
afinn project

Finn Årup Nielsen

DTU Compute

Technical University of Denmark

March 28, 2017

afinn project

afinn

Started out as a English senti-
ment word list for use in analysis
of Twitter messages in 2009.

Later the approach was eval-
uated with manually labeled
tweets in published paper.

Shown Python code snippets on
the Internet including my blog on
how to use it.

In July 2015, turned into a
GitHub repository.

0.1 release in November 2016.

Finn Årup Nielsen 1 March 28, 2017

afinn project

Philosophies for afinn

Simple approach with little dependencies: The package should do what
it should do and nothing more.

Open source.

Test thoroughly all elements of the package.

Documentation in the code for everything.

Tutorials.

Easy installation for other developers.

Should work for a broad number of Python versions.

“Python best practice”.

Finn Årup Nielsen 2 March 28, 2017

afinn project

GitHub-based development

Git-based development with

GitHub.

Repository contains the

Python module itself with

data, test function, setup

and package files files

(setup.py, README.rst),

notebooks with example

code.

Other developers can work

from it: 36 forks by differ-

ent peoples.

Finn Årup Nielsen 3 March 28, 2017

afinn project

The AFINN word list

Word associated with sentiment score between −5 (most negative) and
+5 (most positive):

abandon -2

abandoned -2

abandons -2

abducted -2

abduction -2

abductions -2

abhor -3

abhorred -3

abhorrent -3

abhors -3

abilities 2

ability 2

aboard 1

aborted -1

Finn Årup Nielsen 4 March 28, 2017

afinn project

Basic Afinn object

The word list is encapulated as a Python class (object-orientation)

The word list is loaded at object instantiation time, to avoid reading
overhead during sentiment scoring

A text scored for sentiment based on the sentiment of individual words
with a method from the class:

class Afinn ():

def __init__(self):

self.data = self.load_data ()

def score(self , text):

score = 0

for word in text:

score += self.data.get(word , default =0)

return score

Finn Årup Nielsen 5 March 28, 2017

afinn project

Basic use

Using the class: Object instantiation followed by calling the score meth-

ods:

>>> from afinn import Afinn

>>> afinn = Afinn() # afinn is a object name now , not module

>>> afinn.score(’It is so horrendously bad’)

-3.0

>>> afinn.score(’very funny’)

4.0

Or score multiple texts in a list:

afinn_scores = [afinn.score(text) for text in texts]

Finn Årup Nielsen 6 March 28, 2017

afinn project

Basic processing

The central part of the text processing uses regular expression (Python

module: re) to extract words or to directly match against the AFINN

dictionary.

import re # Import regular expression standard library module

Setup

lexicon = {’ikke god’: -2, ’imponerende ’: 3, ’ineffektiv ’: -2}

regex = re.compile(’(ikke god|imponerende|ineffektiv)’)

Match and scoring

matched = regex.findall("Den er ineffektiv og ikke god")

score = sum([lexicon[word] for word in matched])

score is now −4. A few phrases can be matched.

Finn Årup Nielsen 7 March 28, 2017

afinn project

Code checking

flake8 tool can check that the code conforms to convention (PEP8).

$ flake8 afinn

(Nothing is reported if there is no convention issues)

Further checking can be made with pylint.

Finn Årup Nielsen 8 March 28, 2017

afinn project

Documentation

Documention in the “docstring” of a object method:

def scores_with_pattern(self , text):

""" Score text based on pattern matching.

Performs the actual sentiment analysis on a text. It uses a regular

expression match against the word list.

The output is a list of float variables for each matched word or

phrase in the word list.

Parameters

text : str

Text to be analyzed for sentiment.

Returns

scores : list of floats

Sentiment analysis scores for text

Finn Årup Nielsen 9 March 28, 2017

afinn project

Documentation

and the documentation goes on with example code:
Examples

>>> afinn = Afinn()

>>> afinn.scores_with_pattern(’Good and bad’)

[3, -3]

>>> afinn.scores_with_pattern(’some kind of idiot ’)

[0, -3]

"""

TODO: ":D" is not matched

words = self.find_all(text)

scores = [self._dict[word] for word in words]

return scores

15 lines of documentation, 3 lines of code.

Finn Årup Nielsen 10 March 28, 2017

afinn project

Documention checking

There is a standard for documentation: PEP 257.

Tools exists to check whether the documentation is complete and whether

it follows the standard: pydocstyle (previously called pep257).

I can call it with:

pydocstyle afinn

(It should report nothing if ok)

There is a plugin in flake8

Afinn uses the Numpy document convention. However this cannot be

tested: Currently no tools (AFAIK).

Finn Årup Nielsen 11 March 28, 2017

https://www.python.org/dev/peps/pep-0257/

afinn project

Testing

Unit tests in afinn/tests/test_afinn.py

Test function have the prefix test_.

The prefix tells py.test, http://doc.pytest.org, to test it.

Example for testing the find_all method of the object:

def test_find_all ():

afinn = Afinn ()

words = afinn.find_all("It is so bad")

assert words == [’bad’]

Here it is tested whether find_all returns a list with a single element

“bad”.

