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ABSTRACT

We present the concept of adversarial audio in the context of deep
neural networks (DNNs) for music content analysis. An adversary
is an algorithm that makes minor perturbations to an input that cause
major repercussions to the system response. In particular, we design
an adversary for a DNN that takes as input short-time spectral mag-
nitudes of recorded music and outputs a high-level music descriptor.
We demonstrate how this adversary can make the DNN behave in
any way with only extremely minor changes to the music record-
ing signal. We show that the adversary cannot be neutralised by a
simple filtering of the input. Finally, we discuss adversaries in the
broader context of the evaluation of music content analysis systems.

Index Terms— Deep Learning, Music Content Analysis

1. INTRODUCTION

Deep neural networks (DNNs) are being applied with some suc-
cess to problems of music content analysis [1–5], but what they are
actually learning to do is not clearly known. Motivated by the fact
that they can perform end-to-end learning [2], can learn hierarchical
representations [6], and have shown remarkable success in bench-
mark tasks of other domains [7], DNNs have been proposed [8] as a
way to accelerate progress in the field of music content analysis [9]
— some applications of which are still outperformed by far simpler
non-content based systems [10].

A trained DNN is highly complex and difficult to analyze. Re-
searchers have tried to determine the contributions of its compo-
nents (neurons, layers, etc.) in relation to its learning problem. For
instance, Krizhevsky et al. [7] find the first layer of their deep con-
volutional network for image content recognition learns edges and
color gradients of various orientations. For the same kind of sys-
tem, Zeiler et al. [11] find units in its highest layers are highly ac-
tivated by dogs, human faces, bird legs, and grass patches. For
DNN applied to high-level segmentation of musical audio, or find-
ing “edges” in the music, Schlueter at al. [5] have applied the ap-
proach of [12] to make sense of the roles of the various units. Diele-
man and Schrauwen [2] have also found that the first hidden layer
of a convolutional DNN trained on audio signals acts as a bank of
bandpass filters.

Such unit-localised interpretations of a trained DNN, however,
are challenged by the results of Szegedy et al. [13]. They find that a
high-performing DNN trained in the context of image object recog-
nition can be easily fooled by an adversary: an algorithm that per-
turbs an input image to make the DNN misclassify it with high con-
fidence. These perturbations (additive noise) are often very small,
producing adversarial instances that are indistinguishable from the
“originals” from the standpoint of human visual perception. A re-
cent variant on this theme for DNN is provided by Nguyen et al.,
who synthesize artificial images with unidentifiable content that the
system still classifies with high confidence [14].

In our work here, we adapt the work of Szegedy et al. [13] to
the context of DNN trained to analyze the content of music au-
dio recordings. We discuss special considerations one must take
when the input to the DNN (magnitude spectra) does not map to
a unique and real time-domain signal. Within a specific problem
of music content analysis, we demonstrate how the adversary can
fool the DNN-based system. As found in the context of DNN ap-
plied to image content analysis [13], our adversary can make our
DNN-based system produce high-confidence decisions with arbi-
trary labels. We examine the characteristics of the differences be-
tween the adversarial examples and the “originals”, and show how
preprocessing the input by linear time-invariant filtering does not
defeat the adversary. Finally, we discuss our results in relation to
recent work in music content analysis challenging the notion that
such systems may not in fact be solving the intended listening prob-
lem at all [15–17]. Code to reproduce our experiments is available
here: https://github.com/coreyker/dnn-mgr.

2. AUDIO ADVERSARY

Consider a DNN where the input is a D-dimensional vectorized
magnitude DFT frame Xn extracted from short-time Fourier trans-
form (STFT) of an audio time series x

Xn =
∣∣F(x)[m,n]∣∣,m ∈ [0, . . . , D − 1] (1)

F(x)[m,n] =
∑
l

w[〈l − nH〉Lw ]x[l] exp(−j2πml/M) (2)

for m ∈ {0, . . . ,M − 1}, with hop-size H , M frequencies (bins),
and w a window of support Lw. (The notation 〈·〉Lw means mod-
ulo Lw.) As we are working with real audio signals, we only need
to consider the first D = M/2 + 1 frequencies. Let the func-
tion fi(Xn) : RD

