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Summary

With the increase of opinions shared by people on social media the importance
of algorithms capable of analyzing them for sentiment to produce value has
grown. All companies face hidden costs in the form of lost revenue due to un-
happy customers not returning and potential customers snubbing a product due
to bad publicity. This thesis develops an aspect-based opinion summarization
system capable of extracting opinion features from product reviews, determin-
ing the sentiment of the reviews the opinion features appeared in and producing
a summary of the most frequent features discussed with regards to sentiment.
The results from the summary system are promising but could still be improved
to produce even more value.






Preface

This thesis was prepared at DTU Compute in fulfillment of the requirements
for acquiring an M.Sc. in Software Engineering.

The thesis deals with the task of developing a system capable of aspect-based
opinion summarization of product reviews on social media. The system does
this by scraping product reviews from Twitter, extracting product features from
those reviews, determining the sentiment of each review before finally presenting
a summarization for the product.

The thesis consists of an introduction which describes the problem, the goals
of this thesis, datasets used and related work (Chapter 1); methods used for
extracting product features and for sentiment analysis (Chapter 2); evaluation
of these methods and determination of best performing techniques (Chapter
3); results and discussion regarding summarization of features and sentiment
(Chapter 4); conclusions and possible future work regarding the summarization
system (Chapter 5).

Lyngby, 17-August-2015
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CHAPTER 1

Introduction

The amount of information available on the internet is vast and the develop-
ment of methods for automatic categorization and organization of this informa-
tion have been the focus of many researchers. While a lot of the work in this
area has focused on topical categorization, such as categorizing news articles by
subject[Pan]| (e.g. politics, business, sports), the growing amount of discussions
of the general public online has increased the usefulness of categorization accord-
ing to sentiment, e.g. if it is positive or negative. Social media platforms have
expanded exponentially for the last few years [oSMFPTtIOI] with ever so many
people sharing their opinions on review sites, message forums, blogs, micro-blogs
and other publicly open websites. Twitter alone has 302 million monthly active
users and 500 million tweets every day [Twi|. This freely available information
can be used to produce value, such as predicting the stock market [Si13] [Chell]
[Bol], electronics sales [Nas12] and box office revenues [Liu]. However, the use of
sentiment analysis on online discussions is not limited to prediction of behavior
but can also be used to examine the standing of a company, product, person or
any other object or entity with regards to public perception.

All companies face hidden costs, one of which is lost future revenue due to
customers not returning because of their unhappiness with aspects of the prod-
uct purchased. 96% of unhappy customers don’t complain to the company so
problems with products (and their degree) could go unnoticed [sFTS|. These un-
happy customers could however complain on social media, potentially leading to
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more lost revenue due to potential customers snubbing said product or company.
If companies could identify the aspects of their products frequently discussed
in a negative manner on public forums they could better address them and
increase customer satisfaction, resulting in reduced hidden costs and increased
profits. Additionally, if companies could identify what aspects of their products
people like that information could be used to integrate those features into other
products or otherwise use for marketing and product development purposes.

Using only sentiment analysis to locate negative or positive discussions regarding
a product might not yield comprehensive and informative results as a product
might be mentioned in text that is determined to be negative or positive but
without knowing what aspects of the product are being discussed the value of
the information is significantly diminished. It is therefore necessary to pair sen-
timent analysis with product feature extraction to obtain the most value from
the information.

This thesis aims to design and implement a system capable of extracting product
features from reviews (discussions) on social media and producing a summarized
report of the most frequently discussed product aspects with regards to the sen-
timent of the reviews they appear in.

One might wonder about the possibility of the product supplier providing a
list of product features to simplify this system. Although that is possible it
might be hard for the supplier to provide a list of product features since they
may sell a large amount of different products, terminology used might differ be-
tween supplier and customers for certain product features, the customers may
comment on product features not thought of by the supplier or on features
lacking from the product.

1.1 Goals

The problem this thesis will examine is aspect-based opinion summarization of
product reviews on social media. For this thesis the term review is defined as
a comment on a particular product. The root of the aforementioned problem is
reduced customer retention- and acquisition rates due to undiscovered customer
dissatisfaction and bad publicity on social media regarding specific features of
a product.

The process of solving this problem can be split into three parts:

1. Identification of features of a product that people expressed an opinion on
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in a review (called opinion features)
2. Sentiment determination of each review of that product

3. Summarization of the most frequent opinion features with regards to the
number of appearances in positive and negative reviews.

For the first part I will develop an algorithm for finding opinion features in each
review by using grammatical analysis, i.e. part-of-speech, before with evaluat-
ing the performance of different sets of rules which determine which candidate
features are saved as opinion features. Descriptions of the methods used in this
part can be found in section 2.1.

For the second part I evaluate different sentiment analysis algorithms to deter-
mine the model best suited for reviews from social media. Two frequently used
techniques for sentiment analysis are a lexical approach or a machine learning
approach. The lexical approach typically uses a list (lexicon) of terms labeled
with sentiment rankings to calculate the sentiment of text according to the rank-
ings of each word present in both the text and the lexicon. Machine learning
methods use example data to build a model capable making predictions on other
data. In this thesis I will evaluate and compare two different lexicons along with
two supervised learning algorithms to find the best performing model for senti-
ment determination of the reviews. Descriptions of these methods can be found
in section 2.2.

Let us use an example of a review for a mobile hone to illustrate the concepts
of the first two parts:

"The picture quality is terrific on my phone!"

In the first part "picture quality” would be identified as an opinion feature with
the opinion that modifies the feature as "terrific”. The term used as search
query, in this case the word "phone”, would usually be saved as a candidate
feature as it is a noun, but since I am only looking for product features and not
the product itself the search query is removed from the collection of candidate
features. In the second part this review would be classified as positive, either
with a lexical approach where the word "terrific” would likely result in a pos-
itive determination (it is also possible that the words "quality” and the word
"new" could influence the decision) or with a supervised learning, where reviews
in a training dataset with similar wording are labeled as positive, resulting in a
positive classification for this review.

Finally, for the third part of the thesis the most frequent opinion features ex-
tracted in part one are each labeled with the sentiment of the review they



4 Introduction

appeared in (obtained in part two) to produce the summary.

Let us demonstrate an example of a summary of a frequent opinion feature
, "picture quality”, displaying how many times it appeared in a positive review
and how many times it appeared in a negative review.

Feature : Picture quality
Positive: 14

Negative: 154

Ratio : 92% Negative

For this example the opinion feature "picture quality” has appeared in 14 posi-
tive reviews and 154 negative reviews. Individual reviews of the opinion feature
could then be inspected for further manual analysis.

With an interactive interface it would also be possible to rank opinion features
according to highest number of positive or negative occurrences, most contro-
versial opinion features (high number of both positive and negative reviews)
or features most unanimously reviewed (biggest different between number of
positive and negative reviews).

1.2 Datasets

Four different datasets were obtained and used for this thesis, one for training a
classifier for sentiment analysis, one for testing and tuning the opinion-feature
miner, one containing tweets labeled with regards to sentiment to test the per-
formance of the classifier on realistic data and one was scraped from Twitter
for the purpose of summary demonstration. These datasets are described in
individual sections below.

