
Ransomware detection and
mitigation tool

Jesper B. S. Christensen
Niels Beuschau

Kongens Lyngby 2017

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary (English)

In computer science, ransomware is a field in constant development. Since
antivirus and detection methods are constantly improved in order to detect and
mitigate ransomware, the ransomware itself becomes equally better to avoid
detection. Several new methods are implemented and tested in order to optimize
the protection against ransomware on a regular basis.

The primary goal of this thesis is to create a tool able to detect and mitigate
live ransomware. This ransomware already has infected the windows 10 system
that this thesis tests upon. This tool will contain different methods of detection
in order to identify a ransomware attack the fastest and stop that attack. The
purpose of the created tool is neither to be an antivirus nor as robust as one,
but solely to be a tool to detect and mitigate ransomware.

Since ransomware is a malware, to test it upon a system is a substantial thing
to do, especially when doing many tests. Therefore all ransomwares are tested
upon virtual machines, this means that all types of ransomware that has anti
simulation methods and does not encrypt files when registering that it is a
virtual machine, will not be tested in this thesis.

The different variants for the detection methods made, have been tested with
65 different ransomwares. The results for these variants has been found and
analyzed and the ransomwares that the detection methods were tested upon
has been analyzed as well. The result of this thesis is a solution that is able to
detect active ransomwares and after a short delay stop the encryption process,
thus stopping the active ransomware in 77% of all cases.

ii

Summary (Danish)

Ransomware er et felt indenfor informationsteknologi, der stadig er i rivende ud-
vikling. Eftersom antivirus og detekterings metoder konstant bliver forbedret i
at opdage ransomware, bliver ransomware tilsvarende bedre til at undgå opdagelse.
Mange nye metoder bliver stadig afprøvet for at optimere beskyttelsen mod ran-
somware.

Målet for denne afhandling er at skabe et værktøj der kan opdage og standse
aktiv ransomware, der i forvejen har inficeret et windows 10 system, som denne
afhandling tester på. Dette værktøj bliver bygget på forskellige detekterings
metoder for hurtigst at opdage aktiv ransomware og standse det. Meningen med
værktøjet er ikke at det skal være en antivirus eller ligeså robust som en, men
derimod udelukkende et værktøj til detektering og begrænsning af ransomware.

Eftersom at teste ransomware er omfattende i forhold til testmiljø, da det er en
virus, bliver alle tests med aktiv ransomware testet på virtuelle maskiner, derfor
bliver ransomware der ikke er aktive på virtuelle maskiner ikke testet i denne
afhandling.

Varianterne af detekteringsmetoderne er blevet testet mod 65 forskellige aktive
ransomwares. Resultaterne for disse varianter er blevet sat op og analyseret
og de ransomwares som methoderne blev testet på er også blevet analyseret.
Resultatet er et produkt der kan detektere ransomware og efter et kort stykke
tid, standse den aktive ransomware i 77% af tilfældene.

iv

Preface

This thesis was prepared at DTU Compute in fulfillment of the requirements
for acquiring an M.Sc. in Engineering.

The thesis deals with ransomware, detection methods of ransomware, methods
of mitigation and testing of live ransomware on virtual machines.

Lyngby, June-2017

Jesper B. S. Christensen
Niels Beuschau

vi

Acknowledgements

We would like to thank our supervisor Christian Damsgaard Jensen for the
help, guidance and counseling throughout this thesis. Also a special thanks
to virusshare for letting us download almost 40.000 different encryption ran-
somware for testing purposes. We are also grateful to Henriette Steenhoff who
has lended a hand in the analysis of data. Furthermore we are thankful for
the assistance that Nicklas Johansen provided in the development of the Game
Theory sections.

And lastly we would like to thank Amirhossein Shahineelanjaghi and Morten
Von Seelen, in their assitance in gathering information about ransomwares and
live samples.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1

2 Primer: Crypto Ransomware 5
2.1 Ransomware examples . 9
2.2 Summary . 11

3 Theory and related work 13
3.1 Detection . 13

3.1.1 Monitoring of File System Activity (SSDT) 13
3.1.2 Event Tracing Windows (ETW) 14
3.1.3 Honeypots . 15
3.1.4 Machine learning . 16
3.1.5 Monitoring of shared fundamental behaviour 16
3.1.6 Antivirus . 17
3.1.7 CryptoDrop . 17

3.2 Mitigation . 18
3.3 Remediation . 20

3.3.1 Decryption tools . 20
3.4 Windows Volume Shadow Copy Service 21
3.5 Game Theory . 22

3.5.1 Nash Equilibrium . 24

4 Methods for detection 27
4.1 Honeypots . 27

4.1.1 Theoretical . 27
4.1.2 Implementation . 28

4.2 Monitor processes that tampers with vssadmin.exe 29
4.2.1 Theoretical . 29

4.3 Monitor commonly targeted folders and registry 30
4.3.1 Theoretical . 30

x CONTENTS

4.4 SSDT calls . 31
4.4.1 Theoretical . 31

4.5 Monitor high resource consumption 31
4.5.1 Theoretical . 31

4.6 Shannon Entropy . 32
4.6.1 Theoretical . 32
4.6.2 Implementation . 33

5 Mitigation Techniques 35
5.1 Procmon . 35
5.2 SSDT . 37

6 Tests 39
6.1 Test environment . 39
6.2 Data collection server . 42

6.2.1 API . 43
6.2.2 MySQL database . 45

6.3 Test computers . 46
6.4 Liveness tests and data collection 48
6.5 Test cases . 49

6.5.1 Honeypots . 50
6.5.2 Shannon entropy . 51

7 Analysis and Evaluation 55
7.1 Data analysis . 55
7.2 Ransomware analysis . 61
7.3 Game Theory applied on Ransomware 63

8 Conclusion 67

9 Future Works 69
9.1 Robustness . 69
9.2 Mitigation . 69
9.3 Detection methods . 70
9.4 Testing environment . 71
9.5 Future challenges . 72

A Test results 75
A.1 Ransomware analysis . 75

A.1.1 Shortened hashvalues . 75
A.1.2 Ransomware properties 78
A.1.3 Ransomware encrypted filetypes 80
A.1.4 Detection method successrate against ransomware 85

CONTENTS xi

B Computer Specifications 87
B.1 Datacollection server . 87
B.2 Test computers . 88

C Database tables and structure 91

D PHP Code 95
D.1 Backend: DbHandler.php . 95
D.2 Frontend: index.php . 102

E C# Code 113
E.1 Host controller . 113

E.1.1 Main control unit . 113
E.1.2 Virtual Machine Controller 117

E.2 Ransomware downloader . 119
E.2.1 Main control unit . 119
E.2.2 Server Communicator . 121

E.3 Honeypot Prove of Concept . 124
E.3.1 Main control unit . 124
E.3.2 Filemon for honeypots . 126
E.3.3 Procmon . 129
E.3.4 Code for the reaction when the ransomware is detected . 132
E.3.5 Filemon for logging . 135
E.3.6 Code for logging data . 137

E.4 Shannon Entropy Prove of Concept 146
E.4.1 Main control unit . 146
E.4.2 Filemon for shannon entropy 149
E.4.3 Event handler for filemon events 152
E.4.4 Shannon entropy calculator 160

E.5 Practical tools for extracting data 163
E.5.1 Main control unit . 163
E.5.2 Handling of the output from server 165

Bibliography 167

xii CONTENTS

Chapter 1

Introduction

In the beginning, the purpose of viruses and hacking in general was either to
show off your abilities or a proof of concept, to see if the hack would actually
work [Hig97]. This developed into larger amounts of destruction with no gain
for the attacker except the thrill and fame for doing so [Hyp11]. Attackers then
started to create bot networks, where infected systems would become part of
the bot network, which could be used for generating spam emails, Distributed-
Denial-of-Service attacks and more, usually for economic gain [Hyp11].

People with malicious intentions have been exploiting people for hundreds of
years, and the technological development has only made it easier. When these
people realized the potential of exploiting people for money online, things started
to develop much faster [Hyp11]. In the beginning of online exploiting, many fake
anti viruses and anti spyware programs started to show up, they claimed to have
found spyware and malware on the system, even though there were no malicious
files, the discovery of these files were free, but it required a payment in order
to remove it. Ironically the anti viruses and anti malware programs were the
malware themselves [Mav+].

The success of the fake anti viruses lead to another type of malware that re-
quired payments, but this method had a much more aggressive approach than
the previous malwares in order to secure payment. This malware, called ran-
somware, has two different types. The first type, called locker ransomware,
locks the user from the system, preventing the user from accessing anything
but the locked screen, this locker then demanded payment in form of either
vouchers, purchases on specific sites or in some cases bitcoin payments [SCL15].
The other method, called crypto ransomware, starts to encrypt important files,
such as word documents, business spreadsheets, vacation pictures and the likes.
When the ransomware deems itself done with the encryption a ransom message
is shown to the user, demanding a payment for it to restore the files. Along
with the demand of payment is usually a timer that indicates a deadline for
payment. If this deadline is exceeded the ransomware will either delete the de-

2 Introduction

cryption key, such that the files cannot be recovered, unless the encryption is
cracked, or delete all of the encrypted files [Sga+16]. The timer in the ransom
note and the pressure of the loss of files is a part of the tactic to make the vic-
tim pay usually seen in scareware, a method explained in greater detail in this
thesis. The distributors of ransomware has no interest in the victims that does
not pay, and gain nothing from victims that does not pay. They do not care
about the encrypted files or anything upon the system, what they are interested
in is the payment and nothing else [AGM15].

The aim of this paper is to create and analyze various methods that can detect
when a crypto ransomware starts to encrypt the files on a system. The effec-
tiveness of these methods will be tested to find the best detection method to
detect a crypto ransomware attack. Instead of having a blacklist of signatures
to prevent the ransomware from getting into the system, these methods will de-
tect the attack as it begins, thus having an effective behaviour based detection
method. The tool created will test different detection methods with focus on
several parameters. The most important parameters are reaction speed, effec-
tiveness and number of false positives. Reaction speed is how fast the detection
tool detects that the system is being attacked, meaning that encryption of the
files has begun, this is measured in how many files are encrypted before the
tool reacts. Effectiveness is about how many different kinds of ransomware are
caught by the detection method. False positives is the ability of the detection
tool to determine whether the threat is real or if it comes from a regular program
on the system. The goal is to create a tool that can detect crypto ransomware
when it attacks the system and afterwards stopping and mitigating the attack.
This tool will not detect a dormant ransomware that does nothing, nor will it
detect when the system is infected with the ransomware, it will only detect when
the ransomware is attacking the system.

Ransomware has been seen on everything from smartphones, smartwatches and
electronic billboards to healthcare facilities. Most operating systems such as
Windows and Unix based systems (Ubuntu, Debian, MacOSX etc) are all af-
fected. This project is focusing on ransomware that is targeting windows. This
has been chosen since windows is the most targeted operating system for ran-
somwares and also the most common operating system [Dat16].

3

This thesis is divided into eight chapters:

Chapter 2 The basic properties of a crypto ransomware is presented, this in-
cludes the industry and economy of ransomware, encryption methods and
how the ransomware communicates with a given controller. Following this
is some case examples of known crypto ransomwares.

Chapter 3 A thorough presentation and analysis of several known and docu-
mented ransomware detection, mitigation and remediation methods along
with relevant theory.

Chapter 4 Here the methods for detection that have been considered imple-
mented are described, this includes how they detect probable threats, pos-
sible flaws and potential methods of avoiding detection.

Chapter 5 Proposed methods for mitigation are described.

Chapter 6 This chapter describes the testing environment, the implementa-
tions necessary, test cases and the process of creating these.

Chapter 7 In this chapter the results are analyzed, and the effectiveness of the
detection methods are measured. Furthermore a discussion that suggest
how to optimize the detection method is made. This also includes a game
theory analysis of interactions with ransomware.

Chapter 8 A conclusion for the thesis and the work that has been done during
this process is made.

Chapter 9 Perspective for future works, not only for this project but ran-
somware detection in general.

4 Introduction

Chapter 2

Primer: Crypto
Ransomware

In this chapter the properties of crypto ransomware will be explained. First,
a brief explanation of what crypto ransomware is, what it does and how big
an industry ransomware actually is. Next, the methods of infection used by
ransomware to become distributed as widely as possible is explained. Following
this is an overview of the encryption schemes used and how the ransomware
communicates with its command and control servers.

Crypto Ransomware is a type of malware that once it has infected a system
encrypts user files. Then it demands some form of payment to decrypt the
encrypted files within a given time limit. This payment is nowadays usually
in bitcoins [TCM], where earlier it was in online shopping, premium telephone
numbers or other payments difficult to trace [Win]. The costs for attacks that hit
individuals are usually around 300$ worth of bitcoins, but for larger companies
or institutions the costs can be higher, especially the cost of having downtime
or the recovery can be quite expensive. As an example when The San Francisco
metro was hit late November 2016 and was affected for a weekend the estimated
lost ticket revenue amounted to 50.000$ [SFG], on top of that are the expenses
for recovery and consultants. There are no limits to who gets infected by ran-
somware and the consequences varies a lot. The service sector is the sector
among organizations most commonly infected, but almost every sector has been
hit with ransomware on some scale, this includes hospitals, public transporta-
tion and police departments [16]. Crypto ransomware is a growing industry
with a large number of infections each year as seen in figure 2.1, this leads to a
large income for the distributors of this ransomware. As an example, the Wan-
naCry ransomware affected large parts of the British National Health Services
in beginning of May 2017, resulting in cancellations of scheduled surgeries and
appointments [Bra].

In 2015, it was estimated that criminals earned around $24 million from ran-
somware from the United States, and in the first three months of 2016 $209

6 Primer: Crypto Ransomware

million in ransomware demands had been paid in the United States alone [Fin].
It has been said that for the ransomware CryptoLocker roughly 41% of the
victims pay for the decryption of their files [Sco14], while the general payment
percentage in 2016 was around 34% according to Norton [ONe].

Figure 2.1: Overall Ransomware Infec-
tions by Month from January
2015 to April 2016 [16]

Although it is known what regions
most of these ransomwares origi-
nate from [Hyp11], there are usu-
ally no specific targets for common
ransomwares. Ransomware is dis-
tributed through various means. The
most common ways are infiltration
through email, web exploits by us-
ing exploit kits such as Angler, Drive-
by-downloads, or extensive phishing
campaigns [Ost].

The latest ransomware Wan-
naCry also known as WannaCrypt,
WanaCryt0r 2.0, Wanna Decryptor

is a ransomware that hit the world the 12th may 2017, and is the first of its
kind to utilize worm like behaviour successfully. It exploits a vulnerability in
Windows computers with the Server Message Block (SMB) where it not only
spreads to other computers online, but also spreads to other computers using
the Local Area Network.

Most of the victims of ransomware are home users, this is largely due to home
users not having proper security or backups, and therefore easily gets infected
and has no other options than paying the ransom [IBM]. However the healthcare
industry has been targeted by spear phishing campaigns [16], and latest was the
WannaCry which hit the British National Health Services primarily due to old
systems running windows XP.

Everything containing data can be hit by crypto ransomware, and everything
with an interface can be targeted by locker ransomware. Ransomware that
targets smartwatches and smartphones is usually locker ransomware and also a
growing industry [MNS16].

For crypto ransomware, once the system is infected, the ransomware will start to
encrypt files with little communication with the command and control server, if
it still exists. This communication is usually performed over anonymity networks
such as TOR or I2P, but can also take place using more normal connections
such as HTTP or HTTPS [SCL15]. Some command and control servers are
taken down such that the ransomware has nothing to post to, and how the

7

ransomware reacts upon missing a command and control server varies. Some
does not encrypt the files, because there is nowhere to post the encryption key,
while some encrypt the files and tries to send the encryption key to a non existing
server. The latter means that even if the ransomware payment is met, the files
will remain encrypted due to lack of a decryption key.

The first ransomware, PC Cyborg from 1989, used a symmetric encryption to
encrypt the files on the drive of the computer [Kas]. This was easy to decrypt
since the encryption key was stored along with the encrypted files. In fact
several ransomwares have been found to have a default encryption key for all
files and all victims [Hay]. However, when looking at the newer generations
of ransomware, such as Jigsaw, TeslaCrypt, CryptoWall, WannaCry etc., they
usually use a combination of asymmetric and symmetric encryption algorithms.
Normally a 256 bit AES symmetric key is used for encrypting files, and then an
2048 RSA asymmetric key is used to encrypt the AES key [Edi]. Using such an
encryption scheme makes it theoretically impossible to decrypt the files without
the decryption keys. WannaCry, which is the most noticeable ransomware in
recent times, generates its encryption keys in the following manner. Once the
system has been infected it generates an RSA keypair, where the private key
is encrypted using a hardcoded public key from WannaCry and sent to the
command and control servers. The public key from the newly generated keypair
is then used to encrypt 128-bit symmetric keys used for each individual file.
[Sym]

The method of encryption can be put into three different categories:

Category 1 This type of ransomware opens a file, reads the contents and then
writes the encryption into the file, thus overwriting it. This means that
the content of the file is encrypted, but not necessarily the file itself, the
file might not even be renamed.

Category 2 The file to be encrypted is moved to another directory where the
ransomware encrypts the file, then moves the same file back into the orig-
inal directory. Here the file might also be renamed.

Category 3 Here the original file is read and a new encrypted file is made
based on the original, next the original is overwritten or deleted [Sca+16].

After all of the relevant files have been encrypted a ransom note is delivered onto
the infected system. This is sometimes done with an opened window that cannot
be closed, another method of delivering the ransom note is changing the desktop
background to the ransom note itself. The ransom note usually demands around
$300, but this can vary from country to country [Sym15]. Most ransom notes

8 Primer: Crypto Ransomware

explain what has happened and why the files are impossible to recover without
payment. Usually there is a timer and other psychological effects to frighten the
victim into paying, as seen in figure 2.2.

Figure 2.2: Jigsaw ransomware note

Since bitcoins and how to obtain them is not something commonly known, some
ransomwares show guides and homepages of how to purchase bitcoins in order to
pay the ransom as seen in figure 2.3. Some ransomwares even provide support
and service hotlines.

2.1 Ransomware examples 9

Figure 2.3: Cryptowall bitcoin guide

2.1 Ransomware examples

CryptoWall is, as the name implies, a crypto ransomware that showed up in
the beginning of 2014. It uses an AES encryption and then encrypts the key to
the AES encryption with the public key of RSA keypair generated uniquely for
every attack. Cryptowall is deployed through usual attack vectors, exploit kits,
drive-by-downloads, phishing campaigns and email spam.

In order to ensure persistence, a ransomware, among other things, adds files to
several different directories in the system that can start up the ransomware once
more. These folders are usually folders not normally used by users such as the
directories appdata and temp.

As seen in figure 2.4, the ransom note explains how the files have been encrypted
and links to it such that the victim them selves can read about the encryption
and why it is impossible to recover the files. Furthermore, the ransom note
explains to the victim what has happened and why the only way to recover the
files is by following the instructions. The ransom note even explains how and
where to acquire bitcoins, as seen in figure 2.3.

Many locker ransomware uses psychological effects to frighten victims into pay-

10 Primer: Crypto Ransomware

Figure 2.4: CryptoWall ransom note

ing to have their systems restored to normal quickly, they usually pretend that
the locking of the computer is made by some law enforcement agency such as
the FBI. They inform the victim that they have been caught performing an
illegal action. Often the alleged illegal activity is downloading pirated movies,
accessing pornography, or even child pornography. The locker ransomware in-
forms the victim that the illegal offense could result in prison sentence or a very
expensive fine. However, they offer a "first time offenders fine", which is a lot
lower than the normal fine. This tactic scares the victim from seeking help from
others, while also believing they are getting a "good deal". [Gam]

Crypto ransomwares do usually not rely on using fake governmental warnings,
but they still use psychology to frighten the victims. In the jigsaw ransomnote,
in figure 2.2, a timer is clearly shown, and if payment has not been received files
will be deleted. This timer is meant to instill panic and urgency in the victim,
increasing the probability for them to pay, since they do not have have time to
research alternative options.

Another psychological feature, is the "show of good faith". Some crypto ran-
somwares offers to decrypt a few for the victim for free, in order to show that

2.2 Summary 11

they are able to decrypt the files. This is supposed to make the victim trust the
ransomware, and again, increase the likelihood of receiving payments.

Where some crypto ransomwares decrypt a file for the victim as a show of
good faith, others use more threatening methods in order to make the victim
cooperate. As seen in the jigsaw ransomnote it warns the victim not to shut
off the computer or close the ransomnote, otherwise there will be consequences,
usually deletion of already encrypted files.

It is important for an effective antivirus to know how a ransomware works,
what it does and what kind of communication it makes with a server. To
test what a ransomware does it is often simulated in a virtual environment
or put into a sandboxing tool, from there every single action the ransomware
does, can be monitored and analyzed. In order to prevent antivirus and other
detection systems to test a ransomware in such a simulated environment some
ransomwares feature anti-simulation techniques. How the ransomware detects it
is in a simulated environment varies, but a know case is where WannaCry made a
call to an outside domain that did not exist, if the environment returned with an
answer then the ransomware would do nothing at all [End]. Other ransomwares
have been known to act different on purpose in the simulated environment in
order to throw off the detection method. In this thesis the ransomwares are
tested on a virtual machine, by doing so the reaction and file encryptions can be
monitored upon the machine. If a ransomware has an anti simulation method,
either by not encrypting anything or somehow throw off the readings they might
not be included among the ransomwares that the detection methods are tested
upon.

2.2 Summary

To summarize, ransomware is a branch of malicious software that takes files as
hostage and demands ransomware to release them. It targets individuals, corpo-
rations, organizations and public services such as hospitals and police stations.
It is a growing industry which in 2014-2015, affected 131,111 users and 718,536
users in 2015-2016 according to Kaspersky Lab [Lab]. In 2015 ransomwares
payments totalled 24 million $, and in the first quarter of 2016 it had increased
to 209 million $, with an estimated total for 2016 to be 1 billion $ in the US
[Dat16]. Some estimates show that the cost of downtime in the US in 2016 due
to ransomware, cost upwards of 75 billion $ [Dat16]. In figure 2.5 is a timelime
showing the enormous growth of ransomware families from 2011-2016.

The more advanced versions of ransomware contains anti-analysis techniques.

12 Primer: Crypto Ransomware

Figure 2.5: Ransomware timeline

This is because as with all software, ransomware also contains errors, which
renders them less effective, by employing anti-analysis techniques these unin-
tentional flaws are more difficult for security researchers to find. Examples of
bugs is the usage of weak encryption scheme, not removing decryption keys from
memory, or as recently seen with WannaCry, an unintended killswitch.

Chapter 3

Theory and related work

Through the literature analysis and analyzing the detection methods of current
anti-ransomware products, several different methods for detection, mitigation
and remediation was identified. This chapter presents others work and their
findings divided into each of the methods.

3.1 Detection

3.1.1 Monitoring of File System Activity (SSDT)

It is possible to detect a ransomware attack by monitoring the file system activity
as proposed and tested by A. Kharraz et al. [AGM15]. The proposed method
hooks into the System Service Descriptor table (SSDT) and filters out interesting
I/O request and their attributes such as process name, process id etc [AGM15].
By doing so, if a cluster of suspicious request are made, it is highly likely that the
responsible processes are malicious. Furthermore, if a log of the SSDT calls is
made it is also possible to remove everything the virus or ransomware has spread
out on the computer. This can be done by finding a processes parents, thus
finding the root of the problem and every single process or file these processes
have made. Thereafter all of these processes are shut down and all the files
removed, thus completely removing the ransomware code.

SSDT is an internal dispatch table in Windows, the table is used for system calls
by the operating system. The information returned by the original operating
system can be read or changed by hooking into the SSDT, a tecnique often used
by rootkits and antivirus software.

The authors hooked into the I/O manager in the kernel and developed their
own minifilter to filter read, write and attribute change requests [AGM15]. By

14 Theory and related work

utilizing the SSDT, the monitor is on level with rootkits and antivirus software,
which leads them to argue that it will be very difficult for future ransomwares
to bypass the monitor. Kharraz concludes that by analyzing and intercepting
the I/O request they can reliably detect and stop a ransomware attack.

Not only will it be hard for future ransomwares to bypass the monitor, by having
a system that hooks into the SSDT it is also very hard to remove since any I/O
request is made to remove the monitor can be discarded by the monitor itself.
Thus making it very hard to remove or shut down. This gives the detection
method a very robust foundation.

3.1.2 Event Tracing Windows (ETW)

A research team from CyberPoint lead by Ben Lelonek and Nate Rogers held a
talk at Ruxcon in 2016 and presented work on ransomware detection using Event
Tracing for Windows (ETW) [Rog16]. Their approach was to analyze the events
generated for file reads, writes and change in file size, and through an algorithm
they developed a method for detecting ransomware. The algorithm is designed
based on research they performed on ransomware behaviour, where they tried
to find ways to generalize the behaviour of the variants. This generalization
had a high number of false-postives, and was very dependant on Operating
System delays, iterations etc. When looking at changes to the file size they
compared original size vs. the encrypted size, this however also varied a lot
due to different encryption algorithms, initialization vectors, and resulted in
lots of false positives from benign processes. The behaviour when changing
names, was rather consistent since most encrypted files would keep some form
of their original name. The algorithm they developed was based on the explained
research and works like this:

SuspiciousEvent=0;
if File previously read ∧ File just written then

if Same PID ∧ Threshold < 80 ms ∧ File size delta threshold >=
1024 bytes then

SuspiciousEvent = SuspiciousEvent + 1
end

end
if SuspiciousEvent >= 3 then

Filter false positives
if !false positive then

Handle process
end

end

3.1 Detection 15

According to their tests, they are able to detect every ransomware. However,
the solution has some limitations. At least three files needs to be encrypted
before the system detects and stops a ransomware. Because the system is based
on dynamic capture of events the performance can vary greatly and is subject
to minor delays. Lastly, the authors also mention that it is not hard for future
ransomwares to detect this type of monitor, since windows keeps track of all
event listeners and therefore a ransomware could just check for any processes
monitoring the logs.

3.1.3 Honeypots

The use of honeypots to detect malicious system activity was first proposed by
[Bow+] and [Yui+04], and later implemented against ransomware in [Moo16].

Chris Moore has been using monitored honeypots to detect malicious system
activity [Moo16]. The way honeypots work is by having files placed onto the
system, that no program nor user would ever tamper with. The first honey-
pot ideas were more traps and bait than anything else. The intention of these
were to be decoys and confuse an intruder, and when the intruder accessed the
honeypot file a system would react and know that an intruder was in the given
file. This can also be implemented to detect ransomware, this method would
use the honeypot as bait. Since a ransomware is encrypting all files in every
relevant folder it would naturally also encrypt the honeypot files, thus alerting
the system that a program is tampering with the honeypot. A program called
EventSentry can be used to make real time event log monitoring and monitor
Windows Security logs. This can be used to raise flags when the number of sus-
picious actions reaches a certain threshold. A folder, made entirely of honeypots
is created and monitored by EventSentry in order to capture unauthorized at-
tempts to access objects in the folder. By using a single folder this also ensures
some protection against false positives, as the user knows what folder not to
tamper with, hence the only object that would tamper with that given folder is
malicious programs. Along with this monitor is a tiered response to detection
such that different amounts of attempts to access the honeypot files leads to
different reactions. The more attempts detected the more severe the reactions,
starting with sending an email to the administrator that there has been changes
in the monitored folder, to determining and disabling the user or station that
is hosting the attacking ransomware. Then disabling the network services, end-
ing in shutting down the server, in order to protect the server from additional
encryption by the ransomware. The tiered response is implemented in order to
ensure minimum trouble for a user if the user would trigger the honeypots, but
at the same time prevent further spread of a possible ransomware.

16 Theory and related work

3.1.4 Machine learning

Diane Duros Hosfelt has made a machine learning method to detect when cryp-
tographic algorithms are compiled [Hos15]. Algorithms such as SHA1, DES,
MD5, AES etc. This detection method can be used to detect when crypto ran-
somware attacks the system and starts encrypting files. Diane Duros Hosfelt
uses the Intel’s Pin dynamic binary instrumentation (DBI) framework to iden-
tify and extract features. This injects code into the executed program in order
to analyze the behavior of the program at runtime. If this code injection is
detected by the malware it can avoid running the code thus avoiding detection.
The machine learning method has only examined C and C++ code, but this
problem is easy solved since the the model can be trained to detect and classify
other language binaries.

Kharraz et al. [AGM15] analyzed a lot of ransomware families and how they
interacted with a Windows system. They proposed monitoring Windows API
calls such as encryption libraries, defragmentation API and more. The problem
with this however, is that a lot of benign software uses these as well and could
therefore create too many false positives. To combat this, the authors suggest
training a classifier and thereby learning how to distinguish between benign pro-
grams and malicious ransomware. Furthermore, Kharraz also proposed looking
at changes to the Master File Table (MFT), which keeps tracks of all files on
the system. Through their analysis they conclude that it might also be possible
to use Machine Learning to identify malicious changes to the MFT.

3.1.5 Monitoring of shared fundamental behaviour

Several other researches have analyzed some of the fundamental behaviour ran-
somware exhibits. This is behaviour related to deleting backups, ensuring per-
sistence, and use of microsoft cryptographic API.

Monika et al. found a set of common registry keys that are either read or
modified [MZL16]:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

HKLM\Software\Microsoft\Cryptography\Defaults\Provider Types\Type 001

The first is usually modified for programs to ensure they are started at boot,
while the last one is read to access window’s cryptographic API.

3.1 Detection 17

Similarly Ahmadian et al. found 20 common features among the most
widespread ransomwares families [AS16]. These features cover folder access,
registry changes and process calls. Ahmadian was able to, rather reliably,
detect new ransomwares based on the 20 features. They do however, note that
ransomware would be able to change their common behaviour, which would
render most of the identified features useless. They do argue though, that any
successful ransomware will have to access and delete files from Windows volume
shadow copy service (vssadmin), which they track and would be able to catch
all ransomwares doing this. They assume that if the ransomwares does not
interact with vssadmin, then the user should be able to recover their files using
the service, however as described in section 3.4 this might not be the case.

3.1.6 Antivirus

One of the most common protections employed against malicious software is an-
tivirus software. A lot of different companies develop and sell antivirus software
which usually use a combination of heuristics- and signature-based detection. It
normally works by having a database of extracted signatures of known threats.
When a file is executed it goes through the on-access scanner where it is an-
alyzed and its signature compared to the signature database. Furthermore its
code gets analyzed in the heuristic module. This combination allows antivirus
to fairly well identify known threats and some new. However, they are not very
efficient against ransomware. The problem is, unlike a keylogger which hooks
into the keyboard input or a backdoor which creates e.g. a reverse SSH tunnel,
ransomware does not exhibit these types of behaviour. In most cases, it is just a
normal program which is able to encrypt files and send traffic over the TCP/IP
protocol.

3.1.7 CryptoDrop

Nolen Scaife et al, has created CryptoDrop that monitors real-time change in
user data in order to detect ransomware attack [Sca+16]. CryptoDrop uses
three individual ransomware attack indicators in order to reduce the number of
false positives and at the same time tries to keep the number of files encrypted
by the ransomware to a minimum.

Filetype: Files rarely change their file type or formatting except for when they
are encrypted, thus by monitoring changes in file types could indicate an
attack, although a single change in a file type is not enough evidence to

18 Theory and related work

indicate that an attack is happening, therefore it takes several of these
changes before a flag is raised. Adjusting these detection thresholds to the
optimal solution takes a lot of testing on multiple different ransomwares.

Similarity hash: Since encrypted files are nothing alike the original files the
content of these files can be compared with some similarity measure. By
using similarity-preserving hash functions one can look at how different
a file is before and after being written to [Kor]. If the similarity hash is
highly dissimilar in many files within a specific timespan then a flag should
be raised.

Shannon entropy: The assumed value of information in a message is called
Shannon entropy. Since encrypted data always have a high entropy, this
means that if many files have a high Shannon entropy as a result of being
changed, then this could indicate that a ransomware attack is in progress.
Shannon entropy will be explained more in detail in section 4.6

These three methods are the main methods CryptoDrop uses to detect ran-
somware attacks since most ransomwares triggers all three of the main meth-
ods. Furthermore CryptoDrop also raises a flag if there is deletion of several
files since this could also indicate malicious activity.

The advantage of combining these individual detection methods is that if one
is to be avoided it would trigger the other indicators much easier. This means
that if future ransomwares are to avoid all three detection methods it requires
a lot of time and some very good engineering in order to evade all the detection
methods [Sca+16].

3.2 Mitigation

In the previous section, we covered how to detect an ongoing ransomware at-
tack, however, once detected the attack should be mitigated. There is very little
academic research on how to mitigate ransomware, since it is usually straight
forward. The two primary ways of stopping a ransomware attack is either sus-
pending or killing the malicious process.

Suspending processes can work well as you can temporarily stop a process be-
lieved to be malicious and either do further analysis, automated or manual.
Furthermore you can ask for the user to decide, ensuring the process can not
do any harm until the users takes action. The disadvantage of this is relying on
the user acting correctly and with the right knowledge of which files might po-
tentially be malicious on his/her system. It might just become another pop-up

3.2 Mitigation 19

box indoctrinating users to always click yes or no, without much thought. This
could either allow the ransomware to run rampant or shutdown falsely identified
malicious processes. The problem increases if all the processes spawned by the
ransomware gets suspended, which could lead to a dialog box spam. An example
of suspending processes is the free tool RansomFree developed by CyberReason.
It suspends a process identified as malicious, and requests an action from the
user, to either allow or stop the process.

The advantage of directly killing processes, is that the malicious process is
stopped right away, without interfering with the users normal actions or work-
flow. However, the margin for error is significantly lower since stopping a non-
malicious process could result in loss of work or system instability.

For both mechanism, all processes related to the malicious process should be
handled at the same time. If not, some ransomwares might perform a revenge
action, such as jigsaw deleting up 1000 files upon reboot [Mic]. This means,
that all information about processes should constantly be logged, e.g. what
other processes are spawned or what files are created etc. Having that infor-
mation would allow the mitigation software to correctly stop the ransomware
attack without any counteractions from the ransomware. An example of such
a mitigation method is the one used by SentinelOne’s EndPoint Security. They
collect and track what all processes performs of actions, and once one of them is
detected as malicious they take appropriate action against all processes created
by the malicious one including its own parent and the parents’ children.

Figure 3.1: SentinelOne process tree example.

