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1. INTRODUCTION

A characteristic task in remote sensing Earth observation involves
the registration of changes which may signal environmentally signif-
icant events. The Sentinel-1 synthetic aperture radar (SAR) and the
Sentinel-2 optical/visible-infrared space-borne platforms, with spa-
tial resolutions of the order of 10-20 meters and revisit times of the
order of days, provide an attractive source of data for change detec-
tion tasks, the SAR imagery especially providing complete indepen-
dence from solar illumination and cloud cover. A convenient source
of such data is the Google Earth Engine which gives near real time
data access and which has an application programming interface for
the access and for the processing the data. Here we make open-source
automatic change detection software and for optical data also auto-
matic radiometric normalization software available.

2. CHANGE DETECTION IN SAR DATA

In [1] a change detection procedure for multi-look polarimetric SAR
data [2] is described involving a test statistic (and its factorization) for
the equality of polarimetric covariance matrices following the com-
plex Wishart distribution. The procedure is capable of determining,
on a per-pixel basis, if and when a change at any prescribed signifi-
cance level has occurred in a time series of SAR images. Single po-
larization (power data, dimensionality p = 1), dual polarization (for
example vertically polarized transmission, vertical and horizontal re-
ception, p = 2) and full or quad polarization (all four combinations
of vertical and horizontal transmission/reception, p = 3) can be ana-
lyzed.

The term multi-look in SAR imagery refers to the number of
independent observations (termed the equivalent number of looks,
ENL) of a surface pixel area that have been averaged in order to re-
duce the effect of speckle, a noise-like consequence of the coherent
nature of the signal transmitted from the sensor. The observed signals
in the covariance representations, when multiplied by the number of
looks, are complex Wishart distributed. This distribution is the multi-
variate complex analogue of the well-known chi squared distribution.

The complex Wishart distribution is completely determined by
the parameters p (dimensionality), ENL, and Σ (the variance-covari-
ance matrix). Given two observations of the same area at different
times, one can set up a hypothesis test in order to decide whether or
not a change has occurred between the two acquisitions. The null
hypothesis, H0, is that Σ1 = Σ2, i.e., the two observations were
sampled from the same distribution and no change has occurred, and
the alternative (change) hypothesis, H1, is Σ1 6= Σ2. Since the dis-
tributions are known, a likelihood ratio test can be formulated which
allows one to decide to a desired degree of significance whether or not

to reject the null hypothesis. Acceptance or rejection is based on the
test’s p-value, which in turn may be derived from the (approximately
known) distribution of the test statistic.

For analysis of the situation with data from two time points, k =
2, see [3, 4, 5, 6]. In [7] the authors describe bi-temporal region-based
change detection for polarimetric SAR images by means of mixtures
of Wishart distributions.

If we have data from more than two time points, k > 2, the
procedure sketched can be generalized to test a hypothesis that all of
the k pixels are characterized by the same Σ (the null hypothesisH0),

H0 : Σ1 = Σ2 = · · · = Σk(= Σ)

against the alternative (H1) that at least one of the Σi, i = 1, . . . , k,
is different, i.e., that at least one change has taken place.

For the logarithm of the omnibus likelihood ratio test statistic Q
for testing H0 against H1 we have (see [1])

lnQ = n{pk ln k +

k∑

i=1

ln |Xi| − k ln |X|}.

Here n is ENL, the Xi = nΣ̂i (i.e., ENL times the observed covari-
ance matrix) follow the complex Wishart distribution, Xi ∼WC(p,

n,Σi), and X =
∑k

i=1 Xi ∼ WC(p, nk,Σ). Also, if the hy-
pothesis is true (“under H0” in statistical parlance), Σ̂ = X/(kn).
Q ∈ [0, 1] with Q = 1 for equality.

The probability of finding a smaller value of −2 lnQ is approx-
imated by (z = −2 ln q, where q is the actually observed value of
Q)

P{−2 lnQ ≤ z} ' P{χ2((k − 1)f) ≤ z};
f = 9 for quad pol, f = 4 for dual pol, f = 2 for dual pol diagonal
only. The no-change probability is 1− P{χ2((k − 1)f)) ≤ z}.

Furthermore this test can be factored into a sequence of tests
involving hypotheses of the form Σ1 = Σ2 against Σ1 6= Σ2,
Σ1 = Σ2 = Σ3 against Σ1 = Σ2 6= Σ3, and so forth. More
specifically, to test whether the first 1 < j < k complex variance-
covariance matrices Σi are equal, i.e., given that

Σ1 = Σ2 = · · · = Σj−1

then the likelihood ratio test statistic Rj for testing the hypothesis

H0,j : Σj = Σ1 against H1,j : Σj 6= Σ1

is given by (see [1])

lnRj = n{p(j ln j − (j − 1) ln(j − 1))

+ (j − 1) ln |
j−1∑

i=1

Xi|+ ln |Xj | − j ln |
j∑

i=1

Xi|}.
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Finally, theRj constitute a factorization ofQ such thatQ =
∏k

j=2Rj

or

lnQ =

k∑

j=2

lnRj .