1.2.1 Amazon Review Data for Supervised Learning

The dataset used to train, validate and test the classifier was obtained from
Julian McAuley of UCSD [Moh] [McA]. The particular data used for this project
was a part of 143,7 million Amazon review dataset spanning May 1996 - July
2014. The part of the dataset obtained for this project was an aggressively
de-duplicated subset of the aforementioned dataset which included 83 million
reviews. Each review has 8 properties: reviewer 1D, reviewer name, helpfulness
rating, review body, rating, review summary, review unix time stamp and review
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raw time stamp. Meta-data regarding the products reviewed was available in a
separate file with the review ID as a primary key but since analysis focused on
the review text itself the meta-data was not necessary for this thesis.

1.2.2 Annotated Opinion Feature Mining Dataset

Hu an Liu [Hub] used reviews collected from Amazon.com and Cnet.com where
each review contains a title and review text [OFM]| !. For five products they
collected the first 100 reviews and manually read all the reviews and produced
a feature list for each sentence in each review. They also included a manual
sentiment estimate for each opinion of a feature and characters indicating if the
feature was explicitly used in the sentence or if it was referenced or other wise
implied (i.e. "it was great"). This annotated review set was made available and
was used in this project to test the opinion feature mining part of the project.

1.2.3 Labeled Twitter Dataset for Sentiment Analysis Test-
ing

This dataset was in it self not a dataset of tweets as it contained no tweets. It
did however contain 5513 IDs of tweets with a hand-classified sentiment label
attached to each tweet ID2. The sentiment was classified as one of the follow-
ing: positive, negative, neutral or irrelevant. The tweet IDs were originally
obtained by searching for one of the following terms: Apple, Google, Microsoft
and Twitter. For this project each tweet had to be crawled from the ID.

1.2.4 Scraped Tweets for Summarization

To demonstrate the summarization system I scraped tweets using the Twitter
API3. Only tweets containing no urls, were tagged as being in English and were
not retweets were collected to avoid spam and duplicates and irrelevant tweets.
The products chosen along with the amount of scraped tweets for each are:

Apple TV : 3941
Chromecast : 2419
Firefox : 8912

Thttp://wuw.cs.uic.edu/~1liub/FBS/
2http://wuw.sananalytics.com/lab/twitter-sentiment/
Shttps://dev.twitter.com/rest/public


http://www.cs.uic.edu/~liub/FBS/
http://www.sananalytics.com/lab/twitter-sentiment/
https://dev.twitter.com/rest/public

6 Introduction

Galaxy S5 : 1487
Google Chrome : 4611
HTC Desire : 534
PlayStation 4 : 4100
Windows 10 : 7004
iPhone 6 : 954

Unique products were chosen to increase the value of the information regarding
the opinion features. If a product line, such as iPhone, would have been chosen
and a feature had been frequently criticized, it would not have been possible to
know if the customers were talking about this feature in iPhone 4s, iPhone 5 or
iPhone 6 (or any other model), making the information much less valuable.

1.3 Related Work

Work done on this paper is closely related to the work of Hu and Liu [Hub][Hua]
on mining and summarizing customer reviews on products sold online. Their
objective was to make it easier for potential costumers to research a product by
creating a search engine capable of taking a product feature as a search query
and displaying a summarization of the sentiment of reviews it had appeared in.
The used reviews mined from Amazon.com and Cnet.com which they then man-
ually labeled for features before using the data to test various opinion feature
mining techniques. They showed that their techniques perform quite well for
both opinion feature mining and sentiment analysis. My work differs from theirs
in 2 main aspects: (1) They only use the opinion features mined to determine
sentiment of reviews using a sophisticated algorithm, requiring no training cor-
pora. (2) They are focusing on longer reviews (obtained from review websites)
that contain multiple sentences, which they split up for further analysis.

The work of Dave, Lawrence and Pennock [Dav] is also very similar to work
done in this thesis. They use labeled training corpora available from websites,
to train sentiment classifiers. They showed that using their classifiers on test
reviews worked well, although the performance when classifying sentences ob-
tained with a search engine with a product name as a search parameter was
limited due to the shortness of the sentences. Unlike this thesis they did not
mine features from their reviews.

Morinaga et al. [Mor02] had the objective of mining product reputations on
the web, which is related to the subject of this thesis. They compare different
products in the same category to find its reputation but they do however not
mine product features nor summarize the results. Even though they don’t mine
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feature they do perform four types of text mining: extraction of characteristic
words, co-occurrence words, typical sentences for specific product categories and
correspondence analysis among multiple product categories.

Bermingham and Smeaton [Ber| examined the hypothesis that it is easier to
classify according to sentiment for short form documents than for long form
documents. They also explore the difference in classification of microblogs vs
microreviews. They trained and tested on both long- and short form documents,
and had some success classifying microblogs but were unable to improve per-
formance by extending a unigram feature representation for these short form
documents. Prediction accuracy for longer texts was worse than for the shorter
text.

The rest of the thesis consists of a description of methods used (chapter 2),
the evaluation of the performance of these methods (chapter 3), results and
discussions of the summarization of opinion features (chapter 4) and finally
conclusions and future work (chapter 5).



Introduction




CHAPTER 2

Methods

In this chapter I will discuss the methods used in this project to create the
review summarization system. The system can be divided into into three steps:
Opinion feature mining, sentiment analysis and summarization. Opinion feature
mining revolves around finding features of products mentioned in the reviews,
finding opinions shared in the reviews and then matching them together accord-
ing to rules about proximity and order. A match of an opinion and a feature is
called an opinion feature.

After determining the opinion features the sentiment of each review is deter-
mined. The results of these methods are then processed and presented in chap-

ter 4.

The architectural overview of the system can be seen in Figure 2.1.

2.1 Mining Opinion Features

The techniques described in this section are heavily based on the work of Hu
and Liu [Hub|, although with some modifications. References in this section
and its subsection to Hu’s and Liu’s work refer to the paper referenced in the
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previous sentence. The differences in approaches are mentioned in appropriate

sections below.
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2.1.1 Part-Of-Speech Tagging (POS)

When extracting product features from a review it must be considered what
characteristics can be used to identify them. According to Hu and Liu product
features are usually nouns or noun phrases in reviews. Part-of-speech tagging
must therefore be utilized to identify them. POS tagging is the process of classi-
fying words according to their word class (noun, verb, adjective, etc). It is then
possible to further classify those words into sets of words (phrases) according
to predefined rules of combining words of certain classes, a process known as
chunking. I performed those tasks using the Natural Language Toolkit (NLTK)
[Bir09]*. The following shows an example of a sentence which has been part-of-
speech tagged and chunked.

