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Abstract

Functional brain connectivity, the statistical dependence between activity in
segregated brain regions, has been studied extensively over the last two decades.
Most models that describe functional connectivity have parameters in the model
that do not change over time, implicitly assuming that functional connectivity
is temporally static. Recent research shows that a wealth of information can be
gained by modeling functional connectivity in a dynamic setting, i.e. that the
brain can be in different states throughout an experiment. We investigated two
different non-parametric Bayesian models of dynamic functional connectivity,
one simple model with relatively few parameters, and another more complex
model with relatively many parameters. Both were based on the infinite hid-
den Markov model to model transitions between brain states. We investigated
how model complexity can affect the number of states extracted from data, and
how that affects our interpretation of dynamic functional connectivity. We first
conducted several synthetic experiments, generating data from the two models
considered and afterwards ran inference by Markov chain Monte Carlo on the
same data. The aim of this was to study the behaviour of the models in a set-
ting where there was a clear model-mismatch. Furthermore, we investigated
whether the models were able to characterize task and resting state functional
magnetic resonance imaging (fMRI) data from the Danish Research Center
for Magnetic Resonance (DRCMR) and from the Human Connectome Project
(HCP). On synthetic data we showed that the simple model found many states
on data generated from the complex model, but that the complex model was
able to find the true number of states in data from the simple model. We found
that the more complex model with only one state could characterize real-world
data better than the simple model that found evidence for multiple states. The
fact that the complex model only found one state in real-world data contradicts
our intuition that multiple brain states should be present, but this could be ex-
plained by the dimensionality reduction carried out in this project. The results
of this thesis indicate that one must always interpret dynamics in functional
connectivity in terms of the model used and especially its limitations. We sus-
pect that preprocessing and dimensionality reduction has a huge impact on the
conclusions that can be drawn. This should be investigated further.

Keywords: Dynamic Functional Connectivity, Functional Magnetic Resonance
Imaging, Bayesian Non-parametric Modeling, Human Connectome Project
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Chapter 1

Introduction

The human brain has been studied in centuries due to its magnificence and
complexity, and we are by no means done with this investigation. As our tech-
nology has become more advanced we have come up with advanced, both
invasive and non-invasive, tools to measure how the brain looks and works.
Historically, functional magnetic resonance imaging (fMRI) has been used as a
technique to investigate the activity of different brain regions in a non-invasive
manner (Ogawa et al. [1992], Kwong et al. [1992]). A large portion of the stud-
ies in the last decade that analyse fMRI data have been focused on the syn-
chronous activity of spatially different regions in the brain, this field being
termed functional connectivity. It has for instance been shown that functional
brain networks of connectivity extracted from fMRI can be used as biomark-
ers for diseases such as schizophrenia or Alzheimers (cf. Calhoun et al. [2009],
Buckner et al. [2009]). But a problem with most models used in the past is that
they most likely represent an oversimplification of true underlying physical
phenomena, since they explicitly or implicitly assume that parameters govern-
ing the functional interaction between brain regions do not change over time
(cf. Hutchison et al. [2013]). We can imagine that this is not the case - most
brains regions most likely do not interact in the same way during sleep as they
do during a stressful examination in advanced statistics. We thus need statisti-
cal models that can account for the variability and change of parameters over
time, i.e. dynamic models. This thesis will consider the problem of modeling
dynamic functional brain connectivity using Bayesian non-parametric statis-
tics.
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1.1 Functional Magnetic Resonance Imaging

Functional magnetic resonance imaging (fMRI) is a non-invasive neuroimag-
ing technique that started seeing use in the 1990’s. fMRI indirectly locates ar-
eas of the brain that are active by identifying the oxygen-needs of groups of
neurons, i.e. the rationale here is that neurons that need oxygen are also active
(cf. Stippich et al. [2007]). The measured signal is often referred to as the blood
oxygen level dependent (BOLD) signal (cf. Ogawa et al. [1992] and Kwong
et al. [1992]). After a stimulus is applied to a neuron, oxygenated blood runs to
the area around it, but there is a delay from the onset of the stimuli and until
the BOLD signal reaches its peak. The phenomenon is called the hemodynamic
response, and the function describing the BOLD signal as a function of time af-
ter an onset of a stimuli is called the hemodynamic response function (HRF). The
HRF is modelled often as a sum of two gamma functions and assumed to be
the same over the entire brain but that is a simplification. A lot of research is
focused on modeling the HRF differently over subjects and areas in the brain
(cf. for instance Gössl et al. [2001]).

The key thing that makes these measurements possible is the magnetic prop-
erties of haemoglobin. Oxygenated haemoglobin is paramagnetic (and thus
attracted by magnetic forces) whereas de-oxygenated haemoglobin is diamag-
netic (and thus repelled by magnetic forces). Using a strong magnetic field
(like the magnet inside an MRI machine) can align the magnetic moments of
all molecules forming the basis for a measurable signal. In an fMRI scan the
brain is partitioned into voxels (small cubes) where the BOLD signal is extracted
from each voxel. The spatial resolution is a term used to define how many vox-
els that have been used, whereas the temporal resolution defines how often
we can capture the measurements. Compared to many other neuroimaging
methods fMRI has a good spatial resolution (in some cases the voxel size is 1
mm3) but relatively worse temporal resolution (especially compared to elec-
troencephalography (EEG)). Ogawa et al. [1992] and Kwong et al. [1992] were
the first teams to use fMRI to show appropriate brain activity patterns when
subjects were asked to clench their hands and look into flashing lights respec-
tively. This was a huge victory for this non-invasive method which paved the
way for new neuroimaging research.
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1.2 Functional Connectivity and the Default Mode
Network

As mentioned, fMRI saw its birth in the early 1990’s and was in the begin-
ning used exclusively for identifying areas of activity associated with a spe-
cific brain function, called functional segregation. The interest here is localizing
brain function, whereas functional integration is the concept of how spatially
segregated brain regions interact in a given mental state. But as Friston [2011]
points out "functional segregation is only meaningful in the context of functional in-
tegration and vice versa". What this means is that we cannot talk about localized
brain function without also analyzing the relation to other segregated regions,
and we cannot describe an interaction between brain regions without defin-
ing the regions of functional segregation. This brings us to the term functional
connectivity, which by Friston [2011] is defined as the "statistical dependencies
among remote neurophysiological events". Thus if we with some statistical power
can establish activity in two (or more) spatially separated brain regions we
say that they are functionally connected given the circumstances of the exper-
iment. Over the last decade functional connectivity (FC) studies have grown
in number, and the scientific questions we can ask increase in complexity (cf.
Smith [2012]). Commonly, the correlation coefficient between the BOLD time
series of two regions has been used as a measure of statistical dependence,
from which we can extract weighted networks of FC. One of the most stud-
ied brain networks is the default mode network (DMN) associated with and
found in resting-state brain data. Raichle et al. [2001] searched for a baseline
brain-state and found, using fMRI and positron emission tomography (PET),
that a number of areas consistently decreased in activity during a variety of
task experiments, thus defining the DMN. The DMN has from that point on
been studied at length, for instance by Greicius et al. [2004] in the context of di-
agnosing Alzheimers disease (AD). They showed in a motor-task experiment
with 26 subjects, 13 with AD and 13 healty, that the AD group displayed de-
creased connectivity in parts of the DMN compared to the control group, thus
yielding a potential non-invasive biomarker for AD.

1.3 Effective Connectivity

Friston [2011] points out that neurophysiological events and activity as mea-
sured in fMRI can arise from a number of factors not directly linked to a func-
tional meaning. Therefore he argues that effective connectivity, defined as "the
influence that one neuronal system exerts over another", is a more appropriate con-
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cept to analyse. Harrison et al. [2003] investigated the use of a multivariate
autoregressive (VAR) process to describe fMRI data and to model effective
connectivity. A directed network was extracted to show what connections be-
tween brain regions existed and in what direction the connectivity was present.
The whole framework was adopted from a fully Bayesian approach, allowing
model order selection from Bayesian evidence. Assuming that the data was
generated from a VAR(p) process, i.e. a VAR process dependent on the previ-
ous p time points, each connection’s VAR-coefficients were tested if they were
significantly non-zero. The p-values from these tests were used as strengths
in the directed network extracted. Further research of effective connectivity
resulted in Friston et al. [2003] publishing the famous dynamic causal model
(DCM), a differential equation model embedded in the Bayesian framework.
In the DCM, neuronal activity is modelled as a continuous latent variable and
the observed signal as a non-linear transformation of the neuronal activity. A
very desirable property of the DCM is that the hemodynamic response function
(HRF), is directly accounted for in the non-linear transformation. Inference in
the model is carried out using variational Bayes, specifically by minimizing the
free energy, and model comparison can easily be carried out in this Bayesian
setting by the evidence of the models in consideration. Shortly after Harrison
et al. [2003] presented their VAR framework, Goebel et al. [2003] presented a
method for analyzing the Granger causality (sometimes called G-causality) of
two multivariate time series, i.e. whether the prediction on one time series
can be improved by including the other in the model. The method compares
the covariance estimates from three VAR models; two models trained on the
two time series at hand and a third model trained on the stacked time series.
This gives a measure of how much covariance that can be "gained" by mod-
elling the two time series together. The DCM and G-causality model have been
the two major models describing effective connectivity throughout the 2000’s.
Both methods have been criticized in the literature, DCM for the lack of robust-
ness of the variational inference and G-causality for the lack of hemodynamic
response modelling (cf. Stephan and Roebroeck [2012]).

1.4 Dynamic Functional Connectivity

Previously, almost all studies have either implicitly or explicitly assumed tem-
poral stationary integration between segregated brain areas during the scan
period. But as pointed out by many, this might be a simplification of the true
underlying process, and intuitively it would make sense that brain regions in-
teract in different ways at different times. Hutchison et al. [2013] present in
their review paper of recent research that multiple authors find it of increas-
ing importance to model functional brain connections dynamically. One very
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popular way to model temporal dynamics of the BOLD signal is by a sliding
window approach. Each time-series is windowed and functional connectivity
(FC) measures and models are calculated on each of the windows extracted.
An example of this can be seen in figure 1.1, where the correlation is used as a
measure of FC yielding correlation matrices.

Static

Sliding window

Figure 1.1: An illustration of the sliding window approach to extract correla-
tion matrices from subsequences of a mulitvariate signal. In the
static approach, the correlation matrix is calculated based on the
entire time series. In the sliding window approach (applied to the
same time series), the time series is divided into subsequences (in
this case 3) of a fixed length (called the window length), and the
correlation matrix is extracted from each of the subsequences.

Allen et al. [2012] used the group independent components (IC) (cf. Calhoun
et al. [2001]) from 405 subject’s resting state data to create correlation matrices
from each subsequence extracted by windowing the IC time-series. The upper
triangular part of the covariance matrix was stacked into a vector, and k-means
clustering was performed on all the correlation matrices extracted from all win-
dows and subjects. The conclusion was that some of the cluster centroids, i.e.
archetypal brain networks, were identified with the traditional DMN and some
with previously unanticipated functional connectivity patterns. Previous stud-
ies analyzing the DMN by Kiviniemi et al. [2011] suggested partly the same
conclusion, namely that the DMN exhibits spatial variability over time.
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Another dynamic sliding window approach was investigated by Yu et al. [2015]
to distinguish between schizophrenic (SZ) patients and a healthy control group.
They extracted windowed correlation matrices from spatial group ICA using
only IC’s pertaining to physiological meaning. Looking at the correlation ma-
trices as a time evolving graph, a number of network statistics (such as the
clustering coefficient) were calculated. These quantities were then used to sta-
tistically test the dynamics of the connections. They found that the network
statistics considered had a significantly lower variance in the SZ group com-
pared to the heatly control group, which could be useful for characterizing and
diagnosing the disease.

Zalesky et al. [2014] used windowed correlation matrices to test the pairwise
functional stationarity of all regions in the Automated Anatomical Labeling
(AAL) atlas. They used a stable two-dimensional VAR model for each con-
nection, fitted it to the true data, and generated a new dataset from the VAR
model, called the null data, i.e. a data set that satisfied the null hypothesis of
stationarity. The true data was tested against the null data for each of the 6670
connections repeated over 10 subjects, and the null hypothesis was rejected on
average for around 300 connections. The top-100 dynamic connections were
analyzed further and were found to be fairly consistent over subjects, suggest-
ing a modular functional structure in the brain were the large scale organiza-
tion is static and that a few connections are dynamic.

A drawback of using the sliding window approach is influence of window
length. One way to overcome this is by using more advanced frequency anal-
ysis methods. Chang and Glover [2010] used a wavelet transform analysis to
generate two-dimensional maps of the BOLD-signal correlation between two
regions of interest in both time and frequency. They showed that the posterior
cingulate cortex (PPC), normally associated with the DMN, varied in correla-
tion with other regions outside the DMN in both time and frequency, suggest-
ing a dynamic behaviour of the PPC.

Stemming from the viewpoint that a significant dynamic connectivity pattern
is one that is repeated during recording, Majeed et al. [2011] investigated a
novel method to detect recurring functional configurations in rat and human
brains. Starting from a random initial time point, a subsequence with a user de-
fined window length is extracted as a template for the recurring pattern. This
template is then alternatingly updated in the following two steps; 1) Sliding
window correlation between the template and the original sequence (across
all regions) is calculated and timepoints above a certain threshold are identi-
fied. 2) The template is updated by averaging the identified timepoint’s spatial
maps. The authors found that the recurring patterns were identifiable in the
data analysed and that the maps found were robust toward choice of window
length.
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In work by Tagliazucchi et al. [2012] it was pointed out that the networks ex-
tracted from previous research, i.e. DMN or task positive network (TPN), are
dominated by a few time-point measurements. Liu and Duyn [2013] devel-
oped a framework to utilize this and find single time instances of spontaneous
activity resembling these networks, rather than blurring out these configura-
tions by averaging over time. In their approach a single-volume is considered
as a seed region, and by thresholding the activity in that particular volume,
time points of interest are identified. From these time-points the activity from
all voxels was collected and stacked into vectors, and afterwards a k-means
clustering was performed with the correlation distance. All instances from the
same cluster were averaged yielding k so-called co-activation patterns (CAP’s).
Notice here that the threshold level can be used to go from very fine-grained
spontaneous activity (high threshold) to a more averaging based approach (low
threshold). They confirmed that only a few time-points dominate the networks
known from literature (DMN and TPN).