+ → [0, 1] represent the ith softmax output of
the DNN, mapping a single input frame to the probability of la-
bel i ∈ {1, . . . ,K}. The classification of a sequence of frames
X = (X1, X2, . . . , XN ) ∈ RD×N

+ is defined as the label with the
maximum posterior probability over the sequence:

y(X) = arg max
i∈{1,...,K}

1

N

N∑
n=1

fi(Xn). (3)

Other approaches to combining classifications can be used [18].
Following Szegedy et al. [13], we define an adversary as an

optimization problem; however, we use a constrained optimization
framework to allow the specification of the maximum signal-to-
noise ratio of the adversarial examples, and we must take care of
the fact that the input to the DNN is a magnitude DFT. We begin
with an exemplar X ∈ RD×N

+ , and seek an adversarial example
X̂ ∈ RD×N

+ such that ŷ = y(X̂) 6= y(X) and the mean distortion

‖X̂ −X‖F ≤ Nε. (4)

https://github.com/coreyker/dnn-mgr
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The size of the perturbation X̂ −X is limited by ε > 0, which con-
strains the maximum signal-to-noise ratio (SNR) of the adversary:

SNR(ε) = 20 log10
‖X‖F

‖X̂ −X‖F
≥ 20 log10

‖X‖F
εN

(5)

The adversary takes a target label ŷ, and for each frame of X
searches for an adversarial frame X̂n by solving

X̂n = arg min
Z∈C(Xn)

L(Z, ŷ) (6)

where C(Xn) = {Z ∈ RD
+ : ‖Z −Xn‖2 ≤ ε} represents an ε-ball

centered around the frame, and L : RD
+ × {1, . . . ,K} → R+ is the

loss function used to train the DNN, i.e., the cross-entropy cost:
L(Z, ŷ) = − log fŷ(Z).

A local minimum of (6) could be found using projected gradient
descent, which is initialized with X̂(0)

n = Xn, and iterates

X̂(k+1)
n = PC(X̂(k)

n + µ∇XL(X̂(k)
n , ŷ)) (7)

where µ is the descent step size, and PC(·) is the least squares pro-
jection onto the set C. However, this approach will not result in
valid adversarial audio examples since the estimated sequence of
adversarial frames may not correspond to a real time-domain sig-
nal. This is due to the fact that the individual STFT frames in (2)
are not independent since they are computed from overlapping seg-
ments of the input signal. This in turn means that not all coefficients
C ∈ CM×N correspond to the STFT of a real input signal, i.e..,
F(F−1(C)) 6= C ∀C ∈ CM×N where F−1(C) is the inverse
STFT of C ∈ CM×N .

Thus, in order to generate valid adversarial audio examples, our
adversary projects the time-frequency coefficients onto the space of
valid time-domain sequences. We do this using the Griffin and Lim
algorithm [19], which seeks to minimize for sequence X

arg min
C∈CM×N

N−1∑
n=0

D−1∑
m=0

∣∣∣|F(F−1(C))[m,n]| −Xn[m]
∣∣∣ (8)

whereXn[m] is the value of themth row ofXn. This minimization
can be done by using alternating projections; but we have found in
practice that it is sufficient to apply a single set of projections:

PGL(X) =
∣∣F(F−1(X̃ · exp(jP ))[m,n])

∣∣
n ∈ {0, . . . , N − 1},m ∈ {0, . . . , D − 1} (9)

Algorithm 1 From exemplar audio DFT magnitude frame sequence
X . search for adversarial audio DFT magnitude frame sequence X̂
for which DNN produces class ŷ with confidence T in at most kmax

steps, and with an SNR of at least SNR(ε)
1: parameters: ŷ, ε, T , kmax

2: init: X(0) = X, k = 0
3: repeat
4: Un ← X

(k)
n + µn∇XL(X(k)

n , ŷ) ∀n ∈ [1, N ] {Gradient
step}

5: Z ← PGL(max(0, U)) {STFT validity}
6: ν ← max(0, ||Z −X||F /(εN)− 1) {Lagrange mult.}
7: X(k+1) ← (1 + ν)−1(Z + νX) {SNR constraint}
8: k ← k + 1
9: until 1

N

∑N
n=1 fŷ(X

(k)
n ) ≥ T or k = kmax

10: return: X̂ = X(k)

where · is an element-wise product between the STFT phase,
∠F(x) = P ∈ [−π, π]M×N , and the modulus

X̃[m,n] =

{
X[m,n] if 0 ≤ m < D

X[M −m,n] if D ≤ m < M
(10)

The pseudo-code in Alg. 1 summarises the audio adversary.