Finn Årup Nielsen 12 March 28, 2017

http://doc.pytest.org

afinn project

Testing

Starting py.test in the afinn directory will automatically identify all test

functions that should be executed based on test_ prefix:
$ py.test

================================= test session starts ================

platform linux -- Python 3.5.2 , pytest -3.0.6 , py -1.4.32 , pluggy -0.4.0

rootdir: /home/faan/projects/afinn , inifile:

collected 14 items

tests/test_afinn.py

============================== 14 passed in 0.49 seconds =============

Succinct!

Finn Årup Nielsen 13 March 28, 2017

afinn project

Testing: doctesting

From method documentation:

Examples

>>> afinn = Afinn()

>>> afinn.scores_with_pattern(’Good and bad’)

[3, -3]

This piece of code can be tested: “doctest”

python -m doctest afinn/afinn.py

or . . .

Finn Årup Nielsen 14 March 28, 2017

afinn project

Testing: doctesting

Testing the entire module:

$ py.test --doctest -modules afinn

== test ...

platform linux -- Python 3.5.2 , pytest -3.0.6 , py -1.4.32 , ...

rootdir: /home/faan/projects/afinn , inifile:

collected 7 items

afinn/afinn.py

=== 7 passed

Here 7 example code snippets were found in the docstrings, extracted

and tested and found to be ok.

Finn Årup Nielsen 15 March 28, 2017

afinn project

Testing with tox

I would like to have afinn working with different versions of Python:

Versions 2.6, 2.7, 3.3, 3.4 and 3.5.

tox combines testing with virtual environments enabling the test of

different versions of Python.

tox creates virtual environments in afinn/.tox/<virtualenv> moves into

them and executes whatever is specified in a tox.ini file (for afinn it is

setup to execute py.test, doctesting and flake8).

tox neatly enables testing multiple versions with just a single command.

Finn Årup Nielsen 16 March 28, 2017

afinn project

Testing with tox
$ tox

GLOB sdist -make: /home/faan/projects/afinn/setup.py

py26 inst -nodeps: /home/faan/projects/afinn /.tox/dist/afinn -0.1. zip

...

Installing collected packages: afinn

Running setup.py install for afinn ... done

Successfully installed afinn -0.1

py26 runtests: commands [1] | py.test test_afinn.py

== test session starts

platform linux2 -- Python 2.6.9, pytest -3.0.7 , py -1.4.33 , pluggy -0.4.0

rootdir: /home/faan/projects/afinn , inifile:

collected 14 items

test_afinn.py

...

py26: commands succeeded

py27: commands succeeded

py33: commands succeeded

py34: commands succeeded

py35: commands succeeded

flake8: commands succeeded

congratulations :)

Finn Årup Nielsen 17 March 28, 2017

afinn project

Testing with Travis

Travis: cloud-based test-

ing at https://travis-ci.

org/fnielsen/afinn

Ensures that the pack-

age would also work on

another system: Missing

data? Missing dependen-

cies?

Specified with a .travis.yml

configuration file to run

tox.

Finn Årup Nielsen 18 March 28, 2017

https://travis-ci.org/fnielsen/afinn
https://travis-ci.org/fnielsen/afinn

afinn project

Jupyter notebooks

A couple of Jupyter note-
books are available in the
GitHub repository.

Used to demonstrate how
the module can be applied
with a dataset.

GitHub formats the note-
book for human readability.
It would otherwise be raw
JSON.

This notebook computes
accuracy on a manually
sentiment-scored Twitter
dataset.

Finn Årup Nielsen 19 March 28, 2017

afinn project

Python Package Index

afinn distributed from the cen-

tral open archive Python Pack-

age Index : https://pypi.python.

org/pypi/afinn

Enables others to download the

package seamlessly

pip install afinn

Or search for it with:

pip search sentiment

Python tools for help with upload.

Finn Årup Nielsen 20 March 28, 2017

https://pypi.python.org/pypi/afinn
https://pypi.python.org/pypi/afinn

afinn project

Dependencies

Keep dependencies on a bare minimum: None, except standard library
(codecs, re, os) — so far.

Otherwise the dependencies should have been added to requirements.txt

Example from other package:

beautifulsoup4

db.py

docopt

fasttext

flask

Flask -Bootstrap

gensim

jsonpickle

...

Enables pip install -r requirements.txt

Finn Årup Nielsen 21 March 28, 2017

afinn project

Issue: Versioneering

Versioneering is a problem at the moment.

Version string “0.1” is hard-coded in the setup file:

setup(

name=’afinn’,

packages =[’afinn ’],

version=’0.1’,

...

PyPI version is 0.1, but if the GitHub repository is changed this version
is no longer reflecting differences.

In the old days, developers would manually update the version.

Now Brain Warner’s versioneer can take care of automatically distinguish-
ing git-tagged versions, updated and “dirty” versions.

Finn Årup Nielsen 22 March 28, 2017

afinn project

Summary

The Python environment has good methods to standardize development.

Python can neatly enforce documentation.

A good number of tools help the developer to write in a best practice

mode: testing frameworks, code and documentation style checkers.

Python provides a good framework for publishing open source code.

Persistent and versioned distribution.

Most of the “code” is documentation.

Finn Årup Nielsen 23 March 28, 2017

afinn project

End

Finn Årup Nielsen 24 March 28, 2017

