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Summary (English)

The growing interest and acceptance of biometrics has resulted in an increasing
number and size of biometric systems around the world. These systems use
measurable and distinctive human characteristics for, among others, the purpose
of automatised recognition of individuals. Several country-wide deployments,
such as the Indian AADHAAR project [Ind15], were spawned in recent years.
The daily operation of these systems faces an immense computational load,
which can contribute to increased system costs and reduced system usability.
The goal of this thesis is to perform research in the area of biometric workload
reduction in identification scenarios for large (human) iris databases. The iris
has been selected as the biometric characteristic for the project, due to it being
well-suited for use in large systems and is commonly used in actual deployments
around the world.

The research in this thesis was carried out using a recently proposed, novel bio-
metric indexing approach based on Bloom filters and binary search trees. During
the course of this thesis, said approach was thoroughly analysed and expanded
upon. In particular, several key improvements that ensure the system’s scalabil-
ity were proposed, implemented and tested quantitatively in terms of biometric
performance and workload reduction. The system was shown to achieve an ex-
cellent biometric performance and a substantial workload reduction on a dataset
of images with low intra-class variation. It was also discovered, that the biomet-
ric performance was severely impaired in the tests on a dataset of images with
high intra-class variation. The results suggest that the approach is fully scalable
in terms of enrolled database size. The biometric sample quality, however, may
be a limiting factor. Furthermore, a brief investigation into multi-iris indexing
has been conducted and shows great promise for future research. It is, best to
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this author’s knowledge, the first such study in the scientific literature.

In addition to the empirical testing, a general statistical model for Bloom filter
based biometric indexing was presented. Based on several variables, the model
allows for a theoretical assessment of the viability of a system configuration.
Lastly, due to the incomprehensibility of current biometric workload reduction
result reporting methods in the scientific literature, a unified and transparent
methodology of result reporting was proposed. The aim of this undertaking was
to elucidate this important issue and to serve as a basis for a better scientific
process henceforth.



Summary (Danish)

Den voksende interesse for, og generelle folkelige accept af, biometri har ført til
et stigende antal og vækst i størrelser af biometriske systemer i den moderne
verden. Disse systemer benytter målbare og karakteristiske personlige træk til
automatiseret unik genkendelse af mennesker. Der findes, allerede nu, talrige na-
tionale udrulninger, såsom det Indiske AADHAAR projekt [Ind15]. Den daglige
drift af sådanne systemer præges dog af en meget stor beregningsmæssig belast-
ning, hvilket kan være en vigtig faktor i forhold til omkostninger for, og bruger-
venlighed af systemet. Formålet med denne afhandling er forsking i reduktion af
den biometriske arbejdsbyrde, specifikt i forhold til identifikationsscenarier for
store (menneskelige) iris databaser. Iris blev valgt, da den er velegnet til brug i
store systemer og ofte anvendt i systemer i drift rundt om i verden.

Forskningen i denne afhandling blev udført med fundament i en nyligt foreslået
metode til biometrisk indeksering, baseret på Bloom filtre og binære søgetræ-
er. Denne metode blev analyseret grundigt for dernæst at blive udvidet med
adskillige forbedringer, som sikrer Bloom filter systemets skalerbarhed. Dette
udvidede system opnåede en framragende biometrisk ydeevne og en betydelig
reduktion af arbejdsbyrden på et dataset af billeder med lav intra-klasse varia-
tion. Det blev også observeret, at den biometriske ydeevne var nedsat signifikant
i forbindelse med anvendelse på et dataset af billeder med høj intra-klasse va-
riation. Disse resultater antyder kraftigt, at systemet er fuldt skalerbart for en
database af arbitrær størrelse. Der er en indikation af, specifikt for Bloom filtre,
at kvaliteten af billeder er en begrænsende faktor for den biometriske ydeevne.
I denne afhandling er der også udført en kort undersøgelse i multi-iris indekse-
ring, som viser stort potentiale for videre forskning i emnet. Der er ikke fundet
videnskabelig litteratur der omhandler multi-iris indeksering, hvorfor studiet i
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denne afhandling må betragtes som det første af sin slags.

Som en tilføjelse til den empiriske undersøgelse, introducerede denne forfatter en
generel statistisk model for Bloom filtre baseret biometrisk indeksering. Denne
model bygger på flere variabler og muliggør en teoretisk vurdering af hvorvidt
et system med en sådan konfiguration giver udbytte. Endeligt, på grund af
divergens i metodik for rapportering af resultater af arbejdsbyrdereduktion i
den videnskabelige litteratur, foreslåes en forenet og transparent metodik til
dette specifikke formål. Dette har til formål at kaste lys på et vigtigt problem
og fremme en bedre videnskabelig proces, inden for dette felt, fremover.
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Chapter 1

Introduction

The interest in biometrics has been steadily growing in the last two decades.
Currently, biometrics are ubiquitously and reliably used in a wide range of appli-
cations: as an alternative or extension to traditional knowledge and token based
access control systems, identity documents, criminal surveillance and identifica-
tion of mass-disaster victims. A study into the biometrics market has estimated
its worth to approximately 14 billion USD in 2015 [Tra14]. In recent years
several large-scale biometric deployments appeared. The chief among these are
the Indian AADHAAR project, which soon will have acquired biometric data
and enrolled the entire Indian population of 1.3 billion, as well as American,
European and Middle Eastern immigration programmes. Detailed informa-
tion about these and further examples can be found in [Ind15], [Dau16] and
[GAH+08]. Operations of such large deployments face tremendous computa-
tional load. Therefore, the efficiency of the underlying system implementations
is crucially important - the naïve solutions are insufficient. Furthermore, the
traditional approaches for computational load reduction cannot be applied due
to fuzziness of the biometric data. This matter is the key motivation behind
and the main focus of this thesis. To limit the otherwise immense scope of
different biometric characteristics, this thesis shall pertain only to the iris and
focus on the challenging biometric identification scenario. As shown in [Dau00],
success of such scenario in the large databases depends on the chosen biometric
characteristic to be highly resilient against false matches. The iris satisfies this
requirement and is thereby well-suited for purposes of large scale deployments.



2 Introduction

1.1 Thesis Contribution

The contributions made by this project are listed below.

• A thorough state-of-the-art survey of existing approaches within iris bio-
metric workload reduction.

• A proposal of a unified and transparent methodology for biometric work-
load reduction reporting in iris identification systems.

• Re-implementation and open-set evaluation of one of the recently devel-
oped approaches based on Bloom filters and binary trees. Said approach
has hitherto only been tested on small, moderately challenging datasets.
A study into its scalability and performance on larger and/or more noisy
datasets is therefore desirable.

• Seeking out possible improvements for the above scheme, implementation
thereof and empirical testing for feasibility assessment.

• Exploring the limitations of the approach through development of a gen-
eral statistical model for Bloom filter based biometric indexing.

• Preliminary investigation into multibiometric capabilities of the Bloom
filter based approach.

1.2 Thesis Organisation

This document is organised as follows:

• Chapters 2 and 3 outline the fundamentals of biometric systems, relevant
related work and propose a methodology for biometric workload reduction
reporting.

• Chapters 4 and 5 describe the Bloom filter based biometric indexing
scheme used in this project and propose improvements for it.

• Chapters 6 and 7 present the experimental set-up and results.

• Chapters 8 and 9 conclude the thesis with a discussion of the results,
further research proposals and summarise the achievements of this project.



Chapter 2

Biometric Systems
Fundamentals

This chapter provides a general introduction to biometric systems with emphasis
on the iris as the biometric characteristic of choice.

2.1 Iris as a Biometric Characteristic

The iris is a part of the eye, located in its frontal part. One of its main respon-
sibilities is adjustment of the pupil dilation, thus controlling the amount of light
reaching the retina. The iris also gives eyes their colour. Figure 2.1 shows an
image of an eye with labels put on the important anatomic features.

The use of iris patterns and/or colour for personal identification has been pro-
posed already back in 1936 by Frank Burch, an ophthalmologist. However, first
patents appeared fairly recently: [FS87] and [Dau94]. Let’s now explore the
suitability of the iris as a biometric characteristic. A common way for such
assessment is to use the properties proposed in [JBP99]. A quantitative assess-
ment, especially on the issue of uniqueness and random false matches can be
found in [Dau06].
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Figure 2.1: A human eye viewed from the front (from [BHF08])

Universality Vast majority of the population has an undamaged iris that can
be used for biometric purposes. Certain illnesses and alcoholism can affect
the iris appearance and thereby cause problems in the biometric contexts
(see e.g. [AT09]).

Distinctiveness Different irides are highly distinguishable due to high ran-
domness degree of the iris pattern emergence. Even irides from the left
and right eye of the same person are independent [BLF10].

Performance The biometric performance of iris recognition systems is proven
to be very high. A key advantage of iris over other modalities is its high
resilience against false matches [Dau00] and [Dau06].

Permanence The iris texture patterns are claimed to be stable over time (e.g.
[Dau04a]), although both biometric template and biometric characteristic
ageing, are controversial and insufficiently researched issues in the biomet-
ric community. For example, [FB12] indicates that biometric templates
may indeed be subject to ageing and thus result in reduced biometric
performance over time. This survey, however, was performed on a very
small, non-representative dataset. Iris pattern permanence remains an
open issue.

Collectability It is easy to acquire a sample of an iris; however, achieving
near-optimal image quality usually requires subject cooperation and spe-
cialised equipment. The sensor technology is constantly improving - recent
developments indicate that iris recognition in visible light spectrum may
soon be a viable option. This would mean that potentially any device
with a camera (e.g. a smartphone) could be capable of performing sample
acquisition [RRKB15].
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Acceptability Societal acceptance of biometrics in general is rising and the iris
is no exception. It is used in the largest deployments, such as the Indian
AADHAAR project and the Middle Eastern border control programmes.
The recent invention of systems such as Iris at a Distance [Mor] can make
the data acquisition completely unobtrusive, thus making it more attrac-
tive for the users.

Circumvention It is possible to produce fake artefacts for presentation at-
tacks; however, these can be prevented by liveness detection mechanisms.
In scenarios where a human operator supervises the process, such attacks
are not a big issue, since in most cases the attacker’s efforts would be
easily spotted by the human operator.

Overall, the iris is an excellent choice for a biometric characteristic; substantiat-
ing this assertion is the fact of its use in the largest and most successful biometric
deployments around the world. The following section provides a description of
working details of such systems.

2.2 Generic Biometric System

This section introduces basic operational details of a generic biometric system.

2.2.1 Workflow

Regardless of the chosen biometric characteristic, the basic workflow of a bio-
metric system can be generalised as shown in figure 2.2. The figure and the
concepts of biometric framework generalisation come from an ISO/IEC stan-
dard on biometric performance testing and reporting [ISO11].

The key steps of the process are briefly outlined below, using the iris as the
biometric characteristic for concrete examples.

Data capture The process of acquiring a sample from a subject through a
sensor. For an iris, this is typically a monochromatic image captured with
a near infra-red sensitive camera.

Signal processing The process of transforming the acquired sample into a
standardised biometric template form for the given biometric characteris-
tic. For an iris, most often used is an iris code [Dau04a] representation,
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Figure 2.2: A generic biometric system workflow (from [ISO11])

which is a two-dimensional binary matrix. The signal processing may
consist of multiple stages, as listed below.

Segmentation The process of distinguishing the biometric characteristic
signal from the rest of the acquired sample. In our case, this involves
locating the outline of the iris, pupil, eyelids and eyelashes in an eye
image, as well as a normalisation step.

Feature extraction The process of obtaining a feature set from a sam-
ple. The key idea is for that feature set to have low intra-class varia-
tion (i.e. remain largely invariant in different samples from the same
subject) and high inter-class variation (i.e. have enough discrimina-
tory power to reliably distinguish between different subjects). For
the iris, the feature set is based on the iris texture - the rich patterns
of arching ligaments, corona, crypts, freckles, furrows, ridges, rings
and zigzag collarette.

Quality control In some cases, the poor quality of an acquired sample or
a segmentation error can make the template unusable. Automated
quality assessment can be implemented (both for raw images and
produced templates). For an iris, one possibility is to check how
large fraction of the iris was masked out in the segmentation step.
This simple measure rejects templates with too much information
loss from the signal processing. Another commonly used method
is checking the diameter of the iris. Manual expert assessment is
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sometimes required despite the aid of automated checks.

Comparison and decision The process of comparing a new template against
existing records of enrolled templates. The results are then used to deter-
mine the final outcome of a query.

2.2.2 Operation Modes

Figure 2.2 illustrated that there are two modes a biometric system can operate
in. They determine the flow of information in the system and how the outcome
decision is made. From the practical point of view, the open-set scenario (i.e.
where there may be attempts from users not enrolled in the system) is the only
sensible one to consider.

Verification The subject has to present a claim to an identity. Subsequently, a
biometric sample is acquired from the subject, transformed to a template
and compared against the enrolled template of the claimed identity. It is
thus a trivial case, which merely requires a 1:1 template comparison to
reach a decision.

Identification Unlike in the case above, there is no identity claim. The system
is just presented with the sample acquired from the subject and has to
ascertain whether the subject has previously been enrolled and if so, what
their identity is. This is a non-trivial case, since, if approached naïvely, at
worst O(S) template comparisons are necessary to reach a decision (i.e.
comparing the new template against every enrolled template). In case
of the iris, this additionally means accounting for image misalignment by
considering several rotations of each template.

The naïve approach in the identification mode, demonstrated in algorithm 2.1,
is simply not viable due to a prohibitive computational cost for any large-scale
system. Furthermore, in terms of the biometric performance, such a system
will suffer from a high false positive risk, as demonstrated in [Dau00]. There,
an identification scenario is demonstrated to have the probability of at least
one false match occurring (PS) as shown in equation 2.1, where S denotes the
number of subjects in the database and P1 the probability of a false match in a
single comparison.

PS = 1− (1− P1)S (2.1)
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Algorithm 2.1 Lookup in the naïve implementation of an identification system

1: procedure Lookup(probe, enrolled, threshold)
2: candidates← empty list
3: for all reference in enrolled do
4: dissimilarityscore← Compare(probe, reference) . Modality

specific method
5: if dissimilarityscore < threshold then
6: add reference to candidates
7: end if
8: end for
9: return candidates

10: end procedure

As a concrete example, consider a biometric system with only 500 subjects and
low single comparison false match probability of P1 = 0.005. In an identification
scenario, the probability of at least one false match is then P500 = 1 − (1 −
0.005)500 ≈ 91%! It is immediately clear, that even for relatively small S values,
the probability of false match occurrences quickly becomes high. Based on
the above discourse, it is obvious that decreasing the the number of necessary
template comparisons for the lookup in identification and duplicate enrolment
check (DEC) scenarios is of utmost importance for any sizeable biometric system
deployment. Otherwise, such a system will suffer both in terms of the required
computational workload and the false positive occurrence chances.

The task solved by the system in the identification mode can be generalised to
the nearest neighbour search (NNS) problem as defined in [Knu73]. Substantial
research effort has been devoted to finding efficient solutions for this problem;
however, the traditional approaches are often ill-suited for biometrics. The key
issue is the fuzziness of the biometric data. Observe, that there are numerous
noise sources in the acquisition process (e.g. in the case of the iris, distance
and angle of the camera, lighting conditions, eyelid occlusion etc.). These will
inevitably vary slightly between individual image acquisitions (of the same sub-
ject), and although much of the noise can be effectively eliminated, the process
will nevertheless result in biometric templates that are very similar, but not
identical. This makes a huge difference: it immediately invalidates many tra-
ditional approaches (e.g. simple hashing), where the database reference and
the probe are expected to be exactly the same. Another problem is the high
dimensionality of the iris data - the traditional approaches often perform poorly
in such spaces [HDZ08].

