some tref)
and hosc-h-h ′: heap-only-stamp-changed trs h h ′

and IH1 :
∧
trs ′ h ′ tsp ′.

heap-only-stamp-changed trs ′ h h ′ =⇒
tsp ′ ∈ i-terms-closure-sublists h tsref =⇒
P2 h ′ trs ′ tsp ′

and IH2 :
∧
trs ′ h ′ tr .

heap-only-stamp-changed trs ′ h h ′ =⇒
tr ∈ i-terms-closure h tsref =⇒
P1 h ′ trs ′ tr by blast+

have tr-clos ′-tref : tr ∈ i-term-closure h ′ (Some tref)
using hosc-h-h ′ heap-only-stamp-ch-closure tr-clos-tref by auto

have ∗:
∧
h ′′ trs ′. trs ⊆ trs ′ =⇒ heap-only-stamp-changed trs ′ h ′ h ′′ =⇒ P2

h ′′ trs ′ tsref
proof −
fix h ′′ trs ′

assume trs ⊆ trs ′

and heap-only-stamp-changed trs ′ h ′ h ′′

then have heap-only-stamp-changed trs ′ h h ′′

using heap-only-stamp-ch-antimono heap-only-stamp-ch-trans
t-acyclic-step-ITerm.prems(2) by blast

then show P2 h ′′ trs ′ tsref
using IH1 i-terms-sublists.self by fast

qed
have ∗∗:

∧
h ′′ trs ′ t2r0 t2r .

trs ⊆ trs ′ =⇒
heap-only-stamp-changed trs ′ h ′ h ′′ =⇒
t2r ∈ i-term-closure h ′ (Some t2r0) =⇒
t2r0 ∈ i-terms-set h ′ tsref =⇒ P1 h ′′ trs ′ t2r

proof −
fix h ′′ trs ′ t2r0 t2r
assume trs ⊆ trs ′

and hosch-h ′-h ′′: heap-only-stamp-changed trs ′ h ′ h ′′

and t2r-clos ′-t2r0 : t2r ∈ i-term-closure h ′ (Some t2r0)
and t2r0-terms ′: t2r0 ∈ i-terms-set h ′ tsref

then have hosc-h-h ′′: heap-only-stamp-changed trs ′ h h ′′

using heap-only-stamp-ch-antimono heap-only-stamp-ch-trans

71

t-acyclic-step-ITerm.prems(2) by blast

have t2r0-terms-set-tsref : t2r0 ∈ i-terms-set h tsref
using t2r0-terms ′ hosc-h-h ′[symmetric] heap-only-stamp-ch-terms-set by

blast
have t2r-clos-tsref : t2r ∈ i-terms-closure h tsref
using UN-I t2r-clos ′-t2r0 t2r0-terms-set-tsref
heap-only-stamp-ch-closure hosc-h-h ′ by fast

then show P1 h ′′ trs ′ t2r using IH2 [OF hosc-h-h ′′ t2r-clos-tsref] by blast
qed
consider (a) tr ∈ i-terms-closure h tsref | (b) tr = tref
using get-tref i-term-closure-args tr-clos-tref by fastforce

then show ?case
proof (cases)
case a
then have t1 : P1 h ′ trs tr using IH2 hosc-h-h ′ by blast
show ?thesis
proof (intro conjI , simp add: t1 , intro allI impI)
fix s f tsp tsp0
assume get-tr : Ref .get h tr = ITerm (s, None, ITermD (f , tsp0))
and tsp-sublist-tsp0 : tsp ∈ i-terms-sublists h tsp0

have tsp ∈ (
⋃
tr∈i-terms-closure h tsref . i-term-sublists h tr)

by (metis (no-types) UN-iff a get-ITerm-args-iff-ex get-tr tsp-sublist-tsp0)
then have tsp ∈ i-terms-closure-sublists h tsref
by blast

then show P2 h ′ trs tsp using IH1 hosc-h-h ′ by presburger
qed

next
case b
then obtain s ′ where Ref .get h ′ tr = ITerm (s ′, None, ITermD (f , tsref))
using get-tref heap-only-stamp-ch-get-term hosc-h-h ′ by blast

from ∗ ∗∗ args-case[OF - - this]
have t1 : P1 h ′ trs tr
by force

then show ?thesis
proof (intro conjI , simp add: t1 , intro allI impI)
fix s f tsp tsp0
assume get-tr : Ref .get h tr = ITerm (s, None, ITermD (f , tsp0))
and tsp-sublist-tsp0 : tsp ∈ i-terms-sublists h tsp0

then have tsp ∈ i-terms-closure-sublists h tsref
using get-tref b by fastforce

then show P2 h ′ trs tsp
using IH1 hosc-h-h ′ by blast

qed
qed

next
case (ts-acyclic-nil uy)
then show ?case
using terms-nil-case

72

by (simp add: i-terms-set-None-empty i-terms-sublists-None-om)
next
case (ts-acyclic-step-ITerms h ts2ref tref tsref)
then have IH1a:

∧
tr trs ′ h ′.

tr ∈ i-terms-closure h ts2ref =⇒
heap-only-stamp-changed trs ′ h h ′ =⇒
P1 h ′ trs ′ tr

and IH1b:
∧
tr trs ′ tsp ′ h ′.

tsp ′ ∈ i-terms-closure-sublists h ts2ref =⇒
heap-only-stamp-changed trs ′ h h ′ =⇒
P2 h ′ trs ′ tsp ′

and get-tsref : Ref .get h tsref = ITerms (tref , ts2ref)
and tref-acyclic: i-term-acyclic h (Some tref)
by blast+

have IH2a:
∧
tr trs ′ tr h ′.

tr ∈ i-term-closure h (Some tref) =⇒
heap-only-stamp-changed trs ′ h h ′ =⇒
P1 h ′ trs ′ tr

and IH2b:
∧
tr trs ′ tr h ′ s f tsp0 tsp. tr ∈ i-term-closure h (Some tref) =⇒

heap-only-stamp-changed trs ′ h h ′ =⇒
Ref .get h tr = ITerm (s, None, ITermD (f , tsp0)) =⇒
tsp ∈ i-terms-sublists h tsp0 =⇒
P2 h ′ trs ′ tsp

by (simp add: ts-acyclic-step-ITerms.IH)+

show ?case
proof (intro allI impI conjI , goal-cases terms term)
case (term trs ′ h ′ tr)
then have hosc-h-h ′: heap-only-stamp-changed trs ′ h h ′

and tr-clos-tsref : tr ∈ i-terms-closure h (Some tsref)
by blast+

consider (a) tr ∈ i-terms-closure h ts2ref |
(b) tr ∈ i-term-closure h (Some tref)
using get-tsref
by (metis tr-clos-tsref UnE i-terms-closure-terms)

then show ?case
proof (cases)
case a
then show ?thesis using IH1a hosc-h-h ′ by presburger

next
case b
then show ?thesis using IH2a hosc-h-h ′ by presburger

qed
next
case (terms trs ′ h ′ tsp ′)
then have tsp ′-clsl-tsref : tsp ′ ∈ i-terms-closure-sublists h (Some tsref)
and hosc-h-h ′: heap-only-stamp-changed trs ′ h h ′

by blast+
have get ′-tsref : Ref .get h ′ tsref = ITerms (tref , ts2ref)

73

using get-tsref hosc-h-h ′ heap-only-stamp-ch-get-terms by simp
consider (a) tsp ′ = None |

(b) tsr ′

where tsp ′ = Some tsr ′

and tsp ′ ∈ i-term-closure-sublists h (Some tref) |
(c) tsr ′

where tsp ′ = Some tsr ′

and tsp ′ ∈ i-terms-closure-sublists h ts2ref |
(d) tsp ′ = Some tsref
using i-term-closure-sublists-terms[OF get-tsref]
tsp ′-clsl-tsref by (atomize-elim, force)

then show ?case
proof (cases)
case a
then show ?thesis
by (simp add: terms-nil-case)

next
case b
then obtain tr where tr-clos-tref : tr ∈ i-term-closure h (Some tref)
and tsr ′-sublist-tr : Some tsr ′ ∈ i-term-sublists h tr
by blast

have i-term-acyclic h (Some tr)
using i-term-closure-acyclic tr-clos-tref tref-acyclic by blast

with tsr ′-sublist-tr obtain s f tsp0
where get-tr : Ref .get h tr = ITerm (s, None, ITermD (f , tsp0))
and tsr ′-sublist-tsp0 : Some tsr ′ ∈ i-terms-sublists h tsp0

using i-terms-sublists-someE acyclic-args-nil-is by auto
show ?thesis using IH2b[OF tr-clos-tref hosc-h-h ′ get-tr tsr ′-sublist-tsp0]

b
by fast

next
case c
then show ?thesis using IH1b hosc-h-h ′ by presburger

next
case d
have ∗:

∧
h ′′ trs ′′.

trs ′ ⊆ trs ′′ =⇒
heap-only-stamp-changed trs ′′ h ′ h ′′ =⇒
P2 h ′′ trs ′′ ts2ref

by (meson IH1b UnCI heap-only-stamp-ch-antimono heap-only-stamp-ch-trans
hosc-h-h ′ i-terms-sublists.self)

have ∗∗:
∧
h ′′ trs ′′ t2r .

trs ′ ⊆ trs ′′ =⇒
heap-only-stamp-changed trs ′′ h ′ h ′′ =⇒
t2r ∈ i-term-closure h ′ (Some tref) =⇒
P1 h ′′ trs ′′ t2r

proof −
fix h ′′ trs ′′ t2r
assume trs ′-subset-trs ′′: trs ′ ⊆ trs ′′

74

and hosc-trs ′′-h ′-h ′′: heap-only-stamp-changed trs ′′ h ′ h ′′

and t2r-clos ′-tref : t2r ∈ i-term-closure h ′ (Some tref)
have t2r ∈ i-term-closure h (Some tref)
using heap-only-stamp-ch-closure hosc-h-h ′ t2r-clos ′-tref by blast

moreover have heap-only-stamp-changed trs ′′ h h ′′

by (metis heap-only-stamp-ch-antimono heap-only-stamp-ch-trans
hosc-h-h ′

hosc-trs ′′-h ′-h ′′ trs ′-subset-trs ′′)
ultimately show P1 h ′′ trs ′′ t2r
using IH2a[where h ′=h ′′ and tra=t2r and trs ′=trs ′′]
by blast

qed
from terms-case[where h=h ′ and trs=trs ′ and tsr=tsref , OF - - get ′-tsref]
show ?thesis using d ∗ ∗∗ by force

qed
qed

qed
}
then show ?thesis using acyclic

heap-only-stamp-ch-refl i-term-closure.intros(1) by auto
qed

end

A.4 Imperative version of algorithm
theory Unification-Imperative
imports Main
ITerm
HOL−Imperative-HOL.Ref
HOL−Imperative-HOL.Heap-Monad

begin

fun i-union where
i-union (Some v, t:: i-termP) = (v := ITerm (0 , t, IVarD)) |
i-union (None, -) = return ()

partial-function (heap) i-find:: i-termP ⇒ i-termP Heap
where [code]:
i-find tp = (case tp of

