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Summary (English)

When light travels through a participating medium, like fog or water, there are
phenomena, as absorption or scattering, which affect the propagation of the light
and give rise to interesting effects, e.g. atmospheric haze or volume caustic.
Volumetric Photon Mapping is an efficient method for rendering participating
media. However, as it is based on density estimation it suffers from the same
trade-off between noise and bias as traditional photon mapping.
By using photon differentials it is possible to improve this trade-off, but there
are still some unsolved problems regarding the use of this technique for render-
ing volumes.
The goal of this thesis is to investigate ways of improving existing algorithms
for rendering volumes by using photon differentials.
A new estimate of the radiative transfer equation based on photon differentials
will be presented, together with a description of how to implement an effi-
cient GPU technique for rendering participating media by using the NVIDIA R©
OptiXTM ray tracing engine.
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Preface

This thesis was prepared at the DTU Compute department in fulfilment of the
requirements for acquiring a M.Sc. in Digital Media Engineering.

The thesis deals with the rendering of participating media using a GPU algo-
rithm based on photon differentials. Participating media includes all the me-
dia, like fog, water, smoke and many others, which affect the light that passes
through them by scattering it or absorbing it.

The author’s interest for Computer Graphics and Physically Based Rendering
has grown during the M.Sc. in Digital Media Engineering, where he followed
courses from both the Computer Graphics and the Computer Games study lines.
Professor Jeppe Revall Frisvad of DTU Compute proposed a research-oriented
M.Sc. thesis which goal was to investigate and improve existing algorithms for
rendering volumes using photon differentials. The topic represented an excellent
opportunity to research in Physically Based Rendering techniques, and so the
author registered his application for this master thesis, Scattering of Photon
Differentials in Realistic Rendering of Volumes.

The thesis consists of a GPU software implementation done by using theNVIDIA R©
OptiXTM ray tracing engine [PBD+10], based on the NVIDIA R© CUDA R© GPU
computing architecture, and this report. The initial OptiX framework was taken
from DTU course 02756, Physically Based Rendering, and then expanded in or-
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der fit the needs of the thesis. All the screenshots in this report are generated
using software developed by the author. All the other images, unless a reference
is reported in the caption, were created by the author.

Lyngby, 05-June-2015

Andrea Luongo



Acknowledgements

I would like to thank my supervisor for this MSc project, Jeppe Revall Frisvad,
for the help and support he provided during the whole duration of this thesis.
The long meetings in his office have been very helpful in the development of this
project.

I would also like to thank the University of Padua for the opportunity to partic-
ipate in the T.I.M.E double degree program and to complete a Master Degree
abroad. Special thanks are due to professor Maria Elena Valcher, for help-
ing me with all the bureaucracy the T.I.M.E. project requires, and to professor
Pietro Zanuttigh, for accepting to be my supervisor for my MSc defense in Italy.

I would like to thank all the wonderful friends that I have met during these
two years at DTU for all the special moments spent together, my Italian friends
Sfizzuppoli and Piscini for the daily chats that have helped me not to miss
home, and especially thanks to Cippo for helping me with my English, and to
Sebastiano, "The Man Above the Math", for the mathematical help.
Special thanks to Marta for the support she gave me in my difficult times, and
for being patient with me during these two long years.
Finally I would like to thank my brother Fabio, my grandparents Lina and Luigi,
my father Sabatino, and my mother Lorena for everything they have done and
all the sacrifices they made to help me reach this goal.



vi



Contents

Summary (English) i

Preface iii

Acknowledgements v

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Noise and Bias in Photon Mapping 7
2.1 Photon Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Noise and Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Photon Differentials . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Volume Rendering 17
3.1 Light Transport in a Participating Medium . . . . . . . . . . . . 17

3.1.1 Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.3 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.4 Radiative Transfer Equation . . . . . . . . . . . . . . . . 21

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1 Volumetric Photon Mapping . . . . . . . . . . . . . . . . 22
3.2.2 The Beam Radiance Estimate . . . . . . . . . . . . . . . . 24
3.2.3 Photon Differentials . . . . . . . . . . . . . . . . . . . . . 26
3.2.4 Photon Beams . . . . . . . . . . . . . . . . . . . . . . . . 27



viii CONTENTS

4 Method 29
4.1 Photon Pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 Photon Differentials for Volumes . . . . . . . . . . . . . . 30
4.1.2 Sampling Techniques in Participating Media . . . . . . . . 32

4.2 Ray Tracing Pass . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Implementation 41
5.1 Photon Differential Splatting for Surfaces . . . . . . . . . . . . . 42
5.2 Volume Rendering of Participating Media Using Photon Differ-

entials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.1 Volume Rendering based on Eye Map . . . . . . . . . . . 49
5.2.2 Volume Rendering based on Photon Map . . . . . . . . . 55

5.3 Research and Improvement . . . . . . . . . . . . . . . . . . . . . 61

6 Results 63
6.1 Absorption and Scattering . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Isotropic Kernel vs Anisotropic Kernel . . . . . . . . . . . . . . . 68
6.3 Analysis of the Radiance Estimate . . . . . . . . . . . . . . . . . 71

7 Conclusions and Future Work 79

A Appendix A 83

Bibliography 87



Chapter 1

Introduction

The use of Computer Graphics is increased very fast in the years and it is
required in a great variety of fields, like films, video games, television but also
in medical equipment and almost every simulation software and many other
applications. This fast growth has entailed the need to develop techniques and
algorithms more and more accurate in order to get results as close as possible
to the reality.
An interesting and useful phenomenon to simulate is the behaviour of light in
the presence of a participating medium like fog or smoke. By simulating this
effect it is possible to render scenes with atmospheric haze, crepuscolar rays,
fog, smoke, water and many other effects. In Figure 1.1a and Figure 1.1b two
of these effects are shown.
When the light enters a medium it may be absorbed or scattered, and part of
the scattered light may reach the eye of the viewer and for this reason the light
is visible even when there are no surfaces to reflect it.

