
A Machine Learning Approach to
Predicting Passwords

Christoffer Olsen

Kongens Lyngby 2018
IMM-B.Eng-2018

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk IMM-B.Eng-2018

Summary (English)

The goal of the thesis is to investigate whether machine learning models can
be used in predicting the sequence of human-created passwords, collected from
publicly available database-leaks.

Using a combination of 1-dimensional convolutional layers and dense layers, it
is possible to train a machine learning model to give a probabilistic evaluation
of password sequences. With this property, it is possible to generate probable
passwords along with being able to give a password a strength, based on how
likely the machine learning model is to predict the given password.

Passwords generated from the model can be used as dictionary with hashcat, to
perform password cracking on hashed passwords. However, the generated pass-
words are not as efficient at password cracking as popular password dictionaries
as rockyou.txt, meaning that using machine learning for password prediction
still lacks a bit behind when it comes to password cracking.

ii

Summary (Danish)

Målet for denne afhandling er at undersøge hvorvidt maskinlæringsmodeller kan
blive brugt til at forudsige sekvensen af menneskeskabte kodeord, indsamlet fra
offentlig tilgængelige database-lækager.

Ved brug af en kombination mellem 1-dimensionelle convolutional lag og dense
lag, er det muligt at træne en maskinlæringsmodel til at give en sandsynligheds-
mæssig evaluering af kodeord. Med denne egenskab er det ligeledes muligt at
generere sandsynlige kodeord, baseret på hvor sandsynligt det er at, maskinlæ-
ringsmodellen forudsiger det givne kodeord.

Kodeord genereret fra modellen kan blive brugt som en ordbord sammen med
værktøjet hashcat, til at udføre ’password cracking’ på hashede kodeord. De ge-
nererede kodeord er dog ikke lige så effektive til at knække kodeord som nuvæ-
rende kodeordsordbøger som rockyou.txt, betydende at kodeords-forudsigelse
ved brug af maskinlæring er lidt bagud, når det kommer til at knække kodeord.

iv

Preface

This thesis was prepared at DTU Compute in fulfillment of the requirements
for acquiring a B.Eng in Software Technology.

The thesis deals with predicting passwords using machine learning techniques.
The thesis also deals with the implications of being able to predict password
sequences and which practical uses it can have.

The thesis consists of background information about password cracking and the
different types of methods of how to perform it. The machine learning aspect
will be used to predict password sequences and use these for password cracking
and other purposes.

Lyngby, 31-January-2018

Christoffer Olsen

vi

Contents

Summary (English) i

Summary (Danish) iii

Preface v

1 Introduction 1
1.1 Hash . 1
1.2 Current methods . 2

1.2.1 Password Cracking . 2
1.3 Paper using similar approaches 3

1.3.1 Fast, Lean and Accurate 3
1.4 Password Attributes . 3

2 Data 5
2.1 Available Data . 5

2.1.1 XSplit . 5
2.1.2 OwnedCore.com . 5

3 Methods and Implementation 7
3.1 Performance of different attack-styles using hashcat 7

3.1.1 Dictionary attack . 7
3.1.2 Dictionary + rule set attack 9
3.1.3 Very large dictionary attack 10
3.1.4 Bruteforce attack . 11
3.1.5 Comparing the methods 13

3.2 Neural Networks for password sequence prediction 14
3.2.1 Data representation . 14
3.2.2 Building the model . 15

viii CONTENTS

3.2.3 Training the model . 15
3.2.4 Generating Passwords . 18

3.3 Measuring password strength with neural networks. 21
3.4 Password cracking using generated passwords 22

4 Discussion and Further work 27
4.1 Practical use . 27
4.2 Improvements to the implementation 28

4.2.1 Manipulate the random number generator 28
4.2.2 Different Machine Learning models or data representations 28

5 Conclusion 31

Bibliography 33

Chapter 1

Introduction

The purpose of this project is to explore the possibilities of using machine learn-
ing to predict passwords. Furthermore, it will be investigated how well a ma-
chine learning model compares with today’s standard techniques of password
guessing, with tools such as hashcat and its dictionary attack method. Lastly
the results will be discussed, determining the model’s effectiveness and how it
might be improved and also which practical implications such a model can have
for measuring password strength and password cracking/guessing.

1.1 Hash

A hashing algorithm is a mathematical function that, given a piece of data,
attempts to create a unique sequence of bytes, such that no other input of
different data will create the same unique sequence of bytes. This enables a way
to store passwords so that it is possible to verify the correctness of a password
provided by the user, while it is not possible to reverse the algorithm to retrieve
the original cleartext passwords.
Example: Given someone’s password password, when it is hashed via the MD5
hashing function, the resulting MD5 hash, will always be:
‘5f4dcc3b5aa765d61d8327deb882cf99’.

