
Public-Key Distribution and
Acquisition services over SMS

Germanas Skurichinas

Kongens Lyngby 2017

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 45 25 30 31
compute@compute.dtu.dk
www.compute.dtu.dk

Summary

In this project we overview development of human communication methods
and their transition into digital communication era, from an information secu-
rity standpoint. We argue that individuals are incompetent at deriving trust
in digital communications, in part because of complicated cryptographic sys-
tems, as well as a lack of Public-Key Infrastructures. We reason for shifting
cryptographic key management responsibilities from individuals to application
developers. Further, we propose a Public-Key Infrastructure hosted on SMS
channel and define Application Programming Interface to provide a necessary
infrastructure required for developers to overtake certificate management.

ii

Preface

This thesis was prepared at DTU Compute in fulfilment of the requirements for
acquiring an M.Sc. in Engineering.

The first part of the document outlines importance of Public-Key cryptogra-
phy in providing secrecy and security in current computer communications. In
the other half, a Public-Key Infrastructure solution is proposed to publish and
manage Public-Key certificates employing Short Message Service (SMS).

This document is self-contained, includes references to information sources used
and images to support the ideas, including third-party images released under
free for non-commercial reuse licenses.

Kgs. Lyngby, June 19, 2017

Germanas Skurichinas

iv

Acknowledgements

First of all, I would like to thank my supervisor Christian Damsgaard Jensen,
most of all for curating computer security studylines and for teaching many
security related topics, that I enjoyed a great deal. Also, I would like to thank
him for all valuable conversations that we had, as well for taking up bureaucracy
related to this project.

Secondly, I would like to thank my colleagues from NorthernVO company for
accommodating my schedule during my studies and thesis writing period as well
as for all the moral encouragement.

I would like to express my deep gratitude to Unwire ApS, for introduction to
mobile networks and mobile network operator activities, as well as for providing
an Android device for testing purposes.

Last, but not least, I would like to thank my colleague students Linas Kaminskas
and Filip Magic for proof reading this document and their feedback.

vi

Contents

Summary i

Preface iii

Acknowledgements v

1 Introduction 1
1.1 Pre-Modern Era Communication 2

1.1.1 Natural (Spoken) Language 3
1.1.2 Messengers and Word Of Mouth 4
1.1.3 Verbal Channel Exploitation 4

1.2 Symbolism and Written Language 4
1.2.1 Writing Known to Few . 5
1.2.2 Writing Becomes Common 6

1.3 Modern Era Communications . 7
1.3.1 Telegraph . 8
1.3.2 Landline . 8
1.3.3 Computer Networks . 9

2 Overview of Public-Key Infrastructure Systems 15
2.1 Public-Key Infrastructure . 15
2.2 Synchronizing Key Servers and OpenPGP 16

2.2.1 PGP Private-Key and Public-Key 16
2.2.2 Typical OpenPGP System Use 17
2.2.3 Synchronizing Key Servers (SKS keyserver) 18
2.2.4 Pros and Cons of PGP . 18

2.3 X.509 and Certificate Authorities 19
2.3.1 Issuing Certificates . 20
2.3.2 Typical use of a CA managed PKI 22

viii CONTENTS

2.3.3 Pros and Cons . 24

3 Motivation 25

4 Public-Key Infrastructure based on SMS channel 27
4.1 Introduction to Mobile networks and SMS services 27
4.2 SMSPKI . 30
4.3 SMSPKI Server-side . 33

4.3.1 SMSPKI Server-side Design 33
4.3.2 SMSPKI Server API Description 38
4.3.3 SMS API Description and Examples 39
4.3.4 HTTPS API Description 40
4.3.5 Important Considerations for SMSPKI’s Server-side . . . 40

4.4 SMSPKI Client-Side . 41
4.4.1 SMS Certificate Manager 43
4.4.2 SMS Certificate Manager API and Internals 44
4.4.3 Considerations for CM Implementation on Mobile Devices 46
4.4.4 SMS Certificate Manager Clients 48

5 Usage of Certificates Registered with SMSPKI 51
5.1 SMSPKI and Client-Server Setup 52
5.2 SMSPKI and Client-Server-Client Setup 53
5.3 SMSPKI and Peer to Peer (P2P) Setup 53
5.4 Mobile Network Security Implication 54

6 Conclusion 55

A Diagrams 57
A.1 Description Supporting Figures 57
A.2 SMSPKI Related Figures . 58
A.3 Request and Response Examples 67

Bibliography 69

Chapter 1

Introduction

Throughout the last two millenniums human interaction have gradually shifted
from direct communication, which required a physical contact, to a more indirect
communication - based on modern computer communication technologies. The
pace of change since invention of telegraph has been particularly radical, thus
we argue that people were unable to adapt to these technological advances with
a comparable competency in relation to pre-modern methods, such as speaking
and writing. In particular, humans are not able to justly gauge trust properties
of an underlying communication method and subsequently unable to adjust their
communication manner to a appropriate for the method used.

Our ambition here is to show that internet protocols and services is falling short
to provide equivalent security properties to our general communications in com-
parison to prior means. In addition, we will explore what relevant mechanisms
technology provides to achieve these goals and what parts of internet services
infrastructure can be enhanced.

When considering communication means from a computer security standpoint it
is customary to describe what security principles (a.k.a security attributes) are
implied for a particular communication method. Security principles of interest
for this discussion will be:

• Confidentiality – secrecy of information in transit, which can include iden-

2 Introduction

tity of communicating parties.

• Integrity – confidence for information to be carried as intended, which can
also provide information restoration and checks whether information has
been altered in transit.

• Availability – accessibility to: communication channel; communication
protocol (knowledge of procedural rules of a method) as well as geographic
access; communicating parties; and communicated information.

• Accountability – identifiability of information source and possible liability
attachments.

• Trust – a believe in reliability and truthfulness associated to a communi-
cation method, channel and communicating parties.

• Forward Secrecy - essentially cryptographic term meaning that exploita-
tion of future communications can’t reveal matter of prior communica-
tions.

We will briefly review archaic and modern mainstream communication methods
to outline major shifts from naturally assumed trust (inherited from communica-
tion method) to an artificial trust systems provided by the current technologies.

Further, we will employ computing terminology, when referring to communica-
tion methods’ details, specifically:

• communicating parties or peers as well as sender and receiver notions,
respectively;

• communication channel – physical means for information transit;

• communication protocol – knowledge of rules and procedures in order to
convey information through communication channel to another party.

1.1 Pre-Modern Era Communication

For our purposes pre-modern times can be split into two development periods:
emergence of spoken language; and creation of writing and symbolism.

1.1 Pre-Modern Era Communication 3

1.1.1 Natural (Spoken) Language

Emergence of vocalised language gave an ability for human (communicating
party) to convey rich information to the parties in its immediate environment,
by using human voice (physical vibrations), thus creating the very first com-
plex communication channel and establishing a new communication method.
Natural language, with all it’s parts, serves as a communication protocol for ex-
changing ideas (information), as well as information encoding tool - structuring
of information in particular manner, according to protocol.

Physical properties of speech and a fact that only another human could pro-
duce verbal speech has limited verbal communications to face-to-face interac-
tions. For better or worse this limitation has created a situation, where both
communicating parties have to be physically present, therefore deriving trust
in communication equivalent to information sensitivity and trustworthiness of
parties present. Following, we can argue that speech provides a considerable
level of integrity and accountability - stemming from mentioned limitations.

Interestingly, the trust in communication is comparable in both public and pri-
vate domains independently and influenced more so by contextual information.
In situations pertaining liability, speech would be taken at face value, and in
argument as ‘your word against mine word’ basis.

Natural language, being a major part of human culture is learned in early pe-
riods of life (with plenty of examples learning additional languages at later
stages of life), thus organically acquiring rules of verbal communication proto-
col. Moreover, considering the large amount of natural languages emerged and
their limited geographic reach, differing natural languages was limited to vari-
ous sub-populations. Consequently, particular communication method was very
accessible (availability) to the societies internally and on the contrary providing
a very limited access to parties coming from a different society/location.

Secrecy was achieved by having a private conversation away from other people.
Interestingly for secrecy purposes private chat has remained the most trusted
communication method and to this day an easily achievable feat in our modern
times. Also, some level of secrecy could although be achieved by using a ‘foreign’
language as means of obfuscating communication. Such method, in computer
security referred as ‘security through obscurity’. As we will see in later chap-
ters, obfuscation in one form or another was the main method in strive for
communication secrecy, until the advent of modern cryptography.

4 Introduction

1.1.2 Messengers and Word Of Mouth

With emergence of the language people gained ability to not only convey infor-
mation to each other, but also for the first time in history, to relay information
to parties physically not present, with the help of the messenger person (proxy
person). Here we consider messenger to be a part of a communication channel.

In typical human experience, information relayed by messengers are inherently
less trustworthy. Hence a receiving party was able to gauge integrity of infor-
mation based on the sensitivity of the information and any available evidence.
Here we can safely assume that verbal communication accountability and secrecy
principles are highly reduced.

1.1.3 Verbal Channel Exploitation

Evidently it is hard to exploit a direct communication, despite the fact, a rogue
party can create a deception for a gullible receiver and exploit this illusory
rapport.

A more likely exploitation vector is impersonating or intimidating a messenger
person, thus trying to exploit situation by false representation. For example a
person could introduce himself as a nobility representative and exploit situation
for private purposes. To fight such attacks people have been including with
a message a limited resource such as relic, personal artefact, likely even a pre-
agreed special code words in the language of the message. Interestingly, coupling
communications with a limited resource continued to be a working strategy to
date, especially in indirect communication methods.

1.2 Symbolism and Written Language

Writing – method to transfer information (ideas) onto a physical medium. Co-
invented and reinvented multiple times during the last 10 millenniums of human
history. Writing have bootstrapped human civilisation by enabling information
flow to coming generations.

Although, having a long evolution period and being as useful as it was for
historic populations, literacy only became widely common only in the last two
centuries. Thus we will briefly overview writing before it became widely spread
and thereafter.

1.2 Symbolism and Written Language 5

1.2.1 Writing Known to Few

Surviving historical writings show it’s very limited use and usually associated
to public domain by nobleman and alike in such areas as religion, governance,
trade and correspondence.

Moreover, continuous development and increase in complexity of writing sys-
tems, such as transition to syllabic writing systems, where words are transcribed
in symbols representing sounds, or growth in volume of symbolic vocabulary -
thus becoming less intuitive and burdened further and wider adoption of writing
as a tool, in ancient societies.

From communication point of view, writing has allowed, for the first time, to
transfer information over distance, where information could be reconstructed
without the physical presence of another human (information source or a mes-
senger). Therefore, for the first time a message could be sent to another party,
without disclosing the message to a person carrying the message. Here we can
start to perceive how the needs for secrecy in personal communication are be-
ing fulfilled. Also, considering abysmal literacy rates at the time in question,
writing was a perfect tool for obfuscating communication to a high degree from
the majority of the public.

If language have provided means to only pass the message orally, through an-
other human, where the message is retained in messengers limited mind, writing
it down presented a plethora of new inventions in communication methods. Par-
ticularly, message could be transferred more precisely (increasing information
integrity) and messenger services could be significantly scaled as message mem-
orisation was not needed, improving accessibility and throughput of a particular
communication method. In addition people tamed birds or used environment
to carry information between parties, for the first time enabling communicating
parties to remote communication, without relying on a third person, further
improving the level of communication secrecy.

With writing becoming an important tool for people in power, opposing groups
and opposed groups need for security qualities in communication grew further.
Written artefacts show that early forms of obfuscating writing was already de-
veloped in ancient Rome and can be traced to ancient Greek times. These first
obfuscation methods relied on letter transposition or substitution techniques
and is considered to be the beginnings of cryptography art.

Even though few cryptographic methods being developed so early in writing
history, cryptography will not become mainstream until the development of
internet in part due to high costs associated to employing cryptographic obfus-

6 Introduction

cation by-hand. Utilisation of such methods further obfuscates communication
adding a layer of secrecy to a communication protocol and thus communication
itself.

1.2.2 Writing Becomes Common

Age of enlightenment has significantly accelerated adoption of writing in euro-
pean populations and already at the beginning of 20th century literacy rates
were as high as 90% in some european countries. With the rise of literacy rates,
communication carriers grew as well and in particular postal and package de-
livery services. This growth had been further accompanied by technological
advances such as transportation system developments. It’s worth mentioning
that these developments improved deliverability and quality of post transit, im-
proving on message integrity in transit, compared to earlier periods.

Sending a letter became a common communication form for over distance com-
munications. Letters could be sent using global postal services. To access this
communication channel sender can buy a post stamp, which can be perceived as
limited resource needed to access the postal services. A letter usually is enclosed
in an envelope on which an appropriate amount of post stamps is placed and
delivered to post collection point.

Party receiving a message (letter), can evaluate the state of an envelope, find
out who is the sender, if any indicated, and start assuming certain trust and
secrecy qualities, such as: if sender is a familiar party; if envelope has any visible
signs of tampering; writing style and other. Further, receiver having built some
expectations of trust in relation to the message will evaluate the content of
the message. These steps are intuitive and natural for receiving party and is
supported by physical evidence.