(S This/DT (NP digital/NN camera/NN) is/VBZ (JJP great/JJ) ,/, I/PRP
(VBPP really/RB love/VBP) it/PRP)

For instance, /NN indicates a noun and NP indicates a noun phrase. For this
project I expanded on Hu and Liu’s methods of chunking only noun phrases
to find features. I included other chunking patterns to try to capture opinion
words that were not adjectives as well as relevant words accompanying opinion
words. I created four chunking rules:

Noun Phrases (NP) — Captures simple noun phrases, includes all types of nouns
directly adjacent to each other.

Adjective Phrases (JJP) — Captures adjectives and relevant words often used
directly in front of adjectives to increase or decrease the significance of the ad-
jective, known as intensifiers. This could for example be "really great”, where
"really” is an intensifier and "great” is the adjective the intensifier modifies.

Verb Base Form Phrases (VBPP) — Initially this was meant to capture phrases
including opinions of things that did not include adjectives, for example words
like "love", "hate", "dislike”, "adore". After preliminary test it was discovered
that the chunking rule included too many irrelevant verbs that did not directly
imply a positive or a negative opinion, such as "do”, "play”, "give”. This rule
was then further narrowed to include only the words "love” and "hate”. This
rule also observes intensifiers in front of the words "love” and "hate”.

Verb Base Form Determiner Phrases (VBPDTP) — This rule is the same as
the one above but includes a determiner appearing directly after the words
"love” and "hate.

Thttp://www.nltk.org/
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Stemming was used to reduce words to a common form but stopwords were
included.

2.1.2 Feature Extraction

To solve the problem of finding product features in text Hu and Liu used asso-
ciation rule mining [Agr| utilizing the CBA algorithm developed by Liu et al.
[Liu98|. The CBA algorithm utilizes the Apriori algorithm which operates in
two stages, first generating a complete set of classification association rules by
identifying frequent individual items in a document and then extending them
to larger item sets one item at a time, as long as they meet standards of mini-
mum support, and in the second step creating a classifier from the rules. They
only used the first step as the only needed to find the frequent itemsets for
use as their candidate features. The Apriori does not consider word order or
distance between words so multiple pruning and combination rules must be ap-
plied in order to use the algorithm for this purpose. I decided to develop my own
method of extracting the features from the reviews instead of utilizing the CBA
algorithm developed by Liu et al.[Liu98] to circumvent the aforementioned pro-
cedures. Hu and Liu[Hub| used the Apriori algorithm to find single nouns and
check if they met the minimum support and then extended to phrases contain-
ing two and three nouns and then checked if they meet the minimum support
threshold. They then used two pruning rules, described in section 2.1.3 to re-
move unwanted items/itemsets in order to increase precision and recall. My
algorithm goes through every POS-tagged review and finds all items (nouns or
noun phrases) and counts how many times they appear without looking at any
minimum support thresholds and without producing a large amount of irrele-
vant features, as the Apriori algorithm does. I then use two methods, similar to
the pruning methods used by Hu and Liu[Hub] to try to increase the number of
the most frequent features. These are not necessary, unlike those employed by
Hu and Liu[Hub] to remove irrelevant features.

I first collected review parts which were labeled as nouns or noun/phrases from
the POS tagging described in section 2.1.1 for each sentence and stored them as
candidate features. Candidate opinion words were also collected and stored in
parallel to this operation but that process is further explained in section 2.1.4.
Each candidate feature stored was labeled with the ID of the review it came
from along with the index (location in the review) of each word that occurred
in the feature for use in further processing.

In an effort to capture more opinion features I collected all occurrences of the
words "it" and "them" that appeared after a candidate feature in a review with
word distance of 4 or less. If the word matched that criteria it is considered to
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be a reference to that feature and was stored as a reference-feature. For example,
"The player is great. It can play any disc I put in it."

Here the word "it" refers to the player mentioned in the previous sentence.
As the word distance is within the limit of 4 "it” is saved as a reference-feature,
using the nearby feature "player” instead of "it", with the index of the original
//Z't /I'

Another effort to capture more opinion features consisted of collecting all in-
stances of words with the stem "look”, e.g. "look", "looking” and "looks", to
be saved as a candidate feature of type look-feature to describe the look of the
product.

Not all of these feature types were handled in the same manner when gen-
erating opinion features by matching candidate opinion words with candidate
features. That procedure is detailed in section 2.1.5.

2.1.3 Feature Pruning

Not all features found in the feature extraction are useful, interesting or are
genuine features. Feature pruning attempts to remove those features that are
inappropriate. Hu and Liu presented two types of pruning methods, both of
which T used (at least to an extent) and are explained below.

2.1.3.1 Compactness Pruning

This method examines features containing at least two words, called feature
phrases, and removes those likely to be of no use. Hu and Liu note that their
association rule mining algorithm does not consider word position relative to
other words. Since in natural language the order and composition of certain
words are likely to be meaningful phrases this they attempted to prune mean-
ingless phrases found by the association rule mining. They defined a feature
phrase to be compact in a sentence if the word distance between any two words
in a feature phrase was no greater than three and that the words were in a
correct order. If a phrase is compact in at least two sentences then the fea-
ture is called a compact feature phrase. If a feature phrase is not compact in
at least two sentences in their review database then the feature phrase is pruned.

While associate rule mining does not consider word (item) order my feature
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extraction method does consider that so along with the fact that I am only
interested in finding the most frequent features of a review set and not striv-
ing to achieve the highest precision implementing their method of compactness
pruning for this project would not be useful. I did however implement a modi-
fied version because even though my method considers word order it only puts
together compact phrases if the words in the phrase appear directly adjacent
to each other and are therefore determined to be a noun phrase. It does not
consider words that are not directly adjacent to each other but are compact
according to the definition. Therefore I compile a list of all feature phrases and
check if any sentences contain single word features that appear in the correct
order within a feature phrase in the review database with word distance between
the words within the acceptable limit. If a compact feature phrase is found from
such single word features a new feature phrase is created with word indices saved
for the first word and the last word of the single word phrases while deleting the
old single word feature phrases from the dataset. This increases the frequency
of compact feature phrases, which I is relevant to this thesis since I am looking
at the most frequent features in this project.

2.1.3.2 Redundancy Pruning

This method checks features containing one word for redundancy. To determine
the redundancy of single word features Hu and Liu introduced the concept of
p-support. The p-support of a feature ftr is defined as the number of sentences
it appears in without the presence of a feature phrase that is a superset of fir.
If a feature has p-support of less than three and is a subset of a feature phrase
int the review database is it deemed redundant and is pruned.

One might wonder about the usefulness of performing this redundancy pruning
for my project since I am only focusing on the most frequent features while
the pruning method only removes infrequent, single word features. However,
without redundancy pruning an opinion could be matched with a redundant
feature instead of a relevant feature since it was nearer to the opinion. It could
be argued that the pruned feature was the feature modified by the opinion word
since it was nearer to it than the other nearby non-pruned phrase but I make
the assumption that the feature pruned is indeed uninteresting and irrelevant
and is therefore unlikely to be the feature modified by the opinion, regardless
of it’s proximity to it.
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2.1.4 Opinion Word Extraction

As mentioned in section 2.1.2, opinion extraction is performed in parallel with
feature extraction. When parsing through each review all words and phrases
labeled as JJP, VBPP or VBPDTP (explained in section 2.1.1) along with their
review ID and indices.