When the process has been stopped, cleaning of any persistence and other
changes should be performed is covered in section 3.3.

20 Theory and related work

3.3 Remediation

Remediation covers not only removing any forms of persistence, but also re-
moving the files that were added to the system, which, by accident, could start
the attack again. It also includes undoing changes to the registry database
and attempted recovery of lost files. This section will cover how some of the
commercial proprietary products work to remediate a ransomware threat.

There are several commercial products working as full protection suites, so
they encompass detection, mitigation and remediation. Since they are pro-
prietary products, not much besides what the companies say about their prod-
ucts is known, and no scientific articles has been released on their effectiveness.
Nonetheless, this section will cover how some of such systems work, based on
the information available.

SentinelOne uses a multi-layered approach which, as they call it "covers the
entire threat lifecycle" [Sen]. Their approach is not based on signatures or
heuristic analysis, but on a dynamic analysis of processes’ behaviour. This
dynamical analysis is supported by proprietary algorithms and machine learning,
what is known though, is that they look at calls to the Windows volume shadow
copy service (vss service), and blocks those that are not by their product or
signed by Microsoft. They continuously monitor all processes and log their
actions, and when one is deemed malicious, they kill the process and all of those
related to it, such as its children, parent and parents’ children. Since all the
actions of the process are logged, they can easily revert the changes, which only
leaves the files the ransomwares manages to encrypt. These are restored using
the vss service which is able to recover them from the last time a snapshot was
taken.

Checkpoint also have a commercial product by the name SandBlast
Anti-Ransomware [Che], which for the most part works very similar to Sen-
tinelOne. Without knowing their proprietary algorithms, the primary difference
is instead of using the vss service, Checkpoint uses their implementation of a
service similar to vss.

3.3.1 Decryption tools

Most ransomwares uses strong encryption such as AES256 and RSA with a 2048
bit key, and known cryptographic libraries such as the one in Windows or open
source options.

3.4 Windows Volume Shadow Copy Service 21

A few poorly constructed ransomwares do not however, and usually security
researchers are able to find flaws in their own developed encryption schemes
allowing the files to be decrypted. In other cases, some ransomwares, even
though they use strong encryption, have the key stored within the ransomware,
again allowing security researchers to find it.

In more recent cases, with e.g. WannaCry, researchers found a way extract the
encryption key from memory because it was not properly removed from memory,
so as long the computer was not shut down, the key could be extracted. Another
set of researchers from Kaspersky Labs [Lab] found that poor coding skills could
allow recovery of files lost to the encryption due to how WannaCry deletes files.

All of these flaws, allows security researchers to develop decryption tools which
are released to the public for free. Nomoreransom is a collaboration between
National High Tech Crime Unit of the Netherlands’ police, Europol’s European
Cybercrime Centre, Kaspersky Lab and Intel Security and works by collecting
all the developed tools in one place to help ransomware victims.

3.4 Windows Volume Shadow Copy Service

Windows Volume Shadow Copy Service, also known as VSS or VSC, is a system
for creating snapshots of disk volumes. It works at the disk block level, and
works by tracking all changes to the blocks. If a change on a block is about
to happen the block is backed up before the change. Seeing as it is used as
snapshots of the volumes, the VSC only ensures that blocks, and files therein,
can be reverted back to when the snapshot was taken. This means that if a
file is changed several times after the snapshot was taken, the newer changes
are not recoverable, unless a new snapshot is taken in between each file change.
One of the advantages of working at the block level, is that if a file is deleted,
the VSC does not need to create a copy, only if the blocks it resides on is about
to be overwritten [Szy].

The VSS has a limited amount of disk space to store the snapshots in, usually
5% of the main disk. There is no limit to the amount of snapshots that can
be taken, as long as the total size does not exceed the limit. If the service
tries to create a new snapshot when there is a lack of space, then starting from
the oldest, the snapshots gets deleted until there is sufficient space for the new
snapshot. In the case that there is not enough space for the latest snapshot, all
snapshots are deleted, since the VSS does not store partial snapshots [Szy].

Previously it has been explained that some detection and remediation methods

https://www.nomoreransom.org

22 Theory and related work

rely heavily on VSS. The concept is that, if a ransomware want to be truly effec-
tive, it has to clean/disable the VSS storage. In order to this, it has to perform
API calls to the VSS which can be monitored and manipulated, resulting in the
ransomware being detected by those actions.

At first, it seems like a perfect approach to always monitor calls to the VSS and
act accordingly, however, the VSS methods contains two problems. The first
being, that if it is a long time since the last time a snapshot was taken, recovering
files from the snapshot could still involve a lot of lost work. The other is a
theoretical attack on exhausting the VSS disk space. A future ransomware could
instead of calling the VSS API, instead delete enough files and overwrite their
blocks on disk with random data. This would force the newest snapshot to grow
in size, and at some point having to delete old snapshots. Continuing this attack,
would end up forcing the snapshot to delete itself since no partial snapshots are
stored. Obviously the ransomware should not delete normal documents and
spreadsheet which is of value, but rather large programs.

3.5 Game Theory

Game theory is about any interaction between multiple entities often called
players, in which each entity’s payoff is affected by the decisions made by others.
It is used in a wide range of fields such as economy, politics, biology, military,
psychology and computer science. Detailed below are several concepts used
within game theory to describe the interactions which are relevant in the context
of ransomwares. Some of the concepts requires more explanation and as such
also have their own section going further in-depth.

Static game is where each player chooses their strategy simultaneously from
their respective strategy space. The combinations of these strategies then
determines each players payoff. Even though the strategies are chosen at
the same time, does not mean that they are executed simultaneously.

Normal form games is way to describe a game where you know all the play-
ers, their strategies and their payoffs.

Complete information means that players payoff functions are common
knowledge. That is, for each strategy that player I could play, player J
knows the payoff. And player I knows, that player J knows his payoff.
And player J knows that player I knows that player J knows his payoff,
and so on.

3.5 Game Theory 23

Strictly dominated strategy is when a strategy s’ is strictly dominated by
another strategy s” if for each feasible combination of other players strate-
gies, the payoff from playing s’ is less than that of playing s” .

Iterative elimination of strictly dominated strategy is a method for an-
alyzing games, it works by eliminating strictly dominated strategies. It is
often used to reduce the complexity of games, and number of calculations.
Sometimes it can even solve the game.

Nash Equilibrium is one of the central analysis methods within game the-
ory. It is known for being one of the best methods for predicting game
outcomes. See section 3.5.1 for a more in-depth explanation.

Pure strategy and Mixed strategy: A mixed strategy is the probability
distribution over all of the strategies of that player, usually in the form
(q,1-q), where 0<=q<=1. In case of q being 0 or 1, then it is a pure
strategy.

Best response is the best strategy a given player can play which produces the
best expected payoff, taking the other players strategies into account.

Expected payoff is the value a given player is expected to receive by play-
ing a given strategy. Expected payoff is calculated by multiplying the
probability with the payoff.

Dynamic games is where the players choose their strategy in turns and the
actions are executed in sequence. I.e. company 1 chooses to produce
quantity q1 and then company 2 observes q1 and chooses their quantity
q2.

Repeated games is usually where a fixed group of players plays a given game
repeatedly. The outcomes of all previous games is observed before the
next play begins. The idea is that credible threats and promises about
future behaviour and strategies, can influence the current behaviour.

Perfect information is games where each player at each move knows the full
move history so far.

Imperfect information is where the full move history is not known.

Sub game as the name implies, this concept, is where a game unfolds within
a game. Recall that in dynamic games players take actions in turns, in
subgames players can take simultaneous actions.

Backwards induction is a method applied to dynamic games to analyze the
outcome. When using this methods, the game is always solved from the
the last action. All strategies with their payoff is put into a tree as shown
in figure 3.2. The top payoff in the pair of payoffs at the end of each
branch of the game tree is player 1’s and the bottom is player 2’s.

24 Theory and related work

Figure 3.2: Extensive form tree usually used in backwards induction

Non-cooperative the players play against each other in a competitive way.
Non-cooperative games are often analyzed by predicting the individuals
players strategies and payoffs using methods such as Nash Equilibrium.

Cooperative means that the games can be considered as a game where the
players have to work together such as in a coalition which is commonly
known as cooperative.

Zero-sum are games where the the sum is 0. In zero-sum games if a strategy
is beneficial to one player, then it is at an equal expense of another player,
such as in poker games.

Non-zero-sum are games where the payoff gained by one player, is not at the
expense of another player.

3.5.1 Nash Equilibrium

Nash equilibrium is a fundamental concept within game theory to analyze games.
Assuming a static game with pure strategies, then a 2-player game is in Nash
equilibrium if:

• Player 1 makes the best decision he can, taking into account Player 2’s
decision, while Player 2’s decision remains unchanged.

• Player 2 makes the best decision he can, taking into account Player 1’s
decision, while Player 1’s decision remains unchanged.

3.5 Game Theory 25

"Prisoner’s Dilemma" is a well known example of a non-cooperative game. It
shows, that even though the best outcome for both players is to stay mum
and thereby minimize their prison sentence, then when analyzed with Nash
Equilibrium, the best strategy to play is snitch, resulting in a higher prison
sentence for both, which seems counter intuitive. Two prisoners, Alice and Bob,
were arrested for committing a crime. Dependant on if they choose to be mum
or snitch they have the following options:

• If either Alice or Bob snitches the other does not, they will be granted
immunity, or 0 years in prison, however, the other will get 10 years in
prison.

• If both Alice and Bob both snitches, they will both get 5 years in prison.

• If neither Alice nor Bob snitches, they will both get 2 years in prison.

They both know the options and are then split up so they will not know what
the other will answer. They know the payoffs of the others strategies, and they
choose simultaneous, so it can be considered as static complete information
game. Their options can be put into the grid seen in figure 3.3.

Figure 3.3: Prisoners dilemma choice grid

The intuitively best option is if both of them stay mum, since the total prison
time will only be 4 years, also know as the social optimum. However, if e.g.

26 Theory and related work

Alice snitches, then Bob will get 10 years in prison and vice versa. According to
Nash equilibrium, Alice should make the best decision she can, assuming Bob
is taking the best decision he can. Since individually the best decision is to
snitch, Alice should assume Bob is going to snitch. If Bob snitches and Alice
does not, she will get 10 years while Bob gets 0 years, which means, she should
also snitch, resulting in both getting 5 years.

Figure 3.4: Prisoners dilemma choice grid with best-response underlined.

As shown in figure 3.4 the best-response, represented by the underlines can be
seen. Here we see the Nash Equilibrium (snitch, snitch) which provides the
payoffs (5,5).

The reason that this game is so popular to use when describing game theory is
because they both end up with snitching on one another, resulting in 5 years
each, which is counter intuitive compared to the 2 years they could have gotten
by being mum. This is because snitch is a strictly dominated strategy i.e 0 years
are better than 2 years in prison.

This is the overall idea of Nash Equilibrium, and it will be used to analyse the
interactions with ransomware.

Chapter 4

Methods for detection

This chapter will discuss and analyze the different detection methods and how
some of these have been implemented. First, the different methods will be
presented, how they work and what they do. These methods will be analyzed
theoretically to give an estimation upon the different qualities of the detection
method, and how well they would detect a crypto ransomware, theoretically.
This analysis is somewhat based upon information gained from related work.
Furthermore, for each detection method it will be discussed how a ransomware
can avoid detection and thus avoid triggering the detection method. Following
the theoretical aspect is also an explanation of how the detection method has
been implemented, if deemed achievable to implement within the capabilities
and timelimit. Next is a discussion on how to avoid false positives with the
given detection method.

4.1 Honeypots

4.1.1 Theoretical

A typical honeypot when talking computer security is a server set up to look
like a legitimate regular server. But this server is often on its own network while
being monitored. Upon the server is typically also some false information that
takes an effort to acquire, thus luring the attacker to use exploit tools in order
to obtain that information. All of this is monitored and saved such that an
antivirus will know such an attack in the future.

This thesis will also make use of honeypots as a detection system, although the
honeypots are files instead of a server. These files are placed among regular
data, but monitored by a system that checks for changes made to these files. If
the honeypots were placed to catch regular hackers that looked for credit card

28 Methods for detection

information or passwords, the honeypot files would be named passwords.txt or
something similar to catch attention. Against a ransomware the contents of a file
does not matter, since all the ransomware does to the files is encrypting them.
Therefore the honeypot files in the directories are multiple files of different size
and type. This is done to detect if a ransomware targets specific files or encrypts
them in a unique order.

Using honeypots to capture ransomware just means they need to be there, even-
tually they will be encrypted by the malware and that is when the system mon-
itoring the honeypots would react to a change in the honeypot. Naturally, the
faster a honeypot is targeted by a ransomware, the faster a detection method
would react and begin the mitigation process. If the honeypots are placed ran-
domly, then the more honeypots there are, the faster a ransomware should be
detected due to the higher probability of a ransomware encrypting a honeypot.
From what has been observed so far, the ransomware does not pick the files to
encrypt randomly, but what looks like alphabetically in most cases. By observ-
ing what files the ransomware encrypts and in which order, one can deduct a
pattern that the ransomware follows. If a ransomware always encrypts in al-
phabetical order, it would be natural to place honeypot files at the beginning of
every directory. Whereas if the ransomware encrypt the smallest files first, then
the smallest files in a file system should be honeypots. This idea is explored
further in section 7.3 which covers Game Theory.

4.1.2 Implementation

First, a system that is able to monitor changes in certain files in a directory was
needed. For this, filemon was used. Filemon actively monitors files containing
a given predefined string. The string chosen for all honeypots in all of the
directories on the tested computers was chosen to be honeypotbait. As long
as a file contains that string, no matter what type of file or what else their
name is, filemon will monitor changes made to that file, whether it is deletion,
change, creation or merely renaming. Filemon can be programmed to react
upon multiple different changes in the file, change of size, name, attributes etc.
The implemented filemon has been programmed to monitor the last write to
the file, change in the filename and changes to the size of the file. The code for
filemon can be found in appendix E.3.2

Once a change has been registered in a honeypot file, filemon registers it. A user
who has installed a honeypot based ransomware detection system would refrain
from changing the files, one can argue that there is a high probability that if a
honeypot has been changed then it is not the user but something malicious. De-
spite this the implemented program has a threshold of two honeypot files being

4.2 Monitor processes that tampers with vssadmin.exe 29

changed within a minute to react. This was chosen as a user may accidentally
delete or somehow change a single honeypot file, but if several files has been
changed within a minute then there is a high probability of a malicious attack,
at least when dealing with a regular user. This also means that a ransomware
that does not change two honeypots within a minute will not be detected by
this method. One can argue that a ransomware that only encrypts a few files
every minute is a very slow working ransomware, although still a ransomware.
The way a ransomware encrypts files and how to detect this using honeypots
is discussed in section 7.3 Once the threshold has been met, the filemon will
react to this and start shutting down the process that has tampered with the
honeypot file as described in section 5.1.

4.2 Monitor processes that tampers with vssad-
min.exe

4.2.1 Theoretical

Ransomwares will in general try to delete any backups if possible, since this
increases the incentive for the victim to pay. A sort of backup service exists on
Windows, it is called Windows Volume Shadow Copy Service or VSS for short.
It takes a snapshot of the disk from time to time, and allows files to be reverted
back to the state they were in at the time of the snapshot, a more detailed
explanation of VSS can be found in section 3.4.

Most ransomwares usually tries to delete all snapshots or disable the VSS, in
order to ensure that the encrypted files cannot be recovered, and thereby increase
the chance of a payout.

vssadmin.exe Delete Shadows /All /Quiet

The code snippet seen above shows how a simple call to the VSS can delete
the entire "backup" provided by Windows. Since it is crucial for ransomwares
to delete this backup, it should be possible to monitor I/O calls to its process,
vssadmin.exe, in order to detect or prevent a ransomware from deleting the
backup. By blocking such a call, not only would the recovering of encrypted
files be possible, but the blockage of an unsigned process calling vssadmin.exe
requesting for deletion of every snapshot is very suspicious and a clear indicator
of malicious activity. This would currently work well for most ransomwares,

30 Methods for detection

however as discussed in section 3.4 this might not be the case for future ran-
somwares.

4.3 Monitor commonly targeted folders and reg-
istry

4.3.1 Theoretical

It seems most ransomwares target the same folders, since that is where the users
data is, and the same registry keys since they contain references to Window’s
cryptographic API, start options and more. If a lot of ransomwares share the
same behaviour it would make sense to monitor that type of behaviour. How-
ever, this method has two significant problems.

The first one being, that accessing common folders and creating/reading/delet-
ing files from them, is very common behaviour and would most likely be prone
to a lot of false-positives.

The second problem is that registry changes are often used for making the
ransomware more lightweight and easier to develop. If anti-ransomware soft-
ware started to monitor access to Window’s cryptographic API then most ran-
somwares would probably just shift to some sort of open source implementa-
tion. Likewise, instead of ransomware gaining persistence using some default
start options built into Windows, they could do it through various means such
as injecting themselves into other programs. This would most likely raise the
complexity for ransomwares and require more development time from their au-
thors in the beginning, but it is not unlikely that ransomware frameworks would
incorporate these features.

All in all, a detection method based solely on this, would either result in a lot of
false-positives or a sort of cat and mouse game. This method is therefore very
unlikely to be successful on its own.

4.4 SSDT calls 31

4.4 SSDT calls

4.4.1 Theoretical

By hooking into the SSDT calls upon a system one can monitor almost every
action there is upon a system. By having such a tool at hand the next step
is to create algorithms that can recognize a ransomware attack, whether it is
by detecting several encryption patterns or other indicators of a ransomware
infection and attack.

These algorithms that should be able to recognize a ransomware attack needs
to be fine tuned and needs to know exactly how a ransomware attack looks like
in SSDT calls. Specifically the algorithm should be able to identify when an
encryption is happening, since that is a requirement for a ransomware. How
the encryption pattern is identified can be different for each encryption method.
One could use machine learning and simulate several ransomware attacks in
order to train a machine to recognize the attack when it starts.

It is however, not unrealistic, to argue that ransomware developers could develop
new ways to encrypt the files, and thereby making the SSDT method obsolete
against new types of ransomwares.

4.5 Monitor high resource consumption

4.5.1 Theoretical

The faster a ransomware wants to encrypt, the more resources it is likely to use.
Usually it would have a high CPU and harddisk usage. The CPU usage would
increase due to running the encryption algorithm scheme, and the harddisk
usage would increase, since it both needs to read all the files from the drive, but
also write the encrypted files to the disk.

It might therefore be plausible to detect ransomware based on this method. It
is not unlikely that due to other detection methods, ransomwares in the future
might try to read as many files as possible into the RAM to avoid detection
while encrypting files, and then only once the RAM is used, would it write all
changes to the disk right away. This allows monitoring of CPU, harddisk and
RAM to be a theoretical possibility.

32 Methods for detection

This method, might be prone to a lot of false-positives though, since installing
a game or large software package such as Microsoft Office, might also use a lot
of all 3 resources. So as a stand alone method, this probably would not work,
however in a tiered solution, it might add to the credibility of the threat score.

4.6 Shannon Entropy

4.6.1 Theoretical

The entropy of a file is a measure of the distribution of bytes in that file. A byte
can be any value from 0 to 255 depending on what the byte is representing. A
normal text file would have many bytes representing the values of the alphabet,
but not many bytes for special characters. This means that the bytes in a
normal text file is in a disorder and not evenly distributed. Normal texts in
most languages have letters that occur more often that others, for example e, a,
s, etc. where special characters such as £$§ are uncommon in a normal text. A
normal file has a high difference in the different bytes. When a file is encrypted
the bytes are randomized and distributed very differently and probably very
even. This can be measured and calculated in order to test whether a file
contains an approximately even distribution of bytes or an imbalanced one. By
measuring this for a file we would be able to give an estimation of whether the
file is encrypted or not. The formula for calculating the entropy for a file is given
in equation 4.1 where pi is the probability for a given byte. The formula returns
a value between 0 and 8. Where 8 means there is a perfectly even distribution
of bytes over the file. Meaning the higher the entropy the higher probability of
an encrypted file.

e =

255∑
n=0

pi ∗ log2(pi) (4.1)

The probability for a given byte, pi, is calculated by counting how many bytes
of that type there is in the file, divided by the total number of bytes in the file.

In order to make the entropy a number between 0 and 1 the original entropy
has been reduced such that it fits between 0 and 1 as seen in equation 4.2 and

4.6 Shannon Entropy 33

4.3 .

e =

255∑
n=0

pi ∗ log256(pi) (4.2)

log256(x) =
log2(x)

8
(4.3)

The problem with the file entropy, is that for larger files the entropy is naturally
high. Most books have an entropy value between 0.8 and 0.9. Compared to that
most encrypted files have an entropy value above 0.98. Files three of four times
larger than a regular book usually have an entropy above 0.95. This means that
files of that size cannot be separated from encrypted files when comparing them
on their entropy.

By looking at entropy of the files before and after a write action has been done
to that file, we should be able to determine if that file has been encrypted. If
a file’s shannon entropy changes significantly, i.e. if an entropy value of 0.3
suddenly changes to 0.98 it should be a clear indicator of file encryption.

The shannon entropy has a potential faster detection time than the honeypots,
since it tests every single file whenever there is a change to them. Where the
honeypot detection method requires the honeypot to be targeted by ransomware.
The problem with our version of the shannon entropy might be that for every
file that has been changed, the program needs to read every byte in that file and
then parse it into the correct entropy, this might cause a delay in speed, and if
the file is locked, then it is not possible to read the bytes of that file.

4.6.2 Implementation

The first thing the shannon entropy detection method ought to do is finding the
shannon entropy for all files in the directories and store these values. For the
shannon entropy to know when files are tampered with, a monitor of created,
changed, deleted and renamed files is needed. Since filemon is already installed
for the honeypot files where it monitors honeypot files only, it has been modified
to the shannon entropy where it monitors every single file. In order to avoid
false positives and a detection method that reacts if a single suspicious action
is made, a threshold has been implemented. This threshold varies from the
different versions of the shannon entropy detection method, but is made such
that every suspicious action is counted and will trigger a reaction once the

34 Methods for detection

threshold is met. If a file is newly created and it has a large entropy then it
counts towards the threshold of the shannon entropy. Likewise if a file is changed
and the changed file has a much higher entropy than the original, then that too
counts towards the threshold. To figure out how much larger the entropy of
a file must become in order to be suspicious a data analysis has been made.
The entropy of every single file in the directories has been saved. A ransomware
then encrypts every file in the directories and the entropy of those files are taken.
The original entropies are separated into several different categories based on
size, each category is then measured upon how much the average entropy has
changed when the files have been encrypted. This determines how much a file is
allowed to change without counting towards the threshold. The categories can
be seen in appendix E.4.3.

When a file is created in the system, the shannon entropy searches a dictionary
for a file of similar name in that dictionary, if such a file exists and the entropy
is the same as the other file, then it must have been a copy action or a move
action. That should not raise any suspicion. If a file is changed, the filemon
informs about the change and what file, the program then takes the entropy
of the changed file and measure whether it is suspicious or not. The shannon
entropy does not react upon many files being deleted, although that is possible
with the filemon implemented.

False positives is a high risk when using shannon entropy, since pdf’s have a
natural high entropy that might cause the detection method to react upon pdf
files being created or changed many times within a short time limit. Since the
shannon entropy looks at changes at every single file, it cannot be avoided by
the user that the shannon entropy will test every file the user changes. This
might result in a higher probability of false positives.

To avoid being detected by this method, a ransomware should either lock the
encrypted files, such that the detection method cannot calculate the shannon
entropy of the changed file. Otherwise the ransomware needs to encrypt a file,
but still keep the change in the shannon entropy relatively low. This requires
either a weaker encryption method, which can be broken easily, or a specific
encryption method that keeps the change in the entropy low while safely en-
crypting all the files in a way such that they cannot be decrypted.

Chapter 5

Mitigation Techniques

In section 3.2 some of the advantages and disadvantages of either suspending
or killing a process has been covered. The primary difference is the interaction
with the user. The user is deemed not to be trusted to make the right call, and
therefore the process will be killed as soon as it has been identified as malicious.
It is not necessarily straight forward to identify what process is tampering with
a file and thereby which process is the malicious one. Our proof-of-concept
implementations for example, make use of third party program called Process
Monitor or procmon for short, there are other methods though, such as using
SSDT.

5.1 Procmon

The steps in a ransomware detection and mitigation tools is first to detect that
there is a ransomware encryption occurring, then figure out what process is
performing the encryption and lastly, terminate that process. The problem with
these three steps is the middle part, to find out what process is encrypting the
files. C# does not have a single tool for registering what process has changed a
given file. Therefore, in order to identify the process responsible for encrypting
the files on the computer, the answer is either to change programming language
such that the mitigation tool can dig deeper into the layers of the computer or
use a third party program that has the tools to monitor process activity.

Procmon is a monitoring tool that shows all desired activity within the system.
Since events constantly occur, Procmon has the ability to enable filter such
that the user does not get flooded with information when using the program.
Such a filter could include or exclude processes with certain names, read/write
operations on files and more. A sample of a set of filters we had is seen in figure
5.1.

36 Mitigation Techniques

Figure 5.1: Filters enabled while performing test Shannon15

Procmon has been configured to write all the filtered events to a .PML file, which
is its own filetype, this can later be converted into a CSV file. Procmon has a
command-line-interface (CLI), which was used to control Procmon through C#
using the command prompt. It is not a very efficient or elegant method, but it
was sufficient for the proof-of-concept implementation. When started, Procmon
is constantly logging the wanted file activity, for the honeypot detection method,
it is monitoring the honeypots. When the detection method finds a change in
the honeypot and deems it necessary to shut down a process it calls Procmon
through the command prompt. First, Procmon needs to be shut down in order
for it to finish writing the log, this log cannot be accessed before Procmon is
properly shut down. Next, Procmon is restarted and begins writing a new log.
Through the command prompt, Procmon then parses the PML file into a CSV
file, and that file is then parsed into something readable for the shut down
program.

Normally no process touch the honeypot files, but once the ransomware has
changed the file, several other windows processes might interact with the file as
well. These are processes such as Windows search indexer, Windows explorer,
system and more. All of these processes will be in the list received from Proc-
mon, these could either be whitelisted or accepted as collateral damage. It was
believed that there was no reason for whitelisting since ransomwares could just
imitate those process names on the whitelist and avoid the mitigation. Instead,
the collateral damage was deemed acceptable. We believe that if more develop-
ment time was added, the program could be optimized such that the collateral
damage could be avoided.

The problem with this method is primarily that it is a third-party implementa-

5.2 SSDT 37

tion, with no easy way of communicating with the program. This results in a
very long time in order to find the responsible process and terminating it. But
when using C# then the only way to find the process that has changed the file
is by using third party methods. Other third party programs have also been
considered in this project.

5.2 SSDT

Since almost every system call in the system can be monitored using SSDT, it
can also be logged. By having a log of everything that has happened, one can
create a pattern and precisely know what files have been hit. Furthermore, once
the process responsible for encrypting the files have been found the SSDT can
search its log to find what process started the encryption. By doing so the log
can show every parent process, every single one of their actions and what files
they have created and where. This means that every malicious file stored can
be deleted and every malicious process can be killed, including every process
started by these processes. Doing all of this would result in a total cleanup of
the entire system, covering malicious processes, files and registry changes.

By having control of the SSDT calls, at the same time one can block calls to
vssadmin.exe in order to prevent the local snapshot from being deleted. By
doing so one can create a tiered solution combining SSDT calls and monitoring of
vssadmin.exe thus stopping the ransomware from encrypting files, killing every
responsible process, removing every file and in the end restoring the encrypted
files back onto the system.

38 Mitigation Techniques

Chapter 6

Tests

This chapter contains an in-depth explanation of how the testing environment
has been developed, including the decisions and challenges leading to the final
testing suite. Furthermore, the chapter also describes the test cases designed
to test the effectiveness and possible problems with false-positives in relation to
the implemented detection and mitigation methods.

6.1 Test environment

A test environment able to test proposed detection and mitigation methods
needed to be set up in order to collect the data from the tools created. The
primary requirement for the test environment was that it should be able to run
the ransomware detection and mitigation tool from inside the environment and
collect data from it. Furthermore the system needed to be able to provide the
test setup with a new ransomware for each cycle, all of it completely automated.

After looking through several different sandboxing options such as cuckoo [Cuc],
it was deemed that none of them fit the specific requirements, due to this, a
testing environment was created from scratch.

For the test environment it was decided to use virtual computers through virtu-
albox. Using vitalization software and taking snapshots allowed the system to
quickly revert back to a previous state. Reverting to previous states would be
needed after each test of ransomware, to reset the system to before the infection.
Virtualbox had the added advantage of being free, opensource and has a well
documented command-line-interface.

40 Tests

In total 6 virtual machines was set up:

Quicktester was used to check if a ransomware was active and would work in
the test environment.

Baselinetester was used to see how the ransomware behaved on the system,
which could later be used to evaluate our tools efficiency.

Testers were made from the last four virtual computers in order to perform
parallel testing.

All of the virtual computers were distributed equally among three physical com-
puters. Lastly, the data collection server was a physical computer responsible
for storing data sent from the tests and for storing the ransomware such that
the test computers had a central base to acquire these from.

The final setup is a series of physical computers running virtual computers used
for testing the ransomware. These computers were connected through a network
switch which at the same time acted as an access point to the internet. Through
the switch they were connected to the data collection server. Giving the test
environment its own network setup, ensured a fully segregated network between
the development network and test network. It was important that the test
environment was able to access the internet to ensure the active ransomwares
were able to contact their servers and ensure they performed as they normally
would.

Figure 6.1: Topology of the test environment

6.1 Test environment 41

To test the effectiveness of the ransomware detection tool, it was decided to
test it on actual ransomwares. There are a lot of malware and ransomware
repositories online, where researchers can acquire them. A collection of 38,152
crypto-ransomware from 2013 to July 2016 was downloaded from VirusShare.
Later we found out that a lot these were no longer active or not binary executa-
bles which was needed for testing. Another 69 were manually acquired primarily
from r everse.it which were recent ransomwares such as WannaCry as executable
binaries, theZoo on Github and was also used. This made it possible to have
a wide range of ransomwares, from the beginning till may 2017, see section 7.1
for a deeper analysis of the tested ransomwares and distribution of the families.

In order to avoid wasting resources on testing inactive ransomwares, and ran-
somwares that would not work in the test environment due to either not being
able to be executed or due to anti-analysis techniques employed by them as de-
scribed in section 2. A preliminary analysis was performed on the ransomwares
before the actual test against the proof-of-concept detection methods. The pre-
liminary analysis consisted of two tests on each ransomware, a coarse grained
test by our Quicktester, and a fine grained tests to further remove non-working
ransomwares. The preliminary analysis managed to test 6.393, and after it, 65
ransomwares remained that could be considered active in the test environment.

The advantage of the designed test environment was that it was rather easy
to ensure the ransomwares did not spread uncontrolled through the network.
Furthermore since, the data collection server was running Linux and all ran-
somwares had their extensions removed, accidental execution of the ransomwares
was not possible. Another advantage is that sending the stored information over
the network allowed us to collect it centrally right away, without the possible
implementation problems of having to directly extract the information through
the virtual computer. A typical flow is:

1. Host controller starts the virtual computer

2. A specially designed program then contacts the Datacollection server to
request what ransomware it should work on. Which is then, downloaded
from the server over FTP and executed.

3. While the ransomware is running, data is collected and stored locally, such
as files affected, resource usage and more. It is also during this step the
ransomware is supposed to be detected and mitigated.

4. 25 minutes after the ransomware was started, the specially designed pro-
gram, takes a status of the system, identifies all the changes the ran-
somware made and posts it all to the server, through an API written in
PHP. The information is stored in a MySQL database on the server.

http://www.virusshare.com
http://www.reverse.it
https://github.com/ytisf/theZoo

42 Tests

5. The host controller registers that the data has been posted and reverts
the virtual computer back to before the ransomware, and the cycle start
over. If any issues arise on the virtual computer such as a bug in the
software, crash or the ransomware in some way prohibits it from sending
the required data, then the host controller has an upper time limit, and
once reached will restart the cycle automatically.

When it started to work, it was very efficient since everything was completely
automated, the only thing that needed replacement from time to time was the
detection and mitigation software. However, this type of environment had a lot
of problems due to segmentation between test and development environment.
Debugging program errors was very tedious, as everything had to be run from
virtual computers, it was not possible to properly test programming changes be-
fore deployment. After any change, committing and synchronizing the changes
was necessary. Once the files were ready for deployment they had to be added
and several new snapshots of the virtual machines had to be taken to ensure
revertability. This resulted in, any coding change took at least 20 minutes to
implement. In some cases, it was necessary to use a different version of the test-
ing machine such that debugging the applications through Visual Studio live,
while the ransomware would attack the system, was possible. This resulted in a
growing amount of snapshots, resulting in problems with storage capacity which
would sometimes lock down the whole testing environment.

6.2 Data collection server

The data collection server was the primary data storage server. It was respon-
sible for storing all data from the tests in a database, and providing the tests
with the relevant ransomwares.

The server was an Ubuntu Desktop 16.04 LTS, running FTP, Apache, slim
framework, PHP and MySQL. The hardware of the computer can be found in
appendix B. Apache, slim and PHP was used to allow the tests to communicate
with MySQL. An API was implemented on it, so the tests could contact the
server to acquire the ransomware and to post data. A more detailed explanation
of the API can be found in section 6.2.1. All the test data was stored in the same
database, but separated into different tables for each test case. Even though a
lot of precautions were taken to avoid accidental infection of ransomware, the
database was backed up every night and stored in Dropbox. Even if the Dropbox
folder would be hit, then Dropbox has revision control allowing us to restore
any encrypted files. A more detailed explanation of the database along with the
defined tables and their rows can be found in section 6.2.2. The FTP server

6.2 Data collection server 43

was used as a simple way for the test machines to download the ransomware.
All the ransomwares were located in the same folder which was shared through
FTP. Once the tests had acquired the name of the ransomware to perform tests
on, it could be downloaded from the server.

6.2.1 API

The programs developed for testing the ransomwares, including both the soft-
ware running on the virtual computers and the physical computers, communi-
cated with the data collection server using standard CRUD operations (Create,
Read, Update, Delete) implemented in PHP, although delete was not possible
in the designed setup.