Furthermore, people have adapted this communication channel for a wide spec-
trum of applications, including for conducting daily business operations in par-
ticular by posting business related documents. A good example of a use case,
would be sending a contract, associated to a legal status of a sender entity.
Such document is considered a viable evidence in the court of justice and can
be used as a liability instrument, thus providing accountability property for this
communication channel. Though this accountability is directly associated to a
legal identity (limited resource) and therefore on the legal system enforcement.

1.3 Modern Era Communications 7

1.2.2.1 Implications

As we seen previously, writing offers an improved method of communication
compared to sending oral messages and even improved certain qualities of com-
munication security, in particular message integrity, slight information secrecy
improvements and accountability, through public law framework, where appli-
cable.

On the other hand, prevalence of written communication, has encouraged soci-
eties in embracing this method and becoming common part of human life. For
the first time a large part of human communications was being transmitted in
public domain and thus became a subject of interest and tampering for various
third parties - here we would like to mark a point in time, where we lost privacy
of our communications.

As we will see, people continue to improve communication methods and their
communication secrecy properties, and how technology solved some security
problems. Interesting to note, that oral and written communication have tran-
sitioned in large part to a new communication channels and has been further
enhanced by these modern channels.

1.3 Modern Era Communications

Intro to digital communications (brief review of early methods) Discovery of
electromagnetism and related developments has enabled information transfer
over physical copper wires, air and later over an optical medium; and again
the original messenger and his alternatives was yet again succeeded by a new
method, only this time it relied on inanimate electromagnetic waves. As these
differing methods matured it provided a wide access to a new kind of communi-
cation methods for a big part of developed society and as expected became the
main means of remote communications.

If electronic communications improved remote communications, as we will see,
technological advances have created an attack vectors on a private conversa-
tions. Now technology can be used to collect and transmit private face to face
conversations, without the knowledge of communicating parties, due to phys-
ical nature of sound, thus degrading secrecy qualities of that communication
method. Although, writing could be used to easily defeat this attack method.

Historically we developed language first and then followed the writing. For dig-

8 Introduction

ital communications writing proved to be rather more suited information struc-
ture for transmission over electromagnetic communication channels, also spoken
communication means were introduced almost half a century later. Moreover,
besides written and spoken information people managed to generalise these com-
munication channels for general purpose information transfer.

1.3.1 Telegraph

Telegraph was the first means to transmit information over distance, without
travelling. It relied on connected electric lines were electromagnetic signal mod-
ulation was used as the method to relay written information. Information relay
required experienced individuals on both ends of line, for message encoding and
decoding into to appropriate, agreed signals, protocol if you will, such as Morse
code. If a message sent over the postal services is referred to as a letter, in the
case of telegraph the message is called a telegram.

To communicate to another party, message sender has to physically deliver his
message to a telegraph service, where telegraph operator would encode the mes-
sage in transfer; and his counterpart on the other side of the line would decode
it on the fly and put it back into written message form. The message, in the
last mile of transfer, would be delivered to receiver by post services or a similar
method.

It is evident that in order to send a message using telegraph we need to dis-
close the message to third parties. Moreover, anybody wiretapping the lines
were able to fully intercept all communications between the end nodes, thus
communication method has drastically reduced secrecy properties. It’s worth
mentioning that a single line between two operators could only be used in one
direction and for a single message at the time - limiting information throughput
and complexity. From an overview we can deduce that telegraph system pro-
vided poor privacy options for it’s users, and due to physical architecture was
not as accessible as post services to the general public.

1.3.2 Landline

With invention of telephone people further developed landline network and by
the 1970 telephone have reached major part of households in the 1st world coun-
tries, with further high penetration levels in the remaining parts of the world.
Moreover, telephone systems allowed people for the first time to communicate

1.3 Modern Era Communications 9

directly to each other over considerable distances in real time without the need
of active assistance from other individuals.

First telephone networks grew locally and organically and separate networks
would be connected by intercity and inter-country relays, first operated by hu-
man operators. Having human operators connecting the parties (addressing)
and managing the line connection meant every communication had to be ini-
tiated by a third party, in addition operator always had access to the same
communication channel to assist parties on the line. This implies that users
could not assign any secrecy properties to this communication channel. Interest-
ingly expectations for telephone communications have not changed significantly
and in current times phone conversations is assumed to be a non-secure private
communication method.

Advancements in microelectronics industry allowed for telecoms to replace hu-
man operators with machine relays and later with fully electronic systems. Par-
ticular shift has created an addressable identifier, in this case phone number, to
connect parties willing to communicate on interconnected network. This address
can be seen as electronic address of a device on the network, in the same manner
as house address on the network of roads. We consider house address as wall
as network address, and phone number, to be a kind of limited resource, which
is also required to access particular communication channel. Furthermore, net-
work address can be associated for a time period to an individual or legal entity
in the same manner as post address is an extension of particular entity, in social
contexts.

1.3.3 Computer Networks

Developments in digital communication technologies and advent of a personal
computer has pushed to adapting landlines and later other more dedicated type
of networks to create an interconnected global computer network - internet. On
this network, machines on the behalf of human programmer and occasionally
end-user are able to communicate to other machines and any user using them,
using a common protocol.

To adapt communication technologies for digital communication purposes, in-
formation is sent in small packets, exactly because of this feature internet is
also called packed-switched network, wherein ‘switching’ implies addressing and
directing packets on the network. The first widely adopted internet protocol
and as to date the most used protocol is called IPv4[P+81]. As a possible re-
placement in 90’s Internet Engineering Task Force (IETF) have defined a next
generation protocol called IPv6[DH14].

10 Introduction

1.3.3.1 Protocols

The biggest differences between IPv4 and IPv6 internet protocols relevant to
our discussion is that on IPv4 networks, not all devices are equally addressable
on the global network. In particular, machines connected to internet using IPv4
is often behind an internet gateway and can easily access machines on the public
network space, though other machines can not directly address packets to this
machine. This discrimination on the network level had both positive and neg-
ative consequences. On one hand it has shielded machines from direct attacks,
on the other hand, it has created a challenge of creating a direct communication
channel between two parties behind internet gateways. Contrary, IPv6 does not
discriminate it’s nodes on the network, where all peers are publicly addressable
and are able to engage in peer-to-peer connections. A similar setup can be found
in phone networks, where a local phone network is connected to a larger network,
through a border gateways placed in between connecting networks; phone users
on both networks can be addressed and reached respectively. Though, IPv6 is
still in it’s early deployment and barely reaches 15% of market penetration [Inc]

While discussing communication technologies based on computer networks it is
convenient to use Open Systems Interconnection model (OSI model), see fig-
ure A.1, where underlying communication channel is divided into 7 protocol
layers, corresponding to particular defined functions of the layer. There is vari-
ous methods to provide communication security properties at every OSI layer,
though application developers usually have access only to Transport layer and
layers above. Introduced IP protocols fall unto layer 3, in this model and is gen-
erally managed by operating system. Most of the communications relevant for
our discussion is carried out through Transport Control Protocol (TCP)[Pos03]
and User Datagram Protocol (UDP)[Pos80].

Moreover, IPv4 and IPv6 both provide Internet Protocol Security (IPsec)[KS06]
suite to provide security mechanisms through cryptographic means on the net-
work layer, though only IPv6 requires a support of these features. Specifically,
IPSec describes protocols for authenticating peers, encrypting payloads for TCP
and UDP packets and further provides a higher level of data integrity.

However, IPsec is rarely provided by default on the networks, as it requires a
prior setup of security elements between nodes wishing to employ suite in ques-
tion. As these management tasks is the responsibility of the computer admin-
istrator, furthermore, protocol is transparent and inaccessible to an application
developer - we can not rely on IP layer for our security purposes, thus in our
conversation we will focus on layers above.

Even though there is a wide range of transport layer protocols available, more

1.3 Modern Era Communications 11

than >60% [Arc] of internet traffic employs predominantly TCP and to a lesser
extent UDP, as an underlying transport protocols. Developers construct session
or application layer protocols above mentioned protocols as per OSI model def-
inition. First widely adopted application protocol standards were not security
oriented and usually transmitted data in plain-text; to enumerate a few: Hyper-
text Transfer Protocol (HTTP), File Transfer Protocol (FTP), TELNET. Later,
due to grown security requirements a Transport Layer Security (TLS) protocol
was developed to offer intermediary security layer first for HTTP [Res00] in par-
ticular and subsequently to other legacy protocols such as FTP, various e-mail
retrieval and transfer protocols. Moreover, a multitude of new general purpose
and specialised protocols was developed were some of them have built-in security
features. For example, a well known protocol amongst computer administrators
and developers is Secure Shell (SSH) protocol, providing communication security
for operating system level tools.

A better known instant messaging (IM) protocols include: Internet Relay Chat
(IRC, security can be provided over TLS layer); Extensible Messaging and Pres-
ence Protocol (XMPP)[SA11], which has TLS security built-in; Session Initia-
tion Protocol (SIP)[SCH+02], with optional TLS security, in large provides Voice
over IP communications; Off-the-Record (OTR)[BGB04] protocol defines secure
message communication protocol, in design similar to OpenPGP e-mail suite.
Though, some of these protocols are suited for a rather more complex services
than a peer to peer, or provide security properties only during data transmission
between service points and is not suitable for our purposes. Out of mentioned
protocol selection, only OTR could fit our requirements, if communication is
transferred with the help another party. Otherwise, remaining protocols could
suit our requirements in peer to peer communications, if applicable.

E-mail communications usually are relied using Post Office Protocol (POP/POP3),
Internet Message Access Protocol (IMAP) and Simple Mail Transfer Protocol
(SMTP). All these non-secure protocols can be upgraded with TLS layer of se-
curity, though as common with (IM) protocols, TLS provides security in these
protocols only between machines relying the messages, but the communication
is stored and processed in plain-text on all end and mid nodes. To provide com-
munication security between communicating parties using email channel, users
have to actively encrypt and decrypt their messages using OpenPGP, S-MIME
or a similar email security system.

In addition, there is a wide range of peer to peer communication protocols,
unfortunately, majority of them are specialising in file-sharing services. Specifi-
cally, for performance reasons, because of large amounts of data these protocols
need to handle, developers did not include strong security features and rather
use payload obfuscation methods. Also interestingly, BitTorrent file sharing
project have created of BitMessage protocol for anonymous trust-less secure

12 Introduction

instant messaging.

Security properties in computer network communications and specifically in
mentioned security protocols are provided by cryptographic algorithms. Utili-
sation of cryptography, also requires more computational time, therefore causing
an additional overhead to the communication channel, in many cases this has
been one of the main factors stopping a wider adoption of cryptography in
everyday computer communication networks.

1.3.3.2 Cryptography role in network communications

Modern cryptography is usually split into symmetric cryptography and asym-
metric cryptography, latter also often referred to as public-key cryptography.
As we will see these two branches of cryptography fulfil very different niches in
communication security requirements.

Symmetric cryptography in practice is used as the main means of communication
obfuscation method for secrecy purposes. Keyword symmetric implies that same
cryptographic key is used for encrypting and decrypting information, therefore
parties obfuscating their communication must share the same key for successful
communication. Another useful application is constructing of a one way function
to transform variable length information into a fixed length - in cryptography
called hash function.

Predictably, asymmetric cryptography uses a pair of keys - key-pair, where
one key can be used to obfuscate information and obfuscation can only be re-
versed with the other key respectively to key-pair. This unique mathematical
mechanisms have allowed for a wide range of useful applications in network
communications and computing in general.

Relevant security mechanisms provided by asymmetric cryptography:

• Authentication, Identification. If one of the keys (public-key) can be
associated with an identity (such public-key is also called a certificate)
and placed in trusted repository (public-key infrastructure) and the party
claiming to possess the other key (private key) can cryptographically prove
that he is the owner then we can assume the identity of that communicat-
ing party with certainty.

• Digital Signatures. If we include a ‘digest’ of a message with a cryp-
tographic hash function encrypted using our private-key bundled with a
message, a receiving party can repeat ‘digestion’ process on the message

1.3 Modern Era Communications 13

and compare to ‘digestion’ decrypted using the public-key of a sender. If
they match receiver can be certain that: contents have not been changed
in transit (integrity); asserting message sender identity.

• Encryption and Symmetric key exchange. Public-key cryptography
can also be used to encrypt small amounts of information and is often used
in securely exchanging symmetric key information, through Diffie-Hellman
or other key exchange mechanism. In strongly authenticated communica-
tions receiver can also be sure that he was an intended destination for
that particular communication as well as anything that is sent to this
party encrypted using his public-key.

As we stressed beforehand, predominantly symmetric cryptography is used for
obfuscating information in transit for privacy and secrecy purposes. Though as
per usual asymmetric cryptography can be used and often is used to identify and
authenticate parties and securely exchange symmetric cryptography security
elements among other use cases. A common occurrence in today’s world is
to derive trust for cryptography based communications based on a public-key
infrastructure.