1.1 Background

The scattering of light in a participating medium is a complex phenomenon and
in order to render it it is necessary to solve the radiative transfer equation, RTE,
[Cha60] combined with the rendering equation [Kaj86].
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(a) Foggy environment [Fur14].

(b) Crepuscolar Rays [Lac06].

Figure 1.1: Two examples of light travelling through a participating medium.

An accurate solution to these equations is costly to compute and different tech-
niques were developed in order to overcome this problem. Some of these tech-
niques are based on stochastic sampling and Monte Carlo integration, like bidi-
rectional path tracing ([LW93], [LW96] and [VG94]) or Metropolis light trans-
port ([MP00]). These approaches are guaranteed to converge to the right solu-
tion but the convergence is slow, in particular it requires a long time to get a
noise-free result when the scene contains both participating media and specular
surfaces, situation that is very common in physicals scenes.
An approach that is not affected by these problems is Volumetric Photon Map-
ping [JC98]. This method is based on density estimation and it can robustly
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handle specular materials, it is also less affected by noise but it introduces bias
and requires more memory for the computation.
Jarosz et al. [JZJ08] propose a new gathering technique called the "beam radi-
ance estimate" to improve the efficiency of Volumetric Photon Mapping. Schjøth
[Sch09] extends the concept of photon differentials [SFES07] to include partici-
pating media. Jarosz et al. [JNSJ11] and [JNT+11] propose a method to reduce
noise and bias by using photon beams.

1.2 Problem Statement

Volume Photon Mapping [JC98] is an extension of the Photon Mapping method
[JC95] [Jen96] and it is able to render isotropic, anisotropic, homogeneous and
heterogeneous media and it also supports specular interactions with materials.
This technique makes use of density estimation and, as for Photon Mapping, it
introduces bias in order to reduce noise. It also uses ray marching in order to
gather photons at interval along the ray, and this process introduces a trade-off
problem between estimation accuracy and computation time.
The "beam radiance estimate" proposed by Jarosz et al. [JZJ08] avoid the use of
ray marching by performing a single query to gather all the data that are needed
to perform the density estimation. In order to reduce bias they also propose
to adaptively change the bandwidth of the density estimation by performing a
pilot estimate of the local density.
Photon differentials [SFES07] were introduced to improve the trade-off problem
of Photon Mapping so that with the same number of photons both the noise,
and the bias were reduced. As this technique has proved to work very well
for rendering caustics on surfaces, Schjøth [Sch09] proposes to extend it to vol-
umes in order to compute variable bandwidths for the density estimation instead
of performing the expensive pilot estimate proposed by Jarosz et al. [JZJ08].
The approach introduced by Schjøth to scatter photon differentials is based on
heuristics and it can be improved.
Jarosz et al. [JNSJ11] point out that by using a particle representation to store
light paths some of the information accumulated during photon tracing are lost.
They propose to store photon beams instead of photons in order to have a more
accurate estimate, and they also use photon differentials to adapt the shape and
the size of the photon beams.
In a later work, Jarosz et al. [JNT+11] present a progressive radiance esti-
mate based on photon beams and they also present different implementations of
the algorithm, one of which is implemented on the GPU using the NVIDIA R©
OptiXTM ray tracing engine [PBD+10].

The goals of this thesis project are to investigate and improve existing al-
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gorithms for rendering volumes using photon differentials. The implemented
method uses as starting point the beam radiance estimate [JZJ08] and the work
done by Schjøth [Sch09], but a more precise estimate of the radiative transfer
equation is developed. Furthermore, in order to improve the performance and
to provide a progressive technique that incrementally updates the results, the
algorithm has been implemented on the GPU by using the NVIDIA R© OptiXTM

ray tracing engine [PBD+10], taking inspiration from the work done by Jarosz
et al. [JNT+11].
The work presented in this thesis provides a solid starting point from which it
is possible to continue researching on photon differentials scattering.