It was important to use an API to ensure that there was no direct link between
the infected machines and the database storing all the data in the case some
of the ransomwares would target our database, as has been seen before[Mag]
[Tec]. Originally, for simplification all requests to the server was shaped as
GET request, even when posting data to the server (even though this is not
best-practice). When requesting the name of the ransomware to work on the
request would look like this:

http://192.168.8.102/v1/index.php/getbaseransomware

When informing the server that the ransomware had been downloaded a POST
masqueraded as a GET request was sent, in the following form:

http://192.168.8.102/v1/index.php/
postbasefetched?RansomwareName=CryptoWall

The original idea was, that this type of implementation would be faster since
it avoided having to define headers and request bodies, and it would still be
sufficient for the needs.

However during testing a problem with posting was noticed with all of the
information collected through the browser. The problem resided in generating
an URL that was too long. Some of the data we collected was fullpath of
all files changed, which could be more than 30.000 file observations. Each of
which would usually be more than 30 characters, resulting in at least 900.000
characters, and this was just for one of the parameters collected. According to

44 Tests

research performed by Boutell[Bou] most browsers does not support anywhere
near such long URLs, and best-practice also dictates to avoid URLs longer than
2.000 characters. This lead to reprogram parts of the API, such that in cases
where it was needed to post a lot of data, the actual POST operation with
correct headers and data stored in the body was used instead.

There were 7 API calls used by our testing environment.

getbaseransomware: This one was used by the primary logging software to
identify the ransomware needed, and thereafter download it from the
server.

postbasefetched: As soon as the ransomware had been downloaded to the
system, this API call was performed, and a timestamp was inserted in
the database. This made it possible to track when ransomwares were
downloaded.

postbasetaken: This one was used to ensure knowledge of what ransomware
had been taken, and is used by the getbaseransomware to identify and
return the correct ransomware.

postbasestarted: Once the ransomware is downloaded, the next step is to
execute it. When it has been executed, this method is called, and another
timestamp added, such that it can track when the ransomware started
which is used for data analysis.

getbasehost: This method returns the ransomware currently missing a posted
timestamp, meaning the test has not yet finished. This allows the host con-
troller running on the physical computer to continuously ping the server,
to check whether the test has completed. Once the information has been
posted to the server the host controller can restart the virtual computer
and the test cycle starts over on a new ransomware.

postbaseposted: This method is a POST request which is different from all
other API calls that are GET requests. This posts all of the information
gathered by the program running on the virtual machine and is usually
several megabytes in size.

postbasetested: Once everything has been successfully posted, this method
is called and sets a flag to true in a column on the database. This was
primarily used for debugging.

In appendix D, parts of the source code for the PHP code can be found.

6.2 Data collection server 45

6.2.2 MySQL database

Just like the API have dedicated API calls for each tests, so does the database
which contains a table for each test case. Most of these tables were identical,
but in total there were 3 different kinds. One type for the Quicktester, one type
for the Baselinetester and one type for all other tests.

The Quicktester table had 6 columns. The first column, which also counted
as the primary key, was the RansomwareName. The Quicktester table started
out with being populated with all of the ransomware names, consisting of 38.220
rows. It also had 2 timestamp columns, one for when the ransomware was down-
loaded, and one for when data was posted. Unlike, the others, this table did not
contain a timestamp of when the ransomware was started. This information was
not relevant in the Quicktester, as it only needed to verify that the ransomware
was active and would work in our test environment. Furthermore a column con-
taining a boolean value called ’active’ was also present. This was used to mark
ransomwares as either active (1) or inactive (0). Lastly, the columns "TakenBy-
Baseline" and "TestedByBaseline" were used by the Baselinetester to identify
what ransomwares were currently being tested, and which ones had completed
testing.

Similarly to the Quicktester, the Baselinetester also contained the columns,
"RansomwareName", "Fetched" and "Posted", however, besides these the Base-
linetester had an additional 16 columns for storing data about how the ran-
somware affected the system. The data gathered and stored was information
such as amount of new files created, files deleted, percent of the hardware re-
sources used such as RAM, CPU and the disk. Furthermore the complete path
to all of the changed, deleted and new files were gathered and stored. These
could be several megabytes in size for each category, so the columns were de-
signed to be of type longtext, resulting in them being able to store 4 gigabytes
of data. This is much more than needed, however the other option would be
a mediumtext which is limited to 16 megabytes, which was believed to be too
little, in case some of the tests contained significantly more data.

Finally, an additional 2 columns for each ransomware test were stored in this
table, TakenByX and TestedByX. Just like the similar columns from the Quick-
tester, these were used by the different tests to identify how far in the testing
process all the ransomwares were and helped to keep track of this.

The final count of columns in the baseline table was 19 + (n ∗ 2) where n is the
amount of tests performed, rendering a total of 35 columns.

The table for all other ransomware tests were very similar to that of the Base-

46 Tests

linetester except, instead of having the control columns TakenByX and Tested-
ByX they had information directly related to the ransomware. Firstly, column
NameOfShutdownRansomware, contained a list of all the processes that were
identified as being malicious and shutdown by the mitigation solution. This
would help identifying possible false-positives, such as incorrectly shutting down
e.g. explorer.exe. Furthermore, since there is a substantial delay between detec-
tion and mitigation due to the way the process performing a specific action is
identified, two additional columns containing timestamps has been added, one
for when the malicious activity has been detected, and one for when processes
has been stopped and killed.

In Appendix C, the database structure for all 3, including all of the column
types can be seen.

6.3 Test computers

The part of the test environment that was responsible for testing the ransomware
consisted of three physical computers and six virtual computers. These were
configured such that two of the physical computers were identical, however be-
cause of limited resources one of the physical machines was different that the
others. The virtual computers were identical. The hardware specifications can
be seen in appendix B.

The physical computers was a standard Windows 10 Enterprise install, with
updates and sleep function disabled, to ensure the test environment did not
shut down during testing. The software specifications can be seen in appendix
B. The physical computers also known as host computers, had two functions.
The first being running the virtual computers where the actual testing was
performed, and secondly to restart the test cycle when the ransomware had
been tested or when a certain timer had passed, marking the test as failed.

The virtual computers were divided into three different types, Quicktester, Base-
linetester and Tester. They all shared the same basic setup in relation to hard-
ware and software.

• 2048 MB RAM

• 1 virtual CPU

• 50 GB Harddisk

6.3 Test computers 47

• 1 shared folder between virtual computer and physical computer, acting
as a read only network drive.

The virtual computers also had Windows 10 Enterprise installed, however setup
deviated slightly from a fresh install and from best practice. This was to ensure
as few parameters as possible affecting the results. The computer was thus
configured such that:

• Windows update was set to notify, but not download nor install. This was
done through local group policies, using gpedit.msc.

• Automatic login was setup using the netplwiz service, although later the
usage was not important, since the testing cycles were restarted from an
already booted machine

• Windows defender was disabled, to ensure old known ransomwares would
not be caught by it. This was done trough local group policies using
gpedit.msc.

• User-Account-Control was "disabled" by setting it to the lowest security,
i.e. never notifying.

To make the test system seem like a real system, a set of common programs
[Cle] were installed along with a set of dummy files to populate the system. The
dummy files will be explained in detail in section 6.5. Examples of the installed
software was, Google Chrome, Java Runtime Environment, .Net Framework,
FoxitReader and more, a complete list, of programs, their versions and Windows
updates can be found in appendix B

Once all the above steps was done, the virtual computers were ready for testing.
Originally the relevant software was added to the startup folder so it would au-
tomatically start when booted. However, due to problems with the program not
properly starting with administrative rights, because of Windows constraints, it
was revised and changed to being started from Windows Task Scheduler, and
scheduled to start on login. Which was again later revised, due to ransomwares
encrypting parts of the program’s needed dll files and problems with Windows
Search Indexer slowing the system down by a factor 10 after boot. The final
configuration was storing the ransomware detection and mitigation software in
the sysWOW64 folder within the Windows system folder. The software was
executed, and within it a sleep timer of 30 seconds would make the program
execution wait. During this wait, a snapshot of the system was taken, then the
host controller would for each test cycle, revert back to this stage. This way it
was not needed to make hacks to ensure the program started with administrative
rights at boot, since it could just be run with admin privileges.

48 Tests

6.4 Liveness tests and data collection

As mentioned earlier, we had 3 different types of virtual computers, collecting
slightly different information.

The Quicktester was made in order to quickly determine if a downloaded mal-
ware was an active ransomware or not. This was needed due to having a data set
of more than 38.220 different malware. The Quicktester ran a malware, moni-
tored the system, and if more than five files changed during five minutes, then
the malware would be considered an active ransomware. This means that there
is a high chance of false positives and false negatives. If a real ransomware uses
more than five minutes before starting then it would not be considered a ran-
somware by the Quicktester. Likewise if a malware, that is not a ransomware,
tampers with more than five files then that would be considered ransomware.
The purpose of doing this preliminary sorting is that a quick test takes a maxi-
mum of five minutes, where the tests of the Baselinetester and different detection
methods can take up to 80 minutes.

Once, a change had been detected and deemed to be due to ransomware, the
ransomware was considered active and the information was sent to the Datacol-
lection server. The host controller for the Quicktester, located upon the physical
computer, would notice that information had been sent, and restart the test cy-
cle. This cycle had an upper limit of 5 minutes. If nothing happened within
that time, either the ransomware did not execute or the ransomware had some
sort of dormant period. In either case, it would not be fitting for further tests
and therefore marked as not active. Long dormant periods can not be used as
it would make the later tests run for much longer, which would not be feasible.

The Baseline tester worked in part to further detect if a ransomware was active,
but also to collect information about each ransomware to get a perspective for
the tests using the detection and mitigation tool. Similarly to the Quicktester,
file system changes were identified using the file monitor, however this time they
were also stored along with a timestamp of when the changes occurred. This
was used as tools to later analyze in what order the ransomwares encrypt files or
other possible patterns. Furthermore, after 25 minutes, the Baselinetester took
a hash of all files included in the test suite, this was compared to hash taken
before the execution of the ransomware. This way, we could easily see the total
amount of test suite files affected by the ransomware, which allowed for an easy
comparison between detection methods and their effectiveness.

Lastly, the ransomware tests were where the effectivity of detection and miti-
gation was measured. They collected almost the same information as the Base-
linetester with the addition of a timestamp for when the ransowmare was de-

6.5 Test cases 49

tected, a timestamp for when the first process identified as ransowmare was
shutdown, and a list of all processes shutdown.

6.5 Test cases

For the tests, a set of test files called the "test suite" was created, it consisted
of auto-generated .doc documents based on Harry Potter and the Philosopher’s
Stone. Along with that, documents from The Technical University of Denmark’s
intranet CampusNet were downloaded and included. This gave a diverse file
portfolio consisting of a lot of common files types, such as word documents, pdf
and pictures, ranging in size from a few kilobytes to hundreds of megabytes.

Originally, the idea was to test the whole file system, however due to difficulties
with properly implementing such a system, it was decided to look at 4 selected
folders instead. The selection of the 4 folders should not have an influence on
the actual test data since when comparing the test results they are compared
based on the amount of files the ransomware manages to encrypt before being
detected and the system reacts. The 4 folders were "Desktop", "Documents",
"Downloads" and "Videos", all within the users directory.

A similar structure of the directories was desired, but without having to du-
plicate files across the folders. The similarity was needed in order to compare
the directories when determining ransomware encryption patterns. To do this,
the program FolderSize [Siz] was used, because it made it possible to analyze
the files in the test suite, which enables us to see the size and amount of files.
Furthermore, a tool was developed to help analyze the placement in alphabetic
order and meta data of the files, such as creation timestamp and last modified
timestamp. The tool iterated though every file in the four folders and found
relevant properties of these files, this was done such that when comparing this
data with the test results it was possible to find patterns between encryption
order and file properties.

Each of the detection methods below, have four different test cases, where one
parameter has been tweaked between each test. Each cycle of testing of ran-
somwares took between 30-80 minutes. A normal run would be starting up,
running some preliminary ransomware executions checks, then executing the
ransomware. While running, data is collected and an attempt is made to de-
tect and shutdown the ransomware. After 25 minutes, the program enters the
ending phase, which is where it collects information about what files have been
altered, such as changed or deleted. It also sorts the information and prepares
to send the data to the server. This last part can take anywhere from a few

50 Tests

seconds to several minutes depending on the information gathered. Usually this
type of cycle takes roughly 30 minutes to complete, however, in some cases the
preparing of the information took longer, thus a higher upper limit was needed.
The upper limit of 80 minutes is enforced by the host controller which shuts
down the test and starts a new test cycle. Usually the upper limit of 80 minutes
would be reached due to the testing software crashing or in other ways having
issues resulting in a missing post to the database. In most of these cases, it
would be sufficient to restart the test of the specific ransomware.

6.5.1 Honeypots

As explained in section 4.1, the idea is to let specific files be monitored by the
detection software for changes. In the case of changes, the responsible process
is flagged as ransomware. The process name is acquired using the third-party
software Procmon, and then shutdown.

In theory, one could have 99% of all files on a system to be honeypot files, this
would ensure en extremely high success rate, however, this would also take up
a lot of hard disk space, which makes the concept unfeasible. Furthermore this
would never be the case for any normal system. Instead, one should base the
effectiveness of a few honeypot files, which is the case in this project.

For the honeypots, there are four different setups, each one with a different
honeypot to files ratio.

• Test 1: This test had 29 honeypot files out of 2.887, or 1,001% of the files.
These files covered the file types; .docx, .jpg, .xlsx, .pdf, .pptx filetypes.
In the size range 10,5KB - 15,4MB.

• Test 2: This test had 63 honeypot files out of 2.921, or 2,157% of the files.
These files covered the file types; docx, .jpg, .xlsx, .pdf, .pptx, .php, .mp4,
.xls filetypes. In the size range 0,5KB - 106MB.

• Test 3: This test had 161 honeypot files out of 3.019, or 5,333% of the files.
These files covered the file types; docx, .jpg, .xlsx, .pdf, .pptx, .php, .mp4,
.xls, .zip, .txt, .java, .cpp filetypes. In the size range 0,25KB - 154,9MB.

• Test 4: This test had 305 honeypot files out of 3.163, or 9,643% of the
files. These files covered the files types; docx, .jpg, .xlsx, .pdf, .pptx, .php,
.mp4, .xls, .zip, .txt, .java, .cpp, .doc, . filetypes. In the size range 0,25KB
- 154,9MB.

6.5 Test cases 51

The honeypots in Test 1 were also present in Test 2 with the addition of 63 new
files, just like the honeypots present in Test 2 was present in Test 3 and so on.
It is important to note, that except for the file type, the files were selected at
random and added at random to the 4 folders. When the honeypots were created
there was no knowledge of which order the ransomwares encrypted files in, and
the theory was that it would be different from ransomware to ransomware and
therefore as long as the tests had the same files, they would be comparable.

6.5.1.1 False-positives

In order for the detection method to be viable for actual use, it should have as
few false-positive reactions as possible.

Since this detection method uses honeypots, which no program or user will
normally interact with, it is fairly easy ensure few or no false-positives. Any
process tampering with the honeypots are considered malicious, but for the sake
of the case where the user might modify the file by accident, a threshold of 2
was set. Such that if 2 or more of the honeypot files were modified and changed
within 1 minute, then it is unlikely that it was the user, and thus the process
was shutdown as it is classified as malicious.

Due to this threshold, no actual false-positive test was performed, since the
test would have to be defined as to how often the user would interact with
it. However, testing for the best way to avoid users or programs accidentally
interacting with the files could be defined. This was deemed out of scope for
the project.

6.5.2 Shannon entropy

The shannon entropy detection method has been implemented as described in
section 4.6.2. To decide whether the new entropy of a file that has changed is
suspicious, a test is made for analysis. First, the entropy of all files in every
directory of a non-encrypted system was made. Next the same system was
encrypted by a ransomware, and the file entropy was then recalculated for every
file. The ransomware for this test encrypted the files and added a .fun extension
upon the file, which made it easy to know what file was changed.

Thereafter the entropy of the files pre and post ransomware encryption were
compared in order to know how much the entropy changes when a file is en-
crypted. Since the entropy varies between 0 and 1, it is hard for a file with

52 Tests

entropy 0.99 to have a high rise in entropy whereas for a file with entropy
0.2 it can have a much higher increase in entropy. Therefore the different files
were divided into several different categories based on the files entropy before
encryption. The first nine categories are with 0.1 interval in original entropy,
such that the first category is from 0.0 to 0.1 the next from 0.1 to 0.2 and so
on. After 0.9 it changes such that the interval is 0.01 and after 0.99 the next
interval was to 0.999, 0.9999 and last to 1. A full list of the interval categories
can be found in appendix E.4.3.

By doing so, different changes in entropy would be deemed suspicious for dif-
ferent files. If the same change rate were to be suspicious for every file, the
low entropy files would have very low tolerance for changes whereas high en-
tropy files would have a very high tolerance. For example, files with original
entropy between 0.5 and 0.6 has an average increase in entropy by 0.29 when
encrypted, where the files with entropy between 0.95 and 0.96 has an average
of 0.04 higher when encrypted.

Now the increase in entropy deciding whether the change is deemed suspicious
and what needs to be added to the threshold is known.

The four different versions of the shannon entropy detection system that has
been made is based upon the value of this threshold. Once the threshold is
reached the system reacts and shuts down the process. To trigger this reaction
the threshold must be reached within a minute, otherwise the trigger does not
count toward the threshold. This variable could be altered depending on de-
tection method, but the results will be clear with the change of the threshold
only. The different amount of suspicious actions in order to reach the different
thresholds are 3, 5, 10 and 15.

Naturally a version with a lower threshold will detect a given ransomware
quicker. The tests are not made to see which one is best, rather to see how
big the change is between the different thresholds. A lower threshold means a
higher probability of having a false positive, therefore it is desired to know how
damaging a high threshold is to detection and mitigation performance.

As mentioned in section 4.6.2 the shannon detection method needs to read every
byte in a file once there have been a change to that file. If that file is locked by
a ransomware or some other program then it is not possible to get the bytes of
the file. This makes a ransomware that locks the files after encryption able to
avoid detection from this method.

6.5 Test cases 53

6.5.2.1 False-positives

The possibility for this detection method to wrongly assume that a ransomware
encryption is in progress is unfortunately quite high. Since PDF files have a
natural high entropy, the detection method would react if a large number of
PDF files suddenly were to be copied into the system. Not only PDF files, but
if a large number of high entropy files were to be copied into the machine from an
external drive or similar, the detection method would also react. The threshold
set in the detection methods cannot, unless dedicated work is made, be reached
naturally without adding files from outside the machine. No user would make
large enough changes to change the entropy such that it causes suspicion, in 5
files within a minute. Since this is highly unlikely, this detection method is still
reliable enough when it comes to false positives.

A false positive test was made in order to check how the detection method
reacted to normal use of a system. First a game called Hearthstone was installed
upon the system, this triggered several reactions from the detection method and
also caused it to crash. The reaction happened due to the game installation
created several temporary files that often changed, these files also had high
entropy. The crash of the process running the detection method were due to
unforeseen errors in the code only triggered when editing a file several times
within a second. This crash might indicate why many of the shannon entropy
tests came back without any results. An installation of Open Office was made
as well, this did not cause a crash of the tested process but still triggered several
reactions from the detection method.

Simple actions upon the system was tested after the installation tests. Several
files and folders were deleted in order to test if that would trigger reactions,
which it did not.

Copying files from an external directory into the system did, as expected, cause
reactions from the system, also copying from one folder to another, both in the
system. Compressing a folder with zip also triggered a reaction, but only a
single reaction, meaning that if the user does not create more than 1 zip file
within a minute, than it is below the threshold and then it will not react.

54 Tests

Chapter 7

Analysis and Evaluation

This chapter first presents the test results obtained by the different detection
methods, these test results are then discussed and analyzed. Following this
are the different ransomwares analyzed, this includes their encryption pattern
and other distinctive features. Lastly is an analysis of ransomware using game
theory.

7.1 Data analysis

The data from the many tests made has been gathered into readable and un-
derstandable plots in order to show the performance of the different methods
detected a ransomware. The most important aspects for the methods are speed
and efficiency, meaning how many of the ransomwares are successfully detected.

The performance of the different detection methods is shown in figure 7.1. They
have been tested on 65 different ransomwares, but some of the tests did not
provide any data, as shown in appendix A.1.4. The test that did not provide any
data is due to various reasons, sometimes it is that the ransomware terminates
the detection method, thus the program logging the activities made by the
ransomware, other times it is due to an unforeseen error in the detection method.
Appendix A.1.4 also shows the performance of the different test methods as
pictured in figure 7.1.

Figure 7.1 sharply shows the success rate of the different detection methods,
clearly the honeypot detection methods have a much better detection rate than
those using shannon entropy. This figure does not disclose information about
whether the mitigation of the ransomware has been successful, only that the
presence of ransomware was detected.

56 Analysis and Evaluation

Figure 7.1: Detection success rate

One of the reasons for the low detection rate in shannon is due to the hardcoded
variables that determine how much a file needs to change in order to be suspi-
cious as found in appendix E.4.3. The few ransomwares that avoid detection
from the honeypots might be due to a lack of honeypots encrypted within the
specific timeframe. As seen in appendix A.1.4 many of the ransomwares that
hp1 or hp2 does not detect has not gained any results from the remaining test
methods, indicating that it could be a ransomware that has methods to counter
detection tools.

In figure 7.1 we have shown whether the detection methods are able to detect
ransomwares, however, the speed at which ransomwares are detected, is also
important. This can be represented in several different ways, the first option
chosen as a representation is the total number of files the ransomware has en-
crypted. We assume that the encryption method and speed of encryption is
nearly the same through every test method.
As seen in figure 7.2 the files encrypted by the ransomware is represented in
boxplots. This clearly shows that hp5 and hp10 is more effective than hp1 and
hp2 as it was intended. The fact that hp10 is looking a bit slower than hp5 will
be discussed later. Shannon entropy as shown, is much less effective than the
honeypots, this is partially due to the efficiency of the ransomware as shown

7.1 Data analysis 57

Figure 7.2: Files encrypted by ransomwares

in figure 7.1 and might be a result of unfortunate shutdowns of the detection
method or a flawed method of mitigation.

The outliers for baseline in figure 7.2 is because they have targeted less file types
and possibly because the ransomware has a slow encryption. The types of files
that the ransomwares encrypts is shown in appendix A.1.3.

The other way of measuring the detection speed is much more direct, instead
of looking at how many files that has been encrypted by the ransomware in the
test, we look at the time from the ransomware is executed until the detection
method first detects a suspicious process.

Figure 7.3 shows the time it takes to detect the ransomware from its execution.
Some ransomwares have built-in delays before encrypting files, others start right
away, this varies. In this boxplot all of the honeypot detection methods roughly
have the same detection time, hp2 being the absolute fastest with a median
detection time of 47 seconds. Comparatively the shannon entropy detections
have very different time spans from start to detection. Theoretically speaking

58 Analysis and Evaluation

Figure 7.3: Time from ransomware start to first detected

the shannon with the lowest threshold, sh3, should be the fastest followed by
sh5 and so on, which is explained later.

After a thorough analysis of the data, it has been determined that even though
the virtual machines that ran the test had the same setup, the physical machine
seems to have affected the test methods. This is shown in figure 7.4. The
boxplot shows the time it takes for the program from detection to shutdown of
the ransomware. As written in section 5.1, the shutdown of a ransomware is
slow because of using third party programs. The shutdown time should however,
have been almost the same for each detection method.

The boxplot shown in figure 7.4 shows that there is a big difference in the time
it takes to shut down a ransomware. The detecion methods were distributed
across the different physical machines as following:

Computer 1: baseline, sh3

Computer 2: hp1, hp2, sh5, sh10

Computer 3: hp5, hp10, sh15

7.1 Data analysis 59

Figure 7.4: Time from detection of ransomware to assumed shutdown

Computer 1 and computer 2 are identical whereas computer 3 has a SSD hard
disc and a less powerful CPU. Furthermore, it also has more RAM, the full
hardware list can be found in appendix B. The difference in computers is clearly
shown in the data obtained in figure 7.4. We believe that the physical hardware
difference have had a significant impact on our test results. Since computer
1 and computer 2 are identical in hardware yet still have a clear difference in
their test, we are inclined to think that there must be some unknown variable
affecting our results, particularly sh3.

Computer 2 has a CPU that is 68% faster than the CPU in computer 3 [Int].
Therefore, by adjusting the time from detection to shutdown for hp5, hp10 and
sh15 it should show whether the hypothesis is correct. The adjusted result can
be seen in figure 7.5. This is still not exactly the same, but it is closer to the
theoretical result. Why the results from computer 1 and computer 2 are as
different is, as previously stated, unknown.

In figure 7.2 it is shown that hp10 lets the ransomware encrypt a few more files
than hp5, the reason for this could be that hp10 has a slower shutdown than
hp5, and why that could be is unknown. We assume that the optimal amount
of honeypots is between 5% and 10% of the total files upon the computer based

60 Analysis and Evaluation

upon the results from hp5 and hp10. An analysis of the optimal placement of
honeypot files is given in section 7.3. The optimal solution for the shannon
entropy is hard to determine from these test results and requires further testing
in order to give a definitive answer.

Figure 7.5: Normalized figure 7.4 with the CPU specifications of computer 3

7.2 Ransomware analysis 61

7.2 Ransomware analysis

The actions of the 65 different ransomwares has been monitored in an envi-
ronment where no process attempted to stop them. This was done in order
to determine what pattern the ransomware used to encrypt the files, what file
types were targeted by the ransomware and monitoring of the hardware usage.

The sha1 value of the different ransomwares are represented in appendix A.1.1
along with their an alias.

In order to find the pattern of encryption a file monitor was monitoring the
entire user directory and logging every change to files in this directory, this data
was then parsed to something easily readable and analyzed to determine the
pattern which the ransomware encrypted the files in. The data can be found
here and the results can be seen in appendix A.1.2.

The different encryption patterns found are:

1. Alphabetically, all files in the current directory are targeted first, then
following the same procedure in sub-directories.

2. Alphabetically, everything is taken alphabetically, including sub-
directories, meaning the ransomware starts in Desktop, encrypts the files
from a to e, then target a sub-directory that starts with f, and after that
directory is done, continue with files g-z in the desktop directory.

3. Alphabetically, with the directories in reverse, meaning it starts in the
videos directory and targets a sub-directory there that starts with v, but
then encrypts all files in that folder alphabetically.

4. Like the second encryption pattern, only the ransomware creates a long
path of directories in the current directory that in the end stores a .txt
file. The filepath is for example

C:/Users/Baseline/Desktop/u00ca/u00c0/
u00ca/u00d0/u00c0/u00d1/u00d8/u00c8/u00d4/u00d0/u00ce/u00c2/
u00c0/u00d2/u00dc/u00d4/u00c0/u00c9/u00cb/u00db.txt

5. This encryption pattern seems random. Only occurs in R56.

Almost every single encryption pattern is alphabetical in some way. This means
that for encryption pattern 1, 2 and 4, a honeypot placement method, where

https://github.com/vaizardus/Speciale

62 Analysis and Evaluation

the honeypots are named such that they are the first files alphabetically, would
be the optimal honeypot placement for these patterns. Since only three of the
tested ransomwares have a non-alphabetical pattern, this would mean that the
majority of the ransomwares would be detected much faster. However we believe
that future ransomware will have a random encryption pattern, as concluded in
our analysis in section 7.3.

The ransomwares has been analyzed by r everse.it in order to gain information
about ransomware type and whether or not the ransomware deletes the VSS,
mentioned in section 3.4. The date provided in appendix A.1.2 is the date that,
that particular file has been submitted to either VirusTotal or Metadefender for
analysis. By looking at appendix A.1.2 it can be seen that no ransomware up
until February 2015 actually deletes VSS. This might be due to the new families
of ransomware such as CryptoLocker and TeslaCrypt.

The file types encrypted by the ransomwares have been found by looking at the
files saved in the log files of the test. These file types vary between the different
ransomwares and can be seen in appendix A.1.3. As the data is obtained from
the test data, the file types are limited to the different filetypes that exists in
the testing environment.

Appendix A.1.4 shows that all of the detection methods are unable to return any
data from some tests. This is either due to a program crash or the ransomware
has some countermeasures against being shut down. Ransomware R56 and
R62 are great examples of ransomwares that might not be straight forward to
mitigate. That being said, the baseline has run tests upon these ransomwares
and been able to get a result returned, therefore the problem might accour when
the detection method tries to mitigate the ransomware.

Using r everse.it to analyze the different ransomware files, their type has been
estimated by r everse.it. Appendix A.1.2 shows that there are multiple different
ransomwares for the tests, but also some that are repetitive, such as Xorist and
TeslaCrypt. If there are two names in the namespace then it is due to the fact
that some antiviruses identify the ransomware differently. These ransomwares
span over a broad timeline, from 2011 to 2017 whereas the distribution is quite
fair.

One of the reasons that the number of Xorist is quite high is that Xorist is not
a standard ransomware. This ransomware has a builder for Xorist ransomwares
which the creator of the ransomware has sold to people such that they could
create their own version of an Xorist ransomware [Cim].

http://www.reverse.it
http://www.reverse.it

7.3 Game Theory applied on Ransomware 63

7.3 Game Theory applied on Ransomware

Game Theory in relation to ransomware, can be divided into two cases:

1. Two-player game between the cyber criminal and the victim

2. Two-player game between a ransomware and an anti-ransomware software

Using the theory presented in section 3.5, we can analyze the cases. Case 1 can
be considered as a non-cooperate, non-zero-sum, dynamic game with complete
and perfect information. In figure 7.6 the extensive normal form game can be
seen.

Figure 7.6: Extensive normal form game representation showing optimal so-
lution

This game can be solved using backwards induction. We begin from the cyber
criminals second move i.e the third stage. Here he can choose to either decrypt

64 Analysis and Evaluation

with a payoff of 2 or not to decrypt with a payoff of 1, so to decrypt is the optimal
choice. This means that at the second stage the victim anticipates that if the
game reaches the third stage, the cyber criminal will choose to decrypt the data,
resulting in a payoff of -1. So at the second stage, the victim can either choose
to pay the ransom with an expected payoff of -1 or not pay the ransom with
an expected payoff of -2, which means the victims best-response is to pay the
ransom. This leaves us with analyzing the first stage, where the cyber criminal
can anticipate that if second stage is reached then the victim will choose to pay,
resulting in a payoff of 2. Thus at the first stage, the cyber criminal can choose
between not starting the ransomware campaign with a payoff of 0, or starting
it, with a payoff of 2, which means starting the ransomware campaign is the
optimal play.

The conclusion is that it always pays off for cyber criminals to start ransomware
campaigns, and for the victims to pay, since the criminal will decrypt their files.
Which is also indicated by the purple marking.

It could be argued that if the victim pays, then the payoff for the cyber criminal
is the same no matter if they decrypt the files or not. However, we would argue
that, the payoff for decrypting is higher. This is partly due to the fact that if
the cyber criminal decrypts the files, they create an incentive to pay. If victims
rarely get their files back, then they would be less likely to pay the ransom, so
it is the interest of the cyber criminal to decrypt the files.

Furthermore, the payoff is designated for the victim, under the assumption that
the victim does not have proper backup if any at all, and there are no publicly
available decryption tools. Of course this is a simplified version of the real
world. However, data about this is significantly lacking, and how individuals
and companies value their files depend on which files are lost and the ability
to recover them. If every organization and individual that could be hit, had
a full backup, then the tree would look similar to the one shown in figure 7.7,
and when analyzed it becomes clear that at the victims first choice, would be
to not pay the ransom since it has the highest payoff. And since the game is of
complete and perfect information, the cyber criminal would know this to be the
optimal play of the victim, and therefore they would be equally likely to either
start the ransomware campaign as they would not, since the payoff in both is 0.
It could be argued, that if the cyber criminal has a payoff slightly lower than 0
in starting a ransomware campaign since it does require some resources, which
means not to start the ransomware campaign is the optimal choice.

Case 2 was the game between the ransowmare, and the anti-ransomware. This
can be considered as a static game with complete information. The analysis in
section 7.2 showed that there were three primary methods for encrypting, either
in alphabetical, reverse alphabetical, or random order. To find the optimal

7.3 Game Theory applied on Ransomware 65

Figure 7.7: Optimal solution if everyone had complete backup

placement of honeypot files according game theory, we have constructed the
figure seen in 7.8

For this case, let’s say we have 100 files and one of them is a honeypot file. If
the anti-ransomware solution places 1 honeypot file as the alphabetically first
file, and the ransomware also is alphabetical, then the payoff for both is 0. If
however, the ransomware works in reverse alphabetical order, it would encrypt
all 100 files before being noticed. If either works in random order then the value
has been set to 50 which is the number of files that can be encrypted before there
is more than 50% of hitting a honeypot. The best-response for the ransomware
would therefore be to work in opposite order of the anti-ransomware. However,
since the ransomware, does not know in which which way the honeypot files
are distributed on the system, it will have to assume that the anti-ransomware
places them based on its best-response. The anti-ransomwares best-response
is to work in the same order as the ransomware, but again, it does not know
in which order the ransomware encrypts the files. As seen in figure 7.8, both
the ransomware, and the anti-ransomware has a best-response when playing
(Random, Random) therefore there is a Nash Equilibrium with the resulting
payoffs (50,-50).

66 Analysis and Evaluation

Figure 7.8: Normal form representation with best-response and Nash Equilib-
rium indicated.

Thus, we can see that it is highly likely that as anti-ransomware solutions become
more common, that ransomwares will start to encrypt files at random, and anti-
ransomware solutions using honeypots, would place these files at random in each
directory.

Chapter 8

Conclusion

The purpose of this paper was to develop and test methods to detect and miti-
gate ransomware attacks. State of the art detection methods made by others are
presented along with their own conclusion. We further evaluate whether these
could work for detecting ransomware in the future. This is done by analyzing if
there exists vulnerabilities that ransomware can exploit and use in future ver-
sions to avoid detection and mitigation. Several methods and the underlying
theory are proposed as possible methods for detection, whereof two of these are
implemented and tested.

We wish we had more time to test more detection methods and test those im-
plemented more throughout. For the testing environment, we looked at publicly
available solutions, however, none of them fit our criteria. We therefore spend a
significant amount of time, developing our own secure and reliable testing envi-
ronment, utilizing virtual machines, a central server and segregated development
and test networks.

Originally the paper also wanted to address how to mitigate ransomware attacks,
however, research showed, that mitigation of ransomware is relatively trivial,
and therefore does not require much testing, only development time and was
therefore not prioritized.