The next chapter will present a state-of-the-art survey of existing approaches to
workload reduction in the identification and DEC scenarios.



Chapter 3

Related Work

This chapter describes the current state-of-the-art in iris biometric identification
workload reduction. First, a brief overview of the workload reduction approach
types is presented. Subsequently, a literature survey for each of the types is
performed. Lastly, a methodology for biometric workload reduction reporting
is proposed.

3.1 Types of Workload Reduction Approaches

In this section, the workload reduction approach types are described.

Serial combination of algorithms A two-step approach that first utilises a
computationally efficient algorithm to prepare a short-list of most likely
template matches. Subsequently, the slow and much more accurate tem-
plate comparison by the second algorithm is only performed on the tem-
plates from the short-list.

Classification/Binning The enrolled template database is split into several
subsets with low intra-class variation and high inter-class variation. In an
identification scenario, the class of the probe template is determined and
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actual comparisons are performed only with database templates of that
class.

Indexing Techniques that seek to decrease the system load in terms of the
big-O notation. They usually utilise probabilistic or hierarchical data
structures to reduce the search space.

Hardware acceleration and parallelism The identification scenario can be
handled very efficiently by using many CPUs/threads (e.g. by using a
GPU). The processes can work on disjoint parts of the database and in the
end the results are aggregated. Note, that the workload, instead of being
reduced, is merely distributed. Nonetheless, it is important to mention this
for completeness sake, as it is a key ingredient of real-world deployments
and often can be combined with other approaches that indeed do reduce
the workload.

The approaches can additionally be divided into:

Encoding independent Techniques that work irrespective of the used image
encoding method.

Encoding dependent Techniques that are developed only for a certain image
encoding method. The most commonly used method in iris biometrics is
the, so-called, iris code.

3.2 Serial Combination of Algorithms

In one of the first works for this category, [GRC09a] propose a system based on
the standard, full-length iris code (FLIC) representation and the short-length
iris codes (SLIC). The SLIC representation was introduced in [GRC09b]; it re-
lies on finding the most discriminative regions of the iris code and thus reducing
its size more than tenfold. In the scheme for a biometric identification system,
both the FLIC and SLIC representations are stored for enrolled subjects. A
short-list of candidate templates is produced by performing comparisons only
on the stored short-length iris codes. Subsequently, full-length iris code com-
parisons are performed only on the produced candidate templates. Thereby, the
computational workload is reduced - the authors report a 12-fold reduction in
the required workload compared to the naïve system implementation. Unfor-
tunately, the biometric performance of this system is impaired. In experiments
for genuine attempts, the correct identity was not present in the short-list in
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around 7% of cases. This is a severely limiting factor on the true positive iden-
tification rate of the system. In [RUW10], the proposed idea is to compute the
comparison score (Hamming Distance) incrementally and reject unlikely tem-
plates early. The workload is then reduced, since the comparisons are performed
only on a fraction of the iris code bits in most cases. The authors report an
experimental decrease of about 95% overall bit comparisons and lower storage
requirements for iris code masks.

[KSUW10] propose an approach, which tackles the rotation compensation work-
load. The short-list of candidate templates is produced based on rotation in-
variant comparisons. Thereafter, in the second stage, the standard iris code
comparisons (with rotation compensation) are applied to the templates from
the short-list. The authors report a workload reduction of around 80% com-
pared to the naïve system implementation.

A possible problem with the two-stage approaches is the potential negative
influence on the genuine matching attempts. This is due to the fact that the
probe template now has to successfully pass two tests (i.e. pre-selection, followed
by template comparison), rather than just one test (i.e. template comparison),
as is the case in the naïve system implementation. It appears that most of the
approaches presented in this section manage to overcome this issue and do not
experience a loss of biometric performance. In some cases, it is even increased
- the two-stage schemes and schemes which only use a fraction of template bits
make it more difficult for impostors to be falsely matched. In summary, the
size of the short-list produced in the pre-selection step becomes an important
variable in such systems. By changing the size of the short-list, the trade-
off between biometric performance and workload reduction can be adjusted to
satisfy the needs of a given biometric system deployment.

3.3 Classification

The simplest example of this category of approaches is the separation of tem-
plates in two classes - for left and right eyes. By doing so, the workload can be
approximately cut in half. An example algorithm for this can be found in [Li09].
Other intuitive classification methods involve the eye colour and the race of the
subjects [QST05]. The authors of [ZSTW14] present a flexible scheme based on
hierarchical visual codebook. In the article, it is shown to be accurate in classi-
fying the race of the subjects based on the iris texture; furthermore, it is shown
to be useful in the detection of presentation attacks. Instead of creating tan-
gible, human-understandable classes, it is also possible to rely on signal-based
and statistical analysis. [RS10] and [YZWY05] assess the viability of such an
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approach positively and propose classification schemes based thereupon. In a
recently published article [NC15], the authors achieve promising results with
de-duplication using a scheme based on online dictionary learning.

The serial combination of algorithms and classification are seemingly identical
- they both include a pre-selection step that produces a subset of candidates
and a second step, where actual comparisons take place. The key difference is,
that in the serial combination, the pre-selection comparator runs over an entire
database to produce candidates, while in the classification, the feature (e.g. eye
colour) is extracted from the probe and from it, the appropriate bin is chosen.
The two limiting factors of classification schemes are:

• Thus far, the demonstrated number of classes the data can be split into is
quite low. The resulting workload reduction will therefore be insufficient
for large-scale deployments. Furthermore, some of the schemes operate
under the assumption that the enrolled subjects are evenly distributed
among the classes, which is often not the case. For example, a classification
scheme based on race will not yield much workload reduction in a database
where the vast majority of subjects are of the same ethnic background.

• Similarly to the serial combination approaches, the additional pre-selection
stage in the decision process can negatively affect the genuine attempts.

The second of the above issues appears to have been overcome, since almost
all of the referenced articles report very high or near-optimal rates of correct
classification. This means that the moderate workload reduction offered by
these schemes can be taken advantage of without sacrificing the biometric per-
formance.

3.4 Indexing

In one of the first papers for this category [MR08], two indexing schemes are
presented. The workload reduction there is not high; nonetheless, the results
prove that indexing of data without inherent ordering is feasible. Some early
work in the area of iris indexing can be found in [Muk07]. Since then, many
approaches have been proposed. [HDZ08] introduces a method called "beacon
guided search" as a general method for indexing large fuzzy datasets. They
report significant search space reduction with only a small impact on the bio-
metric performance. [MSM09] present an interesting scheme, which uses energy
histograms and a B-tree data-structure to significantly reduce the penetration



3.5 Workload Reduction Reporting 13

rate. In [GAR10] an approach based on Burrows-Wheeler Transform is shown
to achieve very good results in terms of hit rate, although with still relatively
high penetration rate. In [RU10] and [JG13] hash generation schemes are pro-
posed with very good workload reduction results. A scheme based on the iris
colour and texture indexing in a kd-tree is demonstrated in [JPG12] and shown
to have a high hit rate and a low penetration rate. Finally, [Pro13] provides a
more complete survey of indexing approaches; it is also a very important paper
in the area of indexing data with bad quality, which, overall, is an insufficiently
researched topic.

While the indexing schemes offer significant workload reduction, often trade-offs
are associated with them. Typically, these come as offline computational costs
(i.e. preparation of the scheme) or additional storage requirements for the used
datastructures.

Article Dataset Biometric performance Workload
[GRC09a] MMU max. TPIR 93% 12-fold reduction
[RUW10] CASIA-V3-Interval 97.2-99.2% RR-1 5% bit comparisons

[KSUW10]
CASIA-V1 92% IR, 0% FAR

70-80% time reductionCASIA-V3-Interval 89% IR, 0.85% FAR
MMU 79% IR, 0.85% FAR

[QST05] CASIA-V2, UPOL, UBIRIS 86% CCR number of classes

[ZSTW14]
CASIA-V4 0% EER

number of classesND 0.9% EER
Clarkson 0.54% EER

[RS10] UPOL 0% EER 30% bits used
[NC15] UPOL 100% CCR number of classes
[MR08] CASIA-V3 80-84% hit rate 8-30% penetration rate
[GAR10] CASIA-V3 99.8% hit rate 17.2% penetration rate
[JPG12] UBIRIS 98.7% hit rate 7.1-8.3% penetration rate
[JG13] CASIA-V3-Interval 94% hit rate 10.6% penetration rate
[RU10] CASIA-V3-Interval variable w.r.t. penetration rate 3% penetration rate

[MSM09]
CASIA 1.6-43.6% bin miss rate 39.96-0.63% penetration rate
BATH 4-72% bin miss rate 26.14-0.06% penetration rate
IITK 1.5-44% bin miss rate 41.4-0.2% penetration rate

[HDZ08] UAE 0% FAR, 0.64% FRR 0.006% penetration rate

[Pro13] CASIA-V4-Thousand ∼ 94% TPIR at 0.1% FPIR ∼ 2.5− 7.5% av. penetration rate
UBIRIS ∼ 85% TPIR at 10.0% FPIR ∼ 38− 65% av. penetration rate

Table 3.1: The experimental results achieved by the methods presented in the
surveyed articles (as reported by the author’s themselves, or if un-
available, extracted from the presented plots)

3.5 Workload Reduction Reporting

The table 3.1 summarises the results of the survey. Notice the variety of ways
in which the results are reported. While the biometric performance reporting
often adheres to the standard [ISO11], the differences are particularly evident
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in the case of the workload reduction metrics, where there is no standardised
way in place. These have been reported in a wide variety of ways. Additionally,
some of these ways depend on the intrinsic properties of the data format used
in the respective methods. In yet other cases, they provide no direct point of
reference to the basic, naïve scheme. Furthermore, for some of the schemes,
the impact on the biometric performance of the system is not clearly reported.
Obviously, all this makes a direct comparison and evaluation of the presented
approaches rather cumbersome.

As a potential remedy for this issue, this author would like to propose a unified
methodology of reporting results of an iris biometric workload reduction scheme,
by posing seven key requirements, as listed below.

R1 The baseline workload must be explicitly stated. This is to be
expressed in terms of template size in bits, with the rotation compensation
costs accounted for, the number of enrolled subjects and the penetration
rate in an open-set identification scenario. Otherwise, there is no clear
and direct point of reference for the workload of the proposed system.

R2 The baseline biometric performance of a state-of-the-art algo-
rithm on the used dataset must be explicitly stated, in a manner
described in the ISO standard. Otherwise, as in R1, it will not be
possible to establish potential biometric performance costs incurred by the
workload reduction of the proposed scheme.

R3 The workload of the proposed scheme is to be stated in the man-
ner described in R1. If these parameters vary (e.g. due to differ-
ent scheme configurations or non-determinism), then a range or an upper
bound should be given. If a pre-selection step is involved, then it should
be accounted for within the above parameters; if that is not feasible, then
its cost should be stated separately.

R4 The biometric performance of the proposed scheme must be re-
ported according to the ISO standard. This is necessary, because
without regard for biometric performance, arbitrarily high workload re-
duction can be claimed. A scheme will, for the most part, only be viable
if the biometric performance does not become drastically lowered; in any
case, the trade-offs must to be mentioned.

R5 The additional costs and benefits of the proposed scheme should
be listed (e.g. offline costs, storage requirements, rotation invariance).
It should also be stated whether or not the template comparisons can be
performed using the fast CPU instructions (bitwise operators in particu-
lar). This is important to allow a general, well-informed evaluation of the
system and the trade-offs associated with the workload reduction.
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R6 The total workload for both the baseline and the proposed sys-
tem is to be computed using equation 3.1. By doing so, the total
workload of the proposed system can be succinctly and precisely stated
as a fraction (z) of that of the baseline (e.g. "z = 0.4 of the baseline
workload") in the worst and average case. Using this metric to sum-
marise the results is advantageous, as it provides the readers with a single
value, with which they can immediately and reliably assess the workload
reduction conferred by the proposed system. The reasoning behind this
requirement is including all the workload related variables in for the sake
of accuracy and transparency.

A formula for the total system workload in a single lookup during an identifi-
cation scenario (ω) is derived from the parameters stated in the requirements
above: S - the number of subjects enrolled, ρ - the penetration rate (as defined
in the [ISO11] standard) and τ - the cost of a single step (i.e. one compari-
son). In case of the iris, the templates are represented as binary vectors; the
cost of a single step can be then expressed in terms of bit comparisons or sim-
ply the size of the iris biometric template in bits1. As an example, consider a
naïve iris identification system, which has 100 enrolled subjects, which does not
perform rotation compensation and uses the iris code template representation.
The workload for a single lookup is then: ω = 100 ∗ 1.0 ∗ 10240 = 1.02 ∗ 106 bit
comparisons.

ω = S ∗ ρ ∗ τ (3.1)

The advantages of the proposed methodology are twofold. First, in a trans-
parent manner, it takes into consideration all factors that determine the actual
computational workload faced by a biometric identification system. Further-
more, by enforcing that biometric performance, other factors (e.g. offline costs)
and the baseline results be explicitly included, it allows for assessment of a bio-
metric system from a more holistic perspective. In the table 3.2, a summary
of how the surveyed articles report their results can be seen. For R2 a relaxed
evaluation is given - if the article explicitly reports the baseline workload, not
necessarily in the way proposed above, it is deemed to satisfy the requirement.
For R3 and R4, if inconsistent with the presented requirements, the methods
used in the article are given. R6 is naturally omitted, since it only now has
been proposed.

This thesis will strive to adhere to the aforestated methodology of results re-
porting.

1Throughout this document several symbols with specific meanings are introduced. A full
list is available in appendix A.
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Article R1 R2 R3 R4 R5
[GRC09a] Yes Yes Yes Yes Yes
[RUW10] Yes Yes Bit comparisons Yes Yes
[KSUW10] Yes Yes Time Yes Yes
[QST05] No No Number of classes CCR No
[ZSTW14] Yes Yes Number of classes Yes Yes
[RS10] No No Fraction of iris code Yes No
[NC15] No Yes Number of classes CCR No
[MR08] Yes No Penetration rate Hit rate No
[GAR10] Yes No Penetration rate Hit rate No
[JPG12] Yes No Penetration rate Hit rate No
[JG13] No No Penetration rate Hit rate Yes
[RU10] Yes No Penetration rate Yes Yes
[MSM09] No No Penetration rate Hit rate No
[HDZ08] Yes Yes Time and search space Yes Yes
[Pro13] Yes Yes Penetration rate Yes Yes

Table 3.2: The adherence to the proposed reporting requirements in the sur-
veyed articles

3.6 Summary

This chapter has presented the current state-of-the-art in biometric workload
reduction. The used approaches can be categorised into three types: serial
combination of algorithms, classification and indexing. The methods and results
shown in the surveyed articles were briefly outlined. Most of the presented
schemes are capable of reducing the computational workload to a small fraction
of that required in the naïve biometric system implementation (see table 3.1).

Whilst this literature research was conducted, a major issue became apparent
- the overwhelmingly inconsistent way of reporting the results in the area of
biometric workload reduction. In response to this, this author proposes a sim-
ple, unified way of workload reduction reporting in (iris) identification systems.
It can be used until a more thorough and comprehensive investigation of this
issue (also including other modalities) by the biometric reporting ISO standard
committee, for which it may serve as an inspiration.

