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Summary (English)

In this thesis the mathematical model for reconstructing cross-sectional images
of deep sea oil pipes is studied for limited region-of-interest X-ray measurement
data. This is motivated by a research and development project in collaboration
with the Digital X-ray inspection division within the company FORCE Tech-
nology. The images are used to detect defects in the pipes such as cracks and
corrosion.

The first part of the thesis provides insight into a mathematical model describing
region-of-interest X-ray tomography. For this model it is shown exactly which
singularities of a measured object are (or are not) visible in the data using a
framework derived from microlocal analysis. This provides an expectation of
the challenges in reconstructions from limited data.

The second part of the thesis studies reconstruction algorithms for the region-
of-interest model. Firstly, the expected challenges of reconstructing using this
model are verified numerically and additional challenges, when using standard
algorithms, are shown. With the aim of overcoming these challenges a weighted
frame-based sparsity penalty in a variational formulation is used to incorporate
prior knowledge of the measurement geometry and object. This method is shown
to include only significant details of the object that are visible in the data and
is well-represented by the frame.

In the third and last part of the thesis this insight is used on real measurement
data provided by FORCE from a prototype set-up. The expected challenges of
ROI are shown to hold for real data. Hence, an exterior measurement geometry
is proposed as an alternative to ROI yielding more singularities of the object
in the data. The weighted frame-based methods are shown to provide reliable
reconstructions on this type of data.
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Summary (Danish)

I denne afhandling undersøges en matematisk model til at rekonstruere et tvær-
snitsbillede af undervands-olierør for ufuldstændige data med begrænset rekon-
struktions område (ROI). Afhandlingen er motiveret af et R&D projekt i sam-
menarbejde med den digitale røntgen inspektions afdeling hos FORCE Tech-
nology. Tværsnitsbilederne bliver brugt til at detektere defekter i olierørene, så
som revner og korrosion, således at de kan repareres proaktivt.

Den første del af afhandlingen giver indsigt til en matematisk model der beskri-
ver ROI røntgen tomografi. Det er vist for denne model, ved hjælp af mikrolokal
analyse, præcis hvilke singulariteter af et målt objekt der er, eller ikke er, synlige
i dataene. Dette giver en forventning til hvilke udfordringer, der vil forekomme
i rekonstruktioner for ROI modellen.

Den anden del af afhandlingen undersøger rekonstruktionsalgoritmer beregnet
til ROI modellen. Først er de forventede udfordringer verificeret numerisk og
det er vist at, når standard algoritmer er benyttet, forekommer der yderligere
udfordringer. Ved målsætningen om at overkomme de ovenstående udfordringer,
udvikles en vægtet frame-based rekonstruktionsalgoritme, der kan inkorporere
viden om målegeometrien og objektet. Denne metode viser sig kun at inkludere
signifikante detaljer af objektet fra dataene, som repræsenteres godt i basen
(frame), hvilket resulterer i gode rekonstruktioner.

I den tredje og sidste del af afhandlingen bruges indsigten og algoritmerne på
rigtige måledata givet af FORCE fra en prototype måleopstilling. For rigtig
data vises de ovenstående udfordringer i ROI sig også gældende og en alternativ
målegeometri er da foreslået, som måler flere singulariteter af objektet i dataene.
Den vægtede frame-based algoritme giver gode rekonstruktioner på denne type
af data.
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List of symbols

The following is a list of symbols used in the thesis. It is not a complete list of
all symbols, but rather a list of the most commonly used ones. If a symbol is
not in the list, it is clearly defined before use.

Symbol Description
A Matrix representation of the discrete Radon transform.
AΩ Matrix representation of the discrete ROI Radon transform.
AE Matrix representation of the discrete exterior Radon transform.
α Regularisation parameter.
bδ Vector representation of noisy discrete sinogram.
bδΩ Vector representation of noisy discrete region-of-interest sinogram.
bδE Vector representation of the noisy discrete exterior sinogram.
C∞ Continuous and infinitely differentiable functions.
C∞c C∞ with compact support.
CR Canonical relation for Radon transform.
χΩ Region-of-interest based mask.
CΩ Information based mask.
c Vector representation of frame coefficients.
cµ The µth frame coefficient.
D Set of distributions.
Dc Set of distributions with compact support.
DM Dilation operator.
η Additive white noise.
e Vector with additive white noise.
eδ Vector with additive white noise with relative noise level δ.
F Fourier transform.
F−1 Inverse Fourier transform.
f Attenuation coefficient of continuous object.
g(θ, s) Sinogram.
gδ(θ, s) Noisy sinogram.
gδΩ Region-of-interest sinogram with noise.



x Contents

Symbol Description
H 2D Haar wavelet system.
I Intensity of X-ray after having passed through an object.
I0 Intensity of X-ray before having passed through an object. hey...
i Imaginary unit

√
−1.

L1 The space of absolutely integrable functions.
L2 The space of square integrable functions.
Λ Filtering in frequency domain.
` Line describing the trajectory of an X-ray.
m Number of discrete projections.
M Discrete index space.
M Number of frame elements or dilation matrix.
n Number of pixels in N ×N image.
MI Mutual information measure.
MIΩ Mutual information measure on region-of-interest.
Ω The region-of-interest.
p(`(θ, s)) Projection along the line `(θ, s).
Φ Frame system.
ϕ Frame element.
φ 1D or 2D Haar wavelets.
ψ 1D or 2D Shearlets.
P Pseudo-differential or Fourier integral operator
p(x, y, ξ) The symbol of pseudo-differential operators.
ΨDO Pseudo-differential operator.
φ(x, y, ξ) Phase function of Fourier integral operator.
Rf The Radon transform of f .
R∗ Continuous back projection operator.
R−1 Inverse Radon Transform
RΩ Region-of-interest Radon transform.
RE Relative error measure.
REΩ Relative error measure on region-of-interest.
Sn Unit sphere in Rn.
S Schwartz space.
ssupp(f) Singular support set of f .
Σ(f) Frequency set of f .
Σx(f) Local frequency set of f at x.
SH Shearlet system.
TΦ Analysis operator for frame system Φ.
T ∗Φ Synthesis operator for frame system Φ.
Tt Translation operator.
VΩ Measure of weighted proportional support.
WF(f) The wavefront set of f .
x Vector representation of discrete object.
⊗ Outer product.
·̂ Fourier transform of ·.
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Chapter 1

Introduction
Main author: Nicolai André Brogaard Riis.
Co-author: Jacob Frøsig.

This thesis is motivated by an industrial research and development project in
collaboration with the Digital X-ray inspection division within the company
FORCE Technology1. The objective of the project is to inspect underwater oil
pipes for defects that are not visible from visual inspection of the pipe. Today
these defects are typically found using a diver with an ultrasound device to
create an image of the pipe. However, because of the physical limitations of
ultrasound, it is often necessary to remove part of the pipes outer layers to get
a good enough image. This fact, combined with difficulties of having a diver
far below sea level, makes investigation of such pipes an expensive and time
consuming endeavour. The proposal from FORCE is to replace the diver and
ultrasound with a remotely controlled X-ray inspection device, illustrated in
Figure 1.1, generating accurate images of the pipe in real time and relay them
to a vessel above for processing.

To generate an accurate image reconstruction of a pipe using X-rays, it is nec-
essary to combine several projections into one image as done in Computed To-
mography scanners (CT-scanners) today. Because the pipe consist of material
that have high absorption coefficients, a powerful source with a narrow beam
is necessary. Thus the beam never illuminates the whole pipe as illustrated in
Figure 1.1. This is in contrast to regular CT where the beam always illuminates
the entire object. This poses challenges, as we discover in the thesis. Before
going further, we set the stage for the thesis and explain key concepts of CT in
a broad perspective.

1Force Technology: Digital X-ray inspection

https://forcetechnology.com/en/oil-and-gas-industry/infrastructure-and-pipelines/digital-xray-inspection
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Figure 1.1: Illustration of the X-ray inspection device used on a section of an
oil pipe. Illustrated on the image is the area illuminated by X-rays
from the source. Note that the pipe is not fully illuminated by the
narrow beam. This illustration is graciously provided by FORCE.
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Figure 1.2: CT reconstruction: The measured projection data are used to
reconstruct a 2D cross-section of an oil pipe.

1.1 Computed tomography

Computed tomography (CT) has evolved into an indispensable imaging tool in
both clinical and industrial applications. It is the method of reconstructing an
image of a particular object from measurements of its "shadows". The mea-
surements are made by detecting the number of photons (from an X-ray source)
that pass through various points of the object, thus determining the "shadow"
that is cast by the object from a particular direction. An example of a CT re-
construction on a pipe is illustrated in Figure 1.2b. The image is reconstructed
from the measurement data shown in Figure 1.2a. Note that the colours are
inverted such that brighter areas are material that lets fewer photons through.

CT has a wide array of applications ranging from the well-known CT-scanners
in medical imaging, to synchrotron X-ray tomography used for fundamental
research in material science and engineering. Since its invention in the 1960s
and 1970s, for which Allan M. Cormack and Godfrey Hounsfield was awarded
the Nobel prize in 1979, the field of CT has been subject to much active research.

In physics there are several ways to model the interaction between X-rays and
matter, depending if one models the X-ray as single particles, waves or some-
thing else. These physical models are approximations to reality and depending
on the application one model might be better suited than other models. In
mathematical modelling one takes such a physical model and strips away the
complexity even further leaving only the most essential part of the interaction
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Physical Model

Reality

Mathematical Model

Numerical Model

Figure 1.3: Illustration of the approximation hierarchy made by modelling re-
ality. Each step approximates the complexity in the previous, thus
simplifying the model further.

behind. Finally, when considering most real problems it becomes necessary to
use computers for calculations. This is done by making a numerical model, ap-
proximating the mathematical model. The diagram in Figure 1.3 illustrates the
idea of modelling reality in this way. In the end it is remarkable that we can
get any usable results from real data using this hierarchy of approximations. It
speaks to the importance of modelling real problems in the best way possible,
which is an essential concept of this thesis.

From the point-of-view of mathematics, CT has traditionally been modelled by
line integrals, simplifying the physical X-ray model by a single intensity pencil
beam disregarding scattering, beam-hardening and other physical phenomena.
The corresponding mathematical problem is then to reconstruct an unknown
function from knowledge of its line integrals. This problem was studied by
Johann Radon in 1917. Radon derived an explicit inversion formula for the line
integral operator, thus providing an analytical solution to this mathematical
model.

The challenge is that the inversion formula derived by Radon assumes the data
in the model to be complete, i.e., the line integrals are continuous and avail-
able from all directions. In any real application this assumption does not hold
and reconstructions typically show artefacts when the data becomes too lim-
ited. Additionally, real CT measurements are corrupted by noise from different
sources such as measurement errors or background radiation. This is not in-
cluded in the model and causes serious problems since the inversion formula is
unstable, i.e, small perturbations (noise) in the data can cause huge errors in
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the reconstructed image. Despite this, the analytical inversion formula is still
the main tool when reconstruction images in CT. To avoid the above issues, the
typical approach is to change the filtering step to minimise the impact of noise
corruption. In addition, data is sometimes made less incomplete by sampling
several times from the same data, or simply by interpolating in between mea-
sured data points. However, this approach does not always reach the desired
result because of dose limits, measurement geometry or other physical restric-
tions. This challenge has given rise to a large body of theory that essentially
use a new model of CT, that takes the discreteness and noise in measurement
data into account, using algorithms that are more stable and/or utilise prior
knowledge of the object to get better image reconstructions with worse quality
data.

1.2 Region-of-interest tomography

The X-ray inspection device proposed by FORCE fits into the category of
Region-of-interest (ROI) tomography. In ROI tomography the object under
study is only partially illuminated by X-rays from all directions. This is caused
by a measurement geometry that rotates the source and detector around the
centre of an object. This means we have an interior region that is illuminated
from all source and detector positions and an exterior region that is not. The
interior region is called the region-of-interest. This is typically the case when
the span of the rays, or the length of detector, is too small. This was illustrated
on the rendering of the measurement set-up proposed by FORCE in Figure 1.1.

Indeed, if one is interested in the entire object, ROI tomography is a problem
of limited data, since each measured direction does not carry information about
the entire object. In fact, the quality of the information at a given point is worse
the further away the point is from the ROI.

As we discuss in Chapter 3, using the regular CT model for ROI CT is not
feasible, and depending on which algorithm one uses to create reconstructions,
strong artefacts in the images are generated. This calls for insight into the ROI
CT model and suited reconstruction methods.
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1.3 Aim of the thesis

The goal of the project is three-fold: 1) Gain insight into the inherit difficulties
and limitations of the ROI problem proposed by FORCE. 2) Study current state-
of-the-art methods for ROI CT, determining which are best suited for the this
particular problem. 3) Apply the insights to real measurement data. To this end,
microlocal analysis is used to determine which features of an object are visible
from ROI-measurements, showing what we can expect to see in reconstructions.
Furthermore, we study a general class of reconstruction methods that regularise
by decomposing the object sparsely into a chosen frame. Prior knowledge of the
sampling method and object can be incorporated by choosing suited frames and
penalising weights.

1.4 Structure of the thesis

The thesis is structured as follows:

Chapter 1 is the introduction.

Chapter 2 gives an overview of the mathematical model for computed tomog-
raphy, describes regularisation techniques for reconstructing images in CT and
uses microlocal analysis to describe the propagation of singularities in tomo-
graphic transforms.

Chapter 3 develops a mathematical model for Region-of-Interest tomography
and illustrates how typical CT reconstruction algorithms fare on this model.
Furthermore, comments are made on which features are visible in ROI data
using microlocal analysis.

Chapter 4 describes weighted frame-based reconstruction algorithms, which
show promising results on the Region-of-Interest tomography model.

Chapter 5 presents results of using the algorithms developed in the thesis on
real CT data generated from prototype tests on oil pipes by FORCE.

Chapter 6 concludes on the thesis as a whole and presents future work.



Chapter 2

Overview of computed
tomography

Main authors: Nicolai André Brogaard Riis & Jacob Frøsig.
hey

This chapter gives an overview of the principles behind the mathematics of com-
puted tomography. First the mathematical model of X-rays tomography is stud-
ied, showing how it can be viewed as an inverse problem. Regularisation tech-
niques are then used to form standard reconstruction algorithms for this model.
Finally the model is analysed using microlocal analysis to determine how singu-
larities propagate in the related tomographic transforms.

2.1 Modelling X-ray tomography

Main author: Jacob Frøsig
Co-author: Nicolai André Brogaard Riis

The main purpose of this section is to develop a general mathematical model
describing tomographic imaging to be considered throughout the thesis. To this
end, we start by explaining how the attenuation of X-rays through objects are
modelled as an integral over a straight line using Beer’s Law.
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Figure 2.1: Illustration of the pencil beam model describing the trajectory of
an X-ray though an object.

2.1.1 Pencil beam attenuation

We model the attenuation of X-rays through an object as a collection of pen-
cil beams. The intensity attenuation of these pencil beams is modelled by a
measure describing the proportion of photons passing through the object. The
simplified physical set-up is illustrated in Figure 2.1, where the pencil beam,
indicated in red, follows a trajectory through an object described by its atten-
uation coefficients denoted f . The trajectory is uniquely determined by the
signed distance to the origin, s ∈ R and the normal unit vector, θ ∈ S1 as

`(θ, s) = {θs+ θ⊥t ∈ S1 × R| t ∈ R},

where θ⊥ is the unit vector perpendicular to θ.

A physical mechanism leading to attenuation of intensity through a homoge-
neous object at a point, x, is modelled by a single attenuation coefficient, say
f(x) = f ∈ R. The X-ray intensity, I, after passing a distance of ∆x through
an object following the straight line, `, is determined by

I(x+ ∆x) = I(x)− f(x)I(x)∆x. (2.1)



2.1 Modelling X-ray tomography 9

Rearranging (2.1) and taking the limit reveals

lim
∆x→0

I(x+ ∆x)− I(x)

∆x
=

dI

dx
= −f(x)I(x). (2.2)

With the aim of isolating the proportional intensity, we separate the variables
on both sides of the right hand equality in (2.2) revealing dI/I(x) = −f dx
and then integrating both sides to get∫

1

I(x)
dI = −f

∫
dx,

or

ln |I| = −f · x+ C.

Since the intensity is a non-negative quantity, |I| = I, taking the exponential
of both sides gives I(x) = e−fx+C . Hence, by denoting the initial intensity as
I(0) = I0 we have

I(x) = I0e
−fx,

also known as Beer’s Law. Throughout, we model the attenuation by Beer’s law,
excluding the scattering effect along with several other physical phenomena to
simplify our mathematical model. The intensity coefficient, f , depends on type
of material and density. The assumption of having one attenuation coefficient
through an object reflects most real objects quite poorly and we are motivated
to include a location dependent f(x) to our model. Hence we describe the final
intensity of a beam having passed through `(θ, s) by

I(θ, s) = I0e
−

∫
`(θ,s)

f(t) dt,

or equivalently

− ln

(
I(θ, s)

I0

)
=

∫
`(θ,s)

f(t) dt.