The probability of finding a smaller value of −2 lnRj is approx-
imated by (zj = −2 ln rj , where rj is the actually observed value of
Rj)

P{−2 lnRj ≤ zj} ' P{χ2(f) ≤ zj}.
The no-change probability is 1− P{χ2(f)) ≤ zj}.

The tests are statistically independent under the null hypothesis.
In the event of rejection of the null hypothesis at some point in the test
sequence, the procedure is restarted from that point, so that multiple
changes within the time series can be identified. For details also on
better approximations to the distributions of Q and Rj under the null
hypotheses, see [1, 8] .

Since the omnibus method can detect not only if changes occur
but also, within the temporal resolution of an image sequence, when
they occur, long time series of frequent acquisitions over relevant
sites are of special interest. One convenient source of such data is
the Google Earth Engine1 (GEE) [9] which ingests Sentinel-1 (and
Sentinel-2) data as soon as they are made available by the European
Space Agency (ESA) and provides an easy-to-use application pro-
gramming interface (API) for accessing and processing the data.

3. CHANGE DETECTION AND RADIOMETRIC
NORMALIZATION IN OPTICAL DATA

With respect to optical/visible-infrared (e.g., Sentinel-2 or Landsat)
imagery, a data-driven, statistical approach to change detection is pro-
vided by the iteratively reweighted multivariate alteration detection
(IR-MAD) algorithm [10, 4]. This method applies iterated canonical
correlation analysis (CCA) to a multispectral images from two time
points before performing band-wise differences. The CCA orders the
image bands according to similarity (correlation), rather than spectral
wavelength. The differences between corresponding pairs of canoni-
cal variates are termed the MAD variates. Specifically, a MAD variate
Z is

Z = aTX − bTY

where X represents the m-dimensional image at time point 1, Y
represents the m-dimensional image at time point 2, and a and b are
the eigenvectors from the CCA. Thus aTX is a canonical variate for
time point 1 and bTY is a canonical variate for time point 2. We
have m uncorrelated canonical variates (CVs) with mean value zero
and variance one from both time points, the correlation between cor-
responding pairs of CVs is ρ (termed the canonical correlation which
is maximized in CCA), and we have m uncorrelated MAD variates
with variance 2(1− ρ).

In each iteration the values of each image pixel j are weighted
by wj which is the current estimate of the no-change probability and
the image statistics (mean and covariance matrices) are re-sampled.
Since the MAD variates for the no-change observations are approx-
imately Gaussian and uncorrelated, the sum of their squared values
(after normalization to unit variance)

C2 =

m∑

i=1

Z2
i

2(1− ρi)
1https://earthengine.google.com and https://developers.google.com/earth-

engine

will ideally follow a chi squared distribution with m degrees of free-
dom, C2 ∼ χ2(m). The probability of finding a smaller value of C2

is approximated by (c2 is the actually observed value of C2)

P{C2 ≤ c2} ' P{χ2(m) ≤ c2}.

Hence the no-change probability used as weightwj in the iterations is
1−P{χ2(m) ≤ c2}. Iterations continue until the canonical correla-
tions stop changing (or a maximum number of iterations is reached).

This procedure establishes an increasingly better background of
no-change against which to detect significant change. Furthermore,
canonical correlation analysis is invariant to linear and affine transfor-
mations, a fact that can be used to perform automatic relative radio-
metric normalization of the two multispectral images [11]. A thresh-
old is set on the no-change probability (typically 95%) to identify
invariant pixels in each scene. Their intensities are then regressed
against each other band-wise to determine normalization coefficients.
Because we have uncertainty in both variables here, we use orthog-
onal regression (as opposed to ordinary regression which places all
uncertainty on the response variable). Again, the GEE is an ideal
platform for accessing and processing (e.g., Sentinel-2 or Landsat)
data in near real time.

4. CLOUD SOFTWARE

The authors have made available the necessary change detection soft-
ware for interaction with the GEE on the open-source repository Git-
hub2. The client-side programs run in a local Docker container serv-
ing a simple Flask web application. Apart from the Docker engine3

and a browser, no software installation is required whatsoever. Af-
ter the user has been authenticated to the Earth Engine, he or she
can carry out the following tasks: 1) run the IR-MAD algorithm on
Sentinel-2 (or Landsat) bi-temporal imagery, 2) perform relative ra-
diometric normalization in batch mode on an image sequence, 3) run
the sequential omnibus algorithm on Sentinel-1 polarimetric image
time series, 4) export imagery to his or her Earth Engine assets folder
or to Google Drive for further processing or visualization.