As we see cryptography is capable of fulfilling our originally stated security
needs. Though an effective use of public-key cryptography requires a working
public-key infrastructure or manual public-key distribution throughout devices
on the network, the latter being not a viable solution for global deployments.
On the other hand, as we will see in chapter 2, current globally available public-
key infrastructures fall short in providing a more general and universal access to
these services. Therefore, limiting effective application of both symmetric and
especially asymmetric cryptography.

14 Introduction

Chapter 2

Overview of Public-Key
Infrastructure Systems

2.1 Public-Key Infrastructure

Public-Key Infrastructure (PKI) system provides security services for managing
public-keys, often in centralised manner. It’s role is to provide public-key sign-
ing, storing, revoking and other key management procedures. There are a few
different types of public-key infrastructures available for a public access. The
main differences between them is the model of how trust qualities are derived
in particular infrastructure, and by which parties the system is supported and
managed, as well as the type of access provided to them.

A common feature among all PKIs is that their primary function is distribution
and management of digital certificates. There is a three widely accepted Dig-
ital Certificate types - X.509 [CSF+08], OpenPGP public-key [CDF+07] and
OpenSSH certificates[LY06]. Even though these formats are not completely
comparable with each other, it is possible to convert one certificate to an-
other format, though such cases occur, but are infrequent. Moreover, there
is a plethora of certificates storage formats available.

Certificates, for storage are encoded using Distinguished Encoding Rules (DER)

16 Overview of Public-Key Infrastructure Systems

format, described in [CSF+08]. As encoding in DER produces binary blob it
is difficult to transmit as text, therefore, it can be further be encoded using
Base64 encoding into a text format. This procedure first introduced and further
described for Privacy Enhanced e-Mail (PEM), defined in [KL93] and [Kal93].
Certificates encoded using this scheme are referred to as certificates in PEM
format.

Furthermore, in the overview of current PKI systems we will see that responsibil-
ities of private-key and certificate management fall on a dedicated administrators
or end-users, where in the first case end-user is often oblivious to existence of
any PKI, and in the latter, user is overwhelmed by certificate management tasks
and the complexity of the system. Later we argue on shifting key-management
responsibilities to an underlying application developers, who are likely to have
more experience in security contexts of digital communications.

2.2 Synchronizing Key Servers and OpenPGP

OpenPGP is an open standard defined in [CDF+07], describing a cryptographic
suite and procedures predominantly used for email signing and encryption/de-
cryption. Though, it can also be used for authentication, identity and infor-
mation signing purposes as well as for data encryption in data-at-rest manner.
Cryptographic services in this system are provided at a layer above an applica-
tion layer in OSI model. OpenPGP can employ Synchronizing Key Servers as
an underlying PKI for centralised key storage and retrieval.

2.2.1 PGP Private-Key and Public-Key

OpenPGP defines it’s own format for packaging both private-key and public-
key, latter is also frequently referred to as certificate. In particular for our
discussion we are interested in parts providing identity (UserID) associations
to public-key as well as unique key references such as Key ID and Digital Key
Fingerprint. Mentioned and unmentioned certificate fields are signed with cor-
responding private-key, therefore certificate and all fields can be self-verified.

Private-key can be protected with a password, in such case user has to unlock
key first so it could be used for information decryption and signing purposes.
Unlocking of a private-key is always done by a PGP key managing application;
unlocked keys are often held in program’s application memory for the remaining
duration of the session.

2.2 Synchronizing Key Servers and OpenPGP 17

Next we will overview a typical communication practice using OpenPGP system.

2.2.2 Typical OpenPGP System Use

To begin using OpenPGP (PGP) a user first has to create a key-pair, this has to
be accomplished with user’s input, either manually in terminal, or in graphical
environment using OpenPGP compatible software. When creating a key-pair
user is required to provide his name and an email address that will be associated
to particular name identity and optionally a password for encrypting private key.
The public-key part corresponding to the private-key is a PGP type certificate,
with specified identity labels and signed using private key. It is important to
note that files generated will be likely stored on the same machine that is used
for generating key-pair and either will be managed by supporting software or
the user himself - to his best abilities.

Once generated, certificate part can be shared with other parties that user might
want to communicate in secrecy. Certificates can be exchanged as files locally or
remotely, though most practical approach is to upload it to a public or private
SKS Keyserver. SKS Keyserver is a public-key infrastructure based on web-of-
trust concept and is the key component relevant to our discussion in this section
and we will overview it in short.

Particularly in email communication PGP can be used for only signing the email
message, or encrypting and signing the whole content of an email. In the case,
where email is being signed only, sender signs ‘digest’ of an email body with his
own private-key, that is to provide a proof of his identity and to ensure integrity
of a message in transit. Here, receiver(s) can use sender’s public-key to decrypt
signature and verify the integrity of the message, if successful.

A user (sender) can start securely communicating with another party (receiver),
only when he has procured certificate - allegedly associated to the receiver, ei-
ther, through mentioned file exchange, or from a relevant SKS Keyserver. Re-
ceivers public-key is used to encrypt symmetric key used for message encryption
as well as signature from the sender included with encrypted message. If receiver
can successfully decrypt the symmetric key and thus the message itself - he can
be sure that he was the intended receiver. Furthermore, if signed ‘digest’ in-
cluded by the sender can be decrypted using public-key associated to his identity,
receiver can assume a level of trust in integrity of the message, identity of the
sender and secrecy of the communication - given that receiver’s private key has
not been compromised.

18 Overview of Public-Key Infrastructure Systems

2.2.3 Synchronizing Key Servers (SKS keyserver)

SKS keyserver is an open source project providing public-key management ser-
vices rooted in web-of-trust model, through HTTP Keyserver Protocol (HKP)
as defined in [Sha03]. With Synchronizing in SKS’ name, developers tried to im-
ply that SKS keyserver can synchronise with a pool of other keyservers, thus can
provide distributed key storage and retrieval infrastructure. SKS is currently
used to support and host a decentralised global pool of keyserver available for
public use, although keyservers and their pools can be configured for either
public or private use.

Keyserver use cases, as defined per HKP, can be divided into personal public-key
and second-party public-key procedures. Regarding users personal public-key,
he can use keyserver to publish the key to be used by other users. In addition,
keyserver supports public-key revocation, though a corresponding private-key is
required to generate a revocation request.

Furthermore, keyserver provides search functions for finding published public-
keys. In searching for a public-key user can use look-up for keywords in certifi-
cates User ID field, search for specific Key ID or Key Fingerprint. Furthermore,
any user can sign another public-key and upload it to a relevant keyserver.
Signing of another certificate can be done on User ID or Key ID, where in the
first case user participates in web-of-trust model and endorses another user’s
identity, according to OpenPGP requirements and in the latter case user cre-
ates certificate chain extending and confirming identity associations to that new
sub-key.

Web-of-trust is a concept to build a complex hierarchies of trust between peers.
Trust in this model is derived from specific public-key endorsements, as men-
tioned, where user signs other users identity and public-key binding, rather than
relying on trusted-third-party. Trust built in this way closely mimics social hu-
man trust network. Furthermore, peers in such PKI system are completely
equal, thus establishing a flat trust network.

2.2.4 Pros and Cons of PGP

OpenPGP provides a strong infrastructure for secure email communications, if
used according to standard, especially following recommendations for securely
managing private-keys and participating in web-of-trust creation by endorsing
each other certificates. Also, for an expert user it provides a flexible model
for managing public keys related to parties of interest, where keys can be im-

2.3 X.509 and Certificate Authorities 19

ported from files, exchanged through another secure communication channel or
downloaded from SKS Keyserver.

PGP is also often used, notably in an open source communities, to sign public
messages in open forums, signing electronic documents as well as any other type
of information such as software packages, code contributions to open source
repository, etc., where identity associations are required.

On the other hand, as study [SBKH06] indicates OpenPGP has a high learning
curve for novice users. Findings show that the main obstacles for users is public-
key certification in particular - publishing public-key and procuring public-key
of a receiving party. Furthermore, it is highly non-intuitive for any person, who
has not been introduced to public cryptography, as to what particularly signing
a message means and if the message will be really decryptable by the recipient
as well as roles of public and private keys.

Moreover, user is responsible for managing his key-pair securely e.g.: have a
strong password protection for a private key; if needed, responsibly manage
key-pair between multiple devices; revoke old keys. Most people find them-
selves overwhelmed with these responsibilities and justifiably so in comparison
to simplicity of username and password protected systems and evident poor
end-user performance.

Also, PGP does not provide Perfect Forward Security as communicating parties
keep using the same public-keys to encrypt the symmetric keys used in message
encryption and, if one of parties private-keys are compromised all collected or
saved communication messages directed to that recipient can be decrypted. For
our point-to-point communication purposes PGP provides too of a narrow range
of communication methods, particularly in it’s current form it’s only suitable
for non-real-time communications, such as email communication or an internet
bulletin board systems. And as we saw it’s a difficult system to use.

2.3 X.509 and Certificate Authorities

As we saw in a section on OpenPGP infrastructure, trust is derived completely
from certificate and it’s properties and any user knowledge held about the certifi-
cate. A different approach is to derive trust from a trusted third-party vouching
on an identity of another party of interest. Such third-party providing trust
services is also called Certificate Authority (CA). Certificate Authorities re-
sponsibility is to provide roots of trust and trust chains and manage certificate
validations - implicitly including and excluding certificates to the chain. CAs

20 Overview of Public-Key Infrastructure Systems

provide these services according to X.509 family of standards. In order to derive
any trust in a certificate, which is a part of certain trust chain, particular chain’s
root certificate must be trusted explicitly beforehand.

X.509 standard [CDH+05] defines a format specifications for digital certificates
often used with TLS protocol, especially with HTTP protocol - HTTP over TLS
(HTTPS)[Res00]; as well as best practises for validation of identities tied to cer-
tificate. Contrary to OpenPGP’s flat infrastructure, X.509 defines certificates
that could be used for many different purposes depending on the properties
assigned to certificate and can be generalised into categories as follows: CA cer-
tificates, self-signed certificates to provide root for chain of trust and certificates
for validating other certificates; Server certificate, usually validated by CAs is
to provide authentication and identity for service providers; Client certificate,
usually validated or issued by service providers, besides client authentication
and identification can be used for digital signing. Also, server and/or client
certificates are often used to securely exchange session cipher keys, once parties
have authenticated or co-authenticated.

2.3.1 Issuing Certificates

Public and private keys conforming to X.509 specification can be generated us-
ing any supporting software such as OpenSSL or internally in applications using
native or with library provided Application Programming Interfaces (API). Any
party creating a key-pair have to go through same steps with few key differences,
when providing identity fields and public-key properties. Once key-pair is gen-
erated following actions would depend on purpose of the key, as we will see.

A user generated key-pair, can be self-signed, though such certificate would not
be able to provide any identity associations as it has not passed any identity
validations and only proves that entity has a corresponding private-key used
for signing. Such certificates are often used in development environment by
developers and in local intranet deployments managed by system administrators.
Additionally, such certificates are often distributed among trusted devices in
local deployments, where trust is implied from a set of local trusted certificates.
Such method can be perceived as a form of certificate pinning, meaning that by
selecting specific certificates or certificates signed with specific certificate is to
be trusted explicitly. Pinning with HTTPS protocol specified in [EPS15].

Described infrastructure can be managed manually by a systems administra-
tor or automated with the help of a private PKI system, for example using
Lightweight Directory Access Protocol (LDAP) services or Microsoft’s Active
Directory Certificate Services (AD CS) services. Further, these certificates can

2.3 X.509 and Certificate Authorities 21

be used for establishing a secure communication channel with services such as
Kerberos system and Internet Key Exchange (IKE) protocols, among other,
for negotiating security elements needed to fulfil communication security re-
quirements. Equivalent schemes has proven themselves to be very successful
internally in enterprise deployments. Also, mentioned systems can work with
certificates validated by CAs.

2.3.1.1 Certificate Authority Chain

Certificate Authority has to manage two types of certificates, specifically Root
Certificate and Intermediary Certificate, see figure A.2. Root certificate is a self-
signed key with enabled CAcert:true field. The private-key part is explicitly
only used to sign Intermediary certificates, otherwise protected from being dis-
closed by highest means achievable. Certificate or public-key of Root certificate
is used to validate Intermediary certificates and is distributed freely. Private-
key of an Intermediary certificate is used for validation (signing) of end-user
certificates (server/client certificates) associated to certain identity claims and
corroborated by CA. Intermediary certificate itself is usually distributed and
presented together with end-user certificates and is used to validate the particu-
lar certificate as well as to validate Intermediary certificate with a relevant Root
Certificate.

2.3.1.2 Certificate Validation

In order to obtain a valid end-user certificate it must be validated by a trusted
CA. For example if a user generates a key-pair that he intends to use as server
certificate, then he needs to generate a Certificate Signing Request (CSR), which
includes a public-key, and is signed with a private key. CSR is forwarded to a
validating CA services, who according to X.509 standard requirements and inter-
nal company procedures validates the identity of a user and issues a certificate.
A most common case is to validate that user controls an internet domain name,
which is used as an identity field (CN) as per best practises defined in [SAH11].

Procedures for issuing client certificate is equivalent, except when it comes to
identity validation. In such cases as there is no domain name to validate, cer-
tificate issuing authority usually has an internal identity validation process.