Here the left hand side is calculated from the intensities, I0 and I of the beam
along the line, `(θ, s), before and after having passed through the object respec-
tively. We denote

p(`(θ, s)) =

∫
`(θ,s)

f(t) dt (2.3)

as a projection along the line `(θ, s). Throughout this thesis, we use (2.3) as the
model for a single beams attenuation through an object.
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2.1.2 Continuous model

The Radon transform, R, describes all projections for a given object as follows:

Definition 2.1 The 2D Radon transform Rf : S1 × R → R of a function
f ∈ S(R2) is defined by

(Rf)(θ, s) :=

∫
`(θ,s)

f(x) dσ(x) =

∫
R
f(θs+ θ⊥t) dt = p(`(θ, s)).

Here S(R2) is the Schwartz-space of R2 described in Definition A.1. The sino-
gram, subsequently denoted by g, is the collection of all projections.

Given the Radon transform, we form the first mathematical model for our prob-
lem.

Model 2.2 (Continuous CT) Let R be the Radon transform
from Definition 2.1. We model the attenuation of X-rays through an
object described by its attenuation coefficients, f , as follows

g(θ, s) = (Rf)(θ, s) for (θ, s) ∈ S1 × R.

Here g(θ, s) = − ln(I(θ, s)/I0) is an attenuation measure where I0 and
I(θ, s) are the intensities of an X-ray, on the line `(θ, s), before and after
passing through the object, respectively.

A naive approach to retrieve f would be a back projection given by:

Definition 2.3 Given a function g ∈ L1(S1×R), we define the back projec-
tion, R∗, as

(R∗g)(x) =

∫
S1

g(θ, x · θ) dθ.

However, the back projection does not form an inverse for the Radon transform
and we look to the theory developed by Radon: With the aim of constructing
a two-dimensional function from its line integrals, Radon derived an inverse
for the operator in Definition 2.1 without considering the underlying practical
applications:
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Theorem 2.4 For f ∈ S(R2) and the 2D Radon transform, Rf(θ, s), θ ∈ S1,
s ∈ R, we have the inversion formula:

f(x) = (R−1Rf)(x) = (R∗ΛsRf)(x)

=
1

2
(2π)−3/2

∫
S1

∫ ∞
−∞
FsRf(θ, σ)eiσ〈x,θ〉|σ|dσdθ,

where i =
√
−1 and Λs = F−1

s | · |Fs is a filtering in Fourier domain giving
the inversion formula its alias Filtered Back Projection (FBP). The theoretical
justification of this inversion formula is given in Appendix A.2. The definition
of the 1D Fourier transform, Fs, is included in Appendix A.2.

Given complete data as in Model 2.2, we have the related inverse and we can
reconstruct f perfectly. However, in practice, measurement data is never perfect
and a more realistic model would be to include the possibility of noise in the
data. Thus, we introduce the following new model:

Model 2.5 (Continuous CT with noise) Let R be the
Radon transform from Definition 2.1. We model the attenuation of
X-rays through an object described by its attenuation coefficients, f , as
follows

gδ(θ, s) = (Rf)(θ, s) + η for (θ, s) ∈ S1 × R

Here gδ(θ, s) = g(θ, s) + η is the measured sinogram with Gaussian dis-
tributed additive noise η ∼ N(0, σ2) with zero mean and variance σ2 ∈ R.

For this model, we have no direct inversion formula to retrieve f . In fact R−1

in Theorem 2.4 is unbounded, as shown in various fashions, e.g., see IV3 in [1].
This means that small difference between gδ and g can lead to large differences
between R−1gδ and R−1g = f .

2.1.3 Discrete model

In practice we sample finite and imperfect measurements caused by physical
acquisition limitations. Hence, our data shows as a finite number of projections
in a discrete sinogram. Furthermore, for large data sets, we require computers
for the calculations. Since computers are most efficient on discrete information,
we are motivated to construct a model using both a discrete object and sinogram.
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The discrete object is approximated on a pixel grid stored as a vector, x =
[x1, x2, . . . , xn] ∈ Rn, which in 2D is displayed as an N×N image where n = N2.
This is illustrated in Figure 2.2.

We approximate a projection in (2.3) by summing over the attenuation coeffi-
cients, xj , multiplied with the euclidean distance travelled by the beam through
xj . Storing all projections by a single index, i, gives us the ith projection as

bi =

n∑
j=1

ai,jxj , (2.4)

where ai,j is the length of the ith beam in the jth pixel. The element ai,j is
then stored in the ith row and jth column in what we call the system matrix,
denoted A. From this we establish the following model:

Model 2.6 (Discrete CT with noise) We model the attenua-
tion of X-rays through an object described by its attenuation coefficients,
x, as follows:

bδ = Ax + e, for bδ ∈ Rm,x ∈ Rn and A ∈ Rm×n.

Here bδi is a measured projection from (2.4) with added Gaussian dis-
tributed white noise, e ∈ Rm. The system matrix, A, is thus the discrete
approximation to the Radon transform for a given measurement set-up.
When using this model we consider the back projection of A as its trans-
posed denoted AT .

When visually investigating a discrete sinogram, bδ, it is considered as a ma-
trix with columns consisting of projections collected from one position of the
source and detector. Remember that, in practice, a source emits more than
one beam. Generally, two 2D projection sample fashions are considered, i.e.,
fan- and parallel-beam. Figure 2.3 illustrates the difference between the two
sampling methods. The dots displayed above the set-up indicate projection val-
ues contained in one column of the sinograms, corresponding to the given ray.
Throughout, we only consider the fan-beam sampling method, as it relates to
the practical application that is considered in the thesis.
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Figure 2.2: Illustration of how a single beam is modelled to go through the
pixels indicated by dark grey in the discrete object, x ∈ R81.

Figure 2.3: Illustrations of fan-beam (left) and parallel-beam (right) projec-
tions for a source and detector set-up, showing the projection val-
ues in a specific column of the sinogram.
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2.1.4 Implementation of model, simulation & testing
Main authors: Nicolai André Brogaard Riis & Jacob Frøsig.
hey

In this section we describe the testing platform used in the thesis to run synthetic
and real tests on the discrete CT models.

We require a method of generating the system matrix, A, that defines the fan-
beam sampling method. To this end, we need to define physical parameters
related to an actual measurement set-up, to run on real measurement data. We
use the fanbeamtomo.m function from the AIR Tools package [2] as a starting
point for generating the system matrix. We modify the function to use a linear
detector and make it possible to define the set-up from 6 physical parameters
and a given grid size N . The parameters are shown in Table 2.1. Note here the
grid represents an object with n = N2 pixels.

Table 2.1: Default parameters used to generate the system matrix, A, using
a modified fanbeamtomo function with a linear detector. These
parameters are used for synthetic tests in Chapter 2.1 and 2.2.

Grid size (N) 256
Number of source locations 180
Number of detector pixels 256
Domain size 46 [cm] × 46 [cm]
Source to centre distance 59 [cm]
Source to detector distance 100 [cm]
Detector length 90 [cm]

In addition to the modified fanbeamtomo function, we use the ASTRA Toolbox
[3] to generate a matrix free version of the system matrix using the same pa-
rameters as in Table 2.1. The details of how these functions are made has been
left out of the thesis.

To simulate real measurement data, we create synthetic phantoms on a finer
grid, x ∈ R9n, to avoid inverse crime, multiplying the matrix free version of the
system matrix, A ∈ Rm×9n, with the phantom creating a sinogram, bδ ∈ Rm as
follows:

bδ = Ax + eδ.

Here eδ is added white noise with a relative noise level δ given by

eδ = δ‖b‖2
e

‖e‖2
, (2.5)
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where e ∈ Rm such that e ∼ N(0, 1).

Throughout, we compare images by two different measures when we know the
ground truth, i.e., the relative error (RE) and mutual information (MI) as
defined below

Definition 2.7 For two images X,Y ∈ RN×N we define the relative error
(RE) and mutual information (MI) as

RE(X,Y ) :=
‖X − Y ‖F
‖Y ‖F

, MI(X,Y ) := H2(X,Y )−H1(X)−H1(Y ).

Here

H2(X,Y ) := −
∑
j,k

PDFX,Y (j, k) log(PDFX,Y (j, k)),

H1(X) := −
∑
j

[(∑
k

PDFX,X(j, k)

)
log

(∑
k

PDFX,X(j, k)

)]
,

PDFX,Y (j, k) :=
HISTX,Y (j, k)∑
l,pHISTX,Y (l, p)

,

and HISTX,Y is the joint intensity histogram of the images X,Y .

We note that RE is an error measure comparing intensity values at a fixed
position and MI is a similarity measure comparing the distribution of intensity
values. We include MI to give a different measure of similarity that do not take
the scale or position of intensities into account, but rather the information in
the image.

2.1.5 An immediate reconstruction approach

One approach to reconstruct the discrete image from corrupted data, bδ with
parameters as in Table 2.1, would be to use the discrete version of the inversion
formula in Theorem 2.4 approximating the back projection by AT . Denoting
Λ as a discrete filtering operator, F−1| · |F on bδ, we have the reconstruction
formula:

x =
1

2
(2π)−3/2ATΛbδ. (2.6)

This reconstruction is motivated by the similarities of the discrete and contin-
uous model. Just as with the continuous model, the filter, Λ, amplifies high
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frequencies in the sinogram. This reveals a concerning issue since white noise
contains high frequent elements. This amplification is illustrated in Figure 2.4
where adding 10% relative noise, defined in (2.5), to the sinogram before recon-
structing shows a severe difference compared to adding the same relative level
of noise to the image directly. This shows that Model 2.6 preserves some of the
properties from the continuous model. The challenges of reconstructing from
a noisy sinogram as in Model 2.6 has been under the scope of researchers for
many years and is treated in the following sections.
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(a) Ground truth.
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(b) Noise on image.
RE= 0.10,
MI= 0.81.

-0.5

0

0.5

1

1.5

(c) Noise on sinogram.
RE= 0.89,
MI= 0.10.

Figure 2.4: Illustration of noise amplification using the discrete filtered back
projection in (2.6). The centre image has added 10% relative noise
directly on it and the right is a reconstruction of a sinogram with
added 10% relative noise. It is clear that the noise is amplified in
the reconstruction.

2.2 Inverse problems & regularisation

Main author: Nicolai André Brogaard Riis.
Co-author: Jacob Frøsig.

This section is meant to give a brief overview to the field of inverse problems,
to which CT belongs. By studying CT in a more general setting, we are able to
gain significant insights into how to tackle the challenges in CT reconstruction
as described in Section 2.1. We describe the notion of ill-posedness in inverse
problems and how regularisation is used to obtain meaningful solutions to these
types of problems. Finally, we give give examples of typical regularisation meth-
ods and show how they fare for reconstruction in CT problems.
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2.2.1 Inverse problems

The term inverse problem generally tends to describe the framework used in
mathematics to obtain information on features or parameters for an object or
system that is not directly observable. The information is obtained by processing
a measurable property that is affected by the object. The goal of solving an
inverse problem, is to approximate the features or parameters of the object that
best match with the measured property.

A general mathematical statement of an inverse problem is given data, g, find
the model parameters, f , such that,

A(f) = g. (2.7)

Here A is a model operator that describes the relation between the model pa-
rameters, f , and some given measurement data, g. The model operator is known
for a specific model, but is for real data an approximation to the actual phe-
nomena generating the data. Note that finding the attenuation coefficients in
the CT Models 2.2, 2.5 and 2.6 are inverse problems.

To clarify: We call the process of constructing g given f the forward problem
and finding f given g the inverse problem. Generally, if an approximation of
f is known, it is a stable process to calculate g. On the other hand if an
approximation of g is known, and we want to find f , it can be an unstable
process if the model operator induces ill-posedness to the inverse problem.

2.2.2 Ill-posedness of inverse problems

Ill-posedness is one of the key challenges for most inverse problems, and lie at
the heart of why inverse problems such as CT are still studied to the extent that
they are today. When discussing the class of ill-posed problems, it is beneficial
to first define the compliment; well-posed problems. For the purposes of this
thesis, we restrict our attention to the case when the model operator A in (2.7)
is linear, as is the case with the CT models. In the early 20th century Hadamard
[4] gave three conditions for a linear problem to be well-posed:

1. Existence: A solution to the problem exists.
2. Uniqueness: The solution is unique.
3. Stability: The solution depends continuously on the data.

If any of these conditions are not satisfied, we say that the problem is ill-posed.
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The stability condition can be interpreted as follows: Small changes in data
must only give a small change in solution.

For the discrete CT Model 2.6, added noise to the measurements can move the
data out of the range of A, meaning no solution to the problem exists if one
simply tries to find x such that Ax = bδ. Likewise if A is not injective, then
several solutions can exist and so condition 2 is not satisfied. Finally, as we
have seen in Chapter 2.1, small changes in the data need not translate to small
changes in the solution, but rather to arbitrarily large changes. When facing ill-
posed inverse problems such as CT, it is essential to overcome these challenges
to get any meaningful results from the solutions. A good reference on (more
general) discrete inverse problems is [5].

2.2.3 Regularisation

To overcome the challenges of ill-posed inverse problems, it is most common to
introduce regularity on the solution by solving a modified version of the problem
that is well-posed by construction. This is known as regularisation. For example;
one can satisfy the existence condition by rephrasing (2.7) into one of fitting the
solution to the data:

f∗ = argmin
f

{
‖A(f)− g‖2

}
.

To deal with stability, we can add an additional term that enforces the norm of
the solution to be small in some linear operator L:

f∗ = argmin
f

{
‖A(f)− g‖2 + ‖Lf‖2

}
.

Depending on the norm, this additional term can also enforce uniqueness, say
for the 2-norm, when the nullspaces of L and A have a trivial intersection.

In general, regularisation uses a data fidelity term T (f), and a regularisation
term R(f) for the regularised problem:

f∗α = argmin
f
{T (f) + αR(f)} . (2.8)

Here α is a regularisation parameter that needs to be chosen appropriately
balancing both terms. The data fidelity term is a measure of the fit between the
given data and how the data would look if the solution and forward model was
used to generate it. The regularisation term is how we incorporate additional
information about our object. Say that we know, a priori, the solution should not
have large individual values. Then a 2-norm regularisation term ‖f‖22 can be a
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good way to incorporate this prior. Depending on the regularisation parameter,
α, we can enforce more or less of this "smoothness" prior.

The choice of regularisation parameter deserves a story of its own and is in-
dicative of the parameter tuning necessary for most, if not all, regularisation
methods. In general, there are many guides to choose such a parameter auto-
matically. However, all of them depend on the problem and it is typical to try
several guides as well as judging manually (e.g. by looking at the reconstructed
images in the case of CT) which parameter to choose. We do not go into detail
on the guides in this thesis, but refer to [5] for more details on the choice of
regularisation parameter.

2.2.4 Applying regularisation to computed tomography

We turn our attention to the discrete CT Model 2.6. Recall that added noise,
even if relatively small, made the discretised inversion formula of Theorem 2.4
produce severely deteriorated solutions caused by the ill-posedness of the prob-
lem. Hence, we are motivated to apply regularisation to the problem.

We test on the Shepp–Logan phantom shown in Figure 2.5. The generated
fan-beam data can be seen as a sinogram in Figure 2.6. The data is generated
from fan-beam projections using the physical parameters in Table 2.1. We now
describe three methods that add regularisation to the problem and show how
they perform on this set-up.
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Figure 2.5: Shepp–Logan phantom used for simulating measurement data.
The interior of the blue circle indicates the area which is illu-
minated from all source positions by X-rays defined for the set-up
in Table 2.1. In this case the entire object is illuminated from all
source positions.
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(a) Sinogram generated from
forward model.
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(b) Simulated sinogram with added
2% relative noise.

Figure 2.6: Sinograms generated from the object in Figure 2.5 using the mea-
surement set-up in Table 2.1.

2.2.4.1 Tikhonov regularisation

Tikhonov regularisation takes the form of the optimisation problem in (2.8) with
a squared 2-norm data fidelity and regularisation term as follows:

x∗|α = argmin
x

{
‖Ax− bδ‖22 + α‖x‖22

}
.

The method is quite popular as a regularisation technique for the discrete CT
Model 2.6, because of the combination of an intuitive smoothness prior, ‖x‖22,
and the fact that it can be rewritten, and hence implemented, as a least squares
problem (see e.g. [5]).