1.4.1 Validation of Found Dynamics

In the preceding section we have described multiple ways of finding dynamic
functional connectivity and connectivity states. But now the question is how
do we validate that they have a physiological meaning? Hutchison et al. [2013]
reviews some of the efforts that have been made in this direction and two of
the frameworks will be highlighted here. The first framework is based on hav-
ing a simultaneous measurement in another modality, such as EEG (cf. Duyn
[2012]) or local field potential (LFP) (cf. Schölvinck et al. [2010]). If the con-
nectivity networks extracted from fMRI are somehow consistent with time-
evolving networks extracted from the other modality, we can with higher cer-
tainty conclude that dynamics are present. The second framework to validate
dynamics comprises correlation of the functional connectivity patterns with a
behavioural response from a task-experiment for instance. Thompson et al.
[2013] showed that a high anti-correlation between the DMN and a task net-
work a few seconds before the task stimuli was predictive of faster reaction
time by the subject. This means that the BOLD dynamics can be validated if a
’ground truth’ is available, i.e. some human behaviour that can be explained
by the networks extracted.
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1.5 Project Outline

In this master thesis we will investigate different models for modelling dy-
namic functional connectivity. The models considered will be extensions of
already existing state-of-the-art frameworks for this type of analysis (i.e. Allen
et al. [2012], Zalesky et al. [2014], Korzen et al. [2014]). The extensions will
be based on Bayesian non-parametric methods to avoid choosing certain pa-
rameters in the existing models, especially the number of states. We will in
particular consider using VAR models to model a filtering process of the brain
signal, and covariance matrices to model functional connectivity patterns. The
dynamics, i.e. switching from one state to another, will be modelled as a non-
parametric hidden Markov model as described in Van Gael [2012].

Two models will be analysed, one where only the covariance of the signal is
dynamic and another where both the covariance and an accompanying VAR
process can change over time. A study of synthetic data from both models,
will answer how the models behave on data generated from a different model.
We will thereby analyse what the consequences are of choosing a simple model
(in terms of parameters) for a complex problem and vice versa. It is suspected
that the ’simple’ model will find too many states, and therefore is relatively
worse to characterize the ’dynamics’ of the data compared to a more ’complex’
model.

Finally, the models will be applied to real world data. Data from the Danish
Research Center for Magnetic Resonance (DRCMR) and from the Human Con-
nectome Project (HCP)(cf. Van Essen et al. [2012]) is available throughout the
project. We wish to validate the use of dynamic models on real-world data by
quantifying with the predictive likelihood how well the models capture dy-
namics in previously unseen data. We have multiple task-experiment data sets
from multiple subjects and expect the dynamics to be different from task to
task, which should be reflected in the predictive likelihood.

Korzen et al. [2014] showed results that indicated functional connectivity dy-
namics not being shared over subjects, i.e. that each subject displayed its own
brain states not found in other subjects. In this project, we will therefore mainly
focus on modelling single-subject brain dynamics. We expect that a model fit-
ted to one task should perform well in terms of predictive likelihood on unseen
data from the same task carried out by the same subject.
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The main research questions can thus be formulated as follows,

• How can functional brain dynamics be modelled in terms of non-parametric
Bayesian statistics?

• How does the choice of model influence the interpretation of dynamic
functional connectivity?

• Can the models be used to characterize brain states in real-world data
from single-subject simple task-based fMRI studies?

The thesis will have the following structure. In chapter 2 we will present all the
necessary methods for modeling dynamic functional connectivity, including a
detailed description of the models we will use. In chapter 3 we will present the
real-world data analysed and some of the preprocessing that was carried out.
The main results of the thesis will be presented in chapter 4, both from synthetic
and real-world experiments. In chapter 5 the research questions will answered
and discussed. Finally, the thesis will be summarized briefly in chapter 6.



Chapter 2

Theory

In this chapter we present the methods and models used to analyse functional
connectivity in a dynamic setting. In section 2.1 the vector autoregressive
(VAR) model will be described, followed by a description in section 2.2 of an
extension into a mixture of VAR models. In section 2.3 we briefly introduce
the hidden Markov model, a general framework for sequential data, that will
be necessary to understand its non-parametric extension described in detail in
section 2.4. In this section we will delve into two observed data models, namely
an inverse Wishart mixture and a mixture of VAR’s. In section 2.5 we briefly
describe the switching vector autoregressive model proposed by Willsky et al.
[2009]. In section 2.6 we describe how we estimate the parameters in the gener-
ative models by Markov chain Monte Carlo sampling. Finally, in section 2.7 we
will describe a general framework for predicting on new data given the models
earlier described.

2.1 Vector Autoregressive Model

The vector autoregressive (VAR) process is a model for multidimensional sig-
nals that depend directly on their past values (cf. Kirchgässner et al. [2012] for
an introduction to AR and VAR models). It has seen use in many applications
in economics and neuroscience, and in the latter the VAR model has been used
both for modeling effective connectivity (cf. Goebel et al. [2003]) and for mod-
eling the noise process in fMRI data (cf. Lund et al. [2006]). Formally we write
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that the P -dimensional signal at time t = 0..T−1, xt, follows the VAR-equation,

xt =

(
M∑
τ=1

Aτxt−τ

)
+ εt, (2.1)

in which M is the model order (i.e. how many past values we use to regress
on the present), Aτ is a matrix of size P × P containing the lag specific coeffi-
cients, and εt is the P -dimensional noise (sometimes called the innovation). Of-
ten statistical assumptions are made on the expectation of both the signal and
the covariance of the noise when estimating the coefficients in the model, for
instance a mean zero signal and no covariance between two successive innova-
tion terms, i.e. white noise. Collecting all model parameters in one large ma-
trix can greatly simplify the later least-squares estimation of aforementioned
parameters, i.e. rewriting (2.1) and disregarding the noise yields,

X = AX̄, (2.2)

where X is a p× (T −M) matrix, A is a p× (p ·M) matrix and X̄ is a (p ·M)×
(T −M) matrix.

These are defined as follows,

X = [xM xM+1 · · · xT ]

A = [ A1 A2 · · · AM ]

X̄ =


xM−1 xM · · · xT−1

xM−2 xM−1 · · · xT−2

...
...

...
...

x0 x1 · · · xT−M

 .

The model parameters can for instance be found using the Moore-Penrose in-
verse (cf. Penrose [1955]) in (2.2). If we denote the Moore-Penrose inverse of a
matrix Y as Y†, the solution to (2.2) becomes,

A = XX̄† = XX̄T
(
X̄X̄T

)−1
. (2.3)

2.2 Mixture of Vector Autoregressive Models

One simple way to model time dynamics in fMRI data is to use a mixture of k
vector autoregressive (VAR) models. This following framework is considered
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only as a stepping stone to the more advanced non-parametric models that are
the cornerstone of this project. Each VAR process can be formally written as,

fk(t) =

(
M∑
τ=1

A(k)
τ xt−τ

)
, M ≤ t ≤ T (2.4)

in which the signal x is assumed to have zero mean in expectation and A
(k)
τ is

the model coefficient matrix for the k’th process at time lag τ . Viewing this as
a discrete latent variable model, a simple generative model can be written as
follows,

z ∼ Cat(π,K), (2.5)

vec(Ak) ∼ N (0,R), (2.6)

σ2
t ∼ G−1(β1, β2), (2.7)

xt ∼ N (A(zt)x̄t, σ
2
t I), (2.8)

in which Cat(...,K) is the K-categorical distribution, π is a vector of mixing coef-
ficients, vec(·) is the vectorization operator (i.e. stacking values in a vector), N
is the multivariate normal distribution, R is a diagonal PPM × PPM -matrix
defined as the kroenecker product R = Rτ ⊗ IPP , where Rτ is a vector of
length M containing the prior variances on the time lags of A(k), G−1 is the
Inverse-Gamma distribution and x̄t the corresponding past to time t stacked
into a vector. A detailed description of the expectation-maximization infer-
ence procedure implemented in this project is described in appendix A.1. This
model has the downside that heuristics must be enforced to choose the num-
ber of components K and it does not take into account the obvious sequential
structure of the data in the clustering. Thus the next section will briefly de-
scribe a general class of models that incorporate time-dependencies.

2.3 Hidden Markov Models

A hidden Markov model (HMM) is a special case of the latent state-space
model, in which the observed data is assumed to have a latent representation
with discrete values, called the state-sequence z = {z1, z2, ..., zN} (cf. [Bishop
et al., 2006, chapter 13]). The model is analogous to a mixture model (or a
clustering), with the exception that the cluster assignments or state values are
dependent on the previous observation (in time). Formally, we say the state-
sequence is 1st order Markovian, i.e. that p(zn|z1, z2, ..., zN , θ) = p(zn|zn−1, θ),
in which θ represents all relevant model parameters. This means that the condi-
tional distribution over the state assignment of one datum is only conditioned
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on the previous datum and its state assignment. A sketch of the model can be
seen in figure 2.1. As with the mixture model described in the previous section,
an EM-approach, called the forward-backward algorithm (cf. Rabiner [1989]), is
most commonly used for the inference. But this approach again has the down-
side that the number of potential states in the model must be chosen by some
heuristic. In the next section we describe a non-parametric extension of the
HMM that can learn the number of hidden states from the data.

z1 z2 z3 zN-1 zN

x1 x2 x3 xN-1 xN

z0

Figure 2.1: A schematic of the general hidden Markov model (HMM). Each
observed datum xn is assumed to be emitted from a latent state
space value given by zn, which is discrete.

2.4 The Infinite Hidden Markov Model

The infinite hidden Markov model (IHMM), first proposed by Beal et al. [2001],
can be summarized by its generative representation,

β ∼ GEM(γ), (2.9)

π(k)|β ∼ DP(α,β), (2.10)

zt|zt−1 ∼ Multinomial(π(zt−1)), (2.11)
θk ∼ H (2.12)
xt ∼ F (θzt) (2.13)

in which GEM is the stick-breaking construction (cf. Sethuraman [1994], Pit-
man [2002]), DP is the Dirichlet process, γ and α are positive hyperparameters
controlling the state sequence (cf. section 2.4.1), H is a distribution over the
state specific parameters and F is the distribution of the observed sequence.
The graphical model corresponding to this is given in Figure 2.2.

The Dirichlet process defines a probability distribution over a random proba-
bility measure, and has been used extensively in non-parametric Bayesian mix-
ture models as a prior over the mixture components. Blackwell and MacQueen
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Figure 2.2: The Infinite Hidden Markov Model represented as a graphical
model. Note here an abuse of notation - H and F are distributions,
not parameters.

[1973] described this process using a Pólya urn scheme. In a clustering setting,
we could represent each data point’s assignment as a coloured ball, the ball
being the data point and the color its clustering assignment. All balls are kept
in an urn, and when drawing from the urn (assigning a new data point to a
cluster) we draw a color proportional to the number of balls with that color.
Afterwards, we place the ball back in the urn together with a new ball of same
color. Furthermore, we draw a ball with a previously unseen color with proba-
bility proportionally to the positive parameter α, and a ball of the new color is
added to the urn. This discrete clustering, with a potentially infinite number of
clusters, is also know as the Chinese restaurant process (cf. Aldous [1985]). The
GEM or the stick-breaking construction distrbution has been shown by Sethu-
raman [1994] to be equivalent to a DP, but we will in accordance to Van Gael
[2012] keep using the GEM-notation as the distribution over β. In short, imag-
ine that we have a stick of length 1 that we break into smaller pieces from the
end of the stick, where each piece corresponds to a probability mass for a cer-
tain cluster. The end of the stick is the mass associated with generating a new
cluster. Thus the stick represent a probability measure over the integers.

However, the IHMM introduces a prior over the parameters in the DP, namely
a stick breaking construction (GEM). Since the GEM is equal to a DP, we can
interpret this as a hierarchy of DP’s, the GEM as the root node and a potential
for infinitely many DP’s in the layer below. As we can see the elements of the
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state sequence, zt, can be generated independently from the observed data, xt,
and in the following section it will be described how one can sample a state
sequence from a hierarchy of DP’s.

2.4.1 Hierarchical Polya Urn Scheme

Teh et al. [2006] showed that the generative process described by (2.9), (2.10)
and (2.11), is equivalent to a hierarchical Polya urn scheme. Since this is a more
intuitive description of a state sequence with a potentially infinite number of
distinct state values, this section will be dedicated to its details and relation to
the generative model described above (cf. Van Gael [2012] for more details on
this subject). In the hierarchical Polya urn scheme we imagine that we have an
infinite number of urns with colored balls in them, where each color represents
a state. Each urn represents the transitions from each state, i.e. each urn also
has a color and the balls in the urn represent the transition counts out of that
state. Furthermore, we introduce an oracle urn that controls the average distri-
bution of states. In each time step we sample a color, zt, based on the previous
ball color, zt−1, by querying either the urn of color zt−1 or the oracle urn. If
we query the zt−1-urn, the new ball is dropped in that urn, and if we query
the oracle, a ball of the new color (zt) is dropped in both the oracle urn and the
zt-urn.

The transition probability is given as,

p(zt = j|zt−1 = i, α) =
nij∑

j′ nij′ + α
(2.14)

in which nij denotes the number of balls with color j in the i’th urn, and α is a
positive concentration parameter that controls how often we query the oracle
urn. The probability of querying the oracle urn becomes

p(oracle|zt−1 = i, α) =
α∑

j′ nij′ + α
. (2.15)

Given that we have queried the oracle, the transition probability becomes,

p(zt = j|zt−1 = i, oracle, γ) =

{ cj∑
j′ cj′+γ

, j = existing color
γ∑

j′ cj′+γ
, j = new color

(2.16)

in which cj is the number of balls with color j in the oracle urn. Note here
that in the IHMM this fraction cj∑

j′ cj′+γ
is replaced by the stick-breaking con-

struction (i.e. some β-value between 0 and 1). This means that if α is high we
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will tend to query the oracle urn more often and therefore arrive at a sequence
which is distributed according to the stick. In contrast if α tends to zero one
state will gain all the mass. The parameter γ controls how often we add a new
color. A schematic of the sampling process can be seen in Figure 2.3.

1
2 5

4

3

State sequence:

1 2 30

5

4 5

3

6

6

6

The oracle urn

Figure 2.3: A schematic of sampling a state sequence from a hierarchical Pólya
urn scheme. The state sequence z = {z1, z2, z3, ...} transformed
into colors can be written as {blue, blue, greeno, green, blueo, redo},
where coloro represents a ball drawn after querying the oracle urn.
The first ball z0 is not counted in the state sequence but is a necce-
sary starting point, and the color can be arbitrarily chosen.