In the next chapter, a novel biometric indexing approach based on Bloom filters
and binary search trees will be described in detail; it serves as a foundation for
the practical work conducted during this project.



Chapter 4

Bloom Filter Approach

This chapter presents the Bloom filter based biometric indexing scheme, which
serves as a basis for the practical work of this thesis.

4.1 Bloom Filter

Bloom filters are applied extensively to solve various tasks in computer science
(see e.g. a survey in [BM05]). This probabilistic datastructure was conceived
in 1970 [Blo70] for the purpose of efficient membership queries. A Bloom filter
(denoted B) is represented as a binary vector of fixed length (l). In an empty
Bloom filter, all the bits are set to 0. New elements can be added and checked
for by following the procedure outlined below1.

1. The new element is fed to a beforehand fixed number (k) of independent
hash functions H1 . . . H

′
k. These functions always produce numbers in the

range 0 . . . l. The result of this step can be simply denoted as a set of hash
values h1 . . . hk.

1An interactive presentation can be found at [Mil16].
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2. These hash values directly correspond to indices of B. The items at the
computed indices are set to 1 (i.e. B[hi] = 1 for i ∈ 0 . . . k). If the item at
a given index already is set to 1, it remains unchanged.

A membership query for an element is performed in this way:

1. The hash values for the element are produced as outlined above, i.e. pro-
duced is a set of hash values h′1 . . . h′k.

2. The corresponding indices in B are checked. If and only if the relation
∀B[h′i] = 1 for i ∈ 0 . . . k is satisfied, the membership check response is
positive. That is, if any of the checked indices is set to 0, then the element
can with 100% certainty be deemed not present in the Bloom filter; in
other words, false negatives cannot occur. It is, however, possible for
false positives to occur as more items are added to B and the number of
indices set to 1 increases. When B is full (i.e. all bits set to 1), then any
membership query will yield a positive response.

In its basic form, the Bloom filters are very successful in efficient membership
tests for traditional data (e.g. where the probe and reference are identical).
With certain modifications, the concept can be applied in biometric identifi-
cation scenarios. In particular, the fuzziness of the biometric data has to be
accounted for. In the iris biometrics, a very common comparator uses the Ham-
ming distance to compute the normalised dissimilarity of two iris code templates.
The concept can be seamlessly extended to Bloom filters and replace their simple
binary decision pattern. The next section describes such a system in detail.

4.2 System Basics

This section presents operational details of the Bloom filter based scheme pre-
sented in [RBBB15], which is the basis of work performed during the course of
this thesis project. Based on the specifications from that article, the system has
been re-implemented (and later expanded upon) for use in this project.

4.2.1 Template Transformation

The biometric templates are transformed from the iris code representation as
described below and conceptually illustrated in figure 4.1.
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1. The iris code matrix is divided into equally sized blocks of certain width
and height (denoted as W and H, respectively).

2. Instead of employing multiple hash functions, a simpler mapping is used.
A block is mapped into a Bloom filter (B) by converting its columns (de-
noted as c1 . . . cW ) of binary digits into decimal format. This step differs
from the traditional Bloom filter element addition: instead of a single
item being processed through multiple hash functions, multiple elements
(columns) are processed through a single hash function. The end result,
however, is the same - a set of values h1 . . . hW . Subsequently, the corre-
sponding indices in B are set to 1.

3. Performing step 2 for all the iris code blocks results in a representation,
where a template is a set of Bloom filters (denoted as B).

B1 B2 B4

0 1 1 00 0 0 1

B = { , , , }B3

H

W

Block 1 Block 2 Block 3 Block 4

Transform

3 5 3 6

c1 c2 c3 c4

1 0 1 0

1 0 1 0

0 1 0 0

1 0 0 0

1 0 1 0

1 0 0 1

0 0 1 0

0 1 1 1

0 0 0 0

1 1 1 0

1 0 1 1

0 1 0 1

H = 3,W = 4

Figure 4.1: The process of generation of a Bloom filter set from an iris code
(adapted from [RBBB15])

Due to rotation-compensating properties, in most height and width configu-
rations, this representation requires fewer bit comparisons than the iris code.
In the iris code, the possible misalignments must be accounted for by pre-
computing and storing or computing on the fly multiple rotations of the original
template. The size of a Bloom filter based template is calculated as shown in
equation 4.1, where ICW is the width of an iris code based template (here, 512).

τ = 2H ∗ ICW

W ∗ 2
(4.1)
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Note, that at this point, the system can be used in a verification scenario. The
only change thus far has been the transformation of the iris code based templates
to sets of Bloom filters. In the next section, the set-up for an identification
scenario is described.

4.2.2 Tree Construction

For (S) templates enrolled into the system, a binary search tree is constructed.
The tree nodes in breadth first ordering are denoted Ψ0 . . .ΨS−1. This process
is described below and shown conceptually in figure 4.2.

1. The tree root is created as an element-wise union of all enrolled templates
(i.e Ψ0 = B1 ∪B2 ∪ · · · ∪BS).

2. The child nodes at subsequent tree levels are generated recursively by
taking the element-wise union of half of the templates of the parent node.

3. The templates themselves (B1 . . .BS) are inserted as the tree leaves.

4. Insertion of new templates into an already built tree is possible in O(logS)
steps. A removal of template(s) requires the tree to be fully rebuilt, and
thus O(SlogS) steps are needed.

. . .

. . .
. . .

B1 B2
. . .

level 0

level 1

level 2

BS−1 BS

Ψ0

Ψ1 Ψ2

Ψ3 Ψ4

. . .

B1 ∪ . . .∪BS/2

B1 ∪ . . . ∪ BS

B1 ∪ . . .∪BS/4

BS/2+1 ∪ . . . ∪ BS

. . .

B1 B2 BS. . .

Figure 4.2: The process of constructing a binary search tree of Bloom filter
based templates (adapted from [RBBB15])
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4.2.3 Tree Traversal

Given a membership query (B′) for a new Bloom filter based template, a tree
traversal takes place beginning at the root (Ψ0). At each step, dissimilarity
scores for both children of the current node (Ψcurrent+1 and Ψcurrent+2) are
computed and the direction of the traversal is decided based on comparison of
these scores. Upon reaching a leaf, the final decision is made by comparing
the dissimilarity score there against a threshold, which has been previously
computed using a training set of templates disjoint from the enrolled templates
set. As shown in equations 4.2 and 4.3, the dissimilarity of two Bloom filter sets
(B and B’) is calculated as a score-level fusion of the pairwise dissimilarities
between all the individual Bloom filters in the sets (Bi and B′i). The intuition
is to count the number of agreeing bits in each Bloom filter pair and, since the
number of bits set to 1 can vary, normalise by the Hamming weight of these
Bloom filters. Then, the average dissimilarity score for the whole set of Bloom
filters can be calculated. Observe, that in a concrete implementation, DS(B,B′)
can be reduced to only 6 efficient CPU instructions.

DS(B,B′) =
1

N
ΣN

i=1DS(Bi,B′i) (4.2)

DS(B,B′) = 1− |B ∧ B′|
1
2 (|B|+ |B′|) (4.3)

Optionally, the sequence of scores obtained during the tree traversal can be re-
quired to be ordered, since at each subsequent level lower scores are generally
expected (i.e. DSlevel0 > DSlevel1 > · · · > DSlevellogS ). This makes it much
more difficult for the impostor attempts to get accepted, potentially giving a
lower false acceptance rate and significantly reduces the workload for the im-
postor attempts, since the ordering is checked on the fly during the traversal
and impostors can be rejected early. However, the genuine attempts may get
rejected this way too, potentially lowering the true acceptance rate. The whole
lookup process for one Bloom filter tree is demonstrated formally in algorithm
4.1 and conceptually in figure 4.3.
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. . .

. . .

. . .

B1 B2
. . . BS−1 BS

Ψ1 Ψ2

Ψ3 Ψ4

. . .

DS(Ψ1, B′)
<

DS(Ψ2, B′)

DS(Ψ3, B′)
<

DS(Ψ4, B′)

DS(B1, B′)
≥

DS(B2, B′)

DS(B2, B′) < threshold return B2

Ψ0 B′

Figure 4.3: The lookup process in a tree constructed from the enrolled Bloom
filter templates (adapted from [RBBB15])

As more templates are stored in one tree, the risk of falsely matching bits
increases. This affects the capability of making a correct traversal direction
decision for membership queries of subjects that are enrolled in the system (i.e.
genuine attempts). Therefore, it becomes necessary to build multiple trees and
spread the enrolled templates among them in order to alleviate this issue. This
change means that the lookup process is slightly different, as shown conceptually
in figure 4.4 and formally in algorithm 4.2. Unfortunately, this change raises
new concerns, particularly:

1. Building more trees causes higher workload, as more template comparisons
are required per lookup. Observe, that with the scheme, as presented here,
all the constructed trees must be traversed. Currently, there is no way of
knowing beforehand if a tree is likely to contain a match.

2. As more templates are added to a tree, the Bloom filters fill up with
1’s. This data denseness negatively affects the accuracy of the system;
this issue can be alleviated by building more trees for template storage.
It is therefore necessary to determine precisely when additional trees are
needed; in other words, when the data becomes too dense.

Chapter 5 addresses the first issue; the latter is looked into in section 4.3.
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Algorithm 4.1 Lookup in the Bloom filter based scheme - single tree

1: procedure Tree Lookup(tree, probe, decisionthreshold)
2: previousscore←∞
3: currentscore←∞
4: currentnode← tree root
5: repeat
6: scoreleft← dissimilarity(probe, leftchild) . See equation 4.2
7: scoreright← dissimilarity(probe, rightchild)
8: if scoreleft > scoreright then
9: currentnode← leftchild

10: currentscore← scoreleft
11: else
12: currentnode← rightchild
13: currentscore← scoreright
14: end if
15: if currentscore > previousscore then . Optional
16: return nil
17: else
18: previousscore← currentscore
19: end if
20: until isleaf(currentnode)
21: if currentscore < decisionthreshold then
22: return currentnode . Likely identity found
23: else
24: return nil
25: end if
26: end procedure

Algorithm 4.2 Lookup in the Bloom filter based scheme - multiple trees

1: procedure Lookup(trees, probe, decisionthreshold)
2: candidates← empty list
3: for all trees do
4: identity ← Tree Lookup(tree, probe, decisionthreshold)
5: if identity 6= nil then
6: add identity to candidates
7: end if
8: end for
9: return candidates

10: end procedure
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Figure 4.4: Lookup in a system with multiple trees constructed. First, all the
constructed trees are fully traversed. Subsequently, from among
the individual leaf scores, the best one is chosen. In the figure, R
stands for a tree root, L for a leaf and S for a leaf score. The red
lines show example paths taken during a lookup scenario, starting
at R1.

4.2.4 Relevant Configurations

Three important variables in the system are the block height, block width and
the number of constructed trees. These can be adjusted within a certain range,
minding the issues outlined below.

• Higher height values will make the Bloom filter template size too large. On
the other hand, lower heights are not very well suited for the identification
scenario - there, bit collisions would occur frequently and the Bloom filters
would fill up too quickly as more templates are added.

• Wider blocks would have too many bit collisions upon the transformation
from the iris code representation. Narrower block size would mean a total
template size increase. Additionally, narrowing the blocks diminishes the
rotational invariance properties of the templates.

• Constructing more trees reduces their individual number of levels. Very
few large trees imply many templates stored in each one of them and
potential problems with Bloom filter overfilling. Very small trees imply
few templates per tree, thus diminishing the workload reduction gain.
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4.3 General Model of Bloom Filter Based Index-
ing

A potential problem in the Bloom filter based approach is storing too many
templates in a tree; doing so can cause the true positive performance to dete-
riorate. The proposed solution is to build more trees as needed. However, it is
not immediately obvious when exactly the additional trees are necessary.

The model presented in this section allows an estimation of the overlap between a
random template (B) and a tree root (Ψ0), which is a crucial piece of information
for deciding when it is necessary to build more trees for template storage. The
reason for modelling the root node specifically is clear - it consists of more
templates than any other node in the tree. Recall (section 4.2.2), that the root
was constructed as a union of all templates added to the tree, while subsequent
nodes only contained fractions thereof. Consequently, the root is where the
probability of false bit matches occurring is highest. Thus, it can be confidently
assumed, that if correct decisions can be made at the tree root level, then it also
is the case at the subsequent, lower tree levels.

4.3.1 Random Template and Tree Root Emulation

A Bloom filter based template is essentially a set of sets of unique integer values
within a certain range. Recall that these are obtained via a simple transfor-
mation as shown in section 4.2.1. During a matching attempt, a pairwise com-
parison of the sets from probe and reference templates takes place (see section
4.2.3). Given the assumption that all sets exhibit similar characteristics, for the
purposes of the model, the discourse is simplified to looking at a single set of
integers (i.e. one member of the set of sets).

Let B denote a Bloom filter created from an iris code block of width W and
height H. Assuming that all values in the block are mutually independent and
drawn from a uniform distribution, then:

B =
{
x ∈ N0 | 0 ≤ x < 2H

}
, |B| =W −D(W, 2H) (4.4)

Here, D(W, 2H) is an invocation of a function D(n,m), which calculates the
(mean) expected number of duplicates when drawing, with replacement, n values
from a uniform distribution of m possible values, as shown in the equation
4.5. The steps included in derivation of this formula are not of interest for
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the purposes of this thesis; it is merely a variation on the well-known general
birthday problem2.

D(n,m) = n−m ∗ (1− (1− 1

m
)n) (4.5)

However, iris code columns are not mutually independent - neighbouring columns
have a high probability of being equal [RBB13]. Thus, a block of data from an
iris code will have fewer unique values than shown in the equations above. Let
ε denote the difference between expected number of duplicate values in an iris
code and randomly generated, mutually independent values. Then, a Bloom
filter created from an arbitrary iris code block can be denoted as follows:

B =
{
x ∈ N0 | 0 ≤ x < 2H

}
, |B| =W −D(W, 2H)− ε (4.6)

ε varies depending on parameters such as the dataset itself, feature extractor and
block sizes. It can be readily approximated using a training set, or potentially
by a more elaborate analysis of the nature of the iris code.

This representation is not ideal, since in real data certain Bloom filter index
values turn out to be more likely to occur than others (i.e. the distribution is
not completely uniform; see appendix B.1). Furthermore, in the real data, the ε
value is subject to small variations between different templates, while it is fixed
in the model. For the sake of simplicity, let’s accept these minor imperfections
as potential sources of inaccuracy in the model and proceed.

Finally, by extension of the above reasoning, a root of a Bloom filter template
tree can also be modelled as a set of unique integers. Recall (section 4.2.2), that
it is created by taking the union of multiple Bloom filter templates. Let RK
denote a tree root consisting of K individual Bloom filters.