The need for parameter tuning for Tikhonov is apparent in the regularisation
parameter, α. If the parameter is chosen too small, i.e. α→ 0, we get a solution
corrupted by noise. On the other hand, if α is chosen too large, i.e. α → ∞,
we get a solution that is smoothed to zero. The idea is thus to choose a reg-
ularisation parameter in-between that gives the best reconstructed image. For
this simulated problem, we know the real solution and so we can compare with
the relative error and mutual information measures as described in Definition
2.7. This is illustrated in Figure 2.7 for a number of regularisation parameters.
From this we see that choosing α = 2 gives the lowest error. In Figure 2.8 we
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see a comparison of the image quality in the extreme cases of α too low or too
high compared to α = 2; just right.

Regularisation parameter
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Tikhonov: Error measures
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Figure 2.7: Error measures (see Definition 2.7 p. 15) depending on regulari-
sation parameter for Tikhonov regularisation in Section 2.2.4.1 on
the data in Figure 2.6. We see that there is an optimal choice of
regularisation parameter for both error measures around 2 for this
particular problem.
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(a) α = 0.0001,
RE=2.71,
MI= 0.02.
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(b) α = 2,
RE= 0.28,
MI=0.74.
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(c) α = 200,
RE= 0.99,
MI= 0.56.

Figure 2.8: Reconstructed images using Tikhonov regularisation on the simu-
lated data in Figure 2.6 with regularisation parameters as shown.



22 Overview of computed tomography

2.2.4.2 Semi converging iterative methods

The semi converging methods arise from iterative regularisation methods that
let the number of iterations play the role of regularisation parameter. Typi-
cally these methods converge towards an undesired solution. The interesting
thing, however, is on the way to this solution some of the methods exhibit
semi-convergence. That is, they approach some solution, x∗, that is the best
approximation to the ground truth possible for the method and then diverge
again towards the undesired solution. For the purpose of this thesis, we state
the simplest of these methods, namely the Landweber iterative method which
takes the form:

x[k+1] = x[k] + sAT (bδ −Ax[k]),

where s is a step size parameter that must satisfy 0 < s < 2‖ATA‖−1
2 .

There is much to say on the iterative methods that exhibit semi-convergence (see
e.g. [5]), but for the purpose of this thesis, we simply show how the iteration
number acts as a regularisation parameter. In Figure 2.9 we see the change
in error measures as the iteration number increases. Indeed the method shows
semi-convergence and we see that choosing to stop iterating around the 100th
iteration gives the best solution. In Figure 2.10 the reconstructed images are
shown for three choices of iteration numbers.

2.2.4.3 Filtered back projection

Finally, we consider the discrete inversion formula (2.6). By modifying the filter
to not amplify high frequent noise, we add regularisation to the problem. Denote
by ΛΓ a modified filtering step such that ΛΓ = F−1Γ(·)F , for some frequency
filter Γ : R→ R. The regularised solution is then found by

x =
1

2
(2π)−3/2ATΛΓb

δ. (2.9)

When the filter is Γ(·) = |·|, we have the discrete version of the inversion formula
(2.6). In Figure 2.11 we see an illustration of some standard filters that can be
used to replace the | · | filter in Fourier domain thus adding regularisation. The
idea is to let the filter go to zero as the frequency increases, thus removing the
noise that is represented by high frequencies. In Figure 2.12 we see reconstructed
images using the different filtering methods. We see that the filtering acts as
regularisation and dampens the noise corruption in the image. Note that, since
the discrete Fourier transform in frequency domain is band limited, the | · | filter
also regularises the solution to some extent.
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Figure 2.9: Error measure depending on iteration number for Landweber
method in Section 2.2.4.2 on the data in Figure 2.6. The opti-
mal stopping iteration for the Landweber method is seen to be
around iteration 100 for this problem.
hey..

0.1

0.2

0.3

0.4

0.5

0.6

(a) Iteration 5,
RE= 0.66,
MI= 0.58.
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(b) Iteration 100,
RE= 0.27,
MI= 0.74.
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(c) Iteration 2000,
RE= 0.37,
MI= 0.51.

Figure 2.10: Reconstructed images using the Landweber method on the sim-
ulated data in Figure 2.6 with iterations as shown.
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(a) Ram-Lak filter. (b) Hamming filter.

(c) Cosine filter. (d) Hann filter.

Figure 2.11: Illustration of different filters for the filtered back projection for-
mula in (2.9). The Ram-Lak filter is from the inversion formula,
and the other filters remove high frequent elements in Fourier
domain before back projection; a form of regularisation.
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(a) Ram-Lak filter,
RE= 0.35, MI= 0.57.
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(b) Hamming filter,
RE= 0.28, MI= 0.74.
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(c) Cosine filter,
RE= 0.29, MI= 0.73.
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(d) Hann filter,
RE= 0.29, MI= 0.74.

Figure 2.12: Reconstructed images using the discrete filtered back projection
formula in (2.9) with the filters from Figure 2.11.
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2.3 Microlocal analysis
Main authors: Nicolai André Brogaard Riis & Jacob Frøsig.
hey

Microlocal analysis (MLA) can be used to determine which singular features
we can expect to recover in a range of continuous tomography problems. Here
singular features describe edges arising from transitions in material. Many ob-
jects are partly characterised by their material boundaries and hence it is useful
to describe how these so-called singularities propagate in general tomographic
transforms. As an example: If we can determine which singularities in the sino-
gram are (or are not) generated by the object and which are added artefacts,
we can develop methods that take this insight into account.

To fully understand MLA in tomography, one requires knowledge of wavefront
sets, pseudo-differential operators and Fourier integral operators. The next three
sections (2.3.1-2.3.3) establish this large body of theory briefly, leading up to
the actual propagation theorems in Section 2.3.4. The reader can skip the first
three sections and go straight to the latter if he/she is only interested in the
resulting theorems on how singularities propagate. We have, however, decided
to include the theory for completeness. We base this section on the excellent
work in [6].

2.3.1 Singular support & wavefront Set

To determine how material boundaries (edges) propagate in tomographic trans-
forms, we must first agree on a useful mathematical definition on what exactly is
meant by this. We characterise material boundaries by singularities as elements
of the so called wavefront set.

Singularities are composed by two components: The first being spatial location
and the second being direction. The location information is included in the
singular support set and the directional information in the localised frequency
set. The product space of these is exactly the wavefront set. In Figure 2.13 we
see an illustration of the wavefront set for an object with smooth boundaries.
Here the boundary is the singular support and the localised frequency set are
the normals at each point on the boundary. Before we get ahead of ourselves,
we must define the above more formally.

Denote the set of distributions by D = (C∞c )′. The singular support set of a
distribution, f , is defined as follows.
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Figure 2.13: The wavefront set of an object, f , is the singular support set (red
boundary) paired with directional information as illustrated for
three points on boundary.

Definition 2.8 Let f ∈ D(X), X ⊂ Rn. The singular support of f , denoted
ssupp(f), is the complement of the largest open set in X on which f is C∞
smooth.

The singular support are all points on which f has some non-smoothness. We
are interested in describing how these points propagate for different transforms.
To do this we need to include directional information for each point. Directional
information can be described in frequency domain for each singular point using
the notion of rapid decay :

Definition 2.9 A function f : Rn → C is said to be rapidly decaying at
infinity if for every N ≥ 0, there exists a CN such that

|f(ξ)| ≤ CN (1 + ‖ξ‖)−N , for all ξ ∈ Rn. (2.10)

Rapid decay is related to the smoothness of a distribution by the following
theorem:

Theorem 2.10 (p. 252 in [7]) A compactly supported distribution f ∈
Dc(X) is in C∞c (X) if and only if its Fourier transform is rapidly decaying
at infinity.

Remark. We use the integral notation for the Fourier transform of a distri-
bution f . When doing integral manipulations, we assume that f ∈ L1 ⊂ D.
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The above theorem gives directional information of the singularities in the fol-
lowing sense: Let Vη be an open conic neighbourhood of some non-zero point,
η, we define the frequency set of f as follows:

Σ(f) := {η ∈ Rn\{0} : (2.10) is not satisfied for ξ in any Vη} .

Note here that Σ(f) = ∅ if and only if f ∈ C∞c .

The frequency set of f , Σ(f), is exactly the frequency directions for which f
is not C∞ smooth. However, this information is global for all points in the
singular support set. To obtain local directional information, we must assign
directions for each location.

To this end we localise our domain using the following lemma:

Lemma 2.11 (Lemma 8.1.1 on p. 253 in [7]) If φ ∈ C∞c (Rn) and f ∈
Dc(Rn) then

Σ(φf) ⊂ Σ(f).

For an open set X the local frequency set, Σx(f), for some x ∈ X and f ∈ D(X)
is then defined for some set of test functions {φk} as follows:

Σx(f) :=
⋂

φk∈C∞c
φk(x)6=0

Σ(φkf).

If φk ∈ C∞c (X), φk(x) 6= 0 and supp φk → {x} for k → ∞, then by Lemma
2.11, we can microlocalise from the frequency set such that,

Σ(φkf)→ Σx(f).

This implies Σx(f) 6= ∅ if and only if x ∈ ssupp(f).

We combine the singular support and the local frequency set into the wavefront
set by the following definition:

Definition 2.12 The wavefront set of f ∈ D(X), denotedWF (f), is defined
by

WF (f) :=
{

(x, ξ) ∈ X ×
(
R2\{0}

)
: ξ ∈ Σx(f)

}
The projection in X is ssupp(f).
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We now have the wavefront set describing the location and (local) direction of
singularities. The aim going further is to show how the wavefront set propagates
in tomographic transforms. To achieve this goal, we describe how it propagates
for pseudo-differential and Fourier integral operators and later relate these to
tomographic transforms.

2.3.2 Pseudo-differential operators

In this section an enlargement of the differential operator class, i.e., the pseudo-
differential operators is introduced. The class shows general properties regarding
propagation of wavefront sets which is stated as a theorem later on.

To motivate pseudo-differential operators consider the following linear partial
differential operator on the form

(Pf)(x) :=
∑
|v|≤m

av(x)Dv
x(f(x)), (2.11)

with v as a multi-index: v = (v1, . . . , vn), |v| := v1+· · ·+vn, xv := xv11 x
v2
2 . . . xvnn

for x in n-dimensional space and

Dv
x := (−i)|v| ∂

v1

∂xv11

. . .
∂vn

∂xvnn
.

Recall that differentiation is equivalent to multiplication in Fourier domain by
the following lemma.

Lemma 2.13 For a compactly supported function f ∈ C∞c (Rn)

D̂v
xf(ξ) = ξv f̂(ξ).

Proof. Applying the Fourier Transform to Dv
xu and integrating by parts |v|

times, we get (recall definition of D has (−i) and that u has compact support):

D̂v
xu(ξ) = (2π)n/2

∫
e−ix·ξDv

xu(x) dx

= (2π)n/2
∫

(−i)|v|ξve−ix·ξ(−i)|v|u(x) dx

= ξvû(ξ).

�
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Consider the operator in (2.11) applied to a compactly supported function,
f ∈ L1(Ω). Applying the Fourier and Inverse Fourier Transform, we get

(Pf)(x) =
∑
|v|≤m

a(x)F−1FDv
xf(x)

=
∑
|v|≤m

a(x)F−1ξv f̂(ξ)

=
∑
|v|≤m

a(x)(2π)−n/2
∫
eix·ξξv f̂(ξ) dξ

=
∑
|v|≤m

a(x)(2π)−n
∫ ∫

ei(x−y)·ξξvf(y) dy dξ.

Rearranging, we get

(Pf)(x) = (2π)−n
∫
ei(x−y)·ξp(x, ξ)f(y) dy dξ, (2.12)

with p(x, ξ) =
∑
|v|≤m

a(x)ξv.

This Fourier representation of the differential operator helps us define a larger
class of operators that act like the differential operator, namely pseudo-differential
operators. The requirement is that p(x, ξ) in (2.12) is an amplitude:

Definition 2.14 Let X ⊂ Rn be an open subset. An amplitude of order m
is a function that satisfies the following properties:

1. p(x, y, ξ) ∈ C∞(X ×X × Rn\{0}),

2. For every compact set K and for multi-index α, β, γ,

(a) there is a constant C = C(K,α, β, γ) such that

|Dα
ξD

β
xD

γ
yp(x, y, ξ)| ≤ C(1 + ‖ξ‖)m−|α| for ‖ξ‖ > 1, and

(b) P (x, y, ξ) is locally integrable for x and y in K and ‖ξ‖ ≤ 1.

The definition of a pseudo-differential operator is then as follows.

Definition 2.15 Let X ⊂ Rn be an open subset. A pseudo-differential
operator (ΨDO ), P, is an operator of the form:

(Pf)(x) =
1

(2π)n

∫
ei(x−y)·ξp(x, y, ξ)f(x) dx dξ,
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where its symbol, p(x, y, ξ), is an amplitude on (X ×X ×Rn\{0}). We say the
operator P is of order m if its symbol has order m. P is elliptic of order m if
for each compact set K ⊂ X, there is a constant Ck > 0 such that for x and y
in K and ‖ξ‖ ≥ Ck

|p(x, y, ξ)| ≥ C−1
k (1 + ‖ξ‖)m.

Now that we have defined ΨDO ’s, we investigate how they propagate wavefront
sets.

Theorem 2.16 (Theorem 14 p. 878 in [6]) If P is a ΨDO, then P
satisfies the following pseudo-local property:

ssupp(Pf) ⊂ ssupp(f) and WF(Pf) ⊂WF(f).

In addition, if P is elliptic, then

ssupp(Pf) = ssupp(f) and WF(Pf) = WF(f).

This tells us that if P is a ΨDO, any singularity in Pf arises from, and will
have the same structure as, singularities in f if they exist. In other words, P
introduces no new singularities. Furthermore, if P is elliptic, the singularities
of P and Pf are the same. This indicates that if we know the singularities of
Pf , we know the singularities of f .

2.3.3 Fourier integral operators

In this section we introduce an enlargement of the ΨDO class described in the
previous section, i.e, the Fourier integral operators. Even though this class do
not retain the same strong singularity propagation properties, there is still a
story to be told for specific FOI’s. Hence, some general definitions are estab-
lished.

To consider Fourier integral operators (FIO) we first define a phase function:

Definition 2.17 Let X ⊂ Rm and Y ⊂ Rn be open subsets. A real-valued
function φ ∈ C∞(X × Y × RN\{0}) is called a phase function if

1. φ is positive homogeneous of degree 1 in ξ. That is φ(x, y, rξ) = rφ(x, y, ξ)
for all r > 0.

2. (∂xφ, ∂ξφ) and (∂yφ, ∂ξφ) do not vanish for all (x, y, ξ) ∈ X×Y ×RN\{0}.
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Now, we are able to define the FIO’s as follows:

Definition 2.18 Let X ⊂ Rm and Y ⊂ Rn be open subsets. A Fourier
integral operator (FIO), P, is defined as

Pf(x) =

∫
eiφ(x,y,ξ)p(x, y, ξ)f(y) dy dξ,

where φ is a nondegenerate phase function and p(x, y, ξ) ∈ C∞(X × Y ×RN ) is
an amplitude satisfying:
For every compact set K ⊂ X×Y and for every multi-index α, β, γ, there exists
a constant C = C(K,α, β, γ) such that

|Dα
ξD

β
xD

γ
yp(x, y, ξ)| ≤ C(1 + ‖ξ‖)m−|α| for all x, y ∈ K and for all ξ ∈ RN .

Note how the enlargement from ΨDO’s to FIO’s becomes apparent by letting
φ(x, y, ξ) = (x− y) · ξ.

In the following, we introduce notation and definitions to investigate the FIO’s.
Firstly, for any FIO we introduce a related auxiliary manifold and canonical
relation:

Definition 2.19 (Auxiliary manifold & canonical relation)
Let X ⊂ Rm and Y ⊂ Rn be open subsets. For a given FIO we define the aux-
iliary manifold by

Σφ := {(x, y, ξ) ∈ X × Y × RN\{0} : ∂ξφ(x, y, ξ) = 0},

and the canonical relation by

C :=

{(
x, ∂xφ(x, y, ξ)
y, −∂yφ(x, y, ξ)

)
: (x, y, ξ) ∈ Σφ

}
.

Later, we use the following operator for the canonical relation on two sets to
describe singularities propagation for FIO’s.

Definition 2.20 Let X ⊂ Rm and Y ⊂ Rn be open subsets and let C ⊂
T ∗X × T ∗Y and A ⊂ T ∗Y . Define

C ◦A =

{(
x, ξdx

)
: ∃
(
y, ηdy

)
∈ A with

(
x, ξdx
y, ηdy

)
∈ C

}
.

Here we use the notation T ∗X, to define the set of point and directions of X.
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2.3.4 Application to tomography

We now have the tools to investigate how singularities (edges, boundaries) prop-
agate in tomographic transforms. To this end we will first study the combined
projection and back projection operator R∗R. That is, for an object, what
does the process of measuring the object using the Radon Transform and then
reconstructing using back projection (with no filtering) do to singularities of the
object. It turns out this operator is an elliptic pseudo differential operator:

Theorem 2.21 (p. 875 in [6]) R∗R is an elliptic pseudo-differential op-
erator with symbol 4π/‖ξ‖. Hence WF(R∗Rf) = WF(f) by Theorem 2.16.