(Some tr) ⇒ do {
t ← !tr ;
case t of
ITerm (-, Some is, -) ⇒ i-find (Some is)
| ITerm (-, None, -) ⇒ return (Some tr)}
| None ⇒ return None)

context

75

fixes time:: nat ref
and v:: i-termP

begin

partial-function (heap) i-occ-p:: i-termP + i-termsP ⇒ bool Heap where [code]:
i-occ-p XX = (
case XX of

(Inl (Some t)) ⇒ do {
tv ← !t;
case tv of
ITerm (-, -, IVarD) ⇒ return (v = Some t)
| ITerm (stamp, None, ITermD(f , args)) ⇒ do {

timev ← !time;
if (stamp = timev) then return False
else do {
t := ITerm(timev, None, ITermD(f , args));
i-occ-p (Inr args)
}
}

}
| (Inr None) ⇒ return False
| (Inr (Some ts)) ⇒ do {
tsv ← !ts;
case tsv of
ITerms (t, next) ⇒ do {
find-res ← i-find (Some t);
occ-res ← i-occ-p (Inl find-res);
if occ-res then return True
else i-occ-p (Inr next) }

}
)

definition i-occurs:: i-termP ⇒ bool Heap where
i-occurs t = do {
timev ← !time;
time := timev + 1 ;
i-occ-p (Inl t)
}

end

end

A.5 Equivalence of imperative and functional formulation
theory ImpEqFunc
imports Main
Unification-Functional
Unification-Imperative

76

HOL−Imperative-HOL.Ref
HOL−Imperative-HOL.Heap-Monad

begin

Variables are called (x,$) where $ is the heap address of the variable term.
partial-function (heap)
i-term-to-term-p:: i-term ref + i-termsP ⇒ (term + term list) Heap
where [code]:
i-term-to-term-p XX = (case XX of

(Inl tr) ⇒ do {
t ← !tr ;
case t of
ITerm (-, None, IVarD) ⇒
return (Inl(V (′′x ′′, int (addr-of-ref tr))))

| ITerm (-, (Some t2p), -) ⇒ i-term-to-term-p (Inl t2p)
| ITerm (-, None, ITermD(f , termsp)) ⇒ do {

v ← i-term-to-term-p (Inr termsp);
case v of
Inr(terms) ⇒ return (Inl(T (f , terms))) }

}
| (Inr None) ⇒

return (Inr([]))
| (Inr (Some termsr)) ⇒ do {

termsv ← !termsr ;
case termsv of

(ITerms(tthis, tnext)) ⇒ do {
vtthis ← i-term-to-term-p (Inl tthis);
vtnext ← i-term-to-term-p (Inr tnext);
case (vtthis, vtnext) of

(Inl(term), Inr(terms)) ⇒ return (Inr(term#terms)) }
}

)

lemma i-term-to-term-p-mr :
fixes h :: heap
and XX :: i-term ref + i-termsP

assumes term-acyclic:
∧
tr . XX = Inl tr =⇒ i-term-acyclic h (Some tr)

and terms-acyclic:
∧
tp. XX = Inr tp =⇒ i-terms-acyclic h tp

shows ∃ r . (Some(r , h) = execute (i-term-to-term-p XX) h ∧ isl r = isl XX)
proof −
{
fix tp trp
let ?cond XX0 h0 = ∃ r . (Some(r , h) = execute (i-term-to-term-p XX0) h ∧

isl r = isl XX0)
have (i-term-acyclic h trp −→

trp 6= None −→ ?cond (Inl (case trp of Some tr ⇒ tr)) h) ∧
(i-terms-acyclic h tp −→ ?cond (Inr tp) h)

proof (induction rule: i-term-acyclic-i-terms-acyclic.induct)
case (t-acyclic-nil h)

77

then show ?case by simp
next
case (t-acyclic-step-link h t tref stamp)
then consider (a) Ref .get h tref = ITerm(stamp, None, IVarD) |

(b) tn iv where Ref .get h tref = ITerm (stamp, (Some tn), iv)
by auto

then show ?case using t-acyclic-step-link.IH
proof (cases)
case a
then show ?thesis
by (subst i-term-to-term-p.simps,

simp add: lookup-def tap-def bind-def return-def
execute-heap isl-def)

next
case b
then show ?thesis using t-acyclic-step-link.IH

by (subst i-term-to-term-p.simps,
simp add: lookup-def tap-def bind-def return-def

execute-heap t-acyclic-step-link.hyps(2))
qed

next
case (t-acyclic-step-ITerm h tsref tref stamp f)
then obtain r0 where r0-def : Some (r0 , h) = execute (i-term-to-term-p

(Inr tsref)) h ∧ ¬isl r0
by auto
then have ∗: Some (r0 , h) = execute (i-term-to-term-p (Inr tsref)) h by

simp
obtain r0v where ∗∗: Inr r0v = r0
using r0-def sum.collapse(2) by blast

show ?case using t-acyclic-step-ITerm
apply (subst i-term-to-term-p.simps,

simp add: lookup-def tap-def bind-def return-def
execute-heap)

apply (fold ∗ ∗∗)
by (simp add: execute-heap)

next
case (ts-acyclic-nil h)
then show ?case by (subst i-term-to-term-p.simps, simp add: return-def

execute-heap)
next
case (ts-acyclic-step-ITerms h ts2ref tref tsref)
then obtain r0 where r0-def : Some (r0 , h) = execute (i-term-to-term-p (Inl

tref)) h ∧ isl r0
by auto
then have a1 : Some (r0 , h) = execute (i-term-to-term-p (Inl tref)) h by

simp
obtain r0v where a2 : Inl r0v = r0 using r0-def [unfolded isl-def]
by auto

78

obtain r1 where r1-def : Some (r1 , h) = execute (i-term-to-term-p (Inr
ts2ref)) h ∧ ¬isl r1

using ts-acyclic-step-ITerms by auto
then have b1 : Some (r1 , h) = execute (i-term-to-term-p (Inr ts2ref)) h by

simp
obtain r1v where b2 : Inr r1v = r1
using r1-def sum.collapse(2) by blast

from ts-acyclic-step-ITerms show ?case
apply (subst i-term-to-term-p.simps,

simp add: lookup-def tap-def bind-def return-def execute-heap)
by (fold a1 a2 , simp, fold b1 b2 , simp add: return-def execute-heap)

qed
}
note proof0 = this
show ?thesis
proof (cases XX)
case (Inl a)
then show ?thesis
using proof0 term-acyclic by fastforce

next
case (Inr b)
then show ?thesis
using proof0 terms-acyclic by simp

qed
qed

definition i-term-to-term:: i-term ref ⇒ term Heap where
i-term-to-term tr = do { r ← i-term-to-term-p (Inl tr); case r of (Inl v)⇒ return

v }

abbreviation i-term-to-term-e:: heap ⇒ i-term ref ⇒ term where
i-term-to-term-e h tr ≡ (case (execute (i-term-to-term tr) h) of Some(r , -) ⇒ r)

lemma i-term-to-term-value-iff :
fixes tr :: i-term ref
and r :: term
and h:: heap

assumes i-term-acyclic h (Some tr)
shows (r = i-term-to-term-e h tr) = (Some(r , h) = execute (i-term-to-term tr)

h)
proof −
{
obtain XX where ∗: Some (XX , h) = execute (i-term-to-term-p (Inl tr)) h

and isl XX
using i-term-to-term-p-mr assms isl-def by fast

then obtain r ′ where ∗∗: Inl r ′ = XX
using isl-def by metis

79

assume r = i-term-to-term-e h tr
then have Some(r , h) = execute (i-term-to-term tr) h
by (simp add: i-term-to-term-def bind-def , fold ∗ ∗∗,

simp add: return-def execute-heap)
}
then show ?thesis
by (metis case-prod-conv option.simps(5))

qed

lemma i-term-to-term-value:
fixes tr :: i-term ref
and h:: heap

assumes i-term-acyclic h (Some tr)
shows execute (i-term-to-term tr) h = Some(i-term-to-term-e h tr , h)

using assms i-term-to-term-value-iff by metis

definition i-terms-to-terms:: i-termsP ⇒ term list Heap where
i-terms-to-terms tp = do { r ← i-term-to-term-p (Inr tp); case r of (Inr v) ⇒

return v }

abbreviation i-terms-to-terms-e:: heap ⇒ i-termsP ⇒ term list where
i-terms-to-terms-e h tr ≡ (case (execute (i-terms-to-terms tr) h) of Some(r , -)
⇒ r)

lemma i-terms-to-terms-value-iff :
fixes tsp:: i-termsP
and r :: term list
and h:: heap

assumes i-terms-acyclic h tsp
shows (r = i-terms-to-terms-e h tsp) = (Some(r , h) = execute (i-terms-to-terms

tsp) h)
proof −
{
obtain XX where ∗: Some (XX , h) = execute (i-term-to-term-p (Inr tsp)) h

and ¬isl XX
using i-term-to-term-p-mr assms isl-def by fast

then obtain r ′ where ∗∗: Inr r ′ = XX
using sum.collapse(2) by blast

assume r = i-terms-to-terms-e h tsp
then have Some(r , h) = execute (i-terms-to-terms tsp) h
by (simp add: i-terms-to-terms-def bind-def , fold ∗ ∗∗,

simp add: return-def execute-heap)
}
then show ?thesis
by (metis case-prod-conv option.simps(5))

qed

lemma i-terms-to-terms-value:
fixes tsp:: i-termsP

80

and h:: heap
assumes i-terms-acyclic h tsp
shows execute (i-terms-to-terms tsp) h = Some (i-terms-to-terms-e h tsp, h)
by (metis assms i-terms-to-terms-value-iff)

lemma i-term-to-term-var-none:
fixes tr :: i-term ref
and s:: nat
and h:: heap

assumes Ref .get h tr = ITerm(s, None, IVarD)
shows execute (i-term-to-term tr) h = Some ((V (′′x ′′, int (addr-of-ref tr))), h)
unfolding i-term-to-term-def
by (subst i-term-to-term-p.simps,

simp add: assms lookup-def tap-def bind-def return-def execute-heap)

lemma i-term-to-term-var-some:
fixes tr :: i-term ref
and t2p:: i-term ref
and s:: nat
and h:: heap

assumes Ref .get h tr = ITerm(s, Some t2p, IVarD)
shows execute (i-term-to-term tr) h = execute (i-term-to-term t2p) h
unfolding i-term-to-term-def
by (subst i-term-to-term-p.simps,

simp add: assms lookup-def tap-def bind-def return-def execute-heap)

lemma i-term-to-term-terms:
fixes tr :: i-term ref
and termsp
and terms
and s:: nat
and h:: heap

assumes acyclic: i-term-acyclic h (Some tr)
and get-tr : Ref .get h tr = ITerm (s, None, ITermD(f , termsp))
and termsp-res: execute (i-terms-to-terms termsp) h = Some (terms, h)

shows execute (i-term-to-term tr) h = Some (T (f , terms), h)
proof −
have i-terms-acyclic h termsp using acyclic get-tr by (fact acyclic-terms-term-simp)
then obtain r where r-def : Some(r , h) = execute (i-term-to-term-p (Inr termsp))

h ∧ ¬isl r
using i-term-to-term-p-mr [where XX=Inr termsp] by auto

then have ∗: Some(r , h) = execute (i-term-to-term-p (Inr termsp)) h by simp
obtain rv where ∗∗: Inr rv = r
using r-def sum.collapse(2) by fast

have ∗∗∗: Some(Inr rv, h) = Some(Inr terms, h)
using ∗ ∗∗ termsp-res[unfolded i-terms-to-terms-def]
by (simp add: bind-def return-def execute-heap)