1.3 Thesis Outline

In this chapter the topic of this thesis project has been presented, some of the
existing algorithms for rendering volume have been introduced, and a descrip-
tion of the objectives of this project has been made.
In Chapter 2, a brief description of the Photon Mapping algorithm for global
illumination and its problems will be given; it will also be presented a technique
to reduce noise and bias based on photon differentials. The goal of Chapter 2 is
to help the reader to understand what are the typical issues that the methods
based on density estimation introduce.
In Chapter 3 participating media are introduced. In the first section the phe-
nomena that affect the light travelling through a participating medium are de-
scribed, and it is shown how it is possible to derive the radiative transfer equa-
tion (RTE) which accounts for all this phenomena. In the end, a more detailed
description than the one provided in Chapter 1 of the estimate techniques for
rendering volumes that have been developed over the years will be presented.
In Chapter 4, the theory and the methods used in the implementation of this
project will be explained. It will be shown how a more accurate estimate of the
RTE than the one presented by Schjøth [Sch09] can be computed.
In Chapter 5, the details of how the algorithm has been implemented on the
GPU are provided. In the first section it is presented the first step of the imple-
mentation which is a GPU version of the photon differential splatting technique
[FSES14] for surfaces. In the second section are presented the two different
approaches that have been tried in order to implement volume rendering. In
the third and last section the estimate of the RTE found in Chapter 4 has been
implemented on the GPU.
In Chapter 6, the results are shown and it will be presented a comparison be-
tween the estimate used by Schjøth and the estimate developed in this thesis.
It will also shown how the use of photon differentials and anisotropic filtering
improves the quality of the results compared to isotropic filtering as used in the
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beam radiance estimate or in classical Volumetric Photon Mapping.
Finally, in Chapter 7 the conclusions and some possible extensions to the method
will be given.
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Chapter 2

Noise and Bias in Photon
Mapping

In this chapter a description of Photon Mapping and its problems are presented.
The goal is to show the trade-off problem between noise and bias arising from the
use of density estimation in Photon Mapping. This content will be an essential
introduction for the next chapters.
First a brief description of the Photon Mapping global illumination method for
surfaces will be presented. Then it will be presented an analysis of the noise-bias
trade-off. Finally, the chapter will be concluded with an introduction to Photon
Differentials, a technique to decrease both noise and bias.

2.1 Photon Mapping

The simulation of global illumination in a general environment requires solving
the rendering equation or light transport equation, LTE, introduced by Kajiya
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[Kaj86], for each point of the scene:

Lo(p, ~ωo) = Le(p, ~ωo) +

∫
4π

f(p, ~ωo, ~ωi)Li(p, ~ωi)| cos θi|d~ωi

= Le(p, ~ωo) + Lr(p, ~ωo).

(2.1)

This equation describes the exitant radiance Lo(p, ~ωo) in direction ~ωo from a
point p on a surface in terms of the emitted radiance Le(p, ~ωo), the bidirectional
scattering distribution function (BSDF) f(p, ~ωo, ~ωi), and the incident radiance
Li(p, ~ωi) coming from all the possible directions ~ωi.
There is a problem related to equation (2.1): it does not admit a general solu-
tion and, since the complexity of a scene making use of physically based BSDF
models and arbitrary geometry is very high, the only feasible approach is to use
a numerical solution technique.
One way to proceed is by making use of stochastic sampling and Monte Carlo
integration (e.g. path tracing). This approach guarantees a convergence to the
exact solution to (2.1), but it has several drawbacks. First of all, it is time-
consuming and it is affected by noise. Second, it can be used to simulate both
specular and diffuse materials, but it has problems when it comes to render light
paths of the type LS+DE1, Figure 2.1.

E

S

S

D

L

L = Light source
S = Specular reflection
D = Diffuse reflection
E = Eye

Figure 2.1: Example of LS+DE light path.

This kind of path gives rise to caustics and they are very challenging to render
1Light Transport notation [Hec90]. In this case it denotes a light path starting from a

light source and going through one or more specular reflections or refractions before reaching
a diffuse surface and then the eye.
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with path tracing, and the results are usually affected by high frequency noise
because the light often follows a low-probability path.

Figure 2.2: Caustic generated by a glass of water [Ott06].

Photon Mapping was presented by [JC95] and [Jen96] as a method capable of
simulating global illumination without any restrictions, i.e. it supports all kind
of objects and materials and it can simulate caustics and indirect illumination
efficiently. The Photon Mapping algorithm is divided in two passes: photon
maps creation and final rendering.

• Photon Maps creation: In the first pass packets of energy, called pho-
tons, are emitted from the light sources and they are traced through the
scene using a method similar to path tracing.
Two different data structures are created, a caustic photon map and a
global photon map, and every time a photon hits a diffuse surface it is
stored in the appropriate photon map: if it hits one or more specular
surfaces before reaching a diffuse surface, then the photon and its infor-
mation are stored in the caustic photon map otherwise they are stored in
the global photon map. These two maps represent how the light is dis-
tributed in the scene; the accuracy of this representation depends on the
number of photons that are emitted from the light sources and from the
sizes of the photon maps.
The data structure behind a photon map is a multidimensional search
tree, kd-tree [Ben75], and this is a good choice since many range searches
are required in the next step and they are proved to be very efficient with
a kd-tree.

• Rendering: In the second pass Monte Carlo ray tracing is used. Rays are
traced from the eye through each pixel and, if they hit a point on a surface,
the exitant radiance, Lo(p, ~ωo), from that point has to be computed using
(2.1). While the emitted radiance, Le(p, ~ωo), can be computed directly
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from the surface definition, the reflected radiance, Lr(p, ~ωo), needs some
more computation.
The reflected radiance can be splitted in four different contributions: the
radiance coming directly from the light sources, the radiance coming from
specular surfaces, the radiance coming from multiple diffuse reflections
and the radiance coming from LS+DE paths (caustic). The first two
contributions can be easily computed, while the estimate of the last two
requires the informations stored in the photon maps.
An estimate of the radiance Lr(p, ~ωo) leaving a point p along a direction
~ωo can be done by searching in the photon maps the N photons closest
to p and since each photon j represents flux, ∆Φj , arriving at p from a
direction ~ωi and, by keeping in mind the definition of radiance L = d2Φ

dAd~ω ,
Lr(p, ~ωo) is given by:

Lr(p, ~ωo) =

∫
4π

f(p, ~ωo, ~ωi)
d2Φi(p, ~ωi)

dAd~ωi
d~ωi

≈
N∑
j=1

f(p, ~ωo, ~ωi,j)
∆Φj(p, ~ωi,j)

πr2
,

(2.2)

where r represents the radius of the smallest sphere centred at p and
enclosing all the N photons, this estimate is also known as k’th nearest
neighbour kernel estimate. The radius r will be denoted as bandwidth of
the estimate.
An alternative approach proposed by Jensen [Jen96] is to choose a fixed
value for the bandwidth r and then use all the photons inside the sphere
of radius r.

2.2 Noise and Bias

In the first pass of Photon Mapping, photons are stochastically sampled and
traced from the light sources through the scene. This sampling process intro-
duces noise that in principle could be removed by increasing the number of
photons stored in the photon maps, but unfortunately this will require a lot of
memory and computation time.
Thanks to the density estimate in equation (2.2), the noise can be reduced. Un-
fortunately, that introduces some systematic error, bias, that most of the time
is visible as a blurring of the illumination.
For example, if N is large and the density of photons is low, then the final
result will be blurry because the value of ∆A = r2π will be large. In situations
where the illumination changes slowly from one point to another (e.g. diffuse
surfaces and indirect illumination) the blurriness is not a big problem, but when
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the change is quick (e.g. caustics and shadows) and the illumination features
should be sharp, the blurriness becomes a real problem and many details could
be lost. On the other hand if the value of N is small more details are preserved
but the overall result is noisier.

(a) Photon Mapping with bandwidth
r = 0.5.

(b) Photon Mapping with bandwidth
r = 5.

Figure 2.3: The two images are rendered with the same number of photons
but different bandwidths.

In Figure 2.3 two renderings of the same scene are shown: a gold ring generates
a cardioid caustic with light coming from a directional light source. The images
contain a total of 106 photons and a constant bandwidth approach is used. In
Figure 2.3a it is visible how, in this scene, a bandwidth r = 0.5 is not large
enough to remove the noise but it provides a caustic with sharp edges, while the
bandwidth r = 5 in Figure 2.3b is too large and the density estimate removes
part of the noise, but it introduces blurring.

Different techniques have been proposed to reduce bias. It is possible to in-
troduce a filter to weigh the different samples in relation with their distance
from the point p, and (2.2) can be reformulate as:

Lr(p, ~ωo) =
1

r2

N∑
j=1

f(p, ~ωo, ~ωi,j)∆Φj(p, ~ωi,j)K

(
||p− xj||

r

)
, (2.3)

where xj represents the position of photon j and K(y) is a symmetric and nor-
malized function known as kernel function. For example Jensen [Jen96] uses a
cone filter K(y) = max(0, 1− |y|) 3

2π .
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Jensen [JC95] proposes a method called differential checking that makes sure
that the photons used in the estimate do not belong to distinct illumination
features. Myszkowski [Mys97] proposes a method similar to the differential
checking of [JC95], but more robust and easier to control, while Schregle [Sch03]
improve the performance of [Mys97]. A technique to reduce bias by using statis-
tics is presented by Walter [Wal98].
An interesting approach is the one proposed by Schjøth [SFES07] based on
photon differentials and it will be shown in the next section.

2.3 Photon Differentials

The idea behind photon differentials is to exploit the coherence of one photon
with its neighbours: when a photon is traced, its neighbours will tend to follow
almost exactly the same path and this can be simulated by tracing an imaginary
bundle of particles along with the photon. In this way a photon is not seen
anymore as a single particle, but as a beam of light that changes shape according
to its interactions along the path. This beam of light is represented by using
ray differentials, as proposed by Igehy [Ige99].
When a photon is emitted, a position x(u, v) on the light source and a direction
~ω(θ, φ) are sampled2. The ray representing the photon is given by

r(u, v, θ, φ, t) = x(u, v) + t ~ω(θ, φ). (2.4)

The beam of light containing the photon and its neighbours can be approximated
by considering the first order derivatives of x(u, v) and ~ω(θ, φ) and by building
two pairs of differential vectors:

Dx = 〈∂x
∂u
,
∂x

∂v
〉, (2.5)

D~ω = 〈∂~ω
∂θ
,
∂~ω

∂φ
〉, (2.6)

where (2.5) are called positional differential vectors and (2.6) directional differ-
ential vectors.
The differential vectors are traced through the scene along with the photon (Fig-
ure 2.4) and, at every intersection with a surface they are updated as in [Ige99].
The projections of the positional differential vectors onto a surface tangent to
the intersected object define a parallelogram called ray footprint, Figure 2.5.
Schjøth [SFES07] and Frisvad [FSES14] define as photon footprint the ellipse
with the maximum area inscribed in the ray footprint: the semi-axes corre-
spond to 1

2Dx and the center is the photon position x.
2u and v are a parametrization of the light source surface and θ and φ are a parametrization

of the emission solid angle.
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x
∂ux

∂vx

x'

∂ux'

∂vx'

ω

∂φω

∂θω

Figure 2.4: Propagation of photon differentials from x to x′.