Our detection method, showed that detecting ransomwares using honeypots is a
very feasible strategy. Our proof-of-concept implementation had a successrate of
77%, and we are confident that with further development this would be higher.
Using Game Theory to analyze the optimal distribution of honeypots on the
system we found that the optimal strategy is random placement in every folder,
with lots of file types for future ransomware.

Although, in theory, using shannon entropy would be a better option than hon-
eypots in the detection, the tests showed it to perform significantly worse than
honeypots. Several flaws in the implementation caused this. When analyzing

68 Conclusion

the detection methods with focus on false positives then the honeypot solution
is much more reliable.

Chapter 9

Future Works

In this chapter the future of ransomware and this project will be discussed.
First, examples upon additional work that could be made for this project is
given, this also includes work that was originally outside of the scope of this
thesis. Next improvements upon the testing environment is made. Finally an
estimate upon how ransomware and its counters will be in the future.

9.1 Robustness

Since robustness never were in the scope of this thesis it naturally needs to be
improved. The detection method of this work is started from an executable file
and is dependant upon a DLL file in order to post results. This process can
easily be terminated by a ransomware. A ransomware scanning active processes
upon a system shutting down processes that do not have a crucial role for the
system, would be able to find and stop the detection method before it even
began encrypting files.

To accommodate this, the program needs to be implemented upon a lower level
of the machine just like antivirus is. This is done by hooking the process into
the kernel and prevent other sources from deleting or stopping this process. By
having the detection method secured from stopping by a malicious program the
ransomware now needs to avoid detection or counter the mitigation methods.

9.2 Mitigation

The current program stops the ransomware by killing the process responsible
for encrypting the files. This has proven to be effective against 77% of the

70 Future Works

ransomwares tested against, but if there is another process for the ransomware,
monitoring the encryption process, that process could easily start another en-
cryption process. Therefore the parents for the found process needs to be termi-
nated as well, this goes for all parents and children of the ransomware tree such
that no process is left. After all the processes have been terminated the next
thing to remove is the registry changes and files placed by these processes. Since
ransomwares need persistence they often place files in several directories. To find
these files a log of every process activity is needed. This log must contain every
action ever made by the processes just terminated and store information going
back several months in order to ensure complete removal of the ransomware.

Even though the ransomware has been removed completely it might still have
encrypted some files on the system before its termination. In order to restore
these files a backup is needed. This backup can either be made by the user and
stored elsewhere, or it can be stored locally using VSS. As explained earlier in
this thesis the vssadmin has flaws that might be abused by malicious programs.

Preferably the detection method is effective enough that the damage done to the
system is in such a scale that it can be considered insignificant. Optimally the
detection method is so effective that a ransomware is detected before it encrypts
the first file.

The method used to find the process responsible for encrypting the files is using
a third party program. This significantly increases the time from the detection
is made till the process is shut down. To improve this an integrated method
is needed. This method can, like procmon, monitor the different processes
that views, changes or does any action to a single file. The method also needs
to be able to return a process id of a given process. If such a method was
implemented the time from detection to mitigation of a ransomware would be
noticeably lower.

9.3 Detection methods

The methods implemented in this thesis are not perfectly attuned as detection
methods and act more like proof of concept. Continuous testing of the detection
methods would improve these to faster detection of ransomware.

This means that the shannon entropy would be finely balanced in order to detect
signs of ransomware most efficiently while keeping the false positives ratio as
low as possible.

9.4 Testing environment 71

For honeypots this means that the honeypots could be more strategically placed
instead of the random placement they currently hold. By placing honeypots
according to the possible orders of encryption the detection rate would be much
faster. If only honeypots are encrypted during a ransomware attack then no
harm has come to the actual system.

In order to lower the chance of false positives significantly for honey pots, the
honeypots should be hidden from the user and given read only access such that
the user will have a much lower chance of accessing and changing the honeypots
by accident.

The detection methods made are currently using filemon to detect changes and
modifications in files. It is yet to be tested whether that method of detection
can be avoided by processes.

A special developed ransomware might be able to avoid detection from a single
type of detection method or maybe even two. But different kinds of detection
methods combined might increase the difficulty for ransomwares to stay hidden.

Several detection methods that help each other in detecting a ransomware could
have a much higher percentage of ransomware detection than just a single one.
Therefore we recommend that a tiered solution with combination of several
types of detection methods is made, in order to preemptively counter future
ransomwares.

9.4 Testing environment

One of the major problem with this thesis’ testing environment was when testing
new code for the systems implemented onto the virtual machines. The process
of adding the code, take the snapshots, proper naming, restoring the correct
snapshot and then run the test took several minutes in order to test code im-
plementations upon the virtual machines. This could be improved for future
works by having a test environment where instead of manually adding the code
tested onto the system and going through the process of managing snapshots,
the testing environment would instead automatically deploy the testing soft-
ware, such that the newest software would be downloaded and tested upon the
virtual machine. By doing so, one would save a large amount of time upon
testing if code is correctly implemented and working as intended when tested
with a live ransomware, while it also reduces the heavy use of hard disk space
for snapshots.

72 Future Works

9.5 Future challenges

The concept of ransomware has been around for a long time, but only in the last
couple of years has it been a threat to every person connected to the internet.
Despite this, new ransomware is created at an alarmingly fast rate and the
targets for ransomware has already spread to more complex devices such as
smartwatches and smartphones. Even though these ransomwares were locker
ransomware and not crypto, it still shows that the target group for ransomware
is expanding. A few potential examples for ransomware targets are:

Internet of things
More and more physical devices are connected to the internet. These
devices were previously deemed irrelevant to have an internet connection
too, but since smarthouses became more popular the number of devices
connected to the internet has risen as well. These devices can be anything
from fridges to the lighting and temperature of the house, all of these
devices can be accessed and controlled from a mobile device the user has
preferred. This means that if a malicious program were to gain access
to these devices the program could set the temperature of the place to
be very high or very low, it might be able to lock the doors if they are
something that can be controlled as well. The possibilities are many and
as of right now, the internet of things is a section of the internet that has
not focused upon security.

Self driving cars
While it has already been proved that newer cars can be hacked, it is still
not that large a market for malware yet. Hacking into a self driving car
and gain full control of all systems in it could be a potential threat from
ransomware. Imagine sitting in your car that is driving on the freeway,
suddenly the doors lock and a note about paying a ransom pops up upon
the display, if not payed within five minutes the car will accelerate and
crash. Suddenly the thing of value held by a ransomware is not files or
pictures of loved ones, it is life. Not only would every person most likely
pay this ransom, making it extremely efficient, it would also damage the
car industry tremendously. Like ransomware today that sometimes show
the victim it has the capabilities to decrypt the files, a ransomware in a
car might do the same by suddenly accelerating or testing the brakes in
order to let the victim know that it really can steer the car into a wall.

To take control of a vehicle can also be used against the agricultural section
that already have autonomous tractors and harvesters in use. Since it is
very important in the farming industry to use the machines around the
clock once the time comes, a delay in harvesting could be very expensive

9.5 Future challenges 73

for a farmer since the crops might not be suited for harvesting later or the
weather is not right anymore.

Medical equipment and applications
It is already commonly known that several hospitals and medical facilities
has been hit by large scale attacks, the reason why ransomware prefers to
target hospitals is due to the high probability of payout. When a hospital
is infected with ransomware, not only does it cost a lot in downtime for the
hospital, but a hospital is a place where time is not only money, but also
life. As written above, when the value held is not something monetary,
but life, then the ransom will be payed almost every time. This effect can
be abused even more than it already is, by locking medical and surgical
equipment during the time it is in use it might put the life of a person in
the hands of the ransomware attacking.

74 Future Works

Appendix A

Test results

This appendix contains the results of the tests made that are not shown in the
report. It also shows the analysis of the different ransomwares that the detection
methods has been tested against.

The unprocessed data can be found online on Github here.

A.1 Ransomware analysis

The following tables of data show the information of the ransomwares used in
the tests.

A.1.1 Shortened hashvalues

To make things easier the hashvalues of the ransomwares has been reduced to
simpler codenames.

sha1 hash Alias
bbc5f026b644405522c9b0ca1b0d03f3d67779e6 R01
87420a2791d18dad3f18be436045280a4cc16fc4 R02
801e20dce982d4a60b26c9540f0e59bd6827b788 R03
d732a95bca679a310f45e02ef2bd192f4773787a R04
f8dc6e615e3a9ba9a4c16d9f2dcb10fb16c9517f R05
a95adf1580e78ae89759c16d9dd8c7dd8b169524 R06
ab67cc396889fa2be3d5122e409b099d9b70664f R07
db5ee09153fc4a8ce2619db39e23ca56885f05e8 R08
60c1c6925ff2c7c49b40db3f0624a4b066a9dce5 R09

https://github.com/vaizardus/Speciale

76 Test results

e654d39cd13414b5151e8cf0d8f5b166dddd45cb R10
3a0b855dd052b2cdc6453f6cbdb858c7b55762b0 R11
35719ee58a5771156bc956bcf1b5c54ac3391593 R12
3d8039ba03a056fa455f8764f8ad8f59325144c7 R13
7dace304baf7800fb2bde81efcfbfeca374fb836 R14
c2500c9587a4f68df63b953aff9e4ffc446ece18 R15
989493c9fb948792458ed00b16c2dd57836b7b66 R16
01158e7529b21878460285a6dac6d0d1979045e2 R17
1bfb94b73856fe5611e615e078ddba444ff769f5 R18
9434a9b4f3e17a66de0ca3f7c1fd4d5e88ddc188 R19
bc5b55f5e4a2e8f32b82b7b21bc8c46aecd15384 R20
4fc7a663df94602906aa15a36cd6a3b257fe30d4 R21
4521e56c70bac58ca750791d1820caeb21496717 R22
91e8c5356defbb129dfd694e12fae72b30ff0f8c R23
0087c0edc0dd8f154880abf57f156751922eb771 R24
c2f9927d5f5a8b50f18fa0a91684c9de02345201 R25
28f52b2a598428304b0a9032883c41c0817a58f5 R26
56cdf5a8d3187a534b70376c45a7fd17a71f9164 R27
96a466c5dbc7e4a10257afb3bd8b790f965084d9 R28
054f9db834e37459f10b83f56691a5d6e7f28334 R29
c656658c2ca2dbbd6f24e4b4ae801218ee828936 R30
2c8af799af11e03abc5face54f3943c2b3071203 R31
3c2d77985495edc6cef1f69d4ee6d6224119e4a2 R32
40c50cf9c1849c580eca133eca7d7d13436fbe35 R33
7a854db1ad7a94f356cf091ae2db4c0d4cb6b8a7 R34
ba6c5915598d45089f558ce10271eb729e168ad8 R35
0d8bb8222f1a324e048fb293011db5621ea8299c R36
c2f278a572d0f00b51bdb5645de5afa5945b17df R37
6f13afa7252b184098ba8b8a23bcb070a4cf326c R38
a3148733ece4263949a921803c309ccf96d57496 R39
b7f9dd8ee3434b35fbb3395f69ff43fd5112a0c6 R40
aac5c1a4d9af47b9695954ab61c910804343a808 R41
bd4cbbfccf4f47656f767ebe473b6d225cc5865e R42
628610489c41e78617f4e51d0d0143a07b245f85 R43
383a448b39b3eb8917cf36661996ca2c933ae53e R44
e4ff07aed054f6bb044464fa151ceb9f76711fce R45
a91d0e481699281efab888356ee718f6669659ab R46
09367487551302a68e35b57757ae0bdf27227e01 R47
ed5407f8c89976172b67d68ac7bd7c55c2917068 R48
8285db1c3d05bbacc18e6851f6163732d9c87f84 R49
be85a2e4a9283044d7bd99c3bb90fe58003042ef R50

A.1 Ransomware analysis 77

8a45eb782761d683e5af7b0146da3c5fd6a8d473 R51
95deb2721b418f05a0b6a4cb4fa94c8c52f2fb73 R52
6fd0fe811ea54f139dc68202f52ebf969c2a5fff R53
3bf6e6af23d8a452ad64a11423c8da5119aac671 R54
dbacf6039d6c8c8c3adc4bf298b5ee2d28938b2f R55
6aef7d5a462268c438c8417ee0da3f130b8aa84a R56
ab40f96fd8709315373cf390d0d9954613e55b2d R57
dde70ab8312fcc9bb90bc45ac5ae13484f4bc45d R58
27ec595e01e4c89fb17a895bced8b84871355df4 R59
8ee56c28b8e581e4a096e2ff81f6eb28f673c8b4 R60
6e534dc2c2d6894db95d796b958d6f6d49f9ce41 R61
f7e1a3e4d976253c903eef486c50336e8a8c7c4c R62
3b6762efe73183bd93420f0109294a419c835d86 R63
47d2c5a68e96ae7bc43f305a7d5df082f93c623e R64
ed92d1cf00da6a44316aedc6e872252cd72b1c17 R65

78 Test results

A.1.2 Ransomware properties

This table shows whether the ransomware deletes VSS, when it was submittet
to reverse.it, what type of encryption pattern it uses and what ransomware it
is assumed to be. The full description for the encryption pattern can be found
in 7.2

Alias VSS Submittet Encryption Assumed ransomware
R01 Yes - 1 Fantom
R02 Yes 2017-05-12 1 WannaCry
R03 Yes 2017-05-05 1 Razy
R04 Yes 2017-03-22 1 Symmi
R05 Yes 2017-04-28 2 Unknown
R06 Yes 2016-11-25 2 Cerber
R07 No 2017-05-02 2 Unknown
R08 Yes 2017-05-15 3 Zusy
R09 Yes 2017-05-14 3 Unknown
R10 Yes 2015-02-26 2 Zusy / TeslaCrypt
R11 No 2016-01-09 2 Zusy / Vipasana
R12 No 2016-01-09 2 Zusy / Vipasana
R13 No 2013-06-04 2 Xorist / Kazy
R14 No - 2 Kazy / Xorist
R15 No 2014-03-23 4 Xorist
R16 No 2012-04-09 4 Barys
R17 Yes 2016-03-03 2 TeslaCrypt / Midie
R18 - - - -
R19 No 2013-06-22 4 Xorist
R20 No 2014-11-30 2 Unknown
R21 No 2014-02-20 4 Xorist
R22 No 2014-07-28 4 Xorist
R23 Yes 2016-01-04 2 Alphacrypt
R24 No 2012-12-01 4 Dropper
R25 Yes 2016-02-24 2 TeslaCrypt
R26 Yes 2015-09-03 2 TeslaCrypt / Symmi
R27 No 2012-08-07 4 Xorist
R28 Yes 2016-02-02 2 Deshacop / TeslaCrypt
R29 No 2013-03-22 4 Xorist
R30 No 2011-03-02 2 Xorist / Kazy
R31 Yes 2016-03-06 2 TeslaCrypt
R32 Yes 2015-08-25 2 Deshacop / TeslaCrypt
R33 No 2011-05-31 2 Xorist / Symmi
R34 Yes 2015-08-30 2 Cripack / TeslaCrypt

A.1 Ransomware analysis 79

R35 Yes 2015-08-21 2 Bitman / TeslaCrypt
R36 No - 4 -
R37 Yes 2015-08-06 2 Deshacop / Cryptowall 3.0
R38 No 2013-06-19 4 Xorist / Kazy
R39 No 2016-05-04 2 CryptoLocker
R40 Yes 2016-02-03 1 HydraCrypt
R41 No 2011-09-21 2 Xorist
R42 Yes 2015-12-06 2 TeslaCrypt
R43 Yes 2016-02-26 2 TeslaCrypt
R44 Yes 2016-03-13 2 TeslaCrypt
R45 Yes 2015-12-03 2 Cripack / TeslaCrypt
R46 No 2013-01-17 2 Xorist / Kazy
R47 No 2013-06-25 2 Usteal
R48 No 2012-09-09 2 Xorist
R49 No 2012-06-21 2 Xorist
R50 No 2013-03-25 2 Xorist
R51 Yes 2015-08-22 2 Deshacop / TeslaCrypt
R52 No 2013-05-08 2 Xorist / Kazy
R53 Yes 2016-03-10 2 TeslaCrypt
R54 No 2015-04-24 2 CryptoLocker
R55 Yes 2015-08-25 2 Deshacop / TeslaCrypt
R56 No 2015-02-03 5 Androm
R57 Yes 2015-09-02 2 TesCrypt
R58 No 2013-07-27 2 Xorist
R59 Yes 2015-08-29 - Cripack / TeslaCrypt
R60 No 2013-06-18 2 Xorist
R61 No 2014-04-09 2 Graftor
R62 Yes 2015-04-29 2 Symmi / TeslaCrypt
R63 No 2016-05-06 2 Zygug / Xorist
R64 No 2012-02-22 2 Heur
R65 Yes 2015-04-28 2 CryptoLocker

80 Test results

A.1.3 Ransomware encrypted filetypes

This table shows the different filetypes that each ransomware has encrypted in
the tests made.

R01 7z, anb, bak, bmp, c, cpp, csv, dist, doc, docx, dump, e01, exe, fantom,
gif, gitignore, gz, h, hhconfig, hhi, jar, java, jpg, json, lock, log1, log2, m,
m4, md, mdxml, mp4, mw, nc, odp, ova, pcap, pcapng, pdf, php, phpb,
phpt, pl, pli, pml, png, pot, ppt, pptx, r, rar, red, sha256, sql, swf, tex,
tif, txt, url, w32, wav, wmv, xls, xlsx, xml, yml, zip

R02 7z, bak, bat, bmp, c, cpp, csv, dll, doc, docx, eky, exe, gif, gz, h, jar, java,
jpg, lnk, log1, log2, mp4, odp, pdf, php, pky, pl, png, pot, ppt, pptx, rar,
res, sql, swf, tif, tmp, txt, vbs, wav, wmv, xls, xlsx, zip

R03 7z, anb, bak, bmp, c, cpp, csv, dist, doc, docx, dump, e01, exe, gif, gitig-
nore, granit, h, hhconfig, hhi, jar, java, jpg, json, lock, log1, log2, m4, md,
mdxml, mp4, mw, odp, pcap, pcapng, pdf, php, phpb, phpt, pl, pli, pml,
png, pot, ppt, pptx, r, rar, red, rst, sha256, sql, swf, tex, tif, txt, url, w32,
wav, wmv, xls, xlsx, xml, yml, zip

R04 7z, anb, bak, bmp, c, cpp, csv, dist, doc, docx, dump, exe, gif, gitignore,
gz, h, hhconfig, hhi, ini, jar, java, jpg, json, lnk, lock, log1, log2, m4, md,
mdxml, mw, odp, pcap, pcapng, pdf, php, phpb, phpt, pl, pli, png, pot,
ppt, pptx, r, rar, red, rst, sha256, sql, swf, tex, tif, txt, url, w32, xls, xlsx,
xml, yml, zip

R05 7z, anb, bak, bmp, c, cpp, csv, dist, doc, docx, dump, exe, gif, gitignore,
gz, h, hhconfig, hhi, ini, jar, java, jpg, json, lnk, lock, log1, log2, m4, md,
mdxml, mp4, mw, odp, pcap, pcapng, pdf, php, phpb, phpt, pl, pli, png,
pot, ppt, pptx, r, rar, red, rst, sha256, sql, swf, tex, tif, txt, url, w32, xls,
xlsx, xml, yml, zip

R06 7z, ad4f, bak, bmp, c, cpp, csv, doc, docx, exe, gif, h, hta, jar, java, jpg,
json, lock, log1, log2, md, mp4, odp, pdf, php, pl, pml, png, pot, ppt,
pptx, rar, sql, swf, tex, tif, txt, wav, wmv, xls, xlsx, xml, zip

R07 7z, bak, bmp, doc, docx, exe, gz, html, jpg, log1, log2, m, mp4, pdf, pec,
ppt, pptx, rar, sql, tif, txt, xls, xlsx, zip

R08 7z, anb, bak, bmp, c, cpp, csv, dist, doc, docx, dump, e01, exe, gif, git-
ignore, gz, h, hhconfig, hhi, html, ini, jar, java, jpg, json, lnk, lock, log1,
log2, m4, md, mdxml, mp4, mw, nc, odp, ova, pcap, pcapng, pdf, php,
phpb, phpt, pl, pli, pml, png, pot, ppt, pptx, r, rar, red, redproject, rst,
search-ms, searchconnector-ms, sha256, sql, swf, tex, tif, txt, url, w32,
wallet, wav, wmv, xls, xlsx, xml, yml, zip

A.1 Ransomware analysis 81

R09 7z, anb, bak, bmp, c, cpp, crypt, csv, dist, doc, docx, dump, e01, exe,
gif, gitignore, gz, h, hhconfig, hhi, html, ini, jar, java, jpg, json, lnk, lock,
log1, log2, m4, md, mdxml, mp4, mw, nc, odp, ova, pcap, pcapng, pdf,
php, phpb, phpt, pl, pli, pml, png, pot, ppt, pptx, r, rar, red, redproject,
rst, search-ms, searchconnector-ms, sha256, sql, swf, tex, tif, txt, url, w32,
wav, wmv, xls, xlsx, xml, yml, zip

R10 7z, bmp, csv, doc, docx, ecc, exe, ini, jpg, json, lnk, log1, log2, odp, pcap,
pdf, png, ppt, pptx, rar, txt, wmv, xls, xlsx, zip

R11 7z, cbf, csv, doc, docx, etl, exe, ini, jpg, log1, log2, odp, pdf, ppt, rar, txt,
xls, xlsx, xml, zip

R12 7z, bak, cbf, csv, doc, docx, etl, exe, ini, jpg, log1, log2, odp, pdf, ppt,
rar, txt, xls, xlsx, xml, zip

R13 7z, bmp, doc, docx, etl, exe, gif, ini, jpg, lnk, log1, log2, md, mp4, pdf,
png, ppt, pptx, rar, txt, wav, wmv, xls, xlsx, zip

R14 7z, bmp, doc, docx, exe, gif, jpg, lnk, log1, log2, md, mp4, pdf, png, ppt,
pptx, rar, telka, txt, wav, wmv, xls, xlsx, zip

R15 7z, bmp, doc, docx, exe, gif, jpg, lnk, log1, log2, md, mp4, pdf, png, ppt,
pptx, rar, txt, wav, wmv, xls, xlsx, zip

R16 7z, bmp, doc, docx, exe, gif, jpg, lnk, lock, log1, log2, md, mp4, pdf, png,
ppt, pptx, rar, txt, wav, wmv, xls, xlsx, zip

R17 7z, csv, doc, docx, exe, html, jpg, log1, log2, m, mp3, mp4, odp, pdf, png,
ppt, pptx, rar, txt, wmv, xls, xlsx, zip

R18 7z, bmp, doc, docx, exe, gif, jpg, lnk, log1, log2, md, mp4, pdf, png, ppt,
pptx, rar, txt, wav, wmv, xls, xlsx, zalk, zip

R19

R20 bmp, doc, docx, exe, jpg, lnk, log1, log2, md, pdf, ppt, pptx, rar, txt, xls,
xlsx, zip

R21 7z, bmp, doc, docx, exe, gif, jpg, lnk, log1, log2, md, mp4, pdf, png, ppt,
pptx, rar, txt, wav, wmv, xls, xlsx, zip

R22 7z, bmp, doc, docx, exe, gif, jpg, lnk, log1, log2, md, mp4, pdf, png, ppt,
pptx, rar, txt, wav, wmv, xls, xlsx, zip

R23 7z, bmp, csv, doc, docx, exe, htm, html, jpg, log1, log2, m, mp4, odp, pdf,
png, ppt, pptx, rar, sql, txt, vvv, wmv, xls, xlsx, zip

82 Test results

R24 7z, bmp, doc, docx, exe, gif, jpg, lnk, log1, log2, md, mp4, pdf, png, ppt,
pptx, rar, txt, wav, wmv, xls, xlsx, zip

R25 7z, csv, doc, docx, exe, htm, html, jpg, log1, log2, m, mp3, mp4, odp, pdf,
png, ppt, pptx, rar, sql, txt, wmv, xls, xlsx, zip

R26 7z, abc, csv, doc, docx, exe, html, jpg, log1, log2, m, mp4, odp, pdf, png,
ppt, pptx, rar, sql, txt, wmv, xls, xlsx, zip

R27 7z, bmp, doc, docx, exe, gif, jpg, lnk, log1, log2, md, mp4, pdf, png, ppt,
pptx, rar, txt, wav, wmv, xls, xlsx, zip

R28 7z, abc, bmp, csv, doc, docx, exe, html, jpg, log1, log2, m, mp4, odp, pdf,
png, ppt, pptx, rar, sql, txt, wmv, xls, xlsx, zip

R29 7z, bmp, doc, docx, exe, gif, jpg, lnk, log1, log2, md, mp4, pdf, png, ppt,
pptx, rar, txt, wav, wmv, xls, xlsx, zip

R30 7z, bmp, doc, docx, exe, gif, jpg, lnk, log1, log2, md, mp4, pdf, php, png,
ppt, pptx, rar, txt, wav, wmv, xls, xlsx, zalupa, zip

R31 7z, bak, csv, doc, docx, exe, htm, html, jpg, log1, log2, m, mp3, mp4, odp,
pdf, png, ppt, pptx, rar, sql, txt, wmv, xls, xlsx, zip

R32 7z, abc, bmp, csv, doc, docx, exe, html, jpg, log1, log2, m, mp4, odp, pdf,
png, ppt, pptx, rar, sql, txt, wmv, xls, xlsx, zip

R33 7z, bmp, doc, docx, exe, gif, jpg, lnk, log1, log2, md, mp4, pdf, png, ppt,
pptx, rar, txt, wav, wmv, xls, xlsx, zip

R34 7z, abc, csv, doc, docx, exe, html, jpg, log1, log2, m, mp4, odp, pdf, png,
ppt, pptx, rar, sql, txt, wmv, xls, xlsx, zip

R35 7z, aaa, bmp, csv, doc, docx, exe, html, jpg, log1, log2, m, mp4, odp, pdf,
png, ppt, pptx, rar, sql, txt, wmv, xls, xlsx, zip

R36 7z, bmp, doc, docx, exe, gif, jpg, lnk, log1, log2, md, mp4, pdf, png, ppt,
pptx, rar, txt, wav, wmv, xls, xlsx, zip

R37 7z, aaa, bmp, csv, doc, docx, exe, html, jpg, log1, log2, m, mp4, odp, pdf,
png, ppt, pptx, rar, sql, txt, wmv, xls, xlsx, zip

R38 5043, 7z, csv, doc, docx, exe, jpg, log1, log2, pdf, ppt, rar, txt, xls, xlsx,
xml, zip

R39 7z, bmp, csv, doc, docx, exe, gif, jpg, log1, log2, md, mp4, pdf, png, ppt,
pptx, rar, tif, txt, wav, wmv, xls, xlsx, zip

A.1 Ransomware analysis 83

R40 7z, bak, bmp, c, cpp, csv, doc, docx, exe, gif, gz, h, ini, java, jpg, log1,
log2, m4, md, mp4, nc, odp, pdf, php, pl, png, pot, ppt, pptx, r, rar, sql,
swf, tex, tif, txt, wmv, xls, xlsx, xml, zip

R41 7z, bmp, doc, docx, exe, gif, jpg, lnk, log1, log2, md, mp4, pdf, png, ppt,
pptx, rar, txt, wav, wmv, xls, xlsx, zip

R42 7z, bmp, csv, doc, docx, exe, html, jpg, log1, log2, m, mp4, odp, pdf, png,
ppt, pptx, rar, sql, txt, vvv, wmv, xls, xlsx, zip

R43 7z, csv, doc, docx, exe, htm, html, jpg, log1, log2, m, mp3, mp4, odp, pdf,
png, ppt, pptx, rar, sql, txt, wmv, xls, xlsx, zip

R44 7z, bak, csv, doc, docx, exe, htm, html, jpg, log1, log2, m, mp3, mp4, odp,
pdf, png, ppt, pptx, rar, sql, txt, wmv, xls, xlsx, zip

R45 7z, bmp, csv, doc, docx, exe, html, jpg, log1, log2, m, mp4, odp, pdf, png,
ppt, pptx, rar, sql, txt, vvv, wmv, xls, xlsx, zip

R46 7z, bmp, doc, docx, exe, gif, jpg, lnk, log1, log2, md, mp4, pdf, png, ppt,
pptx, rar, txt, wav, wmv, xls, xlsx, zip

R47 7z, bmp, doc, docx, exe, gif, jpg, lnk, log1, log2, md, mp4, pdf, png, ppt,
pptx, rar, txt, wav, wmv, xls, xlsx, zip

R48 7z, bmp, doc, docx, exe, gif, jpg, lnk, log1, log2, md, mp4, pdf, png, ppt,
pptx, rar, txt, wav, wmv, xls, xlsx, zip

R49 7z, bmp, doc, docx, exe, gif, jpg, lnk, log1, log2, md, mp4, pdf, png, ppt,
pptx, rar, txt, wav, wmv, xls, xlsx, zip

R50 7z, bmp, doc, docx, exe, gif, jpg, lnk, log1, log2, md, mp4, pdf, png, ppt,
pptx, rar, txt, wav, wmv, xls, xlsx, zip

R51 7z, aaa, bmp, csv, doc, docx, exe, html, jpg, log1, log2, m, mp4, odp, pdf,
png, ppt, pptx, rar, sql, txt, wmv, xls, xlsx, zip

R52 7z, bmp, doc, docx, exe, gif, jpg, lnk, log1, log2, md, mp4, pdf, png, ppt,
pptx, rar, txt, wav, wmv, xls, xlsx, zip

R53 7z, bak, csv, doc, docx, exe, htm, html, jpg, log1, log2, m, mp3, mp4, odp,
pdf, png, ppt, pptx, rar, sql, txt, wmv, xls, xlsx, zip

R54 7z, bmp, csv, doc, docx, ecc, exe, jpg, json, lnk, log1, log2, m, mp4, odp,
pcap, pdf, png, ppt, pptx, rar, sql, txt, wmv, xls, xlsx, zip

R55 7z, abc, bmp, csv, doc, docx, exe, html, jpg, log1, log2, m, mp4, odp, pdf,
png, ppt, pptx, rar, sql, txt, wmv, xls, xlsx, zip

84 Test results

R56 7z, bmp, c, cpp, doc, docx, exe, jpg, log1, log2, md, odp, pdf, php, pl,
ppt, pptx, rar, sql, txt, vqobftg, xlsx, zip

R57 7z, abc, csv, doc, docx, exe, html, jpg, log1, log2, m, mp4, odp, pdf, png,
ppt, pptx, rar, sql, txt, wmv, xls, xlsx, zip

R58

R59 7z, abc, csv, doc, docx, exe, html, jpg, log1, log2, m, mp4, odp, pdf, png,
ppt, pptx, rar, sql, txt, wmv, xls, xlsx, zip

R60 7z, bmp, doc, docx, exe, gif, jpg, lnk, log1, log2, md, mp4, pdf, png, ppt,
pptx, rar, strip4you, txt, wav, wmv, xls, xlsx, zip

R61 7z, bmp, csv, doc, docx, exe, gif, jpg, log1, log2, md, mp4, pdf, png, ppt,
pptx, rar, tif, txt, wav, wmv, xls, xlsx, zip

R62 7z, bmp, csv, doc, docx, ecc, exe, jpg, json, lnk, log1, log2, m, mp4, odp,
pcap, pdf, png, ppt, pptx, rar, sql, txt, wmv, xls, xlsx, zip

R63 7z, bmp, csv, doc, docx, exe, gif, jpg, locked, log1, log2, md, mp4, pdf,
png, ppt, pptx, rar, tif, txt, wav, wmv, xls, xlsx, zip

R64 7z, bak, bmp, csv, doc, docx, exe, jpg, log1, log2, md, mp4, odp, pdf, png,
ppt, pptx, rar, rsa1024, txt, wmv, xls, xlsx, xml, zip

R65 7z, bmp, csv, doc, docx, exe, ezz, jpg, json, lnk, log1, log2, m, mp4, odp,
pcap, pdf, png, ppt, pptx, rar, sql, txt, wmv, xls, xlsx, zip

A.1 Ransomware analysis 85

A.1.4 Detection method successrate against ransomware

In this table green means that the ransomware was detected, red means that it
was not and yellow means that no data was returned when this test was made.

hp1 hp2 hp5 hp10 sh3 sh5 sh10 sh15
R01 1 1 1 1 0 1 0 0
R02 1 1 1 1 - 0 1 1
R03 1 1 1 1 1 1 1 0
R04 1 1 1 1 1 1 1 1
R05 1 1 - 1 1 1 1 1
R06 1 0 1 1 - 1 0 0
R07 1 1 1 1 1 1 1 1
R08 1 1 1 1 1 1 1 1
R09 1 1 1 1 1 1 1 1
R10 1 1 - - 0 - - -
R11 1 1 1 1 1 1 0 0
R12 1 1 1 1 1 1 1 -
R13 1 1 1 1 1 1 1 -
R14 1 1 - 1 1 1 1 1
R15 1 1 1 1 0 1 0 0
R16 1 1 1 1 - - 0 0
R17 - 1 0 - 0 - - -
R18 0 0 - - - - - -
R19 1 1 1 1 1 1 0 0
R20 1 1 1 1 0 0 1 0
R21 1 1 1 1 0 1 0 0
R22 1 1 1 1 1 1 0 0
R23 0 1 - - - - - -
R24 1 1 1 1 0 0 0 0
R25 - - - - - 0 - -
R26 1 1 1 1 1 1 1 1
R27 1 1 1 1 0 1 0 0
R28 1 1 1 1 1 1 1 1
R29 1 1 1 1 1 0 0 0
R30 1 1 1 1 1 1 1 0
R31 0 - - - - - - -
R32 1 1 1 1 - 1 1 1
R33 1 1 1 1 1 1 - 1
R34 1 1 1 1 1 1 1 1
R35 1 1 1 1 1 1 1 1
R36 1 1 1 1 0 0 0 0

86 Test results

R37 0 0 - - - - - -
R38 1 1 1 1 1 0 0 0
R39 1 1 1 1 0 1 0 0
R40 1 1 1 1 - - - -
R41 1 1 1 1 0 1 1 1
R42 - 0 - - 0 - - -
R43 0 - - - - - - -
R44 - - - - 0 - 0 0
R45 - - - - - - - -
R46 1 1 1 1 0 0 0 0
R47 1 1 1 1 0 0 0 0
R48 1 1 1 1 0 0 0 0
R49 1 1 1 1 0 0 0 0
R50 1 1 1 1 0 0 0 0
R51 1 1 1 1 0 1 1 1
R52 1 1 1 1 0 1 0 0
R53 - - 0 - - - 0 -
R54 - - - - 1 - - -
R55 1 1 1 1 1 1 1 1
R56 - - - - - - - -
R57 - 1 1 1 0 1 1 1
R58 1 1 1 - 1 1 1 -
R59 1 1 1 1 0 1 1 1
R60 1 1 1 - 1 1 1 1
R61 1 1 1 1 - 1 0 0
R62 - - - - - - - -
R63 1 1 1 1 0 1 0 0
R64 1 1 1 1 1 1 0 0
R65 - - - - - 0 - 0

Appendix B

Computer Specifications

This appendix contains the specifications for the different setups used for the
testing environment.