22 Overview of Public-Key Infrastructure Systems

2.3.1.3 Certificate Trust

Major difference, in comparison to OpenPGP key infrastructure, is that trust
can be extended to many validated certificates, and only CAs Root Certificate
is needed beforehand, to validate trust chain leading to certificate in question.
Customarily, current operating systems have a repository of trusted Root Cer-
tificates, which provides a system wide trust architecture, to be used by any
applications employing X.509 PKI systems. Occasionally, applications might
internally include supplementary CAs Root certificates and other type of cer-
tificates for application wide use. It’s usually the case that a set of trusted Root
certificates CAs is managed by operating system developers and in enterprise
environment system administrators.

2.3.2 Typical use of a CA managed PKI

There is minor differences in using certificates validated by CAs arising from
differences in an environment used, in essence the application used and for what
purposes certificates are employed. Specifically, in web browsing user is actively
involved in starting a communication using browser’s address bar, however ap-
plications employing certificates for TLS protocol to secure communications,
establishes connection in background without overview of the user.

2.3.2.1 Web Browser Environment

Browser can utilise both server and client type of certificates. Server certificates
are essentially used for authenticating and identifying service providers, using
Domain Name System (DNS). Essential web browser component is address bar,
where user types a desired service provider domain name, to access the remote
service.

Upon access, if using HTTPS protocol, a server certificate is presented to users
web browser and is validated against the local trusted root certificates. Fur-
ther certificate’s Common Name field is matched to a domain name of the
service. Specifically, to improve trust in service provider entity, independent
CA/Browser forum laid guidelines for an Extended Validation certificates (EV
certificates). To issue EV certificates, accredited CA, must extensively validate
the identity of the certificate requesting party as a valid legal entity. Also, EV
certificates can be issued for multiple domain names.

Web browsers provide feedback on the state of server certificate validation by

2.3 X.509 and Certificate Authorities 23

changing address bar background colour to green or red appropriately as well as
clearly indicating by text or visual icon at the beginning of the address bar. Fur-
thermore, in the case of EV certificates, mentioned guidelines by CA/Browser
forum instruct browsers to indicate the identity of the party claiming the EV cer-
tificate as well. Likely, that using HTTPS connections through a web browser,
is the only common communication method designed to provide a feedback on
validation of certificates, identity and implied level of trust of an underlying
communication channel and remote party.

To use X.509 client certificate, certificate and corresponding private-key must
first be installed in browser’s certificate store. Keys can either be installed man-
ually by end-user and system administrator, or pushed to browser by a remote
service, with user’s consent. Once client is accessing a service over HTTPS,
service provider upon presenting his server certificate may request client certifi-
cate from a specific trusted CAs and if available browser will provide appropri-
ate client certificate and authenticate against private-key. Client certificates in
browser environment are used rarely, and is usually employed by governments
for employees and citizens to access e-government service and in enterprise en-
vironment internally.

2.3.2.2 Use within applications

When using TLS layer in HTTPS or any other protocol in applications, com-
munication channels are opened and established in the background of the ap-
plication. In such situation, there is no set procedures to inform a user about
underlying communication security properties. Therefore, setting up a com-
munication channel and handling exceptional cases is application developer’s
responsibility as well as preparing trusted root certificates sources.

Also, x.509 certificates are often used for Access Control. For example, control-
ling access to wireless network, where client certificate is used to authenticate
user or a device.

Although, there is a wealth of specifications and proposals that employ and
extend X.509 cryptographic certificate uses, covering them is not our objective.
It suffices to note, that public-key cryptography is a highly desirable feature
in communications and the distribution of certificates presents a tremendous
challenge to this day.

24 Overview of Public-Key Infrastructure Systems

2.3.3 Pros and Cons

X.509 is the most proliferated certificate type in use with current communication
technologies. Arguably, it success was in large part due to success of trust
model rooted in independent distributed Certificates Authorities, which offers a
flexible trust system that can be customised per user environment or even per
application.

PKI based on X.509, does not rely on any central service for certificate dis-
tribution. Certificates and their trust chains a rather distributed by service
providers as well as clients during the communication establishment. Lack of
central services removes possibility of a Denial of Service attack on PKI services.

On the other hand, almost all of CAs charge fees for certificate validation ser-
vices. This particularly limits application developers from easily obtaining a
free validated and widely trusted certificates, even more so, if a client appli-
cation used is not curated by the said developer. Notable exceptions to paid
CA services is CAcert, internet community run CA providing certificates largely
used in open source projects, as well as Let’s Encrypt CA. Let’s Encrypt is a
recent CA providing a free of charge X.509, exceptionally only server certificate,
validation services.

Furthermore, as system trusted root certificate store is used to derive trust, it
provides a single point of failure. Having so many independent trusted CAs with
different management processes creates multiple attack vectors for a a rogue
party. If a single widely trusted CA was compromised, it would undermine
trust in the whole PKI as an attacker could impersonate any valid identity.
In such situation, specific trust chain could be added to a revoked certificates
list (CRL), though revocation lists are rarely implemented and used during
certificate validation, with rare exceptions.

Considering, that end-user can fully manage trusted certificate store, by adding
and removing Root, Server and Client certificates and that common computer
user is poorly acquainted with different certificate types, certificate files and
trust models, end-user becomes a weak link. Specifically, end-user can install
a certificate with few mouse clicks, thus himself undermining the whole trust
mechanism and becoming susceptible to Man-In-The-Middle (MITM) attacks.
To put simply, end-users understanding in these matters is at odds with respon-
sibilities provided and expected from the user.

Chapter 3

Motivation

As has been stated at the beginning of this document our primary goal is to
enable secure point to point communications between different parties. Consid-
ering, that majority of our communications take place over digital communi-
cation networks, which are often established and managed by many actors, we
advocate providing security features at least at the Session layer or layers above
in relation to OSI model. Not to mention, we expect the reuse and adaption of
currently defined and implemented communication protocols, as well as those
that are proposed by IETF.

Cryptography, is the main means for providing security features as required
in Chapter 1. In particular public-key cryptography is at the heart of such
communication channels, nevertheless options for distributing and managing
public-keys are still very limited. Arguably, OpenPGP community have success-
ful created a synchronising decentralised PGP certificate server system, which
has been very successful in it’s function and can be easily replicated for a pri-
vate use. We propose an analogous system for public-key storage and retrieval,
though with support of multiple certificate formats, introduced in section 2.1.

All overviewed PKI systems, require some level of user input or interaction
regarding certificate management. As we argued, users rarely have any famil-
iarity to these systems and are unable to adequately take responsibility of those
tasks. In our solution, we shift these responsibilities from an end-user to an un-

26 Motivation

derlying software developer, by providing them with an appropriate APIs and
infrastructure.

Furthermore, besides certificate handling, a user, whether it’s service provider
or a client, is expected to be able to protect any relevant private keys and
safely utilise them. Again, applying the same reasoning as in prior point, we
argue that private-keys should be handled by software developers. Fortunately,
many operating systems provide KeyStores (KS), that provides APIs for key-
pair generation, storing and utilisation. Often, such KS is backed by security
focused hardware.

Trust systems, in relation to PKIs, that we have introduced so far, namely Web-
of-Trust and Trusted Third Party, provide systems that is: either too vague
with trust properties as in OpenPGP system, where a user has to evaluate and
derive trust in the certificate; or too rigid and overarching as is the case with
current X.509 certificate environment, where root certificates provide system
wide trust. Although, the PKI system that we propose could incorporate widely
accepted CAs chains, but also can easily accommodate certificates trusted in
any application locally, without enforcing system wide trust. Thus, opening
possibilities in providing services for an enterprise and private entities alike. In
fact, we do not propose any new security protocols as per se, but propose some
infrastructure innovations, such as API services, as well as transfer some end-
user’s responsibilities to software developers. Furthermore, we discuss what new
doors these innovations could open for us in dedicated security services.

Chapter 4

Public-Key Infrastructure
based on SMS channel

To be able to consider design details of our PKI and its security properties we
need to familiarise with relevant mobile networks parts as well as SMS channel.

4.1 Introduction to Mobile networks and SMS
services

4.1.0.1 Mobile networks

Mobile network is a cellular network, where enrolled parties can access their
telecommunications provider network using any of multiple radio cell towers,
also called Base Station Subsystem (BSS), in a physical proximity. Traditionally,
telecommunication networks have been organised into a smaller networks per
geographic location usually per country basis, as we reflected in 1.3.2 section,
analogously mobile networks are organised in a same fashion. User or a device
enrolled to mobile network is referred to as network subscriber.

Current standards and specifications for communicating between mobile device

28 Public-Key Infrastructure based on SMS channel

and a BSS as well as internally in mobile networks are curated by 3rd Generation
Partnership Project (3GPP). Project is a participation of many organisations
and entities interested in standardisation and evolution of mobile communica-
tions. European Telecommunication Standards Institute (ETSI) is a partner
and a co-founding party that provides Information and Communications Tech-
nologies standards and specifications at international level.

Present day mobile networks support provide access to network subscribers
through Global System for Mobile Communications (GSM), Universal Mobile
Telecommunications System (UMTS) and Long Term Evolution (LTE)[Zyr08]
standards, protocols also commonly referred to as 2G, 3G and 4G protocols,
where a number denotes an order of succeeding protocol and G stands for gen-
eration. Proceeding protocols always provided backwards compatibility on the
protocol level as well as introduced extensions and security improvements.

Although, some operators started to phase out the least secure 2G networks, net-
works supporting all different generations of protocols as still widely deployed,
because networks grow organically based on demand and available resources.

On the mobile network operators side GSM and UMTS protocols are supported
by Signalling System No.7 protocol (SS7). ETSI provides a specification of SS7
in [ETS95]. For mobile network data transfers SS7 protocol can be used over
a dedicated Public Switched Telephone Network (PSTN) or over the internet.
For supporting SS7 network over internet infrastructure, IETF have developed
a suite of specifications in common referred to as SIGTRAN.

On the other hand, LTE (4G) networks rely on Signal Initiation Protocol (SIP)
with Diameter cryptography protocol for Authentication, Authorization and
Access Control. LTE infrastructure provides a higher communication security
levels in comparison to SS7 network. Though, LTE is still at its early adoption
stage and currently heavily relies on SS7 network as underlying technology on
mobile operators side.

To access a mobile network a valid Subscriber Identification Module (SIM card)
is required. SIM is a smart card that is used to securely store private and public
information associated to a module and subscriber. Relevant information stored:

• Mobile Subscriber Identity (IMSI), a secret number that uniquely identifies
a subscriber on the network,

• Temporary Mobile Subscriber Identity (TMSI), a secret temporary num-
ber to be used instead of IMSI, as IMSI is transmitted as rarely as possible.

• TMSI can be used on the SS7 network to find a corresponding IMSI of a

4.1 Introduction to Mobile networks and SMS services 29

particular subscriber.

All the devices on the mobile network are addressed using its MSISDN. Es-
sentially, MSISDN is a phone number. MSISDN together with IMSI provide a
mapping to a particular subscriber on the network.

Among many specified GSM services and protocols, the one of interest for us is
a Short Message Service.

4.1.0.2 Short Message Service

Short Message Service is a very widely adopted text messaging protocol defined
in GSM standard and its successors, as well as in SS7 specification. ETSI defines
implementation details in [ETS].

Essentially SMS is a small data package, containing the receiver’s address, an
address of relay service, SMS specific flags and a message body. By definition
SMS package size is limited to 160 bytes. Therefore, depending on text encoding
used can carry 70 to 160 text characters in its message body. To overcome
this limitation, a long form SMS was introduced, in a specification referred as
concatenated SMS. Concatenated SMS uses part of a message body to identify
concatenated SMS parts and their order, thus slightly shortening the message
body. Theoretically, maximum length of concatenated SMS can consist of up
to 255 separate messages. In our solution we use concatenated SMS.

SMS messages are relayed by Short Message Service Center (SMSC) over SS7
network. Mobile network access providers usually have a local SMSC service
that supports its customers. From a protocol point of view there is two kinds
of SMS messages:

• Mobile Originated (MO SMS), a message that originates on a mobile de-
vice and can be directed to another mobile device or a digital service
hosted on SMS network.

• Mobile Terminated (MT SMS), a messages that terminates on a mobile
device, and could have originated from a mobile device, or a digital service
connected to SMS network.

30 Public-Key Infrastructure based on SMS channel

4.1.0.3 Mobile Network and SMS Security

It has been known for some time that SS7 network has many vulnerabilities. As
overviewed in [Wel17], SS7 vulnerabilities can be grouped in such categories:

• Obtaining subscribers information, such as IMSI or TMSI.

• Determining Subscriber’s Location.

• Eavesdropping on subscribers traffic.

Relevant attack to our solution is ‘Man-In-The-Middle’ attack, between mobile
device and BSS. Here attackers strategy is to introduce a rogue BSS station that
would force nearby devices to connect to it. Rogue BSS acts as a proxy between
real BSS and the user’s device. Here an attacker can attempt to capture TMSI
or preferably IMSI.