2 Introduction

1.2 Current methods

1.2.1 Password Cracking

1.2.1.1 John the Ripper (JtR)

John the Ripper (JtR) is a software tool that attempts to crack passwords by
computing a hash function on a sequence of characters, and then compares
whether the output is identical to the hash of the password attempting to be
cracked. If they are identical, the passwords should also be identical.

In practice, the tool is optimally used together with a list or dictionary of
common passwords, which then computes the hashes and compares the values.
Additionally, to improve the the performance, one can choose to apply a ’rule
set’ to the dictionary, performing changes to the passwords, by for example,
appending numbers to end, or replacing e’s with 3’s (also known as LeetSpeak).
These rule sets are built based on common password-choosing behavior ob-
tained from user accounts of leaked databases, from websites such as MySpace
and LinkedIn, just to name a few.

With regards to computation, JtR is primarily used with the Central Process-
ing Unit (CPU), which does not scale well when wanting to compute billions of
hashes fast and efficiently.

1.2.1.2 Hashcat

Due to the simplicity of computing a hash function, it was attempted to dis-
tribute the computation across multiple cores with the help of Graphics Pro-
cessing Units (GPUs) with their many-core architectures.
Hashcat is a tool which purpose and general idea, is similar to JtR, but utilizing
GPUs instead of CPUs for computation of the hash functions. A current gener-
ation GPU can compute up to 30 GHashes/s [Gos17]. That is 30, 000, 000, 000
hashes a second, using the MD5 hashing algorithm.
Because of its computation speed, hashcat is the preferred password cracking
tool, if one has the hardware.
Hashcat will be used as the primary password cracking tool, for this project.

1.3 Paper using similar approaches 3

1.3 Paper using similar approaches

1.3.1 Fast, Lean and Accurate

Fast, Lean and Accurate [MUS+16], is a research paper targeted towards, mak-
ing a better and more efficient model for measuring password strengths. The pa-
per explores current methods for password guessing and proposes a new method
for password guessing, using Artificial Neural Networks. The neural network
turns out to be quite efficient at generating passwords that are being chosen by
humans.
As one of the questions they wanted to explore was, if it is possible to represents
a password’s strength in real-time, in for example, a website. Due to a neural
network’s high demand for disk space and computation power, it represented
some issues achieving this result. With the help of Monte-Carlo search and
pre-computing guess-numbers from the neural network output, they were able
to measure a password’s strength with less than 1 MegaByte of space and a re-
sponse time below 100 ms. These numbers allowed it to be represented real-time
on a website, using JavaScript.

1.4 Password Attributes

There are numerous attributes one could look at to evaluate a password’s
strength.
One could look at the password’s structure such as which characters were used,
its ordering and its length.

• length - is the number of characters of the password

• characters sets - is the different classes of characters included in the pass-
word. I.e. loweralphanum (Lowercase Alphanumerical), means that the
password consists solely of lowercase characters from the English alphabet
[a-z] including at least one number between [0-9].

• ordering - is the structure of the password, which character set is first
and which comes after. I.e. stringdigit (sequence of characters followed
by digits).

Let’s look at a few password examples and give them some attributes.

4 Introduction

• password - length: 8 - character sets: loweralpha - ordering: allstring.

• dtu123 - length: 6 - character sets: loweralphanum - ordering: stringdigit.

• 321PassWord - length: 11 - character sets: mixedalphanum - ordering:
digitstring.

In general, a password is considered more secure the longer it is, the more dif-
ferent character sets it uses and its ordering is complex. These all increases the
number of combinations to try, before an attacker manages to guess the correct
one.

To retrieve these statistics given a list of passwords, a tool called pipal [Woo14],
can be quite useful.

Chapter 2

Data

2.1 Available Data

2.1.1 XSplit

In November 2013 a Livestreaming service called XSplit was compromised, and
their entire customer database was leaked, see https://haveibeenpwned.com/
PwnedWebsites#XSplit.

For this project, 100, 000 random unique passwords from the leak, will be used
for measuring and comparing password cracking performance for different attack
methods.

2.1.2 OwnedCore.com

In August 2013, a website called OwnedCore.com got its database leaked due
to an SQL-injection vulnerability found on their website,
see https://haveibeenpwned.com/PwnedWebsites#OwnedCore. The vulnera-
bility allowed an attacker to extract OwnedCore.com’s entire user database, re-
vealing about 800,000 entries of usernames, e-mail addresses, IP-addresses and

https://haveibeenpwned.com/PwnedWebsites#XSplit
https://haveibeenpwned.com/PwnedWebsites#XSplit
https://haveibeenpwned.com/PwnedWebsites#OwnedCore

6 Data

the user’s hashed password. Below is an example of how an entry from the
database leak would look like, with a few character blurred-out for anonymity:

The values are colon-separated like in the following format:
<username>:<e-mail>:<ip-address>:<hashed password>:<salt>

The website is built upon a well-known forum framework called vBulletin. vBul-
letin hashes each user’s password using the following hashing scheme:

MD5(MD5(password) + salt)

So it first hashes the password with md5, then hashes the md5-hashed password
together with a 3-character sequential salt, using md5 again.