That is the wavefront set is maintained for RR∗.

The Radon transform relates our object to the obtained data. Hence, prop-
agation of singularities over this transform is of interest to us. Let θ(ϕ) =(
cos(ϕ), sin(ϕ)

)
and θ(ϕ)⊥ = ω(ϕ+ π/2). We then have the following theorem.

Theorem 2.22 (Theorem 17 p. 884 in [6]) The Radon transform, R,
is an elliptic FIO on Dc(R2) associated with the canonical relation for:

CR =

{(
(ϕ, s) α(−x · θ⊥(ϕ)dϕ+ ds)
x αθ(ϕ)dx

)

: (ϕ, s) ∈ [0, 2π]× R, x ∈ R2, α 6= 0, x · θ(ϕ) = s

}
,

and WF(f) = CR ◦WF(Rf).

We collect our knowledge of propagations of singularities in the following corol-
laries:

Corollary 2.23 Let f ∈ Dc(R2) and let R be the 2D Radon transform, then
we have the following relations

WF(ΛR∗Rf) = WF(f) for any elliptic ΨDO , Λ.

Proof. By Theorem 2.21 we have that WF(R∗Rf) = WF(f) and since Λ is
an elliptic ΨDO, we then have that WF(f) = WF(R∗Rf) = WF(ΛR∗Rf). �

The corollary shows that any reconstruction method defined as ΛR∗Rf retains
the wavefront set if Λ is an elliptic ΨDO . In [6] this is shown to be the case
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for the FBP lambda tomography reconstruction formulas. This is not studied
further in this thesis. However, the propagation of the Radon transform is
studied since it has implications for limited data tomography. From Theorem
2.22 we get the following corollary.

Corollary 2.24 (Corollary 1 p. 885 in [6]) Let f ∈ Dc(R2) then

• If (x0, ξ0dx) ∈WF(f), then(
ϕ0, x0 · θ(ϕ0)

t(−x0 · θ⊥(ϕ0)dϕ+ ds)

)
∈WF(Rf),

where ϕ0 is chosen such that ξ0 = tθ(ϕ0) for some t 6= 0.

That is, the singularities in the object shows as a singularity in the sino-
gram if a line through the point with direction orthogonal to the singularity
is measured.

• Let (ϕ0, s0) ∈ [0, 2π]× R and q ∈ R. If(
ϕ0, s0

t(−qdϕ+ ds)

)
∈WF(Rf),

for some t 6= 0, then (x0, ξ0dx) ∈ WF(f), where x0 = s0θ(ϕ0) + qθ⊥(ϕ0)
and ξ0 = tθ(ϕ0).

That is, given a singularity in the sinogram we can find the corresponding
singularities that generated it.

The corollary has implications for limited data tomography. A singularity
(x0, ξ0 dx) ∈ WF(f) is visible from limited 2D Radon data if and only if the
line through x0 perpendicular to ξ0 is measured.
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Chapter 3

Region-of-interest
tomography

Main author: Jacob Frøsig.
Co-author: Nicolai André Brogaard Riis.

In this chapter we introduce the region-of-interest (ROI) tomography problem
and relate it to the problem described by FORCE. To understand the underlying
challenges of the problem, we describe a suitable model for ROI tomography and
illustrate how it is caused by the measurement geometry. Using the new model,
we investigate how previous mentioned reconstruction methods perform. In the
latter part, we interpret the results and apply MLA to characterise challenges of
ROI tomography.

3.1 The region-of-interest model

The ROI problem is a limited data problem. The limitation lies in the fact that
not all parts of the object are illuminated by X-rays from every source position.
In Figure 3.1 the ROI, denoted by Ω, is shown in red for a measurement set-up.
As the source moves around the object (indicated by dashed lines and arrows)
Ω is the only part of the object that is illuminated from all positions. Since
this area can be seen as the interior of the object, the problem is sometimes
also called the interior problem. The problem of limited data occurs if one is
interested in more than the interior of the object.
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Figure 3.1: Illustration of a ROI measurement geometry. This illustrates how
only the ROI, indicated in red, is illuminated from all source po-
sitions.

Recall that the measurement set-up proposed by FORCE has a source with a
narrow beam that do not illuminate the whole pipe from any source position.
Hence the problem can be interpreted as a ROI tomography problem.

The continuous forward operator in ROI tomography differs from Model 2.5
since the data is limited to lines intersecting the ROI. Hence, we define the ROI
tomography model as follows:

Model 3.1 (Continuous ROI-tomography with noise)
Let R the be Radon transform from Definition 2.1. We model the
attenuation of X-rays through the ROI, Ω, of an object described by its
attenuation coefficients, f , as follows

gδΩ(θ, s) = (RΩf)(θ, s) + η for (θ, s) ∈ S1 × R,

where

(RΩf)(θ, s) =

{
(Rf)(θ, s), for `(θ, s) ∩ Ω 6= ∅,
Undefined, otherwise.

Here gδΩ is the measured ROI sinogram with Gaussian distributed addi-
tive noise η ∼ N(0, σ2) with zero mean and variance σ2 ∈ R.
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The undefined information should be interpreted as follows: The forward model
should not include any information for positions that are not measured in an
ROI set-up. This is effortlessly included in the discrete forward model (2.6)
since it only includes projections for measured positions. Despite this, to mark
its importance in later chapters, we make space to define the discrete ROI model
as follows:

Model 3.2 (Discrete ROI-tomography with noise) We
model the attenuation of X-rays through the ROI, Ω, of an object
described by its attenuation coefficients, x, as follows:

bδΩ = AΩx + e, for bδΩ ∈ Rm,x ∈ Rn and AΩ ∈ Rm×n.

Here (bδΩ)i is a measured ROI projection from (2.4) with added Gaussian
distributed white noise, e ∈ Rm and the system matrix, AΩ, contains rays
intersecting Ω. The back projection is assumed to be ATΩ.

In Chapter 2.2 we discussed different regularisation methods to reconstruct an
object from noisy data. Hence, we are motivated to try these methods on the
problem formulated by Model 3.2 as we go through the next section.

3.2 An immediate reconstruction approach

In this section we try to reconstruct the Shepp–Logan phantom from a ROI-
sinogram simulated using a system matrix generated by the parameters in Table
3.1. To simulate ROI data, we reduce the detector size such that we create an
ROI illustrated in Figure 3.2. We keep the rest of the parameters the same
as in Section 2.2.4 for comparison. We use three different reconstruction algo-
rithms, FBP with a Hamming filter, Tiknonov regularisation and the Landweber
method.

To have an objective comparison measure, we use the relative error and mutual
information as described in Section 2.1.4. However, we are mostly interested in
the quality of the reconstructions near the ROI. Hence, we only the consider
the difference between the ground truth and the reconstruction in a disc with
radius 1.3 times larger than the ROI giving us

REΩ(X,Y ) := RE(χΩ̃X,χΩ̃Y ),

MIΩ(X,Y ) := H2(χΩ̃X,χΩ̃Y )−H1(χΩ̃X)−H1(χΩ̃Y ),
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where χΩ̃ is a mask with ones on a disc with radius 1.3 times the radius of ROI
and zeros otherwise.

Table 3.1: Default parameters used to generate the system matrix, AΩ, using
a modified fanbeamtomo function with a linear detector. These
parameters are used for the synthetic ROI set-up in Chapters 3
and 4.

Grid size (N) 256
Number of source locations 180
Number of detector pixels 256
Domain size 46 [cm] × 46 [cm]
Source to centre distance 59 [cm]
Source to detector distance 100 [cm]
Detector length 41.1 [cm]

The ROI sinograms are shown in Figure 3.3. These are similar to the sinograms
for full data, where the top and bottom are cut off. This is due to the structure
of the sinograms where the upper and lower part correspond to the outermost
projections for each source position.

0

0.2

0.4

0.6

0.8

1

Figure 3.2: Shepp–Logan phantom used for simulating ROI measurement
data. The interior of the blue circle indicates the ROI.

We investigate the reconstructions of this data using the above mentioned re-
construction methods choosing the best regularisation parameters selected by
minimising the ROI relative error and mutual information measures as done
in Section 2.2.4. These reconstructions are displayed in Figure 3.4, where we
observe a ring artefact about the ROI as the most pronounced structure in all
reconstructions. This is not a singularity from the ground truth, but rather



3.2 An immediate reconstruction approach 39

Source location

D
et
ec
to
r
p
ix
el

5

6

7

8

9

10

11

(a) Sinogram generated from
forward model.
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(b) Simulated sinogram with
added 2% relative noise.

Figure 3.3: Sinograms generated from the object in Figure 3.2 using the mea-
surement set-up in Table 3.1.

one that is added by the reconstruction. The attenuation coefficients do not fit
the ground truth either. Finally most of the singularities outside the ROI have
disappeared in the reconstructions.
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(a) FBP: Hamming filter.
REΩ = 2.18,
MIΩ = 0.58.
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(b) Landweber: 25 iter.
REΩ = 0.36,
MIΩ = 0.62.
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(c) Tikhonov: α = 3.
REΩ = 0.33,
MIΩ = 0.61.

Figure 3.4: Comparison of standard reconstruction methods on the ROI data
in Figure 3.3. The methods add a ring artefact on the ROI bound-
ary and most singularities from the ground truth outside the ROI
have disappeared.
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3.3 Reflections
Main authors: Nicolai André Brogaard Riis & Jacob Frøsig.
hey

From studying the ROI model, we separate the challenges of ROI into two
overarching types, that is, added artefacts and missing singularities in the re-
constructions.

3.3.1 Added artefacts

In the previous section we illustrated some of the present challenges in ROI
CT to be commented on. Consider the continuous ROI-tomography Model 3.1.
When using filtered back projection from Theorem 2.4 on the ROI-sinogram,
we make a hidden assumption by back projecting the filtered sinogram, gΩ,Λ =
ΛRΩ(θ, s) as follows

(R∗gΩ,Λ)(x) =

∫
S1

gΩ,Λ(θ, x · θ) dθ.

To clarify, we implicitly set gΩ,Λ(θ, s) = 0 when `(θ, s) does not intersect the
ROI to well-define the integral. This assumes our forward operator to be

RΩf(θ, s) =

{
(Rf)(θ, s), for `(θ, s) ∩ Ω 6= ∅,
0, otherwise.

So to speak, it assumes no attenuation outside the ROI enforcing all attenuation
to be inside the ROI. This could explain the ring artefact in the reconstructions,
as all attenuation is pressed to the boundary of the ROI.

However, we used the discrete model assumptions in Model 3.2 for our forward
operator to avoid setting unknown projections to zero, but rather excluding
them from the model. Yet the same artefact occurs in almost all reconstructions
for varying parameters and methods in objects that have attenuation outside
the ROI. In Figure 3.5 we showcase some of the reconstructions on noise free
sinograms from the Shepp–Logan phantom using Tikhonov regularisation. In
all cases singularities are added to the reconstruction, and except for an under-
determined system with no regularisation, this singularity appears as the one
expected from the continuous model. This calls for methods taking the possi-
bility of added artefacts into account.
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(a) N = 256, α = 0,
REΩ = 0.44, MIΩ = 0.54.
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(b) N = 256, α = 1,
REΩ = 0.33, MIΩ = 0.64.
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(c) N = 128, α = 0,
REΩ = 0.62, MIΩ = 0.63.
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(d) N = 128, α = 1,
REΩ = 0.34, MIΩ = 0.64.

Figure 3.5: Reconstructed images using Tikhonov regularisation on a noise
free version of the ROI sinogram in Figure 3.3b for varying grid
size (under- and overdetermined) and regularisation parameters.
Note the added artefacts and missing structure outside the ROI in
the reconstruction even for noise free data and varying grid size.
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3.3.2 Missing structure

Using the paradigm from MLA, we can determine which singularities are visible
in the sinogram and hence which we expect to reconstruct. By Corollary 2.24 we
find that any singularity with direction pointing towards the centre of rotation
is invisible in a sinogram constructed by an ROI measurement set-up as in
Figure 3.1. This is due to the fact that no rays passes through the singularity
orthogonal to its direction.

This is shown to hold for the discrete set-up as well. In the reconstructions
shown in Figures 3.4 and 3.5, any singularity of the ground truth that lie outside
the ROI is visible only if measured by a ray passing through orthogonal to the
direction of the singularity.

It is not clear which methodology is best suited to obtain these missing sin-
gularities. Two possibilities are to modify the data or add strong priors to
the reconstruction algorithms. Regardless of the method, additional informa-
tion, in addition to the data, is required. Another possibility is to change the
measurement set-up, such that the singularities are directly obtained in the
measurements.
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Frame-based variational
formulation

Main authors: Nicolai André Brogaard Riis & Jacob Frøsig.
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In this chapter we introduce a frame-based variational formulation for solving
general CT problems. The idea is that prior knowledge of the objects struc-
ture and the measurement geometry can be incorporated into a weighted sparsity
penalty term by a frame decomposition. Frame decompositions are known as
strong noise reduction techniques for images assuming they are sparsely rep-
resented by the frame. The weights can be chosen to penalise certain frame
elements depending on location and size. The method is tested with wavelets
and shearlets on the region-of-interest tomography problem to determine if the
method is suited for this type of problem.

4.1 Framework

In this section we introduce the necessary framework to develop frames for
the purpose of describing objects by their frame decomposition. The aim is
to present two frames, i.e., wavelets and shearlets, which are well-suited to
represent piecewise constant objects and objects having singularities on curves
respectively. To realise this, some fundamental definitions of frames are intro-
duced, followed by the development of wavelets and shearlets, taking inspiration
from the structure in [8]. As we go through the theory, figures help illustrate
key properties of the frames.
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4.1.1 Frames

We introduce some fundamental definitions and desired properties for a gener-
alisation of orthonormal basis in terms of frames:

Definition 4.1 A sequence, Φ = {ϕµ}µ∈M, where M is a discrete index
space, is called a frame for a separable Hilbert space, X, if

∃A,B > 0 : A‖f‖2 ≤
∑
µ∈M

|〈f, ϕµ〉|2 ≤ B‖f‖2 for all f ∈ X.

For the different frames, we introduce the following related operators.

Definition 4.2 The Analysis operator for Φ = {ϕµ}µ∈M is given by

TΦ : X → `2(M), f 7→ {〈f, ϕµ〉}µ∈M = {cµ}µ∈M.

The Synthesis operator for Φ is given by

T ∗Φ : `2(M)→ X, {cµ}µ∈M 7→
∑
µ∈M

cµϕµ.

Here, the analysis operator describes how to decompose an object into frame
coefficients {cµ}µ∈M. The synthesis operator then describes how to reconstruct
an object that is represented by coefficients for a given frame.

The inverse of the analysis operator is the synthesis operator if an isometry
between X and `2(M), expressed by the synthesis and analysis operator, exists,
i.e., if T ∗Φ TΦ = IX . The way we achieve this is by introducing the following
properties.

Definition 4.3 A tight frame for a separable Hilbert space, X, is a sequence
of functions, Φ = {ϕµ}µ∈M, satisfying Definition 4.1 for A = B giving us the
Parseval-type relation for any f ∈ X:

‖f‖X =
∑
µ∈M

|〈f, ϕµ〉|2,

motivating the alias Parseval frame. Furthermore, for a tight frame we get the
familiar reproducing formula (see e.g. p. 10 in [8]):

f = T ∗Φ TΦf =
∑
µ∈M
〈f, ϕµ〉ϕµ.

Tight frames give a generalisation of orthonormal basis, maintaining the impor-
tant reproducing formula. We are now interested in finding specific tight frames
to give a sparse representation of certain objects.
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4.1.2 Wavelets

We motivate and introduce wavelets being the frontrunner of efficiently encoding
piecewise regular functions in L2(R2). Throughout, we make use of the following
operators.

Definition 4.4 For functions in L2(R2) we define the translation operator
as

Tt : L2(R2)→ L2(R2), φ 7→ φ(· − t),

and the dilation operator as

DM : L2(R2)→ L2(R2), φ 7→ |detM |−1/2φ(M−1·)

given a dilation matrix, M ∈ R2×2.

These operators are quite simple yet fundamental for generalising a basis from
frames. We readily define the general wavelet systems as:

Definition 4.5 We consider the set of functions defined by

Φφ = {φt,M = TtD
−1
M φ = |detM |1/2φ(M(· − t)) : (M, t) ∈ G× R2}

where DM and Tt are given as in Definition 4.4, and G is a subspace of invertible
matrices. If the system, Φ, forms a tight frame on L2(R2), we call φ a wavelet.