If IMSI is found out and and an attacker has a direct access (such as mobile
operators) to SS7 network an attacker can divert SMS messages to a false SMSC.
Thus attacker is able to divert and capture MT SMS messages. But as we
will see later known SS7 vulnerabilities does not raise considerable threats in
our solution. Though, found considerably vulnerabilities weakens Multi-Factor
Authentication, where One Time Passwords are distributed using SMS channel.

4.2 SMSPKI

Here we propose a PKI system very similar in design to OpenPGP SKS PKI,
in particular, providing a certificate hosting online in a key-value structure,
where a key is an alphanumeric identifier of the certificate and the value is the
certificate file. Furthermore, we define how CA services can be incorporated
into proposed infrastructure.

This PKI is intended to be employed primarily by software developers, who wish
to employ public-key cryptography and require procedures to distribute these
public-keys. Therefore, we consider this system from a PKI service provider’s
and a software engineer’s point of views.

The key parts of this PKI system are:

• SMSPKI - a remote certificate hosting service hosted on SMS channel.

4.2 SMSPKI 31

• SMS Certificate Manager - a local operating system service providing API
for certificate registration with SMSPKI.

• SMSPKI clients - applications that employ public-key cryptography and
utilises a Certificate Manager’s API.

As we noted in 1.1 section, that limited resource can sometimes be coupled with
a communication channel to improve its security properties. Here we argue for
using communications over a mobile network, specifically using Short Message
Service (SMS), as we perceive access to mobile network as a kind of limited
resource. A user must have a valid subscription to be able to communicate over
mobile networks. The subscription is a distinctive limited resource and often
closely coupled with an individual.

Furthermore, using additional communication channel serves as out-of-band
communication channel, a technique often used to lower risks of using single
non-trusted communication channel. For example, many internet services use
SMS to distribute One-Time-Passwords (OTP) for Multi-Factor Authentica-
tion (MFA) in an out-of-band manner, but as discussed in 4.1.0.3 section, it’s
susceptible to attacks.

Also, usage of SMS channel limits availability and access to a proposed PKI,
however according to a statistics provider StatCounter, at the beginning of 2017,
mobile devices accounted for more than 51% [Sta] of all devices used on internet
and over 70% of them are running Android operating system. Therefore, we
focus mainly on considerations pertaining Android platform and short compar-
isons to Apple’s iPhone platform, where relevant.

4.2.0.1 General description of SMSPKI

A high level design of proposed PKI is visualised in A.3 figure. Here proposed
PKI provides services over SMS channel using mobile networks and HTTPS
channel over internet. SMS interface of PKI is used to register/publish user
certificates and to query certificate databases, with later function also available
over HTTPS. Certificates are stored in PKI as key-value entries and are further
categorised depending on the type of certificate. PKI is used by mobile device
clients and 3rd party service providers.

SMSPKI is to be used with a smart mobile devices capable of SMS communi-
cations. As pictured in A.4, certificates are generated on the mobile device and
forwarded by MO SMS to PKI provider (1) hosted on mobile network with spe-
cific address (MSISDN). Upon receiving the certificate SMSPKI validates the

32 Public-Key Infrastructure based on SMS channel

certificate, signs it, if valid, and replies to a mobile device with MT SMS (2),
containing signed certificate, where mobile device stores validated certificate on
the device for later use.

Besides registering certificates, a specific certificate can be requested and down-
loaded from SMSPKI by SMS and/or HTTPS interfaces. Due to SMS channel
limitations we specify that certificates over SMS channel can be requested using
only unique keys identifying a particular certificate, while HTTPS can be used
for wider, but limited searches over the certificate databases.

Further, we define a system wide service - SMS Certificate Manager (SMS CM),
for Android based mobile device, that provides API service to a mobile appli-
cations (client apps) on the device and communicates to SMSPKI over SMS
channel, as pictured in A.5. API service is to be utilised in mobile application
(app), where app developer seeking to utilise public-key cryptography, gener-
ates a key-pair and registers certificate part with specific a SMSPKI provider.
Communication to SMSPKI from an app point of view is abstracted through a
SMS CM service API and only that service has a direct access to SMS commu-
nications.

From a high level, functional, point of view, PKI provides the same functionality
for both OpenPGP and X.509 certificates, though there are considerable differ-
ences stemming from the purpose of certificates and trust models they employ,
and they will be discussed in more detail in later sections.

To iterate, services provided by PKI, is for storing certificates that can be used
for identification and authentication of a user or a device as well as for exchang-
ing symmetric encryption keys for securing communication channel for secrecy
purposes.

To summarise, described PKI’s main concern is to provide a certificate regis-
tration, validation and publishing services. A goal of this service is to facilitate
a wider adoption of public-key cryptography to enhance security attributes of
underlying communications in software applications. As we argued in previous
sections, end-users are not sufficiently familiar with PKI services and infrastruc-
ture and currently is the main barrier for adopting public-key cryptography.
Therefore we push tasks related to certificate management to software devel-
opers by providing a PKI to be used primarily by software applications, where
certificate management can be automated.

We expect that PKI services described will be likely provided by a third party,
offering certification services, over SMS and HTTPS channels. Any party that
has access to mobile network and SMS services could in principle host infras-
tructure system in question.

4.3 SMSPKI Server-side 33

4.3 SMSPKI Server-side

As described earlier, we strive to design a PKI supporting OpenPGP and X.509
types of certificates, as they are most utilised with current technologies with
considerable difference between both.

For managing both types of certificates, we propose to adapt SKS based solution
and provide services over SMS channel, using equivalent protocol to HKP. Also,
to provide equivalent, but limited access through HTTPS protocol.

Regarding the X.509 certificates, we propose services that will be applicable
to only client certificates. Server certificates, on the other hand are already
managed by service providers and certificate authorities. Even though, the
certification services differ between these two types of certificates, interface to
the server - certificate registration and querying procedures are the same in both
cases.

4.3.1 SMSPKI Server-side Design

As already stated, SMSPKI hosts certificates in key-value pair structures. Cer-
tificates can be indexed on multiple literal certificate fields such as identity labels
and unique certificate identifiers to be used as key.

4.3.1.1 Certificate Fields and Identifiers for SMSPKI

SKS keyservers uses User-ID as the main subject identifier, we opt-in for the
same solution for OpenPGP and in X.509 we use CommonName as equivalent
field to User-ID in OpenPGP’s case. Furthermore, we propose to organize X.509
certificates in common pools. Organizing X.509 certificates into common pools
would allow for a more flexible PKI infrastructure, where certificates databases
could be split per application, per domain or other basis. Further in document,
we refer to these separate certificate databases as sub-PKIs of the SMSPKI.

To maintain certain level of anonymity, we propose to use Universally Unique
Identifiers (UUID) in the UserID or CommonName fields of the certificates.
We will refer to this field commonly for both type of certificates as Unique
Certificate Key (UCK). Uniqueness is only guaranteed with-in a single sub-PKI.
Furthermore, using UUID for UCK, provides a consistent certificate referencing,
and is very suitable for indexing purposes in the databases.

34 Public-Key Infrastructure based on SMS channel

4.3.1.2 High-level Server Design

A high level design of the server side is shown in A.6 diagram. Here,we have
multiple SMS API interfaces as well as HTTP interface per every sub-PKI pro-
vided. All interfaces of SMSPKI are always in listening mode and are used for
specific service requests.

4.3.1.3 SMS Interface

Multiple API interfaces connecting to SMS router, in diagram A.6, show that our
SMSPKI, can be accessed using different phone numbers on the mobile network.
Hosting PKI on numerous addresses can serve multiple purposes, some of those
are:

• Load balancing SMS channel, to spread SMS communications through
different points on the network.

• Providing services in multiple countries, where a ‘home’ network and a
local phone numbers could be used, to circumvent international charging
rates for SMS messages.

• Separating services per certain certificate domains, to isolate specific PKI
databases per different phone number.

SMSPKI’s main functionality is provided over SMS interface. Server interface is
always in listening mode, thus it operates in request-response mode. Following
operations are available through SMS Interface:

• registration of personal certificates,

• revocation of personal keys,

• retrieval of single certificates,

• registration of signed third-party certificates - to provide a possibility of
building Web-of-Trust, as in OpenPGP infrastructure.

All operations regarding certificate operations on SMS interface are performed
on single certificates.

4.3 SMSPKI Server-side 35

4.3.1.4 SMS Router

To provide SMS channel flexibility we define an SMS message routing component
indicated in figure A.6. A more detailed design of the SMS routing component
is visualised in picture A.7. It is important to remember, long text messages
when transferred over SMS channel, in our case certificates as SMS payload, is
broken up into multiple SMS messages and then reassembled into single message
on an end point; In our design we receive messages in full first, before starting
the message routing.

Messages are received and collated by SMS Receiver noted in figure A.7. SMS
Receiver is pictured on the boundary as it can be a service provided by a dedi-
cated SMS gateway provider or a third-party application interacting with mobile
network modem. Though due to the differences in SMS solutions - some addi-
tional processing might be needed.

Once message is received in full it is passed to a routing modules. Routing
pipeline is shown in A.7 , labeled as SMS Router Here we clearly see that
PKI services can be managed per phone number (MSISDN), certificate type
OpenPGP or X.509, where X.509 can be further split into domain specific sub-
PKIs. In a simplest setup, certificates would only be routed based on a certificate
type to a single OpenPGP or X.509 certificate sub-PKI, to handle any requests.

4.3.1.5 HTTPS Interface

As voiced earlier, HTTPS interface to SMSPKI, has somewhat limited function-
ality compared to functionality provided through SMS interface. Access through
HTTPS only provides certificate querying and retrieving.

By querying we mean certificate database look-ups on following full or partial
fields: Unique Certificate Key within SMSPKI, Certificate Serial Number and
Certificate Fingerprint. As partial field searches are allowed, multiple row re-
sults can be expected. Tough we highly recommend to not serve look-ups, that
discover certificate count over a certain threshold, similarly to OpenPGP SKS
PKI as mentioned in section 2.2. Limitation is to protect from a mass certifi-
cate extraction from a PKI. On the other hand, certificate retrieving can only
be done using it’s UCK, akin to certificate retrieving through SMS interface.

As we allow for multiple certificate databases (through routing in section 4.3.1.4
in our design, these different database should be addressable by different ad-
dresses, such as distinct Domain Names, or additional PKI instance information

36 Public-Key Infrastructure based on SMS channel

in URL path of the HTTP request.

Since SMSPKI is not meant to be interacted with by an end-user’s or any human
users, but to be used for automatization purposes by SMSPKI providers, third-
party service providers and SMSPKI clients utilising our PKI. Therefore, we
strongly recommend to use server certificates and client certificates for access
control via TLS system using HTTPS protocol. If providing access to SMSPKI
clients, specific certificate already registered with this database could be used
to identify and authenticate the client. If PKI services are provided to third-
party service providers, we recommend setting up and independent certificates
of our PKI to establish a secure channel trusted by both parties. In any cases
SMSPKI should use a server certificate that is validated by CA and is trusted
by the client systems.

4.3.1.6 Certificate Management

Certificate registration. When certificate is submitted for a registration, through
SMS interface and routed to a right sub-PKI service, it is validated first. Vali-
dation process encompasses of following steps:

• if possible validating that clients MSISDN is not spoofed;

• checking if certificate is formed according to certificate specifications;

• checking if there already isn’t a key with same UCK.

On the assumption that certificate has passed validation process, it is signed by
sub-PKI service provider and appended to certificate database.

Certificate signing. Certificates are signed with a Private Root PKI Key. By
signing a certificate that is being registered, SMSPKI provider implies that
certificate is valid and is part of the relevant certificate database. For certificate
validity checking purposes, we provide retrieving of Root certificate in the same
manner as any other key, though we use a Nil UUID (special case of UUID, where
all numbers are zeros) as Root Certificates UCK. Registration of certificates with
Nil UUID must be forbidden.

Revoking certificates. Certificate revocation is similar to registration process,
though when request is routed to a relevant sub-PKI, PKI checks validity of
revocation request against the to-be-revoked public-key and processes accord-
ing to the type of certificate, discussed in more detail in 4.3.1.6 and following
sections.

4.3 SMSPKI Server-side 37

Certificate expiration. OpenPGP and X.509 certificates, both support certifi-
cate expiration fields. X.509 certificates require that start and end dates (valid
period) fields are present, whereas OpenPGP system supports certificate expi-
ration date field, but is not required. Our recommendation is to always employ
expiration fields as it could provide a viable solution to limit continuous growth
of certificate databases. In our opinion, SMSPKI providers should choose cer-
tificate validity period according to the type of service they offer. For example,
SMSPKI could provide a certificate store for certificates with short period va-
lidity, thus creating a rapidly changing certificate database; on the other hand,
if certificates are intended for a long time use, SMSPKI could require longer
validity periods. In general, certificate expiration should be seen as tool to keep
certificate databases fresh.

X.509 Certificate Management

Specifically in the case of X.509, we use Root Certificate for certifying (signing)
client certificates that are being registered. CA’s Root Certificate here can be
trusted system wide as well as trusted only in applications, by SMSPKI clients.
Though, it is important that clients trust that Root certificate and are able to
acquire trust chain for validating certificates within that trust domain. Root
certificates can be retrieved using Nil UUID as voiced in 4.3.1.1 section.