(Software is available also for local processing. Tutorials on how
to install software and to do both the polarimetric SAR and the op-
tical data processing locally on your own hardware are available on
Github.4,5)

5. EXAMPLES

To illustrate, the Sentinel-1 multi-temporal change map in Figure
1 displays the color-coded time intervals in which the most recent
changes in the 2016 growth period in an agricultural area southwest
of Winnipeg, Manitoba, Canada, occurred. The yellow and red areas
(seasonally late changes) will mostly correspond to grain harvesting.
The change maps can be viewed interactively in the GEE Code Edi-
tor.6

Figure 2 is a change frequency map showing shipping activity at
the port of Tripoli, Libya, for a time series of 28 Sentinel-1 images.
Heavy activity is concentrated to the northwest in the inner harbor.7

2https://github.com/mortcanty/earthengine
3https://docs.docker.com
4https://mortcanty.github.io/src/tutorialsar.html
5https://mortcanty.github.io/src/tutorial.html
6https://code.earthengine.google.com/14d818dc83bed52608adf477999c76f8
7https://code.earthengine.google.com/5b543ad81805801d4c86a499bf4171a8
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Fig. 1. Sequential omnibus change map for a region southwest of the
city of Winnipeg, Manitoba, Canada, showing the time of the most
recent change (black none, blue early, red late). The time series con-
sisted of 19 Sentinel-1 images from May through October, 2016.

Fig. 2. Sequential omnibus change map for the port of Tripoli, Libya,
showing the frequency of changes. The time series consisted of 28
Sentinel-1 images from April through December, 2016.

The golden yellow signal in the Sentinel-2 bi-temporal change
map of Figure 3 shows part of the large area devastated by a ma-
jor forest fire southeast of Coimbra, Portugal, which broke out on
June 17, 2017. Note that the IR-MAD method clearly discriminates
changes due to agriculture (in blue and cyan).8

The extreme flooding caused by hurricane Harvey in August,
2017 is apparent in the IR-MAD change map of Figure 4 (green sig-
nal).9 The heaviest rains fell between initial landfall near Houston,
Texas, on August 26, continuing until August 29. We interpret the
color graduation from green to blue at the edges of the flooding signal
as reflecting receding floodwaters by August 30, the time of the sec-

8https://code.earthengine.google.com/a1f9a4a55783c0e958941e56f150594c
9https://code.earthengine.google.com/b19e906e713448c862e512ccc8595b24

Fig. 3. IR-MAD bi-temporal change map (MAD variates 4, 3 and 1,
where the variates are numbered from 1 to 4 according to decreasing
canonical correlations as RGB) over an area southeast of Coimbra,
Portugal, detecting a major forest fire. The two Sentinel-2 images
used were acquired on April 4 and July 7, 2017. Only the 10m visual
and near infrared bands 2, 3, 4 and 8 were processed.

Fig. 4. IR-MAD bi-temporal change map (MAD variates 4, 3 and
2 as RGB) over an area west of Houston, Texas, USA, showing the
flooding along the Brazos river due to hurricane Harvey. The two
Sentinel-2 images used were acquired on August 20 and August 30,
2017. Only the 10m visual and near infrared bands 2, 3, 4 and 8 were
processed.

ond acquisition. Note that the IR-MAD method clearly discriminates
irrelevant changes due to cloud and cloud shadows (in red and dark
gray).

Finally, Figure 5 illustrates relative radiometric normalization us-
ing two Landsat-7 ETM+ images.10 The first image (June 26, 2001)
is used as reference, the second (August 29, 2001) as target, the tar-
get is normalized to the reference. Note, that the amount of change
between the two acquisitions is considerable due to agricultural har-
vesting. Note also, that there is a clear difference in intensities espe-

10https://code.earthengine.google.com/5f0c16f7922e9a7629971b7e393d00a8
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Fig. 5. Relative radiometric normalization of two Landsat-7 ETM+
images (at-sensor radiances expressed in digital numbers) acquired
over the town of Jülich, Germany, on June 26 and August 29, 2001.
Top segment: target image August 29, middle segment: reference im-
age June 26, bottom segment: radiometrically normalized target im-
age. Bands 4, 5 and 7 are shown in RGB composite linearly stretched
from 0 to 250. The 30m non-thermal bands 1, 2, 3, 4, 5 and 7 were
processed with the IR-MAD transformation to determine the invariant
pixels.

cially noticeable in the open pit mine in the center of the transition
between the original target and the reference (the top and middle seg-
ments) and that there, as desired, is no visible difference in intensities
especially noticeable in the forested and urban areas in the left and
center of the transition between the reference and the radiometrically
normalized target (the middle and bottom segments).

6. CONCLUSIONS

Examples based on both Sentinel-1 dual polarimetry synthetic aper-
ture radar data and Sentinel-2 optical data show the usefulness of
the generic, automatic change detection techniques sketched. Note,
that for the optical change detection method, because of the ortho-
gonality between the change variates, different types of change can
be discriminated between. Also, for optical data an automatic ra-
diometric normalization scheme is sketched and illustrated. The ex-
amples shown cover different application areas: agriculture, surveil-
lance/remote monitoring of port traffic and natural disasters, here for-
est fire and flooding.

Generic, automatic techniques as these are expected to be use-
ful in many other application areas also where the study of spatio-
temporal dynamics is important. The introduction of software avail-
able (to run either on your own hardware or) to anyone authenticated
to run on the Google Earth Engine is expected to be extremely useful
to researchers and practitioners alike.
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