∂ux

∂vx

x

ray footprint

∂ux

∂vx x

photon footprint

Figure 2.5: Ray footprint and photon footprint.

The area of the photon footprint is given by:

A =
π

4

∣∣∣∣∂x∂u × ∂x

∂v

∣∣∣∣ . (2.7)

The radiance estimate at a point p becomes:

Lr(p, ~ωo) ≈
k∑
j=1

f(p, ~ωo, ~ωi,j)
∆Φj
Aj

K (|Mj(p− xj)|) , (2.8)

where k represents the number of photons with footprints overlapping the point
p, xj is the position of the j-th photon and ∆Φj is its flux, Aj is the footprint
area of the photon, K(y) is a normalized and symmetric kernel function and Mj

is a 3×3 matrix that performs a change of basis from world space to filter space,
where the elliptical footprint becomes a circle with radius one, like in Figure 2.6.
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The basis vectors are the positional differential vectors and the surface normal
nj:

Mj =
[

1
2
∂xj

∂u
1
2
∂xj

∂v nj

]−1

. (2.9)

x ∂ux

∂vx

x
∂ux

∂vx

M

World Space Filter Space

Figure 2.6: Change of basis by using the matrix M.

By using photon differentials, the bandwidth of the radiance estimate is not
constant, but it is defined for each photon and it corresponds to the size of the
photon footprint.

(a) Classical photon mapping. (b) Photon differentials.

Figure 2.7: Classical Photon Mapping vs Photon Mapping with photon dif-
ferentials.

In Figure 2.7 the same scene is rendered once with classical photon mapping
and once with photon differentials, in both cases 5 ·105 photons were used. The
caustic in Figure 2.7a is affected by noise while the one obtained by using pho-
ton differentials, Figure 2.7b, is almost noise-free and the edges of the caustic
are sharp and not blurred as in Figure 2.3b. Photon differentials reduced both
noise and bias without increasing the number of photons stored in the photon
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maps.
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Chapter 3

Volume Rendering

The previous chapter provided a description of a global illumination algorithm
based on Photon Mapping on the assumption that the light travels through
a vacuum, i.e. the radiance changes only when there is an interaction with a
surface. This assumption might hold when the light travels through the air;
whereas, if another medium is taken into account there are physical processes
that affect the propagation of the light and the radiance can not be considered
constant anymore. These kinds of media are referred as participating media.
The goal of this chapter is to provide a description of how the radiance is affected
by participating media and how they can be rendered. First, an introduction of
the physical processes that affect the light propagation inside a medium is given.
Then, it will be described how Photon Mapping could be extended in order to
include participating media and it will be presented an overview of some of the
rendering techniques for participating media that have been developed over the
years.

3.1 Light Transport in a Participating Medium

When a beam of light enters a medium, there might be interactions between the
photons of the light and the particles of the medium. These interactions can be



18 Volume Rendering

of three types: emission, absorption or scattering.
If the properties of these phenomena are constant throughout the volume of the
medium, then the medium is called homogeneous, otherwise, if the properties
change from point to point, the medium is called heterogeneous.

3.1.1 Emission

The process by which a particle moves from a higher energy state to a lower
energy state by emitting a photon and visible light, is called emission [ConTCa].
The energy released could come from a chemical, thermal or nuclear process.
An example of light emission is provided in Figure 3.2. When a ray travels

Li(p,ω) Lo(p,ω)

Figure 3.1: The incoming radiance Li(p, ~ω) is increased by an emission pro-
cess.

through a medium, the emission process increases the radiance along the ray.
This change in radiance is given by the differential equation

dL(p, ~ω) = Lo(p, ~ω)− Li(p, ~ω) = Le(p, ~ω)dt, (3.1)

where dt represents the differential ray length and Le(p, ~ω) is the emitted radi-
ance per unit of distance at a point p in direction ~ω.
Equation (3.1) means that the emitted radiance increases linearly with the dis-
tance within the medium, so if the ray travels for a distance t through the
medium, the contribution coming from emitted light is t · Le(p, ~ω).

3.1.2 Absorption

Absorption is the phenomenon by which the energy of a photon travelling
through a material is taken up by an atom of the material and converted into
internal energy, e.g. thermal energy, [ConTCb].
This process is described by the absorption coefficient σa, that represents the
fraction by which the incoming radiance is reduced per unit of length. This quan-
tity may change with both position and direction, but is usually just a function
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Figure 3.2: Red and green auroras, Norway [Ols11]. Auroras are the result of
the emission of photons in the upper atmosphere.

Li(p,ω) Lo(p,ω)

Figure 3.3: The incoming radiance Li(p, ~ω) is reduced by an absorption pro-
cess.

of the position; the units of measurement are reciprocal distance (m−1). If the
medium is homogeneous, the absorption coefficient is constant.
The differential equation describing the change in radiance along the differential
ray length dt is

dL(p, ~ω) = Lo(p, ~ω)− Li(p, ~ω) = −σa(p, ~ω)Li(p, ~ω)dt. (3.2)

3.1.3 Scattering

When a beam of light passes through a medium along a direction ~ω, it may
collide with particles and be deflected along another direction. This process is
called scattering and has two effects on the radiance carried by a beam: out-
scattering and in-scattering.
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3.1.3.1 Out-Scattering

Since some of the photons are scattered away from the ray direction ~ω, the
exitant radiance Lo(p, ~ω) is reduced.