As for certificate revocation, users are able to upload certificate revocation re-
quest. SMSPKI in order could add this certificate to a Certificate Revocation
List (CRL). Then client could check if certificate is still valid by looking up said
CRL.

OpenPGP Certificate Management

As OpenPGP employs a flat certificate infrastructure, we specify Master key-
pair for OpenPGP sub-PKI as another OpenPGP certificate with special pur-
pose. This Master certificate and its private-key is used to sign any validated
OpenPGP type certificates and can be retrieved with Nil UUID for certificate
validation by SMSPKI clients. In a way it’s a stepping stone of building a Web-
of-trust model, where SMSPKI is explicitly imparting trust on that certificate
by signing it. All certificates within OpenPGP sub-PKI must be signed with
a Master key. Additionally, SMSPKI are able to re-register third-party certifi-
cates signed by other clients using the same certificate registration pathways.
Thus, it’s possible to create a meaningful Web-of-trust network, though, on
the client side this is accomplished by software developer and not human indi-
vidual, in comparison to original OpenPGP. Nevertheless, software developers
retain power of including a human user supervision in this process through apps
User Interface (UI).

38 Public-Key Infrastructure based on SMS channel

OpenPGP client certificates can be revoked by registering a properly signed
revocation certificate, using SMSPKI certificate registration pathway. In such
case certificate can be labeled as revoked and/or removed from a certificate
database.

If using OpenPGP certificates with expiration dates, we can also provide certifi-
cate validity extensions, again using the same certificate registration pathway.
In this case, sub-PKI matches the certificate that is being extended and replaces
it with a new one, given that certificate is properly formed and signed using the
same corresponding private-key.

4.3.1.7 Distributed SMSPKI

As we introduced in our overview of OpenPGP PKIs in 2.2 section, OpenPGP
SKS keyservers are able to provide certificate database synchronisations amongst
multiple servers in the same pool. Additionally, considering the fact that SKS
keyservers store certificates in key-value structures, we propose of adapting SKS
keyservers infrastructure for OpenPGP as well as X.509 type of certificates - as
both cases are merely a key-value objects.

Synchronisation of separate SMSPKI databases could allow a PKI provider to
distribute their infrastructure around the world. Distributing infrastructure,
could enable deployment of dedicated services per different geographic locations
and would allow SMSPKI providers to facilitate global seamless PKI services.

Furthermore, synchronising multiple servers provide a suitable design feature
for providing a fallback for PKI services and easy load balancing in busy envi-
ronments.

On the other hand, having more than one certificate entry point increases risks
of certificate UCK collisions. There is no clear method for solving this issue,
though within trusted pool of servers, certificate registered earlier could take
precedence.

4.3.2 SMSPKI Server API Description

SMSPKI API’s are harmonised with HKP protocol specification proposed at
[Sha03]. As mentioned in earlier sections due to limitations of SMS channel
we can only provide a limited set of HKP operations. Additionally, as HTTPS

4.3 SMSPKI Server-side 39

interface is used for only support purposes alongside SMS channel and other con-
siderations expressed in section 4.3.1.5 provides an intentionally limited access,
as well.

4.3.2.1 SMS API Request and Response Formats

Request format. When submitting requests to PKI using HKP over HTTPS,
we use absolute path of HTTP request to indicate operations and to provide
any parameters. As on SMS channel we do not have any equivalent to HTTPS
URL path, we include it into the text message, prepended with label req:.

Furthermore, as SMS channel does not provide any stateful information on it’s
protocol we add a Session ID code together with our requests. Session ID, is
used to separate different requests and responses, thus allowing multiple requests
from the same client and receiving responses in any order. Session ID is to be
transferred as part of the text message preceding with sid: label. As clients do
not require constant communication and is used infrequently, we advice to use
a four digit number as Session ID and possibly treat it like a circular counter.
An example of request query is shown in A.14 figure.

Response format. Analogously, response message format is very similar to a
request. In a responses we use res: label to provide HTTP error and success
codes. Session ID is duplicated by SMSPKI from a corresponding request. If a
response is expected to return a certificate it will be in PEM format, as well.
An example of request message show in A.15 picture.

4.3.3 SMS API Description and Examples

Further, we specify concrete functions provided by SMSPKI SMS interface.

4.3.3.1 Certificate Registration

In order to register a certificate, client forms a request message, with appropriate
req: and sid: fields, followed by a certificate encoded in PEM format. For,
certificate registration, request line would be req:/pks/add. An example of such
request is shown in A.14 figure, note that sid: here is an arbitrary number.

If registration is successful, SMSPKI service responds with HTTP status code

40 Public-Key Infrastructure based on SMS channel

200 and signed certificate, otherwise appropriate HTTP error code is returned.
Example of a response to a successful request is shown in A.15.

4.3.3.2 Certificate Retrieval

For certificate retrieval we use /pks/lookup path with appropriate options. For
example, if we to retrieve a Master Certificate of given SMSPKI, and remem-
bering that Master Certificates have a Nil UUID, full request field would be
req://pks/lookup?op=get&search=0000000000000000.

An example of full request is shown in A.14 figure, where sid: field is an
arbitrary session number.

As indicated earlier, over SMS interface we only provide key retrievals by it’s
UCK and request with any other options should return HTTP 501 error code,
meaning that operation is not implemented.

If the request is successful, server responds with the message formatted shown
in A.15 figure, with corresponding certificate included - in our example it would
be Master certificate of the PKI. Alternatively, an appropriate HTTP error code
is returned.

4.3.4 HTTPS API Description

In general HTTP API behaves like described in HKP specification in [SBKH06].
Though as we limit access through HTTP interface, certificate registration op-
erations should be responded with HTTP error code 501 Not Implemented.

4.3.5 Important Considerations for SMSPKI’s Server-side

4.3.5.1 SMS Channel and Certificate sizes

As we noted in section 4.1.0.2, that long text messages are broken down into
smaller 145-160 character long messages. Therefore, PKI providers should con-
sider the type of certificates and key bit size that they choose to use. An easy
way to estimate how many single SMS packets will be required to transfer a
request or response with public key is using following formula:

4.4 SMSPKI Client-Side 41

SMScnt = d(MSGlen − 160)/145 + 1e

SMScnt is an estimated amount of messages that would be required to transfer
a request (including any certificates) of length MSGlen. Here 160 is first SMS
message character capacity and 145 for the rest of SMS packets.

OpenPGP certificates support RSA and DSA with ElGamal public-key algo-
rithms. For RSA key recommended key size is at least 2048 bits, though keys
up to 4096 bits are supported. To transfer RSA keys 16-23 SMS packets are re-
quired, depending on the key size. In the case of DSA with ElGamal public-key
algorithm minimum recommended key size is 2048 bits and supported key size
of up to 3072 bits. Estimates for SMS packets are equivalent to RSA’s case.

Remembering from section 2.3.1.2, when requesting X.509 type certificate vali-
dation from a CA, a Certificate Signing Request (CSR) is sent. A CSR can be
sent in 4-15 SMS packets depending on which certificate fields are used and the
type of certificate. With X.509 certificates RSA and Elliptic curve (EC) public-
key algorithms are used. Recommended key size for Elliptic curve algorithm is
256 bits.

Nevertheless, when considering appropriate certificate types and implications
of the choice on the SMS channel, software developers should consider pricing
models of SMS messages. More importantly with increasing amount of text
messages per operation we are increasing risks levels, for example risks of losing
or delaying an SMS packet which is part of a request. Therefore an appropriate
balance should be set between length of text messages and mobile network
reliability and costs.

To minimise amount of messages need for transfer we recommend using certifi-
cates with Elliptic curve key-pairs.

4.4 SMSPKI Client-Side

As introduced in section 4.2, on the client side we have SMS Certificate Man-
ager (CM), which provides abstraction of our PKI functions over a local API
service to client applications utilising PKI infrastructure. Firstly, we overview a
client-side infrastructure from a general perspective and later we discuss imple-
mentation specifics for mobile devices running Android operating systems with
access to SMS services.

42 Public-Key Infrastructure based on SMS channel

Returning to the figure A.5 where a client-side infrastructure is shown. Here we
have a Certificate Manager, which has access to SMS interface of a device and
implements SMSPKI API. Certificate Manager can be used by multiple client
applications, which interact with the manager service over an Inter-Process
Communication (IPC) mechanism - possibly provided by underlying operat-
ing system. CM exposes its API over IPC. All the communications with CM is
initiated by client applications.

In a scenario, where a client application is trying to utilise PKI service, for
example for a certificate registration, where process is visualised using UML
activity diagram in A.8. Here steps are explained in order as labeled in a later
diagram:

1. Client generates key-pair and prepares a certificate or a CSR, in case of
X.509 certificates.

2. Client application passes certificate to appropriate CM’s API function for
registering certificates together with the MSISDN address of the SMSPKI
service to be accessed. Additionally, client passes callback function to be
executed once response is available from SMSPKI and then Certificate
Manager.

3. Certificate Manager forms a registration request message as described in
section 4.3.2.1. Here sid: field is added by the manager, which will be
used for matching response messages to specific SMSPKI requests from a
CM.

4. Request is sent as MO SMS, to the address provided by the client appli-
cation in its request.

5. SMSPKI processes request and forms an appropriate response, with vali-
dated certificate or applicable HTTP error code.

6. Response is forwarded back to the MSISDN of the device from which MO
SMS has originated.

7. Certificate Manager captures a response by inspecting incoming MT SMS
messages and interprets a response from SMSPKI.

8. Certificate Manager invokes a pending callback, and passes a successfully
registered certificate or raises an appropriate exception, that should be
handled by a client application.

Described flow is applicable to all functions provided by a Certificate Manager
and SMSPKI infrastructure in general.

4.4 SMSPKI Client-Side 43

Certificate Manager is not a required part of our PKI infrastructure, as PKI
could be used by any client implementing our SMSHKP protocol needed to
access API of SMSPKI. Although we introduce this component most of all
to abstract SMS channel from client software developers as well as to improve
transparency of this infrastructure, from a point of view of an end-user; discussed
in more detail in following section.

4.4.1 SMS Certificate Manager

Purpose of Certificate Manager is to mediate communications between PKI
clients and SMSPKI server-side, by abstracting all PKI functions in a CM. This
serves as a convenient abstraction layer that further distances app dependencies,
in our case - SMS channel. Also, if clients were to use infrastructure directly
over SMS channel, they would require permissions to SMS services per every
client application.

Another essential feature provided by CM is to store revocation certificates. CM
stores revocation certificates so it would be possible to revoke a specific certifi-
cates even if client application is uninstalled before revoking any certificates it
has registered. This feature is intended to be used as a last resort in certificate
management by the end-user themselves.

Considering that revocation certificates can only be generated with the help of
a private-key corresponding to the particular certificate and that private-keys
are owned only by a client applications. For that reason, CM must be supplied
with a revocation certificate by a client application. We require revocation
certificates to be generated at the same time as key-pair is generated by the
client application, and that both are provided to a CM, when attempting a
certificate registration. Though, only a certificate part would be forwarded to
SMSPKI providers and revocation certificate stored for later use.

As we, discussed in 4.3.1.3 section, a single SMSPKI service can have more
than one MSISDN associated. In addition we expect that SMSPKI service can
be provided by multiple service providers. Therefore, we suggest grouping of
certificates (creating a folder view) in CM per unique MSISDN of the SMSPKI
basis.

Grouping certificates would provide a valuable and constructive feedback to an
end-user on following objections:

• MSISDN addresses of SMSPKI that their system utilises, in particular user

44 Public-Key Infrastructure based on SMS channel

would be able to infer a possible geographic location based on country code
of MSISDN.

• Identify which applications is utilising said PKI.

• Type and amount of certificates used with particular SMSPKI provider.

4.4.1.1 SMS Certificate Manager Design

High level design overview of a Certificate Manager is shown in figure A.9. Here
we see folder views per particular MSISDN provider and certificates associated
with it. Furthermore, we show that CM provides an interface over IPC, through
which API for clients is exposed. CM implements SMS HKP protocol and uses
SMS channel to communicate to any SMSPKI providers.

In folder views, per particular MSISDN, we show that multiple certificates are
associated (registered) with particular MSISDN. In addition all certificates have
a revocation certificates per every registered certificate.

4.4.2 SMS Certificate Manager API and Internals

API provided by CM is visualised in UML Class diagram in A.10. As can be
seen from a diagram, API provides just three functions addCert(), appendCert()
and getCert(). Even though from first look it seems very rudimentary API, but
as we will see, these functions allow us to accomplish all required operations to
successfully distribute and publish certificates.

Next we overview how and in what scenarios API functions should be used.

4.4.2.1 Function addCert()

Function is to be used only when registering personal new certificates. From
function signature in a class diagram in figure A.10 we see, that developer has
to pass MSISDN (phone number of the SMSPKI), certificate and it’s revocation
certificate passed as strings containing ASCII armoured certificates in PEM
format.