When a database is leaked, one of the first things malicious actors do, is at-
tempt to "crack" the passwords. This is usually done utilizing many GPU’s
and the tools described in Section 1.2.1.2 on page 2. This is done to match up
cleartext passwords with usernames and e-mail addresses.

Because people have a tendency to reuse passwords, these database leaks al-
low attackers to attempt to login with a user’s e-mail and password on other
websites, such as Facebook or Twitter, obtaining unauthorized access to user
accounts of which websites haven’t been compromised.

The database leak will be used to train a neural network, to predict password
sequences.

Chapter 3

Methods and
Implementation

3.1 Performance of different attack-styles using
hashcat

There are several methods to cracking passwords, such as bruteforce attacks,
dictionary attacks or dictionary attacks with word mutations.

In this section it will be shown how well different methods perform, using hash-
cat, as in how many guesses it performs, before it cracks a password. The pass-
words to crack are from a public database-leak, as mentioned in Section 2.1.1
on page 5.

3.1.1 Dictionary attack

A very common and highly successful attack, when it comes to password crack-
ing, is using a list of top-most passwords that have been leaked in the past, and
sorted by how often the password was used, putting the most frequent password
at the top and the less frequent passwords at the bottom. That is exactly how

8 Methods and Implementation

the dictionary, rockyou.txt was made.

Running hashcat using the dictionary attack method with rockyou.txt man-
aged to crack around 15% of the password hashes. Let’s look at how many of
the passwords were cracked, versus how many guesses were performed.

Figure 3.1: The number of passwords cracked as function of the number of
guesses for rockyou.txt

From Figure 3.1 it becomes apparent that most of the passwords that were
cracked using the rockyou.txt dictionary attack, were cracked at the begin-
ning of guesses. This correlates with the fact, that the list had been sorted after
how often people uses those passwords.

The top of the rockyou.txt list looks like the following, with the number of
occurrences on the left, as in what it is sorted by, and the password on the right.

3.1 Performance of different attack-styles using hashcat 9

Very weak passwords such as only using numbers and passwords with short
length, are present at the top.

After the the most probable passwords had been cracked, the graph flattens
out a bit more, and for the remaining number of guesses, less passwords were
cracked.
After around 14 million guesses, roughly 15, 000 passwords had been cracked.
14 million guesses might sound like a lot, but recall the cracking speed that is
achievable as mentioned in Section 1.2.1.2 on page 2, meaning that the pass-
words were cracked in under a second.

3.1.2 Dictionary + rule set attack

Another very common attack, is using a rule-based approach on top of a dictio-
nary. This method takes each word (password) of the dictionary and mutates
the word, to guess passwords that are similar to it.

Consider the base-word summer, the rule set applies several mutations to the
word such as: Summer2017, Summer1234, Summ3r, just to name a few. In this
example, using the rockyou.txt dictionary with a relatively basic rule set called
nsa64.rule [NSA16], around 30% of the password hashes were cracked.

Figure 3.2 on the following page looks very similar to the one with just the
dictionary, in terms of shape. However, just about double the amount of hashes
were cracked compared to without a rule set. The number of guesses on the
other hand had increased to roughly 11, 000, 000, 000.

This suggests that applying a rule set is usually less efficient, when it comes
to minimizing the number of guesses, but with a high cracking speed of up to

10 Methods and Implementation

Figure 3.2: The number of passwords cracked as function of the number of
guesses for rockyou.txt + nsa64.rule

30 billion a second, shows little to no difference in time, when it comes to crack-
ing the hashes in practice. While the number of guesses had increased almost
1000-fold, the cracking time remained extremely quick.

3.1.3 Very large dictionary attack

Given the relatively successful dictionary attack with rockyou.txt, which is a
small list of just over 14 million entries, and the high password cracking, using
a huge list would therefore be a great candidate.

weakpass_2a.txt is a collection of password from numerous database leaks and
holds a whopping 7, 884, 602, 871 passwords [wea]. weakpass_2a.txt is sorted
alphabetically with the shortest passwords first.

Looking at Figure 3.3 on the next page, it is apparent that weakpass_2a.txt
is not sorted after most probable passwords, and is more evened out between
password cracks and guesses.

This attacks managed to crack almost all 100, 000 passwords, showing the power

3.1 Performance of different attack-styles using hashcat 11

Figure 3.3: The number of passwords cracked as function of the number of
guesses for a very large dictionary

of knowing many user-chosen passwords and thereby the password-choosing be-
haviour of humans.