RK = B1 ∪ B2 ∪ B3 ∪ · · · ∪ BK (4.7)

It follows trivially, that NK = K ∗ |B| is the expected number of non-unique

2An observant reader will notice, that the presented formula actually computes the ex-
pected number of distinct values and subtracts that from the total number of samples, thus
obtaining the expected number of duplicates. This means, that the expected number of unique
items could have been used directly in the equation 4.4. The purpose of choosing the indirect
route was that it allows to make the high-level reasoning about the model more apparent.
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items in B1 . . .BK . Then, the expected number of unique items in a root is:

|RK| = NK −D(NK, 2H) (4.8)

As a concrete example, consider the following system configuration: W = 16,
H = 8, T = 1, ε = 8 and S = K = 25. From the equation 4.6, the ex-
pected number of unique items in a single Bloom filter is calculated: |B| =
16 − D(16, 28) − 8 ≈ 7.5. Then, using the equation 4.8, the number of unique
items in the root is calculated: |RK| = 7.5 ∗ 25−D(7.5 ∗ 25, 28) ≈ 133, i.e. the
tree root is 133

28 ≈ 52% full.

With this reasonable approximation of a random (impostor) Bloom filter tem-
plate (equation 4.6) and a tree root (equation 4.8), the final task can now be
tackled. This task is estimating the expected relative overlap between the two.
In other words, the item of interest is now a probability distribution for different
numbers of items being identical in a tree root and a random template.

4.3.2 Overlap between Root and Random Template

The final step is estimating the overlap between a tree root RK and an arbitrary,
random (impostor) Bloom filter template B. This simply means computing the
expected length of a set intersection of these two. Let O denote this overlap:

O = |RK ∩ B| (4.9)

The expected overlap outcome follows a hypergeometric distribution with pa-
rameters listed below.

P (O = k) =

(|B|
k

)(
2H−|B|
|RK|−k

)(
2H
|RK|

) (4.10)

Population size The number of possible Bloom filter values: 2H.

Successes The number of expected unique values in a random template: |B|.

Draws The number of expected unique values in a tree root: |RK|.

Observed successes The number (k) of overlapping items in range 1 . . . |B|.
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Later on, the mean of that distribution (equation 4.11) will be used where a
single number metric is needed instead of an entire distribution. Let Θ denote
said metric.

Θ = |RK | ∗
|B|
2H

(4.11)

The distribution itself will be used to validate the fit of the model to data - first
against some pseudo-randomly generated values (section 4.3.3) and then against
real iris data (section 7.2.2.1).

4.3.3 Validation

The empirical validation can be performed by an experiment, where two sets that
emulate the template and root are generated from a pseudo-random distribution
and the size of their intersection is computed. Performing this experiment many
times (in this case, 100.000) reveals that, at a glance, the resulting distributions
fit closely, as shown in figure 4.5. Plotted are, on the x-axis, the relative overlap
(i.e. what percentage of values in the two sets is expected to overlap), against
the probability of that occurrence on the y-axis. Naturally, one cannot reliably
assess the fit of the model upon visual inspection of the distributions - these
serve only for illustration purposes. A simple metric to assess the closeness of
the fit of the two distributions is therefore necessary. One such metric, which can
be used for discrete distributions, is the Hellinger Distance, defined as follows:

HD =
√

1− BC (4.12)

Where BC stands for the Bhattacharyya coefficient for distributions d and d′:

BC = ΣK
i=1

√
(di ∗ d′i) (4.13)

In this particular case, the possible values of HD are {x ∈ R | 0.0 ≤ x ≤ 1.0}.
For all the considered system configurations, the resulting distances HD have
a mean µ = 0.11, with a standard deviation of σ = 0.07. Figure 4.5c shows
a histogram of the obtained HD values. This signifies an excellent fit between
the distributions from the theoretical model and the ones generated empirically,
thus validating the logic behind the approach. The fit between the model and
real iris data will be presented in chapter 7.
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(a) Example configuration 1 (b) Example configuration 2

(c) Hellinger Distances for all the
relevant system configurations

Figure 4.5: The fit between the model and randomly generated data

4.4 Summary

In the first two sections of this chapter, the fundamental details of a Bloom
filter based biometric system have been outlined, partially based on the original
article in which this approach was proposed [RBBB15].

The third section contains a new contribution: a proposal for a way to emulate
an impostor Bloom filter based template and a root of a tree of enrolled tem-
plates. A method for computing the expected overlap between these two has
also been introduced. Based on this expected overlap value, one can determine
at which point a tree root becomes overfilled and construction of additional trees
is needed to maintain good biometric performance for genuine attempts. It is
important to be able to estimate this, since the consequence of building more
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trees is increased workload - one would therefore seek to do so only when ab-
solutely necessary. The theoretical model has been shown to fit well with data
generated from a pseudo-random distribution, where the special characteristics
of the biometric data are accounted for by one variable, ε, for now estimated
from a training set. Since only minor simplifications and potential error sources
have been introduced by the model, it is expected to fit the real iris data well.
The next chapter will present improvement proposals for the Bloom filter based
approach.



Chapter 5
Improvements for the

Bloom Filter Approach

This chapter presents changes that can be made in order to decrease the com-
putational workload and ensure the scalability of the Bloom filter based system
for biometric identification.

5.1 Multiple Trees

The biggest limiting factor of the Bloom filter based approach is the computa-
tional complexity increase when multiple trees are constructed. Let C denote
the number of necessary Bloom filter template comparisons, for a single lookup
in an identification scenario. Note, that C is directly related to ρ: ρ = C

S . In
the simple case, where all the constructed trees are traversed, this cost can be
computed using equation 5.1, where S is the number of subjects enrolled in the
system, and T the number of constructed trees.

C =


2 ∗ logS − 1 if T = 1

T ∗ (2 ∗ (log ST − 1)) if 1 < T < S
2

S if T ≥ S2
(5.1)
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The basic case is the traversal of one tree (T = 1). logS represents the number
of tree levels and the factor of 2 is included, since at each level both nodes are
checked. Finally, one node is subtracted, since the root is skipped during the
traversal. In the second case, the templates are spread among multiple trees.
Thus, the number of levels in each tree decreases to log ST and the procedure
must be repeated multiple times (T ). The last case, where T ≥ S

2 is not of
interest, since it corresponds to an exhaustive search of the database. It was
included in the above equation for the completeness sake and will be omitted
in other equations in this chapter. For larger databases, where many trees
have to be constructed to avoid problems outlined in section 4.3, the associated
workload increase is non-trivial. It is an issue that must be resolved in order for
the system to be truly scalable.

Often, in order to reduce the workload, one is willing to concede receiving a full
list of candidate identities and instead stop algorithm execution when the first
plausible identity is returned. This will, on average, happen after traversing half
of the trees, thus decreasing the number of traversed trees by a factor of 2, as
shown in equation 5.2.

C =

{
2 ∗ logS − 1 if T = 1
T
2 ∗ (2 ∗ (log ST − 1)) if 1 < T < S

2

(5.2)

Further decrease in the number of necessary template comparisons is achieved by
the proposed improvement demonstrated conceptually in figure 5.1 and formally
in algorithm 5.1. The key idea is to only traverse N most promising tree(s)
instead of them all; N � T . In other words, a pre-selection step is added to
the indexing scheme. The trees to traverse are selected based on computing the
dissimilarity scores between the probe and all the tree roots, thus allowing to
quickly find the most promising trees and only traverse these. The number of
template comparisons in the worst case can be calculated using equation 5.3.
The cost of the pre-selection step is simply the number of tree roots checked
(T ) and it is added onto the formula for multiple tree traversal. The significant
change in that formula is the replacement of the T factor with the much smaller
N factor. Additionally, due to the traversal being ordered (most promising trees
first), the actual number of necessary tree traversals will (non-deterministically)
tend to be lower than in the presented formula.

C =

{
2 ∗ logS − 1 if T = 1

T +N ∗ (2 ∗ (log ST − 1)) if 1 < T < S
2

(5.3)
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Lookup query

Only the tree

roots visited
R1 R2 . . . RT

Next root

Next root Next root

Trees ordered by root score

Only the most

promising trees

traversed

R1

. . .

LILI−1

. . .

L2

S1

L1

R2

. . .

LILI−1

. . .

L2L1

S2

Best score

Figure 5.1: Lookup in a system with multiple trees constructed and selective
tree traversal. First, only the dissimilarity scores between the
probe and the tree roots are computed, resulting in an ordered
list of the trees. Subsequently, only the most promising N trees
are traversed. Amongst these, the best leaf score is chosen.

Algorithm 5.1 Lookup in the Bloom filter based scheme - improved

1: procedure Lookup(trees,N, probe, decisionthreshold)
2: candidates← empty list
3: for all trees do
4: compute dissimilarity(probe, treeroot)
5: end for
6: chosentrees← select N trees with lowest dissimilarity scores at root
7: for all chosentrees do
8: identity ← Tree Lookup(tree, probe, decisionthreshold)
9: if identity 6= nil then

10: add identity to candidates
11: end if
12: end for
13: return candidates
14: end procedure
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The figure 5.2 illustrates the numbers of template comparisons computed by
the equations above. For the proposed scheme, three values of most promising
tree(s) selected for traversal (N ) are displayed: only a single, best tree (green), a
moderate number (orange) and an unnecessarily large number (red). The ideal
value of N is expected to lie between the green and the orange line. The dashed
lines denote the configurations in which the proposed system is infeasible (i.e.
where the corresponding configuration of a basic scheme requires fewer template
comparisons). This is the case in situations when the number of constructed
trees and number of trees chosen for traversal are similar - then, intuitively,
the proposed approach obviously does not make sense. Consider, for instance, a
worst-case scenario in a system of 29 enrollees (figure 5.2a), 16 trees constructed
and 4 trees traversed (orange line). The number of template comparisons needed
for a lookup is then 56, which is less than a half of that of the basic scheme
(blue line), where all the 16 constructed trees are traversed.

(a) Few enrollees, worst case (b) Few enrollees, average case

(c) Many enrollees, worst case (d) Many enrollees, average case

Figure 5.2: Template comparisons per lookup in the proposed selective traver-
sal scheme with small and large numbers of enrolled subjects. The
baseline, as well as worst and average cases of the basic Bloom fil-
ter scheme are plotted for comparison.
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5.2 Traversal Direction Decision

Another non-trivial factor in the computational cost of the scheme is the way
in which the tree traversal direction decisions are made. Recall (see previous
section and algorithm 4.1, between lines 6 and 19), that in the basic scheme, the
dissimilarity scores at each tree level for both nodes are computed and compared
against each other to make a direction decision. This means that a single tree
is traversed in 2 ∗ (log ST − 1) steps instead of log ST − 1 steps.

One can take advantage of the fact that genuine score sequences are expected
to decrease and make a quick decision about the traversal direction, as demon-
strated in algorithm 5.2. The key idea is that one of the two nodes is checked
first and if the score has decreased in comparison with the parent, then that
node is chosen immediately instead of also computing the score for the second
node. If the score has not decreased, then it is necessary to compute the score
for the second node as well. Effectively, on average in half the traversal direction
decision cases, it will only be necessary to compute the dissimilarity for only
one of the child nodes. Furthermore, observe that:

• In the configurations without the selective tree traversal scheme, the root
score will now have to be computed in order to be able to make a quick
traversal direction decision at the first tree level. By implication, the
highest relative decrease of required template comparisons will occur in
the configurations with a few trees constructed.

• In the selective tree traversal scheme, all the root scores are computed
beforehand. Thus, no additional computations have to be made.

• While the factor of 2 is not entirely eliminated from the equation, it is
significantly reduced, albeit non-deterministically. The efficacy of this
scheme will be tested empirically later on.

Algorithm 5.2 Lookup direction decision (fragment) - improved

1: scoreleft← dissimilarity(probe, leftchild)
2: if scoreleft < previousscore then
3: currentnode← leftchild
4: currentscore← scoreleft
5: else
6: currentnode← rightchild
7: currentscore← dissimilarity(probe, leftchild)
8: end if
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5.3 Other

A couple additional, non-deterministic improvements can be added for the du-
plicate enrolment check (DEC) scenarios. In these cases, the identity of the
probe template subject is not necessarily important - of interest is whether or
not the subject has already been enrolled in the system. This means that some-
times it may be possible to make a decision without the need of traversing the
entire tree to reach a leaf. Two possibilities are:

• If there is a very large decrease in the dissimilarity score between two con-
secutive tree levels, then it is extremely likely that the subject’s template
is in the tree. Impostor templates hardly ever exhibit such behaviour.

• If a dissimilarity score at one of the non-leaf levels is already below the
final acceptance threshold, then it is very likely that the subject’s template
is present in the tree. This approach works, since for genuine attempts
the dissimilarity score sequence is expected to decrease at each consecutive
tree level. Thus, continuing tree traversal would most likely only cause the
score to improve.

Finally, as has been shown earlier, some indexes in Bloom filters are more likely
to occur than others. Most notably, the first (0) and last (2H − 1) index are
frequent. These correspond to iris columns consisting entirely of 0’s and 1’s,
respectively. These indexes carry very little discriminative power and can be
therefore eliminated from consideration during matching attempts. In so doing,
the dissimilarity scores will be slightly impaired, but this impairment would
have much larger effect on the impostor attempts than the genuine attempts.
As a consequence, the false positive rate is expected to be a bit lower.

5.4 Multibiometrics

In [HJP99] the concept of combining multiple biometric characteristics into one
system is proposed and evaluated. The key idea is that fusing information from
separate sources should improve the biometric performance. A more compre-
hensive look at research and developments in multibiometrics can be found in
[RNJ06].

In this project, an early study into feasibility of multi-iris indexing is performed.
Although, in itself, multi-iris biometrics is not a new idea (see e.g. [WWZQ07]),
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best to this author’s knowledge, it is the first such attempt in the scientific
literature for biometric indexing schemes. This early study may serve as a basis
for research aiming at integrating other biometric characteristics (e.g. face) into
a multibiometric system utilising the Bloom filter based scheme. The proposed
approach is based on a feature level fusion of two irides from a single subject
upon enrolment and prior to a matching attempt. Let BM denote a multi-iris
template of a subject. It consists of the left eye template (Bleft) and the right
eye template (Bright) fused together, as shown in equation 5.4. In the concrete
implementation, this is simply an element-wise union of two Bloom filter sets.

BM = Bleft ∪Bright (5.4)

The tree construction and the identification scenario then follow in the same
way as described earlier in this chapter. Due to more information carried by
the fused template, one can expect an increase in the true positive identification
rate and a decrease in false positive identification rate. Overall, the biometric
performance is expected to be superior to that based on the single iris templates.
The only additional (negligible) cost of the Bloom filter based multi-iris scheme
is the fusion of the templates. Observe also, that the system can take advantage
of all the workload reducing improvements proposed in the previous sections.

5.5 Summary

Previous sections have demonstrated multiple possible improvements for the
basic Bloom filter scheme presented in chapter 4. Their aim is to reduce the
workload in lookup scenarios in terms of required template comparisons. These
changes will necessarily also have a non-negligible (positive or negative) influence
on the biometric performance of the system. Additionally, a multi-iris extension
of the scheme, which is expected to be beneficial for the biometric performance,
has been proposed. Chapter 7 will, among other matters, present experimental
results of the scheme with and without utilising the proposed changes.
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Chapter 6

Experimental Setup

This chapter contains an overview of the raw data selected for use during this
project, its preparation for the experiments and a description of how the exper-
iments were conducted.

6.1 Chosen Datasets

Many publicly available iris datasets exist (see, for example, a summary in
[BHF08]). For use during the experimental phase of this project, three distinct
datasets were selected. Example images are shown in figure 6.1, while brief
descriptions are provided below. Notice the differences in the image quality,
image size and iris diameter.