(fold ∗ ∗∗, simp add: execute-heap return-def)
show ?thesis unfolding i-term-to-term-def

81

apply (subst i-term-to-term-p.simps)
apply (simp add: get-tr lookup-def tap-def bind-def return-def execute-heap)
by (fold ∗ ∗∗, simp add: execute-heap return-def ∗∗∗)

qed

lemma i-term-to-term-e-terms:
fixes tr :: i-term ref
and termsp
and s:: nat
and h:: heap

assumes acyclic: i-term-acyclic h (Some tr)
and get-tr : Ref .get h tr = ITerm (s, None, ITermD(f , termsp))

shows i-term-to-term-e h tr = T (f , i-terms-to-terms-e h termsp)
proof −
have i-terms-acyclic h termsp
using acyclic acyclic-terms-term-simp get-tr by blast
then have execute (i-terms-to-terms termsp) h = Some (i-terms-to-terms-e h

termsp, h)
using i-terms-to-terms-value by blast

then show ?thesis
using acyclic get-tr i-term-to-term-terms by force

qed

lemma i-terms-to-terms-nil:
fixes h:: heap
shows execute (i-terms-to-terms None) h = Some([], h)
unfolding i-terms-to-terms-def
by (subst i-term-to-term-p.simps, simp add: return-def bind-def execute-heap)

lemma i-terms-to-terms-step:
fixes termsr :: i-terms ref
and tthis:: i-term ref
and tnext:: i-termsP
and term:: term
and terms:: term list
and h:: heap

assumes acyclic: i-terms-acyclic h (Some termsr)
and get-termsr : Ref .get h termsr = ITerms (tthis, tnext)
and tthis-res: execute (i-term-to-term tthis) h = Some(term, h)
and tnext-res: execute (i-terms-to-terms tnext) h = Some(terms, h)

shows execute (i-terms-to-terms (Some termsr)) h = Some(term#terms, h)
proof −
have tthis-acyclic: i-term-acyclic h (Some tthis)
using acyclic get-termsr
by (cases h Some termsr rule: i-terms-acyclic.cases, fastforce)

have tnext-acyclic: i-terms-acyclic h tnext
using acyclic get-termsr by (fact acyclic-terms-terms-simp)

obtain r0 where r0-def : Some(r0 , h) = execute (i-term-to-term-p (Inl tthis)) h

82

∧ isl r0
using i-term-to-term-p-mr tthis-acyclic
by (metis Inr-not-Inl sum.disc(1) sum.sel(1))

then have a1 : Some(r0 , h) = execute (i-term-to-term-p (Inl tthis)) h by simp
obtain r0v where a2 : Inl r0v = r0
using r0-def sum.collapse(1) by blast

have a3 : Some(Inl r0v, h) = Some(Inl term, h)
using tthis-res[unfolded i-term-to-term-def]
by (simp add: bind-def return-def execute-heap)

(fold a1 a2 , simp add: execute-heap return-def)

obtain r1 where r1-def : Some(r1 , h) = execute (i-term-to-term-p (Inr tnext))
h ∧ ¬isl r1

using i-term-to-term-p-mr [where XX=Inr tnext] tnext-acyclic
by auto

then have b1 : Some(r1 , h) = execute (i-term-to-term-p (Inr tnext)) h by simp
obtain r1v where b2 : Inr r1v = r1
using r1-def sum.collapse(2) by blast

have b3 : Some(Inr r1v, h) = Some(Inr terms, h)
using tnext-res[unfolded i-terms-to-terms-def]
by (simp add: bind-def return-def execute-heap)

(fold b1 b2 , simp add: execute-heap return-def)

show ?thesis unfolding i-terms-to-terms-def
apply (subst i-term-to-term-p.simps,

simp add: lookup-def tap-def bind-def return-def execute-heap get-termsr)
apply (fold a1 a2 b1 b2 , simp, fold b1 b2 , simp add: bind-def return-def

execute-heap)
using a3 b3 by simp

qed

lemma i-terms-to-terms-e-step:
fixes termsr :: i-terms ref
and tthis:: i-term ref
and tsnext:: i-termsP
and h:: heap

assumes acyclic: i-terms-acyclic h (Some termsr)
and get-termsr : Ref .get h termsr = ITerms (tthis, tsnext)

shows i-terms-to-terms-e h (Some termsr) =
(i-term-to-term-e h tthis)#(i-terms-to-terms-e h tsnext)

proof −
have i-term-acyclic h (Some tthis)
by (meson acyclic get-termsr i-terms-set-acyclic i-terms-setp.intros

i-terms-setp-i-terms-set-eq i-terms-sublistsp.self)
moreover have i-terms-acyclic h tsnext
using acyclic acyclic-terms-terms-simp get-termsr by blast

ultimately have execute (i-terms-to-terms (Some termsr)) h =
Some((i-term-to-term-e h tthis)#(i-terms-to-terms-e h tsnext), h)
using acyclic get-termsr i-term-to-term-value i-terms-to-terms-step i-terms-to-terms-value

83

by blast
then show ?thesis by simp

qed

abbreviation i-term-structure-presv where
i-term-structure-presv h0 h1 ≡ (
∀ tr ′ s is d. Ref .get h0 tr ′ = ITerm(s, is, d) −→

(∃ s ′. Ref .get h1 tr ′ = ITerm(s ′, is, d))) ∧
(∀ (tsr :: i-terms ref). Ref .get h0 tsr = Ref .get h1 tsr)

lemma i-term-to-term-get-presv:
assumes acyclic: i-term-acyclic h (Some tr)
and get-presv: i-term-structure-presv h h ′

shows i-term-to-term-e h tr = i-term-to-term-e h ′ tr
proof −
have i-term-to-term-e h tr = i-term-to-term-e h ′ tr ∧ i-term-acyclic h ′ (Some

tr)
using assms proof (induction h Some tr

arbitrary: tr
taking: λh tsp. i-term-structure-presv h h ′ −→
i-terms-to-terms-e h tsp = i-terms-to-terms-e h ′ tsp ∧ i-terms-acyclic h ′ tsp

rule: i-term-acyclic-i-terms-acyclic.inducts(1))
case (t-acyclic-step-link h is tr s)
show ?case
proof (cases is)
case None
then obtain s ′ where Ref .get h ′ tr = ITerm (s ′, None, IVarD)
using typerep-term-neq-nat get-presv heap-only-stamp-ch-get-term
t-acyclic-step-link

by presburger
moreover from this have i-term-acyclic h ′ (Some tr)
using i-term-acyclic-i-terms-acyclic.t-acyclic-step-link t-acyclic-nil by blast
ultimately show ?thesis using t-acyclic-step-link None
by (subst (1 2) i-term-to-term-var-none, simp-all)

next
case (Some isr)
then obtain s ′ where s ′-def : Ref .get h ′ tr = ITerm (s ′, Some isr , IVarD)
using heap-only-stamp-ch-get-term t-acyclic-step-link by blast

have ttt: i-term-to-term-e h isr = i-term-to-term-e h ′ isr
using acyclic-term-link-simp i-term-closure.intros(1)
t-acyclic-step-link Some by blast

moreover have tr-acyclic ′: i-term-acyclic h ′ (Some tr) using s ′-def
using Some i-term-acyclic-i-terms-acyclic.t-acyclic-step-link t-acyclic-step-link.hyps(2)

t-acyclic-step-link.prems by blast
show ?thesis
by (simp add: tr-acyclic ′,
subst (1 2) i-term-to-term-var-some, simp-all add: s ′-def t-acyclic-step-link

Some)
(fact ttt)

84

qed
next
case (t-acyclic-step-ITerm h tsref tref s f)
then obtain s ′ where s ′-def : Ref .get h ′ tref = ITerm (s ′, None, ITermD (f ,

tsref))
using heap-only-stamp-ch-get-term by blast

have acyclic ′-tref : i-term-acyclic h ′ (Some tref)
using i-term-acyclic-i-terms-acyclic.t-acyclic-step-ITerm local.t-acyclic-step-ITerm(4)

s ′-def t-acyclic-step-ITerm.hyps(2) by blast
have acyclic-tref : i-term-acyclic h (Some tref)
using i-term-acyclic-i-terms-acyclic.t-acyclic-step-ITerm local.t-acyclic-step-ITerm(3)

t-acyclic-step-ITerm.hyps(1) by blast
have ttt-step: i-term-to-term-e h tref = T (f , i-terms-to-terms-e h ′ tsref)
by (simp add: acyclic-tref i-term-to-term-e-terms t-acyclic-step-ITerm.hyps(2)

t-acyclic-step-ITerm.hyps(3) t-acyclic-step-ITerm.prems)
then show ?case
by (simp add: acyclic ′-tref i-term-to-term-e-terms s ′-def)

next
case (ts-acyclic-nil uy)
then show ?case
using i-terms-to-terms-nil
by (simp add: i-term-acyclic-i-terms-acyclic.ts-acyclic-nil)

next
case (ts-acyclic-step-ITerms h ts2ref tref tsref)
show ?case
proof (intro impI , goal-cases)
case 1
then have get-presv: i-term-structure-presv h h ′ by blast
then have get-tsref ′: Ref .get h ′ tsref = ITerms (tref , ts2ref)
using typerep-term-neq-terms heap-only-stamp-ch-get-terms
ts-acyclic-step-ITerms.hyps(5) by presburger

have tsref-acyclic: i-terms-acyclic h (Some tsref)
using i-term-acyclic-i-terms-acyclic.ts-acyclic-step-ITerms
ts-acyclic-step-ITerms.hyps(1) ts-acyclic-step-ITerms.hyps(3)
ts-acyclic-step-ITerms.hyps(5) by blast

then have tsref-acyclic ′: i-terms-acyclic h ′ (Some tsref)
using heap-only-stamp-ch-terms-acyclic get-presv get-tsref ′

i-term-acyclic-i-terms-acyclic.ts-acyclic-step-ITerms
ts-acyclic-step-ITerms.hyps(2) ts-acyclic-step-ITerms.hyps(4) by fast

moreover from this
have i-terms-to-terms-e h (Some tsref) = i-terms-to-terms-e h ′ (Some tsref)
apply (subst i-terms-to-terms-e-step[OF tsref-acyclic ts-acyclic-step-ITerms.hyps(5)])
apply (subst i-terms-to-terms-e-step[OF tsref-acyclic ′ get-tsref ′])
using ts-acyclic-step-ITerms.hyps(2) ts-acyclic-step-ITerms.hyps(3)
ts-acyclic-step-ITerms.hyps(4) get-presv by blast

