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Abstract

A volume sculpting system is presented. The system provides tools
for interactive editing of a voxel raster that is stored in an octree
data structure.

Two different modes of sculpting are supported: Sculpting by
adding and subtracting solids, and sculpting with tools that are
based on a spray can metaphor.

The possibility of extending the method to support multiresolu-
tion sculpting is discussed.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Modeling packages I.4.10 [Im-
age Processing and Computer Vision]: Image Representation—
Hierachical; Volumetric

Keywords: volume rendering, isosurfaces, applications of visu-
alization, multiresolution modeling

1 Introduction

By volume sculpting we will understand the interactive editing of a
3D object represented in a voxel raster. The purpose may be either
shape modeling [3, 7] or the modification of an existing data set [1].

Voxel–based sculpting was introduced by Galyean and Hughes
[3] in 1991 as a new method of creating free form 3D shapes by
interactively editing a model represented in a voxel raster.

The user sculpts by moving a 3D locator around inside the voxel
raster. Every time the locator moves, material is added by adding to
the voxels in the raster in a small area around the locator. Similar
tools exist for removing and smoothing material.

Kaufman and Wang have created another sculpting system where
the tools are based on the notions of carving and sawing [7].

It seems that the tools introduced by Kaufman and Wang cre-
ate more regular shapes, and that they are best suited for arts &
crafts–like objects such as chairs, tables or lamps, while the tools
introduced by Galyean and Hughes allow for freer and more or-
ganic shapes, although the method is not precise enough for objects
of the kind that Kaufman and Wang aimed at.

The different modalities of the tools found in the previous
projects have motivated the present work where the first aim is to
create tools that allow the user to work in both modes.

The second aim concerns the data structure used to contain the
voxel raster: In the previous systems the voxel raster has been
stored in a 3–dimensional array.

The memory requirements of a realistically sized voxel raster are
not prohibitive for a modern workstation but, since a voxel raster
usually contains large homogeneously empty regions, a sparse rep-
resentation would certainly be advantageous.
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2 System overview

The implemented volume sculpting system runs on a UNIX work-
station and uses a mouse for input.

On system start–up the user is presented with agraphicswin-
dow where the visualized voxel model is displayed and the actual
sculpting takes place. Auxiliary windows contain control panels for
adjusting visualization parameters and parameters of the sculpting
tools.

The system provides tools belonging to two different categories

� CSG toolsThe CSG tools are solids that may be subtracted
from (set difference) or added to (set union) the object being
sculpted. These tools are described in section 5.

� Spray toolsThe spray tools are for making small incremental
changes on the surface of the model. With a spray tool the
user may for instance add material to the model by spraying
it onto the surface. Spray tools are described in section 6.

Every time the model is changed, the graphics window is up-
dated, but only the part of the image where the change is visible is
redrawn.

3 Voxel representation

The object being sculpted is represented in a256�256�256 voxel
raster. Each voxel contains a value in the real interval[0; 1], and
the value (denoted the voxeldensity) is represented by 256 discrete
levels.

Each voxel is represented by four bytes. One byte for the density
and three that are reserved for uses related to color and material
properties.

4 Octree data structure and rendering

A typical voxel raster contains large homogeneously empty regions,
and by not representing these regions, it is possible to reduce the
memory requirements substantially.

A traditional pointer based octree data structure [5] has been cho-
sen to represent the voxel raster. An octree may not always be more
compact than an array, but in my experiencealmost anyrealistic
raster is more efficiently represented in an octree than in an array.

The volume is recursively subdivided until either the subdivided
volume is empty, or the subdivision has reached the leaf level. In
the first case the subdivided volume is an empty leaf node that is
represented by a NULL pointer. If the leaf level has been reached a
voxel is inserted. Hence, for volumes of size256 � 256 � 256 the
leaf level is eight, since28 � 28 � 28 = 256� 256 � 256

Visualization is performed with a ray casting technique that ren-
ders isosurfaces in the dataset. The choice of an image order tech-
nique is motivated by the fact that no individual sculpting operation
requires the entire image to be updated, and with an image order
technique, the problem of finding the voxels that contribute to the
part of the image that needs updating is trivially solved [7].



Furthermore, ray casting can be significantly accelerated by the
octree data structure, whereas other methods for fast volume ren-
dering such as volume rendering using hardware supported 3D tex-
turing [9] would be very difficult to combine with an octree data
strucure.

The technique employed is similar to the one used by Levoy [4]
except that the classification is binary, i.e. voxels with densities
greater than the isovalue are wholly opaque, and for the sake of ef-
ficiency, nearest neighbour interpolation is used instead of trilinear
interpolation.