3. DEMONSTRATION
To demonstrate this adversary, we consider a DNN-based system
built for a music content analysis benchmark: music classification
in the GTZAN dataset [16, 20]. Two recent works applying DNN
to the same problem are [3, 4], and both report measuring perfor-
mances near human-level classification accuracy. Our DNN is a
reproduction of the one developed in [4], which uses 3 fully con-
nected hidden layers with 500 rectified linear units per layer trained
using a random 50/25/25 (train/validation/test) stratified partition
of GTZAN. The STFT of a music audio recording is computed from
a 46ms (1024 point) Hann window with 50% overlap. We train
the DNN using stochastic gradient descent with dropout [21]. As
in [4], the music classification system vectorizes the hidden layer
activations of the trained DNN, creates “bags of frames” using 130
sequential activations computed from 3 sequential seconds of audio,
and summarizes each bag by means and standard deviations in each
dimension. These statistics form the feature vectors that are then
classified by a trained random forest (RF) classifier of 500 trees. A
music recording is thus classified by a majority vote over all classi-
fications of its feature vectors. The DNN is thus a feature extractor.

The figure of merit (FoM) in Fig. 1(a) illustrates the perfor-
mance of this system. As in [3, 4], we perform no fault filter-
ing of the GTZAN dataset [16]; however, even with fault filtering
these numbers provide no meaningful indication that the system has
learned anything about music [15–17]. They only serve to show the
system has learned something about GTZAN. Our normalized clas-
sification accuracy is slightly lower than the 83% measured in [4].
This slight difference may be attributable to the particular dataset
partitioning and numerous hyperparameters of the DNN and its
training, e.g., weight initialization, gradient step-size, use of reg-
ularization, stopping criteria, and so on.

We now create three adversaries that make the DNN-based sys-
tem behave in each of the following ways: A1) correct with high
confidence only 10% of the time; A2) always correct with high con-
fidence; A3) selects the same label with high confidence. A1 draws
the target label for a test instance from a uniform distribution over
the labels. A2 sets the target label to the ground truth of the test
instance. A3 sets the target label to “Jazz” for any test instance. In
all cases, we set the parameters of the adversaries to: kmax = 100,
T = 0.9, µ = 0.1, and ε such that SNR(ε) ≥ 15dB. It is important
to note that the adversary is only perturbing the input to the pre-
trained DNN, and thus does not change the parameters of the DNN,
or of the random forest classifier.

Figure 1(b( is the FoM of the same DNN as in Fig. 1(a) but with
the intervention of A1. Clearly, A1 is able to make the system per-
form no better than chance but with high confidence in its decisions.
The FoM of the same system but with the intervention of A2 pro-
duces a near perfect classification accuracy of 99.6%; and the FoM
of the same system but with the intervention of A3 results in 96.8%
of the test instances being classified as “Jazz” with high confidence.
Figure 2 illustrates a sample excerpt of a GTZAN Metal excerpt, to-
gether with the adversarial example confidently labeled “Jazz” by
the system. We see that the magnitude spectrograms match rela-
tively well at low frequencies and deviate at high frequencies.
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(b) Input intercepted by adversary A1

Figure 1: Figure of merit (×100) for our DNN-based music classification system trained and tested in the GTZAN dataset [16,20]. Columns
represent the true class; rows denote label chosen by system; the diagonal contains the per class recall; the off-diagonal entries are confusions;
the rightmost column is the precision; the bottom row is the F-score; and the last element along the diagonal is the mean recall.

Table 1 shows the results of the DNN with the intervention of
an ensemble of A3, each set to one GTZAN label. Our DNN-based
system, unlike the previous one, is trained and validated using all
of GTZAN. The SNR of each adversarial example is listed in the
table, where the first number corresponds to confidence T = 0.5,
and the bracketed number to T = 0.9. For T = 0.5, we find we
can generate adversarial examples at a high average SNR (34.5dB)
in every label in GTZAN. Similarly for T = 0.9, we can generate all
but one adversarial example at a still high average SNR (26.8dB).