ultimately show ?case by blast
qed

qed
then show ?thesis using assms by blast

85

qed

lemma i-term-to-term-only-stamp-changed:
assumes acyclic: i-term-acyclic h (Some tr)
and only-stamp-changed: heap-only-stamp-changed trs h h ′

shows i-term-to-term-e h tr = i-term-to-term-e h ′ tr
using assms i-term-to-term-get-presv
using heap-only-stamp-ch-get-term heap-only-stamp-ch-get-terms by auto

lemma i-terms-to-terms-only-stamp-changed:
assumes acyclic: i-terms-acyclic h tsp0
and only-stamp-changed: heap-only-stamp-changed trs h h ′

and tsp-sublist: tsp ∈ i-terms-sublists h tsp0
shows i-terms-to-terms-e h tsp = i-terms-to-terms-e h ′ tsp

proof −
have tsp-acyclic: i-terms-acyclic h tsp
using acyclic tsp-sublist i-terms-sublists-acyclic by blast

then show ?thesis using assms tsp-acyclic
proof (induction h tsp rule: i-terms-acyclic-induct)
case (ts-acyclic-nil h)
then show ?case
by (simp add: i-terms-to-terms-nil)

next
case (ts-acyclic-step h ts2ref tref tsref)
have get ′-tsref : Ref .get h tsref = Ref .get h ′ tsref
by (metis (lifting) heap-only-stamp-ch-get-terms ts-acyclic-step.prems(2))

have i-terms-to-terms-e h (Some tsref) =
(i-term-to-term-e h tref) # (i-terms-to-terms-e h ts2ref)

using i-terms-to-terms-e-step ts-acyclic-step.hyps(1) ts-acyclic-step.hyps(2)
ts-acyclic-step.hyps(3) ts-acyclic-step-ITerms by blast

moreover have i-terms-acyclic h ′ (Some tsref)
using heap-only-stamp-ch-terms-acyclic
ts-acyclic-step.prems(2) ts-acyclic-step.prems(4) by blast

then have i-terms-to-terms-e h ′ (Some tsref) =
(i-term-to-term-e h ′ tref) # (i-terms-to-terms-e h ′ ts2ref)

by (metis (no-types) get ′-tsref i-terms-to-terms-e-step ts-acyclic-step.hyps(3))

moreover have i-term-to-term-e h tref = i-term-to-term-e h ′ tref
using i-term-to-term-only-stamp-changed
ts-acyclic-step.hyps(2) ts-acyclic-step.prems(2) by blast

ultimately show ?case
using i-terms-sublists.next ts-acyclic-step.IH ts-acyclic-step.hyps(1)
ts-acyclic-step.hyps(3) ts-acyclic-step.prems(1) ts-acyclic-step.prems(2)
ts-acyclic-step.prems(3) ts-acyclic-step.prems(4) by presburger

qed
qed

lemma i-terms-to-terms-only-stamp-changed ′:

86

assumes acyclic: i-terms-acyclic h tsp
and get-tr : Ref .get h tr = ITerm(s, None, ITermD(f , tsp))
and only-stamp-changed: heap-only-stamp-changed trs h h ′

shows i-terms-to-terms-e h tsp = i-terms-to-terms-e h ′ tsp
using assms i-terms-to-terms-only-stamp-changed i-terms-sublists.self by blast

lemma i-term-to-term-chain:
assumes acyclic: i-term-acyclic h (Some tr)
and chain: tr ′ ∈ i-term-chain h tr

shows i-term-to-term-e h tr ′ = i-term-to-term-e h tr
using assms proof (induction h tr rule: i-term-acyclic-induct ′)
case (var h tr s)
then have tr ′ = tr
using i-term-chain-dest by blast

then show ?case by simp
next
case (link h tr isr s)
then show ?case
using i-term-chain-link i-term-to-term-var-some by force

next
case (args h tr tsp s f)
then have tr ′ = tr
using i-term-chain-dest by blast

then show ?case by simp
qed

lemma i-find-heap-change-nt:
fixes tr :: i-term ref
and tdestp:: i-termP
and r :: ′a::heap ref
and v:: ′a::heap
and h:: heap

assumes acyclic: i-term-acyclic h (Some tr)
and TYPEREP(′a) 6= TYPEREP(i-term)

shows ∃ tdestp. (
execute (i-find (Some tr)) (Ref .set r v h) = Some (tdestp, Ref .set r v h) ∧
execute (i-find (Some tr)) h = Some (tdestp, h))

using assms by
(induction rule: i-term-acyclic-induct ′)
(subst (1 2) i-find.simps,

simp add: lookup-def bind-def tap-def return-def execute-heap Ref .get-def
Ref .set-def)+

lemma i-find-heap-change-is-uc:
fixes tr :: i-term ref
and tdestp:: i-termP
and r :: i-term ref
and is:: i-termP
and v:: i-term

87

and h:: heap
assumes acyclic: i-term-acyclic h (Some tr)
and Ref .get h r = ITerm(s, is, d)
and v = ITerm(s ′, is, d ′)

shows
(execute (i-find (Some tr)) (Ref .set r v h) = Some (tdestp, Ref .set r v h))

=
(execute (i-find (Some tr)) h = Some (tdestp, h))

using assms proof
(induction rule: i-term-acyclic-induct ′)

case (var h tr s)
then show ?case
by (subst (1 2) i-find.simps)

(auto simp add: lookup-def bind-def tap-def return-def execute-heap
Ref .get-def Ref .set-def)

next
case (link h tr isr s)
then show ?case
by (subst (1 2) i-find.simps)

(auto simp add: lookup-def bind-def tap-def return-def execute-heap
Ref .get-def Ref .set-def)

next
case (args h tr tsp s f)
then show ?case
apply (subst (1 2) i-find.simps)
apply (simp add: lookup-def bind-def tap-def return-def execute-heap

Ref .get-def Ref .set-def)
by (auto simp add: return-def execute-heap)

qed

lemma i-find-some:
fixes tr :: i-term ref
and tdestr :: i-term ref
and h:: heap

assumes i-term-acyclic h (Some tr)
shows ∃ tdestr s d.
execute (i-find (Some tr)) h = Some(Some tdestr , h) ∧
tdestr ∈ i-term-chain h tr ∧
Ref .get h tdestr = ITerm(s, None, d)

using assms proof (induction rule: i-term-acyclic-induct ′)
case (var h tr s)
then show ?case
by (subst i-find.simps,
simp add: bind-def lookup-def tap-def return-def execute-heap i-term-chain.self)

next
case (link h tr isr s)
then have ∗: execute (i-find (Some tr)) h = execute (i-find (Some isr)) h
by (subst i-find.simps, simp add: bind-def lookup-def tap-def)

from link obtain tdestr s ′ d ′ where

88

∗∗: execute (i-find (Some isr)) h = Some (Some tdestr , h) ∧
tdestr ∈ i-term-chain h isr ∧ Ref .get h tdestr = ITerm (s ′, None, d ′)

by blast
then have tdestr ∈ i-term-chain h tr using i-term-chain-link link.hyps by blast
then show ?case using ∗ ∗∗ by simp

next
case (args h tr tsp s f)
then show ?case
by (subst i-find.simps,
simp add: bind-def lookup-def tap-def return-def execute-heap i-term-chain.self)

qed

definition stamp-current-not-occurs where
stamp-current-not-occurs time vr tr h =

(∀ tr ′ s ′ is d.
tr ′ ∈ i-term-closure h (Some tr) −→
Ref .get h tr ′ = ITerm(s ′, is, d) −→
s ′ = Ref .get h time −→
¬occurs (′′x ′′, int (addr-of-ref vr)) (i-term-to-term-e h tr ′))

abbreviation stamp-current-not-occurs ′ where
stamp-current-not-occurs ′ time vr tr h ≡

(¬occurs (′′x ′′, int (addr-of-ref vr)) (i-term-to-term-e h tr) −→
stamp-current-not-occurs time vr tr h)

abbreviation stamp-current-not-occurs ′-ts where
stamp-current-not-occurs ′-ts time vr tsp h ≡

(¬list-ex (occurs (′′x ′′, int (addr-of-ref vr))) (i-terms-to-terms-e h tsp) −→
(∀ tr ∈ i-terms-set h tsp. stamp-current-not-occurs time vr tr h))

lemma i-terms-to-terms-list-set:
assumes i-terms-acyclic h tsp
shows set (i-terms-to-terms-e h tsp) = i-term-to-term-e h ‘ i-terms-set h tsp

using assms proof (induction h tsp rule: i-terms-acyclic-induct)
case (ts-acyclic-nil h)
show ?case using i-terms-to-terms-nil i-terms-set-None-empty by force

next
case (ts-acyclic-step h ts2ref tref tsref)
then have i-terms-to-terms-e h (Some tsref) =
i-term-to-term-e h tref # i-terms-to-terms-e h ts2ref
using i-terms-to-terms-e-step ts-acyclic-step-ITerms by presburger

then show ?case
by (simp add: i-terms-set-insert ts-acyclic-step.IH ts-acyclic-step.hyps(3))

qed

lemma stamp-current-not-occurs ′-terms-set:
assumes terms-scno:

∧
tr . tr ∈ i-terms-set h tsp =⇒ stamp-current-not-occurs ′

time vr tr h ′

and terms-hosc: heap-only-stamp-changed-ts tsp h h ′

89

and acyclic: i-term-acyclic h (Some tr0)
and get-tr0 : Ref .get h tr0 = ITerm(s, None, ITermD(f , tsp))

shows stamp-current-not-occurs ′ time vr tr0 h ′

unfolding stamp-current-not-occurs-def
proof (intro allI impI)
fix tr ′ s ′ is d
assume not-occurs: ¬ occurs (′′x ′′, int (addr-of-ref vr)) (i-term-to-term-e h ′ tr0)
and tr ′-clos: tr ′ ∈ i-term-closure h ′ (Some tr0)
and get ′-tr ′: Ref .get h ′ tr ′ = ITerm (s ′, is, d)
and s ′-time ′: s ′ = Ref .get h ′ time

obtain s2 where get ′-tr0 : Ref .get h ′ tr0 = ITerm(s2 , None, ITermD(f , tsp))
using get-tr0 heap-only-stamp-ch-get-term terms-hosc by blast

have ttt: i-term-to-term-e h tr0 = i-term-to-term-e h ′ tr0
using acyclic i-term-to-term-only-stamp-changed terms-hosc by fastforce

have tr0-acyclic ′: i-term-acyclic h ′ (Some tr0)
using acyclic heap-only-stamp-ch-term-acyclic terms-hosc by blast

then have tsp-acyclic ′: i-terms-acyclic h ′ tsp
using acyclic-terms-term-simp get ′-tr0 by blast

have ttt: i-term-to-term-e h ′ tr0 = T (f , i-terms-to-terms-e h ′ tsp)
by (simp add: tr0-acyclic ′ get ′-tr0 i-term-to-term-e-terms)