Note that a wavelet is simply a function for which a certain collection of trans-
lated and scaled versions form a tight frame. Wavelets are far from being unique
and many different wavelets have been developed with different properties. In
this thesis we consider the Haar wavelet :

Definition 4.6 The 1D Haar wavelet is defined by

φ(t) =


1 0 ≤ t < 1

2

−1 1
2 ≤ t < 1

0 otherwise,

and the 1D Haar scaling function is defined by

φs(t) =

{
1 0 ≤ t < 1,

0 otherwise.
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We can extend the Haar wavelet in two dimensions in the following way:

Definition 4.7 The 2D Haar wavelets are defined by

φH = φs ⊗ φ,
φV = φ⊗ φs,
φD = φ⊗ φ,

and the 2D Haar scaling function is defined by

φS = φs ⊗ φs.

Here ⊗ denotes the product (u ⊗ v)(x1, x2) = u(x1)v(x2) and the subscripts
H,V and D denote the horizontal, vertical and diagonal wavelets respectively.
These four 2D wavelets are illustrated in Figure 4.1.

We can then define the 2D Haar wavelet system as

H = ΦφH ∪ ΦφV ∪ ΦφD ∪ ΦφS . (4.1)

Note that the wavelet system using the 1D Haar wavelets form an orthonormal
basis for L2(R), (see e.g. p. 161 in [9]). Similarly the 2D wavelet system, ΦH,
form an orthonormal basis for L2(R2) and hence a tight frame (see e.g. Chapter
10 in [10]).

These simple wavelets tend to represent piecewise regular functions well and is
one of the two frames considered throughout the thesis.

(a) φH . (b) φV . (c) φD. (d) φS .

Figure 4.1: Illustration of 2D Haar wavelets on a [0, 1]2 grid. Here white rep-
resents the value 1 and black (−1).

4.1.3 Shearlets

In the previous subsection we introduced the Haar wavelet as a well performing
frame for piecewise regular functions. In this subsection we form a frame tailored
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for structures with singularities around smooth curves such as the pipe from
FORCE. In Figure 4.2 we illustrate how a frame with directional information is
able to represent a smooth boundary with fewer frame elements compared to a
frame with no directional component such as wavelets.

(a) Frame with no direction. (b) Frame with direction.

Figure 4.2: Comparing the number of frame elements necessary to represent
a singularity on a smooth curve for frames with or without direc-
tional information.

With this in mind we introduce shearlets as follows.

Definition 4.8 For ψ ∈ L2(R2) the continuous shearlet system, SHψ, is
defined by

SHψ = {ψa,s,t = TtDAaDSsψ : a > 0, s ∈ R, t ∈ R2}.

Here Tt, DAa and DSs are given as in Definition 4.4 where

Aa =

[
a 0
0 a1/2

]
, Ss =

[
1 s
0 1

]
, for a, s > 0.

The difference between the shearlet system and the wavelet system is the use
of the shearing operator before applying dilation. This enables the shearlets to
have a direction, making them more suited for general functions with smooth
singularities.

Currently, the way to construct a tight shearlet frame is by enforcing certain
properties in the frequency domain. Because of the Fourier isometry of L2(R2),
it is equivalent to constructing a tight frame in L2(R2) and the Fourier repre-
sentation of it. The classical shearlet system is a common way of doing this.
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It is defined using the Fourier transform of a wavelet and a bump function as
follows:

Definition 4.9 Let ψ ∈ L2(R2) be defined by

ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1)ψ̂2

(
ξ2
ξ1

)
,

where ψ1 ∈ L2(R) is a discrete wavelet satisfying the discrete Calderon condition
given by ∑

j∈Z
|ψ̂1(2−jξ)|2 = 1, ξ ∈ R a.e.,

with ψ̂1 ∈ C∞(R) and supp(ψ̂)1 ⊆ [−1
2 ,
−1
16 ]∪ [ 1

16 ,
1
2 ], and ψ2 ∈ L2(R) is a bump

function in the sense that

1∑
k=−1

|ψ̂2(ξ + k)|2 = 1, ξ ∈ [−1, 1] a.e.,

satisfying ψ̂2 ∈ C∞(R) and supp(ψ̂)2 ⊆ [−1, 1]. Then ψ is called a classical
shearlet. For more details see [11].

The classical shearlet system forms a tight frame as stated in the following
theorem:

Theorem 4.10 (p. 20 in [8]) Let ψ ∈ L2(R2) be a classical shearlet as in
Definition 4.9, then SHψ is a tight frame for L2(R2).

Even though the classical shearlet system forms a tight frame, some functions
are not well represented by it as shown by the example below:

The support in frequency domain of the classical shearlet is illustrated for three
level of shearings in Figure 4.3. Consider a function in L2(R2) with support
along the ξ1-direction. Then the function is only represented by shearlets for
s→∞. These shearlets would become infinitely narrow. Hence, we motivate to
decompose the shearlet system into parts in regards to the frequency directions
as follows.

Definition 4.11 For φ, ψ, ψ̃ ∈ L2(R2) the cone adapted shearlet system
SHφ,ψ,ψ̃ is defined by

SHφ,ψ,ψ̃ = Φφ ∪Ψψ ∪ Ψ̃ψ̃,
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Figure 4.3: The support of shearlets in frequency domain for different shear-
ings.

where

Φφ = {φt = φ(· − t) : t ∈ R2},

Ψψ = {ψa,s,t = a−
3
4ψ(A−1

a S−1
s (· − t)) : a ∈ (0, 1], |s| ≤ 1 + a1/2t ∈ R2},

Ψ̃ψ̃ = {ψ̃a,s,t = a−
3
4 ψ̃(Ã−1

a S−1
s (· − t)) : a ∈ (0, 1], |s| ≤ 1 + a1/2t ∈ R2},

and Ãa =

[
a1/2 0

0 a

]
.

For the cone adaptive system the shearlet scaling function, φ, is chosen to have
compact frequency support near the origin, which ensures that the system Φφ is
associated with the low-frequency region C0 = {(ξ1, ξ2) : |ξ1|, |ξ2| ≤ 1} illustrated
in Figure 4.4. By choosing ψ to satisfy the conditions of a classical shearlet in
Definition 4.9, the system Ψψ is associated with the vertical cones C1 ∪ C3 =

{(ξ1, ξ2) : |ξ2/ξ1| ≤ 1, |ξ1| > 1}. The shearlet ψ̃ can be chosen likewise with the
roles of ξ1 and ξ2 reversed, i.e. ˆ̃

ψ(ξ1, ξ2) = ψ̂(ξ2, ξ1). Then the system Ψ̃ψ̃ is
associated with the horizontal cones C2 ∪ C4 = {(ξ1, ξ2) : |ξ2/ξ1| > 1, |ξ2| > 1}.

One can construct a tight frame using the cone adaptive shearlet system as
shown on page 28 in [8]. Since the corresponding shearlets are compact in
frequency domain, they are not compactly supported in the spatial domain.
This is an undesired property if one wants to decompose spatially compact
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Figure 4.4: Illustration of the cone separation scheme in frequency domain.

objects by shearlets. Hence, we are motivated to construct a shearlet system
with compactly supported shearlets in spatial domain. Such a shearlet system,
based on the cone adaptive system, is constructed numerically in ShearLab
[12]. The system does not form a tight frame, but has shown to retain a stable
reproducing formula in [8]. Here the following generating functions are used for
ψ.

ψ̂1(x) =


1 |x| ≤ 1

4 ,

cos[π2 ν( 4
3 |x| −

1
3 )] 1

4 ≤ |x| ≤ 1,

0 otherwise,

and

ψ̂2(x) =


sin[π2 ν( 4

3 |x| −
1
3 )] 1

4 ≤ |x| ≤ 1,

cos[π2 ν( 1
3 |x| −

1
3 )] 1 ≤ |x| ≤ 4,

0 otherwise

where ν ≥ 0 is a C2(R) function such that ν(x)+ν(1−x) = 1 for 0 ≤ x ≤ 1. The
scaling function, φ̂, is then defined dependent on ψ̂1 and ψ̂2. Some examples
of the shearlets are illustrated in Figure 4.12 in Section 4.4. Further details of
the implementation for this shearlet system is out of scope for the thesis and we
refer to [13].
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4.2 The variational formulation
Main author: Nicolai André Brogaard Riis.
Co-author: Jacob Frøsig.

In this section we formulate a frame-based variational formulation. The idea
behind the formulation is to include a regularisation term that enforces sparsity
of the object in whichever frame is chosen, in addition to an existing data
fidelity term. This form of variational formulation is general and can be used
for most linear inverse problems. For this thesis, however, we focus on the ROI
tomography problem. That is, the method is based on computing the regularised
solution for the object, x ∈ Rn, to the discrete ROI problem in Model 3.2:

bδΩ = AΩx + e. (4.2)

Given some discrete frame system, Φ = {ϕµ}Mµ=1, with frame elements ϕµ ∈ Rn
and corresponding analysis operator, TΦ, the approximate solution can be found
by the variational formulation:

x∗|α,w,Φ,p = argmin
x∈FM

{
‖AΩx− bδΩ‖22 + α‖TΦx‖pp,w

}
. (4.3)

Here ‖ · ‖pp,w is a weighted `p-norm with strictly positive weights wµ > 0 on each
element given by

‖TΦx‖pp,w =

M∑
µ=1

wµ|〈x, ϕµ〉|p.

For 1 ≤ p < 2 the regularisation term enforces sparsity (see e.g. [14]). The
minimiser of (4.3) is unique for p = 1 if AΩ is injective [15]. It was shown in
[15], [16] that the continuous ROI Radon transform, RΩ, is injective assuming
the given data is continuous and the object, f , is piecewise constant (PC) and
compactly supported in R2. In the discrete case AΩ might not be injective.

For the above variational formulation it is assumed that x has a finite decom-
position (of M elements) with respect to the basis or frame explained by the
assumption on the space:

FM :=

{
x ∈ Rn : x =

M∑
µ=1

〈x, ϕµ〉ϕµ

}
.

Remark. The assumption that x is finitely decomposed by the frame makes
it such that we only need finitely many coefficients to store x in its entirety. It
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follows from an underlying assumption that the object we consider has a sparse
representation in our chosen frame.

When Φ forms a tight frame, we can express (4.3) in terms of its frame coeffi-
cients, cµ = 〈x, ϕµ〉, as a vector c ∈ RM using the synthesis operator, T ∗Φ . The
formulation is as follows:

c∗|α,w,Φ,p = argmin
c∈RM

{
‖AΩT ∗Φ c− bδΩ‖22 + α

M∑
µ=1

wµ|cµ|p
}
. (4.4)

The regularised solution to the frame-based variational formulation (4.3) is then
simply found by applying the synthesis operator to the regularised coefficients,
i.e., x∗|α,w,Φ,p = T ∗Φ c∗|α,w,Φ,p.

4.2.1 Choice of parameters

There are generally four classes of parameters that need to be chosen when
solving (4.3) using frame-based regularisation: The regularisation parameter,
the frame system, the weights and the norm. For the purposes of this thesis we
set the norm parameter p = 1.

Frame system

The choice of frame system is crucial to the quality of the reconstructed solution.
The goal is to choose a frame that represents the object with few coefficients,
while not representing noise and artefacts that would otherwise be generated in
the reconstruction. The choice of frame is hence dependent on the problem at
hand, typically defined by the measurement geometry and type of object.

Regularisation parameter

The regularisation parameter, denoted α, determines how sparsely the recon-
structed image is represented in a specific frame system. If the regularisation
parameter is chosen too small, the solution can be dominated by noise in the
data. If it is chosen too large, then the object is no longer well represented by
the few number of frame coefficients and details of the ground truth will be lost.
A choice in-between these is thus preferable.
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Scale dependent weights

Using scale dependent weights is a way to penalise frame elements differently
depending on their scale. In this case, for frame elements at scales 20, 21, . . . , 2J ,
we set the scale weight by

wj = 2−j+1, j = 1, . . . , J. (4.5)

This can be understood as a heuristic: The frame elements that are twice as
large must be penalised half as much, effectively penalising high frequency infor-
mation. This weight scheme has proven an effective noise reduction technique
for curvelets in [17] and this form of level dependent weights also show up in
wavelet regularisation using Besov norms (see e.g. [18]).

Location based weights: Region-of-Interest

In [15] the idea is to choose a weight sequence for wavelet regularisation such
that, for those basis functions that are only supported in the ROI, Ω, the weight
1 is assigned, and for those only supported only outside some outer weight,
wout > 1 is assigned. In the case that the wavelet is supported both inside and
outside Ω, we assign weight depending on the shared support of the wavelet,
interpolating between 1 and wout.

We can generalise this idea for a given frame system, Φ = {ϕµ}Mµ=1, formally
writing it in the following way: Let wout > 1, we define the weight for each
frame element, ϕµ ∈ Rn, as

wµ = γ(VΩ(ϕµ)).

Here VΩ(ϕµ) is the proportional support of ϕµ ∈ Rn inside the ROI, Ω, given
by

VΩ(ϕµ) =
‖χΩϕµ‖2
‖ϕµ‖2

. (4.6)

Here the mask, χΩ, sets all elements in Ω to 1 and 0 otherwise. Finally γ is
a linear interpolation function, γ(t) = t + (1 − t)wout ∈ [1, wout]. The weight
scheme is most easily illustrated by considering the mask, χΩ, as shown in
Figure 4.5a. Each frame is then assigned a weight depending on its location and
support on this mask. An example of the mask applied on a diagonal 2D Haar
wavelet is shown in Figure 4.6. The proportional support inside the ROI is then
calculated by (4.6).
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Location based weights: Information measure

An extension of the above idea is to let the mask vary depending on the nor-
malised density of rays going though a particular pixel. This is calculated by
summing the length of all rays’ trajectories through the pixel and dividing by
the maximum. Using this type of mask, we assume that the information at a
particular point decreases as fewer rays go through it.

In the case of ROI measurements, we set frame elements that are supported
only inside the ROI to weight 1, and those supported only outside the ROI
have weights that decrease as they go further away from the ROI. This can be
described by changing the mask in (4.6). The mask now depends on the density
of the rays, denoted CΩ, as illustrated in Figure 4.5b. Similarly to before, the
weight is then calculated using (4.6) with the new mask. An illustration of the
mask’s influence on a diagonal 2D Haar wavelet is shown in Figure 4.6.

0

0.2

0.4

0.6

0.8

1

(a) χΩ.
0

0.2

0.4

0.6

0.8

1

(b) CΩ.

Figure 4.5: Illustration of the masks used to calculate the proportion VΩ(ϕµ)
in (4.6). This is then used to decide the weight for each frame ele-
ment using linear interpolation between 1 and some outer weight,
wout.

4.2.2 Fast Iterated Soft-Thresholding Algorithm (FISTA)

We now describe an algorithm for solving (4.4) for p = 1. Essentially the
problem becomes the optimisation of the `1-penalised Tikhonov functional for
a given measurement bδΩ:

c∗|α,w,Φ = argmin
c∈RM

{
1

2
‖AΩT ∗Φ c− bδΩ‖22 + α‖Wc‖1

}
. (4.7)
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(a) φD.
-1

-0.5

0

0.5

1

(b) χΩφD.
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(c) CΩφD.

Figure 4.6: Illustrating the effect of applying the masks from Figure 4.5 on
a diagonal 2D Haar wavelet. The proportion, VΩ(φD), is then
calculated by taking the norm of the images with and without the
mask from (4.6).

Here W : RM → RM is an operator such that Wc = [w1c1, . . . , wµcµ].

Define for convenience:

K = AΩT ∗Φ ,
K∗ = TΦATΩ.

The method of iterated soft-thresholding (ISTA), (also known as Method of Sur-
rogate Functionals [15]) for solving (4.7), is determined by the fixed point equa-
tion: (see e.g. [19],[14] for more details)

c∗|α,w,Φ = Ssαw(c∗|α,w,Φ − sK∗(Kc∗|α,w,Φ − bδΩ)), (4.8)

where Sκ(x) = sgn(x) max(|x| − κ, 0) and s > 0 is a step length. It can be
shown, as in [19], that iteratively updating from (4.8) converges to a minimizer
of (4.7), provided that the step length satisfies

0 < s < 2/‖K‖22. (4.9)

The FISTA algorithm was recently developed as a faster converging method
of the ISTA algorithm in the paper [20]. It is based on the same fixed-point
equation, but uses a linear combination of the previous points for each update.
The paper shows that the ISTA method has a worst-case convergence rate of
the objective function of O(1/k) where k is the iteration number. THe paper
similarly show that the new FISTA method has a worst-case convergence rate of
the objective function of O(1/k2). The FISTA algorithm is shown in Algorithm
1.
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Algorithm 1: Fast Iterated Soft-Thresholding Algorithm (FISTA)

Input: Noisy data bδΩ, ROI Radon Transform AΩ, ATΩ and analysis, TΦ,
and synthesis, T ∗Φ , operators. K = AΩT ∗Φ , K∗ = TΦATΩ.