CASIA-V4 Iris Thousand At the time of this writing, it is the largest pub-
licly available dataset. It consists of images from 1000 subjects - 10 for
each eye, thus making the total number of images 20.000. The variability
of the data is high: the extra illumination source sometimes is on/off and
in many cases, the subjects are wearing glasses. These properties make it
a challenging dataset in the context of biometric performance [Chi].
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CASIA-V4 Iris Interval Contains 2639 images from 249 subjects. The im-
ages are of very high quality, with few occlusions and reflections; the iris
texture details are clearly visible [Chi].

IITD Contains 2240 images from 224 subjects. The quality of most images is
very high [IIT].

(a) Interval (b) IITD (c) Thousand (d) Thousand

Figure 6.1: Example images from each dataset

Since the IITD and Interval datasets have similar properties, they have been
combined into one larger dataset. The purpose of this is for the Bloom filter
system to be able to have more enrolled subjects during identification scenario
experiments. Henceforth, this dataset will be referred to as "Combined".

6.2 Iris Biometric Processing Chain

This section describes the process of converting a raw eye image into the repre-
sentation worked with throughout this project. It is a concrete example for the
abstract, generic description of the process presented in section 2.2.

The data preparation steps and concrete methods involved are:

Segmentation For the Thousand dataset, the OSIRIS software package is em-
ployed [Tel], since it uses the Viterbi algorithm, which is well-suited for
noisy images [SGSD12]. For the Combined dataset, the USIT software
package [RUWH16] is used. It provides an implementation of the contrast-
adjusted Hough transform, which is well-suited for high quality images.
The purpose of this step is finding the boundaries of the iris and the pupil.
Additionally, a mask is produced to cover image occlusions, reflections and
other noise (e.g. eyelashes).

Normalisation Preparation for the feature extraction step. The differences
in pupil dilation and distance from the camera are compensated for. To
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achieve this, Daugman’s rubber sheet model is used. In this process, the
Cartesian points of the iris image are mapped to a polar coordinate system
[Dau04a].

Enhancement Further preparation for the feature extraction step. Contrast-
limited adaptive histogram equalization from the USIT software package
is used. The goal is to make the iris texture features more prominent. By
doing so, the recognition accuracy of the system is improved later on.

Feature extraction Two methods which follow similar processing steps are
utilised. First, the normalised iris texture signal is decomposed to one-
dimensional representation. Then, filters are applied: the quadratic spline
wavelet (QSW) or the complex Log-Gabor convolution (LG). The last step
is binary encoding of the data into the iris code matrix format. For QSW,
a fixed number of sub-bands is produced, from which the responses’ local
extrema are found. The LG approach discretizes the produced complex
values’ phase angle. In both cases, the final result is a binary matrix with a
width of 512 bits and a height of 20 bits. Implementations of both feature
extractors provided by the USIT software package are used.

Conversion to text An optional, albeit very useful step. An iris code is stored
in a text file containing 160 unsigned integer values (uint64). Thereby, in
the experiments, the iris code can be loaded directly from this file, instead
of repeating (parts of) the above process. The uint64 representation also
confers benefits of being able to use the fast operations of the CPU, such as
the logical operators and bitcounts. These are utilised in the comparison
step of the naïve baseline system implementation (see section 2.2.2) and
during and after transformation to the Bloom filter representation (see
section 4.2).

Figure 6.2 illustrates how the data looks at each step of the processing chain.
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(a) Raw image (b) Segmented image

(c) Normalised image (d) Enhanced image
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1 1 1 0 0 0 1 1 · · · 0
1 0 1 0 0 0 0 0 · · · 1
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. . .
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1 0 0 1 0 1 1 0 · · · 1


(e) Iris code representation

4154045280939040767
1152886320243146748
4611650834592137216

17049845756
...

2251251130568671

(f) Text representation

Figure 6.2: Data at each step of the iris biometric processing chain

6.3 Excluded Images

In the quality control step, some images had to be excluded from use in this
project. This section outlines the reasoning behind such decisions.

6.3.1 Dataset Errors

It turns out that there are some errors in the datasets. Three types of errors
can be distinguished.

• Eye images from same subject are used multiple times and labelled as
separate subjects. This is a problem especially when one of the subjects is
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used as an enrollee and another as an impostor, yielding unjustly increased
false positive rates.

• Same eye image is used multiple times with different labels for the same
subject. For such images, the comparison will result in a 0 dissimilarity
score, thus skewing the score distribution.

• Images from one eye only are present for a subject, but are mislabelled as
coming from both left and right eye. This is an issue, since for experimental
purposes, images from left and right eye are treated as separate subjects.
Experiments would then yield incorrectly higher false positive rates.

These errors are notoriously difficult to discover, although several cases have
been found and excluded.

6.3.2 Preprocessing Failures

It is important to be aware that the preprocessing is not flawless and failures
may occur. The segmentation step is of interest here, since it is vulnerable to
errors which then propagate further down the processing chain. Furthermore,
segmentation failures can actually be spotted upon visual inspection, as shown
in figure 6.3 and by using an automated check outlined in section 6.3.3.

(a) Incorrect location (b) Incorrect mask (c) Incorrect boundary

Figure 6.3: The typical segmentation failures

Through a visual inspection the worst and most obvious failures were found.
This has resulted in removal of approximately 500 images (around 2.5% of all)
from the Thousand dataset. The images from the Combined dataset are of much
better quality - there were only a couple cases of failed segmentation.
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6.3.3 Automated Quality Check

In addition to the manual filtering via visual inspection, an automated quality
check has been put in place. As shown in algorithm 6.1, it uses the generated
masks to determine the fraction of the iris code that which had not been occluded
or otherwise deficient. Subsequently, templates with quality score below certain
threshold can be rejected.

Algorithm 6.1 A simple segmentation quality check

1: procedure Quality check(mask, threshold)
2: iriscodebits← 10240 . 20 rows and 512 columns
3: usedbits← 0
4: for all uint64 in mask do
5: usedbits← usedbits+ popcount(uint64)
6: end for
7: usedbitsfraction← usedbits/iriscodebits
8: return usedbitsfraction > threshold
9: end procedure

Since the data in the Combined dataset is very clean, it was only necessary to
apply this procedure for the Thousand dataset. Figure 6.4 shows that a quality
check threshold of 0.5 is reasonable - around 10% of the worst quality templates
are excluded. This is the threshold used for all the Thousand dataset results
presented in chapter 7.

Figure 6.4: Fraction of acceptable templates depending on the quality check
threshold



6.4 Experiments 45

Table 6.1 provides an overview of the raw data used in this project.

Dataset Instances Images Excluded Resolution Av. iris diameter Quality
Thousand 2000 20000 1643 640x480 px ∼185 px Moderate
Interval 395 2639 1 320x280 px ∼210 px High

IITD 448 2240 100 320x240 px ∼205 px High

Table 6.1: Raw data overview

6.4 Experiments

The dataset has been split into 4 groups: enrolled, genuine, impostor and train-
ing (for the final threshold estimation in the Bloom filter scheme). Table 6.2
shows the number of templates in each group. The conducted experiments are
listed below.

Baseline The basic implementation, which performs comparisons on iris codes.
In an identification scenario the database is searched exhaustively, as
shown in algorithm 2.1.

Verification All possible cross-comparisons for templates from each sub-
ject to obtain genuine scores. Impostor scores are obtained by per-
forming all possible comparisons of templates with differing subjects.

Identification One template per subject is enrolled (reference). Remain-
ing templates (probes) are compared against the enrolled template
to obtain genuine and impostor scores in an open-set scenario.

Bloom filter The system as described in chapter 4.

Verification As in the baseline experiment above; the only difference is
that now the templates have been transformed to the Bloom filter
representation.

Identification One template per subject is enrolled and from these, the
Bloom filter trees are constructed. Genuine and impostor scores are
obtained by comparing the probe templates against the tree(s) in an
open-set scenario.

Workload reduction A repetition of the above identification scenario,
with addition of the proposed system improvements described in
chapter 5.

Multi-iris A repetition of the above identification scenario, using fused
templates as shown in section 5.4.
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Dataset Enrolled Genuine Impostor Training
Thousand 1024 8126 9079 128
Combined 512 2157 2045 64

Combined multi-iris 256 914 604 64

Table 6.2: Dataset split (templates) for the experiments

6.5 Summary

This chapter presented the details of the experimental set-up for this project.
This includes the used data, how it was processed and curated, as well as what
experiments were performed.

Three datasets were chosen - CASIA-V4 Iris Thousand (large variability, not
high quality), CASIA-V4 Interval and IITD (low variability, high quality); the
latter two were combined into one larger dataset. The raw eye images from
these datasets were transformed to a textual representation of an iris code by a
multi-step process, which consists of segmentation, normalisation, enhancement
and feature extraction. Due to various errors in the datasets themselves and
in the processing chain, a fraction of the images had to be excluded through
visual inspection. Additionally, a simple, automated quality check has been
implemented. The chapter concluded with a list and short descriptions of em-
pirical experiments that were carried out during the course of this project. Their
results are presented in the next chapter.
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Results

Experimental results are presented in this chapter. The labelling nomenclature
in this chapter is as follows: "baseline" refers to the naïve, iris code based
biometric system. Any mention of the "basic" or "single-tree" Bloom filter
system refers to the system from [RBBB15]. Other Bloom filter system versions
are the proposed improvements (e.g. "selective traversal"), with the exception
of the score sequence ordering from the article cited above. The Bloom filter
results are further denoted by the system configuration (H, W, T , N ).

7.1 Baseline

The baseline results come from the naïve biometric system implementation. It
is important to establish these, since they will serve as a reference point for the
Bloom filter system results.

7.1.1 Score Distribution

A distribution of the comparison scores provides valuable insights into the bio-
metric data.
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(a) Thousand (b) Combined

Figure 7.1: The Hamming Distance distributions for the verification experi-
ment

By examining figure 7.1, the following can be readily observed:

• Compared with the Combined dataset, the genuine score distribution in
the Thousand dataset is significantly shifted to the right. In other words,
the difference between two templates from the same subject (intra-class
variation) is higher for the Thousand dataset.

• For the Thousand dataset, the median of the genuine distribution is around
0.3. Consequently, approximately every third bit in the iris code can be
expected to flip between two separate templates from the same subject.

• In the Combined dataset, there is nearly no overlap between the genuine
and impostor distributions. However, as a consequence of the genuine dis-
tribution shift, the overlap between the genuine and impostor distributions
in the Thousand dataset is significant.

These observations suggest the expected biometric performance of the Combined
dataset to be very high, while it should be lower for the Thousand dataset.

7.1.2 EER and ROC

A commonly used metric for reporting performance of a biometric verification
system is the equal error rate (EER). It is the point at which the false non-
match rate and the false match rate (as defined in the [ISO11] standard) are
equal. In table 7.1, it can be seen that the performance of the Combined dataset
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is excellent, while the performance of the Thousand dataset is much worse,
although still within the acceptable range. These results are in agreement with
the expectations based on the score distributions from the previous section.

Dataset Extractor EER
Thousand LG 5.2%
Thousand QSW 5.1%
Combined LG 1.12%
Combined QSW 1.37%

Table 7.1: The EERs achieved during the verification experiment

For a biometric identification system, the commonly used metrics are the true
positive identification rate (TPIR) and the false positive identification rate
(FPIR) (as defined in the [ISO11] standard). For a fixed database size, as is the
case here, these can be plotted as a ROC curve. Figure 7.2 shows these curves in
the case where the size of the returned candidate list is 1 (i.e. only the candidate
with the best comparison score). In addition to the ROC curves, two specific
biometric performance points are defined: TP0 and TP0.1, which correspond to
the true positive identification rate at 0% and 0.1% false positive identification
rate, respectively. Where it is possible to compute these, they will be used as
single-value biometric performance indicators and posted together with work-
load reduction results to give an instant overview of the system configuration
outcomes. Otherwise, a single pair of TPIR and FPIR values is reported.

(a) Thousand (b) Combined

Figure 7.2: The ROC curves for the baseline system

As could be expected based on the results of the verification experiment, the
Combined dataset achieves a very high biometric performance, while that of the
Thousand dataset is much lower.
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7.1.3 Workload

An iris code template consists of 10240 bits. In this project rotation compensa-
tion is performed for 8 bits in each direction, which gives 17 rotations of the iris
code template in total. Overall size of one template can therefore be considered
to be 10240 ∗ 17 = 174080 bits. A single identification attempt performs an
exhaustive search of the database, which means that the penetration rate is 1.0.
Finally, the number of subjects enrolled is 1024 in the case of the Thousand
dataset and 512 in the case of the Combined dataset. Using these values, the
total workload per lookup can be then computed using the formula presented
in equation 3.1. Table 7.2 summarises the baseline system results.

Dataset Workload Performance
Worst Average LG QSW

Thousand ω ≈ 1.78 ∗ 108 ω ≈ 8.91 ∗ 107
TP0 = 53.22% TP0 = 78.46%
TP0.1 = 88.76% TP0.1 = 92.31%

Combined ω ≈ 8.91 ∗ 107 ω ≈ 4.46 ∗ 107
TP0 = 34.67% TP0 = 42.05%
TP0.1 = 98.51% TP0.1 = 98.56%

Table 7.2: The results of the baseline system

7.2 Bloom Filter Approach

This section contains the results of the experiments performed with the system
described in chapters 4 and 5.

7.2.1 Verification

The first experiment is the verification scenario. It allows to see whether or not
the mere template representation change from iris code to Bloom filter has had
any effect on the performance. Table 7.3 shows the equal error rates for this
experiment. Since the Bloom filter system can be run in many configurations
of block width and height (and later, in the identification mode, trees), only
the results for the top 5 such configurations are presented in this section. Full
results are available in appendix B.1 and B.2.

The effects of the template representation transformation are twofold:

• A significant amount of information is lost, since columns of multiple bits
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are consolidated into single indexes in Bloom filters. This makes it more
difficult for genuine attempts. Suppose a column has 10 bits and just one
of these flips between two separate templates from the same subject. In
the iris code representation, this would still mean that 9 out of 10 bits
match. In the Bloom filter representation, however, this would mean that
the column would be assigned a different index, thus simply resulting in a
mismatch.

• The templates become rotation-invariant to a certain degree.

In comparison to the baseline, the Combined dataset maintains the high perfor-
mance in most configurations; in some cases, it is even slightly improved. The
performance of the Thousand dataset becomes much worse. An explanation for
this can be derived from the shifted genuine distribution, shown earlier in fig-
ure 7.1. Given an average 1 in 3 chance of a bit flip between two templates,
it quickly becomes unlikely for entire columns of many bits to be completely
identical. It is therefore not surprising that the comparatively best results for
this dataset are obtained at relatively low column sizes.

Dataset Extractor EER Configuration

Thousand

7.43% H : 5 W : 16
7.93% H : 4 W : 16

LG 7.94% H : 5 W : 8
8.04% H : 6 W : 8
8.11% H : 4 W : 8

Thousand

9.13% H : 5 W : 16
9.80% H : 4 W : 16

QSW 10.05% H : 4 W : 8
10.06% H : 5 W : 8
10.81% H : 6 W : 16

Combined

0.89% H : 11 W : 32
0.90% H : 12 W : 32

LG 0.93% H : 10 W : 32
0.93% H : 8 W : 32
0.94% H : 9 W : 32

Combined

0.96% H : 9 W : 32
0.96% H : 10 W : 32

QSW 0.97% H : 11 W : 32
0.99% H : 12 W : 32
0.99% H : 8 W : 32

Table 7.3: The best EERs achieved during the verification experiment
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It should also be noted, that the reported performance has only been reached
after implementing additional measures for bit flip compensation, such as feature
extractor response reordering and majority voting on the iris code bits before
transformation to the Bloom filter representation.