Hu and Liu performed the extra step of collecting infrequent features with the
use of adjectives and word distance. This step is unnecessary for this project
since my method does consider infrequent features when generating opinion fea-
tures along with the fact that I am only interested in the most frequent features.

2.1.5 Opinion Feature Generation

Six rules were created to control how candidate opinions and candidate features
are matched together. These rules are explained below (with abbreviations ex-
plained in section 2.1.1)

Rule 0

If a candidate feature appears adjacent to a JJP with word distance <= 4 then
and JJP is an opinion that modifies the feature. If more than one JJP are within
word distance of 4 then the JJP with the shortest word distance is chosen as
the opinion that modifies the feature.

Example: "The camera is great.”

Rule 1

If a candidate reference-feature appears directly after a VBPP then the VBPP
is an opinion that modifies the reference-feature.

Example: "I love them."

Rule 2

If a candidate reference-feature appears before a JJP with word distance <= 3
then the JJP is an opinion that modifies the reference-feature.

Example: "It is fantastic”

Rule 3

If a VBPP appears directly in front of a candidate feature then the VBPP is an
opinion that modifies the feature.

Example: "I love Nikon"

Rule 4
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If a VBPDTP appears directly in front of a candidate feature then the VBPDTP
is an opinion word that modifies the feature.
Example: "I love this player”

Rule 5

If a look-feature appears directly adjacent to a JPP then JPP is an opinion word
that modifies the look-feature.

Example: "The phone is great looking"

2.2 Sentiment Analysis

As mentioned in section 1.1 this thesis will examine and evaluate two different
lexicons and two different machine learning techniques to find the best perform-
ing classification method for determining the sentiment of our review dataset.
Lexical approaches can be as simple as ranking words in text according to a pre-
defined list of words ranked by sentiment before calculating the sentiment for
the text. Lexicons can also be used alongside grammatical analysis like part-
of-speech for increased complexity and/or to help train classifiers where only
unlabeled data is available so researchers must discover hidden structure in the
data for successful classification. This process is called unsupervised learning.
For this thesis I will only examine simple lexical methods using labeled lists for
word matching.

The machine learning algorithms used is this thesis are Naive Bayes classifica-
tion and Logistic Regression classification. Both these classifiers will use labeled
data in the form of Amazon reviews to learn how to predict a class, a process
called supervised learning[Moh].

These aim of these sentiment analysis methods is to accurately predict the
sentiment of reviews for the summary of opinion features.

2.2.1 Lexical Analysis

Two different lexicons were used to classify reviews with regards to sentiment.
The method used is very similar to the techniques implemented by Hu and
Liu[Hua] in that it aims to use only opinions modifying opinion features to de-
termine the sentiment of the sentence.
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The first lexicon, obtained from Dobbs et al.[Dod]?, is called labMT 1.0 and
contains 10.222 words evaluated for happiness by users on Mechanical Turk 2.
Each word is rated on a scale of 1-9, 9 being happiest. The second lexicon,
obtained from Nielsen|Niell], is called AFINN-111* and contains 2477 words
evaluated by Nielsen for valence (sentiment) between -5 and +5, with +5 being
the most positive. The lexicon was developed for sentiment analysis of mi-

croblogs such as Twitter and includes internet slang acronyms, such as "WTF"
and "LOL".

I ran the method twice on each lexicons, first it starts by collecting the opinion
words (those that modify opinion features) of each review. It then tries to find a
match for each opinion word in the lexicon. If a match is found for one or more
of the opinion words the average sentiment rating per opinion word matched is
calculated to determine the sentiment of the review. If no match is found for
opinion words in a review it shifts to the traditional way of finding matches for
all words in the review. This differs from the method of Hu and Liu[Hua] as they
use the sentiment obtained for the previous sentence in the same multi-sentence
review if sentiment can not be found for the opinion words. Fore my method,
if one or more match is found the average sentiments for matched words is cal-
culated to determine the sentiment of the review. If still no match is found the
review is determined to be neutral for lack of sentiment indicators. If no opinion
word is found in a review then the review is discarded, as only reviews that have
opinion features in them are relevant when it comes to review summarization.

I then ran it again with the addition of intensifier considerations. Intensifiers
are words that increase or decrease the significance of an opinion, e.g. "very”
and "extremely”. This might b useful to increase the probability of a correct
prediction if a review includes both a positive and a negative opinion word, but
with one of these having an intensifier attached to it, giving it stronger senti-
ment than the other opinion word. Let’s look at an example:

"The phone is extremely good with the exception of horrible color choices”

Here the review is more positive than negative, but without intensifier consid-
eration the review would likely be classified as negative as "horrible" is stronger
than "good". A list of 7 intensifiers was created and given a coefficient according
to their strength. The list and ratings are as follows:

Extremely : 2.5
Very : 2
Really : 2

2http://s3-eu-west-1.amazonaws.com/files.figshare.com/360592/Data_Set_S1.txt
3https://www.mturk. com/mturk/welcome
4http://www2. imm.dtu.dk/pubdb/views/edoc_download.php/6010/zip/imm6010.zip


http://s3-eu-west-1.amazonaws.com/files.figshare.com/360592/Data_Set_S1.txt
https://www.mturk.com/mturk/welcome
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/6010/zip/imm6010.zip
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Quite : 1.3
Pretty : 0.8
Fairly : 0.7

Somewhat : 0.5

If these words appeared in front of an opinion word their sentiment ranking was
multiplied by the intensifier’s coefficient. For example, if the opinion phrase
"very good" appeared in a review, the sentiment ranking for the opinion word
"good" would be (very)*(good) = 2*3 = 6.

The first method was developed for a positive scale of sentiment ratings of words,
i.e. from 1-9, like the labMT 1.0 lexicon|Dod| so the AFINN-111 lexicon|Niell]
had to normalized to that form for use with that method. The second method
was developed for a sentiment scale centered around zero, i.e. negative words
have negative numbers for ranking while positive words have positive numbers
like the AFINN-111 lexicon, so the labMT 1.0 lexicon had to be normalized for
that form for use with that method.

2.2.2 Machine Learning

The two algorithms used for supervised learning in this thesis are Naive Bayes
and Logistic Regression. The philosophies behind these algorithms are quite
different but they have both proven to be effective when it comes to text clas-
sification. When comparing these algorithms the concepts generative and dis-
criminative are important. Naive Bayes is a generative model, meaning that it
models the distribution of each class, i.e. how the data is generated, to catego-
rize a signal. Logistic Regression is a discriminative model, meaning it models
the decision boundary between classes and uses that information to categorize
a signal[Ngb].

The research of Ng and Jordan [Ngb| showed when comparing the performance
of these two models that discriminative models have a lower asymptotic error
but generative models reach their asymptotic error faster. This means that for
smaller training datasets generative models, such as Naive Bayes, will perform
better but as the number of training examples grow discriminative models, such
as Logistic Regression, will catch up and likely eventually perform better.