Output: Reconstruction, x, that is the approximate solution to (4.2).
Assume x ∈ FM for some M ∈ N.
Choose s by (4.9) and some weights w = {wµ}µ=1,...,M

Choose regularisation parameter α.
Initiate start guess c[0]. Let y[1] = c[0] and t1 = 1, k = 1.
while k < kmax do

c[k] ← Ssαw(y[k] − sK∗(Ky[k] − bδΩ))

tk+1 =
1 +

√
1 + 4t2k
2

y[k+1] = c[k] +
tk − 1

tk+1
(c[k] − c[k−1])

k = k + 1

end
return x = T ∗Φ c[kmax]

Remark. In a special course at DTU, the ISTA and FISTA algorithms
were compared with an ADMM algorithm (see Appendix A.1 for derivations
of ADMM update steps for (4.3)). The results showed that, while giving the
same result in the end, the ADMM method was too sensitive to the parameter
choice of the inner iterative solver. In addition, the FISTA method showed a
much faster convergence rate numerically compared to ISTA as expected. Hence
going forward the FISTA algorithm was used as the main tool for solving (4.3).
We do note, that if a more stable solver for the inner update is found, the
ADMM method might converge faster.
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4.3 Weighted wavelet sparsity penalty
Main author: Nicolai André Brogaard Riis.
Co-author: Jacob Frøsig.

In this section we propose a weighted Haar wavelet sparsity penalty for the
variational formulation in (4.3). This was first studied in [15] with weights
depending on the relative location of each wavelet. We add to this by allowing
the weights to depend on scale as well. Hence, the weights on the wavelet
coefficients can be used to modify the penalty term depending on both the scale
and relative location of each wavelet.

Recall, that the frame-based methods solve the ROI problem in Model 3.2:

bδΩ = AΩx + e,

using the variational formulation

c∗|α,w,H = argmin
c∈RM

{
‖AΩT ∗Hc− bδΩ‖22 + α

M∑
µ=1

wµ|cµ|

}
. (4.10)

Here T ∗H and TH are the Haar wavelet synthesis and analysis operators, respec-
tively. The regularised solution is, as before, simply found by applying the
synthesis operator to the regularised coefficients, i.e., x|α,w,H = T ∗Hc∗|α,w,H.

We assume in this method that our object, x, is finitely decomposed with respect
to the discrete 2D Haar wavelet basis denoted H with Haar wavelets denoted
φj,t ∈ Rn. Here φj,t describes every wavelet from (4.1) stored as vectors where
j and t are the scaling and translation parameters, respectively. Using the
notation from earlier, we thus write x ∈ HJ , where

HJ :=

x ∈ Rn : x =
∑

K∈{H,V,D,S}

J(K)∑
j=1

T (j,K)∑
t=1

〈x, φj,t;K〉φj,t;K

 ,

where T (j,K) is the number of translations at scale j for the wavelet type K
and J(K) is the number of scales for the wavelet type K. For a given image
size the number of translations T is fixed for each scale. These parameters are
chosen such that the number of wavelets are fixed by

M =
∑

{k∈H,V,D,S}

J(K)∑
j=1

T (j,K) = n. (4.11)
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4.3.1 Numerical experiments

The following numerical experiments are meant to give an illustration of how
the weighted wavelet regularisation method performs on various test problems
with different choices of parameters. Unfortunately there seem to be no "golden
rule" for how these parameters must be chosen since it depends heavily on the
problem. The experiments are only meant to illustrate the points that we felt
were most essential to explain the behaviour of the method. Many factors, such
as the placement of ROI are not considered in this section. One thing that
should not influence the final image, however, is how the optimisation problem
is solved. We use the FISTA algorithm as described in Algorithm 1 to solve
(4.10). The ADMM method as described in Algorithm 2 in Appendix A.1 is
then used to validate that the images are the same to some numerically accuracy.

For the wavelet synthesis and analysis operators, we use the Matlab implementa-
tion of the discrete 2D Haar wavelet system using the functions wavedec2.m and
waverec2.m. The scaling coefficients, 〈x, φS〉, are not included in the penalty
term by setting their respective weights to 0. The wavelet parameters are fixed
using the largest number of scales possible for a given image size unless stated
otherwise. This is calculated by the Matlab function wmaxlev.m. This num-
ber of scales yield the same number of wavelet coefficients as elements in x as
indicated in (4.11).

The ROI system matrix, AΩ, is generated using the parameters from Table 3.1
as described in Section 3.2 unless stated otherwise. The data is thus as shown
in Figure 3.3b from Section 3.2.

The optimal regularisation parameter is calculated by comparing the recon-
structed image to the ground truth in these synthetic experiments. The com-
parison is done using ROI relative error, REΩ, and mutual information, MIΩ, as
in Section 3.2 and by visual inspection. The idea here is to showcase the effect
of varying the other parameters using a near optimal choice of regularisation
parameter. However, depending on what the reconstructed image of the object
is intended for, one measure of image quality might be preferable over another.
Visual inspection takes precedence over the measures. The visual inspection is
focused mainly on singularities.
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Wavelet phantom

We first consider the weighted wavelet regularisation method on an object which
is represented well by the wavelet basis. To increase the difficulty of the prob-
lem, the detector size in Table 3.1 is decreased to 20 cm making the ROI smaller.
The wavelet phantom is shown in Figure 4.7a and the ROI is indicated in blue.
This phantom can be represented by few wavelet coefficients since it directly
consists of discrete 2D Haar wavelets. The best reconstruction, using the stan-
dard methods described in Section 2.2.4 on the ROI Model 2.6, was found by
the Landweber method after 200 iterations and is shown in Figure 4.7b. We try
the wavelet regularisation method using 2 and 8 scales respectively. The best re-
constructions were found for regularisation parameters 10 and 1 for these scales
and are shown in Figures 4.7c and 4.7d. There is a clear difference between the
wavelet method and the best reconstruction using the standard methods. This
is not surprising since the phantom is made of 2D wavelets. This showcases that
choosing the right frame for the object can give a significant increase in image
quality. At the same time, we see how artefacts outside the ROI are generated
on the wavelet reconstruction using only 2 scales, whereas the reconstruction
using 8 scales do not show these artefacts to the same degree. We believe this
is because the homogeneous region outside the phantom is well represented by
a few large wavelets.

Adding scale weights

We consider the scale weights in (4.5) and how they change quality of the re-
construction for the Shepp–Logan phantom. Recall our methodology is to first
choose the wavelet system and weight parameters and then find the optimal
regularisation parameter. In Figure 4.8 we see that adding scale weights makes
the ring artefact less pronounced in the reconstructions for both noisy and noise
free data. This suggests that the ring artefact is less significant than the singu-
larities from the ground truth in the data fitting, and hence it is removed when
penalising smaller wavelets.

Regularisation parameter

The effect of varying the regularisation parameter is illustrated in Figure 4.9. If
the parameter is too low, then noise dominates the solution. If the parameter is
too high, then the object is represented by too few wavelets thus losing structural
details from the ground truth. If chosen just right, then the solution represents
the ground truth well. Note that scale weights are used in all the reconstructions.
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(a) Wavelet phantom. The ROI is
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(c) Wavelet reconstruction using
8 scales and α = 1.
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(d) Wavelet reconstruction using
2 scales and α = 10.

Figure 4.7: Comparing wavelet reconstructions with the Landweber method
on a 256 × 256 phantom which is represented well by wavelets.
The ROI data is generated with fan-beam projections that fully
illuminate the region indicated by blue in the original phantom.
The data consists of 180 projections all around the object with
256 detector pixels in each and has added 2% relative noise.
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(a) Noise free data. No scale weights.
α = 0.12, REΩ = 0.18, MIΩ = 0.69.
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(b) Noise free data. Scale weights.
α = 0.12, REΩ = 0.16, MIΩ = 0.70.
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(c) Noisy data. No scale weights.hey....
α = 1.2, REΩ = 0.21, MIΩ = 0.67.
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(d) Noisy data. Scale weights.hey....
α = 1.2, REΩ = 0.18, MIΩ = 0.68.

Figure 4.8: Comparing the effect of scale weights on the wavelet coefficients on
the Shepp–Logan phantom from the data in Figure 3.3b in Section
3.2 and on a noise free version of the sinogram. The scale weights
promote larger wavelets over smaller ones, removing small details
that do not fit the data as well.
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(a) α = 0.01,
REΩ = 0.65,
MIΩ = 0.48.

0

0.1

0.2

0.3

0.4

(b) α = 1.28,
REΩ = 0.18,
MIΩ = 0.68.
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(c) α = 100,
REΩ = 0.23,
MIΩ = 0.65.

Figure 4.9: Wavelet based reconstructions on the ROI data in Figure 3.3b from
Section 3.2 for varying regularisation parameter. The method uses
scale dependent weights and has 8 scales.

Adding location based weights

We finally consider the effect of adding location based weights using the schemes
shown in Section 4.2. In Figure 4.11 we see the ROI relative error, REΩ, and
mutual information, MIΩ, measures for varying regularisation parameter and
outer weight wout on the data in Figure 3.3b. No improvement is shown by
adding location based weights for this particular set-up, as long as the regular-
isation parameter is chosen near the optimum. The results hold for both the
ROI and information based weighting schemes. In addition, this was also tested
for other phantoms using the same system matrix generated from Table 3.1 and
for smaller increases in outer weight. For all tests there was seen no improve-
ment in image quality by location based weights, even with and without scale
dependent weights. We note that some problems might benefit from location
based weights, but we have found no improvements in neither error measures
nor by visual inspection. In Figure 4.10 we see the reconstructions given the op-
timal regularisation parameter chosen by the error measures. Note that details
are removed outside the ROI by increasing the outer weight. A lower choice of
regularisation parameter, in turn, increases the frequency inside the ROI which,
in this case, is characterised by noise. We note that for noise free data, with
many details inside the ROI the locations based weights might be beneficial.
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(d) α = 0.07, wout = 10.
REΩ = 0.27, MIΩ = 0.63.

Figure 4.10: Change in image quality by adding location based weights an
addition to the existing scale dependent weights for the weighted
wavelet regularisation method on the data in Figure 3.3b. We
see that there is no obvious improvement to be found by adding
location based weights, although more high frequent elements are
added inside the ROI when using a lower regularisation parame-
ter and higher weight.



64 Frame-based variational formulation

10-2 10-1 100 101 102

Regularisation parameter

0.2

0.3

0.4

0.5

0.6

0.7

Wavelet: Error measures depending on regularisation parameter

RE
Ω

1 - MI
Ω

w
out

 = 1

w
out

 = 5

w
out

 = 10

Figure 4.11: Error measure using weighted wavelet regularisation for location
based weights, wout, while varying the regularisation parameter
on the data in Figure 3.3b. It is observed that if the regularisa-
tion parameter is chosen near the optimum, then location based
weights do not effect the quality of the solution.

4.4 Weighted shearlet sparsity penalty
Main author: Jacob Frøsig.
Co-author: Nicolai André Brogaard Riis.

In this section, we consider a different version of the optimisation problem in
(4.7) with a frame suited for objects with singularities on smooth curves such
as the pipe by FORCE. By having a suited frame, structures that are not well
represented by it, such as artefacts and noise, are removed by the sparsity penal-
isation. It has been shown in [11] that objects with singularities along smooth
curves are well represented by the shearlets described in Subsection 4.1.3. Hence,
we are motivated to use a weighted shearlet sparsity penalty.

The problem at hand is to fit our data, bδΩ, to Model 2.6:

bδΩ = AΩx + e,

by the variational formulation

c∗|α,w,SH = argmin
c∈RM

{
‖AΩT ∗SHc− bδΩ‖22 + α

M∑
µ=1

wµ|cµ|

}
.
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Then, we get the reconstructed object as

x∗|α,w,SH = T ∗SHc
∗|α,w,SH.

For the analysis, TSH, and synthesis, T ∗SH, operators, we use the discrete cone
adaptive shearlet system described in Section 4.1.3. Here, the discrete shearlets,
ψj,s,t;K ∈ Rn, have compact spatial support with scaling, shearing and transla-
tions parameters j, s and t respectively specified for each cone set denoted by
K ∈ {Φ,Ψ, Ψ̃}. Hence, we imply the assumption that our object, x, is finitely
composed by shearlets, i.e., x ∈ SJ,S where

SJ,S =

x ∈ Rn : x =
∑

K∈{Φ,Ψ,Ψ̃}

J(K)∑
j=1

S(j,K)∑
s=1

T∑
t=1

〈x, ψj,s,t;K〉ψj,s,t;K

 .

For a given image size, the number of translations, T , is fixed, i.e., T = n and
the number of scales and shears for Φ is fixed to 1. Throughout the number of
shearings, S(j,K), depends on the scale, j, and cone set, K. This assumption
gets more realistic as we increase the number of shearlets. The total number of
shearlets is given by

M = n
∑

K∈{Φ,Ψ,Ψ̃}

J(K)∑
j=1

S(j,K).
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Figure 4.12: Illustration of different shearlets in spatial and frequency domain.

4.4.1 Numerical experiments

This subsection is dedicated to illustrate the impact of important parameter
settings for the weighted shearlet sparsity penalty on the ROI problem given in
Model 3.2. Throughout, we use the implementation in Shearlab documented in
[13] for the analysis and synthesis operators. Here, a stable version of the cone
adapted discrete shearlet system SH, described in Definition 4.11, is generated
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with spatial compact support. This system does not form a tight frame, which
is de-prioritised to achieve the spatial compactness.

The shearlets thus have a directional component and are compactly supported
in spatial domain as illustrated in Figure 4.12 for shearlets in the first and third
cones. Note that larger scales in Fourier domain correspond to smaller scales in
spatial domain.

The system matrix, AΩ, is generated using the parameters from Table 3.1 as
described in Section 3.2 unless stated otherwise. The data is thus as shown in
Figure 3.3b in Section 3.2.

To perform the optimisation we use the FISTA method described in Algorithm
1. We use the step-size sk = 1/B, where B is the estimated squared two norm
of AT ∗SH computed by using the power method.

Similar to the weighted wavelet sparsity penalty, the regularisation parameter is
found using the ROI relative error, REΩ, mutual information, MIΩ, as described
in Section 3.2 and by visual inspection.

Scale dependent weights and shearings

In the discrete version of the shearlet system from Shearlab, one chooses the
scale levels by specifying the number of scales, J . For each scale we specify a
shear level, i.e., a parameter defining the number of shearings for a given scale.
For a specific scale, j, and shear level, s, the generating shearlet is sheared 2s

times for both Ψ and Ψ̃. This gives us S(s,Ψ) = S(s, Ψ̃) = 2 · 2s + 1 number of
shearings. The shear level is a trade-off between noise/artefact reduction on one
hand and computational complexity on the other. The implementation stores
coefficients for each translation in all pixels of the image, i.e. T = n. Hence,
by increasing the number of shearings we increase the number of coefficients
significantly. That is, going from s to s + 1 shearings for some scale, we get
2(2 · 2s)n additional coefficients.

To illustrate the impact of choosing the right scales Figure 4.13 shows recon-
structions from noise free sinograms using shear levels denoted as a vector,
ssmall = [3, 3] and slarge = [3, 3, 3, 3, 3], i.e., ssmall has 2 scales and a shear level
of 3 for each scale and slarge has 5 scales and a shear levels of 3 for each scale.
Here, we use scale dependent weights to motivate large structures well-knowing
that the shearlets do not scale exactly by 2j .

In the reconstructions using ssmall, illustrated in Figure 4.13a, we see that high
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frequent shearlet-structured artefacts occur outside the region-of-interest, where
no true structure of the ground truth is present. Hence, we are motivated to
use larger scales to avoid these artefacts. In the reconstruction using slarge in
Figure 4.13b, these high frequency artefacts are replaced by larger shearlets
allowing us to see the 3 small ellipses from the ground truth. To decrease
the computational complexity, we can reduce the number of shearings for larger
shearlets. This is illustrated in Figure 4.13c, maintaining the same image quality.
Finally, to confirm that scale weights are necessary, we remove them and show
the reconstruction in Figure 4.13d. The ROI artefact is then visible again. The
ROI ring artefact also remains when varying the number of shearings and scales
with no scale weights.

Regularisation parameter

The importance of the regularisation parameter is illustrated in Figure 4.14,
where a too small, a proper and a too large α is used. Here, the small regu-
larisation parameter, α = 10−4, results in noise corrupted reconstruction and
α = 10 results in missing details from the ground truth. We observe that by
setting the regularisation parameter to α = 0.05, we can retrieve more details
yet avoid total corruption by noise and the ring artefact.

Location based weights

Figure 4.15 illustrates a reconstruction using the information based weighing
scheme with wout = 10. Here the method is shown both with and without scale
dependent weights.

For the one using scale dependent weights, we observe that high frequent struc-
tures are avoided outside the ROI, but the structure inside the ROI is kept high
frequent. The small ellipse structures of the ground truth is still present but
blurred. For the one without scale dependent weights, we observe the left and
right parts of the ring artefact are present. As expected, most attenuation is
inside the ROI since it is not penalised as much.