Due to the poor results of the Thousand dataset already in the verification mode,
it makes little sense to use it in the identification mode, where the results can
only deteriorate even further. Therefore, only the results of the Combined dataset
are shown and described in depth in the subsequent sections. The results of the
Thousand dataset, which substantiate the exclusion decision can be viewed in
appendix B.2. The reasons for the inferior results on the Thousand dataset are
discussed in section 8.1.

7.2.2 Model

Before proceeding to the identification mode results, let’s revisit the model de-
scribed in section 4.3. The main thought behind its development was the as-
sessment of feasibility of a system configuration in the identification mode based
on just a few parameters: the number of enrolled subjects (S), the Bloom filter
block size (H and W), the number of constructed trees (T ) and the factor ac-
counting for iris code entropy in relation to randomly generated data (ε). The
purpose of this section is twofold: examining the applicability of the model to
real data and presenting the use of the model for finding well-performing system
configurations.

7.2.2.1 Validation

The first and foremost matter of interest for the model is, whether or not it
is a reasonable representation of real iris data. Figure 7.3 shows model and
real distributions for an example system configuration. The plot is identical to
that in figure 4.5, except that now real iris data distribution is also plotted. It
can be seen, that the fit between the model and the real distributions is good.
As mentioned earlier, due to the multitude of possible system configurations, a
quantitative metric is used to assess the model fit. This metric is the Hellinger
Distance (see equation 4.12). Computing it for all the relevant configurations
results in a mean of µ = 0.16 and a standard deviation of σ = 0.08. Figure 7.3c
shows a histogram of the obtained HD values. The model appears to fit the real
data well. The likely source of discrepancies, aside from the assumptions that
were made to simplify the model, is the rigid ε value, which therefore fails to
account for real data variability.
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(a) Example configuration 1 (b) Example configuration 2

(c) Hellinger Distances between the
model and real impostor data for all
the relevant system configurations

Figure 7.3: The fit between the model and real impostor data

7.2.2.2 Finding Good Configurations

The subsequent sections in this chapter will present empirical results of the
Bloom filter system. However, there is a multitude of possible configurations the
system can be run in - different block widths, heights and number of constructed
trees. Instead of blindly and exhaustively plotting them all for the possible
system set-ups, the model can be used to discover which configurations can be
expected to achieve good performance. This can be done by feeding the variables
(S, H, W, T , ε) to the model and computing the mean of the expected overlap
distribution between a tree root and a random (impostor) template (see equation
4.11). The hypothesis is, that configurations with lowest Θ values will achieve
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the highest biometric performance in terms of true positive identification rate
due to lowest risk of false bit matches in the tree root and the top levels of the
tree. The two items of interest are:

• Configurations with just a single tree constructed. These will serve as a
basic result of the Bloom filter system in its original form and be used
for comparison purposes with the results of the system with application
of the proposed improvements.

• Configurations with multiple trees constructed. For the sake of brevity,
let’s consider all possible (20) configurations with 16 trees constructed.

(a) Single tree constructed (b) Multiple trees constructed

Figure 7.4: The Θ values for all relevant system configurations

The histograms of computed Θ values for all the relevant configurations (see
section 4.2.4) are shown in figure 7.4. Observe, that Θ is in general much
higher for the configurations with single tree constructed in comparison with
the configurations with multiple trees constructed. This is obvious - with more
trees, there are fewer templates in each tree root, thus making it less likely for
random bit matches to occur. Now, for both the single and multiple trees case, a
few configurations with low and high Θ values are chosen for the experiments in
the following sections. The chosen configurations are listed in tables 7.4 and 7.5,
respectively. Having established the configurations which are likely to perform
well (and bad) in the identification mode, the empirical test results can now be
looked into. In figure 7.5, the Θ values of all relevant system configurations both
in the single and multiple tree mode are plotted against the achieved TPIR at
0% FPIR. Notice the strong correlation - it appears, that upon crossing a certain
threshold (around Θ = 0.75), the TPIR begins to drop dramatically due to the
inability to make correct traversal direction decisions for genuine attempts.
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Configuration Overlap mean
H : 12 W : 8 T : 1 Θ ≈ 0.45
H : 12 W : 16 T : 1 Θ ≈ 0.71
H : 11 W : 8 T : 1 Θ ≈ 0.59
H : 11 W : 16 T : 1 Θ ≈ 0.76
H : 10 W : 8 T : 1 Θ ≈ 0.69

H : 12 W : 32 T : 16 Θ ≈ 0.16
H : 12 W : 16 T : 16 Θ ≈ 0.08
H : 10 W : 16 T : 16 Θ ≈ 0.24
H : 12 W : 64 T : 16 Θ ≈ 0.72
H : 8 W : 16 T : 16 Θ ≈ 0.56

Table 7.4: Several potentially feasible system configurations

Configuration Overlap mean
H : 12 W : 64 T : 1 Θ ≈ 0.94
H : 10 W : 16 T : 1 Θ ≈ 0.85
H : 8 W : 32 T : 1 Θ ≈ 0.86
H : 10 W : 32 T : 1 Θ ≈ 0.90
H : 8 W : 64 T : 1 Θ ≈ 0.98

Table 7.5: Several potentially infeasible system configurations

Figure 7.5: The correlation between Θ and TPIR
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7.2.3 Identification

This section presents the results for the system where the probe templates
are compared against a single Bloom filter tree (i.e. the basic scheme from
[RBBB15], without multiple trees and other improvements described in chapter
5). In figure 7.6, the results for the top 5 system configurations are shown.

(a) Low Θ configurations - LG (b) Low Θ configurations - QSW

(c) High Θ configurations - LG (d) High Θ configurations - QSW

Figure 7.6: The best ROC curves for the basic Bloom filter scheme

It can be observed, that the achieved true positive identification rate is lower
than in the baseline case. On the other hand, the false positive identification
rate of flat 0% is achieved at very high true positive identification rate in the
case of the Bloom filter system, whereas this is not the case in the baseline (the
black line in this and subsequent plots is cut off - it actually goes way down as
was shown in figure 7.2). Notice also, that the good biometric performance is
achieved using the configurations with low Θ values, while configurations with
high Θ values perform poorly - as suggested by the model.
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Lastly, it appears that the best configurations from the verification experiment
are not necessarily the best in the identification scenario. This is because in the
identification scenario, the Bloom filters have to store more information due to
the union of templates (see section 4.2.2). In the verification experiment, the
best configurations had relatively small sizes of the Bloom filters. These become
filled up in the identification scenario, as can be seen in figure 7.7. The tree
traversal decision making is thus severely impaired. Consequently, the biometric
performance, especially in terms of true positives, would decline in these cases.
Consider, for example, the configuration H = 8 and W = 32; it was one of
the best performing in the verification experiment, but in the identification
experiment its performance is atrociously bad.

Figure 7.7: The amount of bits set to 1 (in %) at different tree levels for several
relevant system configurations

7.2.4 Workload

The single lookup workload and biometric performance for the configurations
presented in the previous section is presented in table 7.6. The number of
enrolled subjects is 512, the template size is calculated using equation 4.1, the
number of template comparisons (and from it, the penetration rate) is obtained
using equations 5.1 and 5.2. Observe, that the workload has been reduced to a
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small fraction of the baseline. Naturally, this came at the cost of a significantly
reduced biometric performance.

Configuration Workload Performance
Worst Average LG QSW

H: 12 W: 8 T : 1 ω ≈ 8.39 ∗ 106 ω ≈ 8.39 ∗ 106 TP0 = 95.17% TP0 = 93.61%
z ≈ 0.094 z ≈ 0.188 TP0.1 = 95.50% TP0.1 = 93.74%

H: 12 W: 16 T : 1 ω ≈ 4.19 ∗ 106 ω ≈ 4.19 ∗ 106 TP0 = 94.81% TP0 = 93.51%
z ≈ 0.047 z ≈ 0.094 TP0.1 = 94.95% TP0.1 = 93.60%

H: 11 W: 8 T : 1 ω ≈ 4.19 ∗ 106 ω ≈ 4.19 ∗ 106 TP0 = 94.11% TP0 = 93.23%
z ≈ 0.047 z ≈ 0.094 TP0.1 = 94.34% TP0.1 = 93.23%

H: 11 W: 16 T : 1 ω ≈ 2.10 ∗ 106 ω ≈ 2.10 ∗ 106 TP0 = 92.44% TP0 = 90.40%
z ≈ 0.024 z ≈ 0.047 TP0.1 = 92.58% TP0.1 = 90.40%

H: 10 W: 8 T : 1 ω ≈ 2.10 ∗ 106 ω ≈ 2.10 ∗ 106 TP0 = 91.98% TP0 = 89.89%
z ≈ 0.024 z ≈ 0.047 TP0.1 = 92.30% TP0.1 = 90.07%

Table 7.6: The results of the Bloom filter scheme with a single tree constructed

7.3 Improvements

This section presents the results of the various system improvements presented
in chapter 5.

7.3.1 Multiple Trees

This is the first and the most important improvement of the Bloom filter ap-
proach. First matter to investigate is its effect on the biometric performance.
Figure 7.8 shows the biometric performance for the best performing system con-
figurations. It is clear, that spreading the templates out positively affects the
biometric performance in comparison with the basic Bloom filter scheme. Now,
the biometric is only minimally lower than that of the baseline. The reason for
this is obvious - with more trees constructed, each one holds fewer templates,
thus reducing the probability of false bit matches in the top levels of the tree.
The results validate the predictions of the model - all of the well-performing
configurations shown in the figure below have low or very low Θ values.

7.3.1.1 Workload

The single lookup workload is computed in the same way as in section 7.2.4. As
can be seen in table 7.7, the workload has now increased compared to that of the
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(a) LG (b) QSW

Figure 7.8: The best ROC curves for the Bloom filter scheme with multiple
trees constructed

basic scheme. This was expected, since now multiple trees have to be traversed
instead of just one; thus resulting in a higher penetration rate. Notice, however,
that the workload is still significantly lower than that of the baseline - only now,
the biometric performance is nearly identical to that of the baseline.

Configuration Workload Performance
Worst Average LG QSW

H: 12 W: 32 T : 16 ω ≈ 1.68 ∗ 107 ω ≈ 1.05 ∗ 107 TP0 = 97.85% TP0 = 97.75%
z ≈ 0.188 z ≈ 0.235 TP0.1 = 98.09% TP0.1 = 97.98%

H: 12 W: 16 T : 16 ω ≈ 3.36 ∗ 107 ω ≈ 2.10 ∗ 107 TP0 = 97.25% TP0 = 97.94%
z ≈ 0.377 z ≈ 0.470 TP0.1 = 97.92% TP0.1 = 98.33%

H: 10 W: 16 T : 16 ω ≈ 8.39 ∗ 106 ω ≈ 5.24 ∗ 106 TP0 = 96.56% TP0 = 97.86%
z ≈ 0.094 z ≈ 0.118 TP0.1 = 97.52% TP0.1 = 98.05%

H: 12 W: 64 T : 16 ω ≈ 8.39 ∗ 106 ω ≈ 5.24 ∗ 106 TP0 = 97.25% TP0 = 95.15%
z ≈ 0.094 z ≈ 0.118 TP0.1 = 97.49% TP0.1 = 96.87%

H: 8 W: 16 T : 16 ω ≈ 2.10 ∗ 106 ω ≈ 1.31 ∗ 106 TP0 = 97.01% TP0 = 97.45%
z ≈ 0.024 z ≈ 0.029 TP0.1 = 97.15% TP0.1 = 97.45%

Table 7.7: The results of the Bloom filter scheme with many trees constructed

7.3.2 Selective Tree Traversal

While reduced in comparison with the baseline, the single lookup workload is
still quite high in the scheme in which all constructed trees are traversed. To
mitigate this issue, it was proposed to selectively traverse a few most promising
trees. Figure 7.9 shows the results of this approach for two of the configurations
from the earlier example (figure 7.8); the other three are available in appendix
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B.3. Observe, that there is a trade-off associated with the workload reduction.
Fewer traversed trees result in a decreased true positive identification rate. Note,
that this decrease is not excessive - even when just the single most promising tree
is traversed, the biometric performance is acceptable. Upon selecting merely a
few additional promising trees for traversal, the performance converges with
that of traversing all the constructed trees.

(a) LG (b) QSW

(c) LG (d) QSW

Figure 7.9: The ROC curves for two configurations in the selective tree traver-
sal experiment

7.3.2.1 Workload

The single lookup workload is calculated in almost the same way as before, only
now equation 5.3 is used to compute the number of template comparisons (and
from it, the penetration rate). Table 7.8 shows an overview of the workload
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and biometric performance results for the configurations presented in figure 7.9,
while the remaining results can be found in appendix B.3.

Configuration Workload Performance
Worst Average LG QSW

H: 8 W: 16 T : 16 N : 8 ω ≈ 1.31 ∗ 106 ω ≈ 7.86 ∗ 105 TP0 = 96.95% TP0 = 96.78%
z ≈ 0.015 z ≈ 0.018 TP0.1 = 97.02% TP0.1 = 96.78%

H: 8 W: 16 T : 16 N : 4 ω ≈ 7.86 ∗ 105 ω ≈ 5.24 ∗ 105 TP0 = 96.50% TP0 = 95.61%
z ≈ 0.009 z ≈ 0.012 TP0.1 = 96.59% TP0.1 = 95.61%

H: 8 W: 16 T : 16 N : 2 ω ≈ 5.24 ∗ 105 ω ≈ 3.93 ∗ 105 TP0 = 94.15% TP0 = 93.61%
z ≈ 0.006 z ≈ 0.009 TP0.1 = 94.22% TP0.1 = 93.61%

H: 8 W: 16 T : 16 N : 1 ω ≈ 3.93 ∗ 105 ω ≈ 3.93 ∗ 105 TP0 = 91.19% TP0 = 89.60%
z ≈ 0.004 z ≈ 0.009 TP0.1 = 91.17% TP0.1 = 89.60%

H: 12 W: 16 T : 16 N : 8 ω ≈ 2.10 ∗ 107 ω ≈ 1.26 ∗ 107 TP0 = 97.23% TP0 = 98.15%
z ≈ 0.235 z ≈ 0.282 TP0.1 = 97.89% TP0.1 = 98.43%

H: 12 W: 16 T : 16 N : 4 ω ≈ 1.26 ∗ 107 ω ≈ 8.39 ∗ 106 TP0 = 97.19% TP0 = 98.00%
z ≈ 0.141 z ≈ 0.188 TP0.1 = 97.88% TP0.1 = 98.24%

H: 12 W: 16 T : 16 N : 2 ω ≈ 8.39 ∗ 106 ω ≈ 6.29 ∗ 106 TP0 = 97.66% TP0 = 97.68%
z ≈ 0.094 z ≈ 0.141 TP0.1 = 97.79% TP0.1 = 97.76%

H: 12 W: 16 T : 16 N : 1 ω ≈ 6.29 ∗ 106 ω ≈ 6.29 ∗ 106 TP0 = 97.38% TP0 = 97.09%
z ≈ 0.071 z ≈ 0.141 TP0.1 = 97.53% TP0.1 = 97.21%