B.1 Datacollection server

The datacollection server was running a different setup than every other physical
machine.

Figure B.1: Hardware of the datacollection server

88 Computer Specifications

B.2 Test computers

The following contains the specification for the computers which the test were
made upon, both physical and virtual.

Figure B.2: Hardware of the two identical physical computer

B.2 Test computers 89

Figure B.3: Hardware of the physical computer that was slightly different

Figure B.4: Software installed on the physical computer

Figure B.5: Windows updates installed physical computer

90 Computer Specifications

Figure B.6: Hardware of the virtual computer

Figure B.7: Software installed on the virtual computer

Figure B.8: Windows updates installed virtual computer

Appendix C

Database tables and
structure

This appendix contains the SQL structures of the different test tables. The
table for the different test methods are all similar to another.

Figure C.1: SQL structure of the quicktester table

92 Database tables and structure

Figure C.2: SQL structure of the baseline table

93

Figure C.3: SQL structure of the hp1 table

94 Database tables and structure

Appendix D

PHP Code

Courier

In this appendix, some of the code developed in PHP is attached.

The full original code can be found online on Github here.

D.1 Backend: DbHandler.php

The DbHandler is responsible for executing prepared statements to the MySQL
database, using values received from the frontend. Below is a set of the primary
methods used. It also uses a helper file, DbConnect which is basic file for
communicating with the database.

Note that in the code below only the methods for HoneyPot 1 is shown, the
methods for the other Honeypot tests and Shannon tests are the same, so they
have been left out.

1 <?php
2
3 /**
4 * Class to handle all db operations
5 * This class has CRUD methods for database tables
6 *
7 **/
8 class DbHandler {
9

10 private $conn;
11
12 function __construct () {
13 require_once dirname(__FILE__) . /DbConnect.php ;
14 // opening db connection
15 $db = new DbConnect ();

https://github.com/vaizardus/Speciale

96 PHP Code

16 $this ->conn = $db->connect ();
17 }
18 // ------------------------ Data extraction methods
19
20 public function getDataBaseline($RansomwareName) {
21 $stmt = $this ->conn ->prepare("SELECT␣*␣FROM␣baseline␣

WHERE␣RansomwareName =?");
22 $stmt ->bind_param("s", $RansomwareName);
23 $stmt ->execute ();
24 $nextRansom = $stmt ->get_result ();
25 $stmt ->close ();
26 return $nextRansom;
27 }
28
29 public function getDataHP1($RansomwareName) {
30 $stmt = $this ->conn ->prepare("SELECT␣*␣FROM␣hp1␣WHERE␣

RansomwareName =?");
31 $stmt ->bind_param("s", $RansomwareName);
32 $stmt ->execute ();
33 $nextRansom = $stmt ->get_result ();
34 $stmt ->close ();
35 return $nextRansom;
36 }
37
38
39 // ------------------------ Quick Tester methods
40
41 public function getQuickRansomware () {
42 $stmt = $this ->conn ->prepare("SELECT␣*␣FROM␣ quicktester

␣WHERE␣Fetched␣is␣NULL␣limit␣1");
43 $stmt ->execute ();
44 $nextRansom = $stmt ->get_result ();
45 $stmt ->close ();
46 return $nextRansom;
47 }
48
49 public function postQuickFetched($RansomwareName){
50 $response = array();
51 $stmt = $this ->conn ->prepare("UPDATE␣quicktester␣SET␣

Fetched␣=␣CURRENT_TIMESTAMP␣WHERE␣RansomwareName =?");
52 $stmt ->bind_param("s", $RansomwareName);
53 $result = $stmt ->execute ();
54 $stmt ->close ();
55 // Check for successful insert/update
56 if ($result) {
57 // Data successfully inserted/updated
58 return $result;
59 } else {
60 // Failed to insert/update data
61 return DATA_POST_FAILED;
62 }
63 return $response;
64 }
65
66 public function postQuickPosted($RansomwareName , $

D.1 Backend: DbHandler.php 97

FileChangedOnHash , $FileChangedOnWatcher , $Active){
67 $response = array();
68 $stmt = $this ->conn ->prepare("UPDATE␣quicktester␣SET␣

Posted␣=␣CURRENT_TIMESTAMP ,␣FileChangedOnHash =?,␣
FileChangedOnWatcher =?,␣Active =?␣WHERE␣RansomwareName
=?");

69 $stmt ->bind_param("iiis", $FileChangedOnHash , $
FileChangedOnWatcher , $Active , $RansomwareName);

70 $result = $stmt ->execute ();
71 $stmt ->close ();
72 if ($result) {
73 return $result;
74 } else {
75 return DATA_POST_FAILED;
76 }
77 return $response;
78 }
79
80 public function getQuickHost () {
81 $stmt = $this ->conn ->prepare("SELECT␣*␣FROM␣quicktester␣

WHERE␣Fetched␣IS␣NOT␣NULL␣AND␣Posted␣IS␣NULL␣AND␣
Active␣IS␣NULL␣limit␣1");

82 $stmt ->execute ();
83 $nextRansom = $stmt ->get_result ();
84 $stmt ->close ();
85 return $nextRansom;
86 }
87
88
89 // ------------------------ Baseline Tester methods
90
91 public function getBaseRansomware () {
92 $stmt = $this ->conn ->prepare("SELECT␣*␣FROM␣ quicktester

␣WHERE␣Active=1␣AND␣TakenByBaseline␣is␣NULL␣limit␣1")
;

93 $stmt ->execute ();
94 $nextRansom = $stmt ->get_result ();
95 $stmt ->close ();
96 return $nextRansom;
97 }
98
99 public function postBaseFetched($RansomwareName){

100 $response = array();
101
102 $stmt = $this ->conn ->prepare("INSERT␣INTO␣baseline␣(

RansomwareName ,␣Fetched)␣VALUES(?,␣CURRENT_TIMESTAMP)
␣");

103 $stmt ->bind_param("s", $RansomwareName);
104 $result = $stmt ->execute ();
105 $stmt ->close ();
106 if ($result) {
107 return $result;
108 } else {
109 return DATA_POST_FAILED;
110 }

98 PHP Code

111 return $response;
112 }
113
114 public function postBasePosted($RansomwareName , $

MonitorStatus , $MonitorCount , $CountChangedFiles , $
CountDeletedFiles , $CountNewFiles , $
CountFilemonObservations , $CPU , $RAM , $HDD , $
ThreadCount , $HandleCount , $ListChangedFiles , $
ListDeletedFiles , $ListNewFiles , $
ListFilemonObservations){

115 $response = array();
116 $stmt = $this ->conn ->prepare("UPDATE␣baseline␣SET␣Posted␣

=␣CURRENT_TIMESTAMP ,␣MonitorStatus =?,␣MonitorCount =?,
␣CountChangedFiles =?,␣CountDeletedFiles =?,␣
CountNewFiles =?,␣CountFilemonObservations =?,␣CPU=?,␣
RAM=?,␣HDD=?,␣ThreadCount =?,␣HandleCount =?,␣
ListChangedFiles =?,␣ListDeletedFiles =?,␣ListNewFiles
=?,␣ListFilemonObservations =?␣WHERE␣RansomwareName =?"
);

117 $stmt ->bind_param("ssssssssssssssss", $MonitorStatus , $
MonitorCount , $CountChangedFiles , $CountDeletedFiles ,
$CountNewFiles , $CountFilemonObservations , $CPU , $

RAM , $HDD , $ThreadCount , $HandleCount , $
ListChangedFiles , $ListDeletedFiles , $ListNewFiles , $
ListFilemonObservations , $RansomwareName);

118 $result = $stmt ->execute ();
119 $stmt ->close ();
120 if ($result) {
121 return $result;
122 } else {
123 return DATA_POST_FAILED;
124 }
125 return $response;
126 }
127
128 public function postBaseTaken($RansomwareName){
129 $response = array();
130 $stmt = $this ->conn ->prepare("UPDATE␣quicktester␣SET␣

TakenByBaseline␣=␣1␣WHERE␣RansomwareName =?");
131 $stmt ->bind_param("s", $RansomwareName);
132 $result = $stmt ->execute ();
133 $stmt ->close ();
134 if ($result) {
135 return $result;
136 } else {
137 return DATA_POST_FAILED;
138 }
139 return $response;
140 }
141
142 public function postBaseTested($RansomwareName){
143 $response = array();
144 $stmt = $this ->conn ->prepare("UPDATE␣quicktester␣

SET␣TestedByBaseline␣=␣1␣WHERE␣RansomwareName
=?");

D.1 Backend: DbHandler.php 99

145 $stmt ->bind_param("s", $RansomwareName);
146 $result = $stmt ->execute ();
147 $stmt ->close ();
148 if ($result) {
149 return $result;
150 } else {
151 return DATA_POST_FAILED;
152 }
153 return $response;
154 }
155
156 public function getBaseHost () {
157 $stmt = $this ->conn ->prepare("SELECT␣*␣FROM␣baseline␣

WHERE␣Posted␣IS␣NULL␣ORDER␣BY␣Fetched␣DESC␣limit␣1");
158 $stmt ->execute ();
159 $nextRansom = $stmt ->get_result ();
160 $stmt ->close ();
161 return $nextRansom;
162 }
163
164 public function postBaseStarted($RansomwareName , $Started

){
165 $response = array();
166 $stmt = $this ->conn ->prepare("UPDATE␣baseline␣SET␣Started

␣=?␣WHERE␣RansomwareName =?");
167 $stmt ->bind_param("ss", $Started , $RansomwareName);
168 $result = $stmt ->execute ();
169 $stmt ->close ();
170 if ($result) {
171 return $result;
172 } else {
173 return DATA_POST_FAILED;
174 }
175 return $response;
176 }
177
178
179 // ------------------------ HoneyPot 1 PROCENT Tester methods
180
181 public function getHP1Ransomware () {
182 $stmt = $this ->conn ->prepare("SELECT␣*␣FROM␣ baseline ␣

WHERE␣TakenByHP1␣is␣NULL␣limit␣1");
183 $stmt ->execute ();
184 $nextRansom = $stmt ->get_result ();
185 $stmt ->close ();
186 return $nextRansom;
187 }
188
189 public function postHP1Fetched($RansomwareName){
190 $response = array();
191 $stmt = $this ->conn ->prepare("INSERT␣INTO␣hp1␣(

RansomwareName ,␣Fetched)␣VALUES(?,␣CURRENT_TIMESTAMP)
␣");

192 $stmt ->bind_param("s", $RansomwareName);
193 $result = $stmt ->execute ();

100 PHP Code

194 $stmt ->close ();
195 if ($result) {
196 return $result;
197 } else {
198 return DATA_POST_FAILED;
199 }
200 return $response;
201 }
202
203 public function postHP1Posted($RansomwareName , $

MonitorStatus , $MonitorCount , $CountChangedFiles , $
CountDeletedFiles , $CountNewFiles , $
CountFilemonObservations , $CPU , $RAM , $HDD , $
ThreadCount , $HandleCount , $ListChangedFiles , $
ListDeletedFiles , $ListNewFiles , $
ListFilemonObservations , $NameOfShutdownRansomware , $
Detected , $Shutdown){

204 $response = array();
205 $stmt = $this ->conn ->prepare("UPDATE␣hp1␣SET␣Posted␣=␣

CURRENT_TIMESTAMP ,␣MonitorStatus =?,␣MonitorCount =?,␣
CountChangedFiles =?,␣CountDeletedFiles =?,␣
CountNewFiles =?,␣CountFilemonObservations =?,␣CPU=?,␣
RAM=?,␣HDD=?,␣ThreadCount =?,␣HandleCount =?,␣
ListChangedFiles =?,␣ListDeletedFiles =?,␣ListNewFiles
=?,␣ListFilemonObservations =?,␣
NameOfShutdownRansomware =?,␣Detected=?,␣Shutdown =?␣␣
WHERE␣RansomwareName =?");

206 $stmt ->bind_param("sssssssssssssssssss", $MonitorStatus ,
$MonitorCount , $CountChangedFiles , $CountDeletedFiles
, $CountNewFiles , $CountFilemonObservations , $CPU , $
RAM , $HDD , $ThreadCount , $HandleCount , $
ListChangedFiles , $ListDeletedFiles , $ListNewFiles , $
ListFilemonObservations , $NameOfShutdownRansomware , $
Detected , $Shutdown , $RansomwareName);

207 $result = $stmt ->execute ();
208 $stmt ->close ();
209 if ($result) {
210 return $result;
211 } else {
212 return DATA_POST_FAILED;
213 }
214 return $response;
215 }
216
217 public function postHP1Taken($RansomwareName){
218 $response = array();
219 $stmt = $this ->conn ->prepare("UPDATE␣baseline␣SET␣

TakenByHP1␣=␣1␣WHERE␣RansomwareName =?");
220 $stmt ->bind_param("s", $RansomwareName);
221 $result = $stmt ->execute ();
222 $stmt ->close ();
223 if ($result) {
224 return $result;
225 } else {
226 return DATA_POST_FAILED;

D.1 Backend: DbHandler.php 101

227 }
228 return $response;
229 }
230
231 public function postHP1Tested($RansomwareName){
232 $response = array();
233 $stmt = $this ->conn ->prepare("UPDATE␣baseline␣SET␣

TestedByHP1␣=␣1␣WHERE␣RansomwareName =?");
234 $stmt ->bind_param("s", $RansomwareName);
235 $result = $stmt ->execute ();
236 $stmt ->close ();
237 if ($result) {
238 return $result;
239 } else {
240 return DATA_POST_FAILED;
241 }
242 return $response;
243 }
244
245 public function getHP1Host() {
246 $stmt = $this ->conn ->prepare("SELECT␣*␣FROM␣hp1␣WHERE␣

Posted␣IS␣NULL␣ORDER␣BY␣Fetched␣DESC␣limit␣1");
247 $stmt ->execute ();
248 $nextRansom = $stmt ->get_result ();
249 $stmt ->close ();
250 return $nextRansom;
251 }
252
253 public function postHP1Started($RansomwareName , $Started)

{
254 $response = array();
255 $stmt = $this ->conn ->prepare("UPDATE␣hp1␣SET␣Started␣=?␣

WHERE␣RansomwareName =?");
256 $stmt ->bind_param("ss", $Started , $RansomwareName);
257 $result = $stmt ->execute ();
258 $stmt ->close ();
259 if ($result) {
260 return $result;
261 } else {
262 return DATA_POST_FAILED;
263 }
264 return $response;
265 }
266 }
267 ?>

102 PHP Code

D.2 Frontend: index.php

The index.php serves as the API interface, allowing for GET and POST mes-
sages. Every method has its own URI address, and takes in differents amounts
of input and sends the relevant responses back. Below is a set of the primary
methods.

1 <?php
2
3 require_once ../ include/DbHandler.php ;
4 require .././ libs/Slim/Slim.php ;
5
6 \Slim\Slim:: registerAutoloader ();
7
8 $app = new \Slim\Slim();
9

10 // User id from db - Global Variable
11 $user_id = NULL;
12
13
14 // --------------------- Data extraction
15
16 $app ->get(/getdatabaseline , function () use ($app) {
17 $response = array();
18 $db = new DbHandler ();
19 $RansomwareName = $app ->request ->params(

RansomwareName);
20 $result = $db->getDataBaseline($RansomwareName);
21 $response["ransomware"] = array ();
22 // looping through result and preparing array
23 while ($ransomware = $result ->fetch_assoc ()) {
24 $tmp = array ();
25 $tmp["ransomware"] = $ransomware["RansomwareName"];
26 $tmp["fecthed"] = $ransomware["Fetched"];
27 $tmp["started"] = $ransomware["Started"];
28 $tmp["posted"] = $ransomware["Posted"];
29 $tmp["monitorStatus"] = $ransomware["

MonitorStatus"];
30 $tmp["monitorCount"] = $ransomware["MonitorCount"

];
31 $tmp["countChangedFiles"] = $ransomware["

CountChangedFiles"];
32 $tmp["countDeletedFiles"] = $ransomware["

CountDeletedFiles"];
33 $tmp["countNewFiles"] = $ransomware["

CountNewFiles"];
34 $tmp["countFilemonObservations"] = $ransomware["

CountFilemonObservations"];
35 $tmp["cpu"] = $ransomware["CPU"];
36 $tmp["ram"] = $ransomware["RAM"];
37 $tmp["hdd"] = $ransomware["HDD"];
38 $tmp["threadCount"] = $ransomware["ThreadCount"];
39 $tmp["handleCount"] = $ransomware["HandleCount"];

D.2 Frontend: index.php 103

40 $tmp["listChangedFiles"] = $ransomware["
ListChangedFiles"];

41 $tmp["listDeletedFiles"] = $ransomware["
ListDeletedFiles"];

42 $tmp["listNewFiles"] = $ransomware["ListNewFiles"
];

43 $tmp["listFilemonObservations"] =
$ransomware["

ListFilemonObservations"];
44 array_push($response["ransomware"], $tmp);
45 }
46 echoRespnse(200, $response);
47 });
48
49 $app ->get(/getdatahp1 , function () use ($app) {
50 $response = array();
51 $db = new DbHandler ();
52 $RansomwareName = $app ->request ->params(

RansomwareName);
53 $result = $db->getDataHP1($RansomwareName);
54 $response["ransomware"] = array ();
55 while ($ransomware = $result ->fetch_assoc ()) {
56 $tmp = array();
57 $tmp["ransomware"] = $ransomware[

"RansomwareName"];
58 $tmp["fecthed"] = $ransomware["

Fetched"];
59 $tmp["started"] = $ransomware["Started"];
60 $tmp["posted"] = $ransomware["Posted"];
61 $tmp["monitorStatus"] = $ransomware["

MonitorStatus"];
62 $tmp["monitorCount"] = $ransomware["MonitorCount"

];
63 $tmp["countChangedFiles"] = $ransomware["

CountChangedFiles"];
64 $tmp["countDeletedFiles"] = $ransomware["

CountDeletedFiles"];
65 $tmp["countNewFiles"] = $ransomware["

CountNewFiles"];
66 $tmp["countFilemonObservations"] = $ransomware["

CountFilemonObservations"];
67 $tmp["cpu"] = $ransomware["CPU"];
68 $tmp["ram"] = $ransomware["RAM"];
69 $tmp["hdd"] = $ransomware["HDD"];
70 $tmp["threadCount"] = $ransomware["ThreadCount"];
71 $tmp["handleCount"] = $ransomware["HandleCount"];
72 $tmp["listChangedFiles"] = $ransomware["

ListChangedFiles"];
73 $tmp["listDeletedFiles"] = $ransomware["

ListDeletedFiles"];
74 $tmp["listNewFiles"] = $ransomware["ListNewFiles"

];
75 $tmp["listFilemonObservations"] = $ransomware["

ListFilemonObservations"];
76 $tmp["nameOfShutdownRansomware"] = $ransomware["

104 PHP Code

NameOfShutdownRansomware"];
77 $tmp["detected"] = $ransomware["Detected"];
78 $tmp["shutdown"] = $ransomware["Shutdown"];
79 array_push($response["ransomware"], $tmp);
80 }
81 echoRespnse(200, $response);
82 });
83
84
85 // --------------------- QuickTester ransomware code
86
87 $app ->get(/getquickransomware , function () {
88 $response = array();
89 $db = new DbHandler ();
90 $result = $db->getQuickRansomware ();
91 $response["ransomware"] = array ();
92 while ($ransomware = $result ->fetch_assoc ()) {
93 $tmp = array ();
94 $tmp["ransomware"] = $ransomware["RansomwareName"];
95 array_push($response["ransomware"], $tmp);
96 }
97 echoRespnse(200, $response);
98 });
99

100 $app ->post(/postquickfetched , function () use ($app) {
101 // check for required params
102 verifyRequiredParams(array(RansomwareName));
103 $response = array();
104 // reading post params
105 $RansomwareName = $app ->request ->params(

RansomwareName);
106 $db = new DbHandler ();
107 $res = $db ->postQuickFetched($RansomwareName);
108 if ($res == 1 || $res == TRUE) {
109 $response["error"] = false;
110 $response["message"] = "Data␣successfully␣

inserted/updated";
111 } else {
112 $response["error"] = true;
113 $response["message"] = "An␣error␣occured␣while␣

the␣insertion/update";
114 }
115 echoRespnse(201, $response);
116 });
117
118 $app ->post(/postquickposted , function () use ($app) {
119 verifyRequiredParams(array(RansomwareName));
120 $response = array();
121 $RansomwareName = $app ->request ->params(

RansomwareName);
122 $FileChangedOnHash = $app ->request ->

params(FileChangedOnHash);
123 $FileChangedOnWatcher = $app ->request ->params(

FileChangedOnWatcher);
124 $Active = $app ->request ->params(Active);

D.2 Frontend: index.php 105

125 $db = new DbHandler ();
126 $res = $db ->postQuickPosted($RansomwareName , $

FileChangedOnHash , $FileChangedOnWatcher , $Active
);

127 if ($res == 1 || $res == TRUE) {
128 $response["error"] = false;
129 $response["message"] = "Data␣successfully␣

inserted/updated";
130 } else {
131 $response["error"] = true;
132 $response["message"] = "An␣error␣occured␣while␣

the␣insertion/update";
133 }
134 echoRespnse(201, $response);
135 });
136
137 $app ->get(/getquickhost , function () {
138 $response = array();
139 $db = new DbHandler ();
140 // fetching ransomwarename that the tester is working

on
141 $result = $db->getQuickHost ();
142 $response["ransomware"] = array ();
143 while ($ransomware = $result ->fetch_assoc ()) {
144 $tmp = array ();
145 $tmp["ransomware"] = $ransomware["RansomwareName"];
146 array_push($response["ransomware"], $tmp);
147 }
148 echoRespnse(200, $response);
149 });
150
151
152 // --------------------- BaselineTester ransomware code
153
154 $app ->get(/getbaseransomware , function () {
155 $response = array();
156 $db = new DbHandler ();
157 $result = $db->getBaseRansomware ();
158 $response["ransomware"] = array ();
159 while ($ransomware = $result ->fetch_assoc ()) {
160 $tmp = array ();
161 $tmp["ransomware"] = $ransomware["RansomwareName"];
162 array_push($response["ransomware"], $tmp);
163 }
164 echoRespnse(200, $response);
165 });
166
167 $app ->post(/postbasefetched , function () use ($app) {
168 verifyRequiredParams(array(RansomwareName));
169 $response = array();
170 $RansomwareName = $app ->request ->params(

RansomwareName);
171 $db = new DbHandler ();
172 $res = $db ->postBaseFetched($RansomwareName);
173 if ($res == 1 || $res == TRUE) {

106 PHP Code

174 $response["error"] = false;
175 $response["message"] = "Data␣successfully␣

inserted/updated";
176 } else {
177 $response["error"] = true;
178 $response["message"] = "An␣error␣occured␣while␣

the␣insertion/update";
179 }
180 echoRespnse(201, $response);
181 });
182
183 $app ->post(/postbaseposted , function () use ($app) {
184 $response = array();
185 //parse json post
186 $json = $app ->request ->getBody ();
187 $data = json_decode($json ,true);
188 $RansomwareName = $data["

RansomwareName"];
189 $MonitorStatus = $data["

MonitorStatus"];
190 $MonitorCount = $data["

MonitorCount"];
191 $CountChangedFiles = $data["

CountChangedFiles"];
192 $CountDeletedFiles = $data["

CountDeletedFiles"];
193 $CountNewFiles = $data["

CountNewFiles"];
194 $CountFilemonObservations = $data

["CountFilemonObservations"];
195 $CPU = $data["CPU"];
196 $RAM = $data["RAM"];
197 $HDD = $data["HDD"];
198 $ThreadCount = $data["ThreadCount

"];
199 $HandleCount = $data["HandleCount

"];
200 $ListChangedFiles = $data["

ListChangedFiles"];
201 $ListDeletedFiles = $data["

ListDeletedFiles"];
202 $ListNewFiles = $data["

ListNewFiles"];
203 $ListFilemonObservations = $data[

"ListFilemonObservations"];
204 $db = new DbHandler ();
205 $res = $db ->postBasePosted($RansomwareName , $

MonitorStatus , $MonitorCount , $CountChangedFiles ,
$CountDeletedFiles , $CountNewFiles , $

CountFilemonObservations , $CPU , $RAM , $HDD , $
ThreadCount , $HandleCount , $ListChangedFiles , $
ListDeletedFiles , $ListNewFiles , $
ListFilemonObservations);

206 if ($res == 1 || $res == TRUE) {
207 $response["error"] = false;

D.2 Frontend: index.php 107

208 $response["message"] = "Data␣successfully␣
inserted/updated";

209 } else {
210 $response["error"] = true;
211 $response["message"] = "An␣error␣occured␣while␣

the␣insertion/update";
212 }
213 echoRespnse(201, $response);
214 });
215
216 $app ->post(/postbasetaken , function () use ($app) {
217 verifyRequiredParams(array(RansomwareName));
218 $response = array();
219 $RansomwareName = $app ->request ->params(

RansomwareName);
220 $db = new DbHandler ();
221 $res = $db ->postBaseTaken($RansomwareName);
222 if ($res == 1 || $res == TRUE) {
223 $response["error"] = false;
224 $response["message"] = "Data␣successfully␣

inserted/updated";
225 } else {
226 $response["error"] = true;
227 $response["message"] = "An␣error␣occured␣while␣

the␣insertion/update";
228 }
229 echoRespnse(201, $response);
230 });
231
232 $app ->post(/postbasetested , function () use ($app) {
233 verifyRequiredParams(array(RansomwareName));
234 $response = array();
235 $RansomwareName = $app ->request ->params(

RansomwareName);
236 $db = new DbHandler ();
237 $res = $db ->postBaseTested($RansomwareName);
238 if ($res == 1 || $res == TRUE) {
239 $response["error"] = false;
240 $response["message"] = "Data␣successfully␣

inserted/updated";
241 } else {
242 $response["error"] = true;
243 $response["message"] = "An␣error␣occured␣while␣

the␣insertion/update";
244 }
245 echoRespnse(201, $response);
246 });
247
248 $app ->get(/getbasehost , function () {
249 $response = array();
250 $db = new DbHandler ();
251 $result = $db->getBaseHost ();
252 $response["ransomware"] = array ();
253 while ($ransomware = $result ->fetch_assoc ()) {
254 $tmp = array ();

108 PHP Code

255 $tmp["ransomware"] = $ransomware["RansomwareName"];
256 array_push($response["ransomware"], $tmp);
257 }
258 echoRespnse(200, $response);
259 });
260
261
262 $app ->post(/postbasestarted , function () use ($app) {
263 $response = array();
264 $RansomwareName = $app ->request ->params(

RansomwareName);
265 $Started = $app ->request ->params(Started

);
266 $db = new DbHandler ();
267 $res = $db ->postBaseStarted($RansomwareName , $Started

);
268 if ($res == 1 || $res == TRUE) {
269 $response["error"] = false;
270 $response["message"] = "Data␣successfully␣

inserted/updated";
271 } else {
272 $response["error"] = true;
273 $response["message"] = "An␣error␣occured␣while␣

the␣insertion/update";
274 }
275 echoRespnse(201, $response);
276 });
277
278 // --------------------- HoneyPot 1 PROCENT ransomware code
279
280 $app ->get(/gethp1ransomware , function () {
281 $response = array();
282 $db = new DbHandler ();
283 $result = $db->getHP1Ransomware ();
284 $response["ransomware"] = array ();
285
286 while ($ransomware = $result ->fetch_assoc ()) {
287 $tmp = array ();
288 $tmp["ransomware"] = $ransomware["RansomwareName"];
289 array_push($response["ransomware"], $tmp);
290 }
291
292 echoRespnse(200, $response);
293 });
294
295 $app ->post(/posthp1fetched , function () use ($app) {
296 verifyRequiredParams(array(RansomwareName));
297 $response = array();
298 $RansomwareName = $app ->request ->params(

RansomwareName);
299 $db = new DbHandler ();
300 $res = $db ->postHP1Fetched($RansomwareName);
301 if ($res == 1 || $res == TRUE) {
302 $response["error"] = false;
303 $response["message"] = "Data␣successfully␣

D.2 Frontend: index.php 109

inserted/updated";
304 } else {
305 $response["error"] = true;
306 $response["message"] = "An␣error␣occured␣while␣

the␣insertion/update";
307 }
308 echoRespnse(201, $response);
309 });
310
311 $app ->post(/posthp1posted , function () use ($app) {
312 $response = array();
313 $json = $app ->request ->getBody ();
314 $data = json_decode($json ,true);
315 $RansomwareName = $data["RansomwareName"

];
316 $MonitorStatus = $data["MonitorStatus"];
317 $MonitorCount = $data["MonitorCount"];
318 $CountChangedFiles = $data["CountChangedFiles"];
319 $CountDeletedFiles = $data["CountDeletedFiles"];
320 $CountNewFiles = $data["CountNewFiles"];
321 $CountFilemonObservations = $data

["CountFilemonObservations"];
322 $CPU = $data["CPU"];
323 $RAM = $data["RAM"];
324 $HDD = $data["HDD"];
325 $ThreadCount = $data["ThreadCount

"];
326 $HandleCount = $data["HandleCount

"];
327 $ListChangedFiles = $data["

ListChangedFiles"];
328 $ListDeletedFiles = $data["

ListDeletedFiles"];
329 $ListNewFiles = $data["

ListNewFiles"];
330 $ListFilemonObservations = $data[

"ListFilemonObservations"];
331 $NameOfShutdownRansomware = $data

["NameOfShutdownRansomware"];
332 $Detected = $data["Detected"];
333 $Shutdown = $data["Shutdown"];
334 $db = new DbHandler ();
335 $res = $db ->postHP1Posted($RansomwareName , $

MonitorStatus , $MonitorCount , $CountChangedFiles ,
$CountDeletedFiles , $CountNewFiles , $

CountFilemonObservations , $CPU , $RAM , $HDD , $
ThreadCount , $HandleCount , $ListChangedFiles , $
ListDeletedFiles , $ListNewFiles , $
ListFilemonObservations , $
NameOfShutdownRansomware , $Detected , $Shutdown);

336 if ($res == 1 || $res == TRUE) {
337 $response["error"] = false;
338 $response["message"] = "Data␣successfully␣

inserted/updated";
339 } else {

110 PHP Code

340 $response["error"] = true;
341 $response["message"] = "An␣error␣occured␣while␣

the␣insertion/update";
342 }
343 echoRespnse(201, $response);
344 });
345
346 $app ->post(/posthp1taken , function () use ($app) {
347 verifyRequiredParams(array(

RansomwareName));
348 $response = array();
349 $RansomwareName = $app ->request ->params(

RansomwareName);
350 $db = new DbHandler ();
351 $res = $db ->postHP1Taken($RansomwareName);
352 if ($res == 1 || $res == TRUE) {
353 $response["error"] = false;
354 $response["message"] = "Data␣successfully␣

inserted/updated";
355 } else {
356 $response["error"] = true;
357 $response["message"] = "An␣error␣occured␣while␣

the␣insertion/update";
358 }
359 echoRespnse(201, $response);
360 });
361
362 $app ->post(/posthp1tested , function () use ($app) {
363 verifyRequiredParams(array(RansomwareName));
364 $response = array();
365 $RansomwareName = $app ->request ->params(

RansomwareName);
366 $db = new DbHandler ();
367 $res = $db ->postHP1Tested($RansomwareName);
368 if ($res == 1 || $res == TRUE) {
369 $response["error"] = false;
370 $response["message"] = "Data␣successfully␣

inserted/updated";
371 } else {
372 $response["error"] = true;
373 $response["message"] = "An␣error␣occured␣while␣

the␣insertion/update";
374 }
375 echoRespnse(201, $response);
376 });
377
378 $app ->get(/gethp1host , function () {
379 $response = array();
380 $db = new DbHandler ();
381 $result = $db->getHP1Host();
382 $response["ransomware"] = array ();
383 while ($ransomware = $result ->fetch_assoc ()) {
384 $tmp = array ();
385 $tmp["ransomware"] = $ransomware["RansomwareName"];
386 array_push($response["ransomware"], $tmp);

D.2 Frontend: index.php 111

387 }
388 echoRespnse(200, $response);
389 });
390
391 $app ->post(/posthp1started , function () use ($app) {
392 $response = array();
393 $RansomwareName = $app ->request ->params(

RansomwareName);
394 $Started = $app ->request ->params(Started

);
395 $db = new DbHandler ();
396 $res = $db ->postHP1Started($RansomwareName , $Started)

;
397 if ($res == 1 || $res == TRUE) {
398 $response["error"] = false;
399 $response["message"] = "Data␣successfully␣

inserted/updated";
400 } else {
401 $response["error"] = true;
402 $response["message"] = "An␣error␣occured␣while␣

the␣insertion/update";
403 }
404 echoRespnse(201, $response);
405 });
406
407 // --------------------- Helper methods
408
409 function echoRespnse($status_code , $response) {
410 $app = \Slim\Slim:: getInstance ();
411 // Http response code
412 $app ->status($status_code);
413
414 // setting response content type to json
415 $app ->contentType(application/json);
416
417 echo json_encode($response);
418 }
419
420 $app ->run();
421 ?>

112 PHP Code

Appendix E

C# Code

In this appendix, some of the code developed in C# is attached. Due to the full
code is 236 separate files and 20594 lines of code, many of these repetition, only
the most relevant code is represented.

The full original code can be found online on Github here.

E.1 Host controller

The host controller is executed upon the physical machine and is used to manage
the virtual machine. The main part is two classes, one for controlling the system
and one for handling the virtual machines.