3.1.4 Bruteforce attack

Lastly, the very exhaustive method of a bruteforce attack’s performance was
tested. The bruteforce attack was initialised to guess every combination of
characters, among the set: [a-z],[A-Z],[0-9] excluding special characters, be-
tween password lengths of 1-8 characters. Some quick calculations reveals that
the number of guesses it has to perform is:

721 + 722 + 723 + 724 + 725 + 726 + 727 + 728 ≈ 7.324e14 (3.1)

This number is substantially larger than those for the other methods, meaning
that it will take a while for it to compute all the guesses. For this test, it
was computing hashes at a speed of around 47, 000 MH/s, resulting in a total
running time of just over 4 hours and 20 minutes. In this test, the bruteforce
attack managed to crack 41.8% of the hashes.

In Figure 3.4 on the following page it is shown that users, luckily, do not tend
to choose passwords with short length, as the majority of hashes are cracked

12 Methods and Implementation

Figure 3.4: The number of passwords cracked as function of the number of
guesses for an 8 character bruteforce attack

at a higher number of guesses, recalling that the method tries short passwords
first, and increments the length every time.

As seen in Figure 3.4 bruteforce attacks are very exhaustive and are not very
efficient. They require a lot more guesses compared to how many hashes it
cracks. It is, however, very thorough.

Bruteforce attacks, tend to lose their effectiveness when users choose passwords
greater than 8 characters, as increasing the length of the password by one, in-
creases the number of different combination exponentially. In fact, a bruteforce
attack with the character set from the test of a password with length 9, takes:

729

47 · 109
≈ 1, 106, 383⇒

1, 106, 383

3, 600

24
≈ 12.8days (3.2)

Which for most purposes is considered, too much. It does however, prove the
point that a few extra characters can improve your chance that a password is not
cracked if a database, where you have an account, gets hacked or compromised.

3.1 Performance of different attack-styles using hashcat 13

3.1.5 Comparing the methods

To sum up the different attack methods’ performance, they are compared in a
graph in Figure 3.5.

Figure 3.5: The number of passwords cracked as function the number of
guesses for all methods

The graph shows that when it comes to cracking hashes, with the fewest number
of guesses, a probabilistic approach is most successful, namely the rockyou.txt
dictionary attack. However, it also does not manage to crack as many as the
other methods.

When applying a rule set to the dictionary attack, the number of passwords
cracked, is doubled, however, requiring a quite significant extra number of
guesses.

The large-list proved to be the most successful of these attacks, managing to
crack almost all of the hashes.

Lastly, it is seen that the bruteforce attack, requires an immense amount of
guesses compared to how many passwords it managed to crack and is therefore
much less efficient.

14 Methods and Implementation

3.2 Neural Networks for password sequence pre-
diction

For building and training the model, a framework called keras [C+15], was used.
Keras provides an easy method of building, training and optimizing machine
learning models while also using the tensorflow [AAB+15] backend for cutting-
edge performance.

3.2.1 Data representation

The general idea was to build a model, that could predict the following charac-
ter based on the previous characters. To achieve this, the data was represented
as matrices.
Consider the password oblivion, the model starts off by having the first char-
acter o in an n-dimensional vector, depending on the length of the longest
password of the training set. It then learns that given the first character, the
next character will be b. The second time around, it loads in 2 characters, and
learns that given the sequence ob, the next character is likely to be l. This
process is repeated until it reaches the password’s last character.

So for all passwords in the training set, it learns from them, the probabili-
ties of which character is next, given a sequence of characters.

Programmatically, the password is loaded into n arrays of m length, where
n is the length of the longest password in the training set and m is the charac-
ter set of which is present in the training set, which in this example is [a-z],
[0-9]. Each index in the arrays of m-length is indicative of a character in the
character set. As an example, the character o is index number 25. So the array,
on the first run-through loads a 1 in index number 25, indicating that, that is
the character to predict, based on. On the following iteration, the contents of
the previous array is shifted up, to allow for a new character in the front-most
position.

3.2 Neural Networks for password sequence prediction 15

3.2.2 Building the model

A few different model implementations were tested, to see which one would bring
the best result without over-fitting.
The idea of using convolutional 1-dimensional layers, was proposed due to their
property of looking at multiple characters at a time. These convolutional 1d
layers turned out to have rather good performance.

Figure 3.6 on the next page shows how the layers are put together and how
they are positioned. Every layer is using the relu activation function, except the
output-layer, which is using softmax. The model starts off with a convolutional
layer with 300 neurons and a filter size of 7. Following that layer, is a dropout
layer, with a 20% fraction rate. Then, a dense layer with 300 neurons followed
by another convolutional layer, but with 200 neurons and a filter size of 5. It
then performs global average pooling followed by a dense layer with 200 neurons
into the output layer with 38 neurons, representing each character in character
set including a line-terminator.

Different combinations of neurons and layers were tested, however, the chosen
structure proved to give the best validation accuracy.