2.4.2 Normal-Inverse-Wishart Model

To complete the IHMM model we need to specify the observed data likelihood,
F, and distribution over relevant latent parameters H. To use the framework
presented in section 2.4, we must choose F and H to be conjugate to each other
so that we can marginalize over the cluster specific parameters from H (more
on this in section 2.6.5). Korzen et al. [2014] proposed a model for fMRI, where
each time point is drawn from a normal distribution with a certain covariance
structure drawn from an inverse Wishart distribution. Each time-point belongs
to a cluster and each cluster has its own covariance structure. A CRP was used
as a prior over the clustering and there was therefore no time dependencies is
then clustering.
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We extend this model to accommodate a latent time dependency, by embed-
ding the model in the IHMM framework. In the context of fMRI, we can in-
terpret this as a dynamic functional connectivity model, where functional con-
nectivity patterns are given by corresponding covariance matrices that change
over time according to the latent state sequence. The generative model for the
observed data, extending (2.9), (2.10) and (2.11), can be written as

Σ(k) ∼ W−1(ηΣ0, v0), (2.17)

xt ∼ N (0, σ2
tΣ(zt)), (2.18)

in whichW−1(Σ0, v0) is the inverse Wishart distribution with probability den-
sity function,

p(Σ|Σ0, v0) =
|Σ0|

v0
2

2
v0p
2 Γp(

v0
2 )
|Σ|

−(v0+p+1)
2 exp

(
−1

2
tr
(
Σ0(Σ)−1

))
.

Here Γp is the p-variate gamma function, v0 is the degrees of freedom which in
this project is fixed at v0 = p and tr(·) is the trace of a matrix, i.e tr(A) =

∑
iAii.

The role of Σ0 in the context of functional connectivity, can be thought of as the
default connectivity present in the data. The parameter η is a positive scal-
ing parameter which we intend to learn by Metropolis-Hastings sampling (cf.
section 2.6.2). Also we allow for a time specific scaling of the covariance struc-
ture, σ2

t , which can be interpreted as a noise parameter, to overcome inferring
the same structure on different scales in two states. In the context of fMRI we
could imagine that there are non-physiological noise artefacts such as spikes
or drift that can corrupt the signal, and we hope to better model this with a
time-dependent noise parameter.

We will show momentarily how we can marginalize the noise covariance Σ(k)

out of the joint likelihood. This means that we can obtain collapsed sampling of
the state sequence in the later inference (cf. 2.6.1 and further), i.e. we augment
sampling any other cluster specific parameters. Collecting all hyperparameters
in θ = {σ2

t , v0, η,Σ0}, the joint likelihood of the model can be written as,

p(X,Σ|z,θ) =
∏
k

|Σ0|
v
2

2
v0p
2 Γp(

v0
2 )
|Σ(k)|

−(v0+p+1)
2 exp

(
−1

2
tr
(

Σ0(Σ(k))−1
))

∏
t

(2πσ2
t )
−p
2 |Σ(zt)|

−1
2 exp

(
−1

2
xTt (σ2

tΣ(zt))−1xt

)

=
∏
t

(2πσ2
t )
−p
2

∏
k

|Σ0|
v0
2

2
v0p
2 Γp(

v0
2 )
|Σ(k)|

−(v0+p+1+nk)

2

exp

(
−1

2

(
tr
(

Σ0(Σ(k))−1
)

+
∑
t:zt=k

xTt (Σ(k))−1xt

))
, (2.19)
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in which nk is the number of time points assigned to state k, and the time
specific noise parameters σ2

t have been multiplied onto each xt .

Utilizing that

xTt (Σ(k))−1xt =
∑
i,j

(xxt)ij(Σ
(k))−1

ij = tr
(

(xxt)(Σ(k))−1
)
,

we can rewrite (2.19) to be

p(X,Σ|z,θ) =
∏
t

(2πσ2
t )
−p
2

∏
k

|Σ0|
v0
2

2
v0p
2 Γp(

v0
2 )
|Σ(k)|

−(v0+p+1+nk)

2

exp

(
−1

2
tr

((
Σ0 +

∑
t:zt=k

xtx
T
t

)
(Σ(k))−1

))
(2.20)

Marginalizing out Σ we can arrive at

p(X|z,θ) =

∫
p(X,Σ|z,θ)dΣ

=
∏
t

(2πσ2
t )
−p
2

∏
k

|Σ0|
v0
2

2
v0p
2 Γp(

v0
2 )

2
(v0+nk)p

2 Γp(
v0+nk

2 )

|Σ0 + X(k)|
v0+nk

2

, (2.21)

in which X(k) =
∑
t:zt=k

xtx
T
t .

2.4.3 Multiple-State Vector Autoregressive Model

Willsky et al. [2009] and Fox [2009] proposed a switching vector autoregressive
model (described later in section 2.5), where the signal we model is assumed
to be generated by a number of VAR’s that switch on and off in different time
points (one at a time). Following this, another way of completing the IHMM
is by assuming that each state can be represented by a VAR-process with an
accompanying noise covariance. In an fMRI context, we imagine that each
state in the dynamic signal is characterized by instantaneous activity patterns,
modelled by the ’noise’ covariance Σ(k). Afterwards the signal is filtered and
distributed over time to other regions, modelled by the VAR process A(k). We
will in this section show how we again can use conjugacy to allow for collapsed
sampling of the state sequence. The generative model for the observed data can
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be written as,

Σ(k) ∼ W−1(ηΣ0, v0) (2.22)

A(k) ∼MN (0,Σ(k),R), (2.23)

xt ∼ N (A(zt)x̄t, σ
2
tΣ(k)), (2.24)

in which x̄t is the vector containing the appropriate past of xt, R is a diagonal
PM × PM -matrix containing the prior variances (σ2

τm ) of the time lags of A(k)

defined as the Kroenecker product R = Rτ ⊗ IP , where

Rτ =


σ2
τ1 0 · · · 0
0 σ2

τ2 · · · 0
...

...
. . .

...
0 0 0 σ2

τM

 ,

andMN (M,V,U) is the matrix normal distribution with probability density
function for the P × N -matrix X, with mean M, row-variance V and column
variance U,

p(X|M,V,U) = (2π)−PN/2|V|−P/2|U|−N/2

exp

(
−1

2
tr(U−1(X−M)TV−1(X−M))

)
.

Collecting all hyperparameters in θ = {σ2
t , v0, η,Σ0, σ

2
τm}, the joint likelihood

of the observed data and the coefficients of the VAR-processes can be written
as,

p(A,X,Σ|z,θ) =
∏
t

(2πσ2
t )
−p
2 exp

(
−1

2
(xt −A(zt)x̄t)

T (σ2
tΣ(zt))−1(xt −A(zk)x̄t)

)
∏
k

(2π)
−ppM

2 |R|
−p
2 |Σ(k)|

−pM
2 exp

(
−1

2
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)
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(
ηΣ0Σ−(k)
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=
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(2πσ2
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−p
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−ppM
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−p
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−(v0+nk+pM)+p+1
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exp
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−1
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tr((X(k) −A(k)X̄(k))TΣ−(k)(X(k) −A(k)X̄(k))

+R−1A(k)TΣ−(k)A(k) + ηΣ0Σ−(k)
)
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in which X(k) is the collection of all data points belonging to process k, X̄(k) is
the appropriate past corresponding to X(k), the time dependent noise variances
σ2
t have been multiplied onto the corresponding columns of X(k) and X̄(k), nk

is the number of time points belonging to process k, and Σ−(k) is the inverse of
Σ(k).

Utilizing conjugacy we can collapse both the VAR-coefficients and Σ(k) yield-
ing the likelihood,

p(X|Z,θ) =
∏
t

(2πσ2
t )
−p
2

∏
k

|R|
−p
2
|ηΣ0|

v0
2

2
v0p
2 Γp(

v0
2 )

|Sx̄x̄|−
p
2

2
(v0+nk)p

2 Γp(
v0+nk

2 )

|Ŝ|
v0+nk

2

, (2.25)

in which,

Sx̄x̄ = X̄(k)X̄(k)T + R−1

Sxx̄ = X(k)X̄(k)T

Sxx = X(k)X(k)T + ηΣ0

Ŝ = Sxx − Sxx̄S
−1
x̄x̄STxx̄.

For a detailed derivation see section A.2 of the appendix.

2.5 Switching Vector Autoregressive Model

Willsky et al. [2009] described a switching vector autoregressive model, i.e. a
framework that models multiple VAR-proccesses that switch on and off at dif-
ferent times in time series data (only one process at a time). In real-world data
we expect persistent states over longer time scales, i.e. more self-transitions
in the Markov chain, and for that reason a sticky hierarchical Dirichlet process
hidden Markov model is used (HDP-HMM) (cf. Fox et al. [2008]). For im-
proved mixing properties of the model, i.e. converging to the true number of
states faster, Fox et al. [2008] claimed that using a truncated version of the infi-
nite HMM with an upper bound on the number of states helps. The generative
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model can be written as,

β ∼ GEM(γ), (2.26)

π(k)|β ∼ DP(α+ κ,
αβ + κδk
α+ κ

), (2.27)

zt|zt−1 ∼ Multinomial(π(zt−1)), (2.28)

Σ(k) ∼ W−1(Σ0, n0), (2.29)

A(k) ∼MN (M,Σ(k),K), (2.30)

xt ∼ N (A(zt)x̄t,Σ
(zt)), (2.31)

in which δk is a vector of zeros with a 1 in the k’th entry,MN (M,V,K) is the
matrix-normal distribution with mean M and row- and column-covariance V
and K respectively, and x̄t is the past observations needed for the autoregres-
sion. The VAR process parameters, A(k), have been stacked in the same way as
in (2.2).

2.6 Inference

Up until now we have described a generative model; a way to generate data
given hyperparameters in the model. But what we are really interested in is
finding the most likely parameters, θ, given the data, X . More generally we
want to compute the posterior distribution p(θ|X), which can be done using
Bayes theorem,

p(θ|X) =
p(X|θ)p(θ)∫
p(X|θ′)p(θ′)dθ′

. (2.32)

The denominator of (2.32), called the evidence, is in most cases not analyti-
cally possible to calculate, so we must turn to approximate methods. The
following sections will be dedicated to introduce Markov chain Monte Carlo
(MCMC) methods for sampling the posterior, and how we have implemented
an MCMC-inference procedure for the IHMM.

2.6.1 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a class of algorithms that can be used
to iteratively sample from a desired probability distribution (cf. [Bishop et al.,
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2006, Chapter 11]). The idea is to create a Markov chain of samples, i.e. each
sample is dependent on the previous, where in the limit the samples created
come from the desired distribution. In a general Markov chain each new ele-
ment, x(t), is generated from a transition distribution, T (x(t)|x(t−1)), and if we
run the chain long enough (and the chain satisfies certain conditions), then we
will arrive at the equilibrium distribution, p∗(x). This means that another step in
the chain leaves the distribution unchanged, a property called invariance. The
equilibrium distribution thus satisfies,

p∗(x) =
∑
x′

T (x|x′)p∗(x′) (2.33)

Invariance of the equilibrium distribution can be proved by showing that the
transition distribution satisfies the detailed balance condition given by,

p∗(x)T (x′|x) = p∗(x′)T (x|x′). (2.34)

This can be shown by looking at the right hand side of (2.33) and using detailed
balance (2.34), i.e.∑

x′

T (x|x′)p∗(x′) =
∑
x′

T (x′|x)p∗(x) = p∗(x)
∑
x′

T (x′|x) = p∗(x),

since T is a probability distribution and therefore
∑
x′
T (x′|x) = 1.

To ensure that the chain converges to the equilibrium distribution, we must re-
quire that this convergence is not dependent on initialization of the chain. This
property is called ergodicity, and also implies the uniqueness of the equilibrium.
For MCMC only mild restrictions on the equilibrium and transition distribu-
tions yield an ergodic chain (cf. Neal [1993], Bishop et al. [2006]). Now, we
will describe an MCMC sampling scheme, and how we choose the transition
distribution such that the samples generated come from a desired distribution.

2.6.2 Metropolis-Hastings Sampling

Hastings [1970] was the first to describe the Metropolis-Hastings algorithm, an
extension of the Metropolis algorithm first described by Metropolis and Ulam
[1949]. As in other MCMC algorithms, we generate samples forming a Markov
chain from a transition distribution, T (x′|x), to approximate the distribution
p(x). In the Metropolis-Hastings algorithm T is split into a proposal distribu-
tion, q(x′|x), and an acceptance probability, αx′,x, yielding T (x′|x) = αx′,xq(x

′|x),
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where

αx′,x = min

(
1,
p(x′)q(x|x′)
p(x)q(x′|x)

)
. (2.35)

Note here that the evaluation of the acceptance probability does not require the
full distribution p(x), since the normalization constant for p cancels out in the
ratio. The choice of q has a large impact on the performance of the algorithm,
especially how long it takes to arrive at the equilibrium distribution.

As described in the previous sections, the detailed balance condition (2.34) is a
property of our chain that we need, in order to guarantee that the algorithm,
if run long enough, converges to the desired distribution. Using the transition
probability and (2.35), we can write,

T (x′|x)p(x) = q(x′|x)αx′,xp(x)

= min

(
p(x)q(x′|x),

p(x)q(x′|x)p(x′)q(x|x′)
p(x)q(x′|x)

)
= min (p(x)q(x′|x), p(x′)q(x|x′))

= min

(
p(x)q(x′|x)

p(x′)q(x|x′)
, 1

)
q(x|x′)p(x′)

= αx,x′q(x|x′)p(x′)
= T (x|x′)p(x′),

and this proves detailed balance for the Metropolis-Hastings algorithm.

2.6.3 Gibbs Sampling

A special case of the Metropolis-Hastings sampling is Gibbs sampling, which
relies on sampling the conditional distribution. For multidimensional vari-
ables, x = (x1, x2, ..., xN ), we can propose a new element in the chain by only
changing one of the variable’s dimensions, for instance x′ = (x′1, x2, ..., xN ). In
Gibbs sampling this new variable is sampled from the distribution over one
variable-dimension conditioned on all the others, i.e.

x′n ∼ p(xn|x1, x2, ..., xn−1, xn+1, ..., xN ) ≡ p(xn|x\n) (2.36)

Each variable is then sampled in turn fixing the others at their current value,
thus in each step only changing one variable at a time. Looking at this in terms
of a Metropolis-Hastings algorithm, we see that the proposal distribution (2.36)
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yields the following acceptance probability

αx′,x = min

(
1,
p(x′)p(x|x′)
p(x)p(x′|x)

)
= min

(
1,
p(x′\n)p(x′n|p(x′\n)p(xn|x′\n)

p(x\n)p(xn|p(x\n)p(x′n|x\n)

)

= min

(
1,
p(x′\n)p(x′n|p(x′\n)p(xn|x′\n)

p(x\n)p(xn|p(x\n)p(x′n|x\n)

)
= 1,

due to the fact that x\n = x′\n. This means that we always accept the samples
generated by a Gibbs sampler, but also that these small changes can yield very
correlated samples. Often a principle of thinning is applied where we only save
every T ’th sample. Detailed balance of this algorithm is ensured because it is a
special case of the Metropolis-Hastings sampler.