4. DISCUSSION
Our results show how the adversary (Alg. 1) can successfully ma-
nipulate DNN-based music content analysis systems. We also see
that though the adversary only knows of the DNN, and not the sub-
sequent random forest classifier, it is able to perturb the input such
that it fools both. As a result of the SNR constraint, we find the
adversarial examples differ very little from their exemplars; their
SNR is often much higher than our lower bound of 15dB. Informal
listening tests confirm that the differences between the adversarial
examples and the “originals” are quite minor, which can be likened
to subtle additive noise. (See link in caption of Table 1.)

The spectral characteristics in Fig. 2 suggest a simple method
to defeat an adversary might be to preprocess the input by a low-
pass filter in order to eliminate the effects of the differences at high
frequencies. We tested this hypothesis and found that even though
applying a low-pass filter does reduce the number of confusions, the
mean recall is still far below what we obtained on the original set
(by more than 20 percentage points). Similar results are found in
[22], who apply denoising autoencoders for defeating adversaries.

Our results can be seen as an empirical verification of the work
of Szegedy et al. [13] extended to the audio domain. In their case,
the adversarial images appear identical to the originals, while our
audio adversaries do sound differently from the “originals” – though
among audio adversaries it can be difficult to pinpoint the differ-
ences. This discrepancy could be related to a few things at least.
First, our input dimensionality of 513 dimensions is far lower than
the high-dimensional input color images used in [13]. Our ad-

versaries thus have fewer dimensions in which to hide perturba-
tions [23], and so must make larger contributions to the STFT mag-
nitude frames. Experiments with larger window sizes can confirm
this. Second, the human auditory system is exceptionally sensitive
and so the perturbations of audio adversaries might be harder to
pass undetected than those of images. This suggests modifying (4)
by perceptual weighting [24] to try to make an adversary that can
produce perceptually transparent perturbations.

Regardless of the perceptible noise caused by our audio adver-
saries, the music embedded in the sampled audio is not affected to
such an extent that its GTZAN class should become so confidently
mistaken by a system that previously performed so well. In other
words, had the DNN-based system producing the FoM in Fig. 1(a)
learned some of the important high-level concepts that underlie the
labels in GTZAN – whatever those are – one should not expect it to
be so easily fooled by these adversaries. This clear lack of gen-
eralisation of the system in the face of its high FoM is referred
to by [23] as a “Potemkin village.” Coinciding with that colorful
assessment, we have called such a system a “horse” [17] in refer-
ence to a famous horse named “Clever Hans” that appeared capable
of performing arithmetic because he learned to respond to a cue
common to people asking him questions that already knew the an-
swer [25]. In fact, we have shown [17] how different music content
analysis systems can be similarly fooled to do the same things our
adversaries here accomplish. Though the approach in [17] is one of
brute force searching with linear time invariant filtering, rather than
the optimisation approach used here and in [13], we are led to the
same question: What has this system actually learned to do?

One can argue that our experiments here have limited signifi-
cance for music genre recognition since we use a small dataset, and
one that has been shown to have faults [16]. The focus of this paper
is not genre recognition (whatever that means), but about adapting
and testing a principled method of creating adversaries that sever
the achilles heel of a machine learning system. Whether we used
GTZAN or the million song dataset [26], the important matter is that
we have taught a classification system to reproduce the ground truth
of some benchmark music dataset, that Fig. 1(a) shows this system
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Figure 2: GTZAN Metal excerpt “Flight of Icarus”, Iron Maiden. Top left: STFT of original. Top middle: STFT of adversarial example
(labeled Jazz). Top right: STFT of difference. Bottom: a single STFT frame (light blue: original, black: adversary, orange: difference).