E.1.1 Main control unit

1 using System;
2 using System.Collections.Generic;
3 using System.Linq;
4 using System.Net.Http;
5 using System.Text;
6 using System.Threading;
7 using System.Threading.Tasks;
8
9 namespace HoneyPotHost

10 {
11 class hostPocController
12 {
13 private static string nameOfMachine = "PocTester";
14 private static string nameofStartUpSnapshot = "

HoneyPot1POCsnapshotStartUp";
15 private static string FULLRESPONSESTRING = "";

https://github.com/vaizardus/Speciale

114 C# Code

16 private static string NAMEONTEST = "Error";
17
18 private static readonly HttpClient client = new HttpClient ();
19
20 //Every number here adds 5 seconds
21 static int thresholdForRuntime = 80 * 12;
22
23 //Hosts the baseline every 33 minute
24 public static void hostOfPOCTester ()
25 {
26 // Creates a virtualmachine controller
27 VirtualMachineController tempVir = null;
28
29 Boolean action = false;
30 while (true)
31 {
32 // Instances a new virtual machine
33 tempVir = new VirtualMachineController ();
34
35 // Starts up the machine
36 tempVir.startVirtualMachine(nameOfMachine);
37
38 Thread.Sleep (60000);
39
40 getPocHP1Host ();
41 string temp = FULLRESPONSESTRING;
42
43 Console.WriteLine(temp);
44
45 int count = temp.Split (:) .Length - 1;
46
47 action = false;
48
49 int runs = 0;
50
51 Console.WriteLine(temp);
52
53 while (! action)
54 {
55 if (count > 1)
56 {
57 Console.WriteLine(temp);
58 Console.WriteLine(count);
59 getPocHP1Host ();
60 if (!temp.Equals(FULLRESPONSESTRING))
61 {
62 Console.WriteLine("Shutting␣down␣virtual␣machine␣

due␣to␣post␣message");
63 action = true;
64 }
65 runs ++;
66 Thread.Sleep (5000);
67
68 if(runs >= thresholdForRuntime)
69 {

E.1 Host controller 115

70 Console.WriteLine("Posting␣because␣no␣post␣has␣been
␣made");

71 action = true;
72 }
73 }
74 else
75 {
76 Thread.Sleep (5000);
77 getPocHP1Host ();
78 temp = FULLRESPONSESTRING;
79 count = temp.Split (:) .Length - 1;
80 }
81 }
82
83 // Powers off the machine
84 tempVir.poweroffVirtualMachine(nameOfMachine);
85 Thread.Sleep (5000);
86
87 // Restores the virtual machine to the original image
88 tempVir.restoreVirtualMachine(nameOfMachine ,

nameofStartUpSnapshot);
89 Thread.Sleep (10000);
90 }
91 }
92
93 public static void getPocHP1Host ()
94 {
95 string responseString = "";
96 try
97 {
98 client.DefaultRequestHeaders.Clear();
99 client.DefaultRequestHeaders.ConnectionClose = true;

100 responseString = client.GetStringAsync("http
://192.168.8.102/ v1/index.php/gethp1host").Result;

101
102 }
103 catch (Exception)
104 {
105
106 throw;
107 }
108
109 FULLRESPONSESTRING = responseString;
110 }
111
112 private static string findNAMEONTEST(string responsestring)
113 {
114 int i = 0;
115 int j = 0;
116 foreach (char c in responsestring)
117 {
118 if (i == 5)
119 {
120 return responsestring.Substring(j, responsestring.

Length - j - 4);

116 C# Code

121 }
122 if (c.Equals ("))
123 {
124 i++;
125 }
126 j++;
127 }
128
129 return␣"Could Not Find";
130 }
131 }
132 }

E.1 Host controller 117

E.1.2 Virtual Machine Controller

1 using System;
2 using System.Collections.Generic;
3 using System.Diagnostics;
4 using System.Linq;
5 using System.Text;
6 using System.Threading.Tasks;
7
8 namespace HoneyPotHost
9 {

10 class VirtualMachineController
11 {
12 // Creates a process for the commandopromt
13 private static Process cmd = new Process ();
14
15 //A function to power off the virtual machine
16 public void poweroffVirtualMachine(string machineName)
17 {
18 cmd.StartInfo.FileName = "cmd.exe";
19 cmd.StartInfo.RedirectStandardInput = true;
20 cmd.StartInfo.RedirectStandardOutput = true;
21 cmd.StartInfo.CreateNoWindow = true;
22 cmd.StartInfo.UseShellExecute = false;
23 cmd.Start();
24
25 cmd.StandardInput.WriteLine(@"""C:\ Program␣Files\Oracle\

VirtualBox\VBoxManage.exe""␣controlvm␣" + machineName + "␣
poweroff");

26 cmd.StandardInput.Flush();
27 cmd.StandardInput.Close();
28 cmd.WaitForExit ();
29 }
30
31 //A function to restore the virtual machine
32 public void restoreVirtualMachine(string machineName , string

snapshotName)
33 {
34 cmd.StartInfo.FileName = "cmd.exe";
35 cmd.StartInfo.RedirectStandardInput = true;
36 cmd.StartInfo.RedirectStandardOutput = true;
37 cmd.StartInfo.CreateNoWindow = true;
38 cmd.StartInfo.UseShellExecute = false;
39 cmd.Start();
40
41 cmd.StandardInput.WriteLine(@"""C:\ Program␣Files\Oracle\

VirtualBox\VBoxManage.exe""␣snapshot␣" + machineName + "␣
restore␣" + snapshotName);

42 cmd.StandardInput.Flush();
43 cmd.StandardInput.Close();
44 cmd.WaitForExit ();
45 }
46
47 //A function to start the virtual machine
48 public void startVirtualMachine(string machineName)

118 C# Code

49 {
50 cmd.StartInfo.FileName = "cmd.exe";
51 cmd.StartInfo.RedirectStandardInput = true;
52 cmd.StartInfo.RedirectStandardOutput = true;
53 cmd.StartInfo.CreateNoWindow = true;
54 cmd.StartInfo.UseShellExecute = false;
55 cmd.Start();
56
57 cmd.StandardInput.WriteLine(@"""C:\ Program␣Files\Oracle\

VirtualBox\VBoxManage.exe""␣startvm␣" + machineName);
58 cmd.StandardInput.Flush();
59 cmd.StandardInput.Close();
60 cmd.WaitForExit ();
61 }
62 }
63 }

E.2 Ransomware downloader 119

E.2 Ransomware downloader

The following code is of the program designed to download the ransomware and
run it upon the computer.

E.2.1 Main control unit

1 using System;
2 using System.Collections.Generic;
3 using System.Diagnostics;
4 using System.Linq;
5 using System.Text;
6 using System.Threading;
7 using System.Threading.Tasks;
8
9 namespace HoneyPotPOCRansomwareDownloader

10 {
11 class Program
12 {
13 static void Main(string [] args)
14 {
15 ransomwareDownload ();
16 }
17
18 public static void ransomwareDownload ()
19 {
20 // Ensure that the ransomware will not be downloaded on the

host computer
21 if (Environment.MachineName.Contains("viruseater")) return;
22 if (Environment.UserName.Contains("viruseater")) return;
23 if (Environment.UserName.Contains("PoC -tester")) return;
24 Thread.Sleep (2000);
25 //The filepath is set to desktop
26 serverCommunicator.setRansomwareFilePath ();
27 //Find the name of the ransomware
28 serverCommunicator.getPOCHost ();
29 Thread.Sleep (100);
30 Console.WriteLine(serverCommunicator.getNAMEONTEST ());
31 Thread.Sleep (100);
32
33 // Download the ransomware
34 serverCommunicator.downloadFileFTP ();
35
36 Thread.Sleep (100);
37
38 // Inform the server that the ransomware is executed post

this
39 serverCommunicator.postPoCStarted ();
40
41 Thread.Sleep (100);
42

120 C# Code

43 // Execute the ransomware
44 programExecuter.executeProgram(serverCommunicator.

getRansomwareFilePath ());
45
46 }
47 }
48 }

1 using System;
2 using System.Collections.Generic;
3 using System.Diagnostics;
4 using System.Linq;
5 using System.Text;
6 using System.Threading.Tasks;
7
8 namespace HoneyPotPOCRansomwareDownloader
9 {

10 class programExecuter
11 {
12 //Class to execute a program
13 public static void executeProgram(string programPath)
14 {
15 Process.Start(programPath);
16 }
17 }
18 }

E.2 Ransomware downloader 121

E.2.2 Server Communicator

1 using System;
2 using System.Collections.Generic;
3 using System.IO;
4 using System.Linq;
5 using System.Net;
6 using System.Net.Http;
7 using System.Text;
8 using System.Threading.Tasks;
9

10 namespace HoneyPotPOCRansomwareDownloader
11 {
12 class serverCommunicator
13 {
14 static string NAMEONTEST = "";
15 static string RANSOMWAREFILEPATH = "";
16 private static readonly HttpClient client = new HttpClient ();
17
18 public static void getPOCHost ()
19 {
20
21 var responseString = client.GetStringAsync("http

://192.168.8.102/ v1/index.php/gethp1host").Result;
22 NAMEONTEST = findNAMEONTEST(responseString);
23 Console.WriteLine(NAMEONTEST);
24
25 }
26
27 private static string findNAMEONTEST(string responsestring)
28 {
29 int i = 0;
30 int j = 0;
31 foreach (char c in responsestring)
32 {
33 if (i == 5)
34 {
35 return responsestring.Substring(j, responsestring.

Length - j - 4);
36 }
37 if (c.Equals ("))
38 {
39 i++;
40 }
41 j++;
42 }
43
44 return␣"what?";
45 }
46
47 public␣static␣void␣downloadFileFTP ()
48 {
49 string␣ransomwareName␣=␣NAMEONTEST;
50
51 string␣ftphost␣=␣"192.168.8.102";

122 C# Code

52 string␣ftpfilepath␣=␣"/VirusShare/"␣+␣ransomwareName;
53
54 string␣ftpfullpath␣=␣"ftp://" + ftphost + ftpfilepath;
55
56 using (WebClient request = new WebClient ())
57 {
58 request.Credentials = new NetworkCredential("

datacollector", "");
59 byte[] fileData = request.DownloadData(ftpfullpath);
60
61 using (FileStream file = File.Create(RANSOMWAREFILEPATH))
62 {
63 file.Write(fileData , 0, fileData.Length);
64 file.Close();
65 }
66 }
67 }
68
69 public static async void postPoCStarted ()
70 {
71 var values = new Dictionary <string , string >
72 {
73 {"RansomwareName", NAMEONTEST},
74 {"Started", DateTime.Now.ToString("dd/MM/yyyy␣HH:mm:ss.

fff") }
75 };
76
77 var content = new FormUrlEncodedContent(values);
78
79 var response = client.PostAsync("http ://192.168.8.102/ v1/

index.php/posthp1started", content).Result;
80
81 var responseString = await response.Content.

ReadAsByteArrayAsync ();
82 }
83
84
85
86 public static string getNAMEONTEST ()
87 {
88 return NAMEONTEST;
89 }
90
91 // Dynamic method of setting the path to the ransomware file
92 public static void setRansomwareFilePath ()
93 {
94 RANSOMWAREFILEPATH = Environment.GetFolderPath(Environment.

SpecialFolder.Desktop) + "\\ ransomware.exe";
95 }
96
97 public static string getRansomwareFilePath ()
98 {
99 return RANSOMWAREFILEPATH;

100 }
101 }

E.2 Ransomware downloader 123

102
103 }

124 C# Code

E.3 Honeypot Prove of Concept

This appendix shows the detection method. Much of this code is reused in the
other detection methods.

E.3.1 Main control unit

1 using HoneyPotPOC.PocLogger;
2 using System;
3 using System.Collections.Generic;
4 using System.Linq;
5 using System.Text;
6 using System.Threading;
7 using System.Threading.Tasks;
8
9 namespace HoneyPotPOC

10 {
11 class Program
12 {
13 //In addition , four paths needs to be set in PocLogger\Logger
14 // static string PATH = @"C:\Users\PoC";
15 static string PATH = @"C:\Users\PoC";
16 static string BACKINGNAME = "backingFromProcMon";
17 static string pathToBackingFile = @"C:\ procmon\

backingFileTest";
18 static string ProcMonPath = @"C:\ procmon\Procmon.exe";
19
20 //Path to ransomware downloader
21 static string RANSOMWAREDOWNLOADERPATH = @"C:\ Software\

HoneyPotPOCRansomwareDownloader\bin\Release\
HoneyPotPOCRansomwareDownloader.exe";

22
23 static void Main(string [] args)
24 {
25 //This wait is made such that a snapshot of the virtual

machine could be made during the start of the program.
26 Thread.Sleep (30000);
27 honeyPotFileMonDetection ();
28 }
29
30 public static void honeyPotFileMonDetection ()
31 {
32 //Fetch the ransomwarename
33 Logger.getPoCRansomware ();
34
35 Thread.Sleep (1000);
36 // Inform the server that the ransomware has been fetched
37 Logger.postPoCFetched ();
38
39 //Wait for response from the server
40 while (! Logger.getHasFetched ())

E.3 Honeypot Prove of Concept 125

41 {
42 Thread.Sleep (500);
43 }
44
45 //Sets the correct values in different classes
46 Logger.setRansomwareDownloaderPath(RANSOMWAREDOWNLOADERPATH

);
47
48 ActionTaker.setBackingName(BACKINGNAME);
49 ActionTaker.setPathToBackingFile(pathToBackingFile);
50
51 ProcMon.setPathToProcMon(ProcMonPath);
52 BACKINGNAME = BACKINGNAME + 0;
53
54 //Start the procmon
55 var t = new Thread (() => ProcMon.createProcmonBackingFile(

pathToBackingFile , BACKINGNAME));
56 t.Start();
57
58 Console.WriteLine(Logger.getNAMEONTEST ());
59 //Start the logger
60 Logger.LogWriter(PATH);
61
62 //Post that the ransomware succesfully has been tested
63 Logger.postPoCTested ();
64
65 //Post the tested results
66 Logger.postPoCPosted ();
67
68
69 Thread.Sleep (30000);
70 }
71 }
72 }

126 C# Code

E.3.2 Filemon for honeypots

1 using System;
2 using System.Collections.Generic;
3 using System.Linq;
4 using System.Text;
5 using System.Threading.Tasks;
6 using System.IO;
7 using System.Threading;
8 using System.Collections;
9

10 namespace HoneyPotPOC
11 {
12 class FileMon
13 {
14 static int MONITORTIMEOUT = 60;
15 static int thresholdNum = 1;
16 public static int i = 0;
17 public static int temp = 0;
18 public static Dictionary <string , DateTime > eventNameAndTime =

new Dictionary <string , DateTime >();
19 private static Boolean hasMadeFirstDetection = false;
20 private static DateTime firstDetectionTime = new DateTime ();
21 private static List <DateTime > threshold = new List <DateTime

>();
22 static Boolean stopLogging = false;
23
24 // FileSystemWatcher can monitor changes in files
25 private static FileSystemWatcher watcher = new

FileSystemWatcher ();
26
27 public static void createFileWatcher(string path)
28 {
29
30 //The given path dictates what directory the watcher will

monitor
31 watcher.Path = path;
32
33 //The NotifyFilters determine what the monitors triggers

upon.
34 //It can also be a change in size.
35 watcher.NotifyFilter = NotifyFilters.Size | NotifyFilters.

LastWrite | NotifyFilters.FileName;
36
37 //The filter gives the watcher a specific filename to look

for
38 // "* honeypot .*" monitors every file with honeypot in the

ending , and every format.
39 watcher.Filter = "*honeypotbait*";
40
41 //This tells the watcher when to react on different changes
42 watcher.Created += new FileSystemEventHandler(OnChanged);
43 watcher.Changed += new FileSystemEventHandler(OnChanged);
44 watcher.Deleted += new FileSystemEventHandler(OnChanged);
45 watcher.Renamed += new RenamedEventHandler(OnRenamed);

E.3 Honeypot Prove of Concept 127

46
47 watcher.EnableRaisingEvents = true;
48 // IncludeSubdirectories does such that not only the

directory given is monitored
49 //but also every single subdirectory of the given directory
50 watcher.IncludeSubdirectories = true;
51 }
52
53
54 //Event handler if an object is changed
55 private static void OnChanged(object source ,

FileSystemEventArgs e)
56 {
57 Console.WriteLine("File:␣" + e.FullPath + "␣has␣been␣" + e.

ChangeType);
58 threshold.Add(DateTime.Now);
59 List <DateTime > temp = new List <DateTime >();
60 DateTime now = DateTime.Now;
61 foreach (DateTime t in threshold)
62 {
63 if (60 < (now.Subtract(t).Seconds))
64 {
65 temp.Add(t);
66 }
67 }
68
69 foreach (DateTime t in temp)
70 {
71 threshold.Remove(t);
72 }
73
74 //If threshold is reached , it makes a reaction
75 if (threshold.Count > thresholdNum)
76 {
77 Console.WriteLine("Threshold␣reached.␣It s␣killing␣time")

;
78
79 if (! hasMadeFirstDetection)
80 {
81 firstDetectionTime = DateTime.Now;
82 hasMadeFirstDetection = true;
83 }
84 if (eventNameAndTime.ContainsKey(e.FullPath))
85 {
86 // Report it has been changed
87 Console.WriteLine("File:␣" + e.FullPath + "␣has␣been␣"

+ e.ChangeType);
88 if (MONITORTIMEOUT < (DateTime.Now.Subtract ((DateTime)

eventNameAndTime[e.FullPath])).TotalSeconds)
89 {
90 Console.WriteLine("Stopping␣the␣process");
91 eventNameAndTime[e.FullPath] = DateTime.Now;
92 ActionTaker.honeypotChange(e.FullPath);
93 }
94 }

128 C# Code

95 else
96 {
97 // Report it has been changed
98 Console.WriteLine("File:␣" + e.FullPath + "␣has␣been␣"

+ e.ChangeType);
99 eventNameAndTime.Add(e.FullPath , DateTime.Now);

100 ActionTaker.honeypotChange(e.FullPath);
101 }
102 }
103 }
104
105 //Event handeler if an object is renamed
106 private static void OnRenamed(object source , RenamedEventArgs

e)
107 {
108 Console.WriteLine("Flie:␣{0}␣renamed␣to␣{1}", e.OldFullPath

, e.FullPath);
109 }
110
111 public static DateTime getFirstDetected ()
112 {
113 return firstDetectionTime;
114 }
115
116 public static void setWatcherToStop ()
117 {
118 watcher.EnableRaisingEvents = false;
119 }
120 }
121 }

E.3 Honeypot Prove of Concept 129

E.3.3 Procmon

1 using System;
2 using System.Collections.Generic;
3 using System.Diagnostics;
4 using System.IO;
5 using System.Linq;
6 using System.Text;
7 using System.Threading;
8 using System.Threading.Tasks;
9

10 namespace HoneyPotPOC
11 {
12 class ProcMon
13 {
14 private static Process cmd = new Process ();
15 private static string procMonPath = "";
16 private static Boolean isHasherDone = false;
17
18 // Starts procmon and gives a given path for the backing file
19 public static void createProcmonBackingFile(string path ,

string backingName)
20 {
21 //Don t start procmon untill the hashing process is done
22 while (! isHasherDone)
23 {
24 Thread.Sleep (500);
25 }
26 string backPath = path + @"\"␣+␣backingName;
27
28 cmd.StartInfo.FileName␣=␣"cmd.exe";
29 cmd.StartInfo.RedirectStandardInput␣=␣true;
30 cmd.StartInfo.RedirectStandardOutput␣=␣true;
31 cmd.StartInfo.CreateNoWindow␣=␣true;
32 cmd.StartInfo.UseShellExecute␣=␣false;
33 cmd.Start();
34
35 cmd.StandardInput.WriteLine(@"start "␣+␣procMonPath␣+␣@" /

quiet /minimized /backingfile "␣+␣path␣+␣"\\"␣+␣backingName␣+
␣".PML");

36 Console.WriteLine("Path to procMon file: "␣+␣path␣+␣"\\"␣+␣
backingName);

37 cmd.StandardInput.Flush();
38 }
39
40 //Shuts␣down␣procmon
41 public␣static␣void␣procmonTerminator(string␣path ,␣string␣

backingName)
42 {
43 cmd.StartInfo.FileName␣=␣"cmd.exe";
44 cmd.StartInfo.RedirectStandardInput␣=␣true;
45 cmd.StartInfo.RedirectStandardOutput␣=␣true;
46 cmd.StartInfo.CreateNoWindow␣=␣true;
47 cmd.StartInfo.UseShellExecute␣=␣false;
48 cmd.Start();

130 C# Code

49
50 cmd.StandardInput.WriteLine(procMonPath␣+␣" /waitforidle");
51 cmd.StandardInput.WriteLine(procMonPath␣+␣" /terminate");
52 Console.WriteLine("Path to procMon file: "␣+␣path␣+␣"\\"␣+␣

backingName␣+␣".PML");
53 bool␣isProcMonTerminated␣=␣false;
54
55 while␣(isProcMonTerminated␣==␣false)
56 {
57 Process []␣pname␣=␣Process.GetProcessesByName("Procmon64")

;
58 if␣(pname.Length␣==␣0)
59 {
60 Console.WriteLine("Procmon is no longer running ,

continuing ...");
61 isProcMonTerminated␣=␣true;
62 }
63 else␣{
64 Console.WriteLine("Procmon64 process is running!");
65 }
66 Thread.Sleep (50);
67 }
68 }
69
70 //Lets␣procmon␣convert␣PML␣file␣to␣CSV
71 public␣static␣void␣convertPMLfileToCSV(string␣path ,␣string␣

PMLfile ,␣string␣CSVfile)
72 {
73 path␣=␣path␣+␣@"\";
74 Process␣cmd␣=␣new␣Process ();
75 cmd.StartInfo.FileName␣=␣"cmd.exe";
76 cmd.StartInfo.RedirectStandardInput␣=␣true;
77 cmd.StartInfo.RedirectStandardOutput␣=␣true;
78 cmd.StartInfo.CreateNoWindow␣=␣true;
79 cmd.StartInfo.UseShellExecute␣=␣false;
80 cmd.Start();
81
82 cmd.StandardInput.WriteLine(@"start "␣+␣procMonPath␣+␣" /

quiet /minimized /AcceptEula /SaveApplyFilter /saveas "␣+␣
path␣+␣CSVfile␣+␣" /OpenLog "␣+␣path␣+␣PMLfile);

83 Thread.Sleep (5000);
84 int␣i␣=␣0;
85 long␣length␣=␣0;
86 while␣(!File.Exists(path␣+␣CSVfile))
87 {
88 try
89 {
90 length␣=␣new␣System.IO.FileInfo(path␣+␣CSVfile).Length;
91 }
92 catch␣(Exception)
93 {
94 }
95 Thread.Sleep (50);
96 }
97 long␣temp␣=␣0;

E.3 Honeypot Prove of Concept 131

98 while␣(length␣!=␣temp)
99 {

100 i++;
101 temp␣=␣length;
102 Thread.Sleep (50);
103 length␣=␣new␣System.IO.FileInfo(path␣+␣CSVfile).Length;
104 }
105 cmd.StandardInput.Flush();
106 cmd.StandardInput.Close();
107 cmd.WaitForExit ();
108 Console.WriteLine(cmd.StandardOutput.ReadToEnd ());
109 }
110
111 public␣static␣void␣setPathToProcMon(string␣path)
112 {
113 procMonPath␣=␣path;
114 }
115
116 public␣static␣void␣setIsHasherDone(Boolean␣b)
117 {
118 isHasherDone␣=␣b;
119 }
120 }
121 }

132 C# Code

E.3.4 Code for the reaction when the ransomware is de-
tected

1 using System;
2 using System.Collections.Generic;
3 using System.Diagnostics;
4 using System.IO;
5 using System.Linq;
6 using System.Text;
7 using System.Threading;
8 using System.Threading.Tasks;
9

10 namespace HoneyPotPOC
11 {
12 class ActionTaker
13 {
14
15 static string pathToBackingFile = "";
16 static int INDEXER = 0;
17 static string BACKINGNAME = "";
18 static HashSet <int > pID = new HashSet <int >();
19 static string NAMEONTEST = "";
20 static List <string > killedProcesses = new List <string >();
21 private static Boolean killedFirstProcess = false;
22 private static DateTime firstKilledProcessTime = new DateTime

();
23
24 //A change has been registered to a honeypot
25 public static void honeypotChange(string path)
26 {
27 //Shut down procmon in order to get logfile
28 ProcMon.procmonTerminator(pathToBackingFile , BACKINGNAME +

INDEXER);
29
30 INDEXER ++;
31 //Start up procmon with a new backingfile
32 var cpmbf = new Thread (() => ProcMon.

createProcmonBackingFile(pathToBackingFile , BACKINGNAME +
INDEXER));

33 cpmbf.Start();
34
35 Thread.Sleep (3000);
36
37 // Convert the PMLfile to CSV
38 ProcMon.convertPMLfileToCSV(pathToBackingFile , BACKINGNAME

+ (INDEXER - 1) + ".PML", "convertedFile" + (INDEXER - 1) + "
.CSV");

39
40 bool hasCSVbeenWritten = false;
41 Console.WriteLine("Path␣to␣CSV␣file:␣" + pathToBackingFile

+ "\\" + "convertedFile" + (INDEXER - 1) + ".CSV");
42
43 //Wait for the conversion to be completed
44 while (hasCSVbeenWritten == false)

E.3 Honeypot Prove of Concept 133

45 {
46 try
47 {
48 using (Stream stream = new FileStream(pathToBackingFile

+ "\\" + "convertedFile" + (INDEXER - 1) + ".CSV", FileMode.
Open))

49 {
50 hasCSVbeenWritten = true;
51 stream.Dispose ();
52 }
53 }
54 catch (IOException)
55 {
56
57 }
58 Thread.Sleep (50);
59 }
60 //Parse the CSVfile
61 List <CSVfileHandler > parsedData = CSVfileHandler.CSVparser(

pathToBackingFile + "\\" + "convertedFile" + (INDEXER - 1) +
".CSV");

62
63 //Kill every process that has touched a honeypot
64 foreach (var item in parsedData)
65 {
66 if (!item.processName.Equals("Explorer.EXE") || !item.

processName.Equals("HoneyPotFilemon.exe"))
67 {
68 try
69 {
70 pID.Add(item.PID);
71 killedProcesses.Add(Process.GetProcessById(item.PID).

ProcessName);
72 try
73 {
74 Console.WriteLine("Process:␣" + Process.

GetProcessById(item.PID).ProcessName + "␣is␣killed␣due␣to␣
suspicious␣behaviour");

75 killProcess(item.PID);
76 }
77 catch (Exception)
78 {
79 //Save processname as a temp
80 Console.WriteLine("Killing␣of␣the␣process␣failed");
81 }
82 }
83 catch
84 {
85
86 }
87 }
88 }
89
90 if (! killedFirstProcess)
91 {

134 C# Code

92 firstKilledProcessTime = DateTime.Now;
93 killedFirstProcess = true;
94 }
95 }
96
97 private static void killProcess(int PID)
98 {
99 var process = Process.GetProcessById(PID);

100 process.Kill();
101 process.WaitForExit ();
102 }
103
104 public static void setPathToBackingFile(string path)
105 {
106 pathToBackingFile = path;
107 }
108
109 public static void setBackingName(string name)
110 {
111 BACKINGNAME = name;
112 }
113
114 public static List <string > getKilledProcesses ()
115 {
116 return killedProcesses;
117 }
118
119 public static DateTime getFirstKilledTime ()
120 {
121 return firstKilledProcessTime;
122 }
123
124 public static void terminateProcmon ()
125 {
126 ProcMon.procmonTerminator(pathToBackingFile , BACKINGNAME +

INDEXER);
127 }
128 }
129 }

E.3 Honeypot Prove of Concept 135

E.3.5 Filemon for logging

1 using System;
2 using System.Collections.Generic;
3 using System.Linq;
4 using System.Text;
5 using System.Threading.Tasks;
6 using System.IO;
7 using System.Threading;
8 using System.Collections;
9

10 namespace HoneyPotPOC.PocLogger
11
12 {
13 class Filemon
14 {
15
16 static Dictionary <DateTime , string > fileMonChanges = new

Dictionary <DateTime , string >();
17 public static int i = 0;
18 public static int temp = 0;
19 public static Hashtable eventTimeLog = new Hashtable ();
20 private static Boolean stopAddingToLog = false;
21 private static FileSystemWatcher watcher = new

FileSystemWatcher ();
22 public static void CreateFileWatcher(string path)
23 {
24 // FileSystemWatcher can monitor changes in files
25
26 //The given path dictates what directory the watcher will

monitor
27 watcher.Path = path;
28
29 //The NotifyFilters determine what the monitors triggers

upon.
30 //It can also be a change in size.
31 watcher.NotifyFilter = NotifyFilters.Size | NotifyFilters.

LastWrite | NotifyFilters.FileName;
32
33 //The filter gives the watcher a specific filename to look

for
34 // "* honeypot .*" monitors every file with honeypot in the

ending , and every format.
35 watcher.Filter = "*";
36
37 //This tells the watcher when to react on different changes
38 watcher.Created += new FileSystemEventHandler(OnChanged);
39 watcher.Changed += new FileSystemEventHandler(OnChanged);
40 watcher.Deleted += new FileSystemEventHandler(OnChanged);
41 watcher.Renamed += new RenamedEventHandler(OnRenamed);
42
43 watcher.EnableRaisingEvents = true;
44 // IncludeSubdirectories does such that not only the

directory given is monitored
45 //but also every single subdirectory of the given directory

136 C# Code

46 watcher.IncludeSubdirectories = true;
47 }
48
49
50 //Event handeler if an object is changed
51 private static void OnChanged(object source ,

FileSystemEventArgs e)
52 {
53 if (! stopAddingToLog)
54 {
55 if (! fileMonChanges.ContainsKey(DateTime.Now))
56 {
57 fileMonChanges.Add(DateTime.Now , e.FullPath);
58 }
59 }
60 }
61
62
63 //Event handeler if an object is renamed
64 private static void OnRenamed(object source , RenamedEventArgs

e)
65 {
66 if (! stopAddingToLog)
67 {
68 if (! fileMonChanges.ContainsKey(DateTime.Now))
69 {
70 fileMonChanges.Add(DateTime.Now , e.FullPath);
71 }
72 }
73 }
74
75 public static Dictionary <DateTime , string > getFilemonChanges

()
76 {
77 return fileMonChanges;
78 }
79
80 //Stops adding to log such that an iteration won t trigger an

error
81 public static void setStopAddingToLog(Boolean b)
82 {
83 stopAddingToLog = b;
84 }
85
86 public static void setWatcherToStop ()
87 {
88 watcher.EnableRaisingEvents = false;
89 }
90 }
91 }

E.3 Honeypot Prove of Concept 137

E.3.6 Code for logging data

1 using HoneyPotFilemon.PocLogger;
2 using Newtonsoft.Json;
3 using System;
4 using System.Collections.Generic;
5 using System.Configuration;
6 using System.Diagnostics;
7 using System.IO;
8 using System.Linq;
9 using System.Net.Http;

10 using System.Text;
11 using System.Threading;
12 using System.Threading.Tasks;
13
14 namespace HoneyPotPOC.PocLogger
15 {
16 class Logger
17 {
18 private static int INTERVALFORLOOP = 500;
19 private static int MINUTESOFLOGGING = 25;
20 private static string NAMEONTEST = "test";
21 private static Boolean MONITORSTATUS = true;
22 private static Boolean HASFETCHED = false;
23 private static PerformanceCounter cpuUsageCounter;
24 private static PerformanceCounter ramUsageCounter;
25 private static PerformanceCounter harddiskUsageCounter;
26 private static PerformanceCounter threadCounter;
27 private static PerformanceCounter handleCounter;
28
29 private static int amountOfLoops = 0;
30 private static List <string > removeKeyList = new List <string

>();
31 private static List <string > changedKeyList = new List <string

>();
32 private static List <string > inStartDictionary = new List <

string >();
33 private static List <string > inEndDictionary = new List <string

>();
34 private static Dictionary <string , string >. KeyCollection

hashedFilesAtStartKeys = null;
35 private static Dictionary <string , string >. KeyCollection

hashedFilesAtEndKeys = null;
36 private static Dictionary <DateTime , string > fileMonChanges =

Filemon.getFilemonChanges ();
37 private static List <float > cpuList = new List <float >();
38 private static List <float > ramList = new List <float >();
39 private static List <float > harddiskList = new List <float >();
40 private static List <float > threadList = new List <float >();
41 private static List <float > handleList = new List <float >();
42 static string path1 = @"C:\ Users\PoC\Desktop";
43 static string path2 = @"C:\ Users\PoC\Documents";
44 static string path3 = @"C:\ Users\PoC\Downloads";
45 static string path4 = @"C:\ Users\PoC\Videos";
46 static string pathFileWatch = @"C:\ Users\PoC";

138 C# Code

47
48
49 //Give the correct path for the hashed filesystem.
50 //This includes giving the hasher the same path as the logger

.
51 static string hashedFilePath = @"C:\ Software \";
52
53 // static␣string␣path1␣=␣@"C:\Users\viruseater1\Documents";
54 // static␣string␣path2␣=␣@"C:\Users\viruseater1\Desktop";
55 // static␣string␣path3␣=␣@"C:\Users\viruseater1\Downloads";
56 // static␣string␣path4␣=␣@"C:\Users\viruseater1\Videos";
57
58 //Add␣the␣path␣to␣the␣ransomware␣downloader
59 private␣static␣string␣ransomwareDownloaderPath␣=␣"";
60
61 private␣static␣readonly␣HttpClient␣client␣=␣new␣HttpClient ();
62
63 public␣static␣Boolean␣LogWriter(string␣PATH)
64 {
65
66 cpuUsageCounter␣=␣new␣PerformanceCounter("Processor",␣"%

Processor Time",␣"_Total");
67 ramUsageCounter␣=␣new␣PerformanceCounter("Memory",␣"

Available MBytes");
68 harddiskUsageCounter␣=␣new␣PerformanceCounter("PhysicalDisk

",␣"% Disk Time",␣"_Total");
69 threadCounter␣=␣new␣PerformanceCounter("Process",␣"Thread

Count",␣"_Total");
70 handleCounter␣=␣new␣PerformanceCounter("Process",␣"Handle

Count",␣"_Total");
71
72 postPoCTaken ();
73
74 Dictionary <string ,␣string >␣hashedFilesAtStart␣=␣new␣