The ray casting is accelerated by skipping over areas of the voxel
raster that are represented by empty octree nodes. When an empty
octree node is encountered, smapling continues from the intersec-
tion point where the ray leaves the node.

5 CSG tools

The CSG tools are function represented solids that can be added
to, or subtracted from the voxel model. The actual operation is
performed when the user presses the mouse button, and a simplified
wireframe model of the tool is used for positioning.

CSG tools are similar to the carving tools in [7], but whereas
the solid is represented by a voxel raster in Kaufman and Wang’s
system, here it is represented by a functionf : R3 ! [0; 1]. A point
x wheref(x) = 1 is inside the solid, a point wheref(x) = 0 is
outside and the area where0 < f < 1 is called the border region.

The important requirements off are that it must be continuous,
and the border region should be of a certain thickness.

If the thickness of the border region is very small compared to the
distance between two voxel centroids, we will almost only obtain
values of 0 or 1, when the function is volume sampled, and we know
from [8] that binary sampling leads toobject space aliasing.

The remedy is a thick border region. A border region of about
three times the distance between two voxel centroids is appropriate.

As an example, a very simple function that represents a sphere
can be defined as

f(x) =

8<
:

1 r < R
R+�b�r

�b
R < r < R+�b

0 R+�b < r
(1)

wherer = jx � x0j is the distance fromx to the centre of the
spherex0.

Figure 1: Two CSG tools

In figure 1 two of the more commonly used CSG tools are shown.

Adding the solid is performed by creating a new voxel model that
is the union of the old voxel model and the solid. Like in [7] this
is done on a “per voxel basis”. For each voxel within the bounding
box of the solid defined byf , we perform

newvox = vox [ f(x) = max(vox; f(x)) (2)

where the pointx is the centroid of the voxel andvox is the density
of the voxel. newvox is the density of the voxel after the opera-
tion. Similarly, it is possible to subtract the solid with the operation
defined by

newvox = vox n f(x) = min(vox; 1� f(x)) (3)

6 Spray tools

With the mouse, the user positions a 2D locator somewhere on the
image of the model being sculpted. When the tool is activated, a
viewing rayis cast from the position of the locator in the graphics
window and into the raster.

The first point on the surface that is hit, becomes the toolscentre
of influence, and an operation is performed in a small (e.g.9�9�9
voxels) area around the centre of influence.

There are two spray tools, themetamattertool and thesmoothing
tool.

The metamatter tool is for adding or subtracting material. For
each voxel in the affected (spherical) area, the following computa-
tion is performed

newvox = min(0;max(1; vox+ i
R � r

R
)) (4)

wherer is the distance from voxelvox to the centre of influence,
i is the intensity, andR is the radius of the affected area. Ifi > 0
material is added, otherwise subtracted. This operation is similar to
the one used in [1].

The smoothing tool works by filtering the voxels in the area
around the centre of influence with a3� 3 � 3 averaging filter.

An important aspect of the spray tools is that modifications are
usually performed in a series. For instance, (with the metamatter
tool) if the user holds down the mouse button and drags the mouse,
a trail of material will be drawn on the surface of the model.

7 Implementation

The system has been written in C++ and tested on SGI/Irix and In-
tel/Linux platforms. All cited measurements have been performed
on the Linux platform which is a Pentium Pro 200 MHz with 64
MB RAM.

8 Sculpted models

Figure 2 shows a crude model of a troll–like creature. The earring
was created with a toroidal CSG tool.

The tongue was created by adding material with the metamatter
tool, and the ear was created mainly by removing material with the
same tool.

Figure 3 shows the most ambitious model yet. The work process
is illustrated in the video accompanying this paper.

The initial shape was a rectangular “slab” of voxels, and in the
beginning of the sculpting process, the overall shape was worked
by adding and removing large amounts of material with the CSG
tools.

Later the features were added, mostly with the metamatter tool,
and the features were smoothed with the smoothing tool. It is inter-
esting to note that the combination of the metamatter tool and the



Figure 2: Troll–like creature

Model Octree size Raster utilization
head 7.65 MB 8.5 %
troll–like creature 6.68 MB 5.9 %
chair 3.73 MB 2.5 %
sphere (unit diameter) 45.59 MB 54 %

Table 1: Sizes and raster utilization

smoothing tool is very well suited for creating smooth, spline–like,
surfaces.

As an example of a furniture model, a chair has been sculpted
(figure 4.) It is made almost exclusively with CSG tools, although
the spray tools have also been employed (especially for the seat).