For the ROI data, the scale dependent weights seem the most important since
they remove the ring artefact. However, for other types of measurement geome-
tries the location dependent weights might show improved results.
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(a) ssmall = [3, 3], α = 1,
with scale weights.
REΩ = 0.30, MIΩ = 0.64.
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(b) slarge = [3, 3, 3, 3, 3], α = 0.02,
with scale weights.
REΩ = 0.17, MIΩ = 0.64.
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(c) SL = [1, 1, 1, 3, 3], α = 0.05,
with scale weights.
REΩ = 0.16, MIΩ = 0.63.
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(d) SL = [1, 1, 1, 3, 3], α = 0.05,
without scale weights.
REΩ = 0.38, MIΩ = 0.65.

Figure 4.13: Shearlet reconstructions on a noise free version of the ROI sino-
gram in Figure 3.3b in Section 3.2 using different shear levels
and scale weights. We see that having large shearlets with scale
weights is necessary to avoid the ring artefact. In addition, larger
shearlets need not be sheared as much.
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(a) α = 0.005,
REΩ = 0.40,
MIΩ = 0.53.
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(b) α = 0.05,
REΩ = 0.2,
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REΩ = 0.17,
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Figure 4.14: Shearlet reconstruction on ROI-data in Figure 3.3b from Sec-
tion 3.2 using shear levels [1, 1, 1, 3, 3] for different regularisation
parameters.
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(a) α = 0.05, wout = 10,
with scale weights.
REΩ = 0.17, MIΩ = 0.68.
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(b) α = 0.05, wout = 1,
without scale weights.
REΩ = 0.7, MIΩ = 0.55.

Figure 4.15: Reconstruction on ROI-data in Figure 3.3b from Section 3.2 using
information location based weights and shear levels [1, 1, 1, 3, 3]
with and without scale dependent weights. We see there is no ob-
vious improvement to be found by adding location based weights.
In addition, location based weights cannot be used to replace
scale dependent weights for removing the ring artefact.
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4.5 Reflections
Main authors: Nicolai André Brogaard Riis & Jacob Frøsig.

4.5.1 Choice of frame

The weighted frame-based sparsity penalty is able to incorporate prior informa-
tion of the object by choosing the right frame and weights for a given measure-
ment geometry. For the ROI problem, we see that the most influential weighting
scheme is the scale dependent weights, which avoid the ring artefacts.

To illustrate the importance of choosing the right frame for a given object,
consider Figure 4.16. In Figures 4.16a and 4.16b the method using shearlet reg-
ularisation performs significantly worse than the wavelet regularisation method,
since the phantom is not well-represented by shearlets. When comparing Fig-
ures 4.16c and 4.16d, we see that the method using shearlets represents details
inside the region of interest better compared to the wavelet method, in which
the reconstruction gets pixelated. Note, this is not reflected in the relative error
and mutual information measures.

4.5.2 Artefact removal

An important feature of the frame based methods is the removal of the ROI
ring artefact. The reconstructions of a modified Shepp–Logan phantom with
added singularities on the ROI-boundary from noise-free ROI-data is shown in
Figure 4.17. Here we observe that the frame-based methods do not remove the
singularities from the ground truth on the ROI boundary. This is an important
feature, since we do not want to remove structures from the ground truth that
are present in the data. This is shown to hold experimentally for different
objects and reasonable choices of parameters. Hence, we are led to believe this
a general property of the weighted frame-based methods.
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(a) Wavelet using α = 1,
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(b) Shearlet using α = 1,
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(c) Wavelet using α = 1.28,
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(d) Shearlet using α = 0.05,
REΩ = 0.20, MIΩ = 0.67.

Figure 4.16: Comparing the best reconstructions using weighted wavelet and
shearlet regularisation on the wavelet and Shepp-Logan phan-
toms. Shear levels are [1, 1, 1, 3, 3] and the wavelets have 8 scales.
Scale dependent weights are used in all reconstructions. This il-
lustrates the importance of choosing the right frame for a given
object.
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(a) Shepp–Logan phantom with
added singularities at the right
and top boundary of the ROI.
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(e) Shearlet using α = 0.01.

Figure 4.17: Reconstructions on Shepp–Logan phantom with added singular-
ities. The frame-based methods with scale dependent weights
avoid the added artefact at the ROI boundary, while still recon-
structing the singularities from the ground truth on the bound-
ary.



Chapter 5

Computed tomography on
deep sea oil pipes

Main authors: Nicolai André Brogaard Riis & Jacob Frøsig.
hey

In this chapter, we apply the insight and algorithms, discussed in previous chap-
ters, to the prototype X-ray inspection device for deep sea oil pipes by FORCE.
The aim is to reconstruct a 2D slice of the pipe from ROI measurement data. We
firstly introduce the physical test set-up and describe how the data is collected.
The data is then compared to simulations from a forward model on a synthetic
phantom, to determine if the model is a realistic approximation to the measure-
ment set-up. In the latter part, we finally test our reconstruction methods on
the real data and discuss how to improve the results.

The real measurement data has been graciously provided by FORCE for use in
this project.

5.1 Prototype set-up

The prototype set-up is meant to be a good approximation of how the data is
acquired on the finalised device. Therefore, it is important to have a good phys-
ical model of the pipe and inspection device. In addition, the prototype should
include any exterior factors that can impact the quality of the measurement
data.
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Figure 5.1: 3D rendering the prototype measurement set-up. The pipe is il-
luminated by X-rays from a betatron source and those X-rays are
detected using a line detector. Note that the pipe is only partially
illuminated since the beam is so narrow. This set-up is meant give
an approximation to the actual measurement set-up illustrated
in Figure 1.1. This illustration has been graciously provided by
FORCE.

To accomplish this goal, the set-up uses the same source and detector as is
intended for the finalised device. That is, a line detector with 8 modules totalling
512 detector pixels and a betatron source outputting X-rays with intensities up
to 6MeV. The object is a section of an actual oil pipe that has been extracted
from the seabed. This gives a good prototype of how the data are acquired in
the final device. The test set-up is illustrated on a 3D rendering in Figure 5.1.

The source outputs X-rays in a cone-beam, which is equivalent to the fan-beam
projections illustrated in Figure 2.3 for the line detector measurements. The
measurements are taken by rotating the pipe and not the source and detector
in the prototype set-up. To perform this rotation, a steel axis is inserted near
the centre of the pipe. This axis will not be present in the actual oil pipes, but
is necessary for taking reliable measurements around the pipe. In addition to
the steel rotation axis, the pipe has 4 layers as illustrated on the cross-section
of the setup in Figure 5.2. The individual pipes, from inner-most to outer-most,
consist of the following materials: Steel, PE-foam, PU-rubber and reinforced
concrete.
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Figure 5.2: Illustration of a cross-section for the prototype set-up. The mea-
surement specifications are in millimetres. The layers of the pipe,
from inner-most to outer-most, consist of the following material:
Steel, steel, PE-foam, PU-rubber and reinforced concrete.

The X-rays are filtered by wolfram before and after entering the pipe to reduce
beam hardening. With this information in mind, we are able to give a rough
estimate of the dampening coefficients for each type of material in the pipe. This
will be important when comparing the forward model to the actual data, since
a synthetic phantom of the pipe is then necessary. This is explained further in
Section 5.3.

5.2 Gathering & preprocessing of data

The data is gathered by the line detector with 512 detector pixels sampling
a photon count every 25 ms and storing an average of these samples for each
angular degree. This gives us a dataset of size 512× 360.

The measured data contains dead pixels located at one end of the detector.
Instead of adding prior to the data, we simply remove these pixels. However,
because the pipe is rotating and not the detector and source, it is crucial to
align the centre of rotation with the centre pixel in the detector, because of the
assumed ROI model. To adhere to this, we also remove the same number of
pixels in the other end of the detector. This reduced detector size is indicated
by the red lines in Figure 5.2. The final dataset has size 491× 360.
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Figure 5.3: Measurements of I0 and I for a specific source position. The zero,
I0, is measured by removing the pipe, and I is measured with the
pipe.

The mathematical model of projections in (2.3) uses a proportional measure,
− ln(I/I0), rather than photon count, where I0 and I are the intensities of the
beam before and after it goes through the object. To approximate I and I0, we
sample with and without the object respectively. These samples are shown for
one source position in Figure 5.3. Note that the intensity of the X-ray beam
is most powerful at its centre. In addition, we observe drops in intensity at
transitions between detector modules.

By modelling from the projection data, − ln(I/I0), we approximate the attenu-
ation of the object alone, excluding other factors such as the drops in intensity
between detector modules. The collection of these projections is then our dis-
crete sinogram, bδΩ, as shown in Figure 5.5b. We note the attenuation is highest
for detector pixels where the X-rays have gone long distances through steel, in-
dicated by the four bright horizontal lines. In addition, we see vertical streaks
that seem to "exit" the sinogram and hence must represent features that are
outside the ROI and hence not measured from all source positions.
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5.3 Comparing forward simulation with obtained
data

We generate a forward model as described in Model 2.6 with the physical param-
eters of the prototype set-up illustrated in Figure 5.2. The parameters necessary
for generating the forward model are shown in Table 5.1. Note that the domain
size is chosen to include the entire pipe, although no other information of the
pipe is included in the forward model.

Table 5.1: The physical parameters used for the forward model to simulate
the prototype set-up. The detector length is adjusted to take dead
pixels into account.

Grid size (N) 512
Number of source locations 360
Number of detector pixels 491
Domain size 55 [cm] × 55 [cm]
Source to centre distance 59 [cm]
Source to detector distance 100 [cm]
Detector length 41.1 · (491/512) [cm]

To verify that our forward model is a good approximation to the measurement
set-up, we need a simulation of the real object to be transformed by our forward
model. A synthetic pipe phantom of size 512 × 512 is shown in Figure 5.4
with ROI indicated in blue. The attenuation coefficients are chosen as follows:
For specific materials a mass attenuation coefficient, κ, is used to describe the
attenuation coefficient as

x [1/cm] = κ [cm2/g] · ρ [g/cm3],

where ρ is the density of the material.

The mass attenuation coefficients depend on the intensity of the beam. The
beam’s intensity is assumed to be 2MeV after leaving the wolfram filter and the
corresponding mass attenuation coefficients are acquired by the NIST database
[21]. The simulated data is observable in Figure 5.5a.

We observe similar structure in the sinograms. Noting that, the ROI is just
outside the steel pipe in Figure 3.2, we are to believe that the high attenuations
in the upper and lower part of the sinograms arise from the out-most steel pipe.
Similarly, the high attenuation closer to the vertical centre of the sinograms is
believed to arise from the rotation axis. Note the small intensity attenuation
difference between the simulated and the real sinogram. This can be explained
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by some errors in the assumption on the intensity coefficients of the object and
measurement errors. As a conclusion, Model 3.2 seems to mimic the overarching
characteristics of the prototype set-up well and we are motivated to use the
forward model in our reconstruction methods.
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Figure 5.4: Synthetic pipe phantom with 512 × 512 pixels. The attenuation
coefficients are chosen to fit a 2MeV intensity beam going through
the pipe described in Figure 5.2.
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Figure 5.5: Comparing the real ROI measurement data with the simulated
data generated from the forward model described by Table 5.1 on
the object in Figure 5.4 on a fine grid. The simulated data has
added 2% relative noise.
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5.4 Reconstructions

We now compare the filtered back projection, Landweber, weighted wavelet and
shearlet reconstructions on the real measurement data. The range of iteration
numbers and regularisation parameters are narrowed down by reconstructing on
the simulated data, for which the ground truth is known. Then, to find the opti-
mal regularisation parameters on the real measurement data, the reconstructed
images are inspected visually. The filter for filtered back projection is chosen as
the Hamming filter. The wavelet and shearlet methods both use scale dependent
weights justified by the analysis in Sections 4.3.1 and 4.4.1. The shear levels are
chosen as [1, 1, 1, 3, 3] and the wavelets have 8 scales.

The results are shown in Figure 5.6. The ring artefact is very clear on the
filtered back projection method and completely dominates the solution. In the
Landweber and frame-based methods, the intensity values of the pipe inside the
ROI fit the assumed attenuation coefficients quite well. It is clear, however, that
the details outside are very obscured. It is hard to tell which of the methods
provide the best reconstructions. Some of the defects in the concrete are more
clearly distinguished in the wavelet and shearlet reconstructions compared to
the Landweber method.

In general, the pipe problem from FORCE is shown not to be well suited for
ROI measurements. This is justified by our synthetic and real experiments. The
ROI boundary lies close to the second steel pipe, which means we cannot trust
the reconstruction of this boundary in the Landweber method. In addition, the
outer layers of the pipe are completely lost in the reconstructions. This can be
explained by microlocal analysis from Corollary 2.24 in Section 3.3.2, since no
rays pass through orthogonal to the direction of the singularities. Hence, we
cannot expect to reconstruct these singularities, since they are not visible in the
data.

This leads us to propose another measurement geometry that captures these
singularities.
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(c) Wavelet regularisation method
with α = 0.21 and scale dependent
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(d) Shearlet regularisation method
with α = 0.03 and scale dependent
weights.

Figure 5.6: Reconstructions from the real data in Figure 5.5b. The shear levels
are [1, 1, 1, 3, 3] and the wavelets have 8 scales. All the methods are
unable to reconstruct most features outside the ROI. The filtered
back projection method shows a significant artefact at the ROI.
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5.5 Exterior tomography

In exterior tomography the data is measured outside some central region, keep-
ing the centre of rotation the same as in ROI tomography. This is in contrast
to ROI, where the data is measured inside this central region. It can be under-
stood by shifting the detector and source some distance orthogonal to the line
going through the source position and centre of rotation as illustrated in Figure
5.7. The goal here is to capture those singularities that are invisible in the ROI
data, namely the boundaries of the pipes lying outside the ROI, along with any
defects that lie along these boundaries.

For the prototype set-up, this is done by lifting the pipe relative to the source
and detector as illustrated in Figure 5.7. Since the pipe is rotating, this is
equivalent to shifting the detector and source in the final device.

Figure 5.7: Illustration of a cross-section of the exterior tomography measure-
ment set-up. The measurements specifications are in millimetres.
Note the centre of rotation is still at the centre of the pipe, but
the relative position of the detector and source is shifted.
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We thus have the following model for exterior tomography:

Model 5.1 (Discrete exterior tomography with noise)
We model the attenuation of X-rays measured by the scheme illustrated
in Figure 5.7 as follows:

bδE = AEx + e, for bδE ∈ Rm,x ∈ Rn and AE ∈ Rm×n.

Here (bδE)i is a measured exterior projection from (2.4) with added Gaus-
sian distributed white noise, e ∈ Rm and AE contains rows corresponding
to the measured X-rays in exterior tomography.

We modify the linear detector version of fanbeamtomo.m to allow shifting the
relative position of the source and detector. This is done relatively easily in the
matrix version of the implementation. The system matrix is hence generated
using the physical parameters for the set-up as shown in Table 5.2.

Table 5.2: The physical parameters used for the forward model to simulate the
exterior tomography prototype set-up. Here the detector length is
adjusted for dead pixels.

Grid size (N) 512
Number of source locations 360
Number of detector pixels 507
Domain size 55 [cm] × 55 [cm]
Source to centre distance 59 [cm]
Source to detector distance 100 [cm]
Detector length 41.1 · (507/512) [cm]
Source & detector shift -13 [cm]

The measurements and simulations are then carried out using exactly the same
parameters as the ROI set-up, except for the added shift in source and detector.
Note that the number of detector pixels is 507, since it is no longer necessary to
remove pixels to centre the pipe in the data. The resulting sinograms for both
the simulated data and real measurement data are shown in Figure 5.8. The
model fits quite well to the real measurement data. Note how the outer layers
of the pipe, seen as the top-most boundaries in the sinogram, are uneven in the
real measurement data.
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(a) Simulated data from forward model.
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(b) Real measurement data.

Figure 5.8: Comparing the real exterior measurement data with the simulated
data generated form the forward model described by Table 5.2.
The simulated data has no added noise and is generated from the
512× 512 object in Figure 5.4.
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Figure 5.9: Exterior mask for information based weights for the measurement
set-up in Figure 5.7.
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The reconstructions using filtered back projection and Landweber methods are
shown in Figure 5.10. The regularisation parameter is chosen by visual inspec-
tion of a range reconstructions. The methods show ring artefacts where the
sinogram is cut-off, just as in ROI tomography. Note for exterior tomography,
we have a cut-off in two places. The outer ring artefact is more clear for the
Landweber method in Figure 5.10b, whereas the inner ring artefact is more
clear in the filtered back projection method in Figure 5.10a, although both are
present in the reconstructions. We expect the frame-based methods with scale
weights can avoid these artefacts, if they are less significant in the data fitting.