Output GTZAN Label
Music Recording Input Blues Classical Country Disco Hiphop Jazz Metal Pop Reggae Rock

Little Richard, “Last Year’s Race Horse” 32 (23) 29 (23) 36 (25) 36 (26) 36 (25) 33 (24) 32 (24) 31 (25) 42 (26) 36 (25)
Rossini, “William Tell Overture” 32 (25) 37 (30) 40 (29) 43 (28) 34 (24) 36 (29) 33 (25) 34 (26) 37 (26) 37 (28)

Willie Nelson, “A Horse Called Music” 25 ( ) 25 (20) 30 (27) 30 (20) 26 (19) 30 (25) 27 (23) 21 (20) 30 (23) 29 (23)
Simian Mobile Disco, “10000 Horses Can’t Be Wrong” 31 (30) 36 (31) 38 (32) 45 (34) 41 (33) 40 (32) 33 (31) 47 (34) 42 (33) 38 (33)

Rubber Bandits, “Horse Outside” 27 (27) 27 (27) 36 (29) 42 (31) 38 (29) 34 (28) 32 (28) 37 (29) 36 (29) 35 (29)
Leonard Gaskin, “Riders in the Sky” 32 (23) 30 (25) 32 (23) 35 (25) 31 (22) 35 (29) 34 (23) 26 (23) 35 (25) 35 (24)

Jethro Tull, “Heavy Horses” 29 (26) 28 (26) 40 (29) 42 (29) 38 (28) 36 (28) 34 (28) 34 (28) 37 (28) 36 (29)
Echo and The Bunnymen, “Bring on the Dancing Horses” 29 (25) 28 (26) 38 (28) 43 (28) 35 (26) 34 (26) 33 (26) 33 (26) 36 (27) 38 (28)

Count Prince Miller, “Mule Train” 32 (30) 29 (30) 41 (33) 37 (34) 43 (33) 36 (31) 33 (31) 42 (34) 40 (33) 33 (33)
Rolling Stones, “Wild Horses” 30 (22) 32 (24) 37 (25) 40 (25) 31 (22) 34 (25) 31 (26) 32 (23) 37 (25) 37 (26)

Table 1: SNR of adversarial examples produced by an ensemble of adversaries labelling any input with all GTZAN labels. The SNR is listed
for both confidence thresholds T = 0.5 (T = 0.9 in brackets). The average SNR of the perturbations is 34.5 (26.8) dB. These results can be
auditioned here: http://www.eecs.qmul.ac.uk/˜sturm/research/DNN_adversaries/

demonstrates a remarkable ability to reproduce the ground truth in
that dataset, and yet Fig. 1(b) shows that it is thoroughly defeated by
an adversary that does not change the music in the input recordings.
In other words, it is not important to our work whether the system
has learned to identify and discriminate between the genres used by
the music in the recording excerpts in GTZAN. What is important is
the fact that the system has learned something about a dataset, but
which can be defeated by principled means.

Another argument about our adversaries is that the perturba-
tions they create are not “natural,” i.e., they are highly unlikely in
any given real-world context. The same is true for the adversar-
ial images generated by [13]. We cannot definitively say what the
existence of these adversaries means in terms of the system gen-
eralization to real-world music recordings. Goodfellow et al. [23]
write, “The existence of adversarial examples suggests that ... being
able to correctly label the test data does not imply that our models
truly understand the tasks we have asked them to perform.” In our
case, the adversarial audio examples suggest that our DNN-based
music content analysis system is not “reasoning” using high-level
music-based concepts. This then has implications for its usefulness
for connecting users with music and information about music – a
principal goal of music informatics [9]. We are thus not interested
in using audio adversaries as malicious agents of real-world music
content analysis systems, but rather as an avenue to explore the in-
ner workings and idiosyncrasies for improving such systems. In the

context of music informatics, our work adds to a growing body of
research pointing at systematic methodological flaws in evaluation
that can lead to misrepresenting the state of the art [10, 15–17, 23].

5. CONCLUSION
We have presented audio adversaries for music content analysis sys-
tems, adapting the approach of Szegedy et al. [13] to a constrained
optimisation framework that carefully treats input spectral frames
to avoid invalid adversaries (time-frequency coefficients with no as-
sociated time-domain signal). Our demonstrations show how it is
relatively easy to fool the same state-of-the-art DNN-based music
content analysis system developed in [4]. We are able to make the
system label the perturbed test set nearly perfectly, randomly, or
entirely as “Jazz.” We were also able to make the system confi-
dently classify out-of-sample music using every GTZAN label. This
brings up many questions regarding the most common method used
to evaluation music content analysis systems, and the interpretation
of the FoM computed from them: is it reflecting that in which we
are really interested?
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