{
fix tr
assume tr-tsp-set: tr ∈ i-terms-set h tsp
assume occ-tr : occurs (′′x ′′, int (addr-of-ref vr)) (i-term-to-term-e h ′ tr)
have tr-tsp-set ′: tr ∈ i-terms-set h ′ tsp
using tr-tsp-set get-tr0 heap-only-stamp-ch-terms-set terms-hosc by blast

have (list-ex (occurs (′′x ′′, int (addr-of-ref vr))) (i-terms-to-terms-e h ′ tsp)) =
(∃ t ∈ i-term-to-term-e h ′ ‘ i-terms-set h ′ tsp. occurs (′′x ′′, int (addr-of-ref

vr)) t)
using i-terms-to-terms-list-set[OF tsp-acyclic ′] list-ex-iff by auto
then have list-ex (occurs (′′x ′′, int (addr-of-ref vr))) (i-terms-to-terms-e h ′

tsp)
using occ-tr tr-tsp-set ′ by blast

then have occurs (′′x ′′, int (addr-of-ref vr)) (i-term-to-term-e h ′ tr0)
by (simp add: ttt)

then have False
using not-occurs by simp

}
then have terms-scno ′:

∧
tr . tr ∈ i-terms-set h tsp =⇒ stamp-current-not-occurs

time vr tr h ′

using terms-scno by auto

consider (a) tr ′ = tr0 |
(b) tr ′0 where

tr ′0 ∈ i-terms-set h ′ tsp and
tr ′ ∈ i-term-closure h ′ (Some tr ′0)

using tr ′-clos i-term-closure-args[OF get ′-tr0] by blast
then show ¬ occurs (′′x ′′, int (addr-of-ref vr)) (i-term-to-term-e h ′ tr ′)
proof (cases)

90

case a
then show ?thesis using ttt not-occurs by presburger

next
case b
then have stamp-current-not-occurs time vr tr ′0 h ′

using terms-scno ′ get-tr0 heap-only-stamp-ch-terms-set terms-hosc by blast
then have ∗: stamp-current-not-occurs time vr tr ′ h ′

unfolding stamp-current-not-occurs-def using b(2)
using i-term-closure-trans by blast

then show ?thesis using ttt ∗[unfolded stamp-current-not-occurs-def]
using get ′-tr ′ s ′-time ′ i-term-closure.intros(1) by blast

qed
qed

lemma stamp-current-not-occurs-terms-set:
assumes terms-scno:

∧
tr . tr ∈ i-terms-set h ′ tsp =⇒ stamp-current-not-occurs

time vr tr h ′

and terms-hosc: heap-only-stamp-changed-ts tsp h h ′

and acyclic: i-term-acyclic h (Some tr0)
and get-tr0 : Ref .get h tr0 = ITerm(s, None, ITermD(f , tsp))
and not-occurs: ¬occurs (′′x ′′, int (addr-of-ref vr)) (i-term-to-term-e h tr0)

shows stamp-current-not-occurs time vr tr0 h ′

unfolding stamp-current-not-occurs-def
proof (intro allI impI)
fix tr ′ s ′ is d
assume tr ′-clos: tr ′ ∈ i-term-closure h ′ (Some tr0)
and get ′-tr ′: Ref .get h ′ tr ′ = ITerm (s ′, is, d)
and s ′-time ′: s ′ = Ref .get h ′ time

obtain s2 where get ′-tr0 : Ref .get h ′ tr0 = ITerm(s2 , None, ITermD(f , tsp))
using get-tr0 heap-only-stamp-ch-get-term terms-hosc by blast

have ttt: i-term-to-term-e h tr0 = i-term-to-term-e h ′ tr0
using acyclic i-term-to-term-only-stamp-changed terms-hosc by fastforce

have i-term-acyclic h ′ (Some tr0)
using acyclic heap-only-stamp-ch-term-terms-acyclic terms-hosc by blast

consider (a) tr ′ = tr0 |
(b) tr ′0 where

tr ′0 ∈ i-terms-set h ′ tsp and
tr ′ ∈ i-term-closure h ′ (Some tr ′0)

using tr ′-clos i-term-closure-args[OF get ′-tr0] by blast
then show ¬ occurs (′′x ′′, int (addr-of-ref vr)) (i-term-to-term-e h ′ tr ′)
proof (cases)
case a
then show ?thesis using ttt not-occurs by presburger

next
case b
then have stamp-current-not-occurs time vr tr ′0 h ′

by (simp add: terms-scno)
then have ∗: stamp-current-not-occurs time vr tr ′ h ′

unfolding stamp-current-not-occurs-def using b(2)

91

using i-term-closure-trans by blast
then show ?thesis using ttt ∗[unfolded stamp-current-not-occurs-def]
using get ′-tr ′ s ′-time ′ i-term-closure.intros(1) by blast

qed
qed

lemma stamp-current-not-occurs-terms-set-None:
assumes hosc: heap-only-stamp-changed-tr tr h h ′

and get-tr : Ref .get h tr = ITerm(s, None, ITermD(f , None))
shows stamp-current-not-occurs time vr tr h ′

unfolding stamp-current-not-occurs-def
proof (intro allI impI)
fix tr ′ s ′ is d
assume tr ′-clos: tr ′ ∈ i-term-closure h ′ (Some tr)
and Ref .get h ′ tr ′ = ITerm (s ′, is, d)
and s ′ = Ref .get h ′ time

obtain s2 where get ′-tr : Ref .get h ′ tr = ITerm(s2 , None, ITermD(f , None))
using hosc get-tr heap-only-stamp-ch-get-term by blast

then have i-term-closure h ′ (Some tr) = {tr}
using i-term-closure-args i-terms-set-None-empty by force

then have tr ′-eq-tr : tr ′ = tr using tr ′-clos by blast
have i-term-acyclic h ′ (Some tr ′)
using get ′-tr t-acyclic-step-ITerm tr ′-eq-tr ts-acyclic-nil by blast

then have i-term-to-term-e h ′ tr ′ = T (f , [])
by (simp add: get ′-tr i-term-to-term-e-terms i-terms-to-terms-nil tr ′-eq-tr)

then show ¬ occurs (′′x ′′, int (addr-of-ref vr)) (i-term-to-term-e h ′ tr ′)
by simp

qed

lemma i-occ-p-sound:
fixes vr :: i-term ref
and tr :: i-term ref
and time:: nat ref
and td :: i-term-d
and h:: heap
and fun-term:: term
and s1 :: nat
and s2 :: nat

assumes acyclic: i-term-acyclic h (Some tr)
and Ref .get h tr = ITerm (s1 , None, td)
and Ref .get h vr = ITerm (s2 , None, IVarD)
and Some(fun-term, h) = execute (i-term-to-term tr) h
and stamp-current-not-occurs time vr tr h
and r-val: r = occurs (′′x ′′, int (addr-of-ref vr)) fun-term

shows ∃ h ′. execute (i-occ-p time (Some vr) (Inl(Some tr))) h = Some(r , h ′) ∧
heap-only-stamp-changed-tr tr h h ′ ∧
stamp-current-not-occurs ′ time vr tr h ′

proof −
let ?occ-vr = occurs (′′x ′′, int (addr-of-ref vr))

92

let ?occ h tr = ?occ-vr (i-term-to-term-e h tr)
let ?occ-ts h tsp = list-ex ?occ-vr (i-terms-to-terms-e h tsp)
let ?upd-s h tr f tsp = Ref .set tr (ITerm (Ref .get h time, None, ITermD (f ,

tsp))) h

let ?cond tr = ∃ h ′. execute (i-occ-p time (Some vr) (Inl(Some tr))) h =
Some(?occ-vr fun-term, h ′) ∧
heap-only-stamp-changed-tr tr h h ′ ∧
stamp-current-not-occurs ′ time vr tr h ′

{
fix trs:: i-term ref set
have trs = UNIV =⇒ ?cond tr
using acyclic assms(2) assms(3) assms(4) assms(5) acyclic

proof (induction h trs tr
arbitrary: fun-term s1 s2 td
taking:
λh trs tsp.
∀ s2 .
Ref .get h vr = ITerm(s2 , None, IVarD) −→
trs = UNIV −→
(∀ tr ∈ i-terms-set h tsp. stamp-current-not-occurs time vr tr h) −→
i-terms-acyclic h tsp −→

(∃ h ′. execute (i-occ-p time (Some vr) (Inr tsp)) h =
Some (?occ-ts h tsp, h ′) ∧
heap-only-stamp-changed-ts tsp h h ′ ∧
stamp-current-not-occurs ′-ts time vr tsp h ′)

rule: acyclic-closure-ch-stamp-inductc ′)
case (var h trs tr s)
then have get-tr : Ref .get h tr = ITerm (s, None, IVarD)
and get-tr ′: Ref .get h tr = ITerm (s1 , None, td)
and scno: stamp-current-not-occurs time vr tr h
and acyclic: i-term-acyclic h (Some tr)
and fun-term: Some (fun-term, h) = execute (i-term-to-term tr) h by

simp-all

from fun-term acyclic have fun-term = i-term-to-term-e h tr
using i-term-to-term-value-iff
by simp

then have ∗∗: (vr = tr) = ?occ-vr fun-term
using var i-term-to-term-var-none by force

show ?case using var
apply (subst i-occ-p.simps,

simp add: lookup-def update-def tap-def bind-def return-def execute-heap
∗∗)

using heap-only-stamp-changed-def by blast
next
case (link h tr isr s)
then show ?case by force

next

93

case (args h trs tr tsp s f fun-term s1 s2 trs ′)
then have get-tr : Ref .get h tr = ITerm (s, None, ITermD (f , tsp))
and get-vr : Ref .get h vr = ITerm (s2 , None, IVarD)
and acyclic: i-term-acyclic h (Some tr)
and fun-term-val: Some (fun-term, h) = execute (i-term-to-term tr) h
and scno: stamp-current-not-occurs time vr tr h
and trs-val: trs = UNIV by blast+

have fun-term-e: fun-term = i-term-to-term-e h tr
by (metis acyclic fun-term-val i-term-to-term-value-iff)

show ?case
proof (rule case-split)
assume s-eq-time: s = Ref .get h time
then have ∗: ¬ ?occ-vr fun-term
using scno[unfolded stamp-current-not-occurs-def] fun-term-e
get-tr i-term-closure.intros(1)

by fast
show ?case using s-eq-time
apply (subst i-occ-p.simps,

simp add: lookup-def update-def tap-def bind-def return-def execute-heap
args s-eq-time ∗)

by (unfold heap-only-stamp-changed-def , simp)
next
assume s-neq-time: s 6= Ref .get h time
let ?h ′ = Ref .set tr (ITerm (Ref .get h time, None, ITermD (f , tsp))) h
have hosc-h-h ′: heap-only-stamp-changed-tr tr h ?h ′

using heap-only-stamp-ch-term[OF get-tr] i-term-closure.intros(1) by simp

have tsp-acyclic: i-terms-acyclic h tsp
using acyclic acyclic-terms-term-simp get-tr by blast

have get ′-tr : Ref .get ?h ′ tr = ITerm(Ref .get h time, None, ITermD (f , tsp))
by simp

have tsp-scno: ∀ tr∈i-terms-set ?h ′ tsp. stamp-current-not-occurs time vr tr
?h ′

unfolding stamp-current-not-occurs-def
proof (intro ballI allI impI)
fix tr0 tr ′ s ′ is d
assume tr0-tsp-set ′: tr0 ∈ i-terms-set ?h ′ tsp
and tr ′-clos ′: tr ′ ∈ i-term-closure ?h ′ (Some tr0)
and get ′-tr ′: Ref .get ?h ′ tr ′ = ITerm (s ′, is, d)
and s ′-time ′: s ′ = Ref .get ?h ′ time

then have tr ′ ∈ i-term-closure ?h ′ (Some tr)
by (meson get ′-tr i-term-closure.intros(1) i-term-closure.intros(3)

i-term-closure-trans)
then have tr-clos-tr : tr ′ ∈ i-term-closure h (Some tr)
using hosc-h-h ′ heap-only-stamp-ch-closure by blast

have get-tr ′: Ref .get h tr ′ = ITerm (s ′, is, d)
proof (rule case-split)
assume tr ′ = tr
then show ?thesis