The reconstructions for the weighted wavelet and shearlet methods using scale
weights are shown in Figures 5.11a and 5.12a, respectively. Note the artefacts
both inside the inner steel pipe and outside the entire pipe. The wavelet method
does not reconstruct the artefact outside the pipe, since it is not well represented
by the frame. However, the artefact inside the pipe is well-represented, and so
it remains in the reconstruction. We expect the information based weights can
help remove this artefact.

Finally, we try the information based weights using the generated mask shown
in Figure 5.9. The exterior measurement geometry may benefit from this type
of weighting scheme. The reconstructions are shown in Figures 5.11b and 5.12b.
For the wavelet method the added location based weights show a slight improve-
ment by visual inspection. The shearlet method show no obvious improvement
by the added informations weights.
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(a) Filtered back projection using Hamming filter.
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(b) Landweber after 450 iterations.

Figure 5.10: Reconstructions using standard methods from the real data in
Figure 5.8b. The exterior measurements provide better data for
reconstruction of singularities, however, the standard methods
still show added ring artefacts.
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(b) α = 0.1, wout = 5.

Figure 5.11: Wavelet reconstructions with scale dependent weights from the
real data in Figure 5.8b. Compared to the standard methods
the the ring artefact outside the pipe is less pronounced. The
centre ring artefact is represented by a few wavelets and thus
remains. Finally, adding information based weights show a slight
improvement in the image quality.
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Figure 5.12: Shearlet reconstructions with scale dependent weights from the
real data in Figure 5.8b. Similar to the wavelet method the
ring artefact is less pronounced even though it is quite well-
represented by the frame. In addition, new shearlet structured
artefacts show outside the pipe. Finally, adding location based
weights show no obvious improvement in image quality.
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5.6 Reflections

We have shown, that the problem proposed by FORCE is better suited for exte-
rior tomography, since more singularities are captured in the data. Even though
the reconstructions on real data using exterior tomography and frame-based
methods yield good results, we now elude to the fact that some singularities are
still not visible for this particular measurement set-up.

5.6.1 Combining measurement data

Consider the synthetic pipe with added singularities shown in Figure 5.13. From
the reflections in Chapter 3, we note that some of these singularities will be in-
visible using ROI measurements, in addition to the outer layers of the pipe. This
is because there are no rays that pass orthogonal to the singularities direction.
Similarly for exterior measurements, some of these singularities, particularly the
ones that "point" towards the centre of rotation, are invisible in the measure-
ments. We note that the set of singularities that are visible by combining ROI
and exterior data are all possible singularities.

Hence, we are motivated to combine these sets of data. This is done numerically,
by creating a combined system matrix and sinogram as follows

A =

[
AΩ

AE

]
,b =

[
bΩ

bE

]
.

We are then able to use the frame-based reconstruction methods to solve the
combined problem:

Ax = b.

To illustrate the benefit of combining the data, we showcase reconstructions
where the data is generated with inverse crime and has no noise. That is, we use
the same forward model for generating the data and reconstruction. In Figure
5.15 we see the results. Note, how some singularities are not reconstructed using
the ROI data in Figure 5.14a and exterior data in Figure 5.14b. However, when
combining the data, all singularities are visible as shown in Figure 5.15c. We
compare with the Landweber method in Figure 5.15d, which still reconstructs
the outer exterior ring artefact.
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Figure 5.13: Pipe phantom with added singularities.
It is sufficient to consider horizontal
singularities since the pipe is rotationally
symmetric.
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(a) ROI sinogram from the system matrix
generated from Table 3.1.
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(b) Exterior sinogram from the system
matrix generated from Table 5.2.

Figure 5.14: The sinogram generated from the forward models using the phan-
tom shown in Figure 5.13. Notice how some singularities are vis-
ible in the data, while others are not for different measurement
geometries.
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(a) ROI data reconstruction.
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(c) Combined data reconstruction.
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(d) Combined data reconstruction using
Landweber method (500 iterations).

Figure 5.15: Comparing the reconstructions for ROI, exterior and combined
data sets shown from Figure 5.14. The system matrices for ROI
and exterior measurement geometries are generated from Tables
3.1 and 5.2, respectively. The weighted frame-based method is
wavelet regularisation with α = 0.2 and scale dependent weights.
By combining the data from both exterior and ROI measure-
ments we are able to capture and reconstruct all singularities. In
addition, the frame-based method does not generate additional
artefacts in the reconstruction.
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5.6.2 Increased detector size for exterior measurements

Another method to capture all singularities is to increase the detector size, such
that the exterior measurements has rays going through the centre of rotation.
This increase in detector size is not particularly large as illustrated in Figure
5.16. Hence, we increase the detector size to 46.2 [cm].

The generated sinogram is shown in Figure 5.17a. Notice the two new singular
points, which are not present in the sinogram generated from a smaller detector
shown in Figure 5.14b. These singularities in the sinogram correspond to the two
singularities from the ground truth that point towards to centre of rotation. We
reconstruct using the weighted wavelet sparsity penalty and Landweber method
as shown in Figures 5.17b and 5.17c, respectively. Indeed, all singularities from
the ground truth are reconstructed in the image. The wavelet method avoids
adding addition singularities, whereas the Landweber method still creates the
exterior ring artefact, in addition to other small artefacts.

Figure 5.16: Illustration of a cross-section of the exterior tomography proto-
type set-up with a larger detector. The measurements specifica-
tions are in millimetres. Note the centre of rotation is still at the
centre of the pipe, but relative position of the detector and source
has been shifted. With the increased detector size we expect to
capture all singularities of the object.
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(a) Sinogram from simulated exterior
measurements with a larger detector
size.
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(b) Weighted wavelet reconstruction. α =
0.2.
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(c) Landweber reconstruction with 500 it-
erations.

Figure 5.17: Comparing the reconstructions for the extended detector size
with exterior measurement geometry. As expected all singulari-
ties are visible in the data and hence can be reconstructed by the
methods. The Landweber method still creates additional arte-
fact in the pipe as evident from the negative valued ring outside
the pipe.
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Conclusion & future work
Main authors: Nicolai André Brogaard Riis & Jacob Frøsig.
hey

We now give a final conclusion for the project in a broader context, combining
the insights gained throughout the chapters.

We start by evaluating if the mathematical model of X-ray tomography is a
good approximation to reality. The models are shown to maintain the key
properties of how X-rays propagate through objects, even through the hierarchy
of approximations. This claim is mainly supported by how well the synthetic
data fit real the real measurements. This is cemented by the predictions made
in microlocal analysis of the singularities visibility in the continuous model.

We have shown the limitations of region-of-interest tomography, in the sense
that some singularities outside the region-of-interest are not visible in the data
and hence can not be reconstructed. In addition, artefacts are shown in standard
reconstruction methods on ROI measurements at the boundary between fully
and partially illuminated regions.

A variational formulation with a weighted frame-based sparsity penalty is shown
to provide good reconstructions, for objects that are sparsely represented by the
frame. In addition, the added singularities seen for standard methods are shown
to be less prominent in reconstructions by weighted frame-based methods. This
is attributed to the fact that, the singularities are not as significant in the data
fitting and are hence removed by the weighted sparsity penalty.

Finally, the ROI measurement geometry is shown to be an ineffective method of



94 Conclusion & future work

capturing singularities of oil pipes as in the problem proposed by FORCE. An
exterior tomography measurement geometry is proposed and is shown to better
capture the singularities. Finally, by either combining the ROI and exterior
data, or increasing the detector size for the exterior measurement set-up, it is
experimentally shown that all singularities are captured, given enough data.
The weighted frame-based method is shown to give the best reconstructions
for the exterior measurement geometry compared to the considered standard
methods.

Future work

Several interesting studies presented themselves while working on this thesis,
some of which could not be included, because of time limitations, including the
following.

The included continuous model for ROI-tomography uses an altered version of
the Radon transform as the forward operator. It would be interesting to study
this transform in more detail, with the aim of revealing general properties of,
say, its adjoint.

Two different frames, i.e., shearlets and wavelets was studied in the thesis. It
would be interesting to elaborate this study to other frames suited for different
kinds of objects. This could emerge in a catalogue describing which frame
system to use for specific types of objects.

A study of the stability in the reconstruction quality when varying the model,
regularisation and frame parameters could be beneficial. This could be used
to avoid parameter tuning on new problems and quantify the uncertainty of
the reconstructed images. To this end, an interesting topic could be to apply
uncertainty quantification in computed tomography.

As discussed in Section 3.3, we observed a ring artefact when using standard
iterative methods for the ROI tomography. A thorough examination of why
these artefacts occur might present useful insight into how they can be avoided.

One of the issues of using the frame-based methods, is the computational com-
plexity of the frame decomposition. Hence, a faster implementation is highly
beneficial to obtain fast image reconstructions, thus decreasing time spent tun-
ing parameters. This could be done by implementing a fast GPU version of the
synthesis and analysis operators, or by parallelising the FISTA algorithm.
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Appendix

A.1 Alternating Direction Method of Multipliers
(ADMM)

Another method of solving the optimization problem is the Alternating Direction
Method of Multipliers (ADMM). This is derived by rewriting the variational
formulation in (4.7) into a constrained optimization problem:

c∗|α,w = argmin
c∈`2

{
1

2
‖Kc− bδ‖2 + α‖d‖1

}
,

s.t. Wc = d.

The augmented Lagrangian for the above problem is

Lρ(c,d, λ) =
1

2
‖Kc− bδ‖22 + α‖d‖1 + λT (d−Wc) +

ρ

2
‖d−Wc‖22.

The ADMM iterations are then given by (see e.g. [22])

c[k+1] = argmin
c∈RK

Lρ(c,d
[k], λ[k]),

d[k+1] = argmin
d∈RK

Lρ(c
[k+1],d, λ[k]),

λ[k+1] = λ[k] + ρ(d[k+1] −Wc[k+1]).
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Taking derivatives equal to 0 in c and d for the ADMM iterations we find the
following update steps:

c[k+1] = (K∗K + ρW 2)−1(K∗bδ + ρWd[k] −Wλ[k])

d[k+1] = Sα/ρ(Wc[k+1] + λ[k]/ρ)

λ[k+1] = λ[k] + ρ(d[k+1] −Wc[k+1])

where Sκ(x) = sgn(x) max(|x| − κ, 0). The step-size parameter, ρ, can be up-
dated using the rule from [22] as follows:

ρk+1 :=


τ incrρk if ‖rk‖2 > µ‖sk‖2
ρk/τdecr if ‖sk‖2 > µ‖rk‖2
ρk otherwise ,

(A.1)

where µ > 1, τ incr > 1 and τdecr > 1 (typically µ = 10 and τdecr = τ incr = 2).
Here rk = dk −Wck is the primal residual and sk = ρW (dk − dk−1), the dual
residual. This leads us to the ADMM algorithm shown in Algorithm 2.

Note that the first update in the while loop, for the ADMM algorithm, requires a
solve on a linear system of equations. In the case of frame-based variational reg-
ularisation, it requires an iterative solver, such as a conjugate gradient method.

Algorithm 2: Alternating Direction Method of Multipliers (ADMM).

Input: Noisy data bδΩ, ROI Radon Transform AΩ, ATΩ and analysis, TΦ,
and synthesis, T ∗Φ , operators. K = AΩT ∗Φ , K∗ = TΦATΩ.

Output: Reconstruction, x, that is the approximate solution to (4.2).
Assume x ∈ FM for some M ∈ N.
Choose some initial ρ > 0 and some weights w = {wµ}Mµ=1.
Choose regularisation parameter α.
Initiate Start guess c[0],d[0], λ[0].
while k < kmax do

c[k+1] = (K∗K + ρW 2)−1(K∗bδΩ + ρWd[k] −Wλ[k])

d[k+1] = Sα/ρ(Wc[k+1] + λ[k]/ρ)

λ[k+1] = λ[k] + ρ(d[k+1] −Wc[k+1])
Update ρ by (A.1)
k = k + 1

end
return x = T ∗Φ c[kmax]
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A.2 Additional theory

Definition A.1 The Schwartz space S(Rn) is defined as the set of all func-
tions f ∈ C∞(Rn) for which

‖f‖α,β := sup
x∈Rn

∣∣xβDαf(x)
∣∣ <∞

for all multi-indices α, β ∈ Nn0 , where Dα = ∂α/∂xα.

Definition A.2 (Fourier Transform) The Fourier transform of a func-
tion f ∈ L1(Rn) is defined by the operator F : L1(Rn)→ C0(Rn) of a function

Ff(ξ) := f̂(ξ) = (2π)−n/2
∫
Rn
f(x)e−i〈x,ξ〉dx.

That the Fourier transform maps into all continuous functions vanishing at
infinity is shown by the Riemann-Lebesgue Lemma. Hence it does not necessary
hold that f̂ ∈ L1(Rn). We can now define the Inverse Fourier transform

Definition A.3 (Inverse Fourier Transform) The inverse Fourier
transform of a function g ∈ L1(Rn) is defined by

F−1g(x) := (2π)−n/2
∫
Rn
g(ξ)ei〈ξ,x〉dξ.

Hence, if f̂ ∈ L1(Rn) then the equality F−1f̂(x) = f(x) holds. In particular it
can be shown that if f ∈ S(Rn) then f̂ ∈ S(Rn) ⊂ L1(Rn).

One of the most central results in tomography is the Fourier Slice Theorem.
It relates the Radon transform of a function to the function itself by Fourier
transforms. In the following we use the 1D Fourier transform of Rf(θ, s) along
s and denote it by R̂f(θ, σ) = FsRf(θ, σ). Whenever an angle, θ, is fixed we
denote the Radon transform for a fixed angle by Rθf(s).

Theorem A.4 (Fourier Slice Theorem) For f ∈ S(Rn) and θ ∈ Sn−1

we have
R̂θf(σ) = (2π)(n−1)/2f̂(σθ), σ ∈ R.

Proof. Applying the definition of the one-dimensional Fourier transform of
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Rθf over s and then the Radon transform we get

R̂θf(σ) = (2π)−1/2

∫
R

Rθf(s)e−isσds

= (2π)−1/2

∫
R

∫
θ⊥

f(θs+ y)dy e−isσds

= (2π)−1/2

∫
R

∫
θ⊥

e−isσf(θs+ y)dyds.

Now, let ϕ : θ⊥ × R → Rn, be defined by ϕ(y, s) = sθ + y, and let u = (y, s).
Note that s = x · θ = θ · x over θ⊥ and that θ⊥ × R is an open set. Then by
change of variables we see that

R̂θf(σ) = (2π)−1/2

∫
R

∫
θ⊥

e−isσf(ϕ(u))du

= (2π)−1/2 1

|detDϕ(u)|

∫
Rn

e−iσθ·xf(x)dx.

Noting that |detDϕ(u)| = 1, we get the desired result

R̂θf(σ) = (2π)−1/2(2π)n/2

(2π)−n/2
∫
Rn

e−iσθ·xf(x)dx


= (2π)(n−1)/2f̂(σθ).

�

Using the Fourier Slice Theorem, one can derive an inversion formula for the
Radon transform.

Theorem A.5 (Inverse Radon Transform) For f ∈ S(Rn) and the
Radon transform Rf(θ, s), θ ∈ Sn−1, s ∈ R we have that f is given by

f(x) =
1

2
(2π)−n+1/2

∫
Sn−1

∫ ∞
−∞
FsRf(θ, σ)eiσ〈x,θ〉|σ|n−1dσdθ.

Proof. Assume f ∈ S(Rn). Then by applying the inverse Fourier transform
on f̂ ∈ S(Rn), we can write

f(x) = (F−1f̂)(x) = (2π)−n/2
∫
Rn
f̂(ξ)ei〈x,ξ〉dξ. (A.2)
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Let U = Sn−1 × (0,∞) and V = Rn\{0}. Note, U and V are open sets and
since the singleton {0} has measure zero in Rn the integral over U and R3 are
equal. Furthermore, let

ϕ : U → V, (σ, θ) 7→ σθ = ξ

for θ ∈ Sn−1 and σ ∈ (0,∞). Then we can write any ξ ∈ V as ξ = ϕ(σ, θ) = σθ.
Noting that |det[(Dϕ)(σ, θ)]| = |σ|n−1 we have by change of variables on (A.2)
the following.

f(x) = (2π)−n/2
∫
Sn−1

∫ ∞
0

f̂(σθ)ei〈x,σθ〉|σ|n−1dσ dθ.

The Fourier Slice Theorem A.4 and Rf being even then yields

f(x) = 2π−n+1/2

∫
Sn−1

∫ ∞
0

FsRf(θ, σ)ei〈x,σθ〉|σ|n−1dσ dθ

=
1

2
(2π)−n+1/2

∫
Sn−1

∫ ∞
−∞
FsRf(θ, σ)ei〈x,σθ〉|σ|n−1dσ dθ

�
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