For this thesis these models will be trained on a bag-of-words, where each docu-
ment/text is represented by a set of features {f1, ..., fin}. Examples of features
are the word "good” and the bigram "really bad". One way of constructing a fea-
ture vector for a document would be to let n;(d) be the number of times feature
fi appears in document d so that each document d is then represented by the
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vector d := (ny(d), ...,nm(d)). For this thesis however I will use Scikit-learn’s
5 TdfidfVectorizer module to create a feature vector d for document d using
tf-idf (term-frequency times inverse-document frequency) normalization. This
re-weights feature counts into floating point values with the objective of giving
frequent, yet less meaningful words, decreased significance. These words are for
example "the”, "a" and "is". The vector is ordered from highest frequency to
lowest and if a limit is put on the size of the vector (i.e. number of features)

used for a classifier less frequent features are ignored up to a predefined limit.

2.2.2.1 Naive Bayes

Generative classifiers such as Naive Bayes learn a model of the joint probability
distribution P(d, ¢), where d is the input data and c is the label/class. To assign
label ¢* to document d it must evaluate

c¢* = arg mazx.P(c|d)

where P(c|d) is the probability of label ¢ being assigned given document d. To
derive this classifier it is observed that by Bayes’ rule,

P(c)P(d|c)
Pleld) = —&—F—=
where P(c) and P(d) are the probabilities of ¢ and d independent from each
other and P(d|c) is the probability of document d given a label ¢. In order to
estimate P(d|c) Naive Bayes makes the assumption that the f;’s are condition-
ally independent given label c:

P(o) (T2, P(file)™ D)
P(d)

PNB(C|d) =

This assumption is said to be naive, the term that the approach draws its name
from. This thesis will evaluate the two classic Naive Bayes variants used in text
classification, Multinomial Naive Bayes and Bernoulli Naive Bayes. The former
will estimate P(c) and P(d|c) by using relative frequency counting with Laplace
smoothing while the latter uses a decision rule that explicitly penalizes the non-
occurrence of a feature f; that is an indicator for class ¢ (while Multinomial
Naive Bayes simply ignores a non-occurring feature).

Multinomial Naive Bayes implements the Naive Bayes algorithm for multino-
mially distributed data, typically represented as feature vector counts or td-ifd
vectors.

Shttp://scikit-learn.org/
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Bernoulli Naive Bayes requires samples to be binary values, i.e. n;(d) takes the
value 1 for if feature f; occurs in document d or the value 0 if it doesn’t[SKL].
The Bernoulli Naive Bayes classifier module from Scikit-learn has a built in bi-
narizer that maps sample features to boolean values if the input feature vector
includes counts.

2.2.2.2 Logistic Regression

Despite its name, Logistic Regression is a linear model used to solve classifi-
cation problems but not regression problems. Regression problems involve the
predicting of a continuous target variable while classifications problems predict
for only a small number of discrete values.[Nga

Discriminative classifiers such as Logistic Regression learn a model of the con-
ditional probability distribution P(c|d). Logistic regression models the proba-
bilities of possible outcomes of a single trial by using the logistic function[SKL].
This function is useful since its output always takes values between zero and
one regardless of the size of positive or negative values of the input[Hos00]. The
logistic function is defined as follows:

_ 1
14t

a(t)

where t is the linear function of the exploratory variable. To prevent overfitting
Logistic Regression uses regularization, with the most common methods being
L1 and L2. For this thesis I will use L2 as it is expected to perform better than
L1 on large datasets such as ours [AN].

Note that the definition of the Logistic Regression classifier reflects only on
the occurrence/non-occurrence of a feature rather than directly incorporating
feature frequency.



CHAPTER 3

Evaluation of Methods

In this chapter the methods detailed in chapter 2 will be evaluated for perfor-
mance to determine the best performing techniques to be used for the third
part of this project, the aspect-based review summarization. The evaluations
will also be discussed and analyzed in this chapter along with descriptions of
dataset processing.

3.1 Pre-processing the Datasets

Before using the datasets described in section 1.2 for the evaluation of the meth-
ods they needed to be pre-processed. This section details the pre-processing of
each dataset.

3.1.1 Amazon Review Data for Supervised Learning

Each of the 83 million reviews obtained for this thesis have a rating from 1-
5, 1 being most negative and 5 being most positive. To collect positive and
negative reviews all reviews with ratings 1 and 2 were saved as negative and all
who had a rating of 4 or 5 were positive while reviews with a rating of 3 were
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left out as neutral. The result from this categorization were 69.152.357 positive
reviews, 8.436.508 negative and 5.412.140 neutral. In order to have a random
baseline classifier with 50% accuracy the number of positive and negative reviews
included in the final dataset had to be balanced. After trimming symbols and
punctuation the data was balanced, resulting in 8.435.324 positive reviews and
8.435.324 negative reviews.

3.1.2 Annotated Opinion Feature Mining Dataset

For this dataset, each review had been split into sentences. Each line in a review
file contained a sentence from a review. If a feature was found in a sentence
it would be listed in front of the sentence with sentiment and feature types in
brackets. For this project I needed to parse through these reviews and scrape
these features from each sentence along with the review text to save for later
use.

3.1.3 Sentiment Labeled Twitter Dataset for Testing

As some tweets had been deleted from the time this list of IDs was compiled
the result of this crawl was only 4620 tweets of the possible 5513 tweets. This
included 324 positive tweets, 408 negative tweets, 972 neutral tweets and 897
irrelevant tweets. Tweets including links were dismissed due to likelihood of
being spam along with retweets.

Tweets that were shorter than 4 words were also removed, as they are less likely
to contain relevant information. User handles, hashtags, punctuation, numbers
and symbols were removed from the remaining tweets. This resulted in 242
positive reviews and 274 negative reviews. They were then balanced, resulting
in a final dataset of 242 positive tweets and 242 negative tweets.

3.1.4 Scraped Tweets for Summarization

This dataset was subject to the same trimming procedure as described in the
second paragraph of section 3.1.3, sans balancing. This resulted in the following
number of tweets for each queried product:

Apple TV : 3701
Chromecast : 2319
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Firefox : 8658

Galaxy S5 : 1419
Google Chrome : 4521
HTC Desire : 520
PlayStation 4 : 4047
Windows 10 : 6819
iPhone 6 : 901

3.2 Experimental Set-up

After pre-processing of the required datasets the methods ready to be evalu-
ated for performance. The evaluation of methods pertaining to opinion feature
mining and sentiment analysis are described below.