94

using acyclic get ′-tr heap-only-stamp-ch-term-acyclic hosc-h-h ′

i-term-closure-args-same-cyclic tr ′-clos ′ tr0-tsp-set ′ by blast
next
assume tr ′ 6= tr
then show ?thesis
using get ′-tr ′ by auto

qed
have s ′-time: s ′ = Ref .get h time
by (metis (no-types, lifting) heap-only-stamp-ch-get-nat hosc-h-h ′ s ′-time ′)

have tr0-acyclic ′: i-term-acyclic ?h ′ (Some tr0)
using heap-only-stamp-ch-term-terms-acyclic hosc-h-h ′ i-terms-set-acyclic

tr0-tsp-set ′

tsp-acyclic by blast
have ¬ occurs (′′x ′′, int (addr-of-ref vr)) (i-term-to-term-e h tr ′)
using scno[unfolded stamp-current-not-occurs-def] tr-clos-tr get-tr ′ s ′-time

by fast
then show ¬ occurs (′′x ′′, int (addr-of-ref vr)) (i-term-to-term-e ?h ′ tr ′)
using tr0-acyclic ′

heap-only-stamp-ch-sym hosc-h-h ′ i-term-closure-acyclic
i-term-to-term-only-stamp-changed tr ′-clos ′ by metis

qed
have get ′-vr : Ref .get ?h ′ vr = ITerm (s2 , None, IVarD)
by (metis (no-types, hide-lams) Ref .get-set-neq Ref .unequal get-tr get-vr

i-term.inject i-term-d.distinct(1) snd-conv)
have tsp-acyclic ′: i-terms-acyclic ?h ′ tsp
using heap-only-stamp-ch-terms-acyclic hosc-h-h ′ tsp-acyclic by blast

have hosc-h-h ′-trs: heap-only-stamp-changed trs h ?h ′

using hosc-h-h ′ trs-val
get-tr heap-only-stamp-ch-term by auto

have i-terms-closure ?h ′ tsp = i-terms-closure h tsp
using heap-only-stamp-ch-terms-closure hosc-h-h ′ by presburger

obtain h ′′ where
IH-exec: execute (i-occ-p time (Some vr) (Inr tsp)) ?h ′ = Some(?occ-ts ?h ′

tsp, h ′′) and
IH-hosc: heap-only-stamp-changed-ts tsp ?h ′ h ′′ and
IH-concl: stamp-current-not-occurs ′-ts time vr tsp h ′′

using args.hyps(1) hosc-h-h ′-trs get ′-vr
trs-val tsp-scno tsp-acyclic ′ by blast

show ?case
proof (rule case-split)
assume i-terms-set ?h ′ tsp = {}
then have tsp-none: tsp = None
using i-terms-set-empty-iff by simp

then have fun-term = T (f , [])
by (simp add: acyclic fun-term-e get-tr i-term-to-term-terms i-terms-to-terms-nil)

95

then have ∗: ¬ ?occ-vr fun-term
by simp

have ∗∗: heap-only-stamp-changed-tr tr h
(Ref .set tr (ITerm (Ref .get h time, None, ITermD (f , None))) h)
using hosc-h-h ′ tsp-none by auto

have ∗∗∗: stamp-current-not-occurs ′ time vr tr
(Ref .set tr (ITerm (Ref .get h time, None, ITermD (f , None))) h)
using stamp-current-not-occurs-terms-set-None
get-tr hosc-h-h ′ tsp-none by blast

show ?thesis
by (subst i-occ-p.simps, subst i-occ-p.simps,
simp add: lookup-def update-def tap-def bind-def return-def execute-heap

args s-neq-time tsp-none ∗ ∗∗ ∗∗∗)
next
assume tsp-set-not-empty: i-terms-set ?h ′ tsp 6= {}
have i-terms-closure ?h ′ tsp ⊆ i-term-closure ?h ′ (Some tr)
using get ′-tr i-term-closure-args by blast

then have hosc: heap-only-stamp-changed-tr tr ?h ′ h ′′ using IH-hosc
get ′-tr heap-only-stamp-ch-antimono by meson

have fun-term ′: i-term-to-term-e ?h ′ tr = fun-term
using acyclic fun-term-e hosc-h-h ′ i-term-to-term-only-stamp-changed by

auto
have occ-tr-eq-occ-tsp: ?occ-vr fun-term = ?occ-ts h tsp
by (simp add: acyclic fun-term-e get-tr i-term-to-term-e-terms)

also have occ-tr-eq-occ ′-tsp: ... = ?occ-ts ?h ′ tsp
using i-terms-to-terms-only-stamp-changed ′[OF tsp-acyclic get-tr hosc-h-h ′]

by presburger
have occ ′-tr-eq-occ ′-tsp: ?occ ?h ′ tr = ?occ-ts ?h ′ tsp
by (simp add: fun-term ′ occ-tr-eq-occ ′-tsp occ-tr-eq-occ-tsp)

have hosc-h-h ′′: heap-only-stamp-changed-tr tr h h ′′

using heap-only-stamp-ch-trans hosc hosc-h-h ′ heap-only-stamp-ch-closure
by (metis (no-types, lifting))

have i-terms-closure h ′′ tsp ⊆ i-term-closure h ′′ (Some tr)
using i-term-closure-args IH-hosc get ′-tr heap-only-stamp-ch-get-term by

blast
have fun-term ′′: i-term-to-term-e h ′′ tr = fun-term

using acyclic fun-term-e hosc-h-h ′′ i-term-to-term-only-stamp-changed
by auto

have ttt-tsp ′′: i-terms-to-terms-e h tsp = i-terms-to-terms-e h ′′ tsp
using get-tr hosc-h-h ′′ i-terms-to-terms-only-stamp-changed ′ tsp-acyclic

by blast
have tr-acyclic ′: i-term-acyclic ?h ′ (Some tr)
using get ′-tr t-acyclic-step-ITerm tsp-acyclic ′ by blast

have terms-set ′-tsp-to ′′: i-terms-set ?h ′ tsp = i-terms-set h ′′ tsp
using IH-hosc get ′-tr heap-only-stamp-ch-terms-set by blast

then have scno-h ′′: stamp-current-not-occurs ′ time vr tr h ′′

using stamp-current-not-occurs ′-terms-set IH-concl IH-hosc fun-term ′′

get ′-tr

96

occ-tr-eq-occ-tsp terms-set ′-tsp-to ′′ tr-acyclic ′ ttt-tsp ′′

by (metis (no-types))
have ?occ-ts ?h ′ tsp = ?occ-vr fun-term
using fun-term ′ occ ′-tr-eq-occ ′-tsp by blast

then show ?case
by (subst i-occ-p.simps,
simp add: lookup-def update-def tap-def bind-def return-def execute-heap

args s-neq-time IH-exec hosc-h-h ′′ scno-h ′′)
qed

qed
next
case (terms-nil h)
then show ?case
proof (intro allI impI , goal-cases)
case 1
then show ?case
by (subst i-occ-p.simps,

simp add: lookup-def update-def tap-def bind-def return-def execute-heap,
simp add: heap-only-stamp-ch-refl i-terms-to-terms-nil)

qed
next
case (terms h trs tthisr tsr tsnextp)
then have get-tsr : Ref .get h tsr = ITerms (tthisr , tsnextp) by blast
show ?case
proof (intro impI allI , goal-cases)
case (1 s2)
then have get-vr : Ref .get h vr = ITerm (s2 , None, IVarD)
and terms-scno:∧

tr . tr ∈ i-terms-set h (Some tsr) =⇒
stamp-current-not-occurs time vr tr h

and terms-acyclic: i-terms-acyclic h (Some tsr)
and trs-val: trs = UNIV
by blast+

from terms-acyclic obtain tdestr d ′ s ′ where
exec-ifind: execute (i-find (Some tthisr)) h = Some(Some tdestr , h) and
tdestr-mem: tdestr ∈ i-term-chain h tthisr and
get-tdestr : Ref .get h tdestr = ITerm(s ′, None, d ′)

proof (cases h Some tsr rule: i-terms-acyclic.cases,
goal-cases step-ITerms)

case (step-ITerms ts2ref tref)
have tref = tthisr
using get-tsr step-ITerms(4) by simp

then show ?case
using i-find-some step-ITerms(1) step-ITerms(3) by blast

qed

have thisr-acyclic: i-term-acyclic h (Some tthisr)
using terms-acyclic get-tsr i-terms-set.intros i-terms-set-acyclic