3.2.3 Training the model

For training the model, a system running Ubuntu 16.04.3 LTS, with an In-
tel Core i7-6700K, see https://ark.intel.com/products/88195/Intel-Core-
i7-6700K-Processor-8M-Cache-up-to-4_20-GHz, and 4 Nvidia GeForce GTX
TITAN X, see https://www.geforce.com/hardware/desktop-gpus/geforce-
gtx-titan-x/specifications, was used. The model was split into a parallel
model, using keras’ multi_gpu_model() function from the keras.util package.
The model was then able to use all 4 GPU’s for training, resulting in greater
performance.

The model was trained using the ADAM optimizer and the loss is computed
using the categorical_crossentropy function. The batch-size was set to 32 and
the validation split was set to 20% of the training set.
Early-stopping was also implemented, to stop the training, if the validation-loss
was to dip below the lowest value of the 3 preceding epochs. A few different op-
timizers were tested, such as Stochastic Gradient Descent (sgd) and RMSprop.
However, ADAM appeared to give the best results.

https://ark.intel.com/products/88195/Intel-Core-i7-6700K-Processor-8M-Cache-up-to-4_20-GHz
https://ark.intel.com/products/88195/Intel-Core-i7-6700K-Processor-8M-Cache-up-to-4_20-GHz
https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-x/specifications
https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-x/specifications

16 Methods and Implementation

Figure 3.6: Visualization using keras.util.plot_model() of the chosen
model

3.2 Neural Networks for password sequence prediction 17

The training set used for training, is 150, 000 random passwords from the
database leak as described in Section 2.1.2 on page 5. The training set was
limited in size, due to RAM restrictions because of the large requirements for
the chosen model and data representation.
Among the 150, 000 passwords, duplicate passwords were included, to make the
model predict these types of passwords more often, as they occur more often
among human-chosen passwords. Training the model without duplicates, made
the model predict obvious passwords less often than with, which led to the choice
of including duplicates.

Figure 3.7: The training and validation accuracy as a function of the number
of epochs completed

Figure 3.7 is a plot of how both the model’s training accuracy and validation
accuracy improves as a function of the number of epochs completed, where the
accuracy is how well the model predicts the next character given the previous
sequence of characters.
The graph shows that the training accuracy starts off slightly lower than the
validation accuracy after the first epoch. The accuracy improves quite well dur-
ing the first 10 epochs, but during subsequent epochs the validation accuracy
improves less and less, and by the 22nd epoch, the training process is termi-
nated due to early-stopping. The final validation accuracy is 41.3% and the
final training accuracy is 45.4%.

18 Methods and Implementation

Looking at Figure 3.8, it appears that the loss correlates very well with the
accuracy. The loss is reduced a lot quicker in the first 5 epochs, but during
the subsequent epochs, the loss converges and actually slightly increases, which
triggered the early-stopping.

Figure 3.8: The training and validation loss as a function of the number of
epochs completed

3.2.4 Generating Passwords

To generate passwords using the neural network, a method of sampling random
intervals between [0.0 : 1.0] uniformly, was chosen.

In practice, this means that the model starts off with an empty string, and then
queries the model to list probabilities for each character given the empty string.
In order to get random words, yet probable, the sample between [0.0 : 1.0] is
used. It iterates through each possible character, and sums up the probabilities
from the first character to the k’th character and then to the k+1’th character,
and checks if the sample value is between those to sums of probabilities, if it
is, the character is added to the word and the loops starts over. The following
iteration then queries the model for a new list of probabilities given the char-
acter chosen in the previous iteration. At some point, the model will predict

3.2 Neural Networks for password sequence prediction 19

an ’end-of-password’ index, which will terminate the prediction, finalizing the
password.

With time, the model should generate many probable, but different passwords,
which should look like human-chosen passwords.

Listing 3.1: generate_passwords.py

1 for i in range(NUMBER_OF_PASSWORDS_TO_GENERATE):
2 word = ’’
3 multiprob = 1.0
4 for j in range (20):
5 nextpass = False
6 x = word2matrix(word)
7 x.shape = (1, *x.shape)
8 pred = model.predict(x)
9 samp = random.random ()

10 probs = pred [0]
11 accumsum = cumsum(probs)
12 for k in range(len(probs) -1):
13 if k == 0:
14 if 0 <= samp <= accumsum[k]:
15 multiprob *= probs[k]
16 word += character_set[k]
17 break
18 else:
19 if accumsum[k] <= samp <= accumsum[k+1]:
20 if k+1 == feature_size +1:
21 nextpass = True
22 break
23 multiprob *= probs[k+1]
24 word += character_set[k+1]
25 break
26 else:
27 continue
28 if nextpass:
29 break
30 if i % 1000 == 0:
31 print(str(i) + " took %f seconds" % (time.time()-start_time

))
32 start_time= time.time()
33 lst.append(word+’,’+str(multiprob)+’\n’)

The code snippet is seen in Listing 3.1. It iterates through as many passwords
as desired, and for each password it initializes two variables, an empty password
word, and a multiplicative probability multiprob.