2.6.4 Split-Merge Sampling

Split-merge sampling was proposed by Jain and Neal [2004] to overcome mix-
ing issues with Gibbs sampling for Dirichlet process mixture models, and was
first applied to hidden Markov models by Hughes et al. [2012]. The procedure
revolves around randomly splitting and merging clusters (or in this case states)
and accepting or rejecting the new configuration by the Metropolis-Hastings
ratio. It has been shown that this procedure can help the Gibbs sampler es-
cape local maxima, where it would be stuck otherwise (cf. Phillips and Smith
[1996]). In a merge-move, we merge the two states chosen and compare this
to the old configuration (equivalent to splitting the merged state). In a split-
move, rather than randomly assigning data points to each of the two new clus-
ters generated, Jain and Neal [2004] proposed using a restricted Gibbs-scan.
In this procedure the state assignment of the data points is sampled from the
conditional distribution over states yielding that the partitioning is consistent
with the data.

The procedure starts by picking two distinct random observations, denoted zτ1
and zτ2 , uniformly over all observations from an initial state sequence, z(old).
If the two observations are in the same state (zτ1 = zτ2 ), then a split move is
proposed, and if the two observations are in distinct states (zτ1 6= zτ2 ) a merge
move is proposed. In a split move, the two chosen observations are each placed
in a separate state, one of them in the old state (z(new)

τ1 = zτ1 ) and the other
in a new state (z(new)

τ2 = z∗) . Then for each observation from the originally
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chosen state, zτ1 , we Gibbs sample new state assignments restricted to choose
between z(new)

τ1 and z
(new)
τ2 . The new configuration, z(split), is evaluated by the

Metropolis-Hastings acceptance ratio αz(split),z(old) . In the Metropolis-Hastings
ratio we must evaluate the probability of making the opposite move of what
we are proposing, and in this case the opposite of splitting a component in two
is exactly merging the two newly proposed states yielding z(old).

In a merge move (where zτ1 = zτ2 ), the procedure is straightforward; we sim-
ply merge the two components chosen such that z(new)

t = zτ1 ,∀t : zt = zτ1 . The
new configuration, z(merge), is then compared to the split-move that generates
the old clustering. The probability of that split-move can be calculated by a
similar procedure to the restricted Gibbs-scan.

Typically, split-merge sampling is run after a normal Gibbs sampling sweep. A
number of split-merge iterations is run for each normal Gibbs sweep, and the
restricted Gibbs sweep in the split-procedure is also run a couple of times (2-3),
to get a good estimation of the best split move possible according to the data.
Split-merge sampling has the potential of being computationally expensive, if
we for instance consistently try to split a large state. The restricted Gibbs-scan
will be accordingly long and scale in the number of data points that needs to
be re-sampled.

2.6.5 Infinite Hidden Markov Model Revisited

Van Gael [2012] described a Gibbs sampler for the IHMM (cf. section 2.4) that
alternatingly re-samples the state sequence and the stick-parameter β. Van Gael
[2012] showed that re-sampling the state sequence, given β, requires sampling
the conditional,

p(zt|z−t, x1:T , α, β, γ,H, F ) ∝ p(zt|z−t, α, β, γ)p(xt|zt, z−t, H, F ), (2.37)

in which z−t denotes the state sequence without the t-th time point. Comput-
ing the distribution p(zt|z−t, α, β, γ) provides the probability of transitioning
from the state zt−1 to any state times the probability of transitioning from any
state to the state zt+1. Using the Polya urn scheme representation of the state
sequence with the transition probabilities (2.14), (2.15) and (2.16) we can write
this probability as,

(p(zt = k|zt−1, α) + p(oracle|zt−1, α) · βk) ·(
p(zt+1|zt = k, α) + p(oracle|zt = k, α) · βzt+1

)
(2.38)
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We have replaced the oracle-urn term by the stick-breaking probability β. (2.38)
disregards any kind of special case (e.g. end-points of the sequence), so the true
conditional becomes the following (from Van Gael [2012]),

p(zt = k|z−t, α, β, γ) ∝



(n−tzt−1,k
+ αβk)

n−t
k,zt+1

+αβzt+1

(
∑

j′ n
−t

k,j′ )+α
if k ≤ K,

(n−tzt−1,k
+ αβk)

n−t
k,zt+1

+1+αβzt+1

(
∑

j′ n
−t

k,j′ )+1+α
if k = zt−1 = zt+1,

(n−tzt−1,k
+ αβk)

n−t
k,zt+1

+αβzt+1

(
∑

j′ n
−t

k,j′ )+1+α
if k = zt−1 6= zt+1,

αβkβzt+1
if k = K + 1

,

(2.39)

in which K is the current number of states and n−tij is the count of the num-
ber of transitions out of state i into state j without the t-th timepoint. For
completeness we must start the chain somewhere, in a z0, and we will follow
the convention used by Van Gael in his iHMM-Toolbox (Van Gael [2010]) that
z0 = 1. Details on how to sample α, β and γ can be found in Van Gael [2012].

The other half of the Gibbs sampling equation (2.37) concerned with the ob-
served data can be calculated based on the collapsed likelihood p(x|z) as shown
in (2.21) for the IHMM-Wish and (2.25) for the IHMM-MVAR. In each of the
collapsed likelihood equations we have a product over the K states, and thus
evaluating (2.37) boils down to evaluating the gain in likelihood of placing the
data point in each of the K states or a new state. We want to recalculate as
little as possible in the implementation of this, so it can be relevant to identify
what variables that change when changing the state sequence. The elements
in the collapsed likelihood that change if we add a data point to a new state,
denoted the sufficient statistics, are for the IHMM-Wish nk and X(k) and for the
IHMM-MVAR nk, Sxx,Sxx̄ and Sx̄x̄. Apart from nk, each of the sufficient statis-
tics can be up- and downdated by adding or subtracting outer-prodcuts. For
example if we were to remove the t’th data point xt from the k’th state in the
IHMM-Wish model we would make the following down-dates

nk ← nk − 1

X(k) ← X(k) − xtxTt

Similar rules can be derived for up-dates and for the IHMM-MVAR sufficient
statistics.
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2.6.6 Implementation of Inference Procedure

Our implementation of the models described above follow the way Jurgen Van
Gael has implemented his IHMM in the iHMM-Toolbox (Van Gael [2010]). The
IHMM-Wish was implemented (but not tested) by supervisor Morten Mørup,
and building on that the implementation the IHMM-MVAR was written in
MATLAB as part of this thesis. Both implementations underwent testing and
validation of their correctness also as part of this project (cf. section 2.6.7).
A sketch of the full inference procedure for the IHMM model can be seen
in Algorithm 1. Other than the inference already described in section 2.6.5
and 2.6.4, we add a random-walk Metropolis-Hastings for hyperparameters
of the prior distributions associated with the observed data, i.e. in case of
the Normal-Inverse-Wishart model the covariance scale η and the time spe-
cific noise σ2

t , and in addition the lag specific variance σ2
τm for the multiple-

state vector autoregressive model. We add an improper 1/X prior on both σ2
t

and σ2
τm . The hyperparameters from the state sequence are sampled using the

iHMM-toolbox, where vague Gamma-priors are placed on them. In each step
of the algorithm we save the sufficients statistics to avoid as much unneces-
sary recomputation as possible, as briefly mentioned in the previous section.
In both the IHMM-Wish and the IHMM-MVAR we work in the log-domain
when calculating the conditional probabilities. This means that the sufficient
statistics are used in a log-determinant calculation, and for that reason we keep
the Cholesky factorization of X(k) in IHMM-Wish and Sx̄x̄ in IHMM-MVAR.
The Cholesky factorization can be easily rank one up- and downdated as we
need, and makes the determinant calculation computationally much cheaper.
Furthermore, we add an option in our implementation to switch between a
static and a dynamic model. Here we mean static in the sense that the state
sequence has been forced to only contain one state, and that we skip the Gibbs-
and split-merge sampling steps. This allows us to investigate the differences

Input : X
Output: Clustering of time points, Z
Initialize relevant parameters;
for Number of Iterations do

Gibbs Sampling: Sample states z;
Split-Merge Sampling: Sample new configuration of states;
Random-Walk Metropolis-Hastings: Sample hyperparameters for
observed data-model;
Gibbs Sampling: Sample hyperparameters for state-model;

end
Algorithm 1: Inference procedure for IHMM
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between a static and a dynamic model on any data set.

2.6.7 Validation of Implementation

A common problem that arises when implementing large Markov chain Monte
Carlo (MCMC) inference procedures, as the one described in section 2.6.6, is
how to validate the correctness of the implementation. Since the algorithm
itself is non-deterministic, bugs can be hard to find, reproduce and fix. Grosse
and Duvenaud [2014] described different approaches for testing MCMC code,
one of them being unit testing. In this we test that the conditional distribution
is consistent with the joint distribution, i.e. if we are sampling any variable,
x, from the conditional, p(x|y), then the following equality must hold for all
values of x (and y),

p(x′, y)

p(x, y)
=
p(x′|y)

p(x|y)
. (2.40)

In our framework, each time the conditional distribution is calculated, we can
compare the conditional with the joint for two random values of the variable in
question. The joint is here calculated from scratch as it would be if we initial-
ized the inference procedure. For example, in the Gibbs sampler for the state
sequence, we obtain the distribution p(zt = k|z\t,X, θ), where θ is the collec-
tion of all relevant parameters. Now we pick two random values for k, k1 and
k2, yielding two state sequences, z1 and z2, only differing on the t-th element.
The test is now to evaluate (2.40) in the log-domain given some tolerance ε,

log p(zt = k1|z\t,X, θ)− log p(zt = k2|z\t,X, θ)− (p(z1,X, θ)− p(z2,X, θ)) < ε.
(2.41)

This framework has been used extensively for debugging the implementations
of IHMM-Wish and IHMM-MVAR, since it can give an indication of where and
in which sampler the bug is located. We ran our implementation of the IHMM-
Wish and IHMM-MVAR 10 times for 500 iterations to ensure their correctness,
with unit testing in the following samplers,

• Gibbs sampler for the state sequence, z

• Metropolis-Hastings sampler for the time-dependent noise, σ2
t

• Metropolis-Hastings sampler for the scale of the default covariance, η

• Only for IHMM-MVAR: Metropolis-Hastings sampler for the lag-specific
variance of the VAR coefficients σ2

τm .



30 Theory

2.7 Predictive Likelihood

To quantify how well the models capture the structure of previously unseen
data, we describe a framework that calculates the predictive likelihood. The mod-
els are fitted to one data set, called the training data, and we want to evaluate
the likelihood of test data given the model trained. Formally we can write this
as,

p(X∗|M, X) =

∫
θ∈M

p(X∗|θ)p(θ |X)dθ, (2.42)

in whichX is the training data,X∗ is the test data andM is the parameter space
for model trained such that θ is an element of the space. Because this integral
in most cases cannot be analytically determined we turn to a sampling scheme
where T samples from the posterior p(θ |X), θ(1),θ(2), ...,θ(T ), are obtained
from the parameter posteriors of the model (for the IHMM-MVAR cf. section
A.3). The integral can now be approximated by,

p(X∗|M, X) ≈ 1

T

∑
t

p(X∗|θ(t)). (2.43)

For the case of the infinite hidden Markov model (IHMM) an element of the
parameter space consists of a state sequence z and a parameter θk, k = 1..K,
that governs the emission probabilities for each of the K states in z. But for the
test set we do not have a state sequence available, so the state sequence needs
to be integrated out of (2.43), i.e.

p(X∗|M, X) ≈ 1

T

∑
t

[∑
z

p(X∗|θ(t))p(z)

]
. (2.44)

The integration can be done using a modified Viterbi algorithm (cf. Bishop et al.
[2006]. The original Viterbi algorithm finds the most probable state sequence
among all sequences. A sketch of one path through the system is illustrated in
figure 2.4.

Starting from an initial distribution, π(0), for t = 1 we calculate the probability
V1,k = π

(0)
k p(x1|z1 = k). From that point on we calculate the probability of each

path through the state space, by keeping track of the probabilities

Vt,k = p(xt|zt = k)
∑
k′

πk,k′Vt−1,k′ , (2.45)
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Figure 2.4: A diagram showing one path through the state space. The path is
weighted by the transition probability πk,t. In the Viterbi algorithm
we sum over all such paths to completely marginalize the state se-
quence out.

in which πk,k′ is the probability of transitioning from state k to k′. Vt,k quan-
tifies the probability of transitioning from any state in the previous time step
t− 1 including the probability contribution from all previous time steps, times
the probability of emitting xt from state k. Running through the time steps
from t = 1..T sums up all the probability mass from all paths thus yielding the
integral in (2.44). So for the integration to be possible we need all state spe-
cific parameters - for the IHMM-Wish that is Σ(k) and for the IHMM-MVAR
Sxx,Sxx̄ and Sx̄x̄ - and also the transition matrix, π, all of which we can sample
from their respective posteriors.
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Data

In this chapter the data that has been used in the project will briefly be de-
scribed. In section 3.1 some general aspects of noise and preprocessing in fMRI
will be introduced. In sections 3.2 and 3.3 data from Danish Research Center
for Magnetic Resonance and from the Human Connectome Project (cf. Van Es-
sen et al. [2012]) will be presented briefly.

3.1 Preprocessing

It is well known that the BOLD signal is noisy due to many factors, and there-
fore a rather large preprocessing pipeline is needed before any analysis can
start (cf. Stippich et al. [2007]). Typical sources of noise include (but is not
limited to),

• Scanner drift (cf. Smith et al. [1999]) - local changes in magnetic field
caused by scanner instabilities manifests as noise in the measured signal.

• Physiological noise - small movements by the subject can cause voxels to
be blurred together over time.

• Spikes - spatial noise-artefacts in the signal not attributed to any physio-
logical meaning

• Psychological noise - the subject might perform the task at hand differ-
ently than the experimenter imagined. This challenges how the experi-
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ment is set up and also typically narrows the scientific questions that can
be answered by an fMRI experiment.