3.2.1 Mining Opinion Features

To find the best performing technique for opinion feature mining experiments
were conducted on the dataset described in section 1.2.2. The five products
reviewed were two digital cameras, one mp3 player, one cellular phone and one
DVD player. First every review were part-of-speech tagged. After that the prun-
ing methods were applied and all combinations of the matching rules described
in section 2.1.5 were executed to see what combination produced the best re-
sults. Note that rule 0 was always implemented so only the presence/absence
of rules 1-5 was experimented with. The results of Hu and Liu[Hub] focused
on examining the precision and recall for all features using different techniques.
Those results are not directly relevant to this thesis but the manual feature
count for each review can be used to find their top ten most frequent features.
One problem did however arise when comparing results with the manual feature
count obtained from Hu and Liu[Hub]. In a table displaying their results they
claimed a certain number of features that were manually found for each product.
However, when parsing through the review files and counting features manually
labeled in the data the results were very different. Below is their count for each
product followed by a dash and then my count from their annotation:

Digital camera 1 : 79 - 105
Digital camera 2 : 96 - 75
Cellular Phone : 67 - 115
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Table 3.1: Comparison of top 10 most frequent features found by the best
performing method from this system and those found manually by
Hu and Liu [Hub]

True Matched
Product Matches | Matehed | iy hed Count Top 10 Pruning Rule
Count Accuracy

Count Accuracy
Apex 5 55 62 58.6 196 Redundancy | 01101
Canon 7 11 2 132.1 55.71 Redundancy | 01010
Creative Labs 1 Td5 233 65.3 55.07 Redundancy | 00010
Nikon 7 30 70 114.3 79.09 Redundancy | 00010
Nokia 1 117 84 139.3 8121 Nono 01010

Mp3 player : 57 - 188
DVD player : 49 - 116

It appears that they processed the labels after annotating them, probably group-
ing them together or otherwise modified them. Attempts to manually replicate
grouping of these features were unsuccessful. This discrepancy effects the eval-
uation of my methods as it is not possible to get an accurate estimate on how
they have performed. I will however compare my results to the ones discussed
above to get a comparison, however flawed it may be.

The objective of this part of the thesis is to find the most frequently occurring
opinion features. Table 3.1 shows comparison of top 10 most frequent features
found by this system and the ones manually found by Hu and Liu[Hub]. The
column Matches shows how many of the top ten features from their manual list
was found, Matched Count shows a sum of how often these matched features
were found, True Matched Count show how often they found the matched fea-
tures, Matched Count Accuracy shows Matched Count divided by True Matched
Count as a percentage, Top 10 Accuracy shows my total count of the True
top 10 features divided by the True total count of the True top 10 features,
Pruning shows which pruning method was used to obtain the best result and
Rule shows the (fewest) rules needed to obtain the best result. The best result
was defined as the highest True Matched Accuracy. The binary representation
indicates whether a rule was included or not, where the first digit represents the
presence/absence of rule 1 and so on.

When comparing with the (flawed) manual feature count of Hu and Liu[Hub] it
can be seen that the opinion feature mining algorithm does not perform partic-
ularly well, finding only four or five features from their top ten. The Matched
Count Accuracy ranges from 58.6% to 139.3%, which is perhaps not a very
telling statistic since having accuracy of 139.3% implies that there opinion fea-
tures being found where they shouldn’t be found. It can then be seen that
the Top 10 Accuracy ranges from 49.6% to 95.71%, a more reasonable range.
It must however be considered that the high accuracy of 95.71% is likely not
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accurate as some opinion feature count accuracies are low while some are way
too high (e.g. 139.3%), giving the average accuracy of 95.71%.

It is clear that without having the accurate manual feature count for these
reviews significantly impairs any estimation of the opinion feature mining algo-
rithm’s true performance.

The minimal combination of rules needed to obtain all the results in table 3.1
is 01101, i.e. rules 2, 3 and 5 are included (along with the ever present rule 0)
while rules 1 and 4 are not used. I assume that the inclusion of a rule can not
harm results. This combination along with redundancy pruning will be used to
mine opinion features for the review summary.

3.2.2 Sentiment Analysis

Lexical analysis

To test the lexical methods the best performing opinion feature mining algo-
rithm is used on the labeled Twitter dataset described in section 1.2.3 to obtain
opinion features for those reviews. The sentiment of the reviews were then calcu-
lated according to the descriptions of the lexical approaches from section 2.2.1.
The result can be seen in table 3.2 where row (1) and (2) shows how many
times sentiment was determined from opinion words and from the text in the
review, respectively, row(3) shows how many times the algorithm was unable to
obtain sentiment from either opinion words or text, row (4) and row (5) show
the sentiment prediction accuracy when only opinions are used and when only
text was used, respectively, row (6) shows the sentiment prediction accuracy
when opinions and text is used and row (5) shows the accuracy when all reviews
are included. Std. stands for the standard method while Int. stands for the
method including intensifier consideration while labMT and AFINN are short
for labMT 1.0 and AFINN-111, respectively.

It can be seen that using the intensifiers did not improve accuracy but rather
decreased it. The explanation could be that for this particular dataset there
are multiple negations, effectively increasing the probability of an inaccurate
prediction by taking a strong opinion and categorizing it as having the oppo-
site sentiment. It can be seen that the large size of the labMT 1.0 lexicon has
resulted in no undetermined reviews. However, the AFINN-111 lexicon per-
forms much better than the labMT 1.0, which may be caused in part by the
micro-blog vocabulary focus of AFINN-111. The low accuracy of the labMT 1.0
lexicon stems from a high False Positive count, for which reasons or not clear.
While the accuracy of the AFINN-111 lexicon is considerably better than that
of labMT 1.0 it is still not what would be called good when it comes to senti-
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Table 3.2: Lexical analysis results

Std. Std. Int. Int.
labMT | AFINN | labMT | AFINN

(1) Opinions 275 117 275 117

2) Text 27 143 27 143

(3) Neither 0 42 0 42
o

@) | pecuracy (%] | 633 75.2 63.1 75.0
T

(5) accuracy [%] 40.7 70.6 39.3 70.3

O+T
6) | aecuracy (7] | 13 72.7 60.9 72.3
7 | OFT+N 61.3 62.6 60.9 62.3
accuracy [%]

ment classification of text. It can be seen that for the AFINN-111 lexicon that
the relatively high number of unpredicted reviews strongly affects the results
when they are included. Leaving them out in order to include only sentiment
predicted reviews would, in this case, reduce the size of the dataset by 13.9%.
The best accuracy, 75,2%, was achieved using the standard method with the
AFINN-111 lexicon and only including reviews which yielded a sentiment clas-
sification through the use of opinion words. However, to achieve that accuracy
61,3% of the dataset would have to be discarded, which is not ideal. The opti-
mal way to solve this problem would be to improve the opinion feature mining
algorithm, possibly resulting in more opinion features which can be matched
to the lexicon. The improvement could include an increased sophistication and
complexity in how it analyses words and word relationships (e.g. prepositions),
using other lexicons, combining lexicons and/or combing the lexical approach
with a machine learning approach. Other ways to improve results could be to
try the inclusion of stemming, more intricate intensifier consideration and/or
negation consideration.

Machine Learning

To test and train the two machine learning algorithms the Amazon review
dataset described in section 1.2.1 is split in to two parts, 75% for training and
validation and 25% reserved for testing. The first part is used for 3-fold cross-
validation, where the data is split into three folds and then iteratively trained
on two folds and validated on one until all three combinations have been exe-
cuted. The result is the average accuracy from these three runs. This is done to
minimize variance from irregularities in data. It is not uncommon to use more
than 3 folds for cross-validation, with 10 being the most popular, but for this
thesis I only used three due to time constrictions. The test set is kept com-
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pletely unused during the tuning of the classifier. This is done so that when the
classifier is used on the test set it gives a better estimate on how the classifier
will perform on unseen data.