97

i-terms-sublists.self get-tsr by blast
have exec-ifind ′: execute (i-find (Some tthisr)) h = Some (Some tdestr , h)
using exec-ifind thisr-acyclic
i-find-heap-change-is-uc by blast

have tdestr-thisr-closure: tdestr ∈ i-term-closure h (Some tthisr)
using tdestr-mem i-term-chain-subset-closure by blast

have tthisr-terms-set-tsp: tthisr ∈ i-terms-set h (Some tsr)
using get-tsr i-terms-set.intros i-terms-sublists.self get-tsr by blast

have tdestr-ttt: Some (i-term-to-term-e h tdestr , h) = execute (i-term-to-term
tdestr) h

using i-term-closure-acyclic i-term-to-term-value tdestr-thisr-closure
thisr-acyclic

by presburger

have stamp-current-not-occurs time vr tthisr h
using terms-scno
by (simp add: tthisr-terms-set-tsp)

moreover have tdestr-clos-subset-tthisr-clos:
i-term-closure h (Some tdestr) ⊆ i-term-closure h (Some tthisr)
using i-term-closure-trans tdestr-thisr-closure by blast

ultimately have scno-tdestr : stamp-current-not-occurs time vr tdestr h
using stamp-current-not-occurs-def by blast

have tdestr-acyclic: i-term-acyclic h (Some tdestr)
using i-term-closure-acyclic tdestr-thisr-closure thisr-acyclic by auto

obtain h ′ where
IH-exec:
execute (i-occ-p time (Some vr) (Inl (Some tdestr))) h = Some (?occ h

tdestr , h ′) and
IH-hosc: heap-only-stamp-changed-tr tdestr h h ′ and
IH-scno: stamp-current-not-occurs ′ time vr tdestr h ′

using terms.IH [OF - heap-only-stamp-ch-refl
tdestr-thisr-closure trs-val get-tdestr get-vr tdestr-ttt scno-tdestr tdestr-acyclic]
by blast

have tdestr-clos-subset-tsr-clos:
i-term-closure h (Some tdestr) ⊆ i-terms-closure h (Some tsr)
using tdestr-clos-subset-tthisr-clos tthisr-terms-set-tsp by auto

have hosc-tsr : heap-only-stamp-changed-ts (Some tsr) h h ′

using heap-only-stamp-ch-antimono IH-hosc tdestr-clos-subset-tsr-clos by
blast

have scno-tsnextp: ∀ tr∈i-terms-set h tsnextp. stamp-current-not-occurs time
vr tr h

by (simp add: get-tsr i-terms-set-insert terms-scno)
have tsnextp-acyclic: i-terms-acyclic h tsnextp
using acyclic-terms-terms-simp get-tsr terms-acyclic by blast

98

have tsr-acyclic ′: i-terms-acyclic h ′ (Some tsr)
by (meson heap-only-stamp-ch-terms-acyclic hosc-tsr terms-acyclic)

have get ′-tsr : Ref .get h ′ tsr = ITerms (tthisr , tsnextp)
using get-tsr heap-only-stamp-ch-get-terms hosc-tsr by auto

have ttt-tdestr : i-term-to-term-e h tthisr = i-term-to-term-e h tdestr
using i-term-to-term-chain tdestr-mem thisr-acyclic by presburger

then have ttt-tsr : i-terms-to-terms-e h (Some tsr) =
i-term-to-term-e h tdestr # i-terms-to-terms-e h tsnextp
by (simp add: get-tsr i-terms-to-terms-e-step terms-acyclic)

then have ttt-tsr ′: i-terms-to-terms-e h ′ (Some tsr) =
i-term-to-term-e h ′ tdestr # i-terms-to-terms-e h ′ tsnextp
using get ′-tsr tsr-acyclic ′ hosc-tsr i-term-to-term-only-stamp-changed
i-terms-to-terms-e-step tdestr-acyclic thisr-acyclic ttt-tdestr by presburger

have scno-tsr : stamp-current-not-occurs ′-ts time vr (Some tsr) h ′

unfolding stamp-current-not-occurs-def
proof (intro impI allI ballI)
fix tr tr ′ s ′ is d
assume not-occ-tsr : ¬ ?occ-ts h ′ (Some tsr)
and tr-tsr-term-set ′: tr ∈ i-terms-set h ′ (Some tsr)
and tr-clos ′-tr : tr ′ ∈ i-term-closure h ′ (Some tr)
and get ′-tr ′: Ref .get h ′ tr ′ = ITerm (s ′, is, d)
and s ′-time ′: s ′ = Ref .get h ′ time

have not-occ ′-tdestr : ¬ ?occ h ′ tdestr
using ttt-tsr ′ not-occ-tsr by auto

show ¬ ?occ h ′ tr ′

proof (rule case-split)
assume tr ′ ∈ i-term-closure h ′ (Some tdestr)
then show ?thesis
using IH-scno[unfolded stamp-current-not-occurs-def] not-occ ′-tdestr
s ′-time ′ get ′-tr ′ by blast

next
assume tr ′ /∈ i-term-closure h ′ (Some tdestr)
then have get-tr ′: Ref .get h tr ′ = ITerm (s ′, is, d)
using IH-hosc get ′-tr ′

heap-only-stamp-ch-closure heap-only-stamp-ch-get-term-nclos by force
have tr-tsr-term-set: tr ∈ i-terms-set h (Some tsr)
using heap-only-stamp-ch-terms-set IH-hosc tr-tsr-term-set ′ by auto

have tr-clos-tr : tr ′ ∈ i-term-closure h (Some tr)
using IH-hosc heap-only-stamp-ch-closure tr-clos ′-tr by auto

have s ′-time ′: s ′ = Ref .get h time
using IH-hosc heap-only-stamp-ch-get-nat s ′-time ′ by auto

have ¬?occ h tr ′

using terms-scno[unfolded stamp-current-not-occurs-def]
tr-tsr-term-set tr-clos-tr get-tr ′ s ′-time ′ by fast

moreover have i-term-to-term-e h tr ′ = i-term-to-term-e h ′ tr ′

using IH-hosc i-term-closure-acyclic i-term-to-term-only-stamp-changed

99

i-terms-set-acyclic terms-acyclic tr-clos-tr tr-tsr-term-set by blast
ultimately show ?thesis by fastforce

qed
qed

show ?case
proof (rule case-split)
assume occ-tdestr : ?occ h tdestr
then have ∗: ?occ-ts h (Some tsr) using ttt-tsr by simp
show ?thesis
apply (subst i-occ-p.simps,

simp add: lookup-def tap-def bind-def return-def execute-heap
get-tsr exec-ifind IH-exec occ-tdestr ∗ terms-scno)

using scno-tsr hosc-tsr by auto
next
assume not-occ-tdestr : ¬?occ h tdestr
obtain s2 ′ where get ′-vr : Ref .get h ′ vr = ITerm(s2 ′, None, IVarD)
using get-vr IH-hosc
heap-only-stamp-ch-get-term by blast

have hosc-h-h ′-trs: heap-only-stamp-changed trs h h ′

using heap-only-stamp-ch-antimono hosc-tsr trs-val by blast
have tsnextp-acyclic ′: i-terms-acyclic h ′ tsnextp
using IH-hosc heap-only-stamp-ch-terms-acyclic tsnextp-acyclic by blast

have scno-tsnextp ′:
∧
tr . tr ∈ i-terms-set h ′ tsnextp =⇒

stamp-current-not-occurs time vr tr h ′

unfolding stamp-current-not-occurs-def
proof (intro allI impI)
fix tr tr ′ s ′ is d
assume tr-terms ′-tsnextp: tr ∈ i-terms-set h ′ tsnextp
and tr-clos ′-tr : tr ′ ∈ i-term-closure h ′ (Some tr)
and get ′-tr ′: Ref .get h ′ tr ′ = ITerm (s ′, is, d)
and s-eq ′-time: s ′ = Ref .get h ′ time

have not-occurs ′-tdestr : ¬ ?occ h ′ tdestr
using hosc-h-h ′-trs i-term-to-term-only-stamp-changed not-occ-tdestr
tdestr-acyclic by auto

show ¬ occurs (′′x ′′, int (addr-of-ref vr)) (i-term-to-term-e h ′ tr ′)
proof (rule case-split)
assume tr ′ ∈ i-term-closure h ′ (Some tdestr)

then show ?thesis using IH-scno[unfolded stamp-current-not-occurs-def]
not-occurs ′-tdestr get ′-tr ′ s-eq ′-time by fast

next
assume tr ′-not-clos ′-tdestr : tr ′ /∈ i-term-closure h ′ (Some tdestr)
then have get-tr ′: Ref .get h tr ′ = ITerm (s ′, is, d)
using IH-hosc get ′-tr ′ heap-only-stamp-ch-diff-in-clos

heap-only-stamp-ch-tr-sym by metis
moreover have tr-terms-tsnextp: tr ∈ i-terms-set h (Some tsr)
using IH-hosc tr-terms ′-tsnextp
get ′-tsr heap-only-stamp-ch-terms-set i-terms-set-insert by blast

100

moreover have tr ′-clos-tr : tr ′ ∈ i-term-closure h (Some tr)
using IH-hosc
heap-only-stamp-ch-closure tr-clos ′-tr by blast

moreover have s ′ = Ref .get h time
using heap-only-stamp-ch-get-nat hosc-h-h ′-trs s-eq ′-time by presburger
ultimately have ¬ ?occ h tr ′

using terms-scno[unfolded stamp-current-not-occurs-def] by blast
then show ?thesis
by (metis heap-only-stamp-ch-sym hosc-h-h ′-trs i-term-closure-acyclic

i-term-to-term-only-stamp-changed i-terms-set-acyclic tr-clos ′-tr
tr-terms ′-tsnextp tsnextp-acyclic ′)

qed
qed
obtain h ′′ where
IHn-exec:

execute (i-occ-p time (Some vr) (Inr tsnextp)) h ′ = Some(?occ-ts h ′

tsnextp, h ′′) and
IHn-hosc: heap-only-stamp-changed (i-terms-closure h ′ tsnextp) h ′ h ′′

and
IHn-scno: stamp-current-not-occurs ′-ts time vr tsnextp h ′′

using terms.hyps(1)[rule-format,
OF - hosc-h-h ′-trs get ′-vr trs-val scno-tsnextp ′ tsnextp-acyclic ′] by fast

have i-terms-closure h tsnextp ⊆ i-terms-closure h (Some tsr)
by (simp add: get-tsr i-terms-set-insert)

then have i-terms-closure h ′ tsnextp ⊆ i-terms-closure h ′ (Some tsr)
using heap-only-stamp-ch-terms-closure hosc-tsr by auto

then have heap-only-stamp-changed-ts (Some tsr) h ′ h ′′

using IHn-hosc
by (simp add: heap-only-stamp-ch-antimono)

then have ∗: heap-only-stamp-changed-ts (Some tsr) h h ′′

using heap-only-stamp-ch-ts-trans hosc-tsr by blast

have get ′′-tsr : Ref .get h ′′ tsr = ITerms (tthisr , tsnextp)
using IHn-hosc get ′-tsr heap-only-stamp-ch-get-terms by force

have tsr-acyclic ′′: i-terms-acyclic h ′′ (Some tsr)
using IHn-hosc heap-only-stamp-ch-terms-acyclic using tsr-acyclic ′ by

blast
have tdestr-acyclic ′: i-term-acyclic h ′ (Some tdestr)
using IH-hosc heap-only-stamp-ch-term-terms-acyclic tdestr-acyclic by

blast
have thisr-acyclic ′: i-term-acyclic h ′ (Some tthisr)
using IH-hosc heap-only-stamp-ch-term-acyclic thisr-acyclic by blast

have ttt-tdestr ′′: i-term-to-term-e h ′′ tthisr = i-term-to-term-e h ′′ tdestr
using ∗ IH-hosc i-term-to-term-only-stamp-changed tdestr-acyclic

tdestr-acyclic ′

thisr-acyclic thisr-acyclic ′ ttt-tdestr by auto
have ttt-tsr ′′: i-terms-to-terms-e h ′′ (Some tsr) =
i-term-to-term-e h ′′ tdestr # i-terms-to-terms-e h ′′ tsnextp