Table 7.8: The results of the Bloom filter scheme with selective tree traversal

7.3.3 Quick Traversal Direction Decision

In section 5.2 a scheme for further reduction of necessary template comparisons
in a tree traversal has been proposed. By relying on the nature of the score
sequence obtained through a tree traversal, on average half of the traversal di-
rection decisions can be taken quickly. This is done by only computing the
dissimilarity score for one of the child nodes instead of them both. The first
matter to address is whether or not this scheme has an effect on the biometric
performance. Figure 7.10 shows the biometric performance of the system with
and without application of the quick traversal direction decision scheme. The
biometric performance with the proposed scheme applied is virtually indistin-
guishable from that without the application of the proposed scheme. In other
words, the benefits of workload reduction in this case does not have a negative
impact on the biometric performance of the system. The workload reduction
is non-deterministic; in the experiments, it has been consistently reducing the
number of necessary template comparisons by around 10%-15% from that of the
Bloom filter scheme with multiple constructed trees.
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(a) LG (b) QSW

Figure 7.10: Comparison of the ROC curves for the normal (solid lines) and
quick (dashed lines) traversal decision experiments

7.3.4 Score Sequence Ordering

This improvement was proposed in the original paper presenting the Bloom filter
based scheme. The idea is to immediately reject attempts, which do not have
a decreasing score sequence during tree traversal (see algorithm 4.1, lines 15 to
19). In all the previous sections, this setting was not activated, as plotting ROC
curves would not be possible, since in many configurations, most impostors
are actually rejected based on the sequence ordering, rather than their final
score. The assessment of this change will therefore be assessed based on a single
TPIR/FPIR pair, where the final decision threshold is obtained from a training
set. In terms of workload, the average result will be reported, since the effects
of the change are non-deterministic and can only be measured in an empirical
experiment with many matching attempts. Observe, that this change will only
have significant impact on the workload for the impostor attempts, since that
is where the score sequence can be expected to fluctuate. The score sequence in
the vast majority of genuine attempts exhibits the decreasing ordering. Table
7.9 shows the results for several configurations from previous sections. It can be
seen, that with the sequence ordering check applied, the biometric performance
in terms of true positive identification rate is slightly reduced, albeit still very
high. The workload is decreased as well, although by not very much. This
change can, however, prove useful in high security scenarios, since it makes it
more difficult for the impostors to be accepted.
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Configuration Performance Workload

H: 8 W: 16 T : 16 N : 8 TPIR: 95.9% ω ≈ 1.15 ∗ 106

FPIR: 0.35% z ≈ 0.013

H: 8 W: 16 T : 16 N : 4 TPIR: 95.5% ω ≈ 7.22 ∗ 105

FPIR: 0.30% z ≈ 0.008

H: 8 W: 16 T : 16 N : 2 TPIR: 93.0% ω ≈ 5.07 ∗ 105

FPIR: 0.25% z ≈ 0.005

H: 12 W: 16 T : 16 N : 8 TPIR: 97.0% ω ≈ 2.02 ∗ 107

FPIR: 0.15% z ≈ 0.226

H: 12 W: 16 T : 16 N : 4 TPIR: 97.0% ω ≈ 1.23 ∗ 107

FPIR: 0.15% z ≈ 0.139

H: 12 W: 16 T : 16 N : 2 TPIR: 96.7% ω ≈ 8.22 ∗ 106

FPIR: 0.05% z ≈ 0.092

Table 7.9: The results of the system in several configurations with the sequence
ordering scheme active

7.3.5 Duplicate Enrolment Check

The proposed schemes for duplicate enrolment check scenarios allow to accept
matching attempts before a tree leaf is reached.

7.3.5.1 Quick Threshold Acceptance

When traversing a tree, a situation can occur, where the node score is below
the final acceptance threshold before reaching a leaf. In such cases, one can,
with a high level of confidence, accept such a matching attempt, since the score
is expected to be even lower at subsequent tree levels. From this, it follows
that the biometric performance of this scheme can never be lower than that
of a full tree traversal. It can, naturally, only be used in duplicate enrolment
check scenarios and not in the identification mode. This is because no actual
identity is returned (since the traversal is abandoned before reaching a leaf) -
the reply only consists of confirming that the matching attempt was successful
(i.e. the subject’s template is present in the tree). The workload reduction
is non-deterministic; the experimental results can be seen in table 7.10. Note,
that the workload figure represents an average for a genuine attempt only - the
scheme does not affect the workload for the impostor attempts.
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Configuration Performance Workload

H: 8 W: 16 T : 16 N : 8 TPIR: 97.1% ω ≈ 3.87 ∗ 105

FPIR: 0.10% z ≈ 0.0087

H: 8 W: 16 T : 16 N : 4 TPIR: 96.7% ω ≈ 3.69 ∗ 105

FPIR: 0.10% z ≈ 0.0083

H: 8 W: 16 T : 16 N : 2 TPIR: 94.2% ω ≈ 3.55 ∗ 105

FPIR: 0.05% z ≈ 0.0079

H: 12 W: 16 T : 16 N : 8 TPIR: 98.3% ω ≈ 5.60 ∗ 106

FPIR: 0.25% z ≈ 0.125

H: 12 W: 16 T : 16 N : 4 TPIR: 98.2% ω ≈ 5.46 ∗ 106

FPIR: 0.20% z ≈ 0.122

H: 12 W: 16 T : 16 N : 2 TPIR: 97.9% ω ≈ 5.38 ∗ 106

FPIR: 0.15% z ≈ 0.120

Table 7.10: The results of the system in several configurations with the quick
threshold acceptance scheme active

7.3.5.2 Score Sequence Difference Acceptance

The genuine attempts often exhibit large decreases in the score sequence from
one tree level to the next. This is very rarely the case with the impostor at-
tempts. One can therefore deem an attempt as successful, if a large enough score
decrease takes place (the threshold for this can be determined from a training
set). From this specification, it follows that the true positive identification rate
will never be lower than that of a standard identification mode, since the only
difference is that the genuine attempts can happen to be accepted a bit earlier.
On the other hand, the false positive identification rate might increase - in the
rare cases where the impostor attempts exhibits the drastically decreasing score
sequence, they would be deemed as genuine attempts.

The lack of guarantees about the biometric performance makes this scheme
inferior in comparison to the one described in the previous section. The exper-
imental results showed no greater workload reduction than that of the scheme
from the previous section. While the false positive risk can be minimised by
fine-tuning the difference threshold, the risk can never be fully, provably elimi-
nated. Therefore, the quick acceptance scheme should be based on the final de-
cision threshold, rather than the score sequence difference. Finally, using both
approaches simultaneously will only confer negligible extra workload reduction
compared to when a single one is used - their effects cancel each other out (when
a score sequence decreases rapidly, it will very likely also simultaneously drop
beneath the final acceptance threshold).
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7.3.6 Multi-Iris Approach

Figure 7.11 shows the results achieved for the multi-iris scheme described in the
section 5.4. The biometric performance is superior to that of a single-iris system.
In particular, the true positive identification rate has been increased substan-
tially. The overall biometric performance is at a near-optimal level; it is even
significantly better than the single-iris baseline and at similar level to the multi-
iris baseline. Although, it should be noted that, due to the template fusion, the
number of enrolled templates and the test sample size are smaller than in the
previous experiments (see table 6.2). In the case of the Bloom filter system,
the multi-iris improvement comes at a very small additional computational cost
during lookup (the template fusion). In the baseline case, however, the work-
load is significantly increased due to much higher rotation compensation costs.
Observe, that while the single-iris baseline considers r possible rotations of one
template, in the multi-iris baseline r2 rotation combinations of two templates
have to be considered. Additionally, due to much higher number of template
comparisons required, the baseline is much less resilient to false matches than
the Bloom filter based system.

(a) LG (b) QSW

Figure 7.11: The ROC curves for the multi-iris identification experiment

Finally, all the other improvements proposed earlier (e.g. selective traversal,
quick traversal direction decision etc.) can be seamlessly applied to the multi-iris
scheme as well. Figure 7.12 shows, that even with only one most promising tree
traversed, the system is capable of achieving an excellent biometric performance.
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(a) LG (b) QSW

Figure 7.12: The ROC curves for an example configuration in the multi-iris
selective traversal experiment

7.4 Summary

This chapter has presented the experimental results of the project. It has been
demonstrated, that the Bloom filter based approach and the proposed improve-
ments constitute a viable biometric system. Furthermore, the model has been
shown to reflect the real iris data well and has been subsequently demonstrated
to be capable of accurately determining the feasible system configurations for
the identification mode. In the empirical experiments, the workload has been
reduced to a mere fraction of that of the baseline, with only a small decrease in
the biometric performance. The approach also shows great promise for research
into multibiometrics. These successful results are, however, confined only to
the Combined dataset. The Thousand dataset performed poorly, especially in
the identification mode; this was presumably due to high intra-class variation
in that dataset. Table 7.11 shows a summary of the best results achieved by
different systems and improvements. Figure 7.13 shows the ROC curves for the
best performing configuration in each (major) system version.

In the next chapter, the results and future outlooks of the Bloom filter based
approach will be discussed in more depth.
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System/Improvement Biometric performance Workload

Baseline TP0 = 42.05% z = 1.0
TP0.1 = 98.56%

Single tree TP0 = 92.0− 95.0% z = 0.024− 0.094
TP0.1 = 92.5− 95.5%

Multiple trees TP0 = 96.5− 98.0% z = 0.024− 0.377
TP0.1 = 97.0− 98.3%

Selective traversal TP0 = 96.5− 98.1% z = 0.006− 0.235
TP0.1 = 94.0− 98.4%

Multi-iris TP0 = 99.3− 99.9% Same as selective traversal
TP0.1 = 99.5− 100%

Quick traversal decision Same as selective traversal z = 0.0053− 0.197

Quick threshold acceptance Same as selective traversal z = 0.0079− 0.125

Score sequence ordering TPIR = 93.0− 97.0% z = 0.005− 0.226
FPIR = 0.05− 0.35%

Table 7.11: A summary of the results for the Combined dataset achieved by
the systems and improvements presented in this chapter

Figure 7.13: The ROC curves for the best configuration of each of the major
system versions
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Chapter 8

Discussion

In this chapter, the obtained results are discussed. Additionally, several future
research possibilities for the Bloom filter based biometric indexing are briefly
described.

8.1 Results

In this section two key issues are discussed: the poor results achieved on the
Thousand dataset and the scalability assessment of the Bloom filter based in-
dexing scheme.

8.1.1 Bad Performance on the Thousand Dataset

The poor biometric performance of the Thousand dataset has been partially
explained by the Hamming Distance distributions in figure 7.1. There, it can be
seen, that the genuine distribution is shifted to the right, meaning more frequent
bit flips. This is a huge issue for the Bloom filter system, where the entire
columns of many bits have to be a complete match between two templates. The
overlap between the impostor and genuine distribution is also increased due
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to said shift. This overlap essentially constitutes the intrinsic decidability of
the decision problem faced by the biometric system. As the overlap increases,
distinguishing between the impostors and genuines becomes harder. One of the
existing metrics for quantitatively measuring this decidability is d′ (used e.g. in
[Dau00]). It is computed based on the means (µ) and standard deviations (σ)
of the two distributions, as shown in equation 8.1.

d′ =
|µ1 − µ2|√
1
2 ∗ (σ2

1 + σ2
2)

(8.1)

Tables 8.1 and 8.2 show the decidability metric computed for the score distri-
butions of the two datasets used in this project. In the identification mode, the
given values are for the best system configuration.

Dataset Extractor Decidability
Baseline Bloom filter

Combined
LG d′ ≈ 4.74 d′ ≈ 3.34
QSW d′ ≈ 4.59 d′ ≈ 3.39

Thousand
LG d′ ≈ 3.08 d′ ≈ 2.30
QSW d′ ≈ 2.98 d′ ≈ 2.06

Table 8.1: The decidability of the score distributions obtained from the exper-
iments in the verification mode

Dataset Extractor Decidability
Baseline Bloom filter

Combined
LG d′ ≈ 5.76 d′ ≈ 3.52
QSW d′ ≈ 5.24 d′ ≈ 3.36

Thousand
LG d′ ≈ 3.17 d′ ≈ 1.31
QSW d′ ≈ 3.10 d′ ≈ 1.19

Table 8.2: The decidability of the score distributions obtained from the exper-
iments in the identification mode

Unfortunately, there is no reference scale for the metric - the values can range
from 0 to infinity, where higher values signify better decidability. The obtained
values can be compared to others from the scientific literature. For instance,
[Dau04b] reports d′ = 14.1 in an ideal case, and d′ = 7.3 in a very good, albeit
non-ideal case. Elsewhere in the literature, values between d′ ≈ 3 and d′ ≈ 7
are generally associated with well-performing systems. The obtained values
for the Thousand dataset are very low, which translates to a poor biometric
performance, as has been seen in the results chapter. Of interest is also the
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direct comparison of the obtained values. It can be observed, that they are
consistently higher for the Combined dataset.

The underlying reason for the issues faced when using the Thousand dataset
may be generalised to high intra-class variation. The images from that dataset
have many reflections and occlusions; additionally, some of them are taken with
the subjects wearing eyeglasses. Based on the decidability discourse above and
the empirical results, it appears justified to claim, that the Bloom filter based
scheme is suitable only for data with relatively low intra-class variation. This
would mean, that the system would be viable for real-world application scenar-
ios, where the data acquisition process can be undertaken in a constrained envi-
ronment, thus consistently yielding biometric samples of good quality. Bearing
in mind, that the data acquisition in most real applications is performed under
controlled conditions and with supervision, this limitation of the system does
not appear to be as serious as it may seem.

8.1.2 Scalability

In order to accommodate a larger number of enrolled templates, the basic ap-
proach was expanded with construction of multiple search trees and intelligent
selection of the trees to traverse upon lookup.

The empirical experiments on the Combined dataset (512 enrollees) show, that
the system is capable of achieving biometric performance comparable with the
naïve baseline implementation. This performance has been achieved by having
to traverse only around 25% of the constructed search trees. It can be reasonably
assumed, that this property will hold when more subjects are enrolled (and more
trees built), thus maintaining the low workload requirements for larger systems.

The overall workload in the identification mode is vastly reduced - in some con-
figurations to aroundz = 0.01 of the baseline. Even further workload reductions
are possible, although at the cost of a decreased biometric performance in terms
of true positive identification rate. For the duplicate enrolment check scenarios,
the system constraints are slightly looser (yes/no query instead of returning a
list of identities), which allows to take advantage of certain behaviours of the
data and thus reduce the overall workload even more.

The vast array of possible system configurations and proposed improvements
which can be activated and tuned at will, allow for a great flexibility in adjust-
ing the system’s biometric performance and workload to the individual needs of a
given application. This is beneficial in terms of feasibility for real-world deploy-
ments, since their varying requirements could be accommodated by fine-tuning
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the system’s parameters. In addition to the empirical results, the developed
model can be used to instantly assess whether or not a given system configura-
tion is likely to perform well. This is immensely useful, since no empirical tests
are required.

Based on the above discourse, it can be confidently asserted that the Bloom filter
based indexing scheme is scalable both in terms of the biometric performance
and the workload. Furthermore, the system is on par with, or exceeds the
current state of the art (see table 3.1).

8.2 Future Research

In this section several proposals for future work with the Bloom filter based
scheme are presented.