The classifiers used the bag-of-words framework for training and predicting.
The features focused on were ngrams of sizes one and two, also known as un-
igrams and bigrams|Bro|. When training classifiers it is important to find the
correct fit for the data, i.e. to avoid under- or overfitting. Underfitting in when
the classifier is not complex enough to accurately predict the classes of the data
input, e.g. using too few features. Increasing the amount of data will likely not
improve results for a model that underfits. Overfitting is when the model is too
complex and is fitting noise rather than the real tendencies of the data. The
training error of such a model is likely to be low but it will likely perform poorly
on new data[JV].

To find the amount of features best suited for this dataset I used cross-validation
for the Multinomial Naive Bayes classifier on the data for various amount of un-
igram features. The results of this evaluation can be see in Figure 3.1. On
the left side of the graph where there are few features it can be seen that the
model is underfitting since it does equally poorly on both unknown and known
values. On the right side it is starting to overfit, as can be seen by the diver-
gence of training- and cross-validation errors. The optimal model is where the
cross-validation error is minimized[JV]. For this model the cross-validation er-
ror reaches similarly low values from around 30.000 features to around 300.000
features. I will choose the number of features to be the 29.958 most common
features from the tf-idt vector, which are features that appeared at least 700
times, to minimize computational time and memory usage.

To verify the that the chosen feature amount is a good fit the learning curve
of the Multinomial Naive Bayes classifier is plotted using 29.958 features. The
learning curve, seen in figure 3.2, shows the training and cross-validation accu-
racy as a function of training data size. It can be seen that, as was expected,
that the model is underfitting on the left side of the graph but does not overfit
as the training data size is increased so the amount of features chosen fits this
model well. It can however be seen that at around 5 million reviews the model
has reached the point where more data does not improve the results. It would
therefore be possible to train this model on only 5 million reviews and still get
very similar results as with more reviews.

These 29.958 features were used for all classifiers for both unigrams and bigrams.
It’s worth noting that when bigrams are used as features each bigram counts as
only one feature.
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Figure 3.1: Mean Squared Error vs Number of Features for Multinomial Naive
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Figure 3.2: Learning curve of Multinomial Naive Bayes for 29.958 features



3.2 Experimental Set-up 29

As stated in chapter 2 T used L2 regularization with the Logistic Regression
classifier in this thesis. A parameter that needed to determined before using the
classifier is C, the inverse of regularization strength. C controls how strong the
regularization should be, with smaller values specifying stronger regularization.
To find the optimal C value for this model using 29.958 unigrams I again use
cross validation to test and plot for different Cs. The result of this evaluation
can be seen in figure 3.3. A low C value produces a poorer result than higher
values, with higher values having no hint of overfitting. As before when optimiz-
ing the feature count the optimal value for C is found where the cross-validation
error is lowest. For this model this happens when C is 102, or 100. The im-
proved performance for larger Cs was expected as strong regularization was not
needed since the amount of features had already been chosen, reducing the risk
of overfitting.

To verify this result the learning curve of the Logistic Regression classifier is
plotted using 29.958 unigrams as before with C set to 100. The result can be
seen in figure 3.4. The curves are confirm our assumptions of a good fit and
show that for C = 100 the accuracy looks to be near its maximum possible value
for this model when all the training data is used. I will therefore set C to 100
when using the Logistic Regression classifier in this thesis.

Mean Squared Error vs Inverse of regularization strength (C)
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Figure 3.3: Mean Squared Error vs C for Logistic Regression

The cross-validation error of the classifiers, using the optimal parameters de-
termined above, are displayed in table 3.3, where it can be seen that Logistic
Regression performs better than the Naive Bayes classifiers, reaching 93.1%
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Figure 3.4: Learning curve of Logistic Regression for 29.958 features and C
value of 100

accuracy when using bigrams as features. The unigram-based Logistic Regres-
sion classifier performs a little better than the bigram-based Multinomial Naive
Bayes classifier with 90.3% accuracy versus 88.9%. The rest of the classifiers all
performed considerably worse, with the poorest performer being the unigram-
based Bernoulli Naive Bayes classifier.

Next the performance of the best performing classifiers on the test- and labeled
Twitter set is examined. The results from using the bigram-based Logistic Re-
gression classifier can be seen in line (1) of table 3.4. It can be seen that even
though the accuracy is 93.4% for the test set it is only 72.8% for the Twitter set.
Lines (2) and (3) show that the unigram-based Logistic Regression classifier and

Table 3.3: Average accuracies from 3-fold cross-validation in percentages for
all classifiers and ngrams

Number of | Frequency/

features Presence NB | LR

Features

(1) | unigrams 29958 Frequency | 83.4 | N/A
(2) | bigrams 29958 Frequency | 88.9 | N/A
(3) | unigrams 29958 Presence 80.8 | 90.3
(4) | bigrams 29958 Presence 86.0 | 93.1

[\

W
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Table 3.4: Accuracy results for test- and Twitter set by best performing clas-

sifiers
Classifier | Features Frequency/ Test set | Twitter set
Presence
(1) LR bigrams Presence 93.4 72.8
(2) LR unigrams Presence 90.4 75.0
(3) NB bigrams Frequency 89.0 72.5

the bigram-based Multinomial Naive Bayes classifier perform well on the test
set, albeit not as well as the bigram-based Logistic Regression classifier while
the unigram-based Logistic Regression classifier improves the accuracy of the
Twitter set. to 75% accuracy. It seems that since the real review data used
for summarization in this thesis will be more like the Twitter set I chose to
continue with the unigram-based Logistic Regression classifier ahead of the its
bigram-based counterpart. It can be seen that the Logistic Regression classifier
produces better results using bigram features on the test set while producing
better results on the labeled Twitter set using unigram features. A possible ex-
planation is that using ngrams of higher degree tends to work better on longer
text[Ber|. Since the test set includes longer reviews than the tweets, which by
design are limited to 140 characters, it could be expected that using bigram
features produces better results on the test set while using unigram features
produces better results for the labeled Twitter set.

I am interested in trying to increase the accuracy of the unigram-based Logistic
Regression classifier for the final summarization task since 75.0% accuracy is
not particularly high. Since it is possible to retrieve the prediction probability
from the Logistic Regression classifier for each document classified that infor-
mation can be used to inspect the feasibility of increasing prediction accuracy
by increasing the probability confidence needed to include the prediction in our
results. In other words, instead of including all reviews determined to be either
positive or negative I only include reviews that the classifier deems is more than
X% probable of being either positive or negative, with X being some prede-
fined number. Figure 3.5 shows the trade-off between accuracy and amount of
data discarded vs. prediction confidence. It can be seen that by increasing the
probability confidence the accuracy is simultaneously increased and while the
amount of data that is used is decreased. The objective here is optimizing the
trade-off between increased accuracy and decreased data size. Accuracy of 85%
was deemed to be acceptable considering the trade-off in data size decrease of
40%. This means that all predictions that have less than a 78.5% probability of
being either positive or negative are discarded.