101

using get ′′-tsr i-terms-to-terms-e-step tsr-acyclic ′′ ttt-tdestr ′′ by presburger

have scno ′′-tsr : stamp-current-not-occurs ′-ts time vr (Some tsr) h ′′

unfolding stamp-current-not-occurs-def
proof (intro impI ballI allI)
fix tr tr ′ s ′ is d
assume not-occ ′′-tsr : ¬?occ-ts h ′′ (Some tsr)
and tr-tsr-term-set ′′: tr ∈ i-terms-set h ′′ (Some tsr)
and tr ′-clos ′′-tr : tr ′ ∈ i-term-closure h ′′ (Some tr)
and get ′′-tr ′: Ref .get h ′′ tr ′ = ITerm (s ′, is, d)
and s ′-time ′′: s ′ = Ref .get h ′′ time

have not-occ ′′-tdestr : ¬ ?occ-ts h ′′ tsnextp
using ttt-tsr ′′ not-occ ′′-tsr by force

have not-occ ′-tdestr : ¬ ?occ h ′ tdestr
using not-occ ′′-tsr IHn-hosc i-term-to-term-only-stamp-changed
tdestr-acyclic ′ ttt-tsr ′′ by simp

have tr ′-acyclic ′′: i-term-acyclic h ′′ (Some tr ′)
using i-term-closure-acyclic i-terms-set-acyclic tr ′-clos ′′-tr tr-tsr-term-set ′′

tsr-acyclic ′′ by blast
then have tr ′-acyclic ′: i-term-acyclic h ′ (Some tr ′)
using IHn-hosc heap-only-stamp-ch-sym heap-only-stamp-ch-term-acyclic

by blast
have ttt-h ′-h ′′-tr ′: i-term-to-term-e h ′ tr ′ = i-term-to-term-e h ′′ tr ′

using IHn-hosc i-term-to-term-only-stamp-changed tr ′-acyclic ′ by
presburger

have ttt-h-h ′′-tr ′: i-term-to-term-e h tr ′ = i-term-to-term-e h ′′ tr ′

using ∗ IH-hosc heap-only-stamp-ch-term-acyclic heap-only-stamp-ch-tr-sym
i-term-to-term-only-stamp-changed tr ′-acyclic ′ by blast

consider (a) tr ′ ∈ i-terms-closure h ′′ tsnextp |
(b) tr ′ /∈ i-terms-closure h ′′ tsnextp and

tr ′ ∈ i-term-closure h ′′ (Some tdestr) |
(c) tr ′ /∈ i-terms-closure h ′′ tsnextp and

tr ′ /∈ i-term-closure h ′′ (Some tdestr)
by fast

then show ¬ ?occ h ′′ tr ′

proof (cases)
case (a)
then show ?thesis
using IHn-scno[unfolded stamp-current-not-occurs-def] not-occ ′′-tdestr

s ′-time ′′ get ′′-tr ′ by blast
next
case (b)
then have Ref .get h ′ tr ′ = ITerm (s ′, is, d)
using IH-hosc get ′′-tr ′

heap-only-stamp-ch-closure heap-only-stamp-ch-get-term-nclos
IHn-hosc heap-only-stamp-ch-terms-set by fastforce

102

moreover have tr ′ ∈ i-term-closure h ′ (Some tdestr)
using IHn-hosc b(2) heap-only-stamp-ch-closure by auto

moreover have s ′ = Ref .get h ′ time
using IHn-hosc heap-only-stamp-ch-get-nat s ′-time ′′ by auto

ultimately have ¬ occurs (′′x ′′, int (addr-of-ref vr)) (i-term-to-term-e
h ′ tr ′)

using IH-scno[unfolded stamp-current-not-occurs-def]
not-occ ′-tdestr by blast

then show ?thesis using ttt-h ′-h ′′-tr ′ by simp
next
case (c)
then have Ref .get h ′ tr ′ = ITerm (s ′, is, d)
using IHn-hosc get ′′-tr ′ heap-only-stamp-ch-get-term-nclos
heap-only-stamp-ch-terms-closure by fastforce

then have Ref .get h tr ′ = ITerm (s ′, is, d)
using c(2)

∗ IH-hosc heap-only-stamp-ch-closure heap-only-stamp-ch-get-term-nclos
by force

moreover have tr ∈ i-terms-set h (Some tsr)
using ∗ heap-only-stamp-ch-terms-set tr-tsr-term-set ′′ by blast

moreover have tr ′ ∈ i-term-closure h (Some tr)
using ∗ heap-only-stamp-ch-closure tr ′-clos ′′-tr by blast

moreover have s ′ = Ref .get h time
using ∗ heap-only-stamp-ch-get-nat s ′-time ′′ by presburger

ultimately have ¬ ?occ h tr ′

using terms-scno[unfolded stamp-current-not-occurs-def]
by blast

then show ?thesis
using ttt-h-h ′′-tr ′ by argo

qed
qed
have ?occ-ts h ′ tsnextp = ?occ-ts h ′ (Some tsr)

using hosc-h-h ′-trs i-term-to-term-only-stamp-changed not-occ-tdestr
tdestr-acyclic ttt-tsr ′ by auto

then have ∗∗: ?occ-ts h ′ tsnextp = ?occ-ts h (Some tsr)
using i-terms-to-terms-only-stamp-changed
hosc-h-h ′-trs i-terms-sublists.self terms-acyclic by presburger

show ?thesis
apply (subst i-occ-p.simps,

simp add: lookup-def tap-def bind-def return-def execute-heap
get-tsr exec-ifind IH-exec IHn-exec not-occ-tdestr ∗∗ scno ′′-tsr)

using ∗ by simp
qed

qed
qed

}
then show ?thesis
using assms by presburger

qed

103

lemma i-occurs-sound:
fixes vr :: i-term ref
and tr :: i-term ref
and time:: nat ref
and td :: i-term-d
and h:: heap
and fun-term:: term
and s1 :: nat
and s2 :: nat

assumes acyclic: i-term-acyclic h (Some tr)
and get-tr : Ref .get h tr = ITerm (s1 , None, td)
and get-vr : Ref .get h vr = ITerm (s2 , None, IVarD)
and fun-term-val: Some(fun-term, h) = execute (i-term-to-term tr) h
and time-consistent: Ref .get h time ≥ i-maxstamp h (Some tr)

shows ∃ h ′. execute (i-occurs time (Some vr) (Some tr)) h =
Some(occurs (′′x ′′, int (addr-of-ref vr)) fun-term, h ′) ∧
heap-only-stamp-changed-tr tr (Ref .set time ((Ref .get h time) + 1) h) h ′ ∧
stamp-current-not-occurs ′ time vr tr h ′

proof −
let ?h ′ = Ref .set time (Suc (Ref .get h time)) h
have honc: heap-only-nonterm-changed h ?h ′

using heap-only-nonterm-chI typerep-term-neq-nat typerep-terms-neq-nat
by force

then have tr-acyclic ′: i-term-acyclic ?h ′ (Some tr)
by (simp add: heap-only-nonterm-ch-term-acyclic[OF honc acyclic])

have tr-h ′:
∧

(x::i-term ref) y. Ref .get h x = y =⇒ Ref .get ?h ′ x = y
using heap-only-nonterm-ch-get-term[OF honc] by fastforce

have tr-h:
∧

(x::i-term ref) y. Ref .get ?h ′ x = y =⇒ Ref .get h x = y
using heap-only-nonterm-ch-get-term[OF honc[symmetric]] by fastforce

obtain fun-term ′ where
fun-term-val ′: Some (fun-term ′, ?h ′) = execute (i-term-to-term tr) ?h ′

using i-term-to-term-value[OF tr-acyclic ′] by metis
define r where
r-val: r = occurs (′′x ′′, int (addr-of-ref vr)) fun-term ′

have scno: stamp-current-not-occurs time vr tr ?h ′

unfolding stamp-current-not-occurs-def
proof (intro allI impI , rule FalseE)
fix tr ′ s ′ is d
assume tr ′-clos ′: tr ′ ∈ i-term-closure ?h ′ (Some tr)
and get ′-tr ′: Ref .get ?h ′ tr ′ = ITerm (s ′, is, d)
and s ′-time ′: s ′ = Ref .get ?h ′ time

have i-term-acyclic ?h ′ (Some tr ′)
by (fact i-term-closure-acyclic[OF tr-acyclic ′ tr ′-clos ′])

then have tr ′-acyclic: i-term-acyclic h (Some tr ′)
using heap-only-nonterm-ch-term-acyclic[OF honc[symmetric]] by blast

have tr ′-clos: tr ′ ∈ i-term-closure h (Some tr)
using heap-only-nonterm-ch-closure honc tr ′-clos ′ by auto

have maxstamp-tr ′: i-maxstamp h (Some tr ′) ≤ i-maxstamp h (Some tr)

104

using acyclic i-maxstamp-closure-trans tr ′-clos by blast
have s ′ = Suc(Ref .get h time) using s ′-time ′ unfolding Ref .get-def Ref .set-def
by simp

moreover have s ′ ≤ i-maxstamp h (Some tr)
using time-consistent maxstamp-tr ′ tr-h[OF get ′-tr ′] i-maxstamp-is-max
acyclic tr ′-clos by blast

then have s ′ ≤ Ref .get h time using time-consistent by fastforce
ultimately show False by force

qed
obtain h ′′ where
res-exec: execute (i-occ-p time (Some vr) (Inl (Some tr))) ?h ′ = Some (r , h ′′)

and
res-hosc: heap-only-stamp-changed-tr tr ?h ′ h ′′ and
res-scno: stamp-current-not-occurs ′ time vr tr h ′′

using i-occ-p-sound[OF tr-acyclic ′ tr-h ′[OF get-tr] tr-h ′[OF get-vr] fun-term-val ′

scno r-val] by blast
have presv: i-term-structure-presv h ?h ′

by (simp add: heap-only-nonterm-ch-get-terms honc tr-h)
have i-term-to-term-e h tr = i-term-to-term-e ?h ′ tr
using i-term-to-term-get-presv[OF acyclic presv] by blast

then have fun-term-eq: fun-term = fun-term ′

by (metis case-prod-conv fun-term-val fun-term-val ′ option.simps(5))

show ?thesis unfolding i-occurs-def
by (simp add: bind-def lookup-def tap-def update-def execute-heap

res-exec res-hosc res-scno r-val fun-term-eq)
qed

end

105

	Introduction
	Aim & Scope
	Overview

	Theoretical background on unification
	Martelli, Montanari / functional version in TRaAT

	Formal verification with Isabelle
	Formalization of imperative algorithms
	The heap and references
	Partial functions and induction on them

	Working with the Heap monad

	Formalization of the algorithms
	The functional version
	The imperative version
	Theory about the imperative datastructures

	Soundness of the imperative version
	Conversion of imperative terms to functional terms
	Soundness of imperative occurs

	Conclusion
	Discussion
	Future work

	References
	Appendices
	Isabelle theory
	Miscellaneous theory
	Functional version of algorithm
	Theory about datastructures for imperative version
	Imperative version of algorithm
	Equivalence of imperative and functional formulation

