Formalization of a near-linear time algorithm for solving the unification problem

Kasper F. Brandt s152156@student.dtu.dk
Master Thesis
Project title: Proof Assistants and Formal Verification
Supervisor: Jørgen Villadsen
Technical University of Denmark
January 28, 2018

Abstract

This thesis deals with formal verification of an imperatively formulated algorithm for solving first-order syntactic unification based on sharing of terms by storing them in a DAG. A theory for working with the relevant data structures is developed and a part of the algorithm is shown equivalent with a functional formulation.

Preface

This thesis is submitted as part of the requirements for acquiring a M.Sc. in Engineering (Computer Science and Engineering) at the Technical University of Denmark.

- Kasper Fabæch Brandt, January 2018

Contents

1 Introduction 4
1.1 Aim \& Scope 4
1.2 Overview 4
2 Theoretical background on unification 4
2.1 Martelli, Montanari / functional version in TRaAT 5
3 Formal verification with Isabelle 6
3.1 Formalization of imperative algorithms 6
3.1.1 The heap and references 6
3.1.2 Partial functions and induction on them 8
3.2 Working with the Heap monad 10
4 Formalization of the algorithms 10
4.1 The functional version 10
4.2 The imperative version 10
4.3 Theory about the imperative datastructures 11
5 Soundness of the imperative version 15
5.1 Conversion of imperative terms to functional terms 15
5.2 Soundness of imperative occurs 15
6 Conclusion 16
6.1 Discussion 16
6.2 Future work 17
7 References 17
Appendices 17
A Isabelle theory 17
A. 1 Miscellaneous theory 17
A. 2 Functional version of algorithm 18
A. 3 Theory about datastructures for imperative version 27
A. 4 Imperative version of algorithm 75
A. 5 Equivalence of imperative and functional formulation 76

1 Introduction

1.1 Aim \& Scope

The aim of this project is to formalize an imperative algorithm for solving first-order syntactic unification with better time complexity than the simpler functional formulation. The goal is not to show anything about the functional definition but rather to show equivalence between the imperative and functional definition.

The algorithm in question is given in part 4.8 of Term Rewriting and All That[1], henceforth known as TRaAT. The algorithm has a time complexity that is practically linear for all practical problem sizes.

A "classical" functionally formulated algorithm (i.e. Martelli, Montanari[3] derived) is already contained in the Isabelle distribution in the HOL-ex. Unification theory, so showing theory about the functional formulation is not considered necessary. The almost-linear algorithm however has so far not been formalized in Isabelle.

1.2 Overview

This report will first go into some of the theory behind unification, then it will discuss proving in Isabelle in relation to imperative algorithms. Then there will be taken a look at how the algorithm is formalized and how the equivalence is shown. Finally there will be some discussion about lessons learned and further work.

2 Theoretical background on unification

Unification is the problem of solving equations between symbolic expressions. Specifically this thesis focuses on what is known as first-order unification. An example of an instance of a problem we would like to solve could be:

$$
\begin{aligned}
& f(g(x), x) \stackrel{?}{=} f(z, a) \\
& z \stackrel{?}{=} y
\end{aligned}
$$

What we are given here is a set of equations $S=f(g(x), x)=f(z, a), z=y$ with the variables x, y, z, constant a and functions f, g. The constituent parts of each of the expressions are called terms.

Definition 1 (Term). A term is defined recursively as:

- A variable, an unbound value. The set of variables occuring in a term t is denoted as $\operatorname{Var}(t)$. In this treatment the lowercase letters x, y and z to are used to denote variables.
- A function. A function consists of a function symbol and a list of terms. the arity of the function is given by the length of the list. In this treatment all occurrences of a function symbol are required to have the same arity for the problem instance to be well-formed. Functions are in this treatment denoted by the lowercase letters f and g
- A constant. Constants are bound values that cannot be changed. Constants can be represented as functions of arity zero, which simplifies analysis and datastructures, so this representation will be used here. Constants are denoted by the lowercase letters a, b, c in this treatment.

The lowercase letter t is used to denote terms.
The goal is now to put the equations into solved form
Definition 2 (Solved form). A unification problem $S=x_{1}=t_{1}, \ldots, x_{n}=t_{n}$ is in solved form if all the variables x_{i} are pairwise distinct and none of them occurs in any of the terms t_{i}.

2.1 Martelli, Montanari / functional version in TRaAT

The following algorithm is presented in TRaAT and is based on the algorithm given by Martelli and Montanari[3]

$$
\begin{array}{rlr}
\{t \stackrel{?}{=} t\} \uplus S \Longrightarrow & S & \text { (Delete) } \tag{Delete}\\
\left\{f\left(\overline{t_{n}}\right) \stackrel{?}{=} f\left(\overline{u_{n}}\right)\right\} \uplus S \Longrightarrow & \left\{t_{1} \stackrel{?}{=} u_{1}, \ldots, t_{n} \stackrel{?}{=} u_{n}\right\} \cup S \\
\{t \stackrel{?}{=} x\} \uplus S \Longrightarrow & \text { (Decompose) } \\
\{x \stackrel{?}{=} t\} \cup S \text { if } t \notin V & \text { (Orient) } \\
& \{x \stackrel{?}{=} t\} \cup\{x \mapsto t\}(S) \\
& \text { if } x \in \operatorname{Var}(S)-\operatorname{Var}(t)
\end{array}
$$

TRaAT gives a formulation in ML. Besides minor syntactical differences and raising an exception rather than returning None is it identical to the formulation in appendix A.2.

One interesting thing to note here is the pattern match of function in solve is given as

```
solve((T(f,ts),T(g,us)) :: S, s)=
    if f = g then solve(zip(ts,us) @ S, s) else raise UNIFY
```

Since zip truncate additional elements this will cause erroneous unification if the arity of the functions differ, so presumably this excepts the arity of the same function to always match.

3 Formal verification with Isabelle

3.1 Formalization of imperative algorithms

The language for writing functions in Isabelle is a pure function language. This means that imperative algorithms generally cannot be written directly. Anything with side effects must be modeled as changes in a value representing the environment instead. Isabelle has some theories for working with imperative algorithms in the standard library, namely in the session HOL-Imperative_HOL which is based on [1].

3.1.1 The heap and references

One of the primary causes for side-effects in imperative programs is the usage of a heap. A heap can formally be described as a mapping from addresses to values, this is also how it is defined in the theory HOL-Imperative_HOL.Heap:

```
class heap \(=\) typerep + countable
type-synonym addr \(=\) nat - untyped heap references
type-synonym heap-rep \(=\) nat - representable values
record heap \(=\)
    arrays :: typerep \(\Rightarrow\) addr \(\Rightarrow\) heap-rep list
    refs :: typerep \(\Rightarrow\) addr \(\Rightarrow\) heap-rep
    lim :: addr
```

datatype 'a ref $=$ Ref addr - note the phantom type 'a

Arrays and references are treated separately by the theory for simplicity, however this thesis makes no usage of arrays so they can be ignored here. refs is the map of addresses to values. A uniform treatment of all types is made possible by representing values as natural numbers. This is necessary since a function cannot directly be polymorphic in Isabelle. For this to work the types on the heap must be countable. This requirement is ensured by the functions for dereferencing and manipulating references requiring the type parameter 'a to be of typeclass heap, which requires it to be countable.

We should note the other requirement of a type representation. A typerep is an identifier associated with types that uniquely identifies the type. For types defined the usual way such as with datatype these are automatically defined. The reason for this requirement is that it is necessary to know that the type stored in refs is the same as the one read to show anything about the value.

The limit value of the heap is the highest address currently allocated. While the typerep is part of the key for the map, the address does uniquely determine a value as long as only the provided functions for manipulating the heap are used rather than manipulating the fields of the record directly. Heap.alloc is used for allocating a new reference, and this function returns a new heap with an increased limit.

To illustrate how references can be used in practice we consider a very simple example
datatype ilist $=$ INil \mid
ICons nat \times ilist ref
instantiation ilist :: heap begin
instance by countable-datatype
end
function length:: heap \Rightarrow ilist \Rightarrow nat where
length h INil $=0$
\mid length h (ICons(-, lsr) $)=1+$ length h (Ref.get h lsr)
by (pat-completeness, auto)

This defines a singly linked list and a function for getting the length of one. It should be noted that length here is a partial function because it does not terminate if given a circular list.

A bit more complicated example could be reversing a list,
fun cons:: heap \Rightarrow nat \Rightarrow ilist ref \Rightarrow (ilist ref \times heap) where cons hvels $=\operatorname{Ref} . \operatorname{alloc}(\operatorname{ICons}(\mathrm{v}, \mathrm{ls})) \mathrm{h}$
function rev0:: ilist ref \Rightarrow heap \Rightarrow ilist \Rightarrow (ilist ref \times heap) where rev0 $12 \mathrm{~h} \operatorname{INil}=(12, \mathrm{~h})$
$\mid \operatorname{rev} 0 \mathrm{l} 2 \mathrm{~h}(\operatorname{ICons}(\mathrm{v}, \mathrm{lsr}))=($ let $\mathrm{ls}=$ Ref.get h lsr in let $\left(12^{\prime}, \mathrm{h}^{\prime}\right)=\mathrm{consh} \mathrm{v} 12$ in $\operatorname{rev} 012^{\prime} \mathrm{h}^{\prime} \mathrm{ls}$)
by (pat-completeness, auto)
definition rev where rev $h=\left(\right.$ let (nilr, $\left.\mathrm{h}^{\prime}\right)=$ Ref.alloc INil h in rev0 nilr h)

It quickly becomes clear that this is very cumbersome to write when we have to explicitly move the modified heap along. It should also be noted
that Imperative-HOL does not support code generation when used this way if we wanted to use that.

The theory HOL-Imperative_HOL.Heap_Monad defines a monad over the raw heap which makes makes it easier and clearer to use and also supports code generation, using this the code becomes

```
fun cons:: nat \(\Rightarrow\) ilist ref \(\Rightarrow\) ilist ref Heap where
    cons v ls \(=\operatorname{ref}(\operatorname{ICons}(\mathrm{v}, \mathrm{ls}))\)
function rev0:: ilist ref \(\Rightarrow\) ilist \(\Rightarrow\) ilist ref Heap where
    rev0 12 INil \(=\) return 12
\(\mid \operatorname{rev} 0 \mathrm{l} 2(\operatorname{ICons}(\mathrm{v}, \mathrm{lsr}))=\mathrm{do}\{\)
        ls \(\leftarrow\) ! \(\mathrm{lsr} ;\)
        \(12^{\prime} \leftarrow\) cons v l2;
        rev0 \(\left.12^{\prime} \mathrm{ls}\right\}\)
    by (pat-completeness, auto)
```

definition rev where rev $l=$ do $\{$ nilr $\leftarrow \operatorname{ref}$ INil; rev0 nilr $l\}$

This is much clearer, however it still does not work so well. For one code generation still does not work, but a bigger problem is that the generated theorems for evaluation of the function are useless.

3.1.2 Partial functions and induction on them

As stated earlier we cannot guarantee that an ilist does not link back to itself. This is an inherent problem in using structures with references since we cannot directly in the type definition state that it cannot contain cyclic reference since that would require parameterization over the heap value.

So that means that we are stuck with working with partial functions. All functions in Isabelle are actually total[2]. What happens when a function is declared in Isabelle without a termination proof is that all the theorems for evaluation, usually named as (function name).simps, becomes guarded with an assertion that the value is in the domain of the function. The same is true for the inductions rules. For example for the rev0 function given above gets the following theorem statement for rev0.psimps:
rev0-dom (?12.0, INil) \Longrightarrow rev0 ?l2.0 INil = return ?12.0
rev0-dom (?12.0, ICons (?v, ?lsr)) \Longrightarrow rev0 ?12.0 (ICons (?v, ?lsr)) $=$!?lsr $\gg=\left(\lambda \mathrm{ls}\right.$. cons ?v ? $\left.12.0 \gg\left(\lambda \mathrm{l} 2^{\prime} . \operatorname{rev0} 12^{\prime} \mathrm{ls}\right)\right)$

The \gg operator indicates monadic binding, this is what the do notation expands to. More importantly the theorems are guarded by the rev0-dom predicate. Now we should have been able to show which values are in the domain. This is done by adding the (domintros) attribute to the function
which generate introduction theorems for the domain predicate. However in turns out that the function package has some limitations to this functionality. In this case the two theorems generated are

$$
\text { rev0-dom }(? 12.0, \text { INil })
$$

and

$$
(\bigwedge \mathrm{x} \text { xa. rev0-dom }(\mathrm{xa}, \mathrm{x})) \Longrightarrow \operatorname{rev0-dom}(? 12.0, \text { ICons }(? \mathrm{v}, ? 1 \mathrm{lsr}))
$$

The first theorem is trivial. However the second one is useless, we can only show that the predicate holds for a value if it holds for every value. What we need to do here is to instead use the partial_function command[4]. Unfortunately this does not support writing functions with pattern matching as well as mutual recursion. The lack of pattern matching directly in the definition is easily worked around by using an explicit case statement, however it does make the definition somewhat more unwieldy as well as making it harder for automated tools to work with it. To implement mutually recursive functions it becomes necessary to explicitly use a sum type instead.

The definition of the rev0 using this becomes
fun cons:: nat \Rightarrow ilist ref \Rightarrow ilist ref Heap where
cons $\mathrm{v} \operatorname{ls}=\operatorname{ref}(\operatorname{ICons}(\mathrm{v}, \mathrm{ls}))$
partial-function (heap) rev0:: ilist ref \Rightarrow ilist \Rightarrow ilist ref Heap where [code]:
rev0 $12 \mathrm{l}=($
case 1 of
INil \Rightarrow return 12
$\mid \operatorname{ICons}(\mathrm{v}, \mathrm{lsr}) \Rightarrow$ do $\{$
ls \leftarrow ! lsr ;
$12^{\prime} \leftarrow$ cons v 12 ;
rev0 $\left.12{ }^{\prime} \mathrm{ls}\right\}$)
definition rev where rev $l=$ do $\{\operatorname{nilr} \leftarrow \operatorname{ref} \operatorname{INil} ;$ rev0 nilr $l\}$

This generates some more useful theorems, rev0.simps becomes:
rev0 ? 12.0 ? $1=$ (case ?1 of INil \Rightarrow return ?12.0 \mid ICons (v, lsr) \Rightarrow !lsr \gg $\left(\lambda l \mathrm{l}\right.$. cons v ? $\left.\left.12.0 \gg=\left(\lambda \mathrm{l} 2^{\prime} . \operatorname{rev} 0 \mathrm{l} 2^{\prime} \mathrm{ls}\right)\right)\right)$

Note that there is no guard this time. Induction rules for fixpoint induction are also introduced, however for the concrete problems solved here structural induction over the datatypes are used instead.

3.2 Working with the Heap monad

When it comes to working with functions defined using the Heap monad a way to talk about the result is needed. The function execute :: 'a Heap \Rightarrow heap \Rightarrow ('a \times heap) option. The result of execute is an option with a tuple consisting of the result of the function and the updated heap. The reason it is wrapped in option is that the heap supports exceptions. This feature is not used anywhere in the theory developed but it does make it a bit more cumbersome to use the heap monad.

The Heap-Monad theory also contains the predicate effect :: 'a Heap \Rightarrow heap \Rightarrow heap \Rightarrow 'a \Rightarrow bool. effect $\mathrm{x} h$ h' r asserts that the result of x on the heap h is r with the modified heap h ?

The lemmas and definitions related to the value of the heap are not added to the simp method, which means that evaluating a function using the Heap monad becomes a somewhat standard step of using (simp add: lookup-def tap-def bind-def return-def execute-heap).

4 Formalization of the algorithms

4.1 The functional version

The functional algorithm is a completely straightforward translation of the one given in ML in TRaAT. Besides syntactical difference the only difference is that this version has the result of wrapped in an option and returns None rather than raises an exception if the problem is not unifyable.

4.2 The imperative version

The imperative version is given as Pascal code in TRaAt so it needs some adaption.

```
type termP = ^term
    termsP = ^terms
term = record
    stamp: integer;
        is: termP;
        case isvar: boolean of
            true: ();
            false: (fn: string; args: termsP)
    end;
terms = record t:termP; next: termsP end;
```

The most direct translation would be to also define terms as records in Isabelle, however the record command does not currently support mutual recursion so we have to do with a regular datatype definition. The definition is given as

```
datatype i-term-d =
    IVarD
    | ITermD (string \(\times\) i-terms ref option)
and i-terms \(=\) ITerms (i-term ref \(\times\) i-terms ref option)
and i-term \(=\operatorname{ITerm}(\) nat \(\times\) i-term ref option \(\times\) i-term-d)
type-synonym i-termP \(=\) i-term ref option
type-synonym i-termsP \(=\) i-terms ref option
```

The references do not have a "null-pointer". They can be invalid by pointing to addresses higher than limit, but that is not really helpful since they would become valid once new references are allocated. So pointers are instead modeled by ref options where None represents a null pointer.

Since Isabelle does not have the sort of tagged union with explicit tag as Pascal do the isvar field is not directly present, rather it is implicit in whether the data part (i-term-d) is IVarD or ITermD.

The definition of union in TRaAT merely updates the is pointer, however since the the values are immutable we must replace the whole record on update, so for simplicity sake a term that points to another term is always marked as IVarD, this does not matter to the algorithm since the function list is never read from terms with non-null is pointer. In fact in the theory about the imperative terms we consider a term with non-null is pointer and ITermD as data part as invalid.

The functions from TRaAT are translated as outlined outlined in section 3.1.

4.3 Theory about the imperative datastructures

The terms needs to represent an acyclic graph for the algorithm to terminate, this is asserted by the mutually recursively defined predicates i-term-acyclic and i-terms-acyclic:

```
inductive i-term-acyclic:: heap \(\Rightarrow\) i-termP \(\Rightarrow\) bool and
    i-terms-acyclic:: heap \(\Rightarrow\) i-termsP \(\Rightarrow\) bool where
t-acyclic-nil: i-term-acyclic - None |
t-acyclic-step-link:
    i-term-acyclic ht \(\Longrightarrow\)
    Ref.get h tref \(=\operatorname{ITerm}(-, \mathrm{t}, \mathrm{IVarD}) \Longrightarrow\)
    i-term-acyclic h (Some tref) |
t-acyclic-step-ITerm:
    i-terms-acyclic h tsref \(\Longrightarrow\)
    Ref.get h tref \(=\operatorname{ITerm}(-\), None, \(\operatorname{ITermD}(-\), tsref \()) \Longrightarrow\)
```

```
    i-term-acyclic h (Some tref) |
ts-acyclic-nil: i-terms-acyclic - None |
ts-acyclic-step-ITerms:
    i-terms-acyclic h ts2ref \Longrightarrow
    i-term-acyclic h (Some tref) \Longrightarrow
    Ref.get h tsref = ITerms (tref, ts2ref) \Longrightarrow
    i-terms-acyclic h (Some tsref)
```

As noted earlier terms representing a function (with ITermD) are only considered valid if the is pointer is null (i.e. None).

A form of total induction is required where we can take as induction hypothesis that a predicate is true for every term "further down" in the DAG. The base of this is the i-term-closure set. This is to be understood as the transitive closure of referenced terms.
inductive-set i-term-closure for $\mathrm{h}:$: heap and tp :: i-termP where
Some $\mathrm{tr}=\mathrm{tp} \Longrightarrow \mathrm{tr} \in \mathrm{i}$-term-closure $\mathrm{h} \operatorname{tp} \mid$
$\operatorname{tr} \in$ i-term-closure $\mathrm{htp} \Longrightarrow$
Ref.get h tr $=\operatorname{ITerm}(-$, Some is, -$) \Longrightarrow$
is $\in \mathrm{i}$-term-closure htp |
tr \in i-term-closure h tp \Longrightarrow
Ref.get h tr $=\operatorname{ITerm}(-$, None, $\operatorname{ITermD}(-, \operatorname{tsp})) \Longrightarrow$
$\operatorname{tr} 2 \in$ i-terms-set h tsp \Longrightarrow
$\operatorname{tr} 2 \in$ i-term-closure h tp

Related to this are the i-terms-sublists and i-term-chain. The former gives the set of i-terms referenced from a i-terms, i.e. the sublists of the list represented by the i-terms. The latter gives the set of terms traversed through the is pointers from a given term. Derived from i-terms-sublists is also define i-terms-set which is the set of terms referenced by the list. Closure and sublists over i-terms are also defined
abbreviation i-term-closures where
i-term-closures h trs $\equiv(* \bigcup$ (i-term-closure h'Some'trs)*)
UNION (Some ' trs) (i-term-closure h)
abbreviation i-terms-closure where
i-terms-closure h tsp \equiv i-term-closures h (i-terms-set h tsp)
abbreviation i-term-sublists where
i-term-sublists h tr \equiv i-terms-sublists h (get-ITerm-args (Ref.get h tr))
abbreviation i-term-closure-sublists where
i-term-closure-sublists h tp $\equiv(* \cup$ (i-term-sublists h 'i-term-closure h tr)*)
(Utr tr $^{\prime}$ i-term-closure h tp. i-term-sublists h tr')
abbreviation i-terms-closure-sublists where
i-terms-closure-sublists h tsp \equiv ($* \mathrm{U}$ (i-term-sublists h ' i-terms-closure h tsp)*)
i-terms-sublists h tsp $\cup(\cup \operatorname{tr} \in i$ i-terms-closure h tsp. i-term-sublists h tr)

To meaningfully work with changes to the heap we need a predicate asserting that the structure of a term graph is unchanged, this is captured by heap-only-stamp-changed.
abbreviation i-term-closures where
i-term-closures h trs \equiv UNION (Some ' trs) (i-term-closure h)
abbreviation i-terms-closure where
i-terms-closure h tsp \equiv i-term-closures h (i-terms-set h tsp)
abbreviation i-term-sublists where
i-term-sublists h tr \equiv i-terms-sublists h (get-ITerm-args (Ref.get h tr))
abbreviation i-term-closure-sublists where
i-term-closure-sublists h tp $\equiv\left(\bigcup\right.$ tr' $^{\prime} \in \mathrm{i}$-term-closure h tp. i-term-sublists $h \operatorname{tr}^{\prime}$)
abbreviation i-terms-closure-sublists where
i-terms-closure-sublists h tsp \equiv i-terms-sublists $\mathrm{h} \operatorname{tsp} \cup(\bigcup$ tr $\in \mathrm{i}$-terms-closure h tsp. i-term-sublists h tr)

More specifically it asserts that only changes to terms in the set trs are made, and the only the stamp value is changed, and no changes are made to any i-terms and nats. This is used as basis for a total induction rule where the induction hypothesis asserts that the predicate is true for every term further down the graph and every heap where that the closure of that term is unchanged.
lemma acyclic-closure-ch-stamp-inductc ${ }^{\prime}$ [consumes 1, case-names var link args terms-nil terms]:
fixes h:: heap
and tr:: i-term ref
and $\mathrm{P} 1::$ heap \Rightarrow i-term ref set \Rightarrow i-term ref \Rightarrow bool
and P2:: heap \Rightarrow i-term ref set \Rightarrow i-termsP \Rightarrow bool
assumes acyclic: i-term-acyclic h (Some tr)
and var-case: $\wedge \mathrm{h}$ trs tr s.
Ref.get h tr $=\operatorname{ITerm}(\mathrm{s}$, None, $\operatorname{IVarD}) \Longrightarrow$
P1 h trs tr
and link-case: $\wedge \mathrm{h}$ trs tr isr s.
($\wedge \mathrm{t} 2 \mathrm{r} \mathrm{h}^{\prime} \mathrm{trs}^{\prime}$.
$\operatorname{trs} \subseteq \operatorname{trs}^{\prime} \Longrightarrow$
heap-only-stamp-changed trs ${ }^{\prime} \mathrm{h}^{\prime}{ }^{\prime} \Longrightarrow$
$\mathrm{t} 2 \mathrm{r} \in$ i-term-closure h (Some isr) \Longrightarrow
P1 h $\left.{ }^{\prime} \operatorname{trs}^{\prime} \mathrm{t} 2 \mathrm{r}\right) \Longrightarrow$
Ref.get h tr $=\operatorname{ITerm}(\mathrm{s}$, Some isr, $\operatorname{IVarD}) \Longrightarrow$ P1 h trs tr
and args-case: $\Lambda \mathrm{h}$ trs tr tsp sf.
$\left(\wedge \mathrm{h}^{\prime}\right.$ trs ${ }^{\prime}$.
$\operatorname{trs} \subseteq \operatorname{trs}^{\prime} \Longrightarrow$
heap-only-stamp-changed trs ${ }^{\prime} \mathrm{h} \mathrm{h}^{\prime} \Longrightarrow$
P2 h ${ }^{\prime}$ trs $\left.^{\prime} \mathrm{tsp}\right) \Longrightarrow$
$\left(\mathrm{h}^{\prime}\right.$ trs' t 2 r 0 t 2 r .
$\operatorname{trs} \subseteq \operatorname{trs}^{\prime} \Longrightarrow$
heap-only-stamp-changed $\operatorname{trs}^{\prime} \mathrm{h} \mathrm{h}^{\prime} \Longrightarrow$
t2r \in i-term-closure h (Some t2r0) \Longrightarrow
$\mathrm{t} 2 \mathrm{r} 0 \in \mathrm{i}$-terms-set $\mathrm{h} \mathrm{tsp} \Longrightarrow$
P1 h'trs ${ }^{\prime}$ t2r) \Longrightarrow
Ref.get $\mathrm{h} \operatorname{tr}=\operatorname{ITerm}(\mathrm{s}$, None, $\operatorname{ITermD}(\mathrm{f}, \mathrm{tsp})) \Longrightarrow$
P1 h trs tr
and terms-nil-case: $\Lambda \mathrm{h}$ trs. P2 h trs None
and terms-case: $\Lambda \mathrm{h}$ trs tr tsr tsnextp.
$\left(\Lambda h^{\prime}\right.$ trs ${ }^{\prime}$.
$\operatorname{trs} \subseteq \operatorname{trs}^{\prime} \Longrightarrow$
heap-only-stamp-changed $\operatorname{trs}^{\prime} \mathrm{h} \mathrm{h}^{\prime} \Longrightarrow$
P2 h' trs' tsnextp) \Longrightarrow
$\left(\mathrm{h}^{\prime} \mathrm{trs}^{\prime} \mathrm{t} 2 \mathrm{r}\right.$.
$\operatorname{trs} \subseteq \operatorname{trs}^{\prime} \Longrightarrow$
heap-only-stamp-changed trs ${ }^{\prime} \mathrm{h} \mathrm{h}^{\prime} \Longrightarrow$
t2r \in i-term-closure h (Some tr) \Longrightarrow
P1 h'trs ${ }^{\prime}$ t2r) \Longrightarrow
Ref.get h tsr $=$ ITerms ($\mathrm{tr}, \operatorname{tsnextp}) \Longrightarrow$
P2 h trs (Some tsr)
shows P1 h trs tr

5 Soundness of the imperative version

It is shown that the imperative version of the occurs is equivalent to the functional version. More specifically it is shown that given a wellformed i-term then the imperative version of occurs gives the same result as the functional version on the terms converted into their "functional" version. It is not shown that functional terms converted into imperative still gives the same result so it only shows soundness (relative to the functional formulation).

5.1 Conversion of imperative terms to functional terms

The function i-term-to-term-p converts i-term and i-terms into term and term list. The imperative terms does not contains names for the variables so we have to invent names for them. This is done by naming them as x followed by the heap address of the term.
i-term-to-term-p needs to be defined as a single function taking a sum type of i-term and i-terms because of the limitation of partial_function not allowing mutually recursive definitions. Separate i-term-to-term and i-terms-to-terms functions are defined and simpler evaluation rules are shown.

It is also shown that the term conversion functions are unaffected by changing the stamp of terms which is necessary in the proof for soundness of the imperative occurs.

5.2 Soundness of imperative occurs

The i-occ-p of a term is shown to equivalent to the occurs function on the term converted to its functional version given the following is satisfied:

1. The term, tr, must be acyclic
2. The variable to check for occuring, vr, must indeed be a variable
3. The stamp of all terms must be less than the current time
4. is asserted by i-term-acyclic and 3. is asserted by predicate stamp-current-not-occurs.

To show this it was necessary to identify which invariants holds. On entering with a term (representing occ) the above holds. When returning it holds that

1. The result is the same as occurs on the converted term.
2. Only changes are made to terms in the closure of tr and only the stamp is changed.
3. Either the stamp of all terms in the closure of tr are less than the current time, or vr did occur in tr.

On entering with a term list, tsp, (this corresponds to the occs function) the following holds

1. vr must be a variable under the current heap
2. For all terms in the list tsp the current stamp (i.e. time) does not occur.
3. tsp is acyclic

When returning it holds that

1. The result is whether vr occurs in any of the terms in tsp converted to functional terms.
2. Either the stamp of all terms in the closure of tsp are less than the current time, or vr did occur in one of the terms of tsp.

Since this proofs demonstrates that the algorithm always have a value when the requirements are fulfilled it also implicitly shows termination.

The final thing shown is that i-occurs is equivalent to the occurs function on the term converted to its functional version. The requirements are the same except that all stamps must be less than or equal to the time - since the function is adding one to time before calling i-occ-p. Besides the equivalence it is also shown that the resulting heap has 1 added to time and otherwise the only changes are to the stamp of terms in the closure of tr, and that the current time (after increment) either not occurs in the new heap or the occurs check is true.

6 Conclusion

6.1 Discussion

It was originally the goal to show full equivalence between the imperative DAG based algorithm and the functional algorithm. However it turned out to be incredibly difficult to work with imperative algorithms this way. A development of no less than 3300 lines of Isabelle code was necessary just to be able to reasonably work with the data structures. To add to that the lack of natural induction rules because of the partiality makes the function definitions harder to work with, as well as the function definitions being unwieldy because of the lack of support for mutual recursion and pattern matching directly in the function definition for the partial_function method. The
fact that any updates to references changes the heap also makes it very difficult to work with because it must be shown for every function whether they are affected by those specific changes to the heap.

Other approaches that might be worth looking into for working with imperative algorithms are the support for Hoare triples and using refinement frameworks. Hoare triples can often be more natural to work with for imperative algorithms. Refinement frameworks allows defining an algorithm in an abstract way and refining into equivalent concrete algorithms that may be harder to work with directly. The latter was attempted in the development of this thesis, however it was eventually dropped due to a large amount of background knowledge necessary combined with a lack of good documentation and examples.