Flow of certificate registration is visualised in figure A.11 by a UML activity
diagram. From a diagram we can see the preliminary steps taken by Certificate

4.4 SMSPKI Client-Side 45

Manager and at which point it communicates with SMSPKI server. To handle
cases when we do not receive any reply from a SMSPKI service we introduce a
timeout notion in our CM. As we see from a A.11 diagram, if registration fails
at any point due to invalid or malformed data, or timeouts when waiting for
a reply, client is returned an error message, and any certificates pending for a
registration are removed.

4.4.2.2 Function appendCert()

This function can be used to update personal certificates, for example extending
their validity date and such. Also, function in question can be used to publish
a third-party certificates signed with clients own private-key for building Web-
of-trust network amongst the certificates.

Actions taken by a Certificate Manager and SMSPKI when invoking function
in question is shown in A.12 figure. From a function’s signature in API’s class
diagram, we see that it requires PKI’s address and a certificate to be updated.

4.4.2.3 Function getCert()

From a name we can deduce that this function is for a certificate look-up and
retrieval from an SMSPKI. As specified in 4.3.1.3, this function is for retrieving
single certificates. Function takes an address of SMSPKI and a full UCK of a
certificate to be retrieved. This function can be used to retrieve any existing
certificate as well as Root keys of sub-PKIs, given that client knows a precise
UCK of a relevant certificate.

Action flow of certificate retrieval is shown in A.13 diagram.

4.4.2.4 CM API Error Handling

In section 4.3.3, we have specified that SMSPKI uses HTTP error codes. For
a client applications we define relevant exceptions - these can be inferred from
activity diagrams as well. Certificate Manager either raises exception internally
or interprets HTTP error code and raises an appropriate exception. We define
a following exception types, with their descriptions:

• InvalidRequestParameters - raised when parameters to CM’s API is invalid

46 Public-Key Infrastructure based on SMS channel

(invalid certificate, invalid MSISDN of the SMSPKI provider or invalid
certificate UCK).

• InvalidApiRequest - raised when SMSPKI can not handle a request, pos-
sibly not supported procedure or malformed text message.

• CertificateNotFound - raised, if SMSPKI did not find a certificate that
was looked-up.

• CertificateExists - raised, if trying to register a certificate with a UCK
that is already registered with another certificate (collision of UCKs).

• RequestTimedOut - raised, if CM did not receive a response within timeout
period.

• ServiceNotAvailable - raised, if mobile network is unavailable.

4.4.3 Considerations for CM Implementation on Mobile
Devices

iOS. Unfortunately, iPhone operating system would not be able to utilise our
SMSMPKI. The main reason is that iPhone operating system does not provide
access to SMS interface and therefore channel itself. Moreover, iOS operating
system does not have a dedicated IPC mechanism for providing native commu-
nications between different apps. Considering, how closed and conservative the
iOS platform is, currently only Apple have access and possibility to implement
a Certificate Manager providing API services to other apps and accessing SMS
interface/channel.

4.4.3.1 Android OS

On the other hand, Android OS provides a very flexible infrastructure with wide
controlled access to system resources and a few IPC methods. To be able to
utilise system resources it’s necessary to request relevant resource permissions.

The only resource that CM requires is to be able to read and write SMS mes-
sages, as well as subscribe for incoming message notifications. To accomplish
CM resource requirements developer has to include the following code in appli-
cation manifest file:

1 <manifest ...>
2 ...

4.4 SMSPKI Client-Side 47

3 <application ...>
4 <!-- Subscribe to incoming SMS messages. -->
5 <receiver android:name=".SMSReceiverCM">
6 <!-- Class that will receive incoming SMS -->
7 <intent-filter>
8 <action android:name="android.provider.Telephony.

SMS_RECEIVED" />
9 </intent-filter>

10 </receiver>
11 </application>
12 ...
13 <!-- Acquire necessary permissions. -->
14 <uses-permission android:name="android.permission.SEND_SMS">
15 </uses-permission>
16 <uses-permission android:name="android.permission.RECEIVE_SMS">
17 </uses-permission>
18 ...
19 </manifest>

To send an SMS, Android OS API provides several different ways, though as
we are using ASCII based text messages, we do not require extraneous text
message formation and can use the most straightforward method. A sample
code of sending a text message:

1 SmsManager sm = SmsManager.getDefault();
2 sms.sendTextMessage(SMSPKI_MSISDN, null, requestMsg,);

A function signature of the sentTextMessage() function from a documentation:

1 sendTextMessage(String destinationAddress, String scAddress, String
text, PendingIntent sentIntent, PendingIntent deliveryIntent);

Here, destinationAddress in our case is MSISDN of the SMSPKI provider;
scAdress is SMSC MSISDN, if null system default is used; text is SMS body,
in our case a formed response to SMSPKI; sentIntent and deilveryIntent
is used as callbacks, for when a message has been sent to network, and when it
was delivered correspondingly.

To provide CM service and API through IPC, we highly recommend on using
Bound Services [And] method, for the reason that, service implemented with
Service class an binded to by other activities (apps) and only lives when serving
these activities. As Certificate Manager is not needed often and as it is always
invoked by clients (activities from client apps) Bound Service is an appropriate
method in our situation.

48 Public-Key Infrastructure based on SMS channel

4.4.4 SMS Certificate Manager Clients

4.4.4.1 Binding to service

SMS CM clients must bind to the CM offered service using, using services
bindService() function. As discussed in prior section clients implement and
use Activity class to access a service. This activity would be created only when
actively using CM’s service interface. Multiple clients is supported as well as
asynchronous execution of the service code part. Service can use binded Intent
object from the activity to return any calls - to be used as a callback, when
result is available.

4.4.4.2 Key-pair Generation and Storage

For generating key-pairs we require clients to use KeyStore provided by an
Android OS. KeyStore provides an abstraction layer for creating symmetric
and asymmetric (public-key) keys. KeyStore supports these public-key key-pair
generation algorithms: Digital Signature Algorithm (DSA), Elliptic-curves (EC)
and RSA type of keys. Key generation is provided by
java.security.KeyPairGenerator class.

Keystore provides not only an abstraction layer for generating keys, but also
provides storage for generated key-pairs, which is often backed by secure hard-
ware, such as Trusted Execution Environment (TEE) or Secure Element (SE).
TEE provided by ARM processors, uses hardware virtualization to create a
sandboxed environment for storing secrets. On the other hand, SE provides a
dedicated hardware element for storing keys, and is likely to have a dedicated
crypto-coprocessor for working with said keys.

Additionally, KS provides a flexible interface of protecting generated key-pair.
For example, when generating a key-pair developer can set, if key-pair could be
exported from a KeyStore or not. KeyStore is strongly associated to system wide
locking mechanisms, such as, pin code, pattern lock, password protection and
biometric fingerprint protection. Once, device is locked all KeyStore instances
are locked as well. After unlocking a device KS, can be configured to be unlocked
together with a device, or unlocked separately on demand. Devices that have
biometric fingerprint hardware, can be set to request additional authentication
step.

4.4 SMSPKI Client-Side 49

4.4.4.3 Certificate Generation

Natively, Android OS supports a narrow range of functions related to X.509
certificate creation and usage. Though, Android OS provides a SpongyCastle
cryptographic API suite for any operations related to certificate creation and
usage. SpongyCastle is a customized variant of a well known BouncyCastle
cryptographic API suite and is dedicated to Android OS. SpongyCastle is able
to use KeyStore, for utilizing any stored key-pair.

SpongyCastle supports X.509 certificate, as well as OpenPGP certificate infras-
tructures. Furthermore, SpongyCastle implements and facilitates many cryp-
tographic protocols and procedures, that assist with communication channel
security and cryptographic element interpretation and formation (such as dif-
ferent key-pair formats).

As we can see this cryptographic suite fully covers our needs and requirements,
and not only in working with our SMSPKI and SMS CM, but also in applying
our cryptographic elements in communications.

Important Considerations

KeyStore was introduced since Android 4.3 version (API level 18 - in Google’s
API versioning) codenamed JellyBean, released in 2012 summer. As stated
earlier, we require SMS CM clients to use KeyStore as it provides additional
layer of security for protecting a private-key. To use certificates securely we
put highest requirements on protecting a private-key. Using KeyStore allows
for securely maintaining passwordless private-key, unlike in most environments,
where end-users had to decrypt their private-keys prior to using them.

Underlying functionality and any hardware backing for KeyStore is implemented
by a device manufacturers. In past, some early implementations of KeyStore
was found to be vulnerable [HD14].

SpongyCastle cryptography suite must be included explicitly as app dependency,
therefore every SMS CM client will have to include the library with it’s app
deployment.

50 Public-Key Infrastructure based on SMS channel

Chapter 5

Usage of Certificates
Registered with SMSPKI

As we are considering certificate application in computer network communica-
tions, we need to define in what setups certificates could be used in, from the
communication service point of view, taking into consideration of an underlying
network topology.

Majority of all communications on the network follow client-server communi-
cation model. In this model, client (party accessing a service or a resource)
initiates communication establishment with a server (party providing a service
or a resource). In order for server to be reached, it has to be publicly addressable
and actively wait for any communications. This implies that the server must
possess a public IP address. Moreover, clients must know or have an ability to
find out an IP address of the service. Latter, is usually achieved with domain
names and DNS system. Dynamically changing IP address presents a challenge
of addressing hosts only by their IP address, as is often the case with typical
clients.

In addition, revisiting 1.3.3.1 section, where we have discussed a major differ-
ences in IPv4 and IPv6 networks, we recall that on IPv4 network connected
devices don’t always have a public IP address, for example, when a host is be-
hind IPv4 gateway. It’s impossible to reach such hosts, without a prior and

52 Usage of Certificates Registered with SMSPKI

extensive network setup.

In a situation, where two devices behind separate gateways on IPv4 network,
wish to establish a communication channel, they must access a dedicated service
(server in client-server model) that either will proxy their communications or
will help them actively establish a direct communication, for example using hole
punching technique to circumvent gateway firewall. Preceding communication
described can be seen as client-server-client communication model, where latter
one is closer to peer to peer connection.

5.1 SMSPKI and Client-Server Setup

Here we assume that client software is provided by the same service provider
providing services on the server, for example a banking app client accessing
remote banking services.

Suppose, an end-user using banking app for the first time to access services re-
lated to his account. End-user successfully authenticates to the banking services
using bank’s standard login procedures. Once logged in, banking service could
initiate our client app to generate a key-pair and try to register the certificate
with certain SMSPKI provider. If certificate is successfully registered, service
provider can store UCK of that certificate together with user account informa-
tion. This achieves relating specific users to specific certificates. Though, service
provider before relating certificate UCK to a user should retrieve said certificate
(using SMS or HTTPS APIs of SMSPKI) and challenge user to prove that he
possess corresponding private key.

Now, the next time user is connecting using the same device, for example using
HTTPS protocol, banking service can require cryptographic authentication from
a client app using TLS protocol. This can be seen as the case of setting up
trusted devices (by service providers) per user.

Furthermore, client certificates could be used, for securing any communications
between client and a server, as well as any public-key cryptography functionality,
for example signing transactions and such.

5.2 SMSPKI and Client-Server-Client Setup 53

5.2 SMSPKI and Client-Server-Client Setup

Let’s assume that before attempting communication between two clients, these
clients have enrolled with a service provider (server) in the same manner as in
the client-server model, discussed in previous section. Therefore, two clients
would already possess their individual certificates, of which service provider is
aware of, and corresponding private-keys.

Now, if communication is proxied by a service provider, service provider can
provide UCK of certificates related to these clients, so they could retrieve them
from the SMSPKI service. Thus clients could use each other’s certificates to
secure data in transport, also protecting from exposing it to a service provider
itself.

If service provider is using hole punching technique to setup a direct channel
between clients, they can authenticate each other on retrieved certificates and es-
tablish a direct secure communication channel through one of the cryptographic
protocols employing public-keys.

5.3 SMSPKI and Peer to Peer (P2P) Setup

P2P model, requires that both parties are publicly addressable, so they could
reach each other directly. P2P connections is a hard challenge within IPv4
networks as many hosts are behind an internet gateway. On the other hand, as
covered in 1.3.3.1, IPv6 networks exposes all hosts publicly. Both versions of
the IP protocol presents us with a challenge of finding and addressing remote
hosts. Also, to establish a network connection, one of the parties have to take a
server and the other client roles. Here, party acting as a serve, creates a service
waiting for any incoming connections.

Moreover, in this case we do not have a dedicated and mutually trusted service
provider that facilitates exchange of certificate UCKs related to particular users.
Therefore, an alternative is required.

Blindly using an arbitrary UCKs, do not guarantee communicating parties any
identity properties and can only provide secrecy of the communications, between
these two parties.

54 Usage of Certificates Registered with SMSPKI

5.4 Mobile Network Security Implication

As discussed in section 4.1.0.3, attackers could try and perform ’MITM’ attack
between mobile device and BSS station. If performing ’MITM’ for the purpose of
sniffing traffic, attacker could possibly observe certificate registration procedure
over SMS and make an association between anonymous certificate with certain
UCK to a particular mobile device.

If ’MITM’ is being performed to find out TMSI or IMSI subscriber identifiers,
so attacker could simulate roaming of a device being attacked. Attacker could
divert all MT SMS meant for a client to his rogue SMSC, thus intercepting
all SMS messages. In such cases SMSPKI usage would be disrupted, though an
attacker at best would only acquire a signed certificate - public-key part. On the
other hand, Certificate Manager on a client device would timeout and discard
that certificate.