8.2.1 Model

The model operates on several variables, one of which is ε, which accounts for
the entropy loss between the iris code and randomly generated data. Currently,
this value has to be estimated from a real data training set. It is conceivable,
however, that with a thorough statistical analysis of the iris code, the empirical
training set estimation could be dispensed with in favour of some theoretical
method. Additionally, instead of using rigid ε values, the model could be ex-
panded to account for the variance in the real data. Lastly, the current version
of the model operates based on a few simplifying assumptions (e.g. all Bloom
filter index values being equally likely). Again, the model could be expanded to
account for these variations.

8.2.2 Tree Construction

Currently, the Bloom filter templates are not assigned to trees in a specific
manner - they are merely added in the order of their appearance in the dataset.
It may be possible to assign and position them within the trees more intelligently.
The aim would be to minimise the number of bit collisions in the Bloom filters.

The optimal, exhaustive solutions are unfortunately likely to have a very high
computational complexity. It may also be possible to develop an evolutionary
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approach. It can be argued, that since the tree construction is an offline cost, the
constraints could be loosened. Thus, the slower solutions could still be viable,
as long as insertion of new templates to an already constructed forest can be
handled efficiently.

The potential implications of this implementation would be an improved bio-
metric performance and lower lookup workload.

8.2.3 Multibiometrics

In this project, a groundwork in this area has been carried out. As a first
study of its kind for biometric indexing, it has been demonstrated, that the
Bloom filter based scheme is well suited for implementation of a multibiometric
system based on a fusion of the left and right irides of a subject. The biometric
performance of this approach has been shown to exceed that of the single-iris
system - both baseline and Bloom filter based.

It would therefore be interesting to investigate how other biometric character-
istics (e.g. face or fingerprint) could be integrated into this approach. The
challenge here would be a different biometric template representation for these
characteristics (e.g. minutiae points for fingerprints) - one would have to find a
way to map them to a Bloom filter representation.

Such a multibiometric system would be a very good fit for the high-security
scenarios, where it is crucial to achieve an extremely low false positive rate,
while maintaining a relatively high usability of the system in terms of true
positive rate and a low lookup time.

8.2.4 Compact Storage

The Bloom filter based biometric templates are largely rotation invariant and
substantially reduce the size of the original iris code representation. One could
investigate how far the biometric data can be compressed, whilst still remaining
usable in authentication contexts. One interesting utilisation of compact tem-
plates could be embedding them in a QR code [Den] and conducting a market
study into potential real-world applications of this technology. Already now, the
Bloom filter based templates can be stored in a QR code (albeit a large one).
Figure 8.1 shows a QR code generated from one such template.
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Figure 8.1: A QR code generated from a Bloom filter based iris template

8.2.5 Data Protection

Privacy and protection of sensitive data (e.g. biometrics) has been a topic of
interest lately. The Bloom filter representation of the iris template is seemingly
irreversible. Some column location information is lost upon putting the data
into a Bloom filter set - one can only tell which block an iris code column belongs
to; furthermore, duplicate filter index entries are lost. However, it may not be
impossible to reconstruct an iris code from a Bloom filter template. Therefore,
a study into this matter would be desirable. It would be interesting to quan-
titatively show whether or not such a reconstruction is a feasible undertaking
and if so, what can be done to prevent it. A successfully conducted study could
result in a biometric system which offers high biometric performance, requires
low workload and offers provable privacy and template protection benefits.

8.3 Summary

In this chapter, the results of the project have been discussed in detail. The
reason for poor Bloom filter system performance on the Thousand dataset was
examined and the scalability of the Bloom filter based approach was argued for.

The Bloom filter based scheme offers a multitude of future research possibilities.
Several of these have been briefly outlined in this chapter. Examples include
additional improvement of the system in terms of biometric performance and
workload, developments in the areas of multibiometrics, biometric data com-
pression and biometric data protection.
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Conclusions

In recent years, the public, commercial and governmental interest in biomet-
rics has been steadily growing. Several huge deployments of biometric systems
around the world have appeared. Said systems face the tremendous challenge
of delivering consistently high biometric performance at a low computational
workload. These trends make biometrics, and particularly workload reduction,
a decidedly relevant and attractive research area nowadays. This thesis has per-
tained to the topic of workload reduction for biometric identification in large-
scale iris databases.

A related work survey has demonstrated large discrepancies in how the biometric
workload reduction is reported. This lack of uniformity and transparency made
it incredibly cumbersome to compare the methods proposed in the surveyed
articles. In response to this, a methodology for biometric workload reporting
has been formulated as a set of six key requirements. The result reporting of
this thesis has adhered to said requirements. Should this methodology become
widely adopted in its current form or at least serve as an inspiration for the
ISO biometric reporting committee, it could ameliorate the incongruity of the
scientific process in this area.

A recently proposed biometric indexing approach based on Bloom filters and
binary search trees was used for practical work throughout this thesis. Said
approach was until now only in a proof-of-concept stage - without a proper the-
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oretical framework and many open questions regarding biometric performance,
workload reduction and scalability. All of these have been addressed during the
course of this thesis. After implementing the system along with several key im-
provements, it has been demonstrated, that the system is capable of achieving
a biometric performance comparable to that of a naïve implementation base-
line, while reducing the necessary workload to around 1%. With the proposed
improvements in place, the system appears to be scalable in terms of biometric
performance and workload for any number of enrollees. Additionally, the system
is very flexible due to a number of parameters that can be changed, thus adjust-
ing the trade-off between the necessary workload and the biometric performance.
To help cope with this configurational complexity, a statistical model has been
developed; it instantly assesses the feasibility of a given configuration based only
on the selected parameters. Lastly, in a, best to the author’s knowledge, first
experiment of its kind in the scientific literature, a multi-iris indexing scheme
has been presented. The experimental results show a near-optimal biometric
performance, while still taking advantage of the proposed workload reduction
schemes. These results are very promising in terms of a prospective study into
multibiometric capabilities of the Bloom filter based approach.

The excellent results and flexibility of the Bloom filter based approach suggest
its suitability for real-world system deployments and open numerous propitious
avenues of future research.
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List of Symbols

The specific symbol meanings defined for use in this thesis are listed below.

S A number of enrolled subjects in a biometric system

ρ A penetration rate in an identification scenario

τ A cost of a single step in an identification scenario lookup. In this thesis, this
is equivalent to the biometric template size in bits

ω A total workload for a single lookup in an identification scenario

z A proposed system’s workload in relation to a baseline workload

B A Bloom filter based template

BM A multi-iris Bloom filter based template

B An individual Bloom filter

H A Bloom filter block height

W A Bloom filter block width

T A number of constructed trees in a Bloom filter identification system
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N A number of trees chosen in the selective traversal scenario

RK A tree root consisting of K Bloom filters

O An overlap between a tree root and a Bloom filter

P (O = k) An expected overlap distribution

Θ The mean of an expected overlap distribution

ε A difference between expected number of duplicate values in an iris code and
randomly generated, mutually independent values (uniform distribution)

C A number of Bloom filter template comparisons required in a single identifi-
cation lookup

D(n,m) The expected (mean) number of duplicate items when drawing, with
replacement, n values from a uniform distribution of m possible values

HD The Hellinger distance

BC The Bhattacharyya coefficient

TP0 A true positive identification rate at 0% false positive identification rate

TP0.1 A true positive identification rate at 0.1% false positive identification rate

d′ A decidability metric proposed in [Dau04b]
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Results

(a) LG feature extraction (b) QSW feature extraction

Figure B.1: The distribution of Bloom filter index occurrences for H = 12
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LG QSW
EER Configuration EER Configuration
0.89% H : 11 W : 32 0.96% H : 9 W : 32
0.90% H : 12 W : 32 0.96% H : 10 W : 32
0.93% H : 10 W : 32 0.97% H : 11 W : 32
0.93% H : 8 W : 32 0.99% H : 12 W : 32
0.94% H : 9 W : 32 0.99% H : 8 W : 32
0.98% H : 11 W : 64 1.12% H : 10 W : 64
1.03% H : 10 W : 64 1.14% H : 11 W : 64
1.04% H : 12 W : 64 1.15% H : 9 W : 64
1.07% H : 9 W : 64 1.15% H : 12 W : 64
1.18% H : 8 W : 64 1.16% H : 12 W : 16
1.27% H : 9 W : 16 1.19% H : 11 W : 16
1.13% H : 11 W : 16 1.19% H : 9 W : 16
1.16% H : 12 W : 16 1.22% H : 10 W : 16
1.20% H : 10 W : 16 1.31% H : 8 W : 64
1.30% H : 8 W : 16 1.32% H : 8 W : 16
2.57% H : 11 W : 8 3.40% H : 11 W : 8
2.60% H : 12 W : 8 3.44% H : 12 W : 8
2.77% H : 10 W : 8 3.58% H : 10 W : 8
2.85% H : 9 W : 8 3.68% H : 9 W : 8
3.03% H : 8 W : 8 3.88% H : 8 W : 8

Table B.1: All the EERs for the verification experiment on the Combined
dataset
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LG QSW
EER Configuration EER Configuration
9.13% H : 5 W : 16 7.43% H : 5 W : 16
9.80% H : 4 W : 16 7.93% H : 4 W : 16
10.05% H : 4 W : 8 7.94% H : 5 W : 8
10.06% H : 5 W : 8 8.04% H : 6 W : 16
10.81% H : 6 W : 16 8.11% H : 4 W : 8
10.93% H : 7 W : 16 8.40% H : 7 W : 16
11.97% H : 7 W : 8 9.14% H : 8 W : 16
12.13% H : 5 W : 32 9.32% H : 7 W : 8
12.55% H : 8 W : 16 9.57% H : 5 W : 32
13.36% H : 7 W : 32 9.74% H : 7 W : 32
13.68% H : 8 W : 8 10.06% H : 8 W : 8
14.24% H : 6 W : 32 10.25% H : 8 W : 8
14.40% H : 9 W : 16 10.29% H : 6 W : 32
14.63% H : 8 W : 32 10.73% H : 9 W : 16
15.02% H : 4 W : 32 11.20% H : 4 W : 32
15.92% H : 9 W : 8 11.45% H : 9 W : 32
16.08% H : 9 W : 32 11.84% H : 9 W : 8
17.29% H : 7 W : 64 11.99% H : 8 W : 64
17.40% H : 10 W : 16 12.35% H : 7 W : 64
17.92% H : 8 W : 64 12.48% H : 10 W : 16
18.34% H : 5 W : 64 12.96% H : 10 W : 32
18.63% H : 10 W : 32 12.98% H : 9 W : 64
18.77% H : 9 W : 64 13.59% H : 10 W : 8
19.35% H : 10 W : 8 13.84% H : 11 W : 16
19.58% H : 6 W : 64 13.97% H : 5 W : 64
20.11% H : 11 W : 16 14.21% H : 6 W : 64
21.03% H : 10 W : 64 14.30% H : 11 W : 32
21.06% H : 11 W : 32 14.54% H : 10 W : 64
22.33% H : 11 W : 8 14.77% H : 11 W : 8
22.59% H : 12 W : 16 15.15% H : 12 W : 16
23.00% H : 11 W : 64 15.74% H : 12 W : 32
23.35% H : 12 W : 32 16.05% H : 11 W : 64
24.44% H : 12 W : 8 16.08% H : 12 W : 8
24.99% H : 12 W : 64 17.68% H : 12 W : 64
26.69% H : 4 W : 64 18.54% H : 4 W : 64

Table B.2: All the EERs for the verification experiment on the Thousand
dataset
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(a) LG

(b) QSW

Figure B.2: The ROC curves for the comparatively best performing system
configurations on the Thousand dataset
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(a) LG (b) QSW

(c) LG (d) QSW

(e) LG (f) QSW

Figure B.3: The ROC curves for several well-performing system configurations
in the selective tree traversal experiment
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Configuration Workload Performance
Worst Average LG QSW

H: 12 W: 64 T : 16 N : 8 ω ≈ 5.24 ∗ 106 ω ≈ 3.15 ∗ 106 TP0 = 97.13% TP0 = 94.94%
z ≈ 0.059 z ≈ 0.071 TP0.1 = 97.42% TP0.1 = 96.50%

H: 12 W: 64 T : 16 N : 4 ω ≈ 3.15 ∗ 106 ω ≈ 2.10 ∗ 106 TP0 = 96.52% TP0 = 96.00%
z ≈ 0.035 z ≈ 0.047 TP0.1 = 96.62% TP0.1 = 96.50%

H: 12 W: 64 T : 16 N : 2 ω ≈ 2.10 ∗ 106 ω ≈ 1.57 ∗ 106 TP0 = 95.73% TP0 = 94.54%
z ≈ 0.024 z ≈ 0.035 TP0.1 = 95.90% TP0.1 = 95.00%

H: 12 W: 64 T : 16 N : 1 ω ≈ 1.57 ∗ 106 ω ≈ 1.57 ∗ 106 TP0 = 93.91% TP0 = 91.93%
z ≈ 0.018 z ≈ 0.035 TP0.1 = 94.02% TP0.1 = 92.21%

H: 12 W: 32 T : 16 N : 8 ω ≈ 1.05 ∗ 106 ω ≈ 6.29 ∗ 106 TP0 = 97.76% TP0 = 97.59%
z ≈ 0.118 z ≈ 0.141 TP0.1 = 98.05% TP0.1 = 97.84%

H: 12 W: 32 T : 16 N : 4 ω ≈ 6.29 ∗ 106 ω ≈ 4.19 ∗ 106 TP0 = 97.72% TP0 = 97.28%
z ≈ 0.071 z ≈ 0.094 TP0.1 = 98.01% TP0.1 = 97.52%

H: 12 W: 32 T : 16 N : 2 ω ≈ 4.19 ∗ 106 ω ≈ 3.15 ∗ 106 TP0 = 97.46% TP0 = 96.51%
z ≈ 0.047 z ≈ 0.071 TP0.1 = 97.54% TP0.1 = 96.75%

H: 12 W: 32 T : 16 N : 1 ω ≈ 3.15 ∗ 106 ω ≈ 3.15 ∗ 106 TP0 = 96.56% TP0 = 95.53%
z ≈ 0.035 z ≈ 0.071 TP0.1 = 96.72% TP0.1 = 95.71%

H: 10 W: 16 T : 16 N : 8 ω ≈ 5.24 ∗ 106 ω ≈ 3.15 ∗ 106 TP0 = 96.53% TP0 = 97.73%
z ≈ 0.059 z ≈ 0.071 TP0.1 = 97.51% TP0.1 = 98.02%

H: 10 W: 16 T : 16 N : 4 ω ≈ 3.15 ∗ 106 ω ≈ 2.10 ∗ 106 TP0 = 96.49% TP0 = 97.42%
z ≈ 0.035 z ≈ 0.047 TP0.1 = 97.46% TP0.1 = 97.50%

H: 10 W: 16 T : 16 N : 2 ω ≈ 2.10 ∗ 106 ω ≈ 1.57 ∗ 106 TP0 = 96.23% TP0 = 97.00%
z ≈ 0.024 z ≈ 0.035 TP0.1 = 97.28% TP0.1 = 97.08%

H: 10 W: 16 T : 16 N : 1 ω ≈ 1.57 ∗ 106 ω ≈ 1.57 ∗ 106 TP0 = 95.29% TP0 = 95.56%
z ≈ 0.018 z ≈ 0.035 TP0.1 = 96.00% TP0.1 = 95.56%

Table B.3: The results of several well-performing configurations of the Bloom
filter scheme with selective tree traversal
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