Li(p,ω) Lo(p,ω)

Figure 3.4: A fraction of the incoming radiance is scattered along other direc-
tions.

As in the absorption case, a parameter called scattering coefficient, σs, represents
the fraction of radiance that is reduced per unit of length due to out-scattering.
This phenomenon is described by

dL(p, ~ω) = Lo(p, ~ω)− Li(p, ~ω) = −σs(p, ~ω)Li(p, ~ω)dt. (3.3)

Absorption and out-scattering can be combined in one effect called extinction
or attenuation, that represents the total reduction in radiance. The extinction
coefficient, σt, is given by the sum of σa and σs

σt(p, ~ω) = σa(p, ~ω) + σs(p, ~ω), (3.4)

and the overall radiance attenuation is

dL(p, ~ω) = Lo(p, ~ω)− Li(p, ~ω) = −σt(p, ~ω)Li(p, ~ω)dt. (3.5)

The attenuation, the scattering and the absorption coefficients are usually isotropic
and they can be written as σt(p), σs(p) and σa(p).

3.1.3.2 In-Scattering

A fraction of the radiance carried by a ray is lost due to out-scattering, on
the other hand, photons scattered from other directions may reach the ray and
provide a contribution to the radiance. In order to find the in-scattering contri-
bution, the scattered radiance coming from all the possible directions needs to
be taken into account:

dL(p, ~ω) = Lo(p, ~ω)− Li(p, ~ω) = σs(p, ~ω)

∫
4π

p(p, ~ω′ → ~ω)Li(p, ~ω
′)d~ω′dt,

(3.6)
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Li(p,ω) Lo(p,ω)

Figure 3.5: Radiance is scattered in the direction of the ray.

where p(p, ~ω′ → ~ω) is called phase function and defines the probability of
scattering in a certain direction. If the radiance scatters equally in all direc-
tions, the phase function is said isotropic and it assumes the constant value
p(p, ~ω′ → ~ω) = 1

4π .
The contributions coming from emission and in-scattering can be combined into
a function called source term, S:

S(p, ~ω) = Le(p, ~ω) + σs(p, ~ω)

∫
4π

p(p, ~ω′ → ~ω)Li(p, ~ω
′)d~ω′, (3.7)

and then, the total added radiance along the differential length dt is

dL(p, ~ω) = Lo(p, ~ω)− Li(p, ~ω) = S(p, ~ω)dt. (3.8)

3.1.4 Radiative Transfer Equation

The radiative transfer equation (RTE) was presented by Chandrasekhar [Cha60]
and describes the behaviour of light in a medium by accounting for emission,
scattering and absorption.
An integro-differential form of the equation can be derived by combining equa-
tions (3.5) and (3.8):

∂L(p, ~ω)

∂t
= −σt(p, ~ω)Li(p, ~ω) + S(p, ~ω). (3.9)

By integrating (3.9) along a path of length s from p0 to p = p0 + s ~ω, the
integral form of RTE becomes:

L(p, ~ω) = Tr(p0,p)L(p0, ~ω)

+

∫ s

0

Tr(pt,p)Le(pt, ~ω)dt

+

∫ s

0

Tr(pt,p)σs(pt, ~ω)

∫
4π

p(pt, ~ω
′ → ~ω)Li(pt, ~ω

′)d~ω′dt,

(3.10)
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where pt = p0 + t ~ω are points along the path and Tr(p,p′) is the transmittance
along the segment from p to p′ = p + k ~ω:

Tr(p,p
′) = e−

∫ k
0
σt(p+t ~ω,~ω)dt, (3.11)

where k is the distance between p and p′. If the medium is homogeneous, then
σt(p, ~ω) = σt, and the transmittance can be simplified:

Tr(p,p
′) = e−σt||p−p′||. (3.12)

As in the light transport equation (2.1), RTE does not admit a general solution
and typically a solution could be found only by numerical integration.

3.2 Related Work

Path tracing [PM93] is one approach to solve the radiative transfer equation,
but, as shown in Chapter 2, it has several drawbacks, e.g. slow convergence and
noisy results. Photon Mapping is extended into Volumetric Photon Mapping by
Jensen and Christensen [JC98] to include participating media. Many researchers
have worked on how to improve Volumetric Photon Mapping and some of these
works will be presented.

3.2.1 Volumetric Photon Mapping

Jensen and Christensen [JC98] propose a method to solve the RTE (3.10) based
on Photon Mapping.
The idea behind Volumetric Photon Mapping is to introduce a new photon map,
called volume photon map, and use it to store photons directly in the volume.
Since a photon map is based on a three-dimensional kd-tree, the photons can
be stored without changing the underlying algorithms and data structures.
In the photon pass the photons are traced from the light sources and if they
do not hit a participating medium, the algorithm remains the one presented in
Chapter 2. Otherwise, if a photon hits a medium it can either pass through
the medium unaffected or can be scattered or absorbed. The probability that
a photon interacts with the medium is described by the cumulative probability
density function F (x):

F (x) = 1− Tr(x0,x) = 1− e−
∫ ||x0−x||
0 σt(x0+t ~ω,~ω)dt, (3.13)
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where x0 is the point where the photon enters the medium.
If the photon interacts with the medium, it is stored in the volume photon
map and then Russian Roulette is used to decide whether the interaction is an
absorption event, with probability σa

σt
, or a scattering event, with probability

σs

σt
. The quantity σs

σt
is called the scattering albedo.