All the models are sculpted in a raster with a resolution of256�
256 � 256 voxels. The sizes of the cited models and a sphere that
exactly fits the volume, are shown in table 1.

There is a great difference between the time it took to sculpt the
three models. Sculpting the troll (figure 2) took roughly half a day,
while the head (figure 3) took several days. The chair (figure 4) was
sculpted in less than an hour.

The figures 3 and 4 are ray traced images. The sculpted vol
umes were polygonized, using an implicit surface polygonizer by
Jules Bloomenthal [2], and the resultant surfaces were rendered
with POVRay. The other figures were volume-rendered with the
presented system.

9 Performance measurements

Since spray tool operations are performed in a series, it is important
to insure that each individual operation is so fast that a series of
operations feels like one continuous operation.

For most operations with the metamatter tool, between roughly
200 and 600 pixels must be updated for each modification.

Figure 3: Head

During a sessions with a metamatter tool that modifies a7�7�7
area, 999 modifications and image updates were performed. An
average of 205 pixels had to be updated each time, and the average
time for one data modification and image update cycle was 0.031
seconds.

An otherwise identical experiment with an11 � 11 � 11 tool
resulted in an average number of 577 pixels modified per update,
and the average update time was 0.083 seconds.

These numbers yield update rates of between 32 Hz (clearly
real–time) and 12 Hz (near real–time). Measurements were also
carried out for a smoothing tool with a size of9�9�9 voxels. The
result was roughly 7 Hz which is less “near real time”, but in prac-
tice acceptable, and unsurprising since this tool performs a filtering
operation. The timings are summarized in table 2.

Tool type size update rate
metamatter 7� 7� 7 32 Hz
metamatter 9� 9� 9 17 Hz
metamatter 11� 11� 11 12 Hz

smooth 9� 9� 9 7 Hz

Table 2: Spray tool update rates

10 Extending the method to multiresolu-
tion sculpting

The octree data structure has proved to be a very efficient and flex-
ible way of storing the volume, but it has one more important pos-
sibility that has not been explored yet. By allowing voxels to be in-



Figure 4: Chair

serted at different levels in the octree, one would obtain a sparsely
represented voxel raster withdynamic resolution, and this is the
main future goal for this project.

The initial data structure for multiresolution volume sculpting
has been designed, and it is quite similar to the one presented in
section 4, except that there is no leaf level since leaf nodes may be
inserted at any level.

This has two important implications:

� Non–empty homogenous regions may be grouped together
and represented by a voxel at a lower level of subdivision,
thereby storing the volume more efficiently.

� Fine details may be added at a high level of subdivision. This
is especially important, since it enables us to have high reso-
lution only where it is needed.

The basic mode of operation in the multiresolution system will
be much like it is in the system presented, except that when the user
chooses a tool, he not only chooses the type (CSG tool or spray
tool) and size, but also the level of subdivision where voxels are to
be inserted into the octree.

This makes little difference when voxels are added to empty parts
of the octree, and in the case where a tool with a high level of sub-
division is used on an area that is subdivided to a lower level, it is
obviously necessary to subdivide the original area to the same level
as the tool before applying (2), (3) or (4).

When a coarse tool is used on an area with higher level of subdi-
vision, one approach would be to first coarsen (e.g. by averaging)
the target area and then apply the tool.

This approach could easily lead to aliasing, however, and it is
probably a better approach to always let the highest level of subdivi-
sion prevail, and then supply the user with a separate “coarsening”
tool.

11 Conclusions and future work

A system has been created that combines two different modes of
sculpting: Sculpting with CSG tools and sculpting with spray tools.

The first kind of sculpting is very useful for creating large and
regular shapes while the second kind of sculpting allows for organic
and more complex shapes.

The examples all show models that are sculpted from voxelized
primitives, but this need not be the case. Other applications such
as bone or dental reconstruction on the basis of acquired medical
data–sets, are easily envisaged.

While the main scope of my future research will be the exten
sion of the method to multiresolution sculpting, other areas are also
worth studying.

Material properties would make the system more interesting as
a tool for editing acquired data sets. Especially if the effects of
the various tools were made dependent on the kind of material they
operated on.

Many ideas from 2D image manipulation, should be equally use
ful in a volume sculpting context. A deformation tool to twist, bend
or squeeze parts of model would make an important addition, as
would a facility for cutting, copying and pasting volume elements.

Finally, some shapes could be approximated more quickly if the
CSG operations were made ”softer”, and this could probably be
accomplished by adding blending [6] to the set union (2) and set
difference (3) operations.
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