Then for each character to be predicted, which in this case is up to a maxi-
mum of 20 characters, it converts the string, word, to a matrix, suitable for
the model. It predicts the probabilities for each possible character, given the
word followed by a sample of a random floating point number between [0.0 : 1.0]

20 Methods and Implementation

(samp). In addition to the sample, an array of probs’s cumulative probabilities
is computed, with numpy’s cumsum() function

It then moves on to iterating through every possible character’s probability
of being the next character in the sequence. It checks if the value of samp is be-
tween the sum of probabilities from the first character up to the k’th character
and the sum of probabilities from the first character up to the k+1’th character.

If samp is between the two values it then checks if k is equal to the end-of-line
value, if so, the sequence breaks and the nextpass flag is set. The end-of-line
value is to indicate that it is more probable to end the password sequence, than
to add more characters. Otherwise, it multiplies the character’s probabilities
with the multiplicative probability (multiprob) along with adding the k+ 1’th
character to the sequence (word).

When the sequence prediction for each password is over, the password and its
multiplicative probability is added to a list, which is then later written to a csv
file, of which the probability can be used to sort the list by how probable the
password is, potentially resulting in faster guessing.

Generating passwords turns out to be a relatively computationally heavy task.
The model can generate about 100 passwords every second, which of course de-
pends on the length of the passwords generated. The function that is taking the
longest to compute, is the model’s predict function. One optimization that was
done to decrease the computation time, was to use numpy’s cumsum() function
to perform the cumulative sums beforehand, instead of summing the array twice
for every iteration.

The slow generation speed means that, in order to generate as many passwords
that are in the rockyou.txt password list, which is just over 14, 000, 000, is:

14, 000, 000/100 = 140, 000sec ≈ 39hours (3.3)

Bearing in mind that, this is including a quite significant number of duplicate
passwords.

A sample of 4, 000, 000 passwords was generated using the model. After re-
moving duplicate entries, the actual number of unique passwords, resulted to:
963, 691 passwords. This suggests that model might not have trained on a
large enough data-set, or that the model is insufficient for generating that many
unique passwords.

3.3 Measuring password strength with neural networks. 21

3.3 Measuring password strength with neural net-
works.

With help from the neural network described in Section 3.2 on page 14, it is
possible to determine a given password’s probability of being predicted by the
model, which can be translated into a score or password strength. This is very
similar to how Fast, Lean and Accurate [MUS+16] does it.

As a Proof of Concept, a list of 1905 passwords, each with the attributes: length-
8 and loweralphanum (recall Section 1.4 on page 3), from German-speaking users
of the Ownedcore.com-leak, were run through the neural network, and a multi-
plicative probability for each password was computed.

In Table 3.1 and 3.2 on the next page, are the 10 most probable passwords
and the 10 least probable passwords, respectively.
In practice, it means that the model is much more likely to predict the password
oblivion than the password xy2zx9nm, which from a qualitative perspective,
seems reasonable.

Because of this, it is possible to measure a password’s likelihood of being pre-
dicted (its strength), using deep neural networks, where a lower probability is
equal to a stronger password.

An interesting thing to note, that was discovered during adjustment of the
model, is that the more accurate the model is, the higher the probabilities are
for all passwords, suggesting that the model can indeed, be used to predict
passwords.

Password Probability
oblivion 0.002909
asdf1234 0.002900
iloveyou 0.001844
abcd1234 0.001365
hello123 0.001359
internet 0.001254

adamadam 0.001227
password 0.001176
warcraft 0.000705
asshole1 0.000549

Table 3.1: Table of 10 worst 8-char passwords with their respective probability
score

22 Methods and Implementation

Password Probability
gggggggg 2.175686e-30
azbycxdw 6.811967e-32
ipfb5taw 5.245373e-32
69wsxzaq 2.655915e-33
d82q6s8y 2.992962e-34
169575fb 3.261896e-35
g8m468gb 9.193819e-36
ypp88jtj 2.335381e-38
34wrsfxv 2.564595e-42
xy2zx9nm 2.480718e-48

Table 3.2: Table of 10 best 8-char passwords with their respective probability
score

3.4 Password cracking using generated passwords

Following the method in Section 3.1 on page 7, it is feasible to use the generated
passwords as a dictionary or a password list just like in Section 3.1.1 on page 7.
This method will reveal how many passwords of which were generated, is actu-
ally used by regular users in the test set from Section 2.1.1 on page 5. Just as
in Section 3.1 on page 7 the same list of passwords to crack is used. That way a
comparison between standard methods and a machine learning method can be
drawn.

In Figure 3.9 on the facing page it is shown how well the generated passwords
performed. The line nn-generated-passwords represents the complete list of
passwords generated from the model without duplicate entries. The password
list was able to crack just over 1, 000 passwords out of 100, 000. It may not seem
like a lot, but considering that the list consists of just 963, 691 passwords, it is
quite reasonable compared to the rockyou.txt dictionary from Section 3.1.1 on
page 7 of which cracked 15, 000 passwords, but had a list of around 14, 000, 000
passwords. It is also worth noting that the model is trained without uppercase
characters, which are in the rockyou.txt list.