Finally the mean squared error of the test set and the Twitter set is evaluated
as a function of training data size for the unigram-based Logistic Regression
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Figure 3.5: Accuracy and Data Discarded vs Prediction Confidence for the
unigram-based Logistic Regression classifier

classifier. The result of this evaluation can be seen in Figure 3.6. It can be seen
that even though the error is much lower for the test set than for the Twitter set
the error behaves very similarly with increased training data size. The graph
supports the earlier observations of stagnating accuracy for this model with in-
creased training data size.
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Figure 3.6: Mead Squared Error of the test- and Twitter set for the unigram-
based Logistic Regression classifier
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CHAPTER 4

Summarization Results and
Discussions

The first step in creating a sentiment summary of the most frequent opinion fea-
tures is finding the opinion features from all reviews of a product using the best
performing opinion mining techniques, redundancy pruning with rules 0, 2, 3 &
5. Then the sentiment of each review is determined using the best performing
classifier for our data, Logistic Regression with 29.958 unigram features and C
= 100 with a 78.5% prediction confidence level. Each opinion feature is labeled
with the sentiment of the review they appeared in. If the prediction confidence is
below 78.5% the review is not given a sentiment rating. Next the unique opinion
features found in the reviews are counted to find the ten most frequent opinion
features. When they have been found the positive and negative occurrences
of each opinion feature are counted. Reviews with no sentiment rating due to
low prediction confidence are ignored and as a result the opinion features that
appear in that review are also ignored. The result is an aspect-based opinion
summary of reviews of that product on social media.

Experimental results using this setup on the scraped tweet dataset described
in section 1.2.4 showed that a few irrelevant words were slipping into the top
ten features for some of the products, such as "im", "yeah" and "hello”. This is
the result of the part-of-speech tagger incorrectly tagging these words as nouns
or noun phrases because of word placement, context or inaccuracies in the tag-
ger. To solve this a list of banwords was created to keep these irrelevant words
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from being a top ten most frequent feature.

A proof of concept for the aspect-based opinion summarization system can be
seen in figure 4.1, demonstrating a summary of the ten most frequent opinion
features in reviews regarding the streaming product Chromecast. The summary
was created automatically from the data obtained with the methods described
in this thesis. The picture of the product was scraped from the first image result
of Google Images for the search query "Chromecast”. It can be seen that the
opinions regarding the top ten features are more negative than positive, with
60.3% of reviews being negative.

Not all opinion features are what might be called useful, for example the opinion
feature "way"” has little or nothing to do with the product. The report shown
in figure 4.1 was chosen as the best result from the small collection of products
summarized. Review summaries of the other products mentioned in section 1.2.4
can be seen in Appendix A. They show that the summarization system does in-
clude several words as opinion features that have little or nothing to do with the
products. It is possible that some products, such as web-browsers Firefox and
Google Chrome, are not as well suited with this kind of feature summarization
as other products that have more core features that are likely to be the topic of
conversation. Overall the opinion feature mining could be improved by making
the opinion feature mining process more complex, for example using association
rule mining, and doing a thorough analysis of prepositions.

The amount of opinion features seem low compared to the amount of reviews
collected. The result of only including reviews that were predicted with more
than 78.5% confidence reduced the number of opinion features by an average
of 53.6% per top feature. Recall that the expected decrease in number of re-
views given a 78.5% prediction confidence level was 40%. The actual number
of reviews discarded is 54.5%, a significantly higher ratio than expected. By in-
creasing the base accuracy of the classifier from the 75% it is currently achieving
for reviews from Twitter the amount of data discarded would be lower, resulting
in more opinion features for the summarization.

In order to be viable as a business solution the generation of the report would
have to focus on making clear and pleasing visualizations of the data. This prove
of concept shows that manipulating data for a visual result can be achieved with
minimal work but in order to make this tool an attractive option for businesses
to use the work on visualization would need to be improved significantly.
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[Sentiment division of opinions on Chromecast|
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Negative

Here are the most frequent features people expressed their opinion of regarding Chromecast:
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Figure 4.1: Summarization report for frequent opinion features for Chrome-

cast
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CHAPTER 5

Conclusion and Future
Work

This thesis covered the topic of aspect-based opinion summarization system for
product reviews on social media and demonstrated with a proof of concept sum-
mary report that creating an automatic system capable of scraping reviews off
social media and analyzing it to obtain valuable information regarding prod-
uct features is possible. I was able to automatically create reports for several
products using a opinion feature mining algorithm and sentiment analysis. The
quality of the reports did however differ, suggesting that some product types
might be more suited for this summary system than others.

Although the results from the summarization system are encouraging there is
room for improvement. When comparing our results to the manual feature count
of Hu and Liu[Hub], even though it is flawed to extent, the results suggested
that the accuracy in identifying opinion features in reviews could be improved.
A better estimate of the performance of our opinion feature mining algorithm
could be obtained by locating another dataset labeled for features or by manu-
ally labeling data with regards to features. Future work focusing on improving
the opinion feature mining algorithm could include the used of association rule
mining and the pruning methods used by Hu and Liu[Hub| with the addition of
analysis of prepositions.

The results from the sentiment analysis looked promising as the bigram-based
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Logistic Regression classifier achieved a 93% accuracy rate for the test set. It
did however achieve much lower accuracy on the labeled Twitter dataset, along
with all other classifiers tested (with highest accuracy achieved for the labeled
Tweets being 75%). This is likely a result of incompatibility between the train-
ing set of Amazon reviews and product reviews in the form of tweets. For the
people writing the difference in platform and text length could contribute to
the difference in text structure, with tweets assumingly more likely to include
internet slang, acronyms, incorrect spelling (intentional or not) and less formal
speech than the Amazon reviews. By including only tweets where prediction
confidence was over 78.5% the accuracy increased to 85% but resulted in signif-
icant loss of data that did not meet the prediction confidence threshold.

Future work might include using these classifiers on training data similar to
the tweets used for the summarization reports. This data could be obtained
from the web, where there are several available datasets consisting of tweets la-
beled with regards to sentiment. It must be noted though that manually labeled
Twitter sets currently available are quite small while many of the large tweet
datasets available have been labeled using emoticons as sentiment indicators,
which could influence accuracy since the text structure used by people who use
emoticons could possibly be different for those who don’t. It would also be
possible to obtain better results by using stemming and fuzzy matching to try
transform text from tweets to a more standard form.

Another way of improving the accuracy classifiers would be to re-weigh the
prior probabilities of the classifiers when training them to include all training
data available. For this thesis the training data was balanced before use, ig-
noring in the process around 60 million positive reviews. It is however possible
that re-weighing the prior possibilities of the classifiers could improve prediction
accuracy for the test set without improving the accuracy for the tweets.
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