Furthermore, having out-of-band communication increases difficulty and costs
for a possible attack. For a successful attack, rogue party would have to sabotage
any internet communications, likely an HTTPS channel, as well as perform
’MITM’, between mobile device and a BSS.

Chapter 6

Conclusion

To conclude, we have overviewed pre-modern communication methods, from an
information security standpoint, describing where applicable any security impli-
cations and familiarity of these methods to humans. In an overview of modern
communication methods we demonstrated, that current communication meth-
ods are non-intuitive to its users. Further, we described how cryptography,
especially public-key cryptography, is important for providing security proper-
ties to digital communications and identified that end-users are inadequate at
performing certificate management operations. Therefore, we argued for trans-
ferring these responsibilities to underlying software developers.

In addition, we defined a Public-Key infrastructure - SMSPKI, that employs
SMS channel for OpenPGP and X.509 certificate publishing and retrieval. To
utilise SMSPKI we described client-side software setup, including SMS Cer-
tificate Manager, which provides API for 3rd party apps that wish to access
SMSPKI services. Thanks to this API service we where able to describe how
certificate management operations can be relied to underlying app developers.

For future research, it would be compelling to investigate alternatives to SMS
channel based solution, for example, publishing certificates in blockchain net-
work in addition to using crypto currency as a limited resource. Furthermore,
Certificate Manager could be extended to provide these new types of server-side
solutions, though providing a consistent API through all client apps.

56 Conclusion

Appendix A

Diagrams

A.1 Description Supporting Figures

Figure A.1: "OSI RM Model" by Gorivero, used under CC BY 3.0

https://commons.wikimedia.org/wiki/File:Osi-model-jb.svg#metadata

58 Diagrams

Figure A.2: Validation and Trust chain of X.509 certificates

A.2 SMSPKI Related Figures

Figure A.3: General overview of SMSPKI infrastructure and its clients.

A.2 SMSPKI Related Figures 59

Figure A.4: Simplified certificate registration diagram.

Figure A.5: Client side setup with SMS Certificate Manager its interfaces and
3rd party app as API clients.

60 Diagrams

F
igu

re
A
.6:

H
igh-leveloverview

ofSM
SP

K
I
server-side

w
ith

its
sub-P

K
Is

associated
w
ith

M
SISD

N
(s)

and
their

H
T
T
P

interfaces.

A.2 SMSPKI Related Figures 61

F
ig
u
re

A
.7
:
SM

SP
K
I
SM

S
re
ce
iv
in
g
an

d
ro
ut
in
g
co
m
po

ne
nt
s
co
nn

ec
te
d
to

su
b-
P
K
Is
.

62 Diagrams

Figure A.8: Interaction between 3rd party client apps, SMS Certificate Man-
ager and SMSPKI server-side.

A.2 SMSPKI Related Figures 63

Figure A.9: Certificate Manager high-level overview. MSISDN(1/2) separate
folders for different SMSPKI providers with its provided and im-
plemented interfaces.

Figure A.10: SMS Certificate Manager API service interface definition.

64 Diagrams

Figure A.11: Certificate registration activity flow and interaction between
Certificate Manager and SMSPKI, in context.

A.2 SMSPKI Related Figures 65

Figure A.12: Certificate updating activity flow and interaction between Cer-
tificate Manager and SMSPKI, in context.

66 Diagrams

Figure A.13: Certificate retrieval activity flow and interaction between Cer-
tificate Manager and SMSPKI, in context.

A.3 Request and Response Examples 67

A.3 Request and Response Examples

Figure A.14: An example of certificate registration request. Included is X.509
CSR certificate in PEM format. req : - requested operation,
sid : - arbitrary number to track session, between requests and
responses.

68 Diagrams

Figure A.15: Example of a response to a successful certificate registartion
request.res : - HTTP status code, sid : - arbitrary number to
track session and registered PGP type certificate in PEM format.

Bibliography

[And] AndroidTM. Bound services. https://developer.android.com/
guide/components/bound-services.html. Online; accessed: 2017-
04-19.

[Arc] Internet Traffic Statistics Archive. Internet statistics. report for week
1, 2017. URL: http://stats.simpleweb.org/statistics.php?l=
2&w=1&y=2017.

[BGB04] Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-the-record com-
munication, or, why not to use pgp. In Proceedings of the 2004
ACM workshop on Privacy in the electronic society, pages 77–84.
ACM, 2004.

[CDF+07] Jon Callas, Lutz Donnerhacke, Hal Finney, David Shaw, and Rodney
Thayer. RFC 4880: OpenPGP Message Format. URL: https://
tools.ietf.org/html/rfc4880, November 2007.

[CDH+05] Matt Cooper, Yuriy Dzambasow, Peter Hesse, Susan Joseph, and
Richard Nicholas. RFC 4158: Internet X.509 Public Key Infrastruc-
ture: Certification Path Building. URL: https://tools.ietf.org/
html/rfc4158, September 2005.

[CSF+08] D Cooper, S Santesson, S Farrell, S Boeyen, R Housley, and W Polk.
Internet x. 509 public key infrastructure certificate and crl profile.
Internet Engineering Task Force. URL: http: // tools. ietf. org/
html/ rfc5280 , 2008.

https://developer.android.com/guide/components/bound-services.html
https://developer.android.com/guide/components/bound-services.html
http://stats.simpleweb.org/statistics.php?l=2&w=1&y=2017
http://stats.simpleweb.org/statistics.php?l=2&w=1&y=2017
https://tools.ietf.org/html/rfc4880
https://tools.ietf.org/html/rfc4880
https://tools.ietf.org/html/rfc4158
https://tools.ietf.org/html/rfc4158
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280

70 BIBLIOGRAPHY

[DH14] S Deering and R Hinden. Rfc 2460-internet protocol, version 6 (ipv6)
specification, 1998. URL: http: // www. ietf. org/ rfc/ rfc2460.
txt , 2014.

[EPS15] Chris Evans, Chris Palmer, and Ryan Sleevi. Rfc 7469: public key
pinning extension for http. Internet Engineering Task Force. URL:
http: // tools. ietf. org/ html/ rfc7469 , 2015.

[ETS] TS ETSI. 123 040 3gpp ts 23.040 version 4.2. 0.

[ETS95] EN ETSI. 300 356-1" integrated services digital network (isdn).
Signalling System, 1995.

[HD14] Roee Hay and Avi Dayan. Android keystore stack buffer overflow,
2014.

[Inc] Google Inc. IPv6 statistics. URL: https://www.google.com/intl/
en/ipv6/statistics.html. Online; accessed: 2017-03-10.

[Kal93] Burton Kaliski. Privacy enhancement for internet electronic mail:
Part 4: Notary, co-issuer, crl-storing and crl-retrieving services. In
RFC 1424. RSA Laboratories, 1993.

[KL93] S Kent and J Linn. Rfc 1422: Privacy enhancement for internet
electronic mail: Part ii: Certificate-based key management, febru-
ary 1993. Internet Engineering Task Force. URL: http: // tools.
ietf. org/ html/ rfc1422 , 1993.

[KS06] Stephen Kent and Karen Seo. Rfc 4301: Security architecture for
the internet protocol. 2005. Internet Engineering Task Force. URL:
http: // tools. ietf. org/ html/ rfc4301 , 2006.

[LY06] C Lonvick and T Ylönen. The secure shell (ssh) authentication proto-
col. Internet Engineering Task Force. URL: http: // tools. ietf.
org/ html/ rfc4252 , 2006.

[P+81] Jon Postel et al. Rfc 791: Internet protocol. Internet Engineering
Task Force. URL: http: // tools. ietf. org/ html/ rfc791 , 1981.

[Pos80] Jon Postel. Rfc 768: User datagram protocol, august 1980. In-
ternet Engineering Task Force. URL: http: // tools. ietf. org/
html/ rfc768 , 1980.

[Pos03] Jon Postel. Rfc 793: Transmission control protocol, september 1981.
Internet Engineering Task Force. URL: http: // tools. ietf. org/
html/ rfc793 , 88, 2003.

[Res00] Eric Rescorla. Rfc 2818: Http over tls. Internet Engineering Task
Force. URL: http: // tools. ietf. org/ html/ rfc2818 , 2000.

http://www.ietf.org/rfc/rfc2460.txt
http://www.ietf.org/rfc/rfc2460.txt
http://tools.ietf.org/html/rfc7469
https://www.google.com/intl/en/ipv6/statistics.html
https://www.google.com/intl/en/ipv6/statistics.html
http://tools.ietf.org/html/rfc1422
http://tools.ietf.org/html/rfc1422
http://tools.ietf.org/html/rfc4301
http://tools.ietf.org/html/rfc4252
http://tools.ietf.org/html/rfc4252
http://tools.ietf.org/html/rfc791
http://tools.ietf.org/html/rfc768
http://tools.ietf.org/html/rfc768
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc2818

BIBLIOGRAPHY 71

[SA11] Peter Saint-Andre. Extensible messaging and presence protocol
(xmpp): Core. Internet Engineering Task Force. URL: http:
// tools. ietf. org/ html/ rfc6120 , 2011.

[SAH11] Peter Saint-Andre and Jeff Hodges. RFC 6125: Representation and
Verification of Domain-Based Application Service Identity within
Internet Public Key Infrastructure Using X.509 (PKIX) Certifi-
cates in the Context of Transport Layer Security (TLS). URL:
https://tools.ietf.org/html/rfc6125, March 2011.

[SBKH06] Steve Sheng, Levi Broderick, Colleen Alison Koranda, and Jeremy J
Hyland. Why johnny still can’t encrypt: evaluating the usability of
email encryption software. In Symposium On Usable Privacy and
Security, pages 3–4, 2006.

[SCH+02] Eve Schooler, Gonzalo Camarillo, Mark Handley, Jon Peterson,
Jonathan Rosenberg, Alan Johnston, Henning Schulzrinne, and
Robert Sparks. Sip: Session initiation protocol. Internet Engineer-
ing Task Force. URL: http: // tools. ietf. org/ html/ rfc6120 ,
2002.

[Sha03] David Shaw. The openpgp http keyserver protocol (hkp). Internet
Engineering Task Force. URL: http: // tools. ietf. org/ html/
draft-shaw-openpgp-hkp-00 , 2003.

[Sta] StatCounter. Device type and operating system market share world-
wide. http://gs.statcounter.com/os-market-share. Online; ac-
cessed: 2017-04-12.

[Wel17] Bill Welch. Exploiting the weaknesses of ss7. Network Security,
2017(1):17–19, 2017.

[Zyr08] J Zyren. Long term evolution protocol overview. White Paper,
Freescale Semiconductor, 2008.

http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc6120
https://tools.ietf.org/html/rfc6125
http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/draft-shaw-openpgp-hkp-00
http://tools.ietf.org/html/draft-shaw-openpgp-hkp-00
http://gs.statcounter.com/os-market-share

	Summary
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Pre-Modern Era Communication
	1.1.1 Natural (Spoken) Language
	1.1.2 Messengers and Word Of Mouth
	1.1.3 Verbal Channel Exploitation

	1.2 Symbolism and Written Language
	1.2.1 Writing Known to Few
	1.2.2 Writing Becomes Common

	1.3 Modern Era Communications
	1.3.1 Telegraph
	1.3.2 Landline
	1.3.3 Computer Networks

	2 Overview of Public-Key Infrastructure Systems
	2.1 Public-Key Infrastructure
	2.2 Synchronizing Key Servers and OpenPGP
	2.2.1 PGP Private-Key and Public-Key
	2.2.2 Typical OpenPGP System Use
	2.2.3 Synchronizing Key Servers (SKS keyserver)
	2.2.4 Pros and Cons of PGP

	2.3 X.509 and Certificate Authorities
	2.3.1 Issuing Certificates
	2.3.2 Typical use of a CA managed PKI
	2.3.3 Pros and Cons

	3 Motivation
	4 Public-Key Infrastructure based on SMS channel
	4.1 Introduction to Mobile networks and SMS services
	4.2 SMSPKI
	4.3 SMSPKI Server-side
	4.3.1 SMSPKI Server-side Design
	4.3.2 SMSPKI Server API Description
	4.3.3 SMS API Description and Examples
	4.3.4 HTTPS API Description
	4.3.5 Important Considerations for SMSPKI’s Server-side

	4.4 SMSPKI Client-Side
	4.4.1 SMS Certificate Manager
	4.4.2 SMS Certificate Manager API and Internals
	4.4.3 Considerations for CM Implementation on Mobile Devices
	4.4.4 SMS Certificate Manager Clients

	5 Usage of Certificates Registered with SMSPKI
	5.1 SMSPKI and Client-Server Setup
	5.2 SMSPKI and Client-Server-Client Setup
	5.3 SMSPKI and Peer to Peer (P2P) Setup
	5.4 Mobile Network Security Implication

	6 Conclusion
	A Diagrams
	A.1 Description Supporting Figures
	A.2 SMSPKI Related Figures
	A.3 Request and Response Examples

	Bibliography