Typical preprocessing steps include,

• Slice time correction - Each slice of the MR scan is not captured simulta-
neously, so a collection of slices forming the 3D image are taken at slightly
different time points. This must be corrected for.

• Head motion correction - the physiological noise described above must
be corrected for. This is usually done by assuming that the brain can be
mathematically described as a rigid body, and its movements and defor-
mations can be explained using a small number of parameters (varying
from 6 to 12). These parameters are then optimized for, and afterwards
movement effects can be regressed out.

• Spatial smoothing - the rigid body transformation is typically not enough
so the data can be smoothed using a number of the neighbouring voxels
(for instance via a Gaussian kernel).

To be able to compare measurements across subjects, measurements from fMRI
are transformed into a well-defined coordinate system like the Talairach system
or the Montreal Neurological Institute and Hospital (MNI) system. Further-
more, since the spatial resolution often allows for measuring the BOLD signal
from over 100.000 voxels most statistical models are not compatible with such a
high dimensional space. Thus dimensionality reduction methods like principal
component analysis (PCA), and especially independent component analysis
(ICA), or atlas-based methods, such as automated anatomical labelling (AAL),
are often used. We will in this project use PCA for dimensionality reduction.
ICA would be more appropriate if we were to visualize the results with brain
maps, since IC’s have been shown to yield better physiological meaning (cf.
Calhoun et al. [2003]). But since visualization of spatial maps in a dynamic
setting is out of scope of this project, we will for convenience stick to PCA (cf.
[Bishop et al., 2006, chapter 12.1] for an introduction to PCA).

3.2 Data from Danish Research Center for Magnetic
Resonance Imaging

Throughout the project a data set recorded at the Danish Research Center for
Magnetic Resonance (DRCMR) was available to us for analysis. The data set
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is based on two experiments run on 30 subjects, the first being a finger tap-
ping experiment (described in Rasmussen et al. [2012]) from now on denoted,
Motor, and the second being a resting state experiment (described in Ander-
sen et al. [2014]). The motor task experiment consisted of two conditions, left
hand finger tapping and right hand finger tapping, each of length 20 s, and
in between each condition there was a period of rest of around 10 s. This cy-
cle was repeated 10 times, and a total of 240 scans was acquired during the
whole experiment. In the resting state experiment the subjects were asked to
lie in the scanner with their eyes closed trying to refrain from any movement
and without falling asleep. The resting state experiment yielded 480 scans per
subject.

In the projects mentioned above, a number of preprocessing steps was applied
to the data using the statistical parametric mapping toolbox SPM81. For each
subject a structural scan was acquired to allow for each image from the time
series to be aligned with this, a procedure called co-registration. Head mo-
tion correction was applied using a 6-parameter rigid body transformation,
and afterwards images were transformed to the MNI coordiante system. To
reduce the effects of hardware instability and unwanted physiological effects
the data was high-pass filtered. For details on both the preprocessing and the
image acquisition parameters cf. Andersen et al. [2014]. Further preprocessing
was applied to the resting state data only, most notably despiking using the
framework from Campbell et al. [2013]. The fact that the two data sets, mo-
tor and resting-state, have not undergone the exact same preprocessing steps
is unfortunate and we will have to keep this in mind when discussing results
concerning this data.

3.3 Data from the Human Connectome Project

The Human Connectome Project (HCP)2 is a consortium, led by Washington
University, University of Minnesota and Oxford University, that tries to un-
derstand and describe human brain function and behaviour using different
state-of-the-art neuroimaging techniques. They made a large portion of their
data publicly available in a large data release in March 2013 (cf. Human Con-
nectome Project [2014]). The release contained data from 500 subjects from a
variety of modalities, tasks and resting-state experiments. The reasons that we
are interested in the HCP data for this particular project are two-fold. First
we have 6 different task experiments available, in which we expect the func-
tional connectivity to be detectably different. Secondly, the fMRI HCP data is

1Available at: http://www.fil.ion.ucl.ac.uk/spm/
2Cf. http://www.humanconnectome.org/

http://www.fil.ion.ucl.ac.uk/spm/
http://www.humanconnectome.org/
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sampled at a high sampling rate yielding subsecond resolution, which seems
desirable for finding temporal dynamics in the functional connectivity. The
task experiments from HCP (cf. [Human Connectome Project, 2014, pp. 40])
that were used in this synthetic study were,

• Motor - In this task subjects were asked to either tap their left or right
fingers, or squeeze their left or right toes, or move their tongue.

• Language Processing - In this task subjects were presented with either a
math problem or a story followed by a 2-alternative question about the
content.

• Emotion - In this task subjects were asked to match images of faces with
either an angry or fearful expression.

• Social - Subjects are presented with short video clips of objects that ei-
ther interact in some way or move randomly around, and are afterwards
questioned about the interaction.

• Gambling - In this task subjects were asked to guess a mystery card value
ranging from 1-9 in order to win or lose money. Task blocks are divided
into reward, loss or neutral trials, such that it is predetermined by the
experimenter whether the participant loses or wins in that trial.

• Working Memory - In this task subjects were presented with different pic-
tures of body parts for them to remember.

We used the surface data available, i.e. the data where the volumetric data
from around cortex were mapped to surface regions from the MNI surface
space. The preprocessing steps applied by the HCP to the volumetric data
included motion correction and co-registration using a structural scan, trans-
formation into MNI space and intensity normalization (for details see [Human
Connectome Project, 2014, pp. 105]). Notable differences in the data acquisi-
tion between the DRCMR data and the HCP, is that the HCP uses finer spatial
and temporal resolution, which could lead to more noise artefacts and non-
physiological manifestations in the signal. Optimal preprocessing of the data
is however out of scope of this thesis.
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Results

In this section we present results from a synthetic study in section 4.1. Next we
have validated the predictive likelihood framework (cf. section 2.7), the result
of which can be seen in section 4.2. In sections 4.3 and 4.4 we present results
on real-world data from the Danish Research Center for Magnetic Resonance
(DRCMR) and from the Human Connectome Project (HCP), respectively.

4.1 Experiments on Synthetic Data

In order to test the models proposed in a synthetic setting that resembles the
real world, we generated a synthetic data set in the following way. From one
HCP-subject, we took out three different task experiments, appended them to-
gether, thereby yielding one long sequence. Then we did a principal compo-
nent analysis (PCA), and used the first 10 PC’s to represent the data. For the
first part of the synthetic study we used the ’Motor’, ’Language’ and ’Emotion’
tasks (cf. section 3.3). From this point on we generated data in two ways, from
an inverse Wishart mixture model and from a mixture of VAR’s. On both data
sets we fitted the IHMM-Wish, IHMM-MVAR and the HDPHMM-MVAR, all
described in chapter 2.
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Figure 4.1: Synthetic data set 4.1b generated from an inverse Wishart mixture
with above state sequence 4.1b based on task data from HCP.
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(c) HDPHMM-MVAR

Figure 4.2: Estimated state sequence based on synthetic data shown in figure
4.1

4.1.1 Data from an Inverse Wishart Mixture

We estimated an empirical covariance matrix from the whole data set and used
this as the matrix parameter in an inverse Wishart distribution to draw 3 co-
variance matrices. From these we generated 1000 data points, a plot of which
can be seen in figure 4.1 together with the underlying true state sequence.

After fitting the models from section 2 to the data, we saw that they all found
the true state sequence (up to a permutation of the state labeling) (cf. figure
4.2). Furthermore all models found something very close to the true covariance
structure as seen in figure 4.3. This means that both the IHMM-MVAR and the
HDPHMM-MVAR can fit the data even though it has been generated from a
simpler generative model, indicating that they both extend the IHMM-Wish.
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(b) IHMM-Wish estimates
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(c) IHMM-MVAR estimates
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(d) HDPHMM-MVAR estimates

Figure 4.3: The estimated covariance coefficients by the IHMM-Wish, IHMM-
MVAR and the HDPHMM-MVAR are compared to the true param-
eters that generated the data in figure 4.1. Each covariance matrix is
plotted as an image where values are represented by a color rang-
ing from blue (low) to red (high) relative to the other values in the
matrix.

4.1.2 Data from a Mixture of VAR’s

We fitted seperate second order VAR-models to each of the three task blocks,
and used these VAR coefficients for 3 seperate states in a mixture of VAR mod-
els (as described in section 2.2). From this MVAR we generated a synthetic data
set with 1000 timepoints in order to have continuous transition between states.
If e.g., we worked directly on the real world data we could have arbitrary large
discontinuities between tasks that have been appended together. The true state
sequence and data can be seen in figure 4.4.

In figure 4.5 the state sequence estimated by the IHMM-MVAR model and the
IHMM-Wish model are shown. As we can see the the IHMM-MVAR and the
HDPHMM-MVAR models captures perfectly the true state sequence, whereas
the IHMM-Wish model finds 12 states. A closer look at the IHMM-Wish esti-
mate (figure 4.5a) shows that the model has split up the true states into distinct
states, and that the estimated states are largely only present within one true
state block. Still we must conclude that the IHMM-Wish model does not cap-
ture the true underlying dynamics of the MVAR-model data, and that ’dynam-
icness’ in an MVAR model is a much richer term compared to ’dynamics’ from
a inverse Wishart mixture.

Looking at the parameters estimated by the IHMM-MVAR and the HDPHMM-
MVAR compared to the true parameters in figure 4.6, we see that both are able
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Figure 4.4: Synthetic data set 4.4b generated from a mixture of VAR’s with
above state sequence 4.4a based on task data from HCP.
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Figure 4.5: Estimated state sequence by the IHMM-Wish, IHMM-MVAR and
HDPHMM-MVAR on synthetic data shown in figure 4.4
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(b) IHMM-MVAR
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(c) HDPHMM-MVAR

Figure 4.6: The estimated VAR coefficients by the IHMM-MVAR and
HDPHMM-MVAR are compared to the true parameters that gen-
erated the data in figure 4.4. Each VAR coefficient matrix from each
time lag is plotted as an image, where values have been normalized
to lie between -1 and 1. Values are represented by a color ranging
from blue (low, around -1) to red (high, around 1).

to capture the true coefficients in the data generating process.

Variable Noise

Comparing the IHMM-MVAR model with the switching vector autoregressive
model (also denoted HPD-HMM-MVAR) by Willsky et al. [2009] we see that
in the generative model the only difference is the ’stickyness’ of the HMM and
that the IHMM-MVAR has a time-dependent noise parameter controlling the
level of the covariance of the state specific noise. To test the use for the the
latter, we have generated a data set as in the previous section, but now we
vary the innovation that enters the system from having variance 1 to 2 over the
course of 1000 time points. The data can be seen in figure 4.7.

In figure 4.8 we can see that the HPD-HMM-MVAR model overestimates the
number of states, especially in the last part of the sequence where the variance
on the innovation is at its highest. IHMM-MVAR that finds the true state se-
quence, whereas the IHMM-Wish still overestimates the number of states, but
does it fairly consistent with the previous experiment where the innovation-
variance was not varied (cf. figure 4.5a).
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sion

Figure 4.7: Synthetic data set 4.7b generated from a mixture of VAR’s with
above state sequence 4.4a based on task data from HCP. Variance
of the innovation that enters the system has been varied to increase
linearly over time.
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Figure 4.8: The estimated state sequences by the IHMM-Wish, IHMM-MVAR
and the HDP-HMM-MVAR respectively on the data in figure 4.7
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4.1.3 Dimensionality analysis

The number of states inferred by the model can be influenced by the dimen-
sionality of the data, so we generated synthetic data from a mixture of 3 VAR
models as described in the section above with 300 time points. We chose fewer
time points in this analysis since 300 time points is closer to the time scale
we have available in the real-world data. Now we varied the dimensionality
of the data from 5 to 50 incrementally by 5, and ran our two MCMC algo-
rithms, IHMM-MVAR and IHMM-Wish. We restarted each inference proce-
dure 5 times to get an understanding of the influence of initialization. The
results can be seen in figure 4.9. We see no general trend in the number of
states found by IHMM-Wish, and we see that many of the clusters extracted
are very small in size. The IHMM-MVAR model surprisingly does not find the
true state distribution (a 3 component model) when using only the first 5-15
PC components. We suspected that this could be caused by the first PC’s from
the task data not being related to the dynamics that we are synthetically trying
to create by a 3 component model. One could imagine that the first couple of
PC’s are more related to noise like spikes or overall variation not related to task
activity, and thereby being static components. We investigated this by running
the same experiment with 250 time points, where we skipped the first 10 PC’s.
The results can be seen in figure 4.10. It turns out that our hypothesis could
not be validated by this experiment, since the IHMM-MVAR behaves almost
exactly the same way as before. We must conclude that the number of dimen-
sions in the data must be relatively high to find the dynamics we are looking
for, especially when we have few data points. Another explanation is that the
VAR models extracted from real data are simply not distinguishable from each
other in low dimensional spaces on shorter time scales compared to the exper-
iment in section 4.1.2.

4.1.4 Split-Merge Sampling

We investigate the effect of split-merge sampling in the context of hidden Markov
models. A dataset from a mixture of VAR models with 3 states and 500 time
points in total was generated, and the IHMM-MVAR was run with and with-
out split-merge sampling enabled. In each step of the algorithm we calculate
the normalized mutual information (NMI) between the sampled state sequence
from the algorithm and the true state sequence. NMI is a measure of mutual
dependence among two random variables (cf. Bishop et al. [2006, Chapter 1]),
and has the upside for partionings that it is invariant to a permutation of the
labels. Furthermore, we report the joint log-likelihood in each iteration. The
results of the experiment can be seen in figure 4.11. The general picture is that
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Figure 4.9: The number of states found by the IHMM-MVAR and the IHMM-
Wish on a synthetic data set created from a mixture of 3 VAR’s. The
dimensionality of the data has been varied from 5 to 50 PC’s (first)
with increments of 5 and we ran each model 5 times. Each run is
represented by one bar, and the height of the bar determines the
number of states found. Each state is represented by a color, and
the size of each color in the bar is proportional to the number of
data points with that state value.

split-merge sampling has a positive effect on finding the true state sequence,
but also has an overall higher joint-likelihood compared to only using Gibbs
sampling.