When a photon is scattered, a new direction is sampled according to the phase
function.
The in-scattered radiance at a point p, Ls(p, ~ω), can be estimated by using the
information stored in the volume photon map, but a new definition of radiance
has to be found. The estimate presented in Chapter 2 was based on the definition
of radiance for surfaces:

L =
d2Φ

cosθdAdω
, (3.14)

where θ is the angle between the surface normal and the direction ω. When a
photon is inside a volume there is no surface normal, and the definition (3.14)
cannot be used. Instead of using cosθdA, the total scattering cross section σsdV
can be used and the definition of radiance for volumes becomes

L =
d2Φ

σsdV d~ω
, (3.15)

and an estimate of the in-scattered radiance at a point p is given by

Ls(p, ~ω) =

∫
4π

p(p, ~ω′ → ~ω)Li(p, ~ω
′)d~ω′

=

∫
4π

p(p, ~ω′ → ~ω)
d2Φ(p, ~ω′)

σs(p)dV d~ω′
d~ω′

≈ 1

σs(p)

N∑
j=1

p(p, ~ωj
′ → ~ω)

∆Φ(p, ~ωj
′)

4
3πr

3
,

(3.16)

where r represents the radius of the smallest sphere centred at p and containing
the N closest photons.
The estimate (3.16) is used in the second pass of Volumetric Photon Mapping.
When a ray enters a medium, a ray marching algorithm is used to integrate
numerically the RTE. Some positions along the ray are sampled and at each
point the in-scattered radiance is estimated as in (3.16). By assuming that the
emitted radiance in the medium is zero, Le(p, ~ω) = 0, and that ps is the point
on the closest surface reached by the ray, the radiance arriving at a point p
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psp p1p2

p3 L(ps,ω)r2 r1

r3

L(p,ω)

medium surface

Figure 3.6: The RTE estimate using ray marching.

along the ray can be computed as

L(p, ~ω) = Tr(p,ps)L(ps, ~ω)

+

∫ d

0

Tr(p,pt)σs(pt)Ls(pt, ~ω)dt

≈ Tr(p,ps)L(ps, ~ω)

+

S∑
i=1

Tr(p,pi)

 N∑
j=1

p(pi, ~ωj
′ → ~ω)

∆Φi(pi, ~ωj
′)

4
3πr

3
i

∆i,

(3.17)

where d = ||p − ps||, S is the number of sampled points along the ray, the
step-size ∆i is the distance from pi−1 to pi, and ri is the radius of the smallest
sphere centred at pi containing the N closest photons.
In Figure 3.6 an example is shown: the red dots represent the photons stored
inside the photon map, the number of points sampled along the ray is S = 3
and the number of photons used in the in-scattered radiance estimate is N = 3.
The radiance reaching the eye is the sum of the radiance leaving the surface at
ps and the in-scattered radiance at p1, p2 and p3.

3.2.2 The Beam Radiance Estimate

Volumetric Photon Mapping suffers from the same trade-off between noise and
bias presented in Chapter 2. In addition, the ray-marching technique introduces
another trade-off between accuracy and computation time: if the step-size is too
large, photons might be omitted and, consequently, the result may be noisy; on
the other hand, if the step-size is too small, the computation time increases and
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it might happen that the same photon is counted more than once because two
spheres overlap, like in Figure (3.6).
In both cases the estimate is not accurate, so Jarosz et al. [JZJ08] propose a
new estimate, called the beam radiance estimate, that eliminates the need for
marching through the medium to find photons. The idea is to gather all the
photons along the ray in a single query and to use a two-dimensional kernel to
blur the radiance estimate (while in the estimate (3.17) the blur is spherical and
the kernel is three-dimensional).

psp

L(ps,ω)L(p,ω)

medium surface

Figure 3.7: The RTE estimate using the beam radiance estimate.

In order to achieve this goal, a kernel bandwidth is associated with each photon
and all the photons overlapping the ray are used in the estimate. Jarosz et al.
[JZJ08] discuss two approaches to find a kernel bandwidth for each photon: the
first approach is to use a constant bandwidth, the second approach is to use a
pilot estimate to adapt the kernel width to the local density of photons.
In Figure 3.7 the photons and their bandwidth are represented: the red dots
represent the photon positions, the dotted circles are the bandwidths of the
photons that are not contributing to the estimate, while the full colored circles
are the bandwidths of the photons overlapping the ray.
xi denoting the position of the i-th photon, hi its bandwidth, and pi the point
on the ray that is closest to xi, the RTE can be written as

L(p, ~ω) ≈ Tr(p,ps)L(ps, ~ω)

+

N∑
i=1

1

h2
i

K

(
||pi − xi||

hi

)
Tr(p,pi)p(pi, ~ωi

′ → ~ω)∆Φi(pi, ~ωi
′),

(3.18)

where N is the number of photons whose bandwidth overlaps the ray and K(y)
is the kernel function normalized for two dimensions.
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3.2.3 Photon Differentials

Schjøth [Sch09] uses the same approach as Jarosz et al. [JZJ08] to query the
photons along the ray, but, instead of using an expensive pilot estimate to
find the bandwidth of each photon, he uses photon differentials to define an
anisotropic three-dimensional kernel for each photon. Similarly to Chapter 2,
where the footprint of a photon differential was an ellipse, in the case of photon
differential for participating media the footprint is in the shape of a three-
dimensional ellipsoid. How to compute photon differentials inside a participating
medium is described in Chapter 4.

ys

Δt

h

{

Figure 3.8: The contribution given by a photon to a ray depends on the length
of the overlapped segment, ∆t.