Dictionary <string ,␣string >();
75
76 //Get␣the␣hashed␣files␣from␣the␣txt␣file
77 hashedFilesAtStart␣=␣testParseTXTfile(hashedFilePath);
78
79
80 ProcMon.setIsHasherDone(true);
81 amountOfLoops␣=␣0;
82
83 //After␣the␣hashed␣files␣has␣been␣read␣the␣ransomware␣is␣

downloaded
84 programExecuter.executeProgram(ransomwareDownloaderPath);
85
86
87 var␣fw␣=␣new␣Thread (()␣=>␣FileMon.createFileWatcher(

pathFileWatch));
88 fw.Start();
89
90 var␣tmp␣=␣new␣Thread (()␣=>␣Filemon.CreateFileWatcher(

pathFileWatch));
91 tmp.Start();

E.3 Honeypot Prove of Concept 139

92
93 //Find␣the␣start␣timestamp
94 DateTime␣startTimeStamp␣=␣DateTime.Now;
95
96 TimeSpan␣span␣=␣DateTime.Now.Subtract(startTimeStamp);
97
98 //Loggs␣performance
99 while␣(span.Minutes␣<␣MINUTESOFLOGGING)

100 {
101 amountOfLoops ++;
102
103 cpuList.Add(getCurrentCpuUsage ());
104 ramList.Add(getAvailableRAM ());
105 harddiskList.Add(getHarddiskUsage ());
106 threadList.Add(getThreadCount ());
107 handleList.Add(getHandleCount ());
108
109 Thread.Sleep(INTERVALFORLOOP);
110
111
112 span␣=␣DateTime.Now.Subtract(startTimeStamp);
113 }
114
115 Filemon.setStopAddingToLog(true);
116 fileMonChanges␣=␣Filemon.getFilemonChanges ();
117
118 Filemon.setWatcherToStop ();
119 FileMon.setWatcherToStop ();
120 ActionTaker.terminateProcmon ();
121
122 // Combines␣the␣hashed␣files␣from␣the␣four␣directories␣into␣

one
123 Dictionary <string ,␣string >␣hashedFilesAtEnd␣=␣new␣

Dictionary <string ,␣string >();
124 Dictionary <string ,␣string >␣hashedFilesAtEndtemp1␣=␣new␣

Dictionary <string ,␣string >();
125 Dictionary <string ,␣string >␣hashedFilesAtEndtemp2␣=␣new␣

Dictionary <string ,␣string >();
126 Dictionary <string ,␣string >␣hashedFilesAtEndtemp3␣=␣new␣

Dictionary <string ,␣string >();
127 Dictionary <string ,␣string >␣hashedFilesAtEndtemp4␣=␣new␣

Dictionary <string ,␣string >();
128 Hasher␣tempEndHasher1␣=␣new␣Hasher ();
129 hashedFilesAtEndtemp1␣=␣tempEndHasher1.fileHasher(path1);
130
131 Hasher␣tempEndHasher2␣=␣new␣Hasher ();
132 hashedFilesAtEndtemp2␣=␣tempEndHasher2.fileHasher(path2);
133
134 Hasher␣tempEndHasher3␣=␣new␣Hasher ();
135 hashedFilesAtEndtemp3␣=␣tempEndHasher3.fileHasher(path3);
136
137 Hasher␣tempEndHasher4␣=␣new␣Hasher ();
138 hashedFilesAtEndtemp4␣=␣tempEndHasher4.fileHasher(path4);
139
140

140 C# Code

141 hashedFilesAtEndtemp1.ToList ().ForEach(x␣=>␣
hashedFilesAtEnd.Add(x.Key ,␣x.Value));

142 hashedFilesAtEndtemp2.ToList ().ForEach(x␣=>␣
hashedFilesAtEnd.Add(x.Key ,␣x.Value));

143 hashedFilesAtEndtemp3.ToList ().ForEach(x␣=>␣
hashedFilesAtEnd.Add(x.Key ,␣x.Value));

144 hashedFilesAtEndtemp4.ToList ().ForEach(x␣=>␣
hashedFilesAtEnd.Add(x.Key ,␣x.Value));

145
146
147 //Find␣the␣end␣timestamp
148 DateTime␣endTimeStamp␣=␣DateTime.Now;
149
150 // Figure␣out␣what␣has␣changed.
151 removeKeyList␣=␣new␣List <string >();
152 changedKeyList␣=␣new␣List <string >();
153 inStartDictionary␣=␣new␣List <string >();
154 inEndDictionary␣=␣new␣List <string >();
155 foreach␣(var␣item␣in␣hashedFilesAtStart)
156 {
157 if␣(hashedFilesAtEnd.ContainsKey(item.Key))
158 {
159 if␣(hashedFilesAtStart[item.Key]. Equals(

hashedFilesAtEnd[item.Key]))
160 {
161 removeKeyList.Add(item.Key);
162 }
163 else
164 {
165 changedKeyList.Add(item.Key);
166 }
167 }
168 else
169 {
170 inStartDictionary.Add(item.Key);
171 }
172 }
173 // Removing␣non␣changed␣duplicates
174 for␣(int␣i␣=␣0;␣i␣<␣removeKeyList.Count;␣i++)
175 {
176 hashedFilesAtStart.Remove(removeKeyList[i]);
177 hashedFilesAtEnd.Remove(removeKeyList[i]);
178 }
179 for␣(int␣i␣=␣0;␣i␣<␣changedKeyList.Count;␣i++)
180 {
181 hashedFilesAtStart.Remove(changedKeyList[i]);
182 hashedFilesAtEnd.Remove(changedKeyList[i]);
183 }
184 // Finding␣files␣that␣has␣been␣created␣since␣start
185 foreach␣(var␣item␣in␣hashedFilesAtEnd)
186 {
187 if␣(! hashedFilesAtStart.ContainsKey(item.Key))
188 {
189 inEndDictionary.Add(item.Key);
190 }

E.3 Honeypot Prove of Concept 141

191 }
192 hashedFilesAtStartKeys␣=␣hashedFilesAtStart.Keys;
193 hashedFilesAtEndKeys␣=␣hashedFilesAtEnd.Keys;
194 return␣true;
195 }
196
197 private␣static␣float␣getCurrentCpuUsage ()
198 {
199 return␣cpuUsageCounter.NextValue ();
200 }
201
202 private␣static␣float␣getAvailableRAM ()
203 {
204 return␣ramUsageCounter.NextValue ();
205 }
206
207 private␣static␣float␣getHarddiskUsage ()
208 {
209 return␣harddiskUsageCounter.NextValue ();
210 }
211
212 private␣static␣float␣getThreadCount ()
213 {
214 return␣threadCounter.NextValue ();
215 }
216
217 private␣static␣float␣getHandleCount ()
218 {
219 return␣handleCounter.NextValue ();
220 }
221
222 public␣static␣async␣void␣postPoCPosted ()
223 {
224 string␣cpuReturn␣=␣returnMonitorListAsString(cpuList);
225 string␣ramReturn␣=␣returnMonitorListAsString(ramList);
226 string␣harddiskReturn␣=␣returnMonitorListAsString(

harddiskList);
227 string␣threadReturn␣=␣returnMonitorListAsString(threadList)

;
228 string␣handleReturn␣=␣returnMonitorListAsString(handleList)

;
229 List <string >␣killedProcesses␣=␣ActionTaker.

getKilledProcesses ();
230
231 string␣changedFilesReturn␣=␣"";
232 string␣deletedFilesReturn␣=␣"";
233 string␣newFilesReturn␣=␣"";
234 string␣filemonChangesReturn␣=␣"";
235 string␣killedProcessesReturn␣=␣"";
236
237
238 for␣(int␣i␣=␣0;␣i␣<␣changedKeyList.Count␣-␣1;␣i++)
239 {
240 changedFilesReturn␣+=␣changedKeyList[i];
241 changedFilesReturn␣+=␣"?";

142 C# Code

242 }
243 foreach␣(string␣s␣in␣hashedFilesAtStartKeys)
244 {
245 deletedFilesReturn␣+=␣s;
246 deletedFilesReturn␣+=␣"?";
247 }
248 foreach␣(string␣s␣in␣hashedFilesAtEndKeys)
249 {
250 newFilesReturn␣+=␣s;
251 newFilesReturn␣+=␣"?";
252 }
253 foreach␣(var␣item␣in␣fileMonChanges)
254 {
255 filemonChangesReturn␣+=␣item.Value␣+␣":"␣+␣item.Key.

ToString("dd/MM/yyyy HH:mm:ss.fff");
256 filemonChangesReturn␣+=␣"?";
257 }
258 foreach␣(string␣s␣in␣killedProcesses)
259 {
260 killedProcessesReturn␣+=␣s;
261 killedProcessesReturn␣+=␣"?";
262 }
263
264 var␣options␣=␣new
265 {
266 RansomwareName␣=␣NAMEONTEST ,
267 MonitorStatus␣=␣"1",
268 MonitorCount␣=␣amountOfLoops.ToString (),
269 CountChangedFiles␣=␣changedKeyList.Count().ToString (),
270 CountDeletedFiles␣=␣hashedFilesAtStartKeys.Count().

ToString (),
271 CountNewFiles␣=␣hashedFilesAtEndKeys.Count ().ToString (),
272 CountFilemonObservations␣=␣fileMonChanges.Count ().

ToString (),
273 CPU␣=␣cpuReturn ,
274 RAM␣=␣ramReturn ,
275 HDD␣=␣harddiskReturn ,
276 ThreadCount␣=␣threadReturn ,
277 HandleCount␣=␣handleReturn ,
278 ListChangedFiles␣=␣changedFilesReturn ,
279 ListDeletedFiles␣=␣deletedFilesReturn ,
280 ListNewFiles␣=␣newFilesReturn ,
281 ListFilemonObservations␣=␣filemonChangesReturn ,
282 NameOfShutdownRansomware␣=␣killedProcessesReturn ,
283 Detected␣=␣FileMon.getFirstDetected ().ToString("dd/MM/

yyyy HH:mm:ss.fff"),
284 Shutdown␣=␣ActionTaker.getFirstKilledTime ().ToString("dd/

MM/yyyy HH:mm:ss.fff")
285 };
286
287
288 var␣stringPayload␣=␣JsonConvert.SerializeObject(options);
289 var␣content␣=␣new␣StringContent(stringPayload ,␣Encoding.

UTF8 ,␣"application/json");
290

E.3 Honeypot Prove of Concept 143

291 var␣response␣=␣client.PostAsync("http:// 192.168.8.102/ v1/
index.php/posthp1posted", content).Result;

292 var result = await response.Content.ReadAsByteArrayAsync ();
293 }
294
295 public static void getPoCRansomware ()
296 {
297 var responseString = client.GetStringAsync("http

://192.168.8.102/ v1/index.php/gethp1ransomware").Result;
298
299 NAMEONTEST = findNAMEONTEST(responseString);
300 Console.WriteLine(NAMEONTEST);
301 }
302
303 public static async void postPoCFetched ()
304 {
305 var values = new Dictionary <string , string >
306 {
307 {"RansomwareName", NAMEONTEST}
308 };
309
310 var content = new FormUrlEncodedContent(values);
311
312 var response = client.PostAsync("http ://192.168.8.102/ v1/

index.php/posthp1fetched", content).Result;
313
314 HASFETCHED = true;
315
316 var responseString = await response.Content.

ReadAsByteArrayAsync ();
317 }
318
319
320 private static string findNAMEONTEST(string responsestring)
321 {
322 int i = 0;
323 int j = 0;
324 foreach (char c in responsestring)
325 {
326 if (i == 5)
327 {
328 return responsestring.Substring(j, responsestring.

Length - j - 4);
329 }
330 if (c.Equals ("))
331 {
332 i++;
333 }
334 j++;
335 }
336
337 return␣"Could Not Find";
338 }
339

144 C# Code

340 private␣static␣string␣returnMonitorListAsString(List <float >␣
convertedList)

341 {
342 string␣temp␣=␣"";
343 for␣(int␣i␣=␣0;␣i␣<␣amountOfLoops;␣i++)
344 {
345 temp␣+=␣convertedList[i]. ToString ();
346 temp␣+=␣"?";
347 }
348 return␣temp;
349 }
350
351 public␣static␣async␣void␣postPoCTested ()
352 {
353 var␣values␣=␣new␣Dictionary <string ,␣string >
354 {
355 {"RansomwareName", NAMEONTEST}
356 };
357
358 var␣content␣=␣new␣FormUrlEncodedContent(values);
359
360 var␣response␣=␣client.PostAsync("http:// 192.168.8.102/ v1/

index.php/posthp1tested", content).Result;
361
362 var responseString = await response.Content.

ReadAsByteArrayAsync ();
363 }
364
365 public static async void postPoCTaken ()
366 {
367 var values = new Dictionary <string , string >
368 {
369 {"RansomwareName", NAMEONTEST}
370 };
371
372 var content = new FormUrlEncodedContent(values);
373
374 var response = client.PostAsync("http ://192.168.8.102/ v1/

index.php/posthp1taken", content).Result;
375
376 var responseString = await response.Content.

ReadAsByteArrayAsync ();
377 }
378
379
380 public static string getNAMEONTEST ()
381 {
382 return NAMEONTEST;
383 }
384
385 public static void setRansomwareDownloaderPath(string s)
386 {
387 ransomwareDownloaderPath = s;
388 }
389

E.3 Honeypot Prove of Concept 145

390 public static Boolean getHasFetched ()
391 {
392 return HASFETCHED;
393 }
394
395 public static Dictionary <string , string > testParseTXTfile(

string hashedFilePath)
396 {
397 string line;
398 string [] pairs = new string [2];
399 Dictionary <string , string > hashedFilesReturn = new

Dictionary <string , string >();
400 System.IO.StreamReader file =
401 new System.IO.StreamReader(hashedFilePath + "\\

HashedFilesLog.txt");
402 while ((line = file.ReadLine ()) != null)
403 {
404 pairs = line.Split (?) ;
405 hashedFilesReturn.Add(pairs[0], pairs [1]);
406 }
407 file.Close();
408
409 return hashedFilesReturn;
410 }
411 }
412 }

146 C# Code

E.4 Shannon Entropy Prove of Concept

This appendix shows the shannon entropy detection method, most of the code is
similar to the one from Honeypot, therefore only the code that differs is added.

E.4.1 Main control unit

1 using ShannonPOC.ShannonLogger;
2 using System;
3 using System.Collections.Generic;
4 using System.IO;
5 using System.Linq;
6 using System.Text;
7 using System.Threading;
8 using System.Threading.Tasks;
9

10 namespace ShannonPOC
11 {
12 class Program
13 {
14 //Set path for folders
15 private static string path1 = @"C:\ Users\Baseline\Desktop";
16 private static string path2 = @"C:\ Users\Baseline\Documents";
17 private static string path3 = @"C:\ Users\Baseline\Downloads";
18 private static string path4 = @"C:\ Users\Baseline\Videos";
19
20 //Set path for procmon
21 static string PATH = @"C:\Users\Baseline";
22 static string BACKINGNAME = "backingFromProcMon";
23 static string pathToBackingFile = @"C:\ procmon\

backingFileTest";
24 static string ProcMonPath = @"C:\ procmon\Procmon.exe";
25
26 static string RANSOMWAREDOWNLOADERPATH = @"C:\ Software\

ShannonRansomwareDownloader\bin\Release\
ShannonRansomwareDownloader.exe";

27
28 //Set threshold and duration
29 static double entropyThreshold = 0.9;
30 static int thresholdToReaction = 2;
31 static int secondsInThreshold = 60;
32
33 static void Main(string [] args)
34 {
35 //Wait for program to start
36 Thread.Sleep (30000);
37
38 shannonEntropyFileMonDetection ();
39
40 }
41

E.4 Shannon Entropy Prove of Concept 147

42 public static void shannonEntropyFileMonDetection ()
43 {
44 //Get name of ransomware
45 Logger.getPoCRansomware ();
46
47 Thread.Sleep (1000);
48
49 //Post name to server that the ransomware has been fetched
50 Logger.postPoCFetched ();
51
52 //Wait for the server to respond
53 while (! Logger.getHasFetched ())
54 {
55 Thread.Sleep (500);
56 }
57
58 // Initialize variables
59 Logger.setRansomwareDownloaderPath(RANSOMWAREDOWNLOADERPATH

);
60
61 ActionTaker.setBackingName(BACKINGNAME);
62 ActionTaker.setPathToBackingFile(pathToBackingFile);
63
64 ProcMon.setPathToProcMon(ProcMonPath);
65
66 FilemonEventHandler.setEntropyThreshold(entropyThreshold);
67 FilemonEventHandler.setThresholdToReaction(

thresholdToReaction);
68 FilemonEventHandler.setSecondsInThreshold(

secondsInThreshold);
69
70 Logger.setPath1(path1);
71 Logger.setPath2(path2);
72 Logger.setPath3(path3);
73 Logger.setPath4(path4);
74 Logger.setPathFileWatch(PATH);
75
76 //Find entropy of all files
77 ShannonEntropy temp1 = new ShannonEntropy ();
78 temp1.getEntropyOfAllFilesInPath(path1);
79
80 ShannonEntropy temp2 = new ShannonEntropy ();
81 temp2.getEntropyOfAllFilesInPath(path2);
82
83 ShannonEntropy temp3 = new ShannonEntropy ();
84 temp3.getEntropyOfAllFilesInPath(path3);
85
86 ShannonEntropy temp4 = new ShannonEntropy ();
87 temp4.getEntropyOfAllFilesInPath(path4);
88
89 //Print the entropies
90 Dictionary <string , double > test = ShannonEntropy.

getSavedEntropies ();
91 foreach (var item in test)
92 {

148 C# Code

93 Console.WriteLine(item.Key + "␣-␣" + item.Value);
94 }
95
96
97 //Start procmon
98 BACKINGNAME = BACKINGNAME + 0;
99 var t = new Thread (() => ProcMon.createProcmonBackingFile(

pathToBackingFile , BACKINGNAME));
100 t.Start();
101
102 //Start filemon
103 //When filemon sees a reaction it posts to

filemoneventhandler
104 // Filemoneventhandler then deems if it is nessesary to take

action , using actiontaker
105 Console.WriteLine(Logger.getNAMEONTEST ());
106
107 //Start logger
108 Logger.LogWriter(PATH);
109
110 //Post to server that it has been tested
111 Logger.postPoCTested ();
112
113 //Post to server the results
114 Logger.postPoCPosted ();
115
116 Thread.Sleep (30000);
117
118 }
119 }
120 }

E.4 Shannon Entropy Prove of Concept 149

E.4.2 Filemon for shannon entropy

1 using System;
2 using System.Collections.Generic;
3 using System.Linq;
4 using System.Text;
5 using System.Threading.Tasks;
6 using System.IO;
7 using System.Threading;
8 using System.Collections;
9

10 namespace ShannonPOC
11 {
12 class FileMon
13 {
14 private static FileSystemWatcher watcher = new

FileSystemWatcher ();
15
16 public static void CreateFileWatcher(string path)
17 {
18 // FileSystemWatcher can monitor changes in files
19
20 //The given path dictates what directory the watcher will

monitor
21 watcher.Path = path;
22
23 //The NotifyFilters determine what the monitors triggers

upon.
24 //It can also be a change in size.
25 watcher.NotifyFilter = NotifyFilters.Size | NotifyFilters.

LastWrite | NotifyFilters.FileName;
26
27 //The filter gives the watcher a specific filename to look

for
28 // "* honeypot .*" monitors every file with honeypot in the

ending , and every format.
29 watcher.Filter = "*";
30
31 //This tells the watcher when to react on different changes
32 watcher.Created += new FileSystemEventHandler(OnChanged);
33 watcher.Changed += new FileSystemEventHandler(OnChanged);
34 watcher.Deleted += new FileSystemEventHandler(OnChanged);
35 watcher.Renamed += new RenamedEventHandler(OnRenamed);
36
37 watcher.EnableRaisingEvents = true;
38 // IncludeSubdirectories does such that not only the

directory given is monitored
39 //but also every single subdirectory of the given directory
40 watcher.IncludeSubdirectories = true;
41 }
42
43
44 //Event handeler if an object is changed
45 private static void OnChanged(object source ,

FileSystemEventArgs e)

150 C# Code

46 {
47 // Cancel out appdata
48 Console.WriteLine(e.FullPath + "␣is␣" + e.ChangeType);
49
50 if (e.FullPath.Contains(@"C:\Users\Baseline\Desktop")
51 || e.FullPath.Contains(@"C:\ Users\Baseline\Documents")
52 || e.FullPath.Contains(@"C:\ Users\Baseline\Downloads")
53 || e.FullPath.Contains(@"C:\ Users\Baseline\Videos"))
54 {
55 if (e.FullPath.Contains("."))
56 {
57 if (e.ChangeType.ToString ().Equals("Changed"))
58 {
59 FilemonEventHandler.changeOccured(e);
60 }
61 else if (e.ChangeType.ToString ().Equals("Created"))
62 {
63 FilemonEventHandler.creationOccured(e);
64 }
65 else if (e.ChangeType.ToString ().Equals("Deleted"))
66 {
67 FilemonEventHandler.deletionOccured(e);
68 }
69 }
70 }
71 }
72
73
74 //Event handler if an object is renamed
75 private static void OnRenamed(object source , RenamedEventArgs

e)
76 {
77 Console.WriteLine(e.OldFullPath + "␣is␣renamed␣to␣" + e.

FullPath);
78 if (e.OldFullPath.Contains(@"C:\ Users\Baseline\Desktop")
79 || e.OldFullPath.Contains(@"C:\ Users\Baseline\Documents")
80 || e.OldFullPath.Contains(@"C:\ Users\Baseline\Downloads")
81 || e.OldFullPath.Contains(@"C:\ Users\Baseline\Videos"))
82 {
83 if (ShannonEntropy.getSavedEntropies ().ContainsKey(e.

OldFullPath))
84 {
85 Double tempEntropy = ShannonEntropy.getSavedEntropies ()

[e.OldFullPath];
86 ShannonEntropy.removeKeyFromSavedEntropies(e.

OldFullPath);
87 ShannonEntropy.addKeyAndDoubleToSavedEntropies(e.

FullPath , tempEntropy);
88 }
89 }
90 }
91
92
93 public static void setWatcherToStop ()
94 {

E.4 Shannon Entropy Prove of Concept 151

95 Console.WriteLine("Filemon␣not␣logging␣ransomwares␣anymore"
);

96 watcher.EnableRaisingEvents = false;
97 }
98 }
99 }

152 C# Code

E.4.3 Event handler for filemon events

1 using System;
2 using System.Collections.Generic;
3 using System.IO;
4 using System.Linq;
5 using System.Text;
6 using System.Threading.Tasks;
7
8 namespace ShannonPOC
9 {

10 class FilemonEventHandler
11 {
12
13 private static DateTime firstDetected;
14 static Boolean hasMadeFirstDetection = false;
15 private static double entropyThreshold = 0.0;
16 private static int thresholdToReaction = 0;
17 private static List <DateTime > threshold = new List <DateTime

>();
18 private static int secondsInThreshold = 0;
19
20 internal static void changeOccured(FileSystemEventArgs e)
21 {
22 //Kig p entropien f r og efter
23 Dictionary <string , double > savedEntropies = ShannonEntropy.

getSavedEntropies ();
24 FileInfo changedFile = new FileInfo(e.FullPath);
25 ShannonEntropy entropyCalculator = new ShannonEntropy ();
26 Double changedFileEntropy = entropyCalculator.

CalculateEntropy(changedFile);
27 Double originalFileEntropy = 0.0;
28
29 Console.WriteLine("File␣" + e.FullPath + "␣has␣been␣changed

␣to␣and␣has␣now␣an␣entropy␣of␣" + changedFileEntropy);
30 if (changedFileEntropy == -1)
31 {
32 return;
33 }
34
35 try
36 {
37 originalFileEntropy = savedEntropies[e.FullPath];
38 }
39 catch (Exception)
40 {
41
42 }
43
44 entropyHandler(e, originalFileEntropy , changedFileEntropy);
45 }
46
47 internal static void creationOccured(FileSystemEventArgs e)
48 {

E.4 Shannon Entropy Prove of Concept 153

49 //Er der en fil i directoriet der har samme entropi som
denne er den blot rykket

50 // L b listen af keys igennem , se value , nogen ens? Godt
51 //add til databasen den nye fil , slet den gamle
52
53 Dictionary <string , double > savedEntropies = new Dictionary <

string , double >();
54
55 savedEntropies = ShannonEntropy.getSavedEntropies ();
56
57 FileInfo createdFileInfo = new FileInfo(e.FullPath);
58
59 ShannonEntropy entropyCreator = new ShannonEntropy ();
60 double createdFileEntropy = entropyCreator.CalculateEntropy

(createdFileInfo);
61
62
63 Console.WriteLine("File␣" + e.FullPath + "␣has␣been␣created

␣and␣entropy␣is␣now␣" + createdFileEntropy);
64 if (createdFileEntropy == -1)
65 {
66 return;
67 }
68
69 Boolean fileHasBeenMoved = false;
70 string oldFilePath = "";
71
72 foreach (var item in savedEntropies)
73 {
74 if(item.Value == createdFileEntropy)
75 {
76 //File has been moved
77 fileHasBeenMoved = true;
78 oldFilePath = item.Key;
79 }
80 }
81
82 if (fileHasBeenMoved)
83 {
84 ShannonEntropy.removeKeyFromSavedEntropies(oldFilePath);
85 ShannonEntropy.addKeyAndDoubleToSavedEntropies(e.FullPath

, createdFileEntropy);
86 }
87 else
88 {
89 //TODO find threshold p nye filer og om entropien er

for h j
90 ShannonEntropy.removeKeyFromSavedEntropies(oldFilePath);
91 ShannonEntropy.addKeyAndDoubleToSavedEntropies(e.FullPath

, createdFileEntropy);
92 if(createdFileEntropy > entropyThreshold)
93 {
94 react(e);
95 }
96 }

154 C# Code

97 }
98
99 internal static void deletionOccured(FileSystemEventArgs e)

100 {
101 string [] filesInDirectory = null;
102
103 filesInDirectory = Directory.GetFiles(returnFilePath(e.

FullPath));
104
105 Boolean newSimilarFileIsCreated = false;
106
107 ShannonEntropy entropyCreator = new ShannonEntropy ();
108
109 string fileName = returnFileName(e.FullPath);
110
111 double oldEntropy = ShannonEntropy.getSavedEntropies ()[e.

FullPath];
112 foreach (string s in filesInDirectory)
113 {
114 if (s.Contains(fileName))
115 {
116 newSimilarFileIsCreated = true;
117 FileInfo newFileInfo = new FileInfo(s);
118 double newEntropy = entropyCreator.CalculateEntropy(

newFileInfo);
119
120 //TODO react if needed
121 entropyHandler(e, oldEntropy , newEntropy);
122 }
123 }
124
125 ShannonEntropy.removeKeyFromSavedEntropies(e.FullPath);
126 }
127
128 private static void react(FileSystemEventArgs e)
129 {
130 threshold.Add(DateTime.Now);
131 List <DateTime > temp = new List <DateTime >();
132 DateTime now = DateTime.Now;
133
134 foreach (DateTime t in threshold)
135 {
136 if (secondsInThreshold < (now.Subtract(t).Seconds))
137 {
138 temp.Add(t);
139 }
140 }
141
142 foreach (DateTime t in temp)
143 {
144 threshold.Remove(t);
145 }
146
147 if (threshold.Count > thresholdToReaction)
148 {

E.4 Shannon Entropy Prove of Concept 155

149 if (! hasMadeFirstDetection)
150 {
151 hasMadeFirstDetection = true;
152 firstDetected = DateTime.Now;
153 }
154 Console.WriteLine("File:␣" + e.FullPath + "␣has␣been␣" +

e.ChangeType + "␣and␣the␣responsible␣process␣will␣now␣pay␣the
␣ultimate␣price!");

155
156 ActionTaker.shannonReaction(e.FullPath);
157 }
158 }
159
160 private static void entropyHandler(FileSystemEventArgs e,

double originalFileEntropy , double newFileEntropy)
161 {
162 if(originalFileEntropy < 0.1)
163 {
164 if(newFileEntropy > 0.6)
165 {
166 react(e);
167 }
168 }
169 else if (originalFileEntropy < 0.2)
170 {
171 if(newFileEntropy > 0.65)
172 {
173 react(e);
174 }
175 }
176 else if (originalFileEntropy < 0.3)
177 {
178 if (newFileEntropy > 0.65)
179 {
180 react(e);
181 }
182 }
183 else if (originalFileEntropy < 0.4)
184 {
185 if (newFileEntropy > 0.7)
186 {
187 react(e);
188 }
189 }
190 else if (originalFileEntropy < 0.5)
191 {
192 if (newFileEntropy > 0.7)
193 {
194 react(e);
195 }
196 }
197 else if (originalFileEntropy < 0.6)
198 {
199 if (newFileEntropy > 0.8)
200 {

156 C# Code

201 react(e);
202 }
203 }
204 else if (originalFileEntropy < 0.7)
205 {
206 if (newFileEntropy > 0.8)
207 {
208 react(e);
209 }
210 }
211 else if (originalFileEntropy < 0.8)
212 {
213 if (newFileEntropy > 0.85)
214 {
215 react(e);
216 }
217 }
218 else if (originalFileEntropy < 0.9)
219 {
220 if (newFileEntropy > 0.95)
221 {
222 react(e);
223 }
224 }
225 else if (originalFileEntropy < 0.91)
226 {
227 if (newFileEntropy > 0.97)
228 {
229 react(e);
230 }
231 }
232 else if (originalFileEntropy < 0.92)
233 {
234 if (newFileEntropy > 0.97)
235 {
236 react(e);
237 }
238 }
239 else if (originalFileEntropy < 0.93)
240 {
241 if (newFileEntropy > 0.975)
242 {
243 react(e);
244 }
245 }
246 else if (originalFileEntropy < 0.94)
247 {
248 if (newFileEntropy > 0.98)
249 {
250 react(e);
251 }
252 }
253 else if (originalFileEntropy < 0.95)
254 {
255 if (newFileEntropy > 0.98)

E.4 Shannon Entropy Prove of Concept 157

256 {
257 react(e);
258 }
259 }
260 else if (originalFileEntropy < 0.96)
261 {
262 if (newFileEntropy > 0.985)
263 {
264 react(e);
265 }
266 }
267 else if (originalFileEntropy < 0.97)
268 {
269 if (newFileEntropy > 0.99)
270 {
271 react(e);
272 }
273 }
274 else if (originalFileEntropy < 0.98)
275 {
276 if (newFileEntropy > 0.99)
277 {
278 react(e);
279 }
280 }
281 else if (originalFileEntropy < 0.99)
282 {
283 if (newFileEntropy > 0.995)
284 {
285 react(e);
286 }
287 }
288 else if (originalFileEntropy < 0.999)
289 {
290 if (newFileEntropy > 0.9992)
291 {
292 react(e);
293 }
294 }
295 else if (originalFileEntropy < 0.9999)
296 {
297 if (newFileEntropy > 0.9999)
298 {
299 react(e);
300 }
301 }
302 else if (originalFileEntropy < 1)
303 {
304 if (newFileEntropy > 0.99995)
305 {
306 react(e);
307 }
308 }
309 }
310

158 C# Code

311
312 public static string returnFileName(string fullPath)
313 {
314
315 int lastSlash = 0;
316 int lastDot = 0;
317 string fileName = "";
318
319 for (int i = 0; i < fullPath.Length - 1; i++)
320 {
321 if (fullPath.Substring(i, 1).Equals(@"\"))
322 {
323 lastSlash␣=␣i;
324 }
325 if␣(fullPath.Substring(i,␣1).Equals("."))
326 {
327 lastDot␣=␣i;
328 }
329 }
330 fileName␣=␣fullPath.Substring(lastSlash␣+␣1,␣lastDot␣-␣

lastSlash␣-␣1);
331
332 return␣fileName;
333 }
334
335 public␣static␣string␣returnFilePath(string␣fullPath)
336 {
337
338 int␣lastSlash␣=␣0;
339 int␣lastDot␣=␣0;
340 string␣fileName␣=␣"";
341
342 for␣(int␣i␣=␣0;␣i␣<␣fullPath.Length␣-␣1;␣i++)
343 {
344 if␣(fullPath.Substring(i,␣1).Equals(@"\"))
345 {
346 lastSlash␣=␣i;
347 }
348 }
349 fileName␣=␣fullPath.Substring (0,lastSlash␣+␣1);
350
351 return␣fileName;
352 }
353
354 internal␣static␣DateTime␣getFirstDetected ()
355 {
356 return␣firstDetected;
357 }
358 public␣static␣void␣setFirstDetected ()
359 {
360 firstDetected␣=␣DateTime.Now;
361 }
362
363 public␣static␣void␣setEntropyThreshold(double␣d)
364 {

E.4 Shannon Entropy Prove of Concept 159

365 entropyThreshold␣=␣d;
366 }
367
368 public␣static␣void␣setThresholdToReaction(int␣i)
369 {
370 thresholdToReaction␣=␣i;
371 }
372
373 public␣static␣void␣setSecondsInThreshold(int␣i)
374 {
375 secondsInThreshold␣=␣i;
376 }
377 }
378 }

160 C# Code

E.4.4 Shannon entropy calculator

1 using System;
2 using System.Collections.Generic;
3 using System.IO;
4 using System.Linq;
5 using System.Text;
6 using System.Threading.Tasks;
7
8 namespace ShannonPOC
9 {

10 class ShannonEntropy
11 {
12 private static Dictionary <string , double > savedEntropies =

new Dictionary <string , double >();
13
14 public Dictionary <string , double > getEntropyOfAllFilesInPath(

string path)
15 {
16 string [] filesInDirectory = null;
17 Console.WriteLine(path);
18
19 //Check if it is possible to get the files in path , if not

return findings
20 try
21 {
22 filesInDirectory = Directory.GetFiles(path);
23 }
24 catch (Exception)
25 {
26 return savedEntropies;
27 }
28
29 //Takes the entropy of each file in directory
30 FileInfo tempFil;
31 foreach (string file in filesInDirectory)
32 {
33 tempFil = new FileInfo(file);
34 savedEntropies.Add(file , CalculateEntropy(tempFil));
35 }
36
37 //Get every subdirectory in the given path
38 var subDirectories = Directory.GetDirectories(path);
39
40 // Iterates though the subdirectories
41 foreach (var directory in subDirectories)
42 {
43 // Creates a string with the name of the subdirectory only
44 string dirName = new DirectoryInfo(directory).Name;
45
46 //Calls the function itself for every subdirectory
47 getEntropyOfAllFilesInPath(path + "\\" + dirName);
48 }
49
50 return savedEntropies;

E.4 Shannon Entropy Prove of Concept 161

51 }
52
53 public double CalculateEntropy(FileInfo file)
54 {
55 //Set the range to 256
56 int range = byte.MaxValue + 1;
57
58 //Read the bytes of the file into a byte array
59 //If the path is not a file but a directory it returns 0
60 byte[] values;
61 try
62 {
63 values = File.ReadAllBytes(file.FullName);
64 }
65 catch (Exception)
66 {
67 return -1;
68 }
69
70 //Make a long array the size of the range we are interested

in
71 long[] counts = new long[range];
72 foreach (byte value in values)
73 {
74 //Count how many occurences there are of each byte
75 counts[value] = counts[value] + 1;
76 }
77
78 double entropy = 0;
79
80 //Adds the entropy of every single number in the values

array together
81 foreach (long count in counts)
82 {
83 if(count != 0)
84 {
85 double probability = (double)count / values.LongLength;
86 entropy -= probability * Math.Log(probability , range);
87 }
88 }
89 return entropy;
90 }
91
92 public static Dictionary <string , double > getSavedEntropies ()
93 {
94 return savedEntropies;
95 }
96
97 public static void removeKeyFromSavedEntropies(string key)
98 {
99 if (savedEntropies.ContainsKey(key))

100 {
101 savedEntropies.Remove(key);
102 }
103 else

162 C# Code

104 {
105 Console.WriteLine("Could␣not␣remove␣key␣"+ key +"␣since␣

it␣does␣not␣exist␣in␣the␣list");
106 }
107 }
108
109 public static void addKeyAndDoubleToSavedEntropies(string key

, double value)
110 {
111 if (! savedEntropies.ContainsKey(key))
112 {
113 savedEntropies.Add(key , value);
114 }
115 else
116 {
117 Console.WriteLine("Could␣not␣add␣key␣" + key + "␣to␣the␣

list␣since␣it␣is␣already␣there");
118 }
119 }
120 }
121 }

E.5 Practical tools for extracting data 163

E.5 Practical tools for extracting data

The following is code made for collecting every test for a single detection method
and storing it into seperate text documents, one for each ransomware tested
upon.