4.1.5 Collating Multiple Data Sets

Ultimately we want to run this framework on real data, preferably resting-state
data, in which there is evidence from the literature that dynamics exist. To test
the model’s behaviour on a scenario where we expect dynamics to exist, we
have allowed for multiple data sets to be analysed at the same time in our
implementation. This means we can collate different tasks and resting state
data, and see if states are shared over the different data sets. This is done by
keeping track of where a new data block starts and stops, and in those time
points we update transition counts accordingly. Specifically, in each time point
where a data block starts we subtract one transition from the previous time
point. We tested this by taking a synthetic data set containing 6 VAR processes
estimated from different tasks in the HCP data set, and collating them together
two and two, yielding three tasks blocks. The result of running the IHMM-
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Figure 4.10: The number of states found by the IHMM-MVAR and the IHMM-
Wish on a synthetic data set created from a mixture of 3 VAR’s.
The dimensionality of the data has been varied from 5 to 50 PC’s,
skipping the first 10, with increments of 5. We ran each model 5
times. Each run is represented by one bar, and the height of the bar
determines the number of states found. Each state is represented
by a color, and the size of each color in the bar is proportional to
the number of data points with that state value.

MVAR model on the collated data set can be seen in figure 4.12, and as we can
see, the model finds the true state sequence.
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Figure 4.11: Experiment on split-merge sampling. The normalized mutual in-
formation was calculated between the true state sequence and
the state sequence sampled from an IHMM-MVAR without split-
merge and with split-merge moves. Each inference procedure was
run 10 times for 500 iterations. The plot 4.11a show the NMI for
the 10 runs as a function of the number of iterations (logarithmic).
We also report the log-likelihood calculated in each iteration of the
algorithm in 4.11b.
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Figure 4.12: A plot of the state sequence found by the IHMM-MVAR if we col-
late 3 blocks of data together, with the state sequence shown in
the left plot. The red vertical lines indicate the beginning of a new
data block.
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MODEL 1 MODEL 2 MODEL 3

Training Training TrainingTest Test Test

Figure 4.13: An illustration of the setup to validate the predictive framework
described in section 2.7.

4.2 Validating the Predictive Likelihood Framework

In order to validate our prediction framework, described in section 2.7, we
generated synthetic training and test data from three different models, trained
models on the training data and ran our predictive likelihood framework on
the test sets. A simplified schematic of the validation procedure can be seen
in figure 4.13. We first fitted second order VAR models to all of the 6 task
experiments from HCP data. Next, we constructed 3 mixture of VAR models
therefrom, each containing two of the previously described VAR models. From
each of these, we generated a training and a test dataset, and ran our IHMM
models, both dynamic and static, on the three training data sets. Each training
and test set comprised around 700 timepoints. Finally, we ran our prediction
framework with the posterior samples from each of the models on the three
test sets. The results can be seen in figure 4.14a. Similarly, we used the 6 tasks
to generate a inverse Wishart data set, replacing the mixture of VAR’s with an
inverse-Wishart-mixture. The results from this can be seen in figure 4.14b.
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Looking first at figure 4.14a, we see that the IHMM-MVAR models outperform
the IHMM-Wish models, which seeems natural since the true data in this case
is generated from a mixture of VAR’s. Looking at each test data set individu-
ally, we see that among the MVAR models, the model that allows for dynamics
and is trained on the corresponding training set performs the best in terms of
predictive log-likelihood. One exception to this is in ’Data 3’, where the static
MVAR model and the dynamic model perform similarly (with a small advan-
tage to the static model), which could be due to the dynamic model only find-
ing one state. This is most likely again an effect of how the data was generated,
namely that some of the tasks’ VAR coefficients are not distinguishable with
relatively few time points and low dimensionality. Nonetheless, this shows
that our predictive likelihood framework is correct; the models that are trained
on data generated from a mixture of two VAR’s predict well on new data gen-
erated from the same mixture of VAR’s. Similarly, looking only at the IHMM-
Wishart models also in figure 4.14a, we reach the same conclusion, namely that
the models trained on one VAR-task block predict relatively well on the corre-
sponding test set from the same task block. Looking at the second figure 4.14b,
where the data has been generated from a mixture of inverse-Wishart’s, we see
a more mottled picture, but patterns emerge. The IHMM-MVAR model per-
forms at the same level in predictive log-likelihood as the IHMM-Wish when
the trained model is used on the appropriate test data. As before, when models
that are trained on one data set predict on new data generated by the same pro-
cess as the training data, then they outperform other models trained on other
data sets. This validates our predictive implementation, and furthermore gives
us a strong indication that the IHMM-MVAR model extends the IHMM-Wish.
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Figure 4.14: The predictive log-likelihood on test data generated by a mixture
of VAR’s (4.14a) and an inverse-Wishart-mixture (4.14b), respec-
tively. Each bar represents how a model predicts on the test data
at hand (the higher the better), and for each model it has been in-
dicated in the legend text what data it has been trained on.
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4.3 Experiments on Data from DRCMR

In this section we analyse the data from Danish Research Center for Magnetic
Resonance (DRCMR) described in section 3.2. Out of the 30 subjects available
to us with motor-task and resting state data, we analysed 5 subjects, one at a
time. For each subject we conducted a PCA into 25 dimensions on the con-
catenated data , both motor and resting state, and afterwards we split each of
the two blocks into a training and a test set of equal size (sometimes called
split-half). Since the resting state experiment was twice as long, we used half
of the time series to estimate a covariance structure, and used that as Σ0 - the
hyperparameter in the prior for the noise covariance in both the IHMM’s. Now
we trained our models IHMM-Wish and the IHMM-MVAR on the training sets
and ran our predictive likelihood framework (cf. 2.7) on both the training and
test sets. We ran the each inference procedure 5 times. Figure 4.15 shows the
state distribution for each model on both motor-task and resting state data over
all subjects and runs. The IHMM-MVAR model seems to consistently find only
one state, in both motor and resting state and over subjects. This is what we
would expect since the data we are training on are of length 120 time points,
which is relatively few. The IHMM-Wish finds more states than the IHMM-
MVAR as already hypothesized on resting state data, but only 1-2 states on
motor data.

If we look at the predictive likelihood of the models on one subject in figure
4.16, we first notice that the MVAR models perform best in terms of training-
scores, which we would expect since it is the most flexible model. Since only
one state was found by the IHMM-MVAR in most of the runs there is very little
difference between the dynamic and the static version of MVAR. We reach the
same (unsurprising) conclusion as in section 4.2, that the more flexible models
(here the MVAR) perform better in terms of predictive likelihood on the data
that they were trained relative to models trained on another data set. Looking
only at the Wish-models the same conclusion can be drawn.

Inspecting figure 4.16b, we see the predictive likelihood by all the models on
the split-half test set of the motor and resting-state respectively. It is apparent
that the IHMM-MVAR and its static counterpart are the two models that per-
form best on the two test cases, if they have been trained on the corresponding
training set. This indicates that both the motor task and the resting state is
characterized better by a MVAR model than it is by an IHMM-Wishart model.
Even though the IHMM-Wish finds more states than the IHMM-MVAR, par-
ticularly for resting state data, it does not mean that these states characterize
the data better (in terms of predictive likelihood) than the one state found by
the IHMM-MVAR. This seems fairly reproducible over subjects, and the figures
showing the results from the other 4 subjects can be seen in appendix B.2.
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(c) IHMM-Wish on resting state
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(d) IHMM-MVAR on resting state

Figure 4.15: In this figure we report the number of states found for each subject
on each run on the DRCMR motor and resting state data. Each run
is represented by one bar. Each state is represented by a color, and
the size of each color in the bar is proportional to the number of
data points with that state value.

4.3.1 Collating Task and Resting-State Data

As described in section 4.1.5, we want to investigate what the model infers on
multiple real-world data sets from the same subject that have been collated
together. We expect that if we collate different tasks-experiments, the models
will infer multiple states that each are mainly present in one of the tasks. This
means that the states found will be able to characterize the task from which
they are inferred. So to investigate this we collated the motor and resting state
data from the DRCMR data set for 5 subjects, again excluding half of the resting
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Figure 4.16: Predictive log-likelihood for 5 runs on both motor and resting-
state data from DRCMR for a single subject (ID10). Each bar rep-
resents how a model predicts on the test data at hand (the higher
the better), and for each model it has been indicated in the legend
text what data it has been trained on. The standard deviation over
the 5 runs is represented by the errorbars on top of each bar. The
models marked with ’C’ have been forced to be static.

state data for estimation of the prior noise covariance Σ0. We ran the IHMM-
MVAR and the IHMM-Wish for 1000 iterations each on all 5 subjects, and an
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overview of the results can be seen in figure 4.17. We see that the IHMM-
MVAR model almost exclusively (except for the first subject) finds only one
state, pointing towards a conclusion that the VAR coefficients are static over
motor and resting state. On the other hand, if we look at the results from the
IHMM-Wish, we see that multiple states are found in each task block, and that
the state sequence is significantly different between motor and resting state.
This could either be indicative of the IHMM-Wish being better at discriminat-
ing between tasks, or that we simply do not have enough data or the proper
preprocessing for the IHMM-MVAR model to find the ’dynamics’ we are look-
ing for.

0 100 200 300 400 500
0

2

4

IHMM−MVAR−ID10

0 100 200 300 400 500
0

5

10

IHMM−Wish−ID10

0 100 200 300 400 500
0

1

2

IHMM−MVAR−ID11

0 100 200 300 400 500
0

5

10

IHMM−Wish−ID11

0 100 200 300 400 500
0

1

2

IHMM−MVAR−ID12

0 100 200 300 400 500
0

5

10

IHMM−Wish−ID12

0 100 200 300 400 500
0

0.5

1

IHMM−MVAR−ID13

0 100 200 300 400 500
0

2

4

IHMM−Wish−ID13

0 100 200 300 400 500
0

1

2

IHMM−MVAR−ID14

0 100 200 300 400 500
0

5

10

IHMM−Wish−ID14

Figure 4.17: The state sequence estimated by the IHMM-MVAR and the
IHMM-Wish on the collated motor and resting state data from DR-
CMR. We ran the analysis for 5 subjects and each row of the plot
corresponds to one subject. The red lines indicates where a transi-
tion from motor to resting state occurs.
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4.4 Experiments on Human Connectome Project Task
Data

In this section we describe the analysis and experiments carried out on data
from the Human Connectome Project (HCP) (cf. Van Essen et al. [2012]). Each
task and resting state experiment was in the HCP carried out twice, with dif-
ferent phase encoding used by the MRI scanner - ’left-right’ denoted LR and
’right-left’ denoted by RL. We will use one encoding, LR, for training and an-
other, RL, for testing using our predicitve likelihood framework from section
2.7. We use the same tasks as described in section 4.1, namely ’Motor’, ’Lan-
guage’ and ’Emotion’, and append the time series from both encodings and
resting state data together. As in section 4.1 we do dimensionality reduction
by PCA, using principal component 11 to 35 (25 components in total). For 4
subjects we ran the IHMM-Wish and the IHMM-MVAR and restarted each in-
ference procedure 5 times. An overview of the state distribution found by the
two models over tasks and subjects can be seen in figure 4.18. We see that the
IHMM-MVAR fairly consistent finds only 1 state in all the task experiments
both over subjects and runs. Even the IHMM-Wish finds relatively few states
(1-3) on the Language and Emotion task, if we ignore subject ’107422’. The
Motor task seems as the most ’dynamic’ as the IHMM-Wish splits the data into
many states. In general, the within subject variability over runs seems fairly
limited since the same state proportions are roughly found in each restart.

As in the previous experiment on the DRCMR data, we see in figure 4.19a that
the IHMM-MVAR model has the best training-score on the task it has been
trained on, probably because it is the most flexible model. Looking isolated
on how the IHMM-Wish performs over the training data, we see as expected
that the model predicts better on the tasks it has been trained on compared to
models trained on a different task. The predictive likelihood on the test sets
from a different phase encoding seen in figure 4.19b, shows that on the ’Motor’
task the IHMM-MVAR model and the static VAR model trained on the mo-
tor task are better than the other models. This indicates that the models have
found a fairly good characterization of the task. On the ’Language’ and the
’Emotion’ task it much more mottled, since the IHMM-MVAR model trained
on the ’Motor’ task and on the ’Emotion’ are almost equal in performance. This
could be explained by the ’Language’ and ’Emotion’ task being shorter in time,
i.e. making it harder for the models to capture the underlying dynamics. An-
other explanation could be that our preprocessing has not been good enough,
and that the PCA space we are investigating does not reflect the task specific
variation we are trying to explain with the models.
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(b) IHMM-MVAR on the
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100307 103414 107422 115320
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Subjects

S
ta

te
 d

is
tr

ib
u
ti
o
n

IHMM−MVAR on EMOTION

(c) IHMM-MVAR on the
Emotion task
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(e) IHMM-Wish on the
Language task
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Figure 4.18: In this figure we report the number of states found for each sub-
ject on each run on the tasks, Motor, Language and Emotion from
the HCP data. Each run is represented by one bar. Each state is
represented by a color, and the size of each color in the bar is pro-
portional to the number of data points with that state value.
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Figure 4.19: Predictive log-likelihood for 5 runs on the Motor, Language and
Emotion experiments from one subject from the HCP. Each bar
represents how a model predicts on the test data at hand (the
higher the better), and for each model it has been indicated in the
legend text what data it has been trained on. The standard devia-
tion over the 5 runs is represented by the errorbars on top of each
bar. The models marked with ’C’ have been forced to be static.



Chapter 5

Discussion

In the discussion we will try to address and answer the research questions
posed in the introduction. A short recap of the models analysed and their re-
lation to dynamic functional connectivity will be given in section 5.1. Next we
will try to address the question of how we can interpret the dynamics we find
from such models in section 5.2. In section 5.3 we discuss experiments on real
world data, and finally in section 5.4 future work and potential extensions of
the current frameworks will be presented.

5.1 Models for Dynamic Functional Connectivity

In this thesis we have analysed and partly implemented two models for dy-
namic functional brain connectivity. Both are grounded in the Bayesian non-
parametric framework proposed by Van Gael [2012], namely the infinte hidden
Markov model (IHMM). The first model, denoted IHMM-Wish, was analysed
due to its similarities to many of the functional connectivity models in the liter-
ature. Functional connectivity is often understood as the correlation of activity
between segregated brain regions; thus a correlation matrix can be thought of
as a connectivity pattern from which the observed data is generated. Extending
this to a dynamic setting, we imagine that the connectivity pattern (or covari-
ance matrix) changes over time, and this is exactly what the IHMM-Wish mod-
els. A brain state is thus in this model defined purely by a certain covariance
structure in the signal.



5.2 On the Interpretation of Dynamic Functional Connectivity 57

Elaborating on this we also analysed a second model, denoted IHMM-MVAR,
that on top of the changing covariance matrix also includes a dynamic VAR
process, i.e. each latent brain state is connected to a VAR process. We think
of the VAR as a process that filters away the ’trivial’ connectivity patterns. We
could imagine that the activation in a brain-region is distributed to other re-
gions in a certain way modelled by a VAR process. It should be noted here
that we do not think of the VAR processes as a direct measure of effective con-
nectivity as in the Granger causality framework (cf. Friston [2011]) or in VAR
models described in Friston et al. [2003].