The line nn-generated-passwords-prob-sorted represents a password list
based on the generated passwords, however, with the difference that came from
an idea, to sort the passwords after how likely they are to be predicted, just as
how the password strength was measured in Section 3.3 on the preceding page.
This method should cause the list to crack the same number of passwords, but
crack the more probable passwords faster than an unsorted list. While the
model is built to generate probable passwords, the sampling method still has

3.4 Password cracking using generated passwords 23

some randomness, such that they are not perfectly sorted by probabilities, but
looking at the graph, the line is not completely linear, which is expected from
a randomly sorted list.

The graph shows that, the list sorted by probability, actually cracks more pass-
words within fewer guesses, which was what was expected.

Figure 3.9: The number of passwords cracked as function of the number of
guesses for the passwords generated from the neural network

Another method that was tested with the generated passwords, was applying a
rule set to the dictionary attack, just like it was done with the rockyou.txt list
in Section 3.1.2 on page 9. The results are shown in Figure 3.10 on the following
page and the method proved to be an expected improvement over the list without
a rule set applied. Looking at the line nn-generated-passwords-rules, it
is seen that, around 5, 500 passwords were cracked, but of course with a lot
more guesses performed, ending up at around 61, 000, 000 guesses. The rule
set method was also attempted with the generated passwords sorted by the
probability, which yielded a similar curve difference as in Figure 3.9.

24 Methods and Implementation

Figure 3.10: The number of passwords cracked as function of the number of
guesses for the passwords generated from the neural network +
nsa64.rule

In Figure 3.11 on the facing page, a comparison between the generated passwords
and the widely known rockyou.txt password list, is displayed. The graph shows
that, the rockyou.txt password list performs a lot better than the generated
password in the same number of guesses. The rockyou.txt list manages to
crack around 11, 000 passwords in the same number of guesses that the list of
generated password managed to crack just over 1, 000, suggesting this model
might not be on par with current standard methods of password cracking.

3.4 Password cracking using generated passwords 25

Figure 3.11: The number of passwords cracked as function of the number
of guesses for the passwords generated from the neural network
compared with rockyou.txt

26 Methods and Implementation

Chapter 4
Discussion and Further

work

4.1 Practical use

In practice, the model can have several uses. As shown in Section 3.3 on page 21,
it is possible to give a password a score, depending on how likely the model is
to predict the given password. This can be used for giving users an indication
of how complex or strong their password is before choosing it for any arbitrary
website. The time for it to compute the score is quite quick and is suitable for
a web server solution.

As demonstrated in Section 3.2.4 on page 18, it is possible to generate, in theory,
unlimited passwords, of which are likely to be chosen by humans. However, due
to the current implementation, generating passwords is a very lengthy process
along with the model generating many duplicate passwords. A different imple-
mentation or model might alleviate these issue, to make it more competitive
with current dictionaries such as rockyou.txt.

Another practical use of which require a bit more tuning to work efficiently,
is to use the method of measuring password strength, to sort an already ex-
isting password list by probability to increase the rate of which passwords are
cracked.

28 Discussion and Further work

While this use may not prove very useful considering the extremely fast crack
speeds for the MD5 hash, it can be very useful for cracking much more com-
putationally heavy hashing algorithms such as bcrypt. Utilizing the hardware
used for training the model, the 4 GTX TITANs, the number of bcrypt hashes
it can compute per second is 46, 000 compared to MD5 of which it can compute
69, 000, 000, 000 hashes per second. A huge gap, where the probabilistic sorting
can help in cracking passwords using a lot fewer guesses.

Given, that many database leaks also include users’ email address or which
IP-address they login from, means that it might be desirable to extract pass-
words related to one type of country. With passwords originating from a specific
country, it could be used to train the machine learning model with those country-
specific passwords to improve its predictability for that one country.

Furthermore, one could look at just the domain name of a user’s e-mail ad-
dress, then extract only passwords associated with users of that domain name.
Take the dtu.dk domain for example. It might be achievable to increase the pre-
dictability of the model by training it on passwords of users whose e-mail address
is associated with that domain. In some database leaks, such as LinkedIn, which
is for professional use, many users tend to sign up with work e-mail addresses.

4.2 Improvements to the implementation

4.2.1 Manipulate the random number generator

A suggestion could be to order the probabilities of characters, keeping its map-
ping the each character and then create a random number generator, that sam-
ples a skewed distribution instead of a uniform distribution, to make it generate
more numbers closer to 0.

This could allow the model to generate more passwords of higher probability.

4.2.2 Different Machine Learning models or data repre-
sentations

Further improvements to the model are likely to be available, by using different
models, implementations or hyper parameters.