E.5.1 Main control unit

1 using System;
2 using System.Collections.Generic;
3 using System.IO;
4 using System.Linq;
5 using System.Net.Http;
6 using System.Text;
7 using System.Threading.Tasks;
8
9 namespace DatabaseCollector

10 {
11 class Program
12 {
13 //Set variables for collecting data
14 static string databaseinputbase = "http ://192.168.8.102/ v1/

index.php/getdata";
15 static string databaseTester = "hp1";
16 static string middlepart = "?RansomwareName=";
17 static string ransomwareName = "Vipsana2";
18
19 //Give path to files and folders
20 static string fileToVirusNames = @"RansomwareList.txt";
21 static string pathToFolders = @"C:\ Speciale\Relevant␣Data";
22
23 static void Main(string [] args)
24 {
25
26 //Read txt file with all virus name
27
28 List <string > listOfRansomwareNames = VirusFileParser.

parseTxtToList(fileToVirusNames);
29 string ransomwareOutput = "";
30 foreach (var item in listOfRansomwareNames)
31 {
32 Console.WriteLine(item.Substring (1, item.Length - 2));
33 ransomwareName = item.Substring (1,item.Length -2);
34 //Get ransomware data from server
35 ransomwareOutput = ServerCommunicator.

returnDatabaseOutputForRansomware(databaseinputbase +
databaseTester + middlepart + ransomwareName);

36
37 // Create a file for the given ransomware

164 C# Code

38 ServerOutputHandler.CreateReadableFileForRansomware(
databaseTester ,ransomwareName ,ransomwareOutput ,pathToFolders)
;

39 }
40
41 Console.ReadLine ();
42 }
43 }
44 }
45

E.5 Practical tools for extracting data 165

E.5.2 Handling of the output from server

1 using System;
2 using System.Collections.Generic;
3 using System.IO;
4 using System.Linq;
5 using System.Text;
6 using System.Threading.Tasks;
7
8 namespace DatabaseCollector
9 {

10 class ServerOutputHandler
11 {
12 internal static void CreateReadableFileForRansomware(string

databaseTester , string ransomwareName , string
ransomwareOutput , string path)

13 {
14 string firstColon = "";
15 string secondColon = "";
16 int firstColonPos = 0;
17 int secondColonPos = 0;
18 string data = "";
19
20 List <string > serverOutput = new List <string >();
21
22 for (int i = 0; i < ransomwareOutput.Length -1; i++)
23 {
24 if(firstColonPos == 0)
25 {
26 firstColon = ransomwareOutput.Substring(i, 1);
27 }
28 else if(secondColonPos == 0)
29 {
30 secondColon = ransomwareOutput.Substring(i, 1);
31 }
32 else
33 {
34
35 }
36 if(firstColon == "\"")
37 {
38 firstColonPos = i;
39 firstColon = "";
40 }
41 if (secondColon == "\"")
42 {
43 secondColonPos = i;
44 secondColon = "";
45 }
46
47 if(firstColonPos != 0 && secondColonPos != 0)
48 {
49
50 if (data.Equals("listFilemonObservations"))
51 {

166 C# Code

52 data = ransomwareOutput.Substring(firstColonPos + 1,
secondColonPos - firstColonPos - 1);

53 data = fixFileMonObservations(data);
54 serverOutput.Add(data);
55 }
56 else
57 {
58 data = ransomwareOutput.Substring(firstColonPos +1,

secondColonPos - firstColonPos -1);
59 serverOutput.Add(data);
60 }
61
62 firstColonPos = 0;
63 secondColonPos = 0;
64 }
65
66 }
67
68
69 string filePath = path + @"\"␣+␣databaseTester␣+␣@"\"␣+␣

ransomwareName␣+␣".txt";
70 Console.WriteLine(filePath);
71 Console.WriteLine(path);
72 if␣(!File.Exists(filePath))
73 {
74 //␣Create␣a␣file␣to␣write␣to.
75 using␣(StreamWriter␣sw␣=␣File.CreateText(filePath))
76 {
77 foreach␣(var␣item␣in␣serverOutput)
78 {
79 sw.WriteLine(item);
80 }
81 }
82 }
83 }
84
85 private␣static␣string␣fixFileMonObservations(string␣data)
86 {
87 int␣dataLength␣=␣data.Length;
88 for␣(int␣i␣=␣0;␣i␣<␣dataLength -5;␣i++)
89 {
90 if␣(data.Substring(i,␣5).Equals(" -2017"))
91 {
92 data␣=␣data.Substring(0,␣i␣-␣6)␣+␣"*"␣+␣data.Substring(

i␣-␣5);
93 }
94
95 }
96 return␣data;
97 }
98 }
99 }

Bibliography

[16] “An ISTR Special Report: Ransomware and Buisnesses 2016”. In:
Ransomware and Businesses (2016). url: http://www.symantec.
com / content / en / us / enterprise / media / security % 7B % 5C _
%7Dresponse/ whitepapers/ ISTR2016% 7B% 5C _%7DRansomware %
7B%5C_%7Dand%7B%5C_%7DBusinesses.pdf.

[AGM15] Magnus Almgren, Vincenzo Gulisano, and Federico Maggi. “Detec-
tion of intrusions and malware, and vulnerability assessment: 12th
International conference, DIMVA 2015 Milan, Italy, july 9???10,
2015 proceedings”. In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 9148 (2015), pp. 3–24. issn: 16113349. doi: 10.
1007/978-3-319-20550-2.

[AS16] M M Ahmadian and H R Shahriari. “2entFOX: A framework for
high survivable ransomwares detection”. In: 2016 13th International
Iranian Society of Cryptology Conference on Information Security
and Cryptology (ISCISC) (2016), pp. 79–84. doi: 10.1109/ISCISC.
2016.7736455.

[Bou] Boutell.com. WWW FAQs: What is the maximum length of a URL?
url: https://boutell.com/newfaq/misc/urllength.html.

[Bow+] Brian M Bowen et al. “Baiting Inside Attackers Using Decoy Doc-
uments”. In: (). url: http://citeseerx.ist.psu.edu/viewdoc/
download ; jsessionid = EEB4EFDA3C6E77A9BE7751E6BAF1973D ?
doi=10.1.1.150.1361%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf.

[Bra] Russell Brandom. UK hospitals hit with massive ransomware attack
- The Verge. url: https : / / www . theverge . com / 2017 / 5 / 12 /
15630354/nhs-hospitals-ransomware-hack-wannacry-bitcoin
(visited on 06/23/2017).

[Che] Checkpoint. Ransomware: A new approach to identifying, blocking
and real-time remediation. url: https://www.checkpoint.com/
downloads / product - related / whitepapers / wp - ransomware -
identify-block-and-remedy.pdf.

http://www.symantec.com/content/en/us/enterprise/media/security%7B%5C_%7Dresponse/whitepapers/ISTR2016%7B%5C_%7DRansomware%7B%5C_%7Dand%7B%5C_%7DBusinesses.pdf
http://www.symantec.com/content/en/us/enterprise/media/security%7B%5C_%7Dresponse/whitepapers/ISTR2016%7B%5C_%7DRansomware%7B%5C_%7Dand%7B%5C_%7DBusinesses.pdf
http://www.symantec.com/content/en/us/enterprise/media/security%7B%5C_%7Dresponse/whitepapers/ISTR2016%7B%5C_%7DRansomware%7B%5C_%7Dand%7B%5C_%7DBusinesses.pdf
http://www.symantec.com/content/en/us/enterprise/media/security%7B%5C_%7Dresponse/whitepapers/ISTR2016%7B%5C_%7DRansomware%7B%5C_%7Dand%7B%5C_%7DBusinesses.pdf
http://dx.doi.org/10.1007/978-3-319-20550-2
http://dx.doi.org/10.1007/978-3-319-20550-2
http://dx.doi.org/10.1109/ISCISC.2016.7736455
http://dx.doi.org/10.1109/ISCISC.2016.7736455
https://boutell.com/newfaq/misc/urllength.html
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=EEB4EFDA3C6E77A9BE7751E6BAF1973D?doi=10.1.1.150.1361%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=EEB4EFDA3C6E77A9BE7751E6BAF1973D?doi=10.1.1.150.1361%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=EEB4EFDA3C6E77A9BE7751E6BAF1973D?doi=10.1.1.150.1361%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
https://www.theverge.com/2017/5/12/15630354/nhs-hospitals-ransomware-hack-wannacry-bitcoin
https://www.theverge.com/2017/5/12/15630354/nhs-hospitals-ransomware-hack-wannacry-bitcoin
https://www.checkpoint.com/downloads/product-related/whitepapers/wp-ransomware-identify-block-and-remedy.pdf
https://www.checkpoint.com/downloads/product-related/whitepapers/wp-ransomware-identify-block-and-remedy.pdf
https://www.checkpoint.com/downloads/product-related/whitepapers/wp-ransomware-identify-block-and-remedy.pdf

168 BIBLIOGRAPHY

[Cim] Catalin Cimpanu. Xorist Ransomware Family Is Now Decryptable
for Free. url: http : / / news . softpedia . com / news / xorist -
ransomware-family-is-now-decryptable-for-free-502036.
shtml (visited on 06/21/2017).

[Cle] CleanSofts. Top 50 Most Popular Software. url: http : / /
cleansofts.org/software/popular.html.

[Cuc] Cuckoo. Cuckoo Sandbox. url: https://cuckoosandbox.org.
[Dat16] Datto. “Datto’s State of the Channel Ransomware Report 2016”. In:

(2016). url: http://pages.datto.com/rs/572-ZRG-001/images/
DattoStateOfTheChannelRansomwareReport2016_RH.pdf.

[Edi] Sophos News Editor. The current state of ransomware: CryptoWall
– Sophos News. url: https://news.sophos.com/en-us/2015/12/
17/the-current-state-of-ransomware-cryptowall/ (visited on
05/14/2017).

[End] Endgame. WCry/WanaCry Ransomware Technical Analysis. url:
https://www.endgame.com/blog/technical-blog/wcrywanacry-
ransomware-technical-analysis.

[Fin] Jim Finkle. Ransomware: Extortionist hackers borrow customer-
service tactics | Reuters. url: http : / / www . reuters . com /
article/us-usa-cyber-ransomware-idUSKCN0X917X (visited on
04/15/2017).

[Gam] Brianna Gammons. The Psychology of Ransomware: 5 Mind Games
Criminals Play. url: https://blog.barkly.com/ransomware-
scare-tactics-mind-games.

[Hay] Kaoru Hayashi. Trojan.Archiveus Technical Details | Symantec. url:
https://www.symantec.com/security_response/writeup.jsp?
docid=2006-050601-0940-99&tabid=2 (visited on 06/21/2017).

[Hig97] Harold Joseph Highland. “A History Of Computer Viruses -The Fa-
mous Trio”. In: Computers and Security, 16. Ed. by Eugene H. Spaf-
ford. Vol. 16. Lecture Notes in Computer Science. 1997, pp. 416–429.
isbn: 0167-4048.

[Hos15] Diane Duros Hosfelt. “Automated detection and classification of
cryptographic algorithms in binary programs through machine learn-
ing”. In: (Mar. 2015). arXiv: 1503.01186. url: http://arxiv.org/
abs/1503.01186.

[Hyp11] Mikko Hypponen. The History and the Evolution of Computer
Viruses. 2011. url: https://archive.org/details/DEFCON_19_
The_History_and_the_Evolution_of_Computer_Viruses.

[IBM] IBM. Ransomware: How consumers and businesses value their data.
url: https://www-03.ibm.com/press/us/en/pressrelease/
51230.wss (visited on 06/21/2017).

http://news.softpedia.com/news/xorist-ransomware-family-is-now-decryptable-for-free-502036.shtml
http://news.softpedia.com/news/xorist-ransomware-family-is-now-decryptable-for-free-502036.shtml
http://news.softpedia.com/news/xorist-ransomware-family-is-now-decryptable-for-free-502036.shtml
http://cleansofts.org/software/popular.html
http://cleansofts.org/software/popular.html
https://cuckoosandbox.org
http://pages.datto.com/rs/572-ZRG-001/images/DattoStateOfTheChannelRansomwareReport2016_RH.pdf
http://pages.datto.com/rs/572-ZRG-001/images/DattoStateOfTheChannelRansomwareReport2016_RH.pdf
https://news.sophos.com/en-us/2015/12/17/the-current-state-of-ransomware-cryptowall/
https://news.sophos.com/en-us/2015/12/17/the-current-state-of-ransomware-cryptowall/
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
http://www.reuters.com/article/us-usa-cyber-ransomware-idUSKCN0X917X
http://www.reuters.com/article/us-usa-cyber-ransomware-idUSKCN0X917X
https://blog.barkly.com/ransomware-scare-tactics-mind-games
https://blog.barkly.com/ransomware-scare-tactics-mind-games
https://www.symantec.com/security_response/writeup.jsp?docid=2006-050601-0940-99&tabid=2
https://www.symantec.com/security_response/writeup.jsp?docid=2006-050601-0940-99&tabid=2
http://arxiv.org/abs/1503.01186
http://arxiv.org/abs/1503.01186
http://arxiv.org/abs/1503.01186
https://archive.org/details/DEFCON_19_The_History_and_the_Evolution_of_Computer_Viruses
https://archive.org/details/DEFCON_19_The_History_and_the_Evolution_of_Computer_Viruses
https://www-03.ibm.com/press/us/en/pressrelease/51230.wss
https://www-03.ibm.com/press/us/en/pressrelease/51230.wss

BIBLIOGRAPHY 169

[Int] Intel. Intel Core i5-660 vs i7-3770S. url: http://www.cpu-world.
com/Compare/465/Intel%7B%5C_%7DCore%7B%5C_%7Di5%7B%5C_
%7Di5-660%7B%5C_%7Dvs%7B%5C_%7DIntel%7B%5C_%7DCore%7B%
5C_%7Di7%7B%5C_%7Di7-3770S.html (visited on 06/23/2017).

[Kas] Michael Kassner. Ransomware: Extortion via the Internet - TechRe-
public. url: http : / / www . techrepublic . com / blog / it -
security/ransomware-extortion-via-the-internet/ (visited
on 05/14/2017).

[Kor] Jesse Kornblum. “Identifying almost identical files using context
triggered piecewise hashing”. In: (). doi: 10 . 1016 / j . diin .
2006 . 06 . 015. url: http : / / production . datastore . cvt .
dk / filestore ? oid = 539cd4e560ad71dd2500f98e % 7B % 5C &
%7Dtargetid=539cd4e560ad71dd2500f990.

[Lab] Kaspersky Lab. WannaCry mistakes that can help you restore files
after infection. url: https : / / thehackernews . com / 2017 / 06 /
wannacry-ransomware-unlock-files.html.

[Mag] Infosecurity Magazine. Database Ransomware Attackers Migrate to
MySQL. url: https://www.infosecurity-magazine.com/news/
database-ransomware-attackers/.

[Mav+] Panayiotis Mavrommatis et al. The Nocebo Effect on the Web: An
Analysis of Fake Anti-Virus Distribution Moheeb Abu Rajab.

[Mic] Trend Micro. New Crypto-Ransomware JIGSAW Plays Nasty
Games. url: http : / / blog . trendmicro . com / trendlabs -
security - intelligence / jigsaw - ransomware - plays - games -
victims/.

[MNS16] Francesco Mercaldo, Vittoria Nardone, and Antonella Santone.
“Ransomware Inside Out”. In: 2016 11th International Conference
on Availability, Reliability and Security (ARES). IEEE, Aug. 2016,
pp. 628–637. isbn: 978-1-5090-0990-9. doi: 10.1109/ARES.2016.35.
url: http://ieeexplore.ieee.org/document/7784627/.

[Moo16] Chris Moore. “Detecting Ransomware with Honeypot Techniques”.
In: 2016 Cybersecurity and Cyberforensics Conference (CCC). IEEE,
Aug. 2016, pp. 77–81. isbn: 978-1-5090-2657-9. doi: 10 . 1109 /
CCC.2016.14. url: http://ieeexplore.ieee.org/document/
7600214/.

[MZL16] Monika, Pavol Zavarsky, and Dale Lindskog. “Experimental Analy-
sis of Ransomware on Windows and Android Platforms: Evolution
and Characterization”. In: Procedia Computer Science 94 (2016),
pp. 465–472. issn: 18770509. doi: 10.1016/j.procs.2016.08.
072. url: http://linkinghub.elsevier.com/retrieve/pii/
S1877050916318221.

http://www.cpu-world.com/Compare/465/Intel%7B%5C_%7DCore%7B%5C_%7Di5%7B%5C_%7Di5-660%7B%5C_%7Dvs%7B%5C_%7DIntel%7B%5C_%7DCore%7B%5C_%7Di7%7B%5C_%7Di7-3770S.html
http://www.cpu-world.com/Compare/465/Intel%7B%5C_%7DCore%7B%5C_%7Di5%7B%5C_%7Di5-660%7B%5C_%7Dvs%7B%5C_%7DIntel%7B%5C_%7DCore%7B%5C_%7Di7%7B%5C_%7Di7-3770S.html
http://www.cpu-world.com/Compare/465/Intel%7B%5C_%7DCore%7B%5C_%7Di5%7B%5C_%7Di5-660%7B%5C_%7Dvs%7B%5C_%7DIntel%7B%5C_%7DCore%7B%5C_%7Di7%7B%5C_%7Di7-3770S.html
http://www.cpu-world.com/Compare/465/Intel%7B%5C_%7DCore%7B%5C_%7Di5%7B%5C_%7Di5-660%7B%5C_%7Dvs%7B%5C_%7DIntel%7B%5C_%7DCore%7B%5C_%7Di7%7B%5C_%7Di7-3770S.html
http://www.techrepublic.com/blog/it-security/ransomware-extortion-via-the-internet/
http://www.techrepublic.com/blog/it-security/ransomware-extortion-via-the-internet/
http://dx.doi.org/10.1016/j.diin.2006.06.015
http://dx.doi.org/10.1016/j.diin.2006.06.015
http://production.datastore.cvt.dk/filestore?oid=539cd4e560ad71dd2500f98e%7B%5C&%7Dtargetid=539cd4e560ad71dd2500f990
http://production.datastore.cvt.dk/filestore?oid=539cd4e560ad71dd2500f98e%7B%5C&%7Dtargetid=539cd4e560ad71dd2500f990
http://production.datastore.cvt.dk/filestore?oid=539cd4e560ad71dd2500f98e%7B%5C&%7Dtargetid=539cd4e560ad71dd2500f990
https://thehackernews.com/2017/06/wannacry-ransomware-unlock-files.html
https://thehackernews.com/2017/06/wannacry-ransomware-unlock-files.html
https://www.infosecurity-magazine.com/news/database-ransomware-attackers/
https://www.infosecurity-magazine.com/news/database-ransomware-attackers/
http://blog.trendmicro.com/trendlabs-security-intelligence/jigsaw-ransomware-plays-games-victims/
http://blog.trendmicro.com/trendlabs-security-intelligence/jigsaw-ransomware-plays-games-victims/
http://blog.trendmicro.com/trendlabs-security-intelligence/jigsaw-ransomware-plays-games-victims/
http://dx.doi.org/10.1109/ARES.2016.35
http://ieeexplore.ieee.org/document/7784627/
http://dx.doi.org/10.1109/CCC.2016.14
http://dx.doi.org/10.1109/CCC.2016.14
http://ieeexplore.ieee.org/document/7600214/
http://ieeexplore.ieee.org/document/7600214/
http://dx.doi.org/10.1016/j.procs.2016.08.072
http://dx.doi.org/10.1016/j.procs.2016.08.072
http://linkinghub.elsevier.com/retrieve/pii/S1877050916318221
http://linkinghub.elsevier.com/retrieve/pii/S1877050916318221

170 BIBLIOGRAPHY

[ONe] Patrick Howell O’Neill. Ransomware demands now average about
$1,000 because so many victims decide to pay up. url: https://
www.cyberscoop.com/ransomware-demands-now-average-1077-
many-people-deciding-pay/ (visited on 06/23/2017).

[Ost] Osterman. Malwarebytes | Osterman Survey: Understanding the
Depth of the Ransomware Problem in the United States. url: https:
/ / www . malwarebytes . com / surveys / ransomware / ?aliId =
13242065 (visited on 04/15/2017).

[Rog16] Ben Lelonek & Nate Rogers. Make ETW Great Again. 2016. url:
https://ruxcon.org.au/assets/2016/slides/ETW_16_RUXCON_
NJR_no_notes.pdf.

[Sca+16] Nolen Scaife et al. “CryptoLock (and Drop It): Stopping Ran-
somware Attacks on User Data”. In: 2016 IEEE 36th International
Conference on Distributed Computing Systems (ICDCS). IEEE,
June 2016, pp. 303–312. isbn: 978-1-5090-1483-5. doi: 10.1109/
ICDCS.2016.46. url: http://ieeexplore.ieee.org/document/
7536529/.

[SCL15] Kevin Savage, Peter Coogan, and Hon Lau. “The evolution of ran-
somware”. In: (2015). url: http://www.symantec.com/content/
en / us / enterprise / media / security % 7B % 5C _ %7Dresponse /
whitepapers/the-evolution-of-ransomware.pdf.

[Sco14] Katie Scoggins. “Executive Summary”. In: (2014). url: https://
cyber.kent.ac.uk/Survey2.pdf.

[Sen] SentinelOne. The Value of SentinelOne. url: https : / / go .
sentinelone . com / rs / 327 - MNM - 087 / images / 2016 %
20SentinelOne%20Statement%20of%20Value%20Brief.pdf.

[SFG] SFGate. Hacker cost SF Muni $50,000 in lost fares, agency says.
url: http://www.sfgate.com/bayarea/article/S- F- Muni-
says-hacker-cost-agency-50-000-in-lost-10688275.php.

[Sga+16] Daniele Sgandurra et al. “Automated Dynamic Analysis of Ran-
somware: Benefits, Limitations and use for Detection”. In: (2016).
arXiv: arXiv:1609.03020v1. url: https://arxiv.org/pdf/1609.
03020v1.pdf.

[Siz] Folder Size. Folder Size. url: http://www.folder-size.com/.
[Sym] Symantec. Can files locked by WannaCry be decrypted: A technical

analysis. url: https://medium.com/threat-intel/wannacry-
ransomware-decryption-821c7e3f0a2b.

[Sym15] Symantec. “The evolution of ransomware”. In: (2015), p. 57. url:
http://www.symantec.com/content/en/us/enterprise/media/
security%7B%5C_%7Dresponse/whitepapers/the-evolution-of-
ransomware.pdf.

https://www.cyberscoop.com/ransomware-demands-now-average-1077-many-people-deciding-pay/
https://www.cyberscoop.com/ransomware-demands-now-average-1077-many-people-deciding-pay/
https://www.cyberscoop.com/ransomware-demands-now-average-1077-many-people-deciding-pay/
https://www.malwarebytes.com/surveys/ransomware/?aliId=13242065
https://www.malwarebytes.com/surveys/ransomware/?aliId=13242065
https://www.malwarebytes.com/surveys/ransomware/?aliId=13242065
https://ruxcon.org.au/assets/2016/slides/ETW_16_RUXCON_NJR_no_notes.pdf
https://ruxcon.org.au/assets/2016/slides/ETW_16_RUXCON_NJR_no_notes.pdf
http://dx.doi.org/10.1109/ICDCS.2016.46
http://dx.doi.org/10.1109/ICDCS.2016.46
http://ieeexplore.ieee.org/document/7536529/
http://ieeexplore.ieee.org/document/7536529/
http://www.symantec.com/content/en/us/enterprise/media/security%7B%5C_%7Dresponse/whitepapers/the-evolution-of-ransomware.pdf
http://www.symantec.com/content/en/us/enterprise/media/security%7B%5C_%7Dresponse/whitepapers/the-evolution-of-ransomware.pdf
http://www.symantec.com/content/en/us/enterprise/media/security%7B%5C_%7Dresponse/whitepapers/the-evolution-of-ransomware.pdf
https://cyber.kent.ac.uk/Survey2.pdf
https://cyber.kent.ac.uk/Survey2.pdf
https://go.sentinelone.com/rs/327-MNM-087/images/2016%20SentinelOne%20Statement%20of%20Value%20Brief.pdf
https://go.sentinelone.com/rs/327-MNM-087/images/2016%20SentinelOne%20Statement%20of%20Value%20Brief.pdf
https://go.sentinelone.com/rs/327-MNM-087/images/2016%20SentinelOne%20Statement%20of%20Value%20Brief.pdf
http://www.sfgate.com/bayarea/article/S-F-Muni-says-hacker-cost-agency-50-000-in-lost-10688275.php
http://www.sfgate.com/bayarea/article/S-F-Muni-says-hacker-cost-agency-50-000-in-lost-10688275.php
http://arxiv.org/abs/arXiv:1609.03020v1
https://arxiv.org/pdf/1609.03020v1.pdf
https://arxiv.org/pdf/1609.03020v1.pdf
http://www.folder-size.com/
https://medium.com/threat-intel/wannacry-ransomware-decryption-821c7e3f0a2b
https://medium.com/threat-intel/wannacry-ransomware-decryption-821c7e3f0a2b
http://www.symantec.com/content/en/us/enterprise/media/security%7B%5C_%7Dresponse/whitepapers/the-evolution-of-ransomware.pdf
http://www.symantec.com/content/en/us/enterprise/media/security%7B%5C_%7Dresponse/whitepapers/the-evolution-of-ransomware.pdf
http://www.symantec.com/content/en/us/enterprise/media/security%7B%5C_%7Dresponse/whitepapers/the-evolution-of-ransomware.pdf

BIBLIOGRAPHY 171

[Szy] Tomasz P. Szynalski. What you should know about Volume Shadow
Copy/System Restore in Windows 7 & Vista (FAQ). url: http:
//blog.szynalski.com/2009/11/volume-shadow-copy-system-
restore/.

[TCM] Syed Taha Ali, Dylan Clarke, and Patrick McCorry. “Bitcoin: Perils
of an Unregulated Global P2P Currency”. In: (). doi: 10.1007/978-
3- 319- 26096- 9. url: https://link- springer- com.proxy.
findit.dtu.dk/content/pdf/10.1007%7B%5C%%7D2F978-3-319-
26096-9%7B%5C_%7D29.pdf.

[Tec] Ars Technica. Online databases dropping like flies, with >10k falling
to ransomware groups. url: https://arstechnica.com/security/
2017/01/more-than-10000-online-databases-taken-hostage-
by-ransomware-attackers/.

[Win] Windows. Trojan: Win32/Procesemes.A.dll. url: https://www.
microsoft.com/security/portal/threat/encyclopedia/entry.
aspx?Name=Trojan%7B%5C%%7D3AWin32%7B%5C%%7D2FProcesemes.
A.dll%7B%5C&%7DThreatID=-2147343025 (visited on 05/14/2017).

[Yui+04] J. Yuill et al. “Honeyfiles: deceptive files for intrusion detection”.
In: Proceedings from the Fifth Annual IEEE SMC Information As-
surance Workshop, 2004. June (2004), pp. 116–122. doi: 10.1109/
IAW.2004.1437806. url: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=1437806.

http://blog.szynalski.com/2009/11/volume-shadow-copy-system-restore/
http://blog.szynalski.com/2009/11/volume-shadow-copy-system-restore/
http://blog.szynalski.com/2009/11/volume-shadow-copy-system-restore/
http://dx.doi.org/10.1007/978-3-319-26096-9
http://dx.doi.org/10.1007/978-3-319-26096-9
https://link-springer-com.proxy.findit.dtu.dk/content/pdf/10.1007%7B%5C%%7D2F978-3-319-26096-9%7B%5C_%7D29.pdf
https://link-springer-com.proxy.findit.dtu.dk/content/pdf/10.1007%7B%5C%%7D2F978-3-319-26096-9%7B%5C_%7D29.pdf
https://link-springer-com.proxy.findit.dtu.dk/content/pdf/10.1007%7B%5C%%7D2F978-3-319-26096-9%7B%5C_%7D29.pdf
https://arstechnica.com/security/2017/01/more-than-10000-online-databases-taken-hostage-by-ransomware-attackers/
https://arstechnica.com/security/2017/01/more-than-10000-online-databases-taken-hostage-by-ransomware-attackers/
https://arstechnica.com/security/2017/01/more-than-10000-online-databases-taken-hostage-by-ransomware-attackers/
https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Trojan%7B%5C%%7D3AWin32%7B%5C%%7D2FProcesemes.A.dll%7B%5C&%7DThreatID=-2147343025
https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Trojan%7B%5C%%7D3AWin32%7B%5C%%7D2FProcesemes.A.dll%7B%5C&%7DThreatID=-2147343025
https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Trojan%7B%5C%%7D3AWin32%7B%5C%%7D2FProcesemes.A.dll%7B%5C&%7DThreatID=-2147343025
https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Trojan%7B%5C%%7D3AWin32%7B%5C%%7D2FProcesemes.A.dll%7B%5C&%7DThreatID=-2147343025
http://dx.doi.org/10.1109/IAW.2004.1437806
http://dx.doi.org/10.1109/IAW.2004.1437806
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1437806
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1437806

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	Contents
	1 Introduction
	2 Primer: Crypto Ransomware
	2.1 Ransomware examples
	2.2 Summary

	3 Theory and related work
	3.1 Detection
	3.1.1 Monitoring of File System Activity (SSDT)
	3.1.2 Event Tracing Windows (ETW)
	3.1.3 Honeypots
	3.1.4 Machine learning
	3.1.5 Monitoring of shared fundamental behaviour
	3.1.6 Antivirus
	3.1.7 CryptoDrop

	3.2 Mitigation
	3.3 Remediation
	3.3.1 Decryption tools

	3.4 Windows Volume Shadow Copy Service
	3.5 Game Theory
	3.5.1 Nash Equilibrium

	4 Methods for detection
	4.1 Honeypots
	4.1.1 Theoretical
	4.1.2 Implementation

	4.2 Monitor processes that tampers with vssadmin.exe
	4.2.1 Theoretical

	4.3 Monitor commonly targeted folders and registry
	4.3.1 Theoretical

	4.4 SSDT calls
	4.4.1 Theoretical

	4.5 Monitor high resource consumption
	4.5.1 Theoretical

	4.6 Shannon Entropy
	4.6.1 Theoretical
	4.6.2 Implementation

	5 Mitigation Techniques
	5.1 Procmon
	5.2 SSDT

	6 Tests
	6.1 Test environment
	6.2 Data collection server
	6.2.1 API
	6.2.2 MySQL database

	6.3 Test computers
	6.4 Liveness tests and data collection
	6.5 Test cases
	6.5.1 Honeypots
	6.5.2 Shannon entropy

	7 Analysis and Evaluation
	7.1 Data analysis
	7.2 Ransomware analysis
	7.3 Game Theory applied on Ransomware

	8 Conclusion
	9 Future Works
	9.1 Robustness
	9.2 Mitigation
	9.3 Detection methods
	9.4 Testing environment
	9.5 Future challenges

	A Test results
	A.1 Ransomware analysis
	A.1.1 Shortened hashvalues
	A.1.2 Ransomware properties
	A.1.3 Ransomware encrypted filetypes
	A.1.4 Detection method successrate against ransomware

	B Computer Specifications
	B.1 Datacollection server
	B.2 Test computers

	C Database tables and structure
	D PHP Code
	D.1 Backend: DbHandler.php
	D.2 Frontend: index.php

	E C# Code
	E.1 Host controller
	E.1.1 Main control unit
	E.1.2 Virtual Machine Controller

	E.2 Ransomware downloader
	E.2.1 Main control unit
	E.2.2 Server Communicator

	E.3 Honeypot Prove of Concept
	E.3.1 Main control unit
	E.3.2 Filemon for honeypots
	E.3.3 Procmon
	E.3.4 Code for the reaction when the ransomware is detected
	E.3.5 Filemon for logging
	E.3.6 Code for logging data

	E.4 Shannon Entropy Prove of Concept
	E.4.1 Main control unit
	E.4.2 Filemon for shannon entropy
	E.4.3 Event handler for filemon events
	E.4.4 Shannon entropy calculator

	E.5 Practical tools for extracting data
	E.5.1 Main control unit
	E.5.2 Handling of the output from server

	Bibliography