We chose to model dynamic functional connectivity using a non-parametric
Bayesian approach. The great upside of using Bayesian non-parametric models
is that we avoid choosing the number of states that we expect to find in the
data; this parameter is automatically learned from data through the inference
procedure. We believe that this is a correct way to model dynamics, since if
the number of states is simply chosen by some heuristic we will always find
evidence for that number of states. One of the goals when developing and
implementing the models in this project has been to use as few heuristics as
possible in the inference procedure. We tried to develop models that are not
dependent on preprocessing steps such as sliding-windows and removal of
noise artefacts.

Comparing the two models considered in this thesis, we look at the IHMM-
MVAR as an extension of the IHMM-Wish. This has been validated through-
out the results of the report. We saw in the synthetic study in section 4.1, that
if we generated data with a varying covariance, mimicking an inverse Wishart
mixture model, the IHMM-MVAR was able to infer the true state sequence
and covariance structures just as the IHMM-Wish. Furthermore, when we val-
idated our predictive likelihood framework in section 4.2, we saw, when we
again generated data with varying covariance structure, that the IHMM-MVAR
model obtained a predictive likelihood almost equivalent to the IHMM-Wish.

5.2 On the Interpretation of Dynamic Functional Con-
nectivity

When analysing dynamic functional connectivity it is very important to be
aware of what conclusions that can be drawn based on output from a model.
We must be able to trust what the model infers, and we must see all results in
light of the limitations of the model. We saw in synthetic studies that when
generating data from a mixture of VAR’s that the IHMM-Wish heavily over-
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estimates the number of mixture components (or states). This points towards
the conclusion that a simple model finds arbitrary many ’dynamics’ in data
generated from a much more complex model. Such a model mismatch can po-
tentially lead to ’synthetic dynamics’ if one is not careful. We have not been
able to synthetically create a situation where the IHMM-MVAR overestimates
the number of states and the IHMM-Wish finds the correct number of states.
Such a scenario could happen if the VAR coefficients were (slighty) dynamic
and the noise covariance static, but this requires more attention.

On real-world data, both on data from DRCMR in section 4.3 and on HCP data
in 4.4, we saw that the the IHMM-MVAR typically found fewer states than the
IHMM-Wish. But the IHMM-MVAR was still better to characterize the given
task in terms of predictive likelihood on unseen data from the same task. This
may imply that the multiple states found by the IHMM-Wish are not useful for
characterizing the task at hand, and that some of the dynamics are somewhat
synthetic stemming from a model mismatch.

When doing dimensionality reduction, as we have done in this project with
PCA, it is also important to understand the influence of the dimensionality in
the data. We have particularly seen in a synthetic experiment in section 4.1
that the number of states found, especially by the IHMM-MVAR, is underes-
timated when using few dimensions and at the same time having relatively
few data points. This can be explained by the way we constructed the syn-
thetic data, since it was based on finding VAR coefficients from HCP task data,
where we expected that the processes would be significantly different. The
result we saw in this dimensionality experiment could suggest otherwise for
low-dimensional PCA data (5-15 components). Further investigation is needed
into this by finding a structured way to generate stable VAR processes, i.e. by
sampling them and not estimating them from data, to ensure that they are dif-
ferent.

5.3 Characterization of Task-Based Brain States

An end-goal for the models describing dynamic functional connectivity, is to
run them on resting state data in a fully unsupervised setting. But before we
reach that goal, we must first investigate what the models infer on data where
we have some kind of ’ground truth’ available. In this project, we build our
analysis on the assumption that the dynamics extracted from different task-
based experiments should be different. We do not expect functional connectiv-
ity to manifest in the same way in two different tasks. Working on data from
DRCMR and HCP, we tried to quantify how well a model could characterize a
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given task by the predictive likelihood framework presented in section 2.7.

Looking at the results from the DRCMR, we saw that the VAR models per-
formed the best in terms of predictive likelihood on the test data, we had held
out from training. In most cases the IHMM-MVAR only found one state, and
we saw that a static VAR model could better characterize any given task than
a dynamic IHMM-Wish model in terms of predictive likelihood. With the DR-
CMR data we tried to mimic a change in dynamics by collating together motor
task and resting state data and running the IHMM’s on the collated data set.
But the IHMM-MVAR still found only one state over both task blocks, indicat-
ing that the filtering process for a subject is constant over tasks, and what is
left after filtering is static noise. The IHMM-Wish found multiple states in both
task blocks in collated data, and the states found were largely only present in
one of the blocks. One could interpret this as the IHMM-Wish being better
at characterizing different tasks and separating them from each other, which
would contradict our result from the predictive likelihood analysis. We must
conclude that further analysis is needed into this matter.

In the results from the HCP data analysis, we again saw that the IHMM-MVAR
found largely only one state on individual tasks. From the predictive likelihood
analysis we saw in some cases that an IHMM-MVAR model trained on one
task was not able to capture the same task better than an IHMM-MVAR model
trained on a completely different task. This could substantiate our conclusion
that the VAR-process parameters are static over tasks. But it could also be
an indication that the IHMM-MVAR does simply does not capture the task
specific characteristics, and that maybe another model is needed. Yet another
explanation for this could be the choice of tasks. We saw for instance in the
predictive likelihood that the ’Motor’ task was characterizable by the IHMM-
MVAR relative to the other models trained, but that the ’Emotion’ task was not.
It could be that the ’characteristics’ we are looking for in a task are not present
in the ’Emotion’ task.

All of the results and conclusions drawn in this project should be read with
caution, due to the lack of preprocessing analysis, which has been out of scope
of this thesis. A problem with most fMRI data preprocessing pipelines, is that
each experiment (task or resting-state) on a single-subject is processed indi-
vidually, which could make it harder to distinguish between two tasks. For
instance in the DRCMR data the motor task and resting state data was pro-
cessed slightly different, which is definitely a problem when we are trying to
characterize each of them in the same setting. Another preprocessing problem
could be the PCA that we carried out. PCA maps the data into a subspace
while preserving the maximum amount of variance possible, but can be sensi-
tive to noise outlies and artefacts such as spikes. We therefore cannot be certain
that this type of dimensionality reduction is optimal for the problem at hand,



60 Discussion

because the variance that the PCA preserves is maybe not useful for analysing
the functional dynamics. Using ICA could maybe have improved our analysis.
We could have chosen IC’s by visual inspection that pertained physiological
meaning (as it was done by Allen et al. [2012], Yu et al. [2015]) and thereby
being certain what IC’s we would expect to be ’dynamic’ in the context of the
task we were analysing.

5.4 Future Work

Concluding the discussion we will describe the outlook and future work re-
garding dynamic functional connectivity and the models analysed in this the-
sis. Preprocessing has been a factor of uncertainty in this project, and to get a
clearer view of dynamic functional connectivity the influence of preprocessing
such as dimensionality reduction methods must be investigated further. Work
by Zalesky et al. [2014] suggests that there exists a modular structure in the
brain where only relatively few connections are dynamic. Translating this into
the context of the thesis we could incorporate a binary variable per dimension
in the IHMM (both Wish and MVAR) that controls the ’dynamicness’ of each
dimension. Learning these variables could helps us understand to what extent
dynamics are global at whole-brain level or very localized. Work by Korzen
et al. [2014] suggested that the dynamics were not generalizable over subjects,
which is why we stuck to analysing one subject at a time. But this could also
be because the model does not incorporate subject variability directly. Future
work could therefore include extending the IHMM-Wish or IHMM-MVAR to
model population differences, such that inferences about dynamics could be
made at group level by running the models on multiple subjects at a time.

To validate that the models can extract reasonable brain states, we used data
from different task experiments and collated them together in the attempt to
create semi-synthetic dynamics. This had the downside that each data set was
preprocessed separately and some steps differed from task to task. Optimally
we would want a data set where a subject performed a multitude of tasks in
the same experiment, to see what the model found. Hopefully, we would find
that the states extracted from one task were significantly different from those
from another task.

In this project we investigated functional connectivity with fMRI data, but one
could consider using other modalities. EEG data seems like the obvious choice
for the models we have presented here, due to the low spatial resolution and
high temporal resolution.



Chapter 6

Conclusion

In this master thesis we investigated functional brain connectivity, based on
functional magnetic resonance imaging (fMRI), in a dynamic setting. We con-
sidered a Bayesian statistical approach, where two models were (partly) imple-
mented and analysed. Both models were based on the infinite hidden Markov
model (IHMM) first presented by Beal et al. [2001]. In the IHMM each data
point is assumed to have a discrete latent representation, a state value. All
data points with the same state value have associated parameters defining the
state. The first model analysed was the IHMM-Wish that models the signal as
a normally distributed variable with a changing covariance matrix over time.
The second model, the IHMM-MVAR, extends the IHMM-Wish by assuming
that the mean of the signal can be explained by a vector autoregressive (VAR)
process that can change over time along with the covariance of the signal. Each
model represented a way of modeling functional connectivity (FC), the IHMM-
Wish being the simpler model that describes FC as the covariance between
brain regions, and the IHMM-MVAR the more elaborate model that on top of
the covariance between regions also models a signal filtering by a VAR process.

In synthetic studies, where we generated data from the two models, we found
that the IHMM-MVAR was able to capture the true parameters in data gen-
erated from a mixture of inverse-Wishart’s (mimicking an IHMM-Wish). The
IHMM-Wish, on the other hand, greatly overestimated the number of states
found in data from a mixture of VAR’s, displaying that if we use a simple model
to estimate the number of states in complex data we can be arbitrarily wrong.

We tried to see how the two models performed on real-world task data from
the Danish Research Center for Magnetic Resonance (DRCMR) and the Human
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Connectome Project (HCP). The IHMM-MVAR was consistently better at char-
acterizing the task data, compared to the IHMM-Wish, in terms of predictive
likelihood on test data from the same task. The IHMM-MVAR mostly found
only one state indicating that the VAR coefficients are mainly static in the tasks
we analysed. But when running the model on a collated data set with both
motor task and resting state data the IHMM-MVAR still only found one state,
indicating that the two experiments should be characterizable by the same pa-
rameters; a conclusion we find unlikely. Some of the results and conclusions
must be read with care and further investigation is needed into the influence of
preprocessing, for instance dimensionality reduction by principal component
analysis. In general, conclusions about dynamic functional connectivity should
be expressed with caution and always be seen in the context of the model used
and its limitations.



Appendix A

Derivations

A.1 Mixture of Vector Autoregressive Models: In-
ference by Expectation-Maximization

The model parameters can be estimated by an expectation maximization algo-
rithm (cf. Bishop et al. [2006]), which works by alternating between two steps.
First in the E-step, we calculate the responsibilities, γt,k of the data points to
each AR-process by

γt,k = p(zt = k|xt,θ) =
p(xt|zt = k,θ)p(zt = k)∑
k′ p(xt|zt = k′,θ)p(zt = k′)

, (A.1)

, in which θ are all relevant model parameters. Note here that is is only possible
to calculate this quantity for t = M...T .

In the second step, the M-step, we update all relevant model parameters for
each process given their responsibilities by the following maximization prob-
lem,

θnew = arg max
θ

Q(θ,θold), (A.2)

Q(θ,θold) =

[∑
z

p(z|X,θold) ln p(X, z|θ)

]
+ ln p(θ). (A.3)
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From Bishop we have that (A.3) is equivalent to,

Q(θ,θold) =

[∑
t

∑
k

γtk

(
lnπk + lnN (xt|A(k)x̄t, σ

2
t I)
)]

+
∑
k

lnN (vec(A(k))|0,R) (A.4)

, in whichN (x|µ,Σ) is the probability density function of a multivariate Gaus-
sian with mean µ and variance Σ evaluated at point x. All parameters can be
estimated by differentiating (A.4) with respect to the parameter in question,
equating to zero and solving for the parameter.

The AR-model parameters A(k) can be estimated as,

A(k) = X(k)W(k)
(
X̄(k)

)T (
X̄(k)W(k)

(
X̄(k)

)T
+ R

)−1

, (A.5)

in which, X(k) is the collection of all data points belonging to cluster k of size
, X̄(k) is the appropriate past matrix of X(k) and W(k) is a Nk × Nk diagonal
matrix with elements γt,k

σ2
t

., where Nk is the number of data points assigned to
cluster k.

The mixing coefficients can be estimated by,

πk =

∑
t γt,k∑
t,k γt,k

=

∑
t γt,k

T −M
. (A.6)

The time dependent noise σ2
t can be estimated as,

σ2
t =

∑
k γt,k (xt − fk(xt))

T
(xt − fk(xt)) + 2β2

P + 2(β1 + 1)
(A.7)

The whole procedure is summarized in Algorithm 2.
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Input : X, K, M
Output: Clustering of time points into AR-processes
Initialize relevant parameters;
while not converged do

E-Step: Estimate responsibilities;
Update γt,k by (A.1) ;
M-Step: Estimate model parameters for each cluster;
for k = 1...K do

Update Ak by (A.5);
Update πk by (A.6);
Update σ2

t by (A.7);
end
Evaluate likelihood;

end
Algorithm 2: EM-procedure for mixture of VAR’s

A.2 Marginalization: IHMM-MVAR

The joint likelihood of the observed data and the coefficients of the VAR-processes
can be written as,

p(A,X,Σ|Z) =
∏
t

(2πσ2
t )
−p
2 |Σ(zt)|−

p
2 | exp

(
−1

2
(xt −A(zt)x̄t)

T (σ2
tΣ(zt))−1(xt −A(zt)x̄t)

)
∏
k

(2π)
−ppM

2 |R|
−p
2 |Σ(k)|

−pM
2 exp

(
−1

2
tr(R−1A(k)TΣ−(k)A(k))

)
∏
k

|Σ0|
v0
2

2
v0p
2 Γp(

v0
2 )
|Σ(k)|

−v0+p+1
2 e−

1
2 tr(ηΣ0Σ−(k))

=
∏
t

(2πσ2
t )
−p
2

∏
k

(2π)
−ppM

2 |R|
−p
2
|ηΣ0|

v0
2

2
v0p
2 Γp(

v0
2 )
|Σ(k)|

−(v0+nk+pM)+p+1

2

exp

(
−1

2
tr((X(k) −A(k)X̄(k))TΣ−(k)(X(k) −A(k)X̄(k))

+R−1A(k)TΣ−(k)A(k) + ηΣ0Σ−(k)
)

in which X(k) is the collection of all data points belonging to process k, X̄(k) is
the appropriate past corresponding to X(k), the time dependent noise variances
σ2
t have been multiplied onto the corresponding columns of X(k) and X̄(k), nk

is the number of time points belonging to process k, and Σ−(k) is the inverse of
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Σ(k). Looking only at the argument of the exponential we have that,

ln p(A,X,Σ|Z) ∝ tr
(

Σ−(k)((X(k) −A(k)X̄(k))(X(k) −A(k)X̄(k))T

+A(k)R−1A(k)T + ηΣ0)
)

= tr
(

Σ−(k)(X(k)X(k)T − 2X(k)X̄(k)TA(k)T

+ A(k)(X̄(k)X̄(k)T + R−1)A(k)T + ηΣ0)
)

= tr
(
Sx̄x̄(A(k) − Sxx̄S

−1
x̄x̄ )TΣ−(k)(A(k) − Sxx̄S

−1
x̄x̄ ) + ŜΣ−(k)

)
,

in which,

Sx̄x̄ = X̄(k)X̄(k)T + R−1

Sxx̄ = X(k)X̄(k)T

Sxx = X(k)X(k)T + ηΣ0

Ŝ = Sxx − Sxx̄S
−1
x̄x̄STxx̄.