Furthermore, Schjøth proposes to compute the exact contribution of a photon
based on the length of the overlap of the photon footprint with the ray. The
estimate of the RTE that he proposes is given by

L(p, ~ω) ≈ Tr(p,ps)L(ps, ~ω)

+

N∑
i=1

1

h3
i

Tr(p,pi)p(pi, ~ωi
′ → ~ω)∆Φi(pi, ~ωi

′)wi,
(3.19)

where N is the number of photons overlapping the ray, hi is the bandwidth of
the i-th photon, pi is the point on the ray with the shortest distance to the i-th
photon and wi is the integrated kernel weight over the length ∆t of the overlap:

wi =

∫
∆t

K

(
y(t)

hi

)
dt, (3.20)

where K(y) is a normalized and symmetric three-dimensional kernel, y(t) =√
t2 + y2

s is the distance from the kernel centre to the line segment that describes
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the overlap, and ys is the shortest distance between the centre of the kernel and
the line segment.

3.2.4 Photon Beams

Jarosz et al. [JNSJ11] introduce a new rendering technique for participating
media based on photon beams. While the rendering techniques presented until
now store a photon and its information only when a scattering event happens,
the photon beams technique stores the informations regarding the full path cov-
ered by a photon.

hb
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xb'eye ray
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Figure 3.9: Photon beam intersecting an eye ray.

The radiance estimate that they propose is

L(p, ~ω) ≈ Tr(p,ps)L(ps, ~ω)

+

B∑
b=1

σs(pb)

hb

p(pb, ~ωb → ~ω)

sin( ~ωb · ~ω)
∆Φb(pb, ~ωb)Tr(p,pb)Tr(xb,x

′
b)K

(
||xb − pb||

hb

)
,

(3.21)

where B is the number of photon beams intersecting the eye ray, hb is the width
of the b-th photon beam, pb is the point on the eye ray that is closest to the
b-th photon beam, xb is the origin of the photon beam and x′b is the point
on the photon beam that is closest to the eye ray, K(y) is a one-dimensional
normalized kernel function.
Jarosz et al. [JNT+11] extend this approach by introducing progressive photon
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beams. They also propose a GPU implementation of the algorithm based on
OptiX GPU ray tracing API [PBD+10].



Chapter 4

Method

In Chapter 3 some of the rendering techniques for participating media that have
been developed over the years were presented. By keeping as starting point the
work done by Schjøth [Sch09], in this chapter it is described how a more accurate
estimate of RTE can be derived by using photon differentials and anisotropic
kernels.
The method is divided in two steps as for classical photon mapping: a photon
pass and a ray tracing pass. The algorithm is implemented in a GPU environ-
ment by using the OptiX ray tracing Engine [PBD+10], and the details will be
shown in Chapter 5. In the first section of this chapter, the theory that lies
behind the photon pass is described, in particular it is explained how photon
differentials propagate inside a participating medium, and it is also shown how
to trace photons by combining Monte Carlo integration and Russian Roulette.
In the second and last section it is presented a new radiance estimate based on
photon differentials that works both for isotropic and anisotropic kernels.

4.1 Photon Pass

In this section it is first described how to extend the concept of photon differen-
tials from surfaces to volumes, and then are presented the sampling techniques



30 Method

that are used in the photon pass and an estimate for the flux, ∆Φ associated
with each photon.

4.1.1 Photon Differentials for Volumes

In Chapter 2 it was introduced the concept of photon differentials for surfaces,
and it was shown how they define a photon footprint in the shape of an ellipse,
that can be used to perform a more accurate estimate of the light transport
equation.
The details of how to transfer, reflect and refract the photon differentials were
not presented, and they can be found in Igehy [Ige99]. Instead, it is useful to
describe shortly how an initial value for the positional and directional differential
vectors can be found, as proposed by Frisvad et al. [FSES14].
By denoting with x(u, v) the position of a photon on the light source, with
~ω(θ, φ) its direction, and with ~n the surface normal at x, the starting directions
of the differential vectors are computed as

∂ux

|∂ux|
=

∂θ~ω

|∂θ~ω|
=

~n× ~ω
|~n× ~ω|

, (4.1)

∂vx

|∂vx|
=

∂ux

|∂ux|
× ~n, ∂φ~ω

|∂φ~ω|
=

∂θ~ω

|∂θ~ω|
× ~ω. (4.2)

The sum of all the photon footprint areas must be equal to s2Als, where s is a
smoothing parameter, and Als is the area of the light source. By analogy, the
sum of all the photons solid angles should be equal to s2ωls, where ωls is the
solid angle covered by the light source. If the number of photons emitted from
the light source is Ne, then the initial lengths of the positional and directional
differential vectors are computed as

|∂ux| = |∂vx| = 2s

√
Als
πNe

, (4.3)

|