6.2 Future work

Completeness of the occurs check relative to the functional definition as well as an equivalence proof of solve and unify would be obvious targets for future work. It may also be worth to look into the feasibility of other approaches.

7 References

[1] L. Bulwahn, A. Krauss, F. Haftmann, L. Erkök, and J. Matthews. Imperative Functional Programming with Isabelle/HOL. In Proceedings of the 21st International Conference on Theorem Proving in Higher Order Logics, TPHOLs '08, pages 134-149, Berlin, Heidelberg, 2008. SpringerVerlag.
[2] A. Krauss. Defining Recursive Functions in Isabelle/HOL. http:// isabelle.in.tum.de/dist/Isabelle2017/doc/functions.pdf, 082017.
[3] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Trans. Program. Lang. Syst., 4(2):258-282, Apr. 1982.
[4] M. Wenzel and T. Munchen. The Isabelle/Isar Reference Manual. http: //isabelle.in.tum.de/dist/Isabelle2017/doc/isar-ref.pdf, 082017.

Appendices

A Isabelle theory

A. 1 Miscellaneous theory

theory Unification-Misc
imports Main

begin

zipping two lists and retrieving one of them back by mapping $f s t$ or snd results in the original list, possibly truncated

```
lemma sublist-map-fst-zip:
    fixes xs:: 'a list
        and ys:: 'a list
    obtains xss
        where (map fst (zip xs ys)) @ xss = xs
    by (induct xs ys rule:list-induct2', auto)
```

lemma sublist-map-snd-zip:
fixes $x s$:: 'a list
and ys:: 'a list
obtains yss
where (map snd (zip xs ys)) @ yss = ys
by (induct xs ys rule:list-induct2', auto)
end

A. 2 Functional version of algorithm

theory Unification-Functional

imports Main
Unification-Misc
begin

```
type-synonym vname \(=\) string \(\times\) int
datatype term =
        V vname
    | \(T\) string \(\times\) term list
type-synonym subst \(=(\) vname \(\times\) term \()\) list
definition indom :: vname \(\Rightarrow\) subst \(\Rightarrow\) bool where
    indom \(x s=\operatorname{list-ex}(\lambda(y,-) . x=y) s\)
fun app :: subst \(\Rightarrow\) vname \(\Rightarrow\) term where
    app \(((y, t) \# s) x=(\) if \(x=y\) then \(t\) else app \(s x) \mid\)
    app [] - = undefined
fun lift :: subst \(\Rightarrow\) term \(\Rightarrow\) term where
    lift \(s(V x)=(\) if indom \(x\) then app \(s x\) else \(V x)\)
\(\mid\) lift \(s(T(f, t s))=T(f, \operatorname{map}(\) lift \(s) t s)\)
fun occurs :: vname \(\Rightarrow\) term \(\Rightarrow\) bool where
    occurs \(x(V y)=(x=y)\)
\(\mid\) occurs \(x(T(-, t s))=\) list-ex \((\) occurs \(x) t s\)
```

```
context
begin
private definition vars :: term list }=>\mathrm{ vname set where
    vars S ={x.\existst\in set S. occurs x t }
private lemma vars-nest-eq:
    fixes ts :: term list
        and S :: term list
        and vn :: string
    shows vars (ts @ S)=vars (T(vn,ts) # S)
unfolding vars-def
    by (induction ts, auto)
private lemma vars-concat:
    fixes ts:: term list
        and S:: term list
    shows vars (ts@S)= vars ts \cup vars S
unfolding vars-def
    by (induction ts, auto)
private definition vars-eqs :: (term }\times\mathrm{ term) list }=>\mathrm{ vname set where
    vars-eqs l = vars (map fst l)\cup vars (map snd l)
lemma vars-eqs-zip:
    fixes ts:: term list
        and us:: term list
        and S:: term list
    shows vars-eqs (zip ts us)\subseteq vars ts \cup vars us
using vars-concat sublist-map-fst-zip sublist-map-snd-zip vars-eqs-def
    by (metis (no-types, hide-lams) Un-subset-iff sup.cobounded1 sup.coboundedI2)
private lemma vars-eqs-concat:
    fixes ts:: (term }\times\mathrm{ term) list
        and S:: (term }\times\mathrm{ term) list
    shows vars-eqs (ts @ S)= vars-eqs ts \cup vars-eqs S
using vars-concat vars-eqs-def by auto
private lemma vars-eqs-nest-subset:
    fixes ts :: term list
        and us :: term list
        and S :: (term }\times\mathrm{ term) list
        and vn :: string
        and wn :: string
    shows vars-eqs (zip ts us @S)\subseteqvars-eqs ((T(vn,ts),T(wn,us)) # S)
proof -
    have vars-eqs ((T(vn,ts),T(wn,us)) # S)= vars ts \cup vars us \cup vars-eqs S
        using vars-concat vars-eqs-def vars-nest-eq by auto
    then show ?thesis
```

using vars-eqs-concat vars-eqs-zip by fastforce
qed
private definition n-var $::($ term \times term $)$ list \Rightarrow nat where
n-var $l=$ card (vars-eqs l)
private lemma var-eqs-finite:
fixes $t s$
shows finite (vars-eqs ts)
proof -
\{
fix t
have finite ($\{x$. occurs $x t\}$)
proof (induction t rule: occurs.induct)
case (1 $x y$)
then show? case by simp

next

case (2 $x \mathrm{fn} t \mathrm{~s}$)
have $\{x$. occurs $x(T(f n, t s))\}=$ vars ts
using vars-def Bex-set-list-ex
by fastforce
then show ?case using vars-def 2.IH by simp

qed

\}
then show?thesis
using vars-def vars-eqs-def by simp
qed
private lemma vars-eqs-subset-n-var-le:
fixes $S 1::($ term \times term $)$ list
and $S 2::($ term \times term $)$ list
assumes vars-eqs $S 1 \subseteq$ vars-eqs S2
shows n-var $S 1 \leq n$-var S2
using assms var-eqs-finite n-var-def
by (simp add: card-mono)
private lemma vars-eqs-psubset-n-var-lt:
fixes $S 1::($ term \times term $)$ list and $S 2::($ term \times term $)$ list
assumes vars-eqs $S 1 \subset$ vars-eqs $S 2$
shows n-var $S 1<n$-var $S 2$
using assms var-eqs-finite n-var-def
by (simp add: psubset-card-mono)
private fun fun-count $::$ term list \Rightarrow nat where
fun-count []$=0$
\mid fun-count $((V-) \# S)=$ fun-count S
\mid fun-count $(T(-, t s) \# S)=1+$ fun-count $t s+$ fun-count S

```
private lemma fun-count-concat:
    fixes ts:: term list
        and us:: term list
    shows fun-count (ts @us) = fun-count ts + fun-count us
proof (induction ts)
    case Nil
        then show ?case
            by force
    next
        case (Cons a ts)
        show ?case
        proof (cases a)
            case (V -)
            then have fun-count ((a#ts)@us)=fun-count (ts @us)
                by simp
            then show ?thesis
                by (simp add: Cons.IH V)
        next
            case (T x)
            then obtain fn ts'' where ts'-def: x=(fn,ts)
                by fastforce
            then have fun-count ((a#ts)@us)=1 + fun-count (ts@us)+fun-count
ts'
                by (simp add: T)
            then show ?thesis
                by (simp add: Cons.IH T ts'-def)
        qed
qed
private definition n-fun :: (term }\times\mathrm{ term) list }=>\mathrm{ nat where
    n-fun l = fun-count (map fst l) + fun-count (map snd l)
private lemma n-fun-concat:
    fixes ts us
    shows n-fun (ts @us) = n-fun ts + n-fun us
    unfolding n-fun-def using fun-count-concat
    by simp
private lemma n-fun-nest-head:
    fixes ts g us S
    shows n-fun (zip ts us @ S) +2 \leqn-fun ((T (g,ts),T (g,us)) # S)
proof -
    let ?trunc-ts = (map fst (zip ts us))
    let ?trunc-us = (map snd (zip ts us))
    have trunc-sum: n-fun ((T (g,?trunc-ts), T (g, ?trunc-us)) #S)=2 + n-fun
(ziptsus @ S)
        using n-fun-concat n-fun-def by auto
    obtain tsp where ts-rest: (map fst (zip ts us)) @ tsp=ts by (fact sublist-map-fst-zip)
```

obtain usp where us-rest: (map snd (zip ts us)) @usp=us by (fact sublist-map-snd-zip) have fun-count $[T(g$,?trunc-ts $)]+$ fun-count tsp $=$ fun-count $[T(g, t s)]$ using ts-rest fun-count-concat by (metis add.assoc add.right-neutral fun-count.simps(1) fun-count.simps(3)) moreover have fun-count $[T(g$,?trunc-us $)]+$ fun-count usp $=$ fun-count $[T(g$, $u s)]$
using us-rest fun-count-concat
by (metis add.assoc add.right-neutral fun-count.simps(1) fun-count.simps(3))
ultimately have n-fun $[(T(g$, ?trunc-ts $), T(g$,?trunc-us $))]+$ fun-count tsp + fun-count usp $=$
fun-count $[T(g, t s)]+$ fun-count $[T(g, u s)]$
by (simp add: n-fun-def)
then have n-fun $((T$ (g,?trunc-ts $), T(g$,?trunc-us) $) \# S)+$ fun-count tsp + fun-count usp $=$

$$
n \text {-fun }((T(g, t s), T(g, u s)) \# S)
$$

using n-fun-def n-fun-concat by simp
from this and trunc-sum show?thesis by simp
qed

```
private abbreviation (noprint) liftmap v t S'\equiv
```

 \(\operatorname{map}(\lambda(t 1\), t2 \() .(l i f t[(v, t)]\) t1, lift \([(v, t)]\) t2 \()) S^{\prime}\)
 private lemma lift-elims:
fixes x :: vname
and $t::$ term
and $t 0::$ term
assumes \neg occurs $x t$
shows \neg occurs $x($ lift $[(x, t)]$ t0)
proof (induction $[(x, t)]$ to rule: lift.induct)
case (1 x)
then show ?case
by (simp add: assms indom-def vars-def)
next
case (2 fts)
\{
fix v
assume occurs $v(l i f t[(x, t)](T(f, t s)))$
then have list-ex (occurs v) (map (lift $[(x, t)])$ ts) by simp
then obtain $t 1$ where t1-def: t1 $\in \operatorname{set}(\operatorname{map}($ lift $[(x, t)])$ ts $) \wedge$ occurs v t1 by (meson Bex-set-list-ex)
then obtain $t 1^{\prime}$ where $t 1=$ lift $[(x, t)] t 1^{\prime} \wedge t 1^{\prime} \in$ set $t s$ by auto
then have $\exists t 1 \in$ set ts. occurs v (lift $[(x, t)]$ t1)
using 11 -def by blast
\}
then show ?case
using 2.hyps by blast
qed
private lemma lift-inv-occurs:
fixes $x::$ vname
and $v::$ vname
and $s t::$ term
and $t::$ term
assumes occurs $v($ lift $[(x$, st $)] t)$
and \neg occurs v st
and $v \neq x$
shows occurs $v t$
using assms proof (induction t rule: occurs.induct)
case (1 $v y$)
have lift $[(x, s t)](V y)=V y$
using 1.prems indom-def by auto
then show ?case
using 1.prems(1) by auto
next
case (2 $x \mathrm{fts}$)
then show? case
by (metis (mono-tags, lifting) Bex-set-list-ex imageE lift.simps(2) occurs.simps(2)
set-map)
qed
private lemma vars-elim:
fixes x st S
assumes \neg occurs x st
shows vars $($ map $($ lift $[(x, s t)]) S) \subseteq$ vars $[s t] \cup$ vars $S \wedge$
$x \notin \operatorname{vars}($ map $($ lift $[(x, s t)]) S)$
proof (induction S)
case Nil
then show ?case
by (simp add: vars-def)
next
case (Cons tx S)
moreover have vars $(\operatorname{map}($ lift $[(x, s t)])(t x \# S))=$ vars $[$ lift $[(x, s t)] t x] \cup$ vars (map $($ lift $[(x, s t)]) S)$
using vars-concat
by (metis append.left-neutral append-Cons list.simps(9))
moreover have vars $[s t] \cup$ vars $(t x \# S)=$ vars $[s t] \cup$ vars $S \cup$ vars $[t x]$
using vars-concat
by (metis append.left-neutral append-Cons sup-commute)
moreover \{
fix v
assume v-mem-vars-lift: $v \in \operatorname{vars}[$ lift $[(x, s t)] t x]$
have v-neq-x: $v \neq x$ using lift-elims assms v-mem-vars-lift vars-def
by fastforce
moreover have $v \in$ vars $[s t] \cup$ vars $[t x]$
proof (cases)
assume occurs v st

```
            then show ?thesis unfolding vars-def by simp
        next
            assume not-occurs-v-st: \negoccurs v st
            have occurs v (lift [(x,st)] tx)
            using v-mem-vars-lift vars-def by force
            then have occurs v tx using lift-inv-occurs
                using v-neq-x not-occurs-v-st by blast
            then show ?thesis
                by (simp add: vars-def)
        qed
        ultimately have v}\in\mathrm{ vars [st] U vars [tx]^v v x by simp
    }
    ultimately show ?case by blast
qed
private lemma n-var-elim:
    fixes }x\mathrm{ st }
    assumes \neg occurs x st
    shows n-var (liftmap x st S)<n-var ((V x, st) #S)
proof -
    have \lf. map fst (map (\lambda(t1, t2). (ft1,ft2)) l) = map f (map fst l)
        by (simp add: case-prod-unfold)
    moreover have \\lf.map snd (map (\lambda(t1, t2). (ft1,ft2)) l)=mapf(map
snd l)
    by (simp add: case-prod-unfold)
    ultimately have lhs-split: vars-eqs (liftmap x st S)=
        vars (map (lift [(x,st)]) (map fst S)) \cup vars (map (lift [(x,st)]) (map snd S))
        unfolding vars-eqs-def by metis
    have vars-eqs ((Vx,st)#S)= vars-eqs [(Vx, st)]\cup vars-eqs S
        using vars-eqs-concat
        by (metis append-Cons self-append-conv2)
    moreover have vars-eqs [(V x,st)]={x}\cup vars [st]
        unfolding vars-eqs-def using vars-def occurs.simps(1) by force
    ultimately have rhs-eq1: vars-eqs ((Vx,st)#S)={x}\cup vars [st]\cup vars-eqs
S
    by presburger
    then have rhs-eq2:
    vars-eqs ((Vx, st) #S)={x}\cupvars [st]\cupvars (map fst S)\cup vars (map snd
S)
    unfolding vars-eqs-def
    by (simp add: sup.assoc)
    from this lhs-split vars-elim assms
    have vars-eqs (liftmap x st S)\subseteqvars [st]\cup vars-eqs S ^
        x\not\invars-eqs (liftmap x st S)
    using vars-concat vars-eqs-def by (metis map-append)
    moreover have x\in vars-eqs ((V x, st) #S)
    by (simp add: rhs-eq2)
```

ultimately have vars-eqs (liftmap x st $S) \subset$ vars-eqs $((V x$, st) $\# S)$ using rhs-eq1 by blast
then show ?thesis using vars-eqs-psubset-n-var-lt by blast
qed
function (sequential) solve :: (term \times term) list \times subst \Rightarrow subst option
and elim :: vname \times term $\times($ term \times term $)$ list \times subst \Rightarrow subst option where solve $([], s)=$ Some s
| solve $((V x, t) \# S, s)=($
if $V x=t$ then solve (S, s) else $\operatorname{elim}(x, t, S, s))$
$\mid \operatorname{solve}((t, V x) \# S, s)=\operatorname{elim}(x, t, S, s)$
| solve $((T(f, t s), T(g, u s)) \# S, s)=($
if $f=g$ then solve $((z i p$ ts us) @ S, s) else None $)$
$\mid \operatorname{elim}(x, t, S, s)=($
if occurs x then None
else let $x t=$ lift $[(x, t)]$
in solve (map $(\lambda(t 1, t 2) .(x t t 1, x t t 2)) S$, $(x, t) \#(\operatorname{map}(\lambda(y, u) .(y, x t u)) s)))$
by pat-completeness auto
termination proof (
relation
$(\lambda X X$. case $X X$ of $\operatorname{Inl}(l,-) \Rightarrow n$-var $l \mid \operatorname{Inr}(x, t, S,-) \Rightarrow n$-var $((V x, t) \# S))$
$<*$ mlex $*>$
$(\lambda X X$. case $X X$ of $\operatorname{Inl}(l,-) \Rightarrow n$-fun $l \mid \operatorname{Inr}(x, t, S,-) \Rightarrow n$-fun $((V x, t) \# S))$
$<*$ mlex*>
$(\lambda X X$. case $X X$ of $\operatorname{Inl}(l,-) \Rightarrow$ size $l \mid \operatorname{Inr}(x, t, S,-) \Rightarrow \operatorname{size}((V x, t) \# S))$
$<*$ mlex*>
$(\lambda X X$. case $X X$ of $\operatorname{Inl}(l,-) \Rightarrow 1 \mid \operatorname{Inr}(x, t, S,-) \Rightarrow 0)<* m l e x *>$
$\}$,
auto simp add: wf-mlex mlex-less mlex-prod-def)
have $\bigwedge v S$. vars-eqs $S \subseteq$ vars-eqs $((V v, V v) \# S)$
using vars-eqs-def vars-def by force
then show $\bigwedge a b S$. \neg-var $S<n$-var $((V(a, b), V(a, b)) \# S) \Longrightarrow$ n-var $S=n$-var $((V(a, b), V(a, b)) \# S)$
using vars-eqs-subset-n-var-le by (simp add: nat-less-le)
show $\wedge a b S$. $\neg n$-var $S<n$-var $((V(a, b), V(a, b)) \# S) \Longrightarrow$
n-fun $S \neq n$-fun $((V(a, b), V(a, b)) \# S) \Longrightarrow$ n-fun $S<n$-fun $((V(a, b), V(a, b)) \# S)$
using n-fun-def by simp
have $\Lambda t x v$. vars-eqs $[(V v, T t x)]=$ vars-eqs $[(T t x, V v)]$
using vars-eqs-def
by (simp add: sup-commute)
then have $\Lambda t x v S$. vars-eqs $((V v, T t x) \# S)=\operatorname{vars-eqs}((T t x, V v) \# S)$
using vars-eqs-concat
by (metis append-Cons self-append-conv2)
then have $\bigwedge a b v S . n$-var $((V v, T(a, b)) \# S)=n$-var $((T(a, b), V v) \#$
unfolding n-var-def vars-eqs-def
by presburger
then show $\bigwedge a b$ aa ba S.
$\neg n$-var $((V(a a, b a), T(a, b)) \# S)<n$-var $((T(a, b), V(a a, b a)) \# S)$
\Longrightarrow
$n-\operatorname{var}((V(a a, b a), T(a, b)) \# S)=n$-var $((T(a, b), V(a a, b a)) \# S)$
by simp
show $\bigwedge a b$ aa ba S.
$\neg n$-var $((V(a a, b a), T(a, b)) \# S)<n$-var $((T(a, b), V(a a, b a)) \# S)$
\Longrightarrow
n-fun $((V(a a, b a), T(a, b)) \# S) \neq n$-fun $((T(a, b), V(a a, b a)) \# S) \Longrightarrow$ n-fun $((V(a a, b a), T(a, b)) \# S)<n$-fun $((T(a, b), V(a a, b a)) \# S)$
by (simp add: n-fun-def)
show $\wedge t s g$ us $S . \neg n$-var $(z i p t s u s @ S)<n$-var $((T(g, t s), T(g, u s)) \# S)$
\Longrightarrow
n-var $(z i p$ ts us @ $S)=n$-var $((T(g, t s), T(g, u s)) \# S)$
using vars-eqs-nest-subset vars-eqs-subset-n-var-le le-neq-implies-less by meson
have n-fun-nested-gt: \wedge ts g us $S . n$-fun (zip ts us @ S) $<n$-fun $((T(g, t s), T$ $(g, u s)) \# S$)
using n-fun-nest-head
by (metis add-leD1 le-neq-implies-less add-2-eq-Suc' leD less-Suc-eq)
show $\bigwedge t s g$ us S.
$\neg n$-var $(z i p$ ts us @ $S)<n$-var $((T(g, t s), T(g, u s)) \# S) \Longrightarrow$
\neg-fun $(z i p$ ts us @ $S)<n$-fun $((T(g, t s), T(g, u s)) \# S) \Longrightarrow$ n-fun $(z i p$ ts us @ $S)=n$-fun $((T(g, t s), T(g, u s)) \# S)$
using n-fun-nested-gt by meson
show $\bigwedge t s g u s S$.
$\neg n$-var $(z i p$ ts us @ $S)<n$-var $((T(g, t s), T(g, u s)) \# S) \Longrightarrow$
\neg n-fun $(z i p$ ts us @ $S)<n$-fun $((T(g, t s), T(g, u s)) \# S) \Longrightarrow$ $\min ($ length $t s)($ length $u s)=0$
using n-fun-nested-gt by blast
show $\wedge x t S$.
\neg occurs $x t \Longrightarrow$
$\neg n$-var $($ liftmap $x t S)<n$-var $((V x, t) \# S) \Longrightarrow$
n-var $($ liftmap $x t S)=n$-var $((V x, t) \# S)$
using n-var-elim leD linorder-neqE-nat by blast
show $\wedge x t S$.
\neg occurs $x t \Longrightarrow$
$\neg n$-var $($ liftmap $x t S)<n$-var $((V x, t) \# S) \Longrightarrow$
n-fun (liftmap x t S) $\neq n$-fun $((V x, t) \# S) \Longrightarrow$
n-fun (liftmap $x t S$) $<$ n-fun $((V x, t) \# S$)
using n-var-elim by simp

qed

end
end

```
A.3 Theory about datastructures for imperative version
theory ITerm
    imports Main
        HOL-Imperative-HOL.Ref
        HOL-Imperative-HOL.Heap-Monad
begin
datatype i-term-d=
    IVarD
    |TermD (string }\times i\mathrm{ -terms ref option)
and i-terms =ITerms (i-term ref }\timesi\mathrm{ iterms ref option)
and i-term =ITerm (nat }\timesi\mathrm{ -term ref option }\timesi\mathrm{ -term-d)
instantiation i-term :: heap begin
    instance by countable-datatype
end
instantiation i-terms :: heap begin
    instance by countable-datatype
end
lemma typerep-term-neq-terms: TYPEREP(i-term) \not= TYPEREP(i-terms)
    using typerep-i-terms-def typerep-i-term-def by fastforce
lemma typerep-term-neq-nat: TYPEREP(i-term) f TYPEREP(nat)
    using typerep-i-term-def typerep-nat-def by fastforce
lemma typerep-terms-neq-nat: TYPEREP(i-terms) \not= TYPEREP(nat)
    using typerep-i-terms-def typerep-nat-def by fastforce
definition is-IVar where is-IVar t=
    (case t of ITerm(-, -, IVarD) => True | - F False)
definition get-ITerm-args where get-ITerm-args t=
    (case t of ITerm(-, -, ITermD (-,tn)) =>tn |-=> None)
fun get-is where
    get-is-def: get-is t(ITerm(-, is, -)) = is
fun get-stamp where
    get-stamp-def: get-stamp (ITerm(s, -, -)) =s
lemma get-stamp-iff-ex:
    fixes t s shows (get-stamp t=s)\longleftrightarrow(\existsis d.t=ITerm(s,is,d))
    by (cases t, cases, blast, force)
```

```
lemma get-ITerm-args-iff-ex:
    shows (get-ITerm-args t=tsp)\longleftrightarrow
            (\existss is d.t = ITerm(s,is,d) ^(
                (tsp=None \wedged=IVarD) \vee
            (\existsf.d=ITermD(f,tsp))))
proof -
    obtain s is d where t=ITerm(s,is,d)
            by (metis i-term.exhaust surj-pair)
    then show ?thesis unfolding get-ITerm-args-def
        by (cases d rule: i-term-d.exhaust; force)
qed
type-synonym i-termP = i-term ref option
type-synonym i-termsP=i-terms ref option
inductive i-term-acyclic:: heap }=>\mathrm{ -termP }=>\mathrm{ bool and
    i-terms-acyclic:: heap }=>\mathrm{ i-terms P }=>\mathrm{ bool where
t-acyclic-nil: i-term-acyclic - None |
t-acyclic-step-link:
    i-term-acyclic ht\Longrightarrow
    Ref.get h tref = ITerm(-, t,IVarD) \Longrightarrow
    i-term-acyclic h (Some tref)|
t-acyclic-step-ITerm:
    i-terms-acyclic h tsref \Longrightarrow
    Ref.get h tref = ITerm(-, None, ITermD(-, tsref )) \Longrightarrow
    i-term-acyclic h (Some tref)|
ts-acyclic-nil: i-terms-acyclic - None |
ts-acyclic-step-ITerms:
    i-terms-acyclic h ts2ref \Longrightarrow
    i-term-acyclic h (Some tref) \Longrightarrow
    Ref.get h tsref = ITerms (tref, ts2ref) \Longrightarrow
    i-terms-acyclic h (Some tsref)
lemma acyclic-terms-term-simp [simp]:
    fixes tr:: i-term ref
        and termsp
        and terms
        and s:: nat
        and h:: heap
    assumes acyclic: i-term-acyclic h (Some tr)
    and get-tr:Ref.get h tr = ITerm (s,None,ITermD(f,termsp))
    shows i-terms-acyclic h termsp
proof -
    consider
        (a) h' where h= h'^(Some tr)= None |
        (b) }\mp@subsup{h}{}{\prime}t\mathrm{ tref }\mp@subsup{s}{}{\prime}\mathrm{ where
        h'}=h\wedge\mathrm{ (Some tr) = Some tref }
            i-term-acyclic ht^
```

Ref.get h tref $=\operatorname{ITerm}\left(s^{\prime}, t, I \operatorname{VarD}\right) \mid$
(c) h^{\prime} tsref tref $s^{\prime} f^{\prime}$ where
$h^{\prime}=h \wedge$ (Some tr) $=$ Some tref \wedge
i-terms-acyclic h tsref \wedge
Ref.get h tref $=\operatorname{ITerm}\left(s^{\prime}\right.$, None, $\operatorname{ITermD}\left(f^{\prime}\right.$, tsref $\left.)\right)$
using i-term-acyclic.simps acyclic by fast
then show ?thesis using get-tr
by (cases, fastforce+)
qed
lemma acyclic-terms-terms-simp [simp]:
fixes tsr:: i-terms ref and this:: i-term ref
and tnext:: i-terms P and $h::$ heap
assumes acyclic: i-terms-acyclic h (Some tsr)
and get-termsr: Ref.get h tsr $=$ ITerms (tthis, tnext)
shows i-terms-acyclic h tnext
proof -
consider (a) (Some tsr) $=$ None \mid
(b) tref where
i-term-acyclic $h($ Some tref $) \wedge$ Ref.get h tsr $=$ ITerms (tref, None) \mid
(c) ts2ref tref where
i-terms-acyclic h ts2ref \wedge i-term-acyclic $h(S o m e ~ t r e f) ~ \wedge ~$ Ref.get h tsr $=$ ITerms (tref, ts2ref)
using acyclic i-terms-acyclic.simps[of h Some tsr] by fast
then show ?thesis using get-termsr ts-acyclic-nil
by (cases, fastforce+)
qed
lemma acyclic-term-link-simp:
fixes tr:: i-term ref
and $t r^{\prime}:: ~ i$-term ref
and $d:: i$-term- d
and $s::$ nat
and $h::$ heap
assumes acyclic: i-term-acyclic h (Some tr)
and get-tr: Ref.get h tr $=\operatorname{ITerm}\left(s\right.$, Some tr ${ }^{\prime}$, d)
shows i-term-acyclic h (Some tr')
proof -
consider (a) (Some tr) = None \mid
(b) $t s^{\prime}$ where
i-term-acyclic $h t \wedge$
Ref.get h tr $=I \operatorname{Term}\left(s^{\prime}, t, I \operatorname{VarD}\right) \mid$
(c) tsref $s^{\prime} f$ where
i-terms-acyclic h tsref \wedge
Ref.get h tr $=\operatorname{ITerm}\left(s^{\prime}\right.$, None, ITermD $(f$, tsref $\left.)\right)$
using acyclic i-term-acyclic.simps[of h Some tr] by blast
then show ?thesis using get-tr
by cases (fastforce+)
qed
lemma acyclic-args-nil-is:
assumes i-term-acyclic h (Some tr)
and Ref.get h tr $=\operatorname{ITerm}(s, i s, \operatorname{ITerm} D(f, t s p))$
shows is $=$ None
using assms by (cases h Some tr rule: i-term-acyclic.cases; fastforce)
lemma acyclic-heap-change-nt:
fixes tr:: i-term ref
and $r::{ }^{\prime} a:$:heap ref
and $v:$: $a:: h e a p$
and $h::$ heap
assumes acyclic: i-term-acyclic h (Some tr)
and ne-iterm: TYPEREP ('a) \neq TYPEREP(i-term)
and ne-iterms: TYPEREP $\left({ }^{\prime} a\right) \neq$ TYPEREP (i-terms)
shows i-term-acyclic (Ref.set r vh) (Some tr)
using acyclic
proof (induction h Some tr
arbitrary: tr
taking: λh tsp. i-terms-acyclic (Ref.set $r v h$) tsp
rule: ITerm.i-term-acyclic-i-terms-acyclic.inducts(1))
case (t-acyclic-step-link h is tr s)
show ?case proof (cases is)
case None
then have Ref.get (Ref.set rvh) tr $=\operatorname{ITerm}(s$, None, IVarD)
using ne-iterm Ref.get-set-neq Ref.noteq-def t-acyclic-step-link.hyps(3) by
metis
then show ?thesis
using i-term-acyclic-i-terms-acyclic.t-acyclic-step-link t-acyclic-nil by blast
next
case (Some isr)
then have Ref.get (Ref.set rvh) tr $=\operatorname{ITerm}$ (s, Some isr, IVarD)
using ne-iterm Ref.get-set-neq Ref.noteq-def t-acyclic-step-link.hyps(3) by
metis
then show ?thesis
using Some i-term-acyclic-i-terms-acyclic.t-acyclic-step-link
t-acyclic-step-link.hyps(2) by blast
qed
next
case (t-acyclic-step-ITerm h tsref tr sf)
then have Ref.get (Ref.set rvh) tr =ITerm (s, None, ITermD (f, tsref))
using ne-iterm Ref.get-set-neq Ref.noteq-def by metis
then show? case
using i-term-acyclic-i-terms-acyclic.t-acyclic-step-ITerm
t-acyclic-step-ITerm.hyps(2) by blast

```
next
    case (ts-acyclic-nil h)
    then show ?case
        using i-term-acyclic-i-terms-acyclic.ts-acyclic-nil by blast
next
    case (ts-acyclic-step-ITerms h tsOref tref tsref)
    then have Ref.get (Ref.set r v h) tsref = ITerms (tref,ts2ref)
        using ne-iterms Ref.get-set-neq Ref.noteq-def by metis
    then show ?case
    using i-term-acyclic-i-terms-acyclic.ts-acyclic-step-ITerms ts-acyclic-step-ITerms.hyps(2)
        ts-acyclic-step-ITerms.hyps(4) by blast
qed
lemma acyclic-heap-change-is-uc:
    fixes tr:: i-term ref
        and r:: i-term ref
        and v:: i-term
        and h:: heap
    assumes acyclic: i-term-acyclic h (Some tr)
        and get-r:Ref.get h r = ITerm(s, is,IVarD)
        and v-val: v = ITerm( s', is,IVarD)
    shows i-term-acyclic (Ref.set r v h) (Some tr)
    using acyclic get-r
proof (induction h Some tr
        arbitrary: tr
        taking: \lambdah tsp. Ref.get hr=ITerm (s,is,IVarD)\longrightarrow l-terms-acyclic (Ref.set
rvh)tsp
        rule: ITerm.i-term-acyclic-i-terms-acyclic.inducts(1))
    case (t-acyclic-step-link h tr-is tr s1)
    then have case-get-r: Ref.get h r=ITerm (s,is,IVarD)
        and get-tr: Ref.get h tr = ITerm (s1, tr-is,IVarD)
        and IH: \tr.tr-is=Some tr \Longrightarrow
            Ref.get h r = ITerm (s, is,IVarD) \Longrightarrow
            i-term-acyclic (Ref.set r v h) (Some tr)
        by blast+
    have \existss0. Ref.get (Ref.set r v h) tr = ITerm (s0,tr-is,IVarD)
    proof (rule case-split)
        assume r = tr
        then show ?thesis using get-tr case-get-r v-val by simp
    next
        assume r\not= tr
        then show ?thesis using get-tr Ref.get-set-neq Ref.unequal by metis
    qed
    moreover have i-term-acyclic (Ref.set r v h) tr-is
        using t-acyclic-nil IH case-get-r
        by (metis option.exhaust-sel)
    ultimately show ?case
        using i-term-acyclic-i-terms-acyclic.t-acyclic-step-link by blast
next
```

```
case (t-acyclic-step-ITerm \(h\) tsref tr s1 f)
then have case-get-r: Ref.get \(h r=I T e r m ~(s, i s, I \operatorname{VarD})\)
    and get-tr: Ref.get \(h\) tr \(=\operatorname{ITerm}(s 1\), None, ITermD \((f, t s r e f))\)
    and get-tsref: i-terms-acyclic (Ref.set r \(v\) h) tsref
    by blast+
    have \(\operatorname{tr} \neq r\)
    using get-tr case-get-r by force
    then have \(\exists s 0\). Ref.get (Ref.set \(r v h)\) tr \(=\operatorname{ITerm}(s 0\), None, ITermD \((f\),
tsref))
    using get-tr by simp
    then show? case
    using i-term-acyclic-i-terms-acyclic.t-acyclic-step-ITerm
            get-tsref by blast
next
    case (ts-acyclic-nil h)
    then show? case
    by (simp add: i-term-acyclic-i-terms-acyclic.ts-acyclic-nil)
next
    case (ts-acyclic-step-ITerms \(h\) ts2ref tref tsref)
    then have get-tsref: Ref.get \(h\) tsref \(=I T e r m s(\) tref, ts2ref)
    and IH1: Ref.get \(h r=\operatorname{ITerm}(s, i s, I V a r D) \Longrightarrow i\)-terms-acyclic (Ref.set \(r v\)
h) \(t s 2 r e f\)
    and IH2: Ref.get \(h r=\operatorname{ITerm}(s\), is, IVarD) \(\Longrightarrow\) i-term-acyclic (Ref.set \(r v\)
h) (Some tref)
    by blast+
    have Ref.get (Ref.set rvh) tsref \(=\) ITerms (tref, ts2ref)
    using get-tsref typerep-term-neq-terms Ref.get-set-neq Ref.noteq-def by metis
    then show ?case
    using i-term-acyclic-i-terms-acyclic.ts-acyclic-step-ITerms
            IH1 IH2 by blast
qed
lemma \(i\)-terms-acyclic-induct [consumes 1,
    case-names ts-acyclic-nil ts-acyclic-step]:
    fixes \(h::\) heap
        and tsp :: i-terms ref option
        and \(P::\) heap \(\Rightarrow\) i-terms ref option \(\Rightarrow\) bool
    assumes acyclic: i-terms-acyclic \(h\) tsp
    and \(\bigwedge h . P h\) None
    and \(\backslash h\) ts 2 ref tref tsref.
        i-terms-acyclic h ts2ref \(\Longrightarrow\)
        Phts2ref \(\Longrightarrow\) i-term-acyclic \(h\) (Some tref) \(\Longrightarrow\)
        Ref.get h tsref \(=\) ITerms (tref, ts2ref) \(\Longrightarrow\)
        Ph (Some tsref)
    shows \(P h\) tsp
    using assms ts-acyclic-nil
    by (induction taking: \(\lambda h\) tp. True rule: \(i\)-term-acyclic-i-terms-acyclic.inducts(2),
blast+)
```

inductive-set i-terms-sublists for $h::$ heap and tsp:: i-terms P where

next:

(Some tsr') \in i-terms-sublists h tsp \Longrightarrow
Ref.get h tsr ${ }^{\prime}=\operatorname{ITerms}(-$, tnext $) \Longrightarrow$
tnext $\in i$-terms-sublists h tsp
self: tsp $\in i$-terms-sublists h tsp
lemma i-terms-sublists-mNone:
fixes h :: heap and tsp:: i-terms P
assumes i-terms-acyclic h tsp
shows None $\in i$-terms-sublists h tsp
using assms
proof (induction rule: i-terms-acyclic-induct)
case (ts-acyclic-nil uy)
then show ?case
by (simp add: i-terms-sublists.intros(2))
next
case (ts-acyclic-step h tnext tref tsref)
have i-terms-acyclic h tnext \Longrightarrow
Ref.get h tsref $=$ ITerms $($ tref, tnext $) \Longrightarrow$
None $\in i$-terms-sublists h (Some tsref)
using ts-acyclic-step.IH i-terms-sublists.intros
by (induction rule: i-terms-sublists.induct, blast+)
then show ?case using ts-acyclic-step by blast
qed
lemma i-terms-sublists-None-om:
fixes h :: heap
shows i-terms-sublists h None $=\{$ None $\}$
proof -
\{
fix $t s p t s 2 p$
have $t s 2 p \in i$-terms-sublists h tsp $\Longrightarrow \exists$ tr. (Some tr) $=t s 2 p \Longrightarrow t s p \neq$ None
by (induction rule: i-terms-sublists.induct, blast+)
\}
then show ?thesis
using i-terms-sublists.intros(2) these-empty-eq by fastforce
qed
lemma i-terms-sublists-subset:
fixes h :: heap
and $t s r$ and $t r$
assumes Ref.get h tsr $=$ ITerms (tr, tsp)
shows i-terms-sublists h tsp $\subseteq i$-terms-sublists h (Some tsr)
proof -
\{
fix $t s 2 p$
have ts $2 p \in i$-terms-sublists h tsp \Longrightarrow ts $2 p \in i$-terms-sublists h (Some tsr)

```
        proof (induction rule: i-terms-sublists.inducts)
            case (next tsr' uu tnext)
            then show ?case using assms
                using i-terms-sublists.intros(1) by blast
        next
            case self
            then show ?case using assms
                using i-terms-sublists.intros(1) i-terms-sublists.intros(2) by blast
    qed
    }
    then show ?thesis by fast
qed
lemma i-terms-sublists-insert:
    fixes h:: heap
        and tsr and tr
    assumes Ref.get h tsr = ITerms (tr,tsp)
    shows i-terms-sublists h (Some tsr) = insert (Some tsr) (i-terms-sublists h tsp)
proof -
    {
        fix ts2p
        have ts2p }\in\mathrm{ i-terms-sublists h(Some tsr) }
                ts2p = Some tsr \vee ts2p \in i-terms-sublists h tsp
    proof (induction rule: i-terms-sublists.inducts)
        case (next tsr' tthis tnext)
        then consider (a)Some tsr' = Some tsr | (b) Some tsr' }\ini\mathrm{ -terms-sublists h
tsp
            by fast
        then show ?case
        proof (cases)
            case a
            then show ?thesis using next assms i-terms-sublists.self by force
        next
            case b
            then show ?thesis using next assms i-terms-sublists.next by blast
        qed
        next
            case self
            then show ?case using assms by blast
        qed
    }
    moreover have Some tsr \in i-terms-sublists h (Some tsr)
        by (simp add: i-terms-sublists.intros(2))
    ultimately show ?thesis
        using assms i-terms-sublists.intros i-terms-sublists-subset by blast
qed
lemma i-terms-sublists-finite:
    fixes h:: heap
```

```
    and tsp:: i-termsP
    assumes i-terms-acyclic h tsp
    shows finite (i-terms-sublists h tsp)
using assms proof (induction rule:i-terms-acyclic-induct)
    case (ts-acyclic-nil h)
    then show ?case using i-terms-sublists-None-om by fastforce
next
    case (ts-acyclic-step h ts2ref tref tsref)
    then show ?case using i-terms-sublists-insert by fastforce
qed
lemma i-terms-sublists-acyclic:
    fixes ts2p:: i-termsP
        and tsp:: i-termsP
        and h:: heap
    assumes acyclic: i-terms-acyclic h tsp
        and ts2p-mem: ts2p \in i-terms-sublists h tsp
    shows i-terms-acyclic h ts2p
    using ts2p-mem acyclic acyclic-terms-terms-simp
    by (induction rule: i-terms-sublists.inducts, blast)
inductive-set i-terms-set for h:: heap and tsp:: i-termsP where
    (Some tsr') \in i-terms-sublists h tsp \Longrightarrow
    Ref.gethtsr'}=ITerms(tp,-)
    tp\ini-terms-set h tsp
lemma i-terms-set-def2:
    fixes h:: heap and tsp:: i-termsP
    shows
    i-terms-set h tsp ={tp.
            \existstsr' tnext. (Some tsr') \in i-terms-sublists h tsp ^ Ref.get h tsr' = ITerms(tp,
tnext)}
    using i-terms-set-def i-terms-setp.simps i-terms-sublistsp-i-terms-sublists-eq by
presburger
lemma i-terms-set-None-empty:
    fixes h:: heap
    shows i-terms-set h None = {}
    using i-terms-sublists-None-om i-terms-set-def2
    by auto
lemma i-terms-set-empty-iff:
    fixes tsp:: i-termsP
        and h:: heap
    shows (i-terms-set h tsp={})=(tsp = None)
proof -
    {
        assume tsp }\not=\mathrm{ None
        then obtain tsr tthisr tsnextp
```

```
            where Some tsr = tsp
            and Ref.get h tsr =ITerms(tthisr, tsnextp)
            by (metis i-terms.exhaust old.prod.exhaust option.exhaust)
        then have tthisr }\ini\mathrm{ -terms-set h tsp
            using i-terms-set.simps i-terms-sublists.self by blast
    then have i-terms-set h tsp }\not={}\mathrm{ by blast
}
    then show ?thesis
    using i-terms-set-None-empty by blast
qed
lemma i-terms-set-insert:
    fixes h:: heap
        and tsr and tr
    assumes Ref.get h tsr = ITerms (tr, tsp)
    shows i-terms-set h (Some tsr) = insert tr (i-terms-set h tsp)
    using assms i-terms-sublists-insert i-terms-set-def2 by auto
lemma i-terms-set-single:
    fixes h:: heap
        and tsr and tr
    assumes Ref.get h tsr = ITerms (tr, None)
    shows i-terms-set h (Some tsr) ={tr}
    using assms i-terms-set-insert i-terms-set-None-empty by simp
lemma i-terms-set-finite:
    fixes h:: heap
        and tsp:: i-termsP
    assumes i-terms-acyclic h tsp
    shows finite (i-terms-set h tsp)
using assms proof (induction rule:i-terms-acyclic-induct)
    case (ts-acyclic-nil h)
    then show ?case
    using i-terms-set-None-empty by simp
next
    case (ts-acyclic-step h ts2ref tref tsref)
    show ?case
        by (simp add: i-terms-set-insert ts-acyclic-step.IH ts-acyclic-step.hyps(3))
qed
lemma i-term-acyclic-induct [consumes 1, case-names nil var link args]:
    fixes h:: heap
        and tp:: i-term ref option
        and P:: heap }=>\mathrm{ i-term ref option }=>\mathrm{ bool
    assumes acyclic: i-term-acyclic h tp
        and nil-case: }\Lambdah.Ph\mathrm{ None
        and var-case: \htr s.
            Ref.get h tr = ITerm(s, None, IVarD) \Longrightarrow
            Ph(Some tr)
```

```
    and link-case: \htr isr s.
        Ph(Some isr) \Longrightarrow
    Ref.get h tr = ITerm(s, Some isr, IVarD) \Longrightarrow
    Ph (Some tr)
    and args-case: \htr tsp sf.
        (\forall tr2 \in i-terms-set h tsp. P h (Some tr2)) \Longrightarrow
        i-terms-acyclic h tsp \Longrightarrow
        Ref.get h tr = ITerm(s,None, ITermD (f,tsp))\Longrightarrow
        Ph(Some tr)
    shows Phtp
    using acyclic
proof (induction h tp
    taking: \lambdah tp.}\forall\mathrm{ tr2G i-terms-set h tp. Ph(Some tr2)
    rule: i-term-acyclic-i-terms-acyclic.inducts(1))
case (t-acyclic-nil h)
    then show ?case by (fact nil-case)
next
    case (t-acyclic-step-link h t tref uv)
    then show ?case using var-case link-case
        by (metis not-None-eq)
next
    case (t-acyclic-step-ITerm h tsref tref uw ux)
    then show ?case using args-case by blast
next
    case (ts-acyclic-nil h)
    then show ?case using i-terms-set-None-empty by blast
next
    case (ts-acyclic-step-ITerms h tsOref tref tsref)
    then show ?case using i-terms-set-insert by fast
qed
lemma i-term-acyclic-induct' [consumes 1, case-names var link args]:
    fixes h:: heap
        and tr:: i-term ref
        and P:: heap }=>\mathrm{ i-term ref }=>\mathrm{ bool
    assumes acyclic: i-term-acyclic h (Some tr)
    and var-case: \htr s.
        Ref.get h tr = ITerm(s,None,IVarD) \Longrightarrow
        Phtr
    and link-case: \htr isr s.
            Ph isr \Longrightarrow
            Ref.get h tr = ITerm(s, Some isr,IVarD) \Longrightarrow
            Phtr
    and args-case: \htrtsp sf.
                (\foralltr2 \in i-terms-set h tsp.P h tr2) \Longrightarrow
                i-terms-acyclic h tsp \Longrightarrow
                Ref.get h tr = ITerm(s,None,ITermD (f,tsp))\Longrightarrow
                    Phtr
    shows Phtr
```

```
proof -
    {
        fix tp
    have i-term-acyclic h tp \Longrightarrowtp=Some tr \LongrightarrowPhtr
    proof (induction h tp arbitrary:tr rule: i-term-acyclic-induct)
        case (nil h)
        then show ?case by fast
        next
            case (varhtr s)
            then show ?case using var-case by blast
        next
            case (link h tr s isr d)
            then show ?case using link-case by fast
        next
            case (args h tr tsp s f)
            then show ?case using args-case by fast
        qed
    }
    then show ?thesis
        by (simp add: acyclic)
qed
lemma i-terms-set-acyclic:
    fixes tr:: i-term ref
        and tsp:: i-termsP
        and s:: nat
        and h:: heap
    assumes acyclic: i-terms-acyclic h tsp
        and tr-mem: tr \in i-terms-set h tsp
    shows i-term-acyclic h (Some tr)
    using tr-mem proof (cases rule: i-terms-set.cases)
    case (1 tsr' tsnext)
    then have *: Some tsr' }\ini\mathrm{ -terms-sublists h tsp
        and **:Ref.get htsr' = ITerms (tr, tsnext)
        by blast+
    from * have i-terms-acyclic h (Some tsr')
    using acyclic i-terms-sublists-acyclic by blast
    then consider
    (a)Some tsr' = None |
    (b) tref tsref where
    Some tsr' = Some tsref and
    i-term-acyclic h (Some tref) and
    Ref.get h tsref = ITerms (tref,None)
    (c) ts2ref tref tsref where
    Some tsr' = Some tsref and
    i-terms-acyclic h ts2ref and
    i-term-acyclic h (Some tref) and
    Ref.get h tsref = ITerms (tref, ts2ref)
    using i-terms-acyclic.simps[of h Some tsr\ by blast
```

```
    then show ?thesis
    proof (cases)
    case a
    then show?thesis by simp
    next
        case b
        then show ?thesis using ** by simp
    next
        case c
        then have Some tsr' = Some tsref
        and i-term-acyclic h (Some tref)
        and Ref.get h tsref = ITerms (tref,ts2ref)
        by blast+
    then show ?thesis using ** by simp
    qed
qed
inductive-set i-term-closure for h:: heap and tp:: i-termP where
    Some tr = tp \Longrightarrowtr \in i-term-closure h tp |
    tr \in i-term-closure h tp \Longrightarrow
        Ref.get h tr = ITerm(-, Some is, -) \Longrightarrow
        is \in i-term-closure h tp |
    tr}\ini\mathrm{ -term-closure h tp }
    Ref.get h tr = ITerm(-, None, ITermD(-, tsp)) \Longrightarrow
    tr2 \in i-terms-set h tsp \Longrightarrow
    tr2 \in i-term-closure h tp
abbreviation \(i\)-term-closures where
    i-term-closures h trs \equivUNION (Some'trs)(i-term-closure h)
abbreviation i-terms-closure where
    i-terms-closure h tsp \equivi-term-closures h (i-terms-set h tsp)
abbreviation i-term-sublists where
    i-term-sublists h tr \equivi-terms-sublists h (get-ITerm-args (Ref.get h tr))
abbreviation i-term-closure-sublists where
    i-term-closure-sublists h tp \equiv(\bigcup tr'}\mathbf{\prime}\mathrm{ i-term-closure h tp. i-term-sublists h tr')
abbreviation i-terms-closure-sublists where
    i-terms-closure-sublists h tsp \equivi-terms-sublists h tsp \cup(\bigcuptr\ini-terms-closure h
tsp. i-term-sublists h tr)
lemma i-term-closure-None:
    fixes h:: heap
    shows i-term-closure h None = {}
proof -
    {
        fix tp tr
```

```
    have tr \in i-term-closure h tp \Longrightarrowtp=None \Longrightarrow False
            by (cases rule: i-term-closure.induct,blast+)
    }
    then show ?thesis by auto
qed
lemma i-term-closure-var:
    fixes tr:: i-term ref
        and s:: nat
        and h:: heap
    assumes Ref.get h tr = ITerm (s,None,IVarD)
    shows i-term-closure h (Some tr) ={tr}
proof -
    {
        fix tp tr x
        have }x\ini\mathrm{ -term-closure h tp }
            tp=Some tr \Longrightarrow Ref.get h tr = ITerm (s,None,IVarD) \Longrightarrowx=tr
            by (induction rule: i-term-closure.induct, fastforce+)
    }
    then show ?thesis using assms
        using i-term-closure.intros(1) by blast
qed
lemma i-term-closure-link:
    fixes tr:: i-term ref
        and isr:: i-term ref
        and d:: i-term-d
        and s:: nat
        and h:: heap
    assumes Ref.get h tr = ITerm (s,Some isr,d)
    shows i-term-closure h (Some tr) = insert tr (i-term-closure h (Some isr))
proof -
    {
        fix tp }
        have x\ini-term-closure h tp \Longrightarrow
            tp=Some tr \Longrightarrow
            Ref.get h tr = ITerm (s, Some isr, d) \Longrightarrow
            x=tr\veex\ini-term-closure h (Some isr)
    proof (induction rule: i-term-closure.induct)
            case (1 tr)
            then show ?case by blast
        next
            case (2 tr' s' is uv)
            then show ?case
            proof (cases tr' = tr)
                    case True
            then show ?thesis using 2 by (simp add: i-term-closure.intros(1))
        next
            case False
```

```
            then show ?thesis using 2 i-term-closure.intros(2) by blast
        qed
    next
        case (3tr' s'f tsp tr2)
        then have tr \not=tr' by fastforce
        then show ?case using 3 i-term-closure.intros(3) by blast
    qed
}
moreover {
    fix }
    assume x insert tr (i-term-closure h (Some isr))
    then consider (a) x =tr|(b) x it-term-closure h (Some isr)
        by blast
    then have }x\ini\mathrm{ -term-closure h(Some tr)
    proof (cases)
        case a
        then show ?thesis using i-term-closure.intros(1) by blast
    next
        case b
        then show ?thesis proof (induction rule: i-term-closure.induct)
            case (1 x)
            then show ?case
                using assms i-term-closure.intros(1) i-term-closure.intros(2) by blast
        next
            case (2 x s' is d)
            then show ?case
                using i-term-closure.intros(2) by blast
        next
            case (3 x s' f tsp tr2)
            then show ?case
                using i-term-closure.intros(3) by blast
        qed
    qed
}
ultimately show ?thesis using assms by fast
qed
lemma i-term-closure-args:
    fixes tr:: i-term ref
        and tsp:: i-termsP
        and isr:: i-term ref
        and f:: string
        and s:: nat
        and h:: heap
    assumes Ref.get h tr = ITerm(s,None, ITermD(f,tsp))
    shows i-term-closure h (Some tr) = insert tr (i-terms-closure h tsp)
proof -
    {
    fix tpx
```

```
    have x i i-term-closure h tp \Longrightarrow
        tp=Some tr \Longrightarrow
        Ref.get h tr = ITerm (s,None, ITermD(f,tsp))\Longrightarrow
        x =tr\vee (\exists t2r \in i-terms-set h tsp. x \in i-term-closure h (Some t2r))
    proof (induction rule: i-term-closure.induct)
        case (1 tr)
        then show ?case by blast
    next
        case (2 tr' s' is uv)
        then show ?case
        proof (cases tr' = tr)
            case True
            then show ?thesis using 2 by (simp add: i-term-closure.intros(1))
        next
            case False
            then show ?thesis using 2 i-term-closure.intros(2) by blast
        qed
    next
        case (3tr' s'ftsp tr2)
        then have \tr''.tr2 \ini-term-closure h tr '' }\vee tr' & i-term-closure h tr ''
        using i-term-closure.intros(3) by blast
        then show ?case using 3 i-term-closure.intros(1) by fastforce
    qed
}
then have i-term-closure h(Some tr)\subseteqinsert tr (i-terms-closure h tsp)
    by (simp add: assms subsetI)
moreover {
    fix }
    assume }x\in\mathrm{ insert tr (i-terms-closure h tsp)
    then consider (a)x=tr|(b)\existst2r\ini-terms-set h tsp. x fi-term-closure h
(Some t2r)
    by blast
    then have }x\ini\mathrm{ -term-closure h(Some tr)
    proof (cases)
        case a
        then show ?thesis using i-term-closure.intros(1) by blast
    next
        case b
        then obtain t2r where t2r < i-terms-set h tsp }\wedgex\ini\mathrm{ -term-closure h (Some
t2r)
            by blast
    moreover have x\in i-term-closure h (Some t2r)\Longrightarrow
        t2r 
        x\ini-term-closure h (Some tr)
    proof (induction rule: i-term-closure.induct)
        case (1 x)
        then show ?case
            using assms i-term-closure.intros(1) i-term-closure.intros(3) by fast
    next
```

```
            case (2 x s' is d)
            then show ?case
            using i-term-closure.intros(2) by blast
        next
            case (3 x s ' f tsp tr2)
            then show ?case
            using i-term-closure.intros(3) by blast
        qed
        ultimately show ?thesis by blast
        qed
    }
then have insert tr (i-terms-closure h tsp)\subseteqi-term-closure h (Some tr) by blast
ultimately show ?thesis by blast
qed
lemma i-terms-closure-terms:
    assumes Ref.get h tsr = ITerms(tthisr, tsnextp)
    shows i-terms-closure h (Some tsr) =
    (i-term-closure h (Some tthisr)) \cup (i-terms-closure h tsnextp)
    by (simp add: assms i-terms-set-insert)
lemma i-term-closure-sublists-terms:
    assumes Ref.get h tsr = ITerms(tthisr, tsnextp)
    shows i-terms-closure-sublists h (Some tsr) =
        insert (Some tsr) (i-term-closure-sublists h (Some tthisr) U
        i-terms-closure-sublists h tsnextp)
proof (intro Set.equalityI subsetI)
    fix tsp'
    assume tsp' }\ini\mathrm{ -terms-closure-sublists }h\mathrm{ (Some tsr)
    then consider (a) tsp'}\mp@subsup{}{}{\prime}\ini\mathrm{ -terms-sublists h (Some tsr)
            (b) tsp' }\in(\bigcup\mathrm{ tr 
    by blast
    then show
            tsp' \in insert (Some tsr) (i-term-closure-sublists h (Some tthisr) \cup
                i-terms-closure-sublists h tsnextp)
    proof (cases)
        case a
        then show ?thesis
            using assms i-terms-sublists-insert by fast
    next
        case b
        then show ?thesis
            using assms i-terms-closure-terms by fastforce
    qed
next
    show }\x\mathrm{ .
        x\in insert (Some tsr) (i-term-closure-sublists h (Some tthisr) \cup
            i-terms-closure-sublists h tsnextp) \Longrightarrow
        x}\ini\mathrm{ i-terms-closure-sublists h (Some tsr)
```

using assms i-terms-closure-terms i-terms-sublists-insert by force qed
lemma i-terms-sublists-some $E[$ elim] $]$:
assumes tsr-sublist-tr: Some tsr $\in i$-term-sublists h tr obtains $s f$ is tspo
where Ref.get h tr $=\operatorname{ITerm}(s$, is, ITermD $(f$, tsp 0$))$ and Some tsr $\in i$-terms-sublists h tsp0
proof -
obtain s is d where
t1: Ref.get h tr $=\operatorname{ITerm}(s, i s, d)$
using get-stamp.cases by blast
have t2: get-ITerm-args (Ref.get h tr) \neq None
using i-terms-sublists-None-om tsr-sublist-tr by force
with $t 1$ obtain $f t s p 0$ where $t 3: d=I \operatorname{TermD}(f, \operatorname{tsp} 0)$
using tsr-sublist-tr get-ITerm-args-iff-ex by force
have get-ITerm-args (Ref.get h tr) $=t s p 0$
by (simp add: get-ITerm-args-iff-ex t1 t3)
then have Some tsr $\in i$-terms-sublists h tsp0
using tsr-sublist-tr by blast
with $t 1$ t3 that show ?thesis by presburger
qed
lemma i-term-closure-finite:
fixes $t p:: i$-term P
and $h::$ heap
assumes i-term-acyclic h tp
shows finite (i-term-closure h tp)
using assms proof (induction rule: i-term-acyclic-induct)
case (nil h)
then show?case using i-term-closure-None by simp
next
case (varhtr s)
then show? ?ase using i-term-closure-var by force
next
case (link htr sisr)
then show ?case using i-term-closure-link by force
next
case (args h tr tsp sf)
then show? case using i-term-closure-args i-terms-set-finite by force qed
lemma i-term-closure-acyclic:
fixes $t p:: i$-term P
and $t 2 r:: i$-term ref
and $h::$ heap
assumes acyclic: i-term-acyclic h tp
and t2r-mem: t2r $\in i$-term-closure h tp
shows i-term-acyclic h (Some t2r)
using acyclic t2r-mem acyclic
proof (induction rule: i-term-acyclic-induct)
case (nil h)
then show ?case using i-term-closure-None by simp
next
case (varhtr s)
then show? case
using i-term-closure-var t-acyclic-nil t-acyclic-step-link by fast
next
case (link h tr sisr)
then show? ?ase
using i-term-closure-link acyclic-term-link-simp by fast
next
case (argshtr tsp sf)
then consider
(a) $t 2 r=t r \mid$
(b) t2r0 where $t 2 r 0 \in i$-terms-set h tsp \wedge t2r \in i-term-closure h (Some t2r0)
using i-term-closure-args by blast
then show ?case proof (cases)
case a
then show ?thesis
by (simp add: args.prems(2))
next
case b
then have i-term-acyclic h (Some t2r0)
using i-terms-set-acyclic args.hyps(1) by blast
then show ?thesis using args.IH b by blast
qed
qed
lemma i-term-acyclic-closure-induct [consumes 1, case-names in-closure]:
fixes $h:$: heap
and $t p:: i$-term P
and $P::$ heap \Rightarrow i-term $P \Rightarrow$ bool
assumes acyclic: i-term-acyclic h tp
and step:
$\wedge h t p$.
$\wedge t 2 r$.
t2r \in i-term-closure h tp \Longrightarrow
Some t2r $\neq t p \Longrightarrow$
$P h($ Some t2r $)) \Longrightarrow$
Phtp
shows $P h t p$
proof -
have \wedge t2r. t2r $\in i$-term-closure $h t p \Longrightarrow P h$ (Some t2r)
using acyclic proof (induction h tp rule: i-term-acyclic-induct)
case (nil h)
then show? case
using i-term-closure-None by simp
next
case (varhtr s)
then show? case
using i-term-closure-var step by fastforce
next
case (link htr isr s)
then consider $(a) t 2 r=t r \mid(b) t 2 r \in i$-term-closure h (Some isr)
using i-term-closure-link by blast
then show ?case proof (cases)
case a
then show ?thesis using i-term-closure-link step link.IH link.hyps by (metis insertE)
next
case b
then show ?thesis
using link.IH by blast
qed
next
case (args h tr tsp sf)
then consider
(a) $t 2 r=t r \mid$
(b) t2r0 where t2r0 $\in i$-terms-set h tsp \wedge t2r $\in i$-term-closure h (Some t2r0)
using i-term-closure-args by blast
then show ?case proof (cases)
case a
then have $\wedge t 2 r$.
t2r $\in i$-term-closure h (Some tr) \Longrightarrow
Some t2r \neq Some tr \Longrightarrow
Ph(Some t2r)
using args.IH args.hyps(2) i-term-closure-args by fast
then show ?thesis using a step by blast
next
case b
then show ?thesis using args.IH by blast
qed
qed
then show ?thesis
using step by blast
qed
lemma i-term-acyclic-closure-inductc [consumes 1, case-names nil var link args]:
fixes h :: heap
and $t p:: i$-term P
and $P::$ heap \Rightarrow i-term $P \Rightarrow$ bool
assumes acyclic: i-term-acyclic h tp and nil-case: $\bigwedge h$. P h None
and var-case: $\bigwedge h$ tr s.
Ref.get h tr $=\operatorname{ITerm}(s$, None, $\operatorname{IVarD}) \Longrightarrow$ Ph (Some tr)
and link-case: $\bigwedge h$ tr isr s.
$(\bigwedge$ t2r. t2r $\in i$-term-closure $h($ Some isr $) \Longrightarrow P h($ Some t2r $)) \Longrightarrow$
Ref.get h tr $=\operatorname{ITerm}(s$, Some isr, IVarD $) \Longrightarrow$
Ph(Some tr)
and args-case: $\bigwedge h t r$ tsp sf.
(\bigwedge t2r0 t2r.
t2r $\in i$-term-closure h (Some t2r0) \Longrightarrow t2r0 $\in i$-terms-set h tsp \Longrightarrow Ph(Some t2r $)=\Longrightarrow$
Ref.get h tr $=\operatorname{ITerm}(s$, None, $\operatorname{ITermD}(f, t s p)) \Longrightarrow$ Ph (Some tr)
shows $P h t p$
proof -
have $\bigwedge t 2 r . t 2 r \in i$-term-closure $h t p \Longrightarrow P h$ (Some t2r)
using acyclic proof (induction h tp rule: i-term-acyclic-induct)
case (nil h)
then show ?case using i-term-closure-None by simp
next
case (varhtr s)
then show? case using i-term-closure-var var-case by fast
next
case (link htr isr s)
then consider (a)t2r $=$ tr $\mid(b)$ t2r $\in i$-term-closure h (Some isr)
using i-term-closure-link by blast
then show ?case proof (cases)
case a
then show ?thesis
using link.IH link.hyps link-case by blast
next
case b
then show ?thesis
using link.IH by blast
qed
next
case (args h tr tsp sf)
then consider
(a) $t 2 r=t r \mid$
(b) t2r0 where t2r0 $\in i$-terms-set h tsp \wedge t2r $\in i$-term-closure h (Some t2r0)
using i-term-closure-args by blast
then show ?case proof (cases)
case a
then have $\wedge t 2 r$.
t2r $\in i$-term-closure h (Some tr) \Longrightarrow
Some t2r \neq Some tr \Longrightarrow
Ph(Some t2r)
using args.IH args.hyps(2) i-term-closure-args by fast

```
        then show ?thesis
            using a args.IH args.hyps(2) args-case by blast
        next
            case b
            then show ?thesis
            using args.IH by blast
        qed
    qed
    then show ?thesis using acyclic nil-case i-term-closure.intros(1)
    by (metis not-None-eq)
qed
lemma i-term-acyclic-closure-inductc' [consumes 1, case-names var link args]:
    fixes h:: heap
        and tr:: i-term ref
        and P:: heap }=>\mathrm{ i-term ref }=>\mathrm{ bool
    assumes acyclic: i-term-acyclic h (Some tr)
        and var-case: \bigwedgehtr s.
            Ref.get h tr = ITerm(s,None, IVarD) \Longrightarrow
            Phtr
    and link-case: \htr isr s.
            (\t2r.t2r }\in\mathrm{ i-term-closure h (Some isr) >Pht2r) >
            Ref.get h tr = ITerm(s, Some isr,IVarD) \Longrightarrow
            Phtr
    and args-case: \htr tsp sf.
            (\t2r0 t2r.
                t2r }\in\mathrm{ i-term-closure h (Some t2r0) }
                t2r0 \in i-terms-set h tsp \Longrightarrow
                Pht2r)\Longrightarrow
            Ref.get h tr = ITerm(s,None, ITermD (f,tsp))\Longrightarrow
            Phtr
    shows Phtr
    using assms
    by (induction h (Some tr) arbitrary: tr rule: i-term-acyclic-closure-inductc) blast+
lemma i-term-closure-link-same-cyclic:
    fixes tr :: i-term ref
        and isr :: i-term ref
        and d :: i-term-d
        and s :: nat
        and h :: heap
    assumes Ref.get h tr = ITerm(s,Some isr,d)
        and tr i i-term-closure h (Some isr)
    shows }\negi\mathrm{ -term-acyclic h (Some tr)
proof -
    have i-term-acyclic h (Some tr)\Longrightarrow
        Ref.get htr = ITerm(s, Some isr, d)\Longrightarrow
        tr }\in\mathrm{ i-term-closure h (Some isr) }
        False
```

```
    by (induction rule: i-term-acyclic-closure-inductc)
        (simp, fastforce, force)
    then show ?thesis using assms by blast
qed
lemma i-term-closure-args-same-cyclic:
    fixes tr :: i-term ref
        and tsp :: i-terms ref option
        and f :: string
        and s :: nat
        and h:: heap
    assumes Ref.get h tr = ITerm(s,None, ITermD(f,tsp))
        and \existst2r \in i-terms-set h tsp.tr }\ini\mathrm{ -term-closure h (Some t2r)
    shows \negi-term-acyclic h(Some tr)
proof -
    have i-term-acyclic h (Some tr)\Longrightarrow
        Ref.get h tr = ITerm(s,None, ITermD (f,tsp))\Longrightarrow
        \existst2r \in i-terms-set h tsp.tr \in i-term-closure h(Some t2r)\Longrightarrow
        False
        by (induction rule: i-term-acyclic-closure-inductc')
            (simp, force, auto)
    then show ?thesis using assms by blast
qed
lemma i-term-closure-trans:
    fixes tr0:: i-term ref
        and tr1:: i-term ref
        and tr2:: i-term ref
        and h:: heap
    assumes tr1-mem: tr1 \in i-term-closure h (Some tr0)
        and tr2-mem: tr2 \in i-term-closure h (Some tr1)
    shows tr2 \in i-term-closure h (Some tr0)
using tr1-mem tr2-mem proof (induction tr1 rule: i-term-closure.induct)
case (1 tr)
    then show?case by simp
next
    case (2 tr uu is uv)
    then show ?case
        using i-term-closure-link by blast
next
    case (3 tr uw ux tsp tr2)
    then show ?case
        using i-term-closure-args by fast
qed
definition is-closed where
    is-closed h trs = (i-term-closures h trs = trs)
lemma i-term-closures-idem:
```

i-term-closures $h(i$-term-closures h trs $)=i$-term-closures h trs proof -
have i-term-closures h (i-term-closures h trs) $\supseteq i$-term-closures h trs using i-term-closure.intros(1) by fastforce

moreover \{

fix $t r$
assume tr $\in i$-term-closures h (i-term-closures h trs)
then obtain tr0
where $\operatorname{tr} \in i$-term-closure h (Some tr0)
and tr0-mem: tr0 $\in i$-term-closures h trs
by fast
then have $t r \in i$-term-closures h trs
proof (induction tr rule: i-term-closure.induct)
case (1 tr)
then show ?case
by blast
next
case (2 tr uu is uv)
then show? case
by (metis UN-iff i-term-closure.intros(2))
next
case (3 tr uw ux tsp tr2)
then show? case
by (metis (full-types) UN-iff trO-mem i-term-closure.intros(3))
qed
\}
ultimately show ?thesis by fastforce
qed
lemma i-terms-closure-is-closed:
shows is-closed h (i-terms-closure h tsp)
by (meson i-term-closures-idem is-closed-def)
lemma i-term-closure-is-closed:
shows is-closed h (i-term-closure h tp)
proof (cases tp)
case None
then show ?thesis unfolding is-closed-def
by (simp add: i-term-closure-None)
next
case (Some tr)
have i-term-closure h (Some tr) $=i$-term-closures $h\{t r\}$
by simp
then show ?thesis unfolding is-closed-def
using i-term-closures-idem Some by presburger
qed
definition i-term-closure- v where
i-term-closure-v htp=Ref.get h ' i-term-closure h tp

```
inductive-set
    i-term-chain for h:: heap and tr:: i-term ref where
    link:
        tr'}\ini\mathrm{ -term-chain h tr }
    Ref.get htr' = ITerm(s, Some tnextr, d) \Longrightarrow
        tnextr \in i-term-chain h tr |
    self: tr \in i-term-chain h tr
lemma i-term-chain-dest:
    fixes tr:: i-term ref
        and d:: i-term-d
        and s:: nat
        and h:: heap
    assumes Ref.get htr = ITerm(s,None,d)
    shows i-term-chain h tr ={tr}
proof -
    {
        fix }x\mathrm{ assume }x\ini\mathrm{ -term-chain h tr
        then have }x=t
        using assms by (induction rule: i-term-chain.induct, simp+)
    }
    then show ?thesis
        using i-term-chain.self by blast
qed
lemma i-term-chain-link:
    fixes tr:: i-term ref
        and tr0:: i-term ref
        and s:: nat
        and d:: i-term-d
        and h:: heap
    assumes Ref.get h tr = ITerm(s, Some tr0,d)
    shows i-term-chain h tr = insert tr (i-term-chain h tr0)
proof -
    {
        fix }
    assume x f i-term-chain h tr
    then have x\in insert tr (i-term-chain h tr0)
    proof (induction rule: i-term-chain.induct)
            case (link tr's tnextr d)
            show ?case proof (cases tr'=tr)
                case True
                    then show ?thesis
                    using i-term-chain.self assms link.hyps(2) by auto
            next
                case False
                then show ?thesis
                    using i-term-chain.link link.IH link.hyps(2) by blast
```

```
        qed
    next
        case self
        then show ?case by simp
    qed
}
moreover
{
        fix }
        assume x insert tr (i-term-chain h tr0)
        then consider (a)x=tr|(b)x\ini-term-chain h tr0 by blast
        then have x\ini-term-chain h tr
        proof (cases)
        case a
        then show ?thesis
            by (simp add: i-term-chain.self)
    next
        case b
        then show ?thesis
        proof (induction rule: i-term-chain.induct)
            case (link tr' s tnextr d)
            then show ?case
            using i-term-chain.link by blast
        next
            case self
            then show ?case
                using assms i-term-chain.link i-term-chain.self by blast
        qed
    qed
    }
    ultimately show ?thesis by blast
qed
lemma i-term-chain-acyclic:
    fixes tr:: i-term ref
        and tr':: i-term ref
        and h:: heap
    assumes acyclic: i-term-acyclic h (Some tr)
        and tr'-mem:tr' }\ini=i-term-chain h tr
    shows i-term-acyclic h (Some tr')
    using acyclic tr'-mem acyclic
proof (induction rule: i-term-acyclic-induct')
    case (varh tr s)
    then show ?case
        using i-term-chain-dest t-acyclic-nil t-acyclic-step-link by fast
next
    case (link h tr isr s)
    then consider (a)tr'}=tr|(b)t\mp@subsup{r}{}{\prime}\ini-term-chain h isr
        using i-term-chain-link by blast
```

```
    then show ?case
    proof (cases)
    case a
    then show ?thesis using link.prems(2) by simp
    next
    case b
    moreover have i-term-acyclic h (Some isr)
        using link.hyps link.prems(2) acyclic-term-link-simp
        by blast
    ultimately show ?thesis using link.IH by blast
    qed
next
    case (args h tr tsp sf)
    then show ?case
        using i-term-chain-dest t-acyclic-step-ITerm by fast
qed
lemma i-term-chain-subset-closure:
    fixes tr:: i-term ref
        and }h:: hea
    shows i-term-chain h tr \subseteqi-term-closure h (Some tr)
proof (intro subsetI)
    fix tr' assume tr' }\ini\mathrm{ -term-chain h tr
    then show tr '}\ini\mathrm{ -term-closure h (Some tr)
    proof (induction tr' rule: i-term-chain.inducts)
        case (link tr' s tnextr d)
        then show ?case
            using i-term-closure.intros(2) by blast
    next
        case self
        then show ?case
            using i-term-closure.intros(1) by blast
    qed
qed
lemma i-term-chain-linkE:
    assumes chain: tr' \in i-term-chain h tr
        and diff:tr' }=t
    obtains s tnextr d
    where Ref.get h tr = ITerm(s, Some tnextr,d)
        and tr' }\ini\mathrm{ -term-chain h tnextr
using assms proof (atomize-elim, induction rule: i-term-chain.induct)
case (link tr' s tnextr d)
    show ?case
        using i-term-chain.link i-term-chain.self link.IH link.hyps(1) link.hyps(2) by
blast
next
    case self
    then show ?case by blast
```


qed

```
fun \(i\)-maxstamp:: heap \(\Rightarrow\)-term \(P \Rightarrow\) nat where
    \(i\)-maxstamp \(h\) None \(=0\)
| i-maxstamphtp \(=\operatorname{Max}\) (get-stamp' \(i\)-term-closure-v htp)
```

lemma i-maxstamp-is-max:
fixes $t 1 p:$: i-term P
and $t 2 r:: i$-term ref
and $i s:: i$-term P
and $d:: i$-term- d
and $h::$ heap
assumes acyclic: i-term-acyclic h t1p
and t2r-get: Ref.get h t2r $=\operatorname{ITerm}(s, i s, d)$
and t2r-mem: t2r $\in i$-term-closure $h t 1 p$
shows $s \leq i$-maxstamp $h t 1 p$
proof (cases t1p)
case None
then show ?thesis using t2r-mem i-term-closure-None by simp
next
case (Some t1r)
have $\operatorname{ITerm}(s, i s, d) \in i$-term-closure-v h t1p
unfolding i-term-closure-v-def
using t2r-get t2r-mem image-iff by fastforce
then have $s \in$ get-stamp' i-term-closure-v h t1p
by force
moreover have finite (get-stamp' i-term-closure-v h t1p)
by (simp add: acyclic i-term-closure-finite i-term-closure-v-def)
ultimately show ?thesis
by (simp add: Some)
qed
lemma i-maxstamp-closure-trans:
fixes $t 1 p:: i$-term P
and $t 2 r:: ~ i$-term ref
and is:: i-termP
and $d:: i$-term- d
and $h::$ heap
assumes acyclic: i-term-acyclic h t1p
and t2r-mem: $12 r \in i$-term-closure h t1p
shows i-maxstamp $h(S o m e ~ t 2 r) \leq i$-maxstamp h t1p
proof (cases t1p)
case None
then show ?thesis using t2r-mem i-term-closure-None by simp
next
case (Some t1r)
\{
fix s assume $s \in$ get-stamp' i-term-closure-v h (Some t2r)
then have $s \in$ get-stamp' i-term-closure-v h t1p
unfolding i-term-closure-v-def
using i-term-closure-trans Some t2r-mem by blast
\}
then have $*:$ get-stamp ' i-term-closure-v $h($ Some t2r $) \subseteq$ get-stamp ' i-term-closure- v $h t 1 p$
by blast
moreover have finite (get-stamp' i-term-closure-v h t1p)
by (simp add: acyclic i-term-closure-finite i-term-closure- v-def)
ultimately show ?thesis
by (simp add: Some)
(metis Max.antimono empty-iff i-term-closure.intros(1)
i-term-closure-v-def image-is-empty)
qed
definition heap-only-stamp-changed:: i-term ref set \Rightarrow heap \Rightarrow heap \Rightarrow bool where
heap-only-stamp-changed trs $h h^{\prime}=(\forall$ typ x.
heap.refs h typ $x \neq$ heap.refs h^{\prime} typ $x \longrightarrow$
$($ typ $\neq \operatorname{TYPEREP}(i$-term $) \wedge$ typ $\neq \operatorname{TYPEREP}(i$-terms $) \wedge$ typ \neq TYPE$R E P($ nat $)) \vee$
$\left(\exists s s^{\prime}\right.$ is d. typ $=$ TYPEREP $(i$-term $) \wedge$
Ref $x \in$ trs \wedge
from-nat (heap.refs h typ $x)=\operatorname{ITerm}(s, i s, d) \wedge$
from-nat (heap.refs h^{\prime} typ $\left.\left.\left.x\right)=\operatorname{ITerm}\left(s^{\prime}, i s, d\right)\right)\right)$
abbreviation heap-only-stamp-changed-tr where
heap-only-stamp-changed-tr tr $h \equiv$ heap-only-stamp-changed (i-term-closure h
(Some tr)) h
abbreviation heap-only-stamp-changed-ts where
heap-only-stamp-changed-ts tsp $h \equiv$
heap-only-stamp-changed (i-terms-closure h tsp) h
lemma heap-only-stamp-ch-nt:
fixes trs:: i-term ref set
and $r::$ ' $a:$:heap ref
and $v:$: ${ }^{\prime} a:$:heap
and $h::$ heap
assumes TYPEREP $\left({ }^{\prime} a\right) \neq \operatorname{TYPEREP}(i$-term $)$
and TYPEREP ('a) $=$ TYPEREP(i-terms)
and TYPEREP $\left({ }^{\prime} a\right) \neq \operatorname{TYPEREP}(n a t)$
shows heap-only-stamp-changed trs h (Ref.set $r v h$)
unfolding heap-only-stamp-changed-def Ref.set-def using assms by simp
lemma heap-only-stamp-ch-term:
fixes trs:: i-term ref set
and $r:: i$-term ref
and $i s:: i$-term P
and $d:: i$-term- d
and $s::$ nat

```
        and }\mp@subsup{s}{}{\prime}:: na
        and h:: heap
    assumes Ref.get hr=ITerm(s,is,d)
    and}r\intr
    shows heap-only-stamp-changed trs h (Ref.set r (ITerm(s',is,d)) h)
    unfolding heap-only-stamp-changed-def Ref.set-def using assms
    by (simp add: Ref.get-def)
        (metis addr-of-ref.simps addr-of-ref-inj)
lemma heap-only-stamp-ch-get-term:
    fixes trs:: i-term ref set
        and tr:: i-term ref
        and h:: heap
        and }\mp@subsup{h}{}{\prime}:: hea
    assumes heap-only-stamp-changed trs h h'
        and Ref.get h tr = ITerm(s,is,d)
    shows \exists s'. Ref.get h'tr tr ITerm(s', is,d)
proof (rule case-split)
    assume heap.refs h TYPEREP(i-term) (addr-of-ref tr) =
        heap.refs h' TYPEREP(i-term) (addr-of-ref tr)
    then show ?thesis
        using assms[unfolded heap-only-stamp-changed-def]
        by (simp add: Ref.get-def)
next
    assume heap.refs h TYPEREP(i-term) (addr-of-ref tr) }
        heap.refs h' TYPEREP(i-term) (addr-of-ref tr)
    then show ?thesis
        using assms[unfolded heap-only-stamp-changed-def]
        by (simp add: Ref.get-def, fastforce)
qed
lemma heap-only-stamp-ch-get-term':
    fixes trs:: i-term ref set
        and tr:: i-term ref
        and h:: heap
        and h':: heap
    assumes heap-only-stamp-changed trs h h'
        and Ref.get h'tr = ITerm(s,is,d)
    shows \exists s'. Ref.get h tr = ITerm( s', is,d)
proof (rule case-split)
    assume heap.refs h TYPEREP(i-term) (addr-of-ref tr)=
        heap.refs h' TYPEREP(i-term) (addr-of-ref tr)
    then show ?thesis
        using assms[unfolded heap-only-stamp-changed-def]
        by (simp add: Ref.get-def)
next
    assume heap.refs h TYPEREP(i-term) (addr-of-ref tr) \not=
        heap.refs h' TYPEREP(i-term) (addr-of-ref tr)
    then show ?thesis
```

```
    using assms[unfolded heap-only-stamp-changed-def]
    by (simp add: Ref.get-def, fastforce)
qed
lemma heap-only-stamp-ch-get-term-nclos:
    fixes trs:: i-term ref set
        and tr:: i-term ref
        and h:: heap
        and h':: heap
    assumes heap-only-stamp-changed trs h h'
    and tr # trs
    shows Ref.get h'tr = Ref.get h tr
proof -
    {
        assume heap.refs h TYPEREP(i-term) (addr-of-ref tr) }
            heap.refs h' TYPEREP(i-term) (addr-of-ref tr)
        then have tr trs
            using assms[unfolded heap-only-stamp-changed-def]
            by (metis addr-of-ref.simps addr-of-ref-inj)
    }
    then show ?thesis
        by (metis Ref.get-def assms(2) comp-apply)
qed
lemma heap-only-stamp-ch-get-terms:
    fixes trs:: i-term ref set
        and tsr:: i-terms ref
        and h:: heap
        and h':: heap
    assumes heap-only-stamp-changed trs h h'
    shows Ref.get h tsr = Ref.get h'tsr
proof (rule case-split)
    assume heap.refs h TYPEREP(i-terms) (addr-of-ref tsr) =
        heap.refs h' TYPEREP(i-terms) (addr-of-ref tsr)
    then show ?thesis
        using assms[unfolded heap-only-stamp-changed-def]
        by (simp add: Ref.get-def)
next
    assume heap.refs h TYPEREP(i-terms) (addr-of-ref tsr) }
        heap.refs h' TYPEREP(i-terms) (addr-of-ref tsr)
    then show ?thesis
    using assms[unfolded heap-only-stamp-changed-def] typerep-term-neq-terms by
fastforce
qed
lemma heap-only-stamp-ch-get-nat:
    fixes ir:: nat ref
    assumes heap-only-stamp-changed trs h h'
    shows Ref.get h ir = Ref.get h' ir
```

using assms[unfolded heap-only-stamp-changed-def]
by (simp add: Ref.get-def Ref.set-def, metis typerep-term-neq-nat)
lemma heap-only-stamp-ch-sublists:
fixes trs:: i-term ref set and $t r:: i$-term ref and tsp:: i-terms P
and $f::$ string
and $s::$ nat
and $h::$ heap
and $h^{\prime}::$ heap
assumes heap-only-stamp-changed trs $h h^{\prime}$
shows i-terms-sublists h tsp $=i$-terms-sublists h^{\prime} tsp

proof -

\{
fix x
have $x \in i$-terms-sublists h^{\prime} tsp $\Longrightarrow x \in i$-terms-sublists h tsp
proof (induction rule: i-terms-sublists.induct)
case (next tsr' tthis tnext)
then have Ref.get h tsr ${ }^{\prime}=I$ Terms $($ tthis, tnext $)$
using heap-only-stamp-ch-get-terms assms
by presburger
then show?case
using i-terms-sublists.next next.IH next.prems by blast
next
case self
then show?case
using i-terms-sublists.self by blast
qed
\}
moreover
\{
fix x
have $x \in i$-terms-sublists h tsp $\Longrightarrow x \in i$-terms-sublists h^{\prime} tsp
proof (induction rule: i-terms-sublists.induct)
case (next tsr' tthis tnext)
then have Ref.get h^{\prime} tsr ${ }^{\prime}=$ ITerms (tthis, tnext)
using heap-only-stamp-ch-get-terms assms
by simp
then show? ?ase using i-terms-sublists.next next.IH next.prems by blast
next
case self
then show ?case
using i-terms-sublists.self by blast
qed
\}
ultimately show ?thesis
by auto

qed

lemma heap-only-stamp-ch-terms-set:
fixes trs:: i-term ref set and $t r:: i$-term ref and tsp:: i-terms P and $f::$ string
and $s::$ nat
and $h::$ heap and $h^{\prime}:$ heap
assumes heap-only-stamp-changed trs $h h^{\prime}$
shows i-terms-set h tsp $=i$-terms-set h^{\prime} tsp
using assms heap-only-stamp-ch-sublists i-terms-set-def2 heap-only-stamp-ch-get-terms by auto
lemma heap-only-stamp-ch-diff-in-clos:
fixes $\operatorname{tr} 0:: i$-term ref and $\operatorname{tr} 1:: i$-term ref and $h 0::$ heap and $h 1::$ heap
assumes hosc: heap-only-stamp-changed-tr tr0 $h h^{\prime}$ and get-tr1: Ref.get h tr1 \neq Ref.get h^{\prime} tr1
shows tr1 \in i-term-closure h (Some tr0)
using heap-only-stamp-changed-def
proof -
have heap.refs h TYPEREP(i-term) (addr-of-ref tr1) \neq heap.refs h^{\prime} TYPEREP (i-term) (addr-of-ref tr1)
using get-tr1
by (metis Ref.get-def comp-apply)
then have $\operatorname{Ref}(a d d r$-of-ref tr1) $\in i$-term-closure h (Some tr0)
using hosc[unfolded heap-only-stamp-changed-def] by blast
then show ?thesis
by (metis addr-of-ref.simps addr-of-ref-inj)
qed
lemma heap-only-stamp-ch-antimono:
assumes heap-only-stamp-changed trs' $h h^{\prime}$ and $t r s^{\prime} \subseteq$ trs
shows heap-only-stamp-changed trs $h h^{\prime}$
proof -
\{
fix typ x
assume heap.refs h typ $x \neq$ heap.refs h^{\prime} typ x
then consider
(a) $($ typ $\neq \operatorname{TYPEREP}(i$-term $) \wedge$ typ $\neq \operatorname{TYPEREP}(i$-terms $) \wedge t y p \neq T Y P E-$

REP(nat)) |
(b) $s s^{\prime}$ is d where
typ $=$ TYPEREP $(i$-term $) \wedge$
Ref $x \in$ trs $^{\prime} \wedge$

```
                from-nat (heap.refs h typ x)= ITerm(s, is,d) ^
                from-nat (heap.refs h'typ x)=ITerm( s', is,d)
        using assms[unfolded heap-only-stamp-changed-def]
        by blast
    then have (typ f= TYPEREP(i-term) ^ typ # TYPEREP(i-terms) ^ typ \not=
TYPEREP(nat)) \vee
            (\existss s}\mp@subsup{s}{}{\prime}\mathrm{ is d. typ = TYPEREP(i-term)}
            Ref x trs }
            from-nat (heap.refs h typ x) = ITerm(s,is,d)^
            from-nat (heap.refs h'typ x) = ITerm(s',is,d))
    proof (cases)
    case a
        then show ?thesis by blast
    next
        case b
        then show ?thesis
            using assms(2) i-term-closure-trans by blast
    qed
}
then show ?thesis
    using heap-only-stamp-changed-def by blast
qed
lemma heap-only-stamp-ch-closantimono:
    assumes heap-only-stamp-changed-tr tr' h h'
    and tr' \in i-term-closure h (Some tr)
    shows heap-only-stamp-changed-tr tr h h'
    using assms heap-only-stamp-ch-antimono i-term-closure-trans by blast
lemma heap-only-stamp-ch-closure:
    assumes heap-only-stamp-changed trs h h'
    shows i-term-closure h' (Some tr) = i-term-closure h (Some tr)
proof -
    {
        fix }
        have x\ini-term-closure h' (Some tr) \Longrightarrowx\ini-term-closure h(Some tr)
        proof (induction rule: i-term-closure.induct)
            case (1tr')
            then show ?case
            by (simp add: i-term-closure.intros(1))
    next
        case (2 tr's is uv)
        then obtain s' where Ref.get h tr'}=\operatorname{ITerm (s', Some is,uv)
                using assms heap-only-stamp-ch-get-term' by blast
        then show ?case
                using 2.IH i-term-closure.intros(2) by blast
    next
        case (3tr's f tsp tr2)
        obtain s' where **: Ref.get htr' = ITerm ( s',None, ITermD (f,tsp))
```

using 3.IH 3.hyps(2) assms heap-only-stamp-ch-get-term' by blast have tr2 $\in i$-terms-set h tsp using heap-only-stamp-ch-terms-set[OF assms] 3.hyps(3) by simp then show? case using ** 3.IH i-term-closure.intros(3) by blast

qed

\}
moreover \{
fix x
have $x \in i$-term-closure h (Some tr) $\Longrightarrow x \in i$-term-closure h^{\prime} (Some tr) proof (induction rule: i-term-closure.induct)
case ($1 t r^{\prime}$)
then show? case
by (simp add: i-term-closure.intros(1))
next
case (2tr's is $u v$)
then obtain s^{\prime} where Ref.get $h^{\prime} t r^{\prime}=\operatorname{ITerm}\left(s^{\prime}\right.$, Some is, $\left.u v\right)$
using assms heap-only-stamp-ch-get-term by blast
then show? case
using 2.IH i-term-closure.intros(2) by blast
next
case (3tr'sftsptr2)
obtain s^{\prime} where $* *$: Ref.get h^{\prime} tr $r^{\prime}=\operatorname{ITerm}\left(s^{\prime}, \operatorname{None,~} \operatorname{ITermD}(f, t s p)\right)$
using 3.IH 3.hyps(2) assms heap-only-stamp-ch-get-term by blast
have tr2 $\in i$-terms-set h^{\prime} tsp
using heap-only-stamp-ch-terms-set[OF assms] 3.hyps(3) by simp
then show? case
using ** 3.IH i-term-closure.intros(3) by blast
qed
\}
ultimately show ?thesis by blast
qed
lemma heap-only-stamp-ch-terms-closure:
assumes heap-only-stamp-changed trs $h h^{\prime}$
shows i-terms-closure h^{\prime} tsp $=i$-terms-closure h tsp
using assms heap-only-stamp-ch-closure heap-only-stamp-ch-terms-set by auto
lemma heap-only-stamp-ch-sym [sym]:
assumes heap-only-stamp-changed trs $h h^{\prime}$
shows heap-only-stamp-changed trs $h^{\prime} h$
using assms unfolding heap-only-stamp-changed-def
by (subst eq-sym-conv, blast)
lemma heap-only-stamp-ch-trans [trans]:
assumes heap-only-stamp-changed trs h0 h1
and heap-only-stamp-changed trs h1 h2
shows heap-only-stamp-changed trs h0 h2
unfolding heap-only-stamp-changed-def

```
proof (intro allI impI)
    fix typ :: typerep
        and x :: nat
    assume *: heap.refs h0 typ x = heap.refs h2 typ x
    show (typ \not= TYPEREP(i-term) ^ typ \not= TYPEREP(i-terms) ^ typ \not= TYPE-
REP(nat)) \vee
        ( }\existss\mp@subsup{s}{}{\prime}\mathrm{ is d.
            typ = TYPEREP(i-term) ^
            Ref x \in trs }
            from-nat (heap.refs h0 typ x) = ITerm(s,is,d) ^
            from-nat (heap.refs h2 typ x) = ITerm(s',is,d))
    proof (rule case-split)
        assume typ \not= TYPEREP(i-term ) ^ typ \not= TYPEREP(i-terms ) ^ typ \not=TYPE-
REP(nat)
            then show ?thesis by simp
    next
        assume **: \neg(typ \not= TYPEREP(i-term) ^ typ = TYPEREP(i-terms) ^ typ \not=
TYPEREP(nat))
        from * consider
            (a) heap.refs h0 typ x = heap.refs h1 typ x 
            (b) heap.refs h0 typ x = heap.refs h1 typ }x\mathrm{ and
                heap.refs h1 typ x = heap.refs h2 typ x
            by fastforce
then show ?thesis
proof (cases)
case a
then obtain s0 s1 is d where
from-nat (heap.refs h0 typ x) = ITerm(s0, is,d) and
from-nat (heap.refs h1 typ x) = ITerm(s1, is,d)
using ** assms(1)[unfolded heap-only-stamp-changed-def] by blast
moreover from this a obtain s2 where
from-nat (heap.refs h1 typ x) = ITerm(s1, is,d) and
from-nat (heap.refs h2 typ x) = ITerm(s2, is, d)
using ** assms(2)[unfolded heap-only-stamp-changed-def]
by (cases heap.refs h1 typ x = heap.refs h2 typ x) fastforce+
ultimately show ?thesis
using a assms(1) heap-only-stamp-changed-def by blast
next
case b
then obtain s1 s2 is d where
                    from-nat (heap.refs h1 typ x) = ITerm(s1,is,d) and
from-nat (heap.refs h2 typ x) = ITerm(s2, is,d)
using ** assms(2)[unfolded heap-only-stamp-changed-def] by blast
moreover from this b obtain s0 where
from-nat (heap.refs h0 typ x) = ITerm(s0, is,d) and
from-nat (heap.refs h1 typ x) = ITerm(s1,is,d)
using ** assms(2)[unfolded heap-only-stamp-changed-def] by fastforce
ultimately show ?thesis
using assms(1) assms(2) b(2) heap-only-stamp-ch-closure heap-only-stamp-changed-def
```

```
        by blast
    qed
    qed
qed
lemma heap-only-stamp-ch-refl:
    shows heap-only-stamp-changed trs h h
    by (simp add: heap-only-stamp-changed-def)
lemma heap-only-stamp-ch-term-terms-acyclic:
    assumes heap-only-stamp-changed trs h h'
    shows (i-term-acyclic h tp \longrightarrow i-term-acyclic h'tp)^
        (i-terms-acyclic h tsp \longrightarrowi-terms-acyclic h'tsp)
proof -
    have (i-term-acyclic h tp \longrightarrow heap-only-stamp-changed trs h h' }\longrightarrow i-term-acyclic
h'tp)}
        (i-terms-acyclic h tsp \longrightarrowheap-only-stamp-changed trs h h' }\longrightarrowi\mathrm{ -terms-acyclic
h'tsp)
    proof (induction rule: i-term-acyclic-i-terms-acyclic.induct)
        case (t-acyclic-nil h)
        then show ?case
            by (simp add: i-term-acyclic-i-terms-acyclic.t-acyclic-nil)
    next
        case (t-acyclic-step-link ht tref s)
        show ?case
        proof (intro impI)
            assume hosc: heap-only-stamp-changed trs h h'
            then obtain }\mp@subsup{s}{}{\prime}\mathrm{ where Ref.get }\mp@subsup{h}{}{\prime}\mathrm{ tref = ITerm ( }\mp@subsup{s}{}{\prime},t,IVarD
                using heap-only-stamp-ch-get-term t-acyclic-step-link.hyps(2) by blast
            then show i-term-acyclic h' (Some tref)
            using hosc i-term-acyclic-i-terms-acyclic.t-acyclic-step-link t-acyclic-step-link.IH
                by blast
        qed
    next
        case (t-acyclic-step-ITerm h tsref tref s f)
        show ?case
        proof (intro impI)
            assume hosc: heap-only-stamp-changed trs h h'
            then obtain s' where Ref.get h' tref = ITerm ( s',None, ITermD (f,tsref))
                using heap-only-stamp-ch-get-term t-acyclic-step-ITerm.hyps(2) by blast
            then show i-term-acyclic h' (Some tref)
            using hosc i-term-acyclic-i-terms-acyclic.t-acyclic-step-ITerm t-acyclic-step-ITerm.IH
                by blast
        qed
    next
        case (ts-acyclic-nil uy)
        then show ?case
            by (simp add: i-term-acyclic-i-terms-acyclic.ts-acyclic-nil)
    next
```

```
    case (ts-acyclic-step-ITerms h ts2ref tref tsref)
    show ?case
    proof (intro impI)
    assume hosc: heap-only-stamp-changed trs h h'
    have Ref.get h' tsref =ITerms (tref, ts2ref)
        using heap-only-stamp-ch-get-terms hosc ts-acyclic-step-ITerms.hyps(3) by
auto
            then show i-terms-acyclic h' (Some tsref)
                using hosc i-term-acyclic-i-terms-acyclic.ts-acyclic-step-ITerms
                ts-acyclic-step-ITerms.IH by blast
    qed
    qed
    then show ?thesis using assms by blast
qed
lemma heap-only-stamp-ch-term-acyclic:
    assumes i-term-acyclic h tp
    and heap-only-stamp-changed trs h h'
    shows i-term-acyclic h' tp
    using assms heap-only-stamp-ch-term-terms-acyclic by blast
lemma heap-only-stamp-ch-terms-acyclic:
    assumes i-terms-acyclic h tsp
    and heap-only-stamp-changed trs h h'
    shows i-terms-acyclic h'tsp
    using assms heap-only-stamp-ch-term-terms-acyclic by blast
lemma heap-only-stamp-ch-terms-set-antimono:
    assumes hosc: heap-only-stamp-changed-tr tr' h h'
    and Ref.get h tr = ITerm(s,None,ITermD(f,tsp))
    and tr'}\ini\mathrm{ -terms-set h tsp
    shows heap-only-stamp-changed-tr tr h h'
unfolding heap-only-stamp-changed-def
proof (intro allI impI)
    fix typ }
    assume refs h typ x}=\mathrm{ refs h' typ x
    then consider
        (a) typ\not= TYPEREP(i-term) ^ typ \not= TYPEREP(i-terms) ^ typ \not= TYPE-
REP(nat) |
    (b) s s't is d where typ = TYPEREP(i-term) and
                Ref x it-term-closure h (Some tr ') and
        from-nat (refs h typ x) = ITerm (s,is,d) and
        from-nat (refs h' typ x) = ITerm ( s', is,d)
    using hosc[unfolded heap-only-stamp-changed-def] by blast
    then show typ \not= TYPEREP(i-term) ^ typ = TYPEREP(i-terms) ^ typ \not=
TYPEREP(nat) \vee
    ( }\existss\mp@subsup{s}{}{\prime}\mathrm{ is d.
    typ = TYPEREP(i-term) ^
    Ref x i i-term-closure h (Some tr) ^
```

```
        from-nat (refs h typ x) = ITerm (s,is,d)^
        from-nat (refs h'typ x)=ITerm (s',is,d))
    proof (cases)
        case a
        then show?thesis by simp
    next
        case b
        then show ?thesis using assms[unfolded heap-only-stamp-changed-def]
        by (meson i-term-closure.intros(1) i-term-closure.intros(3) i-term-closure-trans)
    qed
qed
lemma heap-only-stamp-ch-tr-sym [sym]:
    assumes heap-only-stamp-changed-tr tr h h'
    shows heap-only-stamp-changed-tr tr h' h
    using assms heap-only-stamp-ch-closure heap-only-stamp-ch-sym by presburger
lemma heap-only-stamp-ch-ts-sym [sym]:
    assumes heap-only-stamp-changed-ts tsp h h'
    shows heap-only-stamp-changed-ts tsp h' h
    using assms heap-only-stamp-ch-sym heap-only-stamp-ch-terms-closure by presburger
lemma heap-only-stamp-ch-tr-trans [trans]:
    assumes heap-only-stamp-changed-tr tr h0 h1
        and heap-only-stamp-changed-tr tr h1 h2
    shows heap-only-stamp-changed-tr tr h0 h2
    by (metis (no-types) assms heap-only-stamp-ch-closure heap-only-stamp-ch-trans)
lemma heap-only-stamp-ch-ts-trans [trans]:
    assumes heap-only-stamp-changed-ts tsp h0 h1
        and heap-only-stamp-changed-ts tsp h1 h2
    shows heap-only-stamp-changed-ts tsp h0 h2
    by (metis (no-types, lifting) assms heap-only-stamp-ch-terms-closure
        heap-only-stamp-ch-trans)
definition heap-only-nonterm-changed where
    heap-only-nonterm-changed h h'}=(\forall\mathrm{ typ x.
        heap.refs h typ x\not= heap.refs h' typ x \longrightarrow
        (typ = TYPEREP(i-term) ^ typ = TYPEREP(i-terms)))
lemma heap-only-nonterm-chI:
    fixes r::'a::heap ref
        assumes TYPEREP('a) \not= TYPEREP(i-term) ^ TYPEREP('a) \not= TYPE-
REP(i-terms)
    shows heap-only-nonterm-changed h(Ref.set r v h)
    unfolding heap-only-nonterm-changed-def using assms
    by (simp add: Ref.set-def)
lemma heap-only-nonterm-ch-get:
```

```
    fixes r::'a::heap ref
    assumes hosc: heap-only-nonterm-changed h h'
        and nt: TYPEREP('a) = TYPEREP(i-term) \vee TYPEREP('a) = TYPE-
REP(i-terms)
    shows Ref.get hr = Ref.get h'r
    unfolding Ref.get-def comp-def
    using hosc[unfolded heap-only-nonterm-changed-def, rule-format,
        of TYPEREP('a) addr-of-ref r] nt by fastforce
```


lemmas

```
heap-only-nonterm-ch-get-term =
heap-only-nonterm-ch-get[of - -tr, OF - refl[THEN disjI1]] and
heap-only-nonterm-ch-get-terms \(=\)
heap-only-nonterm-ch-get[of - tsr, OF - refl[THEN disjI2]]
for \(t r t s r\)
lemma heap-only-nonterm-ch-sym[sym]:
assumes heap-only-nonterm-changed \(h h^{\prime}\)
shows heap-only-nonterm-changed \(h^{\prime} h\)
using assms unfolding heap-only-nonterm-changed-def
by (subst eq-sym-conv)
```


lemma

```
assumes heap-only-nonterm-changed \(h h^{\prime}\)
shows heap-only-nonterm-ch-term-acyclic:
i-term-acyclic \(h\) tr \(\Longrightarrow\)-term-acyclic \(h^{\prime}\) tr
and heap-only-nonterm-ch-terms-acyclic:
i-terms-acyclic \(h\) tsp \(\Longrightarrow\) i-terms-acyclic \(h^{\prime}\) tsp
unfolding conjunction-def
proof (atomize, unfold atomize-conj[unfolded conjunction-def], goal-cases)
case 1
have (i-term-acyclic \(h\) tr \(\longrightarrow\) heap-only-nonterm-changed \(h h^{\prime} \longrightarrow i\)-term-acyclic \(\left.h^{\prime} \operatorname{tr}\right) \wedge\)
(i-terms-acyclic \(h\) tsp \(\longrightarrow\) heap-only-nonterm-changed \(h h^{\prime} \longrightarrow\) i-terms-acyclic \(\left.h^{\prime} t s p\right)\)
proof ((
induction
rule: i-term-acyclic-i-terms-acyclic.induct;
intro impI),
goal-cases nil link args terms-nil terms-next)
case (nil h)
then show ?case by (simp add: i-term-acyclic-i-terms-acyclic.t-acyclic-nil)
next
case (link \(h t\) tref \(s\) )
haveRef.get \(h^{\prime}\) tref \(=\operatorname{ITerm}(s, t, I \operatorname{VarD})\)
using heap-only-nonterm-ch-get i-term-acyclic-i-terms-acyclic.t-acyclic-step-link by (metis \(\operatorname{link}(3) \operatorname{link}(4))\)
```

```
    then show ?case
    using link(2)[rule-format, OF link(4),THEN t-acyclic-step-link]
    by blast
next
    case (args h tsref tref sf)
    have Ref.get h' tref = ITerm (s,None, ITermD (f,tsref))
    using heap-only-nonterm-ch-get[OF args(4)] args(3) by metis
    then show ?case
        using args(2)[rule-format, OF args(4), THEN t-acyclic-step-ITerm]
        by blast
    next
    case (terms-nil h)
    then show ?case
        by (simp add: ts-acyclic-nil)
    next
    case (terms-next h ts2ref tref tsref)
    then have Ref.get h'tsref = ITerms (tref, ts2ref)
        using heap-only-nonterm-ch-get by metis
    then show ?case using terms-next ts-acyclic-step-ITerms by blast
    qed
    then show ?case
    using assms by fast
qed
lemma heap-only-nonterm-ch-sublists:
    assumes heap-only-nonterm-changed h h'
    shows i-terms-sublists h tsp = i-terms-sublists h'tsp
proof -
    {
        fix tsp' and
            h:: heap and
            h':: heap
    assume tsp' \in i-terms-sublists h tsp
        and heap-only-nonterm-changed h h'
    then have tsp' }\ini\mathrm{ -terms-sublists }\mp@subsup{h}{}{\prime}ts
    proof (induction rule: i-terms-sublists.induct)
            case (next tsr' uu tnext)
            have Some tsr' \in i-terms-sublists h' tsp
                by (metis next.IH next.prems)
            then show ?case
                by (metis (no-types) heap-only-nonterm-ch-get-terms i-terms-sublists.next
                    next.hyps(2) next.prems)
        next
            case self
            then show ?case
                using i-terms-sublists.self by auto
        qed
    }
    then show ?thesis using assms assms[symmetric] by blast
```

```
qed
lemma heap-only-nonterm-ch-terms-set:
    assumes heap-only-nonterm-changed h h'
    shows i-terms-set h tsp = i-terms-set h'tsp
    unfolding i-terms-set-def2
    using assms heap-only-nonterm-ch-get-terms heap-only-nonterm-ch-sublists by
auto
lemma heap-only-nonterm-ch-closure:
    assumes heap-only-nonterm-changed h h'
    shows i-term-closure h tp =i-term-closure h' tp
proof -
    {
        fix tr
            and h :: heap
            and \mp@subsup{h}{}{\prime}:: heap
        assume tr \ini-term-closure h tp
            and heap-only-nonterm-changed h h'
        then have tr \ini-term-closure h'tp
        proof (induction rule: i-term-closure.induct)
            case (1 tr)
            then show ?case
                by (simp add: i-term-closure.intros(1))
        next
            case (2 tr uu is uv)
            have tr \in i-term-closure h'tp
                by (metis 2.IH 2.prems)
            then show ?case
                by (metis (no-types) 2.hyps(2) 2.prems
                    heap-only-nonterm-ch-get-term i-term-closure.intros(2))
        next
            case (3 tr uw ux tsp tr2)
            show ?case
                using 3.IH 3.hyps(2) 3.hyps(3) 3.prems heap-only-nonterm-ch-get-term
                    heap-only-nonterm-ch-terms-set i-term-closure.intros(3)
                by fastforce
        qed
    }
    then show ?thesis using assms assms[symmetric] by blast
qed
lemma acyclic-closure-ch-stamp-inductc' [consumes 1,
    case-names var link args terms-nil terms]:
    fixes h:: heap
        and tr:: i-term ref
        and P1:: heap }=>\mathrm{ i-term ref set }=>\mathrm{ i-term ref }=>\mathrm{ bool
        and P2:: heap }=>\mathrm{ i-term ref set }=>\mathrm{ i-termsP }=>\mathrm{ bool
    assumes acyclic: i-term-acyclic h(Some tr)
```

and var-case: $\bigwedge h$ trs tr s.
Ref.get h tr $=\operatorname{ITerm}(s$, None, $\operatorname{IVarD}) \Longrightarrow$
P1 h trs tr
and link-case: $\bigwedge h$ trs tr isr s.
$\left(\bigwedge t 2 r h^{\prime} t r s^{\prime}\right.$.
trs \subseteq trs $^{\prime} \Longrightarrow$
heap-only-stamp-changed trs ${ }^{\prime} h h^{\prime} \Longrightarrow$
t2r $\in i$-term-closure $h($ Some isr $) \Longrightarrow$
P1 h^{\prime} trs $^{\prime}$ t2r $) \Longrightarrow$
Ref.get h tr $=\operatorname{ITerm}(s$, Some isr, IVarD $) \Longrightarrow$
P1 h trs tr
and args-case: $\bigwedge h$ trs tr tsp s f.
($\bigwedge h^{\prime}$ trs ${ }^{\prime}$.
trs \subseteq trs $^{\prime} \Longrightarrow$
heap-only-stamp-changed trs ${ }^{\prime} h h^{\prime} \Longrightarrow$ P2 h^{\prime} trs ${ }^{\prime}$ tsp $) \Longrightarrow$
($\bigwedge h^{\prime}$ trs ${ }^{\prime}$ t2r0 t2r.
trs \subseteq trs $^{\prime} \Longrightarrow$
heap-only-stamp-changed trs ${ }^{\prime} h h^{\prime} \Longrightarrow$
t2r $\in i$-term-closure h (Some t2r0) \Longrightarrow
t2r0 $\in i$-terms-set h tsp \Longrightarrow
P1 h^{\prime} trs $^{\prime}$ t2r $) \Longrightarrow$
Ref.get h tr $=\operatorname{ITerm}(s$, None, $\operatorname{ITermD}(f, t s p)) \Longrightarrow$
P1 h trstr
and terms-nil-case: $\backslash h$ trs. P2 h trs None
and terms-case: $\bigwedge h$ trs tr tsr tsnextp.

$$
\left(\begin{array}{l}
\left(\bigwedge h^{\prime} t r s^{\prime}\right. \\
\text { trs } \subseteq \operatorname{trs}^{\prime}
\end{array}\right.
$$

heap-only-stamp-changed trs ${ }^{\prime} h h^{\prime} \Longrightarrow$ P2 h^{\prime} trs ${ }^{\prime}$ tsnextp) \Longrightarrow
$\left(\bigwedge h^{\prime}\right.$ trs ${ }^{\prime}$ t2r.
trs \subseteq trs $^{\prime} \Longrightarrow$
heap-only-stamp-changed trs ${ }^{\prime} h h^{\prime} \Longrightarrow$
t2r \in i-term-closure h (Some tr) \Longrightarrow
P1 h^{\prime} trs $^{\prime}$ t $\left.\mathrm{t} r \mathrm{r}\right) \Longrightarrow$
Ref.get h tsr $=$ ITerms $($ tr, tsnextp $) \Longrightarrow$
P2 h trs (Some tsr)
shows P1 h trs tr
proof -
\{
fix $t p$
have i-term-acyclic h tp \Longrightarrow (\bigwedge tr h^{\prime} trs s^{\prime}. tr $\in i$-term-closure $h t p \Longrightarrow$ heap-only-stamp-changed trs ${ }^{\prime} h h^{\prime} \Longrightarrow$ P1 h^{\prime} trs ${ }^{\prime}$ tr \wedge (\forall s f tsp0 tsp.
Ref.get h tr $=\operatorname{ITerm}(s$, None, $\operatorname{ITermD}(f$, tsp0 $)) \longrightarrow$ tsp $\in i$-terms-sublists h tsp0 \longrightarrow

```
    P2 h' trs' tsp))
    proof (induction
        taking: \lambdah tsp. ( }\forall\mathrm{ trs' }\mp@subsup{h}{}{\prime}
        heap-only-stamp-changed trs' h h' }\longrightarrow
            ( }\forallts\mp@subsup{p}{}{\prime}\mathrm{ .
                tsp' \in i-terms-closure-sublists h tsp \longrightarrow
                P2 h' trs' tsp')}
            ( }\forall\mathrm{ tr.
                tr \in i-terms-closure h tsp }
                P1 h' trs' tr) ))
        rule: i-term-acyclic-i-terms-acyclic.inducts(1))
    case (t-acyclic-nil uu)
    then show ?case
        by (simp add: i-term-closure-None)
        next
    case (t-acyclic-step-link ht tref s tr h' trs)
    consider (a) t=None 
        (b) tr \in i-term-closure h t 
        (c) isr where t=Some isr and tr= tref
        using i-term-closure-link t-acyclic-step-link.hyps(2)
        t-acyclic-step-link.prems(1) by blast
    then show ?case
    proof (cases)
        case (a)
        then show ?thesis
    using heap-only-stamp-ch-get-term i-term-closure-var t-acyclic-step-link.hyps(2)
                t-acyclic-step-link.prems(1) t-acyclic-step-link.prems(2) var-case by
fastforce
    next
        case (b)
        then show ?thesis using t-acyclic-step-link by blast
    next
        case (c)
        have \bigwedget2r h'a trs'. trs \subseteqtrs' \Longrightarrow heap-only-stamp-changed trs' h' }\mp@subsup{h}{}{\prime}=
            t2r i i-term-closure }\mp@subsup{h}{}{\prime}(\mathrm{ Some isr ) ఋP1 h'a trs't2r
        proof -
            fix t2r h'a trs'
            assume trs-subset-trs': trs \subseteq trs'
            and hosc-h'-h'a: heap-only-stamp-changed trs' h' h'a
            and tr2-clos'-isr: t2r }\ini\mathrm{ -term-closure h' (Some isr)
            have *: t2r \in i-term-closure ht
            using c(1) heap-only-stamp-ch-closure
                    t-acyclic-step-link.prems(2) tr2-clos'-isr by blast
            have heap-only-stamp-changed trs' h h'
                    using t-acyclic-step-link(5) trs-subset-trs'
                    heap-only-stamp-ch-antimono by blast
            then have **: heap-only-stamp-changed trs' h h'a
            using hosc-h'-h'a heap-only-stamp-ch-trans by blast
            show P1 h'a trs' t2r using t-acyclic-step-link.IH[OF * **]
```

```
                by simp
            qed
            moreover obtain s' where Ref.get h'tr = ITerm ( s', Some isr,IVarD)
            using heap-only-stamp-ch-get-term[OF t-acyclic-step-link(5) t-acyclic-step-link(2)]
                c by blast
            ultimately have P1 h' trs tr using link-case by meson
            then show ?thesis
                using c(2) t-acyclic-step-link.hyps(2) by auto
        qed
    next
    case (t-acyclic-step-ITerm h tsref tref s f tr h'trs)
    then have get-tref:Ref.get h tref = ITerm (s,None, ITermD (f, tsref))
        and tr-clos-tref:tr }\ini\mathrm{ -term-closure h (Some tref)
        and hosc-h-h': heap-only-stamp-changed trs h h'
        and IH1: \trs' h'tsp'.
            heap-only-stamp-changed trs' }h\mp@subsup{h}{}{\prime}
            tsp'}\ini\mathrm{ -terms-closure-sublists h tsref }
            P2 h'trs' tsp'
        and IH2: \trs' }\mp@subsup{h}{}{\prime}tr
            heap-only-stamp-changed trs' }h\mp@subsup{h}{}{\prime}
            tr \in i-terms-closure h tsref \Longrightarrow
            P1 h' trs' tr by blast+
    have tr-clos'-tref: tr }\ini\mathrm{ -term-closure h' (Some tref)
            using hosc-h-h' heap-only-stamp-ch-closure tr-clos-tref by auto
    have *: \bigwedgeh't trs'. trs \subseteqtrs' \Longrightarrow heap-only-stamp-changed trs' }\mp@subsup{h}{}{\prime}\mp@subsup{h}{}{\prime\prime}\LongrightarrowP
h'trs' tsref
    proof -
        fix }\mp@subsup{h}{}{\prime\prime
        assume trs \subseteqtrs'
        and heap-only-stamp-changed trs'}\mp@subsup{h}{}{\prime}\mp@subsup{h}{}{\prime\prime
    then have heap-only-stamp-changed trs' h h''
        using heap-only-stamp-ch-antimono heap-only-stamp-ch-trans
            t-acyclic-step-ITerm.prems(2) by blast
    then show P2 h'' trs' tsref
        using IH1 i-terms-sublists.self by fast
    qed
    have **: \ \h'trs' t2r0 t2r.
        trs}\subseteq\mp@subsup{trs}{}{\prime}
        heap-only-stamp-changed trs' }\mp@subsup{h}{}{\prime}\mp@subsup{h}{}{\prime\prime}
        t2r }\in\mathrm{ i-term-closure h' (Some t2r0) }
        t2r0 \in i-terms-set h'tsref \LongrightarrowP1 h'trs' t2r
    proof -
        fix }\mp@subsup{h}{}{\prime\prime}\mathrm{ trs' t2r0 t2r
        assume trs \subseteqtrs'
        and hosch-h'-h'': heap-only-stamp-changed trs' h' h''
        and t2r-clos'-t2r0: t2r \ini-term-closure h' (Some t2r0)
        and t2r0-terms': t2r0 \ini-terms-set h' tsref
        then have hosc-h-h': heap-only-stamp-changed trs' h h'\prime
        using heap-only-stamp-ch-antimono heap-only-stamp-ch-trans
```

have t2r0-terms-set-tsref: t2r0 $\in i$-terms-set h tsref
using t2r0-terms' hosc-h-h'[symmetric] heap-only-stamp-ch-terms-set by
have t2r-clos-tsref: t2r $\in i$-terms-closure h tsref
using UN-I t2r-clos'-t2r0 t2r0-terms-set-tsref
heap-only-stamp-ch-closure hosc-h-h' by fast
then show P1 $h^{\prime \prime}$ trs' t2r using IH2[OF hosc- $h-h^{\prime \prime}$ t2r-clos-tsref] by blast
qed
consider (a) tr $\in i$-terms-closure h tsref \mid (b) tr $=$ tref
using get-tref i-term-closure-args tr-clos-tref by fastforce
then show?case
proof (cases)
case a
then have t1: P1 h' trs tr using IH2 hosc-h-h' by blast
show ?thesis
proof (intro conjI, simp add: t1, intro allI impI)
fix $s f$ tsp tsp0
assume get-tr: Ref.get h tr $=\operatorname{ITerm}(s$, None, $\operatorname{ITermD}(f, t s p 0))$
and tsp-sublist-tsp $0:$ tsp $\in i$-terms-sublists h tsp 0
have $t s p \in(\bigcup$ tr $\in i$-terms-closure h tsref. i-term-sublists h tr)
by (metis (no-types) UN-iff a get-ITerm-args-iff-ex get-tr tsp-sublist-tsp0)
then have tsp $\in i$-terms-closure-sublists h tsref
by blast
then show P2 h^{\prime} trs tsp using IH1 hosc- $h-h^{\prime}$ by presburger
qed
next
case b
then obtain s^{\prime} where Ref.get $h^{\prime} \operatorname{tr}=\operatorname{ITerm}\left(s^{\prime}, \operatorname{None}, \operatorname{ITermD}(f\right.$, tsref $\left.)\right)$ using get-tref heap-only-stamp-ch-get-term hosc-h-h' by blast
from $* * *$ args-case $[O F-$ this]
have t1: P1 h^{\prime} trs tr
by force
then show?thesis
proof (intro conjI, simp add: t1, intro allI impI)
fix $s f t s p t s p 0$
assume get-tr: Ref.get htr $=\operatorname{ITerm}(s$, None, $\operatorname{ITermD}(f, t s p 0))$
and tsp-sublist-tsp $0:$ tsp $\in i$-terms-sublists h tsp 0
then have tsp $\in i$-terms-closure-sublists h tsref
using get-tref b by fastforce
then show P2 h^{\prime} trs tsp
using IH1 hosc-h-h' by blast
qed
qed
next
case (ts-acyclic-nil uy)
then show?case
using terms-nil-case

```
    by (simp add: i-terms-set-None-empty i-terms-sublists-None-om)
next
    case (ts-acyclic-step-ITerms h tsDref tref tsref)
    then have IH1a: \tr trs' h'.
        tr }\in\mathrm{ i-terms-closure h ts2ref }
        heap-only-stamp-changed trs' }h\mp@subsup{h}{}{\prime}
        P1 h'trs' tr
    and IH1b: \tr trs' tsp' }\mp@subsup{h}{}{\prime}\mathrm{ .
        tsp' }\in\mathrm{ i-terms-closure-sublists h ts2ref }
        heap-only-stamp-changed trs' h h' }
        P2 h'trs'tsp'
    and get-tsref:Ref.get h tsref = ITerms (tref,ts2ref)
    and tref-acyclic: i-term-acyclic h (Some tref)
    by blast+
    have IH2a: \tr trs' tr h'.
        tr }\ini\mathrm{ -term-closure h (Some tref) }
        heap-only-stamp-changed trs' h h' }
        P1 h'trs' tr
    and IH2b: \bigwedgetr trs' tr h's f tsp0 tsp.tr \in i-term-closure h (Some tref) \Longrightarrow
        heap-only-stamp-changed trs' h h' }
        Ref.get h tr = ITerm (s,None, ITermD (f,tsp0)) \Longrightarrow
        tsp \in i-terms-sublists h tsp0 \Longrightarrow
        P2 h' trs' tsp
    by (simp add: ts-acyclic-step-ITerms.IH)+
    show ?case
    proof (intro allI impI conjI, goal-cases terms term)
    case (term trs' h' tr)
    then have hosc-h-h': heap-only-stamp-changed trs' h h'
        and tr-clos-tsref: tr }\ini\mathrm{ i-terms-closure h (Some tsref)
        by blast+
    consider (a) tr }\ini\mathrm{ -terms-closure h ts2ref |
        (b) tr 
        using get-tsref
        by (metis tr-clos-tsref UnE i-terms-closure-terms)
    then show ?case
    proof (cases)
        case a
        then show ?thesis using IH1a hosc-h-h' by presburger
    next
        case b
        then show ?thesis using IH2a hosc-h-h' by presburger
    qed
next
    case (terms trs' h' tsp')
    then have tsp'-clsl-tsref: tsp' }\ini\mathrm{ i-terms-closure-sublists h (Some tsref)
        and hosc-h-h': heap-only-stamp-changed trs' }h\mp@subsup{h}{}{\prime
        by blast+
    have get'-tsref:Ref.get h' tsref = ITerms (tref,ts2ref)
```

using get-tsref hosc-h-h' heap-only-stamp-ch-get-terms by simp consider (a) tsp ${ }^{\prime}=$ None \mid
(b) $t s r^{\prime}$
where $t s p^{\prime}=$ Some tsr ${ }^{\prime}$
and tsp ${ }^{\prime} \in i$-term-closure-sublists h (Some tref)
(c) $t s r^{\prime}$
where $t s p^{\prime}=$ Some tsr ${ }^{\prime}$
and $t s p^{\prime} \in i$-terms-closure-sublists h ts2ref \mid
(d) t sp ${ }^{\prime}=$ Some tsref
using i-term-closure-sublists-terms[OF get-tsref]
tsp'-clsl-tsref by (atomize-elim, force)
then show ?case
proof (cases)
case a
then show ?thesis
by (simp add: terms-nil-case)

next

case b
then obtain $t r$ where tr-clos-tref: tr $\in i$-term-closure h (Some tref)
and $t s r^{\prime}$-sublist-tr: Some tsr ${ }^{\prime} \in i$-term-sublists h tr
by blast
have i-term-acyclic h (Some tr)
using i-term-closure-acyclic tr-clos-tref tref-acyclic by blast
with tsr'-sublist-tr obtain sftsp0
where get-tr: Ref.get h tr $=\operatorname{ITerm}(s$, None, $\operatorname{ITermD}(f$, tsp0 $))$
and tsr'-sublist-tsp0: Some tsr ${ }^{\prime} \in i$-terms-sublists h tsp0
using i-terms-sublists-someE acyclic-args-nil-is by auto
show ?thesis using IH2b[OF tr-clos-tref hosc-h-h' get-tr tsr'-sublist-tsp0]
by fast
next
case c
then show ?thesis using IH1b hosc-h-h' by presburger
next
case d
have $*: \bigwedge h^{\prime \prime}$ trs $^{\prime \prime}$.
trs $^{\prime} \subseteq$ trs $^{\prime \prime} \Longrightarrow$
heap-only-stamp-changed trs ${ }^{\prime \prime} h^{\prime} h^{\prime \prime} \Longrightarrow$
P2 $h^{\prime \prime}$ trs ${ }^{\prime \prime}$ ts2ref
by (meson IH1b UnCI heap-only-stamp-ch-antimono heap-only-stamp-ch-trans
hosc-h-h' i-terms-sublists.self)
have $* *: ~ \bigwedge h^{\prime \prime}$ trs ${ }^{\prime \prime}$ t2r.
trs $^{\prime} \subseteq$ trs $^{\prime \prime} \Longrightarrow$
heap-only-stamp-changed trs ${ }^{\prime \prime} h^{\prime} h^{\prime \prime} \Longrightarrow$
t2r \in i-term-closure h^{\prime} (Some tref $) \Longrightarrow$
P1 $h^{\prime \prime}$ trs $^{\prime \prime}$ t2r
proof -
fix $h^{\prime \prime}$ trs ${ }^{\prime \prime} t 2 r$
assume trs'-subset-trs ${ }^{\prime \prime}: t r s^{\prime} \subseteq$ trs $^{\prime \prime}$
and hosc-trs" ${ }^{\prime \prime}-h^{\prime}-h^{\prime \prime}:$ heap-only-stamp-changed trs ${ }^{\prime \prime} h^{\prime} h^{\prime \prime}$
and $t 2 r$-clos'-tref: $t 2 r \in i$-term-closure h^{\prime} (Some tref)
have $t 2 r \in i$-term-closure h (Some tref)
using heap-only-stamp-ch-closure hosc-h-h' t2r-clos'-tref by blast moreover have heap-only-stamp-changed trs" $h h^{\prime \prime}$
by (metis heap-only-stamp-ch-antimono heap-only-stamp-ch-trans
$h o s c-h-h^{\prime}$

$$
\text { hosc-trs" } \left.{ }^{\prime \prime}-h^{\prime}-h^{\prime \prime} \text { trs'-subset-trs }{ }^{\prime \prime}\right)
$$

ultimately show P1 $h^{\prime \prime}$ trs ${ }^{\prime \prime}$ t2r
using $I H 2 a\left[\right.$ where $h^{\prime}=h^{\prime \prime}$ and $\operatorname{tra}=t 2 r$ and trs $^{\prime}=$ trs $\left.^{\prime \prime}\right]$
by blast
qed
from terms-case[where $h=h^{\prime}$ and trs $=$ trs ${ }^{\prime}$ and $t s r=t s r e f, O F-$ get'-tsref]
show ?thesis using $d * * *$ by force
qed
qed
qed
\}
then show ?thesis using acyclic
heap-only-stamp-ch-refl i-term-closure.intros(1) by auto
qed
end

A. 4 Imperative version of algorithm

```
theory Unification-Imperative
    imports Main
        ITerm
        HOL-Imperative-HOL.Ref
        HOL-Imperative-HOL.Heap-Monad
begin
fun i-union where
    i-union (Some v, t:: i-termP) = (v:= ITerm ( 0,t,IVarD)) |
    i-union (None, -) = return()
partial-function (heap) i-find:: i-termP }=>\mathrm{ - i-termP Heap
    where [code]:
    i-find tp = (case tp of
        (Some tr) =>do {
            t\leftarrow!tr;
            case t of
                ITerm (-, Some is, -) => i-find (Some is)
            |Term (-, None, -) => return (Some tr)}
        None = return None)
context
```

```
    fixes time:: nat ref
    and v:: i-termP
begin
```

partial-function (heap) i-occ- $p:$: i-term $P+i$-terms $P \Rightarrow$ bool Heap where [code]:
i-occ-p $X X=($
case $X X$ of
$($ Inl $($ Some $t)) \Rightarrow d o\{$
$t v \leftarrow!t ;$
case tv of
$\operatorname{ITerm}(-,-, I V a r D) \Rightarrow \operatorname{return}(v=$ Some $t)$
$\mid \operatorname{ITerm}($ stamp, None, $\operatorname{ITermD}(f, \operatorname{args})) \Rightarrow d o\{$
timev $\leftarrow!$ time;
if (stamp $=$ timev $)$ then return False
else do \{
$t:=\operatorname{ITerm}($ timev, None, $\operatorname{ITermD}(f$, args $))$;
i-occ-p (Inr args)
\}
\}
\}
| (Inr None) \Rightarrow return False
$\mid($ Inr $($ Some ts $)) \Rightarrow d o\{$
$t s v \leftarrow!t s ;$
case tsv of
ITerms (t, next) \Rightarrow do \{
find-res $\leftarrow i$-find (Some t);
occ-res $\leftarrow i$-occ-p (Inl find-res);
if occ-res then return True
else i-occ-p (Inr next) \}
\}
)
definition i-occurs:: i-term $P \Rightarrow$ bool Heap where
i-occurs $t=$ do $\{$
timev $\leftarrow!$ time;
time $:=$ timev +1 ;
i-occ-p (Inl t)
\}
end
end

A. 5 Equivalence of imperative and functional formulation

```
    HOL-Imperative-HOL.Ref
    HOL-Imperative-HOL.Heap-Monad
begin
```

Variables are called $(x, \$)$ where $\$$ is the heap address of the variable term.

```
partial-function (heap)
    i-term-to-term-p:: i-term ref + i-termsP }=>\mathrm{ (term + term list) Heap
    where [code]:
    i-term-to-term-p XX = (case XX of
        (Inl tr) =>do {
            t\leftarrow!tr;
            case t of
                ITerm (-, None,IVarD) =>
                return (Inl(V(''x", int (addr-of-ref tr))))
            |TTerm (-, (Some t2p), -) = i-term-to-term-p (Inl t2p)
            |Term (-, None, ITermD(f, termsp)) => do {
                v\leftarrowi-term-to-term-p (Inr termsp);
                    case v of
                    Inr(terms) = return (Inl(T(f, terms))) }
    }
    | (Inr None) =
            return (Inr([]))
    | (Inr (Some termsr)) =>do {
            termsv \leftarrow!termsr;
            case termsv of
                (ITerms(tthis, tnext)) =>do {
                    vtthis }\leftarrowi\mathrm{ -term-to-term-p (Inl tthis);
                    vtnext }\leftarrowi\mathrm{ -term-to-term-p (Inr tnext);
                    case (vtthis, vtnext) of
                        (Inl(term), Inr(terms)) => return (Inr(term#terms)) }
        }
    )
lemma i-term-to-term-p-mr:
    fixes }h::\mathrm{ heap
        and XX :: i-term ref + i-termsP
    assumes term-acyclic: }\\mathrm{ tr. XX = Inl tr }\Longrightarrow\mathrm{ -term-acyclic h (Some tr)
        and terms-acyclic: }\tp. XX=Inr tp \Longrightarrowi-terms-acyclic h tp
    shows \existsr.(Some(r,h)= execute (i-term-to-term-p XX) h\wedge isl r = isl XX)
proof -
    {
        fix tp trp
        let ?cond XX0 h0 = \existsr. (Some (r,h)=execute (i-term-to-term-p XX0) h^
isl r=isl XX0)
    have (i-term-acyclic h trp \longrightarrow
        trp \not= None \longrightarrow ?cond (Inl (case trp of Some tr =tr))h)^
        (i-terms-acyclic h tp \longrightarrow?cond (Inr tp)h)
    proof (induction rule: i-term-acyclic-i-terms-acyclic.induct)
    case (t-acyclic-nil h)
```

> then show? case by simp

next

case (t-acyclic-step-link $h t$ tref stamp)
then consider (a) Ref.get h tref $=\operatorname{ITerm}($ stamp, None, IVarD) \mid
(b) tn iv where Ref.get h tref $=\operatorname{ITerm}($ stamp, $($ Some tn $)$, iv)
by auto
then show ?case using t-acyclic-step-link.IH
proof (cases)
case a
then show ?thesis
by (subst i-term-to-term-p.simps, simp add: lookup-def tap-def bind-def return-def execute-heap isl-def)
next
case b
then show ?thesis using t-acyclic-step-link.IH
by (subst i-term-to-term-p.simps,
simp add: lookup-def tap-def bind-def return-def
execute-heap t-acyclic-step-link.hyps(2))
qed
next
case (t-acyclic-step-ITerm h tsref tref stamp f)
then obtain r0 where r0-def: Some $(r 0, h)=$ execute (i-term-to-term-p (Inr tsref)) $h \wedge \neg i s l r 0$
by auto
then have $*$: Some $(r 0, h)=$ execute $(i$-term-to-term- $p($ Inr tsref) $) h$ by simp
obtain $r 0 v$ where $* *$: Inr r0v $=r 0$
using r0-def sum.collapse(2) by blast
show ?case using t-acyclic-step-ITerm
apply (subst i-term-to-term-p.simps,
simp add: lookup-def tap-def bind-def return-def
execute-heap)
apply (fold $* * *$)
by (simp add: execute-heap)
next
case (ts-acyclic-nil h)
then show ?case by (subst i-term-to-term-p.simps, simp add: return-def execute-heap)
next
case (ts-acyclic-step-ITerms h ts2ref tref tsref)
then obtain $r 0$ where $r 0$-def: Some ($r 0, h$) = execute (i-term-to-term-p (Inl
tref)) $h \wedge$ isl r0
by auto
then have a1: Some $(r 0, h)=$ execute $(i$-term-to-term-p (Inl tref)) h by simp
obtain $r 0 v$ where a2: Inl r0v $=r 0$ using r0-def[unfolded isl-def] by auto

```
        obtain r1 where r1-def:Some (r1,h) = execute (i-term-to-term-p (Inr
ts2ref)) h}^\neg\mathrm{ _isl r1
            using ts-acyclic-step-ITerms by auto
    then have b1:Some (r1,h) = execute (i-term-to-term-p (Inr ts2ref)) h by
simp
    obtain r1v where b2: Inr r1v = r1
            using r1-def sum.collapse(2) by blast
        from ts-acyclic-step-ITerms show ?case
            apply (subst i-term-to-term-p.simps,
                simp add: lookup-def tap-def bind-def return-def execute-heap)
            by (fold a1 a2, simp, fold b1 b2, simp add: return-def execute-heap)
    qed
    }
    note proof0 = this
    show ?thesis
    proof (cases XX)
    case (Inl a)
    then show ?thesis
        using proof0 term-acyclic by fastforce
    next
    case (Inr b)
    then show ?thesis
        using proof0 terms-acyclic by simp
    qed
qed
definition i-term-to-term:: i-term ref }=>\mathrm{ term Heap where
    i-term-to-term tr = do {r\leftarrowi-term-to-term-p (Inl tr); case r of (Inl v) =>return
v}
abbreviation i-term-to-term-e:: heap }=>\mathrm{ i-term ref }=>\mathrm{ term where
    i-term-to-term-e h tr \equiv(case (execute (i-term-to-term tr)h) of Some(r, -) = r)
lemma i-term-to-term-value-iff:
    fixes tr:: i-term ref
        and r:: term
        and h:: heap
    assumes i-term-acyclic h (Some tr)
    shows (r = i-term-to-term-e h tr) = (Some(r,h) = execute (i-term-to-term tr)
h)
proof -
    {
        obtain XX where *: Some (XX,h) = execute (i-term-to-term-p (Inl tr)) h
and isl XX
            using i-term-to-term-p-mr assms isl-def by fast
        then obtain }\mp@subsup{r}{}{\prime}\mathrm{ where **: Inl r}\mp@subsup{r}{}{\prime}=X
            using isl-def by metis
```

```
    assume r = i-term-to-term-e h tr
    then have Some(r,h)=execute (i-term-to-term tr)h
        by (simp add: i-term-to-term-def bind-def, fold * **,
        simp add: return-def execute-heap)
    }
    then show ?thesis
    by (metis case-prod-conv option.simps(5))
qed
lemma i-term-to-term-value:
    fixes tr:: i-term ref
        and h:: heap
    assumes i-term-acyclic h (Some tr)
    shows execute (i-term-to-term tr) h=Some(i-term-to-term-e h tr, h)
using assms i-term-to-term-value-iff by metis
definition i-terms-to-terms:: i-termsP 在erm list Heap where
    i-terms-to-terms tp = do { r \leftarrow i-term-to-term-p (Inr tp); case r of (Inr v) =>
return v }
abbreviation i-terms-to-terms-e:: heap }=>\mathrm{ -termsP }=>\mathrm{ term list where
    i-terms-to-terms-e h tr \equiv(case (execute (i-terms-to-terms tr) h) of Some(r, -)
=>r)
lemma i-terms-to-terms-value-iff:
    fixes tsp:: i-termsP
        and r:: term list
        and h:: heap
    assumes i-terms-acyclic h tsp
    shows (r = i-terms-to-terms-e h tsp) = (Some (r,h)= execute ( i-terms-to-terms
tsp) h)
proof -
    {
    obtain XX where *: Some (XX,h) = execute (i-term-to-term-p (Inr tsp)) h
and \negisl XX
            using i-term-to-term-p-mr assms isl-def by fast
            then obtain r' where **: Inr r}\mp@subsup{r}{}{\prime}=X
            using sum.collapse(2) by blast
    assume r=i-terms-to-terms-e h tsp
    then have Some(r,h)=execute (i-terms-to-terms tsp) h
            by (simp add: i-terms-to-terms-def bind-def, fold ***,
                        simp add: return-def execute-heap)
    }
    then show ?thesis
    by (metis case-prod-conv option.simps(5))
qed
lemma i-terms-to-terms-value:
    fixes tsp:: i-termsP
```

and $h::$ heap
assumes i-terms-acyclic h tsp
shows execute (i-terms-to-terms tsp) $h=S o m e(i$-terms-to-terms-e h tsp, h)
by (metis assms i-terms-to-terms-value-iff)
lemma i-term-to-term-var-none:
fixes $t r:: ~ i$-term ref and $s::$ nat
and $h::$ heap
assumes Ref.get h tr $=\operatorname{ITerm}(s$, None, IVarD)
shows execute (i-term-to-term tr) $h=$ Some $\left(\left(V\left({ }^{\prime \prime} x^{\prime \prime}\right.\right.\right.$, int (addr-of-ref tr))), h)
unfolding i-term-to-term-def
by (subst i-term-to-term-p.simps, simp add: assms lookup-def tap-def bind-def return-def execute-heap)
lemma i-term-to-term-var-some:
fixes tr:: i-term ref
and $t 2 p:: i$-term ref
and $s::$ nat
and $h::$ heap
assumes Ref.get h tr $=\operatorname{ITerm}(s$, Some t2p, IVarD)
shows execute (i-term-to-term tr) $h=$ execute (i-term-to-term t2p) h
unfolding i-term-to-term-def
by (subst i-term-to-term-p.simps, simp add: assms lookup-def tap-def bind-def return-def execute-heap)
lemma i-term-to-term-terms:
fixes $t r:: i$-term ref and termsp
and terms
and $s::$ nat
and $h::$ heap
assumes acyclic: i-term-acyclic h (Some tr)
and get-tr: Ref.get h tr $=\operatorname{ITerm}(s$, None, $\operatorname{ITermD}(f$, termsp $))$
and termsp-res: execute (i-terms-to-terms termsp) $h=\operatorname{Some}$ (terms, h)
shows execute (i-term-to-term tr) $h=\operatorname{Some}(T(f$, terms $), h)$
proof -
have i-terms-acyclic h termsp using acyclic get-tr by (fact acyclic-terms-term-simp)
then obtain r where r-def: $\operatorname{Some}(r, h)=$ execute (i-term-to-term-p (Inr termsp))
$h \wedge \neg$ isl r
using i-term-to-term- p-mr[where $X X=$ Inr termsp] by auto
then have $*$: Some $(r, h)=$ execute (i-term-to-term-p (Inr termsp)) h by simp
obtain $r v$ where $* *$: Inr $r v=r$
using r-def sum.collapse(2) by fast
have $* * *$: Some (Inr rv, h) $=$ Some (Inr terms, h)
using $* * *$ termsp-res[unfolded i-terms-to-terms-def]
by (simp add: bind-def return-def execute-heap)
(fold $* * *$, simp add: execute-heap return-def)
show ?thesis unfolding i-term-to-term-def

```
    apply (subst i-term-to-term-p.simps)
    apply (simp add: get-tr lookup-def tap-def bind-def return-def execute-heap)
    by (fold ***, simp add: execute-heap return-def ***)
qed
lemma i-term-to-term-e-terms:
    fixes tr:: i-term ref
        and termsp
        and s:: nat
        and h:: heap
    assumes acyclic: i-term-acyclic h (Some tr)
        and get-tr:Ref.get h tr = ITerm (s,None, ITermD(f,termsp))
    shows i-term-to-term-e h tr =T(f, i-terms-to-terms-e h termsp)
proof -
    have i-terms-acyclic h termsp
        using acyclic acyclic-terms-term-simp get-tr by blast
    then have execute (i-terms-to-terms termsp) h=Some (i-terms-to-terms-e h
termsp,h)
    using i-terms-to-terms-value by blast
    then show ?thesis
        using acyclic get-tr i-term-to-term-terms by force
qed
lemma i-terms-to-terms-nil:
    fixes h:: heap
    shows execute (i-terms-to-terms None) h=Some([], h)
    unfolding i-terms-to-terms-def
    by (subst i-term-to-term-p.simps, simp add: return-def bind-def execute-heap)
lemma i-terms-to-terms-step:
    fixes termsr:: i-terms ref
        and tthis:: i-term ref
        and tnext:: i-termsP
        and term:: term
        and terms:: term list
        and h:: heap
    assumes acyclic: i-terms-acyclic h (Some termsr)
        and get-termsr: Ref.get h termsr = ITerms (tthis, tnext)
        and tthis-res: execute (i-term-to-term tthis) h=Some(term, h)
        and tnext-res: execute (i-terms-to-terms tnext) h=Some(terms, h)
    shows execute (i-terms-to-terms (Some termsr)) h=Some(term#terms, h)
proof -
    have tthis-acyclic: i-term-acyclic h (Some tthis)
    using acyclic get-termsr
    by (cases h Some termsr rule: i-terms-acyclic.cases, fastforce)
    have tnext-acyclic: i-terms-acyclic h tnext
    using acyclic get-termsr by (fact acyclic-terms-terms-simp)
    obtain r0 where r0-def: Some(r0,h)= execute (i-term-to-term-p (Inl tthis)) h
```

```
^ isl r0
    using i-term-to-term-p-mr tthis-acyclic
    by (metis Inr-not-Inl sum.disc(1) sum.sel(1))
    then have a1:Some(r0,h)= execute (i-term-to-term-p (Inl tthis)) h by simp
    obtain r0v where a2: Inl r0v = r0
    using r0-def sum.collapse(1) by blast
    have a3: Some(Inl r0v,h)=Some(Inl term, h)
    using tthis-res[unfolded i-term-to-term-def]
    by (simp add: bind-def return-def execute-heap)
        (fold a1 a2, simp add: execute-heap return-def)
    obtain r1 where r1-def: Some(r1,h) = execute (i-term-to-term-p (Inr tnext))
h^ \negisl r1
    using i-term-to-term-p-mr[where XX=Inr tnext] tnext-acyclic
    by auto
    then have b1: Some(r1,h) = execute (i-term-to-term-p (Inr tnext)) h by simp
    obtain r1v where b2: Inr r1v = r1
    using r1-def sum.collapse(2) by blast
    have b3: Some(Inr r1v,h)=Some(Inr terms,h)
    using tnext-res[unfolded i-terms-to-terms-def]
    by (simp add: bind-def return-def execute-heap)
            (fold b1 b2, simp add: execute-heap return-def)
    show ?thesis unfolding i-terms-to-terms-def
    apply (subst i-term-to-term-p.simps,
                simp add: lookup-def tap-def bind-def return-def execute-heap get-termsr)
            apply (fold a1 a2 b1 b2, simp, fold b1 b2, simp add: bind-def return-def
execute-heap)
    using a3 b3 by simp
qed
lemma i-terms-to-terms-e-step:
    fixes termsr:: i-terms ref
        and tthis:: i-term ref
        and tsnext:: i-termsP
        and h:: heap
    assumes acyclic: i-terms-acyclic h (Some termsr)
        and get-termsr:Ref.get h termsr = ITerms (tthis,tsnext)
    shows i-terms-to-terms-e h (Some termsr) =
                (i-term-to-term-e h tthis)#(i-terms-to-terms-e h tsnext)
proof -
    have i-term-acyclic h (Some tthis)
    by (meson acyclic get-termsr i-terms-set-acyclic i-terms-setp.intros
            i-terms-setp-i-terms-set-eq i-terms-sublistsp.self)
    moreover have i-terms-acyclic h tsnext
    using acyclic acyclic-terms-terms-simp get-termsr by blast
    ultimately have execute (i-terms-to-terms (Some termsr)) h=
    Some((i-term-to-term-e h tthis)#(i-terms-to-terms-e h tsnext), h)
    using acyclic get-termsr i-term-to-term-value i-terms-to-terms-step i-terms-to-terms-value
```

by blast then show? ?thesis by simp qed
abbreviation i-term-structure-presv where
i-term-structure-presv h0 h1 \equiv (
$\forall t r^{\prime} s$ is d. Ref.get h0 tr ${ }^{\prime}=\operatorname{ITerm}(s, i s, d) \longrightarrow$
$\left.\left(\exists s^{\prime} . \operatorname{Ref.get} h 1 t r^{\prime}=\operatorname{ITerm}\left(s^{\prime}, i s, d\right)\right)\right) \wedge$
(\forall (tsr :: i-terms ref). Ref.get h0 tsr $=$ Ref.get h1 tsr)
lemma i-term-to-term-get-presv:
assumes acyclic: i-term-acyclic h(Some tr)
and get-presv: i-term-structure-presv $h h^{\prime}$
shows i-term-to-term-e h tr $=i$-term-to-term-e $h^{\prime} t r$
proof -
have i-term-to-term-e h tr $=i$-term-to-term-e $h^{\prime} \operatorname{tr} \wedge i$-term-acyclic h^{\prime} (Some tr)
using assms proof (induction h Some tr
arbitrary: tr
taking: λh tsp. i-term-structure-presv $h h^{\prime} \longrightarrow$
i-terms-to-terms-e h tsp $=i$-terms-to-terms-e h^{\prime} tsp $\wedge i$-terms-acyclic h^{\prime} tsp
rule: i-term-acyclic- i-terms-acyclic.inducts(1))
case (t-acyclic-step-link h is tr s)
show ?case
proof (cases is)
case None
then obtain s^{\prime} where Ref.get $h^{\prime} \operatorname{tr}=\operatorname{ITerm}\left(s^{\prime}\right.$, None, IVarD)
using typerep-term-neq-nat get-presv heap-only-stamp-ch-get-term t-acyclic-step-link
by presburger
moreover from this have i-term-acyclic h^{\prime} (Some tr)
using i-term-acyclic-i-terms-acyclic.t-acyclic-step-link t-acyclic-nil by blast ultimately show ?thesis using t-acyclic-step-link None
by (subst (1 2) i-term-to-term-var-none, simp-all)
next
case (Some isr)
then obtain s^{\prime} where s^{\prime}-def: Ref.get h^{\prime} tr $=\operatorname{ITerm}\left(s^{\prime}\right.$, Some isr, IVarD)
using heap-only-stamp-ch-get-term t-acyclic-step-link by blast
have ttt: i-term-to-term-e h isr $=i$-term-to-term-e h^{\prime} isr
using acyclic-term-link-simp i-term-closure.intros(1)
t-acyclic-step-link Some by blast
moreover have tr-acyclic': i-term-acyclic h^{\prime} (Some tr) using s^{\prime}-def
using Some i-term-acyclic-i-terms-acyclic.t-acyclic-step-link t-acyclic-step-link.hyps(2)
t-acyclic-step-link.prems by blast
show ?thesis
by (simp add: tr-acyclic ${ }^{\prime}$,
subst (1 2) i-term-to-term-var-some, simp-all add: s^{\prime}-def t-acyclic-step-link
Some)
(fact ttt)
qed

next

case (t-acyclic-step-ITerm h tsref tref $s f$)
then obtain s^{\prime} where s^{\prime}-def: Ref.get h^{\prime} tref $=\operatorname{ITerm}\left(s^{\prime}\right.$, None, $\operatorname{ITermD}(f$, tsref))
using heap-only-stamp-ch-get-term by blast
have acyclic'-tref: i-term-acyclic h^{\prime} (Some tref)
using i-term-acyclic-i-terms-acyclic.t-acyclic-step-ITerm local.t-acyclic-step-ITerm(4) s^{\prime}-def t-acyclic-step-ITerm.hyps(2) by blast
have acyclic-tref: i-term-acyclic h (Some tref)
using i-term-acyclic-i-terms-acyclic.t-acyclic-step-ITerm local.t-acyclic-step-ITerm(3) t-acyclic-step-ITerm.hyps(1) by blast
have ttt-step: i-term-to-term-e h tref $=T$ (f, i-terms-to-terms-e h^{\prime} tsref)
by (simp add: acyclic-tref i-term-to-term-e-terms t-acyclic-step-ITerm.hyps(2) t-acyclic-step-ITerm.hyps(3) t-acyclic-step-ITerm.prems)
then show ?case
by (simp add: acyclic'-tref i-term-to-term-e-terms s^{\prime}-def)
next
case (ts-acyclic-nil uy)
then show? case
using i-terms-to-terms-nil
by (simp add: i-term-acyclic-i-terms-acyclic.ts-acyclic-nil)
next
case (ts-acyclic-step-ITerms h ts2ref tref tsref)
show ?case
proof (intro impI, goal-cases)
case 1
then have get-presv: i-term-structure-presv $h h^{\prime}$ by blast
then have get-tsref': Ref.get h^{\prime} tsref $=$ ITerms (tref, ts2ref)
using typerep-term-neq-terms heap-only-stamp-ch-get-terms ts-acyclic-step-ITerms.hyps(5) by presburger
have tsref-acyclic: i-terms-acyclic h (Some tsref) using i-term-acyclic-i-terms-acyclic.ts-acyclic-step-ITerms ts-acyclic-step-ITerms.hyps(1) ts-acyclic-step-ITerms.hyps(3) ts-acyclic-step-ITerms.hyps(5) by blast
then have tsref-acyclic': i-terms-acyclic h^{\prime} (Some tsref) using heap-only-stamp-ch-terms-acyclic get-presv get-tsref' i-term-acyclic-i-terms-acyclic.ts-acyclic-step-ITerms
ts-acyclic-step-ITerms.hyps(2) ts-acyclic-step-ITerms.hyps(4) by fast

moreover from this

have i-terms-to-terms-e h (Some tsref) $=i$-terms-to-terms-e h^{\prime} (Some tsref)
apply (subst i-terms-to-terms-e-step[OF tsref-acyclic ts-acyclic-step-ITerms.hyps(5)])
apply (subst i-terms-to-terms-e-step[OF tsref-acyclic' get-tsref '])
using ts-acyclic-step-ITerms.hyps(2) ts-acyclic-step-ITerms.hyps(3)
ts-acyclic-step-ITerms.hyps(4) get-presv by blast
ultimately show ?case by blast
qed
qed
then show ?thesis using assms by blast

```
qed
lemma i-term-to-term-only-stamp-changed:
    assumes acyclic: i-term-acyclic h (Some tr)
    and only-stamp-changed: heap-only-stamp-changed trs h h'
    shows i-term-to-term-e h tr = i-term-to-term-e h' tr
    using assms i-term-to-term-get-presv
    using heap-only-stamp-ch-get-term heap-only-stamp-ch-get-terms by auto
lemma i-terms-to-terms-only-stamp-changed:
    assumes acyclic: i-terms-acyclic h tsp0
        and only-stamp-changed: heap-only-stamp-changed trs h h'
        and tsp-sublist: tsp \in i-terms-sublists h tsp0
    shows i-terms-to-terms-e h tsp = i-terms-to-terms-e h' tsp
proof -
    have tsp-acyclic: i-terms-acyclic h tsp
        using acyclic tsp-sublist i-terms-sublists-acyclic by blast
    then show ?thesis using assms tsp-acyclic
    proof (induction h tsp rule: i-terms-acyclic-induct)
        case (ts-acyclic-nil h)
        then show ?case
            by (simp add: i-terms-to-terms-nil)
    next
        case (ts-acyclic-step h tsQref tref tsref)
        have get'-tsref:Ref.get h tsref = Ref.get h' tsref
            by (metis (lifting) heap-only-stamp-ch-get-terms ts-acyclic-step.prems(2))
    have i-terms-to-terms-e h (Some tsref) =
                (i-term-to-term-e h tref) # (i-terms-to-terms-e h ts2ref)
            using i-terms-to-terms-e-step ts-acyclic-step.hyps(1) ts-acyclic-step.hyps(2)
                ts-acyclic-step.hyps(3) ts-acyclic-step-ITerms by blast
    moreover have i-terms-acyclic h' (Some tsref)
            using heap-only-stamp-ch-terms-acyclic
                ts-acyclic-step.prems(2) ts-acyclic-step.prems(4) by blast
    then have i-terms-to-terms-e h' (Some tsref) =
                (i-term-to-term-e h' tref) # (i-terms-to-terms-e h' tsQref)
            by (metis (no-types) get'-tsref i-terms-to-terms-e-step ts-acyclic-step.hyps(3))
    moreover have i-term-to-term-e h tref =i-term-to-term-e h' tref
            using i-term-to-term-only-stamp-changed
                ts-acyclic-step.hyps(2) ts-acyclic-step.prems(2) by blast
    ultimately show ?case
            using i-terms-sublists.next ts-acyclic-step.IH ts-acyclic-step.hyps(1)
                ts-acyclic-step.hyps(3) ts-acyclic-step.prems(1) ts-acyclic-step.prems(2)
                ts-acyclic-step.prems(3) ts-acyclic-step.prems(4) by presburger
    qed
qed
lemma i-terms-to-terms-only-stamp-changed':
```

```
    assumes acyclic: i-terms-acyclic h tsp
    and get-tr:Ref.get h tr = ITerm(s,None, ITermD (f,tsp))
    and only-stamp-changed: heap-only-stamp-changed trs h h'
    shows i-terms-to-terms-e h tsp =i-terms-to-terms-e h' tsp
    using assms i-terms-to-terms-only-stamp-changed i-terms-sublists.self by blast
lemma i-term-to-term-chain:
    assumes acyclic: i-term-acyclic h (Some tr)
        and chain: tr' }\ini\mathrm{ i-term-chain h tr
    shows i-term-to-term-e h tr'}=i\mathrm{ -term-to-term-e h tr
using assms proof (induction h tr rule: i-term-acyclic-induct')
    case (varhtr s)
    then have tr '}=t
    using i-term-chain-dest by blast
    then show ?case by simp
next
    case (link h tr isr s)
    then show ?case
        using i-term-chain-link i-term-to-term-var-some by force
next
    case (args h tr tsp sf)
    then have tr' = tr
        using i-term-chain-dest by blast
    then show ?case by simp
qed
lemma i-find-heap-change-nt:
    fixes tr:: i-term ref
        and tdestp:: i-termP
        and r:: 'a::heap ref
        and v:: 'a::heap
        and h:: heap
    assumes acyclic: i-term-acyclic h (Some tr)
        and TYPEREP('a)\not= TYPEREP(i-term)
    shows \exists tdestp.(
            execute (i-find (Some tr)) (Ref.set rvh)= Some (tdestp, Ref.set r vh)^
            execute (i-find (Some tr)) h=Some (tdestp,h))
    using assms by
        (induction rule: i-term-acyclic-induct')
        (subst (1 2) i-find.simps,
            simp add: lookup-def bind-def tap-def return-def execute-heap Ref.get-def
Ref.set-def)+
lemma i-find-heap-change-is-uc:
    fixes tr:: i-term ref
        and tdestp:: i-termP
        and r:: i-term ref
        and is:: i-termP
    and v:: i-term
```

and $h::$ heap
assumes acyclic: i-term-acyclic h (Some tr)
and Ref.get $h r=\operatorname{ITerm}(s, i s, d)$
and $v=\operatorname{ITerm}\left(s^{\prime}, i s, d^{\prime}\right)$
shows
(execute (i-find (Some tr)) (Ref.set r $v h)=$ Some (tdestp, Ref.set $r v h)$)
$=$
(execute (i-find (Some tr)) $h=$ Some (tdestp, h))
using assms proof
(induction rule: i-term-acyclic-induct')
case (varhtr s)
then show? case
by (subst (1 2) i-find.simps)
(auto simp add: lookup-def bind-def tap-def return-def execute-heap Ref.get-def Ref.set-def)
next
case (link htr isr s)
then show ?case
by (subst (1 2) i-find.simps)
(auto simp add: lookup-def bind-def tap-def return-def execute-heap
Ref.get-def Ref.set-def)
next
case (args htr tsp sf)
then show? case
apply (subst (1 2) i-find.simps)
apply (simp add: lookup-def bind-def tap-def return-def execute-heap Ref.get-def Ref.set-def)
by (auto simp add: return-def execute-heap)
qed
lemma i-find-some:
fixes $t r:: i$-term ref
and tdestr:: i-term ref
and $h::$ heap
assumes i-term-acyclic h (Some tr)
shows \exists tdestr $s d$.
execute (i-find (Some tr)) $h=$ Some(Some tdestr, h) \wedge
tdestr $\in i$-term-chain h tr \wedge
Ref.get h tdestr $=\operatorname{ITerm}(s$, None, $d)$
using assms proof (induction rule: i-term-acyclic-induct')
case (varhtr s)
then show ?case
by (subst i-find.simps,
simp add: bind-def lookup-def tap-def return-def execute-heap i-term-chain.self)
next
case (link h tr isr s)
then have $*$: execute (i-find (Some tr)) $h=$ execute (i-find (Some isr)) h
by (subst i-find.simps, simp add: bind-def lookup-def tap-def)
from link obtain tdestr $s^{\prime} d^{\prime}$ where

```
        **: execute (i-find (Some isr)) h=Some (Some tdestr, h) ^
        tdestr }\ini\mathrm{ -term-chain h isr }\wedge Ref.get h tdestr = ITerm ( s', None, d'
    by blast
    then have tdestr \in i-term-chain h tr using i-term-chain-link link.hyps by blast
    then show ?case using *** by simp
next
    case (args h tr tsp s f)
    then show ?case
        by (subst i-find.simps,
        simp add: bind-def lookup-def tap-def return-def execute-heap i-term-chain.self)
qed
definition stamp-current-not-occurs where
    stamp-current-not-occurs time vr tr h=
        (\foralltr' s}\mp@subsup{s}{}{\prime}\mathrm{ is d.
        tr' }\ini=i-term-closure h (Some tr)
        Ref.get htr' = ITerm( }\mp@subsup{s}{}{\prime},is,d)
        s'=Ref.get h time }
        \negoccurs (''x', int (addr-of-ref vr)) (i-term-to-term-e h tr '))
abbreviation stamp-current-not-occurs' where
    stamp-current-not-occurs' time vr tr h \equiv
        (\negoccurs (''x'", int (addr-of-ref vr)) (i-term-to-term-e h tr) \longrightarrow
        stamp-current-not-occurs time vr tr h)
abbreviation stamp-current-not-occurs'-ts where
    stamp-current-not-occurs'-ts time vr tsp h\equiv
    (\neglist-ex (occurs ('' ''', int (addr-of-ref vr))) (i-terms-to-terms-e h tsp)\longrightarrow
        (\forall tr \in i-terms-set h tsp. stamp-current-not-occurs time vr tr h))
lemma i-terms-to-terms-list-set:
    assumes i-terms-acyclic h tsp
    shows set (i-terms-to-terms-e h tsp) = i-term-to-term-e h' i-terms-set h tsp
using assms proof (induction h tsp rule: i-terms-acyclic-induct)
    case (ts-acyclic-nil h)
    show ?case using i-terms-to-terms-nil i-terms-set-None-empty by force
next
    case (ts-acyclic-step h ts2ref tref tsref)
    then have i-terms-to-terms-e h (Some tsref) =
        i-term-to-term-e h tref # i-terms-to-terms-e h ts2ref
        using i-terms-to-terms-e-step ts-acyclic-step-ITerms by presburger
    then show ?case
    by (simp add: i-terms-set-insert ts-acyclic-step.IH ts-acyclic-step.hyps(3))
qed
lemma stamp-current-not-occurs'-terms-set:
    assumes terms-scno: \ tr. tr \in i-terms-set h tsp \Longrightarrow stamp-current-not-occurs'
time vr tr h'
    and terms-hosc: heap-only-stamp-changed-ts tsp h h'
```

and acyclic: i-term-acyclic h (Some tr0)
and get-tr0: Ref.get h tr0 $=\operatorname{ITerm}(s$, None, $\operatorname{ITermD}(f, t s p))$
shows stamp-current-not-occurs' time vr tr0 h^{\prime}
unfolding stamp-current-not-occurs-def
proof (intro allI impI)
fix $t r^{\prime} s^{\prime}$ is d
assume not-occurs: \neg occurs (${ }^{\prime \prime} x^{\prime \prime}$, int (addr-of-ref vr)) (i-term-to-term-e $\left.h^{\prime} \operatorname{tr0}\right)$
and $t r^{\prime}$-clos: $t r^{\prime} \in i$-term-closure h^{\prime} (Some tr0)
and get $^{\prime}-t r^{\prime}:$ Ref.get $h^{\prime} t r^{\prime}=\operatorname{ITerm}\left(s^{\prime}, i s, d\right)$
and s^{\prime}-time': $s^{\prime}=$ Ref.get h^{\prime} time
obtain $s 2$ where get'-tr0: Ref.get $h^{\prime} \operatorname{tr0}=\operatorname{ITerm}(s 2, \operatorname{None}, \operatorname{ITermD}(f, t s p))$
using get-tr0 heap-only-stamp-ch-get-term terms-hosc by blast
have ttt: i-term-to-term-e h tr0 $=i$-term-to-term-e h^{\prime} tr0
using acyclic i-term-to-term-only-stamp-changed terms-hosc by fastforce
have tr0-acyclic': i-term-acyclic h^{\prime} (Some tr0)
using acyclic heap-only-stamp-ch-term-acyclic terms-hosc by blast
then have tsp-acyclic': i-terms-acyclic h^{\prime} tsp
using acyclic-terms-term-simp get'-tr0 by blast
have ttt: i-term-to-term-e $h^{\prime} \operatorname{tr} 0=T\left(f\right.$, i-terms-to-terms-e h^{\prime} tsp)
by (simp add: tr0-acyclic' get'-tr0 i-term-to-term-e-terms)
\{
fix $t r$
assume tr-tsp-set: tr $\in i$-terms-set h tsp
assume occ-tr: occurs (${ }^{\prime \prime} x^{\prime \prime}$, int (addr-of-ref vr)) (i-term-to-term-e h^{\prime} tr)
have $t r$-tsp-set': tr $\in i$-terms-set h^{\prime} tsp
using tr-tsp-set get-tr0 heap-only-stamp-ch-terms-set terms-hosc by blast
have (list-ex (occurs (${ }^{\prime \prime} x^{\prime \prime}$, int (addr-of-ref vr))) (i-terms-to-terms-e h^{\prime} tsp $)$) $=$ ($\exists t \in i$-term-to-term-e h^{\prime} ' i-terms-set h^{\prime} tsp. occurs (${ }^{\prime \prime} x^{\prime \prime}$, int (addr-of-ref
vr)) t)
using i-terms-to-terms-list-set[OF tsp-acyclic \rceil list-ex-iff by auto
then have list-ex (occurs (${ }^{\prime \prime} x^{\prime \prime}$, int (addr-of-ref vr))) (i-terms-to-terms-e h^{\prime}
tsp)
using occ-tr tr-tsp-set' by blast
then have occurs (${ }^{\prime \prime} x^{\prime \prime}$, int (addr-of-ref vr)) (i-term-to-term-e $\left.h^{\prime} \operatorname{trO}\right)$
by (simp add: ttt)
then have False
using not-occurs by simp
\}
then have terms-scno': \bigwedge tr. tr $\in i$-terms-set h tsp \Longrightarrow stamp-current-not-occurs time vr tr h^{\prime}
using terms-scno by auto
consider (a) tr ${ }^{\prime}=\operatorname{trO} \mid$
(b) $\operatorname{tr}^{\prime} 0$ where
tr'0 $\in i$-terms-set h^{\prime} tsp and $t r^{\prime} \in i$-term-closure $h^{\prime}\left(\right.$ Some $\left.t r^{\prime} 0\right)$
using tr' $^{\prime}$-clos i-term-closure-args $[$ OF get'-trO] by blast
then show \neg occurs (${ }^{\prime \prime} x^{\prime \prime}$, int (addr-of-ref vr)) (i-term-to-term-e h^{\prime} tr $\left.{ }^{\prime}\right)$
proof (cases)
case a
then show ?thesis using ttt not-occurs by presburger

next

case b
then have stamp-current-not-occurs time vr tr'0 h^{\prime}
using terms-scno' get-tr0 heap-only-stamp-ch-terms-set terms-hosc by blast
then have $*$: stamp-current-not-occurs time $\mathrm{vr} t r^{\prime} h^{\prime}$
unfolding stamp-current-not-occurs-def using b(2)
using i-term-closure-trans by blast
then show ?thesis using $t t t *[$ unfolded stamp-current-not-occurs-def] using get $^{\prime}$-tr ${ }^{\prime}$ s'-time ${ }^{\prime}$-term-closure.intros(1) by blast
qed
qed
lemma stamp-current-not-occurs-terms-set:
assumes terms-scno: \bigwedge tr. tr \in i-terms-set h^{\prime} tsp \Longrightarrow stamp-current-not-occurs
time vr tr h^{\prime}
and terms-hosc: heap-only-stamp-changed-ts tsp $h h^{\prime}$
and acyclic: i-term-acyclic h (Some tr0)
and get-tr0: Ref.get h tr0 $=\operatorname{ITerm}(s$, None, $\operatorname{ITermD}(f, t s p))$
and not-occurs: \neg occurs (${ }^{\prime \prime} x^{\prime \prime}$, int (addr-of-ref vr)) (i-term-to-term-e h tr0)
shows stamp-current-not-occurs time vr tr0 h^{\prime}
unfolding stamp-current-not-occurs-def
proof (intro allI impI)
fix $t r^{\prime} s^{\prime}$ is d
assume tr'-clos: tr ${ }^{\prime} \in i$-term-closure $h^{\prime}($ Some tr0)
and get'-tr': Ref.get $h^{\prime} t r^{\prime}=\operatorname{ITerm}\left(s^{\prime}, i s, d\right)$
and s^{\prime}-time ${ }^{\prime}: s^{\prime}=$ Ref.get h^{\prime} time
obtain $s 2$ where get'-tr0: Ref.get $h^{\prime} \operatorname{tr0}=\operatorname{ITerm}(s 2, \operatorname{None}, \operatorname{ITermD}(f, t s p))$
using get-tr0 heap-only-stamp-ch-get-term terms-hosc by blast
have ttt: i-term-to-term-e h tr0 $=i$-term-to-term-e $h^{\prime} \operatorname{trO}$
using acyclic i-term-to-term-only-stamp-changed terms-hosc by fastforce
have i-term-acyclic h^{\prime} (Some tr0)
using acyclic heap-only-stamp-ch-term-terms-acyclic terms-hosc by blast
consider (a) tr ${ }^{\prime}=\operatorname{trO} \mid$
(b) $t r^{\prime} 0$ where
$\operatorname{tr}^{\prime} 0 \in i$-terms-set h^{\prime} tsp and
tr ${ }^{\prime} \in i$-term-closure h^{\prime} (Some tr'0)
using $t r^{\prime}$-clos i-term-closure-args $[$ OF get'-tr0] by blast
then show \neg occurs (${ }^{\prime \prime} x^{\prime \prime}$, int (addr-of-ref vr)) (i-term-to-term-e h^{\prime} tr $\left.{ }^{\prime}\right)$
proof (cases)
case a
then show ?thesis using ttt not-occurs by presburger
next
case b
then have stamp-current-not-occurs time vr tr'0 h^{\prime}
by (simp add: terms-scno)
then have $*$: stamp-current-not-occurs time vr tr ${ }^{\prime} h^{\prime}$
unfolding stamp-current-not-occurs-def using b (2)
using i-term-closure-trans by blast
then show ?thesis using $t t t *[$ unfolded stamp-current-not-occurs-def] using get ${ }^{\prime}$-tr ${ }^{\prime} s^{\prime}$-time ${ }^{\prime}$ i-term-closure.intros(1) by blast
qed
qed
lemma stamp-current-not-occurs-terms-set-None:
assumes hosc: heap-only-stamp-changed-tr tr $h h^{\prime}$
and get-tr: Ref.get h tr $=\operatorname{ITerm}(s$, None, $\operatorname{ITermD}(f$, None $))$
shows stamp-current-not-occurs time vr tr h^{\prime}
unfolding stamp-current-not-occurs-def
proof (intro allI impI)
fix $t r^{\prime} s^{\prime}$ is d
assume $t r^{\prime}$-clos: $t r^{\prime} \in i$-term-closure h^{\prime} (Some tr)
and Ref.get $h^{\prime} t r^{\prime}=\operatorname{ITerm}\left(s^{\prime}, i s, d\right)$
and $s^{\prime}=$ Ref.get h^{\prime} time
obtain s2 where get'-tr: Ref.get h^{\prime} tr $=\operatorname{ITerm}(s 2, \operatorname{None}, \operatorname{ITermD}(f$, None $))$
using hosc get-tr heap-only-stamp-ch-get-term by blast
then have i-term-closure $h^{\prime}($ Some $\operatorname{tr})=\{t r\}$
using i-term-closure-args i-terms-set-None-empty by force
then have $t r^{\prime}$-eq-tr: tr ${ }^{\prime}=t r$ using $t r^{\prime}$-clos by blast
have i-term-acyclic h^{\prime} (Some tr ${ }^{\prime}$)
using get'-tr t-acyclic-step-ITerm tr'-eq-tr ts-acyclic-nil by blast
then have i-term-to-term-e $h^{\prime} \operatorname{tr}^{\prime}=T(f,[])$
by (simp add: get'-tr i-term-to-term-e-terms i-terms-to-terms-nil tr'-eq-tr)
then show \neg occurs (${ }^{\prime \prime} x^{\prime \prime}$, int (addr-of-ref vr)) (i-term-to-term-e h^{\prime} tr ${ }^{\prime}$)
by simp
qed
lemma i-occ-p-sound:
fixes vr:: i-term ref and $t r:: i$-term ref and time:: nat ref and $t d:: i$-term- d and $h::$ heap and fun-term:: term and $s 1::$ nat and $s 2::$ nat
assumes acyclic: i-term-acyclic h (Some tr)
and Ref.get h tr $=\operatorname{ITerm}(s 1$, None, $t d)$
and Ref.get h vr $=\operatorname{ITerm}(s 2$, None, IVarD)
and Some(fun-term, h) $=$ execute (i-term-to-term tr) h
and stamp-current-not-occurs time vr tr h
and r-val: $r=$ occurs (${ }^{\prime \prime} x^{\prime \prime}$, int (addr-of-ref vr)) fun-term
shows $\exists h^{\prime}$. execute $\left(i\right.$-occ-p time $(\operatorname{Some}$ vr) $(\operatorname{Inl}(\operatorname{Some} \operatorname{tr}))) h=\operatorname{Some}\left(r, h^{\prime}\right) \wedge$
heap-only-stamp-changed-tr tr $h h^{\prime} \wedge$
stamp-current-not-occurs' time vr tr h^{\prime}
proof -
let ?occ-vr $=$ occurs $\left({ }^{\prime \prime} x^{\prime \prime}\right.$, int $\left.(a d d r-o f-r e f ~ v r)\right)$

```
let ?occ h tr = ?occ-vr (i-term-to-term-e h tr)
let ?occ-ts h tsp = list-ex ?occ-vr (i-terms-to-terms-e h tsp)
    let ?upd-s h tr f tsp = Ref.set tr (ITerm (Ref.get h time, None, ITermD (f,
tsp))) h
let ?cond tr = \exists h'. execute (i-occ-p time (Some vr) (Inl(Some tr))) h=
    Some(?occ-vr fun-term, h') ^
    heap-only-stamp-changed-tr tr h h'^
    stamp-current-not-occurs' time vr tr h'
{
    fix trs:: i-term ref set
    have trs = UNIV \Longrightarrow ?cond tr
        using acyclic assms(2) assms(3) assms(4) assms(5) acyclic
    proof (induction h trs tr
        arbitrary: fun-term s1 s2 td
        taking:
        \lambdah trs tsp.
                s2.
                    Ref.get h vr = ITerm(s2,None, IVarD)}
                        trs = UNIV \longrightarrow
                (\foralltr \in i-terms-set h tsp. stamp-current-not-occurs time vr tr h)}
                i-terms-acyclic h tsp \longrightarrow
                    (\existsh'. execute (i-occ-p time (Some vr) (Inr tsp)) h=
                    Some (?occ-ts h tsp, h') ^
                        heap-only-stamp-changed-ts tsp h h'^
                        stamp-current-not-occurs'-ts time vr tsp h')
            rule: acyclic-closure-ch-stamp-inductc')
    case (var h trs tr s)
    then have get-tr: Ref.get h tr = ITerm (s,None, IVarD)
        and get-tr': Ref.get h tr = ITerm (s1, None, td)
        and scno: stamp-current-not-occurs time vr tr h
        and acyclic: i-term-acyclic h (Some tr)
            and fun-term: Some (fun-term, h) = execute (i-term-to-term tr) h by
simp-all
    from fun-term acyclic have fun-term = i-term-to-term-e h tr
        using i-term-to-term-value-iff
        by simp
    then have **:(vr=tr) = ?occ-vr fun-term
        using var i-term-to-term-var-none by force
    show ?case using var
        apply (subst i-occ-p.simps,
            simp add: lookup-def update-def tap-def bind-def return-def execute-heap
** )
            using heap-only-stamp-changed-def by blast
    next
        case (link h tr isr s)
        then show ?case by force
    next
```

```
    case (args h trs tr tsp s f fun-term s1 s2 trs')
    then have get-tr: Ref.get h tr = ITerm (s,None, ITermD (f,tsp))
    and get-vr:Ref.get h vr = ITerm (s2, None, IVarD)
    and acyclic: i-term-acyclic h (Some tr)
    and fun-term-val:Some (fun-term,h)= execute (i-term-to-term tr) h
    and scno: stamp-current-not-occurs time vr tr h
    and trs-val: trs = UNIV by blast+
    have fun-term-e: fun-term = i-term-to-term-e h tr
    by (metis acyclic fun-term-val i-term-to-term-value-iff)
    show ?case
    proof (rule case-split)
    assume s-eq-time:s}=\mathrm{ Ref.get h time
    then have *: ᄀ ?occ-vr fun-term
        using scno[unfolded stamp-current-not-occurs-def] fun-term-e
            get-tr i-term-closure.intros(1)
        by fast
    show ?case using s-eq-time
        apply (subst i-occ-p.simps,
            simp add: lookup-def update-def tap-def bind-def return-def execute-heap
                args s-eq-time *)
            by (unfold heap-only-stamp-changed-def, simp)
    next
    assume s-neq-time: s \not= Ref.get h time
    let ?h' = Ref.set tr (ITerm (Ref.get h time, None, ITermD (f,tsp))) h
    have hosc-h-h': heap-only-stamp-changed-tr tr h ? 'h'
    using heap-only-stamp-ch-term[OF get-tr] i-term-closure.intros(1) by simp
    have tsp-acyclic: i-terms-acyclic h tsp
        using acyclic acyclic-terms-term-simp get-tr by blast
    have get'-tr:Ref.get ?h'tr = ITerm(Ref.get h time,None, ITermD (f,tsp))
        by simp
    have tsp-scno: \foralltr\ini-terms-set ?h' tsp. stamp-current-not-occurs time vr tr
?h'
    unfolding stamp-current-not-occurs-def
    proof (intro ballI allI impI)
    fix tr0 tr' s' is d
    assume tr0-tsp-set': tr0 \in i-terms-set ?h' tsp
        and tr'-clos':tr' \in i-term-closure ?h'}(\mathrm{ Some tr0)
        and get'-tr': Ref.get ? h' tr' = ITerm ( }\mp@subsup{s}{}{\prime},is,d
        and s'-time': s' = Ref.get ? ' }\mp@subsup{h}{}{\prime}\mathrm{ time
    then have tr'}\ini\mathrm{ -term-closure ? }\mp@subsup{h}{}{\prime}\mathrm{ (Some tr)
                by (meson get'-tr i-term-closure.intros(1) i-term-closure.intros(3)
i-term-closure-trans)
    then have tr-clos-tr:tr'}\ini\mathrm{ -term-closure h (Some tr)
        using hosc-h-h' heap-only-stamp-ch-closure by blast
    have get-tr': Ref.get htr'}=\operatorname{ITerm}(\mp@subsup{s}{}{\prime},is,d
    proof (rule case-split)
        assume tr' = tr
        then show ?thesis
```

using acyclic get'-tr heap-only-stamp-ch-term-acyclic hosc-h-h' i-term-closure-args-same-cyclic tr'-clos' trO-tsp-set' by blast
next
assume $t r^{\prime} \neq t r$
then show? thesis
using $g e t^{\prime}-t r^{\prime}$ by auto
qed
have s^{\prime}-time: $s^{\prime}=$ Ref.get h time
by (metis (no-types, lifting) heap-only-stamp-ch-get-nat hosc-h-h' s'-time')
have tr0-acyclic': i-term-acyclic ? h^{\prime} (Some trO)
using heap-only-stamp-ch-term-terms-acyclic hosc-h-h' i-terms-set-acyclic tr0-tsp-set ${ }^{\prime}$
tsp-acyclic by blast
have \neg occurs (${ }^{\prime \prime} x^{\prime \prime}$, int (addr-of-ref vr)) (i-term-to-term-e h tr)
using scno[unfolded stamp-current-not-occurs-def] tr-clos-tr get-tr' s'-time
by fast
then show \neg occurs $\left({ }^{\prime \prime} x^{\prime \prime}\right.$, int (addr-of-ref vr)) (i-term-to-term-e ? $\left.h^{\prime} \operatorname{tr}{ }^{\prime}\right)$ using tr0-acyclic ${ }^{\prime}$ heap-only-stamp-ch-sym hosc-h-h' i-term-closure-acyclic i-term-to-term-only-stamp-changed tr'-clos' by metis
qed
have get't$^{\prime}$-vr: Ref.get $? h^{\prime}$ vr $=\operatorname{ITerm}$ (s2, None, IVarD)
by (metis (no-types, hide-lams) Ref.get-set-neq Ref.unequal get-tr get-vr i-term.inject i-term-d.distinct(1) snd-conv)
have tsp-acyclic': i-terms-acyclic ? h^{\prime} tsp
using heap-only-stamp-ch-terms-acyclic hosc-h-h'tsp-acyclic by blast
have hosc-h-h'-trs: heap-only-stamp-changed trs $h ? h^{\prime}$
using hosc-h-h' trs-val get-tr heap-only-stamp-ch-term by auto
have i-terms-closure $? h^{\prime}$ tsp $=i$-terms-closure h tsp
using heap-only-stamp-ch-terms-closure hosc-h-h' by presburger
obtain $h^{\prime \prime}$ where
IH-exec: execute (i-occ-p time (Some vr) $\left(\right.$ Inr tsp)) ? $h^{\prime}=$ Some (?occ-ts ? h^{\prime} tsp, $\left.h^{\prime \prime}\right)$ and

IH-hosc: heap-only-stamp-changed-ts tsp ? $h^{\prime} h^{\prime \prime}$ and
IH-concl: stamp-current-not-occurs'-ts time vr tsp $h^{\prime \prime}$
using args.hyps(1) hosc-h-h'-trs get'-vr trs-val tsp-scno tsp-acyclic' by blast
show ?case
proof (rule case-split)
assume i-terms-set ? h^{\prime} tsp $=\{ \}$
then have tsp-none: tsp $=$ None
using i-terms-set-empty-iff by simp
then have fun-term $=T(f,[])$
by (simp add: acyclic fun-term-e get-tr i-term-to-term-terms i-terms-to-terms-nil)

```
    then have \(*: \neg\) ? occ-vr fun-term
        by \(\operatorname{simp}\)
    have \(* *\) : heap-only-stamp-changed-tr tr \(h\)
        (Ref.set tr (ITerm (Ref.get h time, None, ITermD (f, None))) h)
        using hosc-h-h' tsp-none by auto
    have \(* * *\) : stamp-current-not-occurs' time vr tr
        (Ref.set tr (ITerm (Ref.get h time, None, ITermD (f, None))) h)
        using stamp-current-not-occurs-terms-set-None
        get-tr hosc-h-h' tsp-none by blast
    show ?thesis
        by (subst \(i\)-occ-p.simps, subst \(i\)-occ-p.simps,
            simp add: lookup-def update-def tap-def bind-def return-def execute-heap
                args s-neq-time tsp-none \(* * * * * *)\)
    next
    assume tsp-set-not-empty: \(i\)-terms-set \(? h^{\prime}\) tsp \(\neq\{ \}\)
    have \(i\)-terms-closure ? \(h^{\prime} t s p \subseteq i\)-term-closure ? \(h^{\prime}\) (Some tr)
        using get'-tr i-term-closure-args by blast
    then have hosc: heap-only-stamp-changed-tr tr ? \(h^{\prime} h^{\prime \prime}\) using IH-hosc
        get'-tr heap-only-stamp-ch-antimono by meson
    have fun-term': i-term-to-term-e ? \(h^{\prime}\) tr \(=\) fun-term
    using acyclic fun-term-e hosc-h-h' i-term-to-term-only-stamp-changed by
auto
    have occ-tr-eq-occ-tsp: ?occ-vr fun-term \(=\) ?occ-ts \(h\) tsp
        by (simp add: acyclic fun-term-e get-tr i-term-to-term-e-terms)
    also have occ-tr-eq-occ'-tsp: ... \(=\) ? occ-ts ? \(h^{\prime}\) tsp
    using \(i\)-terms-to-terms-only-stamp-changed '[OF tsp-acyclic get-tr hosc-h-h]
        by presburger
    have occ'-tr-eq-occ'-tsp: ?occ ? \(h^{\prime}\) tr \(=\) ? occ-ts \(? h^{\prime}\) tsp
        by (simp add: fun-term' occ-tr-eq-occ'-tsp occ-tr-eq-occ-tsp)
    have hosc-h-h': heap-only-stamp-changed-tr tr \(h h^{\prime \prime}\)
    using heap-only-stamp-ch-trans hosc hosc-h-h' heap-only-stamp-ch-closure
        by (metis (no-types, lifting))
    have \(i\)-terms-closure \(h^{\prime \prime}\) tsp \(\subseteq i\)-term-closure \(h^{\prime \prime}\) (Some tr)
    using \(i\)-term-closure-args IH-hosc get'-tr heap-only-stamp-ch-get-term by
blast
    have fun-term \({ }^{\prime \prime}:\) i-term-to-term-e \(h^{\prime \prime}\) tr \(=\) fun-term
        using acyclic fun-term-e hosc-h-h" i-term-to-term-only-stamp-changed
by auto
    have ttt-tsp \({ }^{\prime \prime}: i\)-terms-to-terms-e \(h\) tsp \(=i\)-terms-to-terms-e \(h^{\prime \prime}\) tsp
        using get-tr hosc-h-h" i-terms-to-terms-only-stamp-changed' tsp-acyclic
by blast
    have tr-acyclic': \(i\)-term-acyclic ? \(h^{\prime}\) (Some tr)
        using get'-tr t-acyclic-step-ITerm tsp-acyclic' by blast
    have terms-set'-tsp-to \({ }^{\prime \prime}: i\)-terms-set \(? h^{\prime}\) tsp \(=i\)-terms-set \(h^{\prime \prime}\) tsp
        using IH-hosc get'-tr heap-only-stamp-ch-terms-set by blast
    then have scno- \(h^{\prime \prime}\) : stamp-current-not-occurs' time vr tr \(h^{\prime \prime}\)
        using stamp-current-not-occurs'-terms-set IH-concl IH-hosc fun-term"
\(g e t^{\prime}-t r\)
```

```
            occ-tr-eq-occ-tsp terms-set'-tsp-to" tr-acyclic' ttt-tsp"
            by (metis (no-types))
            have ?occ-ts ? h' tsp = ?occ-vr fun-term
            using fun-term' occ'-tr-eq-occ'-tsp by blast
            then show ?case
            by (subst i-occ-p.simps,
            simp add: lookup-def update-def tap-def bind-def return-def execute-heap
                args s-neq-time IH-exec hosc-h-h'' scno-h'')
    qed
    qed
next
    case (terms-nil h)
    then show ?case
    proof (intro allI impI, goal-cases)
        case 1
        then show ?case
        by (subst i-occ-p.simps,
            simp add: lookup-def update-def tap-def bind-def return-def execute-heap,
                simp add: heap-only-stamp-ch-refl i-terms-to-terms-nil)
    qed
next
    case (terms h trs tthisr tsr tsnextp)
    then have get-tsr: Ref.get h tsr = ITerms (tthisr, tsnextp) by blast
    show ?case
    proof (intro impI allI, goal-cases)
    case (1 s2)
    then have get-vr:Ref.get h vr = ITerm (s2, None,IVarD)
        and terms-scno:
            \ t r . t r ~ \in ~ i - t e r m s - s e t ~ h ~ ( S o m e ~ t s r ) \Longrightarrow
                stamp-current-not-occurs time vr tr h
        and terms-acyclic: i-terms-acyclic h (Some tsr)
        and trs-val: trs = UNIV
        by blast+
    from terms-acyclic obtain tdestr d' s' where
        exec-ifind: execute (i-find (Some tthisr)) h=Some(Some tdestr, h) and
        tdestr-mem: tdestr }\in\mathrm{ i-term-chain h tthisr and
        get-tdestr:Ref.get h tdestr = ITerm(s',None, d')
        proof (cases h Some tsr rule: i-terms-acyclic.cases,
            goal-cases step-ITerms)
        case (step-ITerms ts2ref tref)
        have tref = tthisr
            using get-tsr step-ITerms(4) by simp
        then show ?case
            using i-find-some step-ITerms(1) step-ITerms(3) by blast
        qed
    have thisr-acyclic: i-term-acyclic h (Some tthisr)
        using terms-acyclic get-tsr i-terms-set.intros i-terms-set-acyclic
```

i-terms-sublists.self get-tsr by blast
have exec-ifind': execute (i-find (Some tthisr)) $h=$ Some (Some tdestr, h) using exec-ifind thisr-acyclic
i-find-heap-change-is-uc by blast
have tdestr-thisr-closure: tdestr $\in i$-term-closure h (Some tthisr) using tdestr-mem i-term-chain-subset-closure by blast
have thisr-terms-set-tsp: tthisr $\in i$-terms-set h (Some tsr) using get-tsr i-terms-set.intros i-terms-sublists.self get-tsr by blast
have tdestr-ttt: Some (i-term-to-term-e h tdestr, h) $=$ execute (i-term-to-term tdestr) h
using i-term-closure-acyclic i-term-to-term-value tdestr-thisr-closure thisr-acyclic
by presburger
have stamp-current-not-occurs time vr tthisr h
using terms-scno
by (simp add: tthisr-terms-set-tsp)
moreover have tdestr-clos-subset-tthisr-clos:
i-term-closure h (Some tdestr) $\subseteq i$-term-closure h (Some tthisr) using i-term-closure-trans tdestr-thisr-closure by blast
ultimately have scno-tdestr: stamp-current-not-occurs time vr tdestr h using stamp-current-not-occurs-def by blast
have tdestr-acyclic: i-term-acyclic h (Some tdestr)
using i-term-closure-acyclic tdestr-thisr-closure thisr-acyclic by auto
obtain h^{\prime} where
IH-exec:
execute (i-occ-p time (Some vr) (Inl (Some tdestr))) h=Some (?occ h
tdestr, h^{\prime}) and
IH-hosc: heap-only-stamp-changed-tr tdestr $h h^{\prime}$ and
IH-scno: stamp-current-not-occurs' time vr tdestr h^{\prime}
using terms.IH[OF - heap-only-stamp-ch-refl
tdestr-thisr-closure trs-val get-tdestr get-vr tdestr-ttt scno-tdestr tdestr-acyclic] by blast
have tdestr-clos-subset-tsr-clos:
i-term-closure h (Some tdestr) $\subseteq i$-terms-closure h (Some tsr)
using tdestr-clos-subset-tthisr-clos tthisr-terms-set-tsp by auto
have hosc-tsr: heap-only-stamp-changed-ts (Some tsr) $h h^{\prime}$
using heap-only-stamp-ch-antimono IH-hosc tdestr-clos-subset-tsr-clos by
blast
have scno-tsnextp: \forall tr $\in i$-terms-set h tsnextp. stamp-current-not-occurs time vr tr h
by (simp add: get-tsr i-terms-set-insert terms-scno)
have tsnextp-acyclic: i-terms-acyclic h tsnextp
using acyclic-terms-terms-simp get-tsr terms-acyclic by blast
have tsr-acyclic': i-terms-acyclic h^{\prime} (Some tsr)
by (meson heap-only-stamp-ch-terms-acyclic hosc-tsr terms-acyclic)
have get'tst $^{\prime}$: Ref.get h^{\prime} tsr $=I$ Terms (tthisr, tsnextp)
using get-tsr heap-only-stamp-ch-get-terms hosc-tsr by auto
have ttt-tdestr: i-term-to-term-e h tthisr $=i$-term-to-term-e h tdestr using i-term-to-term-chain tdestr-mem thisr-acyclic by presburger
then have ttt-tsr: i-terms-to-terms-e h (Some tsr) $=$
i-term-to-term-e h tdestr $\#$ i-terms-to-terms-e h tsnextp
by (simp add: get-tsr i-terms-to-terms-e-step terms-acyclic)
then have ttt-tsr': i-terms-to-terms-e $h^{\prime}($ Some tsr $)=$
i-term-to-term-e h^{\prime} tdestr \# i-terms-to-terms-e h^{\prime} tsnextp using get'-tsr tsr-acyclic' hosc-tsr i-term-to-term-only-stamp-changed i-terms-to-terms-e-step tdestr-acyclic thisr-acyclic ttt-tdestr by presburger

```
have scno-tsr: stamp-current-not-occurs'-ts time vr (Some tsr) \(h^{\prime}\)
    unfolding stamp-current-not-occurs-def
proof (intro impI allI ballI)
    fix \(t r t r^{\prime} s^{\prime}\) is \(d\)
    assume not-occ-tsr: \(\neg\) ?occ-ts \(h^{\prime}\) (Some tsr)
        and \(t r\)-tsr-term-set \({ }^{\prime}: t r \in i\)-terms-set \(h^{\prime}\) (Some tsr)
        and \(t r\)-clos \({ }^{\prime}\)-tr: tr \({ }^{\prime} \in i\)-term-closure \(h^{\prime}(\) Some tr)
        and get \(^{\prime}\)-tr \({ }^{\prime}:\) Ref.get \(h^{\prime} t r^{\prime}=\operatorname{ITerm}\left(s^{\prime}, i s, d\right)\)
        and \(s^{\prime}\)-time \({ }^{\prime}: s^{\prime}=\) Ref.get \(h^{\prime}\) time
    have not-occ'-tdestr: \(\neg\) ? occ \(h^{\prime}\) tdestr
        using ttt-tsr' not-occ-tsr by auto
    show \(\neg\) ?occ \(h^{\prime}\) tr \({ }^{\prime}\)
proof (rule case-split)
    assume \(t r^{\prime} \in i\)-term-closure \(h^{\prime}\) (Some tdestr)
    then show ?thesis
        using IH-scno[unfolded stamp-current-not-occurs-def] not-occ'-tdestr
            \(s^{\prime}\)-time \({ }^{\prime}\) get'-tr \({ }^{\prime}\) by blast
next
    assume \(t r^{\prime} \notin i\)-term-closure \(h^{\prime}\) (Some tdestr)
    then have get-tr': Ref.get \(h t r^{\prime}=\operatorname{ITerm}\left(s^{\prime}, i s, d\right)\)
        using \(I H\)-hosc get \({ }^{\prime}\)-tr \({ }^{\prime}\)
        heap-only-stamp-ch-closure heap-only-stamp-ch-get-term-nclos by force
    have tr-tsr-term-set: tr \(\in i\)-terms-set \(h\) (Some tsr)
        using heap-only-stamp-ch-terms-set IH-hosc tr-tsr-term-set' by auto
        have tr-clos-tr: tr \({ }^{\prime} \in i\)-term-closure \(h\) (Some tr)
            using IH-hosc heap-only-stamp-ch-closure tr-clos'-tr by auto
        have \(s^{\prime}\)-time \({ }^{\prime}: s^{\prime}=\) Ref.get \(h\) time
            using \(I H\)-hosc heap-only-stamp-ch-get-nat \(s^{\prime}\)-time \({ }^{\prime}\) by auto
        have \(\neg\) ? occ \(h t r^{\prime}\)
            using terms-scno[unfolded stamp-current-not-occurs-def]
                tr-tsr-term-set tr-clos-tr get-tr \({ }^{\prime} s^{\prime}\)-time \({ }^{\prime}\) by fast
    moreover have \(i\)-term-to-term-e \(h\) tr \({ }^{\prime}=i\)-term-to-term-e \(h^{\prime}\) tr \({ }^{\prime}\)
    using IH-hosc i-term-closure-acyclic i-term-to-term-only-stamp-changed
```

i-terms-set-acyclic terms-acyclic tr-clos-tr tr-tsr-term-set by blast ultimately show ?thesis by fastforce

qed

qed
show ?case
proof (rule case-split)
assume occ-tdestr: ?occ h tdestr
then have $*$: ?occ-ts h (Some tsr) using $t t t-t s r$ by simp
show ?thesis
apply (subst i-occ-p.simps, simp add: lookup-def tap-def bind-def return-def execute-heap get-tsr exec-ifind IH-exec occ-tdestr $*$ terms-scno)
using scno-tsr hosc-tsr by auto
next
assume not-occ-tdestr: \neg ? occ h tdestr
obtain $s 2^{\prime}$ where get'-vr: Ref.get h^{\prime} vr $=\operatorname{ITerm}\left(s 2^{\prime}\right.$, None, $\left.I \operatorname{VarD}\right)$
using get-vr IH-hosc
heap-only-stamp-ch-get-term by blast
have hosc-h-h'-trs: heap-only-stamp-changed trs $h h^{\prime}$
using heap-only-stamp-ch-antimono hosc-tsr trs-val by blast
have tsnextp-acyclic': i-terms-acyclic h^{\prime} tsnextp
using IH-hosc heap-only-stamp-ch-terms-acyclic tsnextp-acyclic by blast
have scno-tsnextp ${ }^{\prime}: \bigwedge$ tr. tr $\in i$-terms-set h^{\prime} tsnextp \Longrightarrow
stamp-current-not-occurs time vr tr h^{\prime}
unfolding stamp-current-not-occurs-def
proof (intro allI impI)
fix $t r t r^{\prime} s^{\prime}$ is d
assume tr-terms'-tsnextp: tr $\in i$-terms-set h^{\prime} tsnextp and tr-clos'-tr: tr ${ }^{\prime} \in i$-term-closure $h^{\prime}(S o m e ~ t r)$ and get'-tr': Ref.get $h^{\prime} t r^{\prime}=\operatorname{ITerm}\left(s^{\prime}, i s, d\right)$ and s-eq'-time: $s^{\prime}=$ Ref.get h^{\prime} time
have not-occurs'-tdestr: \neg ?occ h^{\prime} tdestr using hosc-h-h'-trs i-term-to-term-only-stamp-changed not-occ-tdestr tdestr-acyclic by auto
show \neg occurs (${ }^{\prime \prime} x^{\prime \prime}$, int (addr-of-ref vr)) (i-term-to-term-e h'tr')
proof (rule case-split)
assume $t r^{\prime} \in i$-term-closure h^{\prime} (Some tdestr)
then show ?thesis using IH-scno[unfolded stamp-current-not-occurs-def] not-occurs'-tdestr get'-tr' s-eq'-time by fast
next
assume tr'-not-clos'-tdestr: tr ${ }^{\prime} \notin i$-term-closure h^{\prime} (Some tdestr)
then have get-tr': Ref.get $h t r^{\prime}=\operatorname{ITerm}\left(s^{\prime}, i s, d\right)$
using IH-hosc get'-tr' heap-only-stamp-ch-diff-in-clos
heap-only-stamp-ch-tr-sym by metis
moreover have tr-terms-tsnextp: $t r \in i$-terms-set h (Some tsr)
using $I H$-hosc tr-terms'-tsnextp
get'-tsr heap-only-stamp-ch-terms-set i-terms-set-insert by blast

```
        moreover have tr'-clos-tr: tr ' }\ini\mathrm{ -term-closure h (Some tr)
            using IH-hosc
                heap-only-stamp-ch-closure tr-clos'-tr by blast
    moreover have }\mp@subsup{s}{}{\prime}=\mathrm{ Ref.get h time
    using heap-only-stamp-ch-get-nat hosc-h-h'-trs s-eq'-time by presburger
    ultimately have }\neg\mathrm{ ? occ h tr'
    using terms-scno[unfolded stamp-current-not-occurs-def] by blast
    then show ?thesis
    by (metis heap-only-stamp-ch-sym hosc-h-h'-trs i-term-closure-acyclic
        i-term-to-term-only-stamp-changed i-terms-set-acyclic tr-clos'-tr
        tr-terms'-tsnextp tsnextp-acyclic')
    qed
qed
obtain h" where
    IHn-еxec:
        execute (i-occ-p time (Some vr) (Inr tsnextp)) h' = Some(?occ-ts h'
tsnextp, h') and
            IHn-hosc: heap-only-stamp-changed (i-terms-closure h'tsnextp) h' h'
and
        IHn-scno: stamp-current-not-occurs'-ts time vr tsnextp h'
        using terms.hyps(1)[rule-format,
            OF - hosc-h-h'-trs get'-vr trs-val scno-tsnextp' tsnextp-acyclic \ by fast
        have i-terms-closure h tsnextp\subseteqi-terms-closure h (Some tsr)
        by (simp add: get-tsr i-terms-set-insert)
        then have i-terms-closure h' tsnextp\subseteqi-terms-closure h' (Some tsr)
    using heap-only-stamp-ch-terms-closure hosc-tsr by auto
then have heap-only-stamp-changed-ts (Some tsr) h' h'
    using IHn-hosc
    by (simp add: heap-only-stamp-ch-antimono)
then have *: heap-only-stamp-changed-ts (Some tsr) h h'
    using heap-only-stamp-ch-ts-trans hosc-tsr by blast
have get'\prime-tsr: Ref.get h'\prime tsr = ITerms (tthisr, tsnextp)
    using IHn-hosc get'-tsr heap-only-stamp-ch-get-terms by force
have tsr-acyclic'\prime: i-terms-acyclic h'' (Some tsr)
    using IHn-hosc heap-only-stamp-ch-terms-acyclic using tsr-acyclic' by
blast
have tdestr-acyclic': i-term-acyclic h' (Some tdestr)
    using IH-hosc heap-only-stamp-ch-term-terms-acyclic tdestr-acyclic by
blast
have thisr-acyclic': i-term-acyclic \(h^{\prime}\) (Some tthisr)
using IH-hosc heap-only-stamp-ch-term-acyclic thisr-acyclic by blast
have ttt-tdestr": \(i\)-term-to-term-e \(h^{\prime \prime}\) tthisr \(=i\)-term-to-term-e \(h^{\prime \prime}\) tdestr
using * IH-hosc i-term-to-term-only-stamp-changed tdestr-acyclic tdestr-acyclic \({ }^{\prime}\)
thisr-acyclic thisr-acyclic' ttt-tdestr by auto
have ttt-tsr \({ }^{\prime \prime}\) : \(i\)-terms-to-terms-e \(h^{\prime \prime}(\) Some tsr \()=\) i-term-to-term-e \(h^{\prime \prime}\) tdestr \# i-terms-to-terms-e \(h^{\prime \prime}\) tsnextp
```

using get"-tsr i-terms-to-terms-e-step tsr-acyclic" ttt-tdestr" by presburger
have scno ${ }^{\prime \prime}$-tsr: stamp-current-not-occurs'-ts time vr (Some tsr) $h^{\prime \prime}$
unfolding stamp-current-not-occurs-def
proof (intro impI ballI allI)
fix $t r t r^{\prime} s^{\prime}$ is d
assume not-occ"-tsr: \neg ? occ-ts $h^{\prime \prime}$ (Some tsr)
and tr-tsr-term-set ${ }^{\prime \prime}:$ tr $\in i$-terms-set $h^{\prime \prime}$ (Some tsr)
and $t r^{\prime}$-clos ${ }^{\prime \prime}$-tr: tr ${ }^{\prime} \in i$-term-closure $h^{\prime \prime}$ (Some tr)
and get $^{\prime \prime}$-tr': Ref.get $h^{\prime \prime} t r^{\prime}=\operatorname{ITerm}\left(s^{\prime}, i s, d\right)$
and s^{\prime}-time ${ }^{\prime \prime}: s^{\prime}=$ Ref.get $h^{\prime \prime}$ time
have not-occ"'-tdestr: \neg ?occ-ts $h^{\prime \prime}$ tsnextp using ttt-tsr " not-occ" ${ }^{\prime \prime}$-tsr by force
have not-occ'-tdestr: \neg ? occ h^{\prime} tdestr using not-occ "'tsr IHn-hosc i-term-to-term-only-stamp-changed tdestr-acyclic' ${ }^{\prime t t-t s r^{\prime \prime}}$ by simp
have $t r^{\prime}$-acyclic ${ }^{\prime \prime}$: i-term-acyclic $h^{\prime \prime}$ (Some tr)
using i-term-closure-acyclic i-terms-set-acyclic tr'-clos ${ }^{\prime \prime}$-tr tr-tsr-term-set" ${ }^{\prime \prime}$ tsr-acyclic" by blast
then have tr'-acyclic': i-term-acyclic h^{\prime} (Some tr)
using IHn-hosc heap-only-stamp-ch-sym heap-only-stamp-ch-term-acyclic by blast
have $t t t$ - h^{\prime} - $h^{\prime \prime}$-tr $r^{\prime}: i$-term-to-term-e $h^{\prime} t r^{\prime}=i$-term-to-term-e $h^{\prime \prime} t r^{\prime}$ using IHn-hosc i-term-to-term-only-stamp-changed tr'-acyclic' by
presburger
have $t t t-h$ - $h^{\prime \prime}$-tr': i-term-to-term-e h tr ${ }^{\prime}=i$-term-to-term-e $h^{\prime \prime} t r^{\prime}$
using * IH-hosc heap-only-stamp-ch-term-acyclic heap-only-stamp-ch-tr-sym i-term-to-term-only-stamp-changed tr'-acyclic' by blast
consider (a) tr ${ }^{\prime} \in i$-terms-closure $h^{\prime \prime}$ tsnextp \mid
(b) tr' $\notin i$-terms-closure $h^{\prime \prime}$ tsnextp and $t r^{\prime} \in i$-term-closure $h^{\prime \prime}$ (Some tdestr) \mid
(c) tr ${ }^{\prime} \notin i$-terms-closure $h^{\prime \prime}$ tsnextp and tr ${ }^{\prime} \notin$ i-term-closure $h^{\prime \prime}$ (Some tdestr)
by fast
then show \neg ?occ $h^{\prime \prime} t r^{\prime}$
proof (cases)
case (a)
then show ?thesis
using IHn-scno[unfolded stamp-current-not-occurs-def] not-occ"-tdestr s^{\prime}-time ${ }^{\prime \prime}$ get" ${ }^{\prime \prime}$-tr ${ }^{\prime}$ by blast
next
case (b)
then have Ref.get $h^{\prime} t r^{\prime}=\operatorname{ITerm}\left(s^{\prime}, i s, d\right)$ using $I H$-hosc get' ${ }^{\prime \prime}$-tr ${ }^{\prime}$ heap-only-stamp-ch-closure heap-only-stamp-ch-get-term-nclos IHn-hosc heap-only-stamp-ch-terms-set by fastforce

```
            moreover have tr' }\ini\mathrm{ -term-closure h' (Some tdestr)
                    using IHn-hosc b(2) heap-only-stamp-ch-closure by auto
            moreover have }\mp@subsup{s}{}{\prime}=\mathrm{ Ref.get }\mp@subsup{h}{}{\prime}\mathrm{ time
                            using IHn-hosc heap-only-stamp-ch-get-nat s'-time" by auto
                            ultimately have \negoccurs ("x', int (addr-of-ref vr)) (i-term-to-term-e
h'tr')
                            using IH-scno[unfolded stamp-current-not-occurs-def]
                                    not-occ'-tdestr by blast
                            then show ?thesis using ttt-h'- -h''tr' by simp
                next
            case (c)
            then have Ref.get h' tr' = ITerm ( }\mp@subsup{s}{}{\prime},is,d
                    using IHn-hosc get''-tr' heap-only-stamp-ch-get-term-nclos
                        heap-only-stamp-ch-terms-closure by fastforce
                            then have Ref.get htr'}=\operatorname{ITerm}(\mp@subsup{s}{}{\prime},is,d
                            using c(2)
                            * IH-hosc heap-only-stamp-ch-closure heap-only-stamp-ch-get-term-nclos
                    by force
                            moreover have tr i i-terms-set h (Some tsr)
                            using * heap-only-stamp-ch-terms-set tr-tsr-term-set" by blast
                            moreover have tr' }\ini\mathrm{ -term-closure h (Some tr)
                            using * heap-only-stamp-ch-closure tr'-clos''-tr by blast
                            moreover have s'=Ref.get h time
                            using * heap-only-stamp-ch-get-nat s'-time" by presburger
                            ultimately have }\neg\mathrm{ ? occ h tr'
                            using terms-scno[unfolded stamp-current-not-occurs-def]
                            by blast
                    then show ?thesis
                            using ttt-h-h''-tr' by argo
            qed
            qed
            have ?occ-ts h' tsnextp = ?occ-ts h' (Some tsr)
                            using hosc-h-h'-trs i-term-to-term-only-stamp-changed not-occ-tdestr
tdestr-acyclic ttt-tsr' by auto
            then have **: ?occ-ts h' tsnextp = ?occ-ts h (Some tsr)
                    using i-terms-to-terms-only-stamp-changed
                    hosc-h-h'-trs i-terms-sublists.self terms-acyclic by presburger
            show ?thesis
            apply (subst i-occ-p.simps,
                    simp add: lookup-def tap-def bind-def return-def execute-heap
                    get-tsr exec-ifind IH-exec IHn-exec not-occ-tdestr ** scno"'-tsr)
                    using * by simp
            qed
        qed
        qed
    }
    then show ?thesis
        using assms by presburger
qed
```

```
lemma i-occurs-sound:
    fixes vr:: i-term ref
        and tr:: i-term ref
        and time:: nat ref
        and td :: i-term-d
        and h:: heap
        and fun-term:: term
        and s1:: nat
        and s2:: nat
    assumes acyclic: i-term-acyclic h (Some tr)
    and get-tr:Ref.get h tr = ITerm (s1,None,td)
    and get-vr:Ref.get h vr = ITerm (s2, None,IVarD)
    and fun-term-val: Some(fun-term, h) = execute (i-term-to-term tr)h
    and time-consistent: Ref.get h time \geq i-maxstamp h (Some tr)
shows \existsh'. execute (i-occurs time (Some vr) (Some tr)) h=
    Some(occurs (''x', int (addr-of-ref vr)) fun-term, h') ^
    heap-only-stamp-changed-tr tr (Ref.set time ((Ref.get h time) + 1)h) h'^
    stamp-current-not-occurs' time vr tr h'
proof -
    let ?h' = Ref.set time (Suc (Ref.get h time)) h
    have honc: heap-only-nonterm-changed h? 'h'
        using heap-only-nonterm-chI typerep-term-neq-nat typerep-terms-neq-nat
        by force
    then have tr-acyclic': i-term-acyclic ? ' h' (Some tr)
    by (simp add: heap-only-nonterm-ch-term-acyclic[OF honc acyclic])
    have tr-h': \(x::i-term ref) y. Ref.get h x = y \Longrightarrow Ref.get ? ' }\mp@subsup{h}{}{\prime}x=
        using heap-only-nonterm-ch-get-term[OF honc] by fastforce
    have tr-h: \bigwedge(x::i-term ref) y. Ref.get ? }\mp@subsup{h}{}{\prime}x=y\Longrightarrow\mathrm{ Ref.get }hx=
        using heap-only-nonterm-ch-get-term[OF honc[symmetric]] by fastforce
    obtain fun-term' where
        fun-term-val': Some (fun-term', ?h') = execute (i-term-to-term tr) ?h'
        using i-term-to-term-value[OF tr-acyclic] by metis
    define r where
        r-val: r = occurs (''x', int (addr-of-ref vr)) fun-term'
    have scno: stamp-current-not-occurs time vr tr ? ?'
        unfolding stamp-current-not-occurs-def
    proof (intro allI impI, rule FalseE)
    fix tr' s}\mp@subsup{s}{}{\prime}\mathrm{ is }
    assume tr'-clos':tr' }\ini\mathrm{ i-term-closure ? 'h' (Some tr)
        and get'-tr':Ref.get ? }\mp@subsup{h}{}{\prime}t\mp@subsup{r}{}{\prime}=ITErm ( s',is,d
        and s'-time': s' = Ref.get ?h' time
    have i-term-acyclic ?h' (Some tr')
        by (fact i-term-closure-acyclic[OF tr-acyclic' tr'-clos'])
    then have tr'-acyclic: i-term-acyclic h (Some tr')
        using heap-only-nonterm-ch-term-acyclic[OF honc[symmetric]] by blast
    have tr'-clos: tr' }\mp@subsup{\mp@code{l}}{}{\prime}\mathrm{ i-term-closure h (Some tr)
        using heap-only-nonterm-ch-closure honc tr'-clos' by auto
    have maxstamp-tr': i-maxstamp h (Some tr') \leqi-maxstamp h (Some tr)
```

using acyclic i-maxstamp-closure-trans tr'-clos by blast
have $s^{\prime}=S u c\left(\right.$ Ref.get h time) using s^{\prime}-time ${ }^{\prime}$ unfolding Ref.get-def Ref.set-def by simp
moreover have $s^{\prime} \leq i$-maxstamp h (Some tr)
using time-consistent maxstamp-tr ${ }^{\prime}$ tr-h[OF get'-tr $]$ i-maxstamp-is-max acyclic tr'-clos by blast
then have $s^{\prime} \leq$ Ref.get h time using time-consistent by fastforce
ultimately show False by force

qed

obtain $h^{\prime \prime}$ where
res-exec: execute (i-occ-p time $($ Some vr $)($ Inl $($ Some tr $))) ? h^{\prime}=$ Some $\left(r, h^{\prime \prime}\right)$
and
res-hosc: heap-only-stamp-changed-tr tr $? h^{\prime} h^{\prime \prime}$ and
res-scno: stamp-current-not-occurs' time vr tr $h^{\prime \prime}$
using i-occ-p-sound $\left[\right.$ OF tr-acyclic ${ }^{\prime}$ tr- $h^{\prime}\left[\right.$ OF get-tr] tr - $h^{\prime}[$ OF get-vr $]$ fun-term-val ${ }^{\prime}$ scno r-val] by blast
have presv: i-term-structure-presv h ? h^{\prime}
by (simp add: heap-only-nonterm-ch-get-terms honc tr-h)
have i-term-to-term-e h tr $=i$-term-to-term-e ? h^{\prime} tr
using i-term-to-term-get-presv[OF acyclic presv] by blast
then have fun-term-eq: fun-term $=$ fun-term'
by (metis case-prod-conv fun-term-val fun-term-val' option.simps(5))
show ?thesis unfolding i-occurs-def
by (simp add: bind-def lookup-def tap-def update-def execute-heap res-exec res-hosc res-scno r-val fun-term-eq)
qed
end