By marginalizing over the VAR-coefficients we can arrive at

p(X,Σ|Z) =

∫
p(X,A,Σ|Z)dA

=
∏
t

(2πσ2
t )
−p
2

∏
k

(2π)
−ppM

2 |R|
−p
2
|ηΣ0|

v0
2

2
v0p
2 Γp(

v0
2 )

|Σ(k)|
−(v0+nk+pM)+p+1

2 exp(−1

2
tr(Σ−(k)Ŝ))∫

exp

(
−1

2
tr
(
Sx̄x̄(A(k) − Sxx̄S

−1
x̄x̄ )TΣ−(k)(A(k) − Sxx̄S

−1
x̄x̄ )
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dA

=
∏
t

(2πσ2
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∏
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2 exp
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2
tr(ŜΣ−(k))

)
. (A.8)
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Finally, we can in (A.8) integrate out all Σ’s yielding,

p(X|Z) =

∫
p(X,Σ|Z)dΣ

=
∏
t

(2πσ2
t )
−p
2

∏
k

|R|
−p
2
|ηΣ0|

v0
2

2
v0p
2 Γp(

v0
2 )

|Sx̄x̄|−
p
2

2
(v0+nk)p

2 Γp(
v0+nk

2 )

|Ŝ|
v0+nk

2

(A.9)

A.3 Parameter Posteriors: IHMM-MVAR

The posterior distributions used to sample the parameters in the model for
the predictive likelihood framework will be derived here (cf. Fox [2009] for
detailed walkthrough). From (A.8) we see from the exponential expression in
A, that this has the form of a matrix normal distribution, and if we condition
on Σ(k) we get,

p(A(k)|X,Σ(k)) =MN (A(k); Sxx̄S
−1
x̄x̄ ,Σ

(k),Sx̄x̄) (A.10)

Integrating out A yields (A.8), and from that we can see that the resulting has
an inverse Wishart form in Σ(k) and so

p(Σ(k)|X) =W−1(Σ(k); Ŝ, v0 + nk) (A.11)

A.4 Predictive Posterior: IHMM-MVAR

Putting an improper 1/X prior on σt and conditioning on model parameters
A,Σ(k) and the state sequence z, we have the following ’joint’ likelihood for
each time point,

p(xt, σ
2
t |A,Σ, zt) =

1

σt
(2πσ2

t )
−p
2 |Σ(zt)|−

p
2

exp

(
−1

2
(xt −A(zt)x̄t)

T (σ2
tΣ(zt))−1(xt −A(zt)x̄t)

)
∝
(
σ2
t

)−p−1
2 exp

(
1

σ2
t

· −1

2
(xt −A(zt)x̄t)

T (Σ(zt))−1(xt −A(zt)x̄t)

)
(A.12)
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The expression in (A.12) can be identified as an unormalized inverse Gamma
distribution, and thus integrating out σt yields the inverse normalization con-
stant, i.e.,

p(xt|A,Σ, zt) =

∫
p(xt, σ

2
t |A,Σ, zt)dσ2

t

= (2π)
−p
2 |Σ(zt)|−

p
2

Γ(p−1
2 )(

1
2 (xt −A(zt)x̄t)T (Σ(zt))−1(xt −A(zt)x̄t)

) p−1
2

(A.13)



Appendix B

Results

B.1 Human Connectome Project: Predictive Likeli-
hood Results

We ran the IHMM-MVAR and the Wish on three task experiments from the Hu-
man Connectome Project, a motor task experiment, marked Motor, a language
processing experiment, marked Language and an emotion processing experi-
ment, marked Emotion. A total of 500 subjects data was available for analysis,
and we ran on 4 of them individually. For all subjects two runs of the same
experiment was available each with a different phase encoding. We trained the
models on the LR-phase encoding and tested the models using our predictive
likelihood framework on the RL-phase encoding data. We have reported the
results from one subject in the main report, the rest of the results are shown
here.
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Figure B.1: Predictive log-likelihood for 5 runs on the Motor, Language and
Emotion experiment from a subject (’103414’) from the HCP. Each
bar represents how a model predicts on the test data at hand (the
higher the better), and for each model it has been indicated in the
legend text what data it has been trained on. The standard devia-
tion over the 5 runs is represented by the errorbars on top of each
bar. The models marked with ’C’ have been forced to be static.
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Figure B.2: Predictive log-likelihood for 5 runs on the Motor, Language and
Emotion experiment from a subject (’107422’) from the HCP. Each
bar represents how a model predicts on the test data at hand (the
higher the better), and for each model it has been indicated in the
legend text what data it has been trained on. The standard devia-
tion over the 5 runs is represented by the errorbars on top of each
bar. The models marked with ’C’ have been forced to be static.

B.2 DRCMR Data: Predictive Likelihood Results

We ran the IHMM-MVAR and the Wish on two data sets, a motor task experi-
ment, marked motor, and a resting state experiment, marked rs-fMRI, from the
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Figure B.3: Predictive log-likelihood for 5 runs on the Motor, Language and
Emotion experiment from a subject (’115320’) from the HCP. Each
bar represents how a model predicts on the test data at hand (the
higher the better), and for each model it has been indicated in the
legend text what data it has been trained on. The standard devia-
tion over the 5 runs is represented by the errorbars on top of each
bar. The models marked with ’C’ have been forced to be static.

Danish Research Centre for Magnetic Resonance (DRCMR). A total of 30 sub-
jects data was available for analysis, and we ran on 5 of them individually. We
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split each data set in two equal parts yielding a training and a test set for both
experiments. In this section we report the predictive likelihood for each of the
4 subjects not shown in the main report on both the training and the test set.
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Figure B.4: Predictive log-likelihood for 5 runs on both motor and resting-state
data from DRCMR for a single subject (ID11). Each bar represents
how a model predicts on the data at hand, and for each model it
has been indicated in the legend text what data it has been trained
on. The standard deviation over the 5 runs is represented by the
errorbars on top of each bar. The models marked with ’C’ have
been forced to be static.



74 Results

motor rs−fMRI
0

2000

4000

6000

8000

10000

12000

14000

P
re

d
ic

ti
v
e

 L
o

g
−

L
ik

e
lih

o
o

d

 

 

MVAR motor MVAR motor (C) Wish motor Wish motor (C) MVAR rs−fMRI MVAR rs−fMRI (C) Wish rs−fMRI Wish rs−fMRI (C)

(a) Predictive log-likelihood on training data

motor rs−fMRI
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

P
re

d
ic

ti
v
e

 L
o

g
−

L
ik

e
lih

o
o

d

 

 

MVAR motor MVAR motor (C) Wish motor Wish motor (C) MVAR rs−fMRI MVAR rs−fMRI (C) Wish rs−fMRI Wish rs−fMRI (C)

(b) Predictive log-likelihood on test data

Figure B.5: Predictive log-likelihood for 5 runs on both motor and resting-state
data from DRCMR for a single subject (ID12). Each bar represents
how a model predicts on the data at hand, and for each model it
has been indicated in the legend text what data it has been trained
on. The standard deviation over the 5 runs is represented by the
errorbars on top of each bar. The models marked with ’C’ have
been forced to be static.
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Figure B.6: Predictive log-likelihood for 5 runs on both motor and resting-state
data from DRCMR for a single subject (ID13). Each bar represents
how a model predicts on the data at hand, and for each model it
has been indicated in the legend text what data it has been trained
on. The standard deviation over the 5 runs is represented by the
errorbars on top of each bar. The models marked with ’C’ have
been forced to be static.
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(b) Predictive log-likelihood on test data

Figure B.7: Predictive log-likelihood for 5 runs on both motor and resting-state
data from DRCMR for a single subject (ID14). Each bar represents
how a model predicts on the data at hand, and for each model it
has been indicated in the legend text what data it has been trained
on. The standard deviation over the 5 runs is represented by the
errorbars on top of each bar. The models marked with ’C’ have
been forced to be static.



Appendix C

Project Plan and
Auto-evaluation

C.1 Original Project Plan

Introduction

The human knowledge of how the brain works has grown over the past many
decades partly due to advances in neuroimaging methods. Functional mag-
netic resonance imaging (fMRI) is a neuroimaging technique which relies on
the fluctuation of oxygenated blood in the brain. This is used to find func-
tionally correlated regions since neurally active areas will require more oxygen
rich blood compared to neurally inactive areas. Blood-oxygen-level dependent
(BOLD) signals are measured as a time series throughout different areas of the
brain, and this gives a basis for a measurable difference in (indirect) activity
both spatially and temporally.

Using fMRI one can study the functional connectivity (FC), which can be de-
fined as the synchronous activity between regions of the brain. Most of the
studies over the years have revolved around fMRI data from task-experiments,
i.e. visual stimulation, eye movement and so on, and comparing these to each
other, but lately a lot of focus has also been given to resting-state experiments.

Up until now most fMRI studies have assumed the measurements to be sta-
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tionary over time, and in some sense resorting to take a temporal mean of the
functional networks. Allen et. al. Hutchison et al. [2013] gives a recent review
of the dynamic (as opposed to stationary) approaches for analyzing FC. In par-
ticular in Allen et al. [2012] a time-windowing approach is used to yield an
connectivity network (correlation matrix) for each time window. This is done
for multiple subjects and finally a K-means clustering is performed to find the
K most occurring brain networks over time and subjects. K is chosen using
a heuristic (in this case the elbow-criterion was used), and a large K indicates
very advanced temporal dynamics whereas a low K would point to a more
static FC.

The approach used by Allen et al. [2012] raises the question of how we de-
fine temporal dynamics. In Zalesky et al. [2014] a vector autoregressive model
(VAR) was trained on the pairwise correlation between regions of interest ex-
tracted from windowing the original data. Using the VAR model a number of
null-datasets were generated satisfying the hypothesis of stationarity of the sig-
nals, to test against the original data, thus determining what connections that
can be deemed dynamic. In Majeed et al. [2011] on the other hand a repeating
sequence approach was used to find common FC patterns over time windows,
thus defining dynamics as the tendency of a brain network to re-occur. So it
does not seem that there is a consensus of how to define temporal dynamics in
terms of FC.

Project plan

In this master thesis we will investigate different models for modelling dy-
namic functional connectivity. The models considered will be extensions of
already existing state-of-the-art frameworks for this type of analysis (i.e. Allen
et al. [2012], Zalesky et al. [2014], Friston et al. [2003]). The extensions will be
based on Bayesian non-parametric methods to overcome choosing certain pa-
rameters in the existing models. Furthermore, we will try to analyse what the
consequences are of choosing a very simple model for a complex problem by a
synthetic study. Finally, the models will be applied to real world data.

The main research questions can be formulated as follows,

• How can functional brain dynamics be modelled?

• What are the model differences? What are the benefits and shortcomings
of using one model over the other?
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• How does the choice of model influence the interpretation of dynamic
functional connectivity?

• Can the models be used to characterize brain states in data from single-
subject simple task-based fMRI studies, e.g. from the Human Connec-
tome Project (HCP)Van Essen et al. [2012]?

A time schedule for the project period is given here (22-weeks in total)

Week(s) Tasks Milestones
1-6 Litterature study

Understanding and validating the IHMM Week 6: Introduction of report
is done together with
description of models

in theory section
7-10 Implementing other models

including baseline Week 9: All code is working
and has been validated

11-16 Analyzing synthetic data

17-19 Analyzing real world data Week 17: Preliminary results
are in report

20-22 Writing the report Week 22: The report can be handed in

C.2 Learning Objectives Relevant for the Report

An M.Sc. from DTU:

• Can identify and reflect on technical scientific issues and understand
the interaction between the various components that make up an issue:

We model the brains functional connectivity in a dynamic setting, using
statistical models.

• Can, on the basis of a clear academic profile, apply elements of current
research at international level to develop ideas and solve problems:

We specifically use non-parametric Bayesian models in fusion with cur-
rent models from the field of neuroimaging.
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• Masters technical scientific methodologies, theories and tools, and has
the capacity take a holistic view of and delimit a complex, open issue,
see it in a broader academic and societal perspective and, on this basis,
propose a variety of possible actions:

We try to answer how different models can lead to different interpreta-
tions of dynamic functional connectivity, and what consequences certain
model choices have.

• Can, via analysis and modelling, develop relevant models, systems and
processes for solving technological problems:

We adapt approaches from the literature of functional connectivity to in-
corporate dynamics using Bayesian non-parametric modeling.

• Familiar with and can seek out leading international research within
his/her specialist area. can work independently and reflect on own
learning, academic development and specialisation:

All of the approaches and models considered in this project are state-of-
the-art in their respective fields.

C.3 Comments and Auto-evaluation

The research carried out in this project was overall kept within the boundaries
of the original project plan. However, the HDPHMM framework by Fox et al.
[2008] was not discovered before half way through the project period. This
resulted in allocating time to understand and compare this framework to the
IHMM, yielding less time for analysis on real-world data. It was agreed upon
between the supervisors and the student that the statistical analysis and imple-
mentation was the important part of this thesis, and therefore the physiological
interpretation of the results was deemed out of scope of the thesis.

A general comment to the time schedule for the project is that it took much
longer time than anticipated to implement the IHMM-MVAR model and val-
idate the correctness of the code (both IHMM-MVAR and IHMM-Wish). This
means that the actual time spent on different parts of the project was more
in cycles (implement and validate, implement and validate,...) than the linear
time table presented above.
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