4.2 Improvements to the implementation 29

One paper [HGAPC17], suggests to use Generative Adversarial Networks (GAN)
for generating passwords, which appears to be quite effective, showing an im-
provement in a couple of today’s standard methods of passwords cracking.

Another paper [XGQ+17], suggests to use Long Short-Term Memory Recur-
rent Neural Networks (LSTM RNN). The results of this method appear to also
perform better than some of today’s methods of password guessing.

Different methods of representing the data or sequences, could possibly improve
how well the model predicts passwords.

30 Discussion and Further work

Chapter 5

Conclusion

It is possible with the help of machine learning models, such as artificial neu-
ral networks, to predict the sequences of passwords. Because of this, it is also
achievable to give a password a strength, based on how likely the model is to
predict the given password.

The model can also be used to generate passwords of which humans are likely
to choose. The generated passwords can then be used for performing pass-
word cracking, using tools such as hashcat with a dictionary-style attack. The
generated passwords from the model does not compete very well with current
password lists, which have been developed on over many years.

The property of measuring password strength, can be used to order already-
known password lists by how likely they are to be predicted by the model. This
helps with cracking passwords hashed with a computationally heavy hashing
algorithm, such as bcrypt, but also when attempting to bruteforce a login, on a
website, with limited login attempts allowed.

The model can be trained relatively quickly, but is very slow at performing the
prediction, for measuring password strength, generating passwords and sorting
password lists by probability. This limits its practical use for large password
lists.

32 Conclusion

Bibliography

[AAB+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfel-
low, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia,
Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Ten-
sorFlow: Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

[C+15] François Chollet et al. Keras. https://github.com/keras-team/
keras, 2015.

[Gos17] Jeremi Gosney. Nvidia gtx 1080 ti hashcat bench-
marks, March 2017. https://gist.github.com/epixoip/
973da7352f4cc005746c627527e4d073/.

[HGAPC17] Briland Hitaj, Paolo Gasti, Giuseppe Ateniese, and Fernando
Perez-Cruz. Passgan: A deep learning approach for password
guessing, 2017.

[MUS+16] William Melicher, Blase Ur, Sean M. Segreti, Saranga Koman-
duri, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor. Fast,
lean, and accurate: Modeling password guessability using neural

https://github.com/keras-team/keras
https://github.com/keras-team/keras
https://gist.github.com/epixoip/973da7352f4cc005746c627527e4d073/
https://gist.github.com/epixoip/973da7352f4cc005746c627527e4d073/

34 BIBLIOGRAPHY

networks. In 25th USENIX Security Symposium (USENIX Se-
curity 16), pages 175–191, Austin, TX, 2016. USENIX Associa-
tion. https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/melicher.

[NSA16] NSAKEY. Password cracking rules and masks for hashcat that
i generated from cracked passwords., June 2016. https://
github.com/NSAKEY/nsa-rules.

[wea] weakpass.com. The most complete compilation of wordlist’s - more
than 1500 in one. contains near 8 billion of passwords with length
from 4 to 25. https://weakpass.com/wordlist/1861.

[Woo14] Robin Wood. Pipal, the password analyser, 2014. https://
github.com/digininja/pipal.

[XGQ+17] Lingzhi Xu, Can Ge, Weidongg Qiu, Zheng Huang, Zheng Gong,
Jie Guo, and Huijuan Lian. Password guessing based on lstm re-
current neural networks, July 2017.

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/melicher
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/melicher
https://github.com/NSAKEY/nsa-rules
https://github.com/NSAKEY/nsa-rules
https://weakpass.com/wordlist/1861
https://github.com/digininja/pipal
https://github.com/digininja/pipal

	Summary (English)
	Summary (Danish)
	Preface
	Contents
	1 Introduction
	1.1 Hash
	1.2 Current methods
	1.2.1 Password Cracking

	1.3 Paper using similar approaches
	1.3.1 Fast, Lean and Accurate

	1.4 Password Attributes

	2 Data
	2.1 Available Data
	2.1.1 XSplit
	2.1.2 OwnedCore.com

	3 Methods and Implementation
	3.1 Performance of different attack-styles using hashcat
	3.1.1 Dictionary attack
	3.1.2 Dictionary + rule set attack
	3.1.3 Very large dictionary attack
	3.1.4 Bruteforce attack
	3.1.5 Comparing the methods

	3.2 Neural Networks for password sequence prediction
	3.2.1 Data representation
	3.2.2 Building the model
	3.2.3 Training the model
	3.2.4 Generating Passwords

	3.3 Measuring password strength with neural networks.
	3.4 Password cracking using generated passwords

	4 Discussion and Further work
	4.1 Practical use
	4.2 Improvements to the implementation
	4.2.1 Manipulate the random number generator
	4.2.2 Different Machine Learning models or data representations

	5 Conclusion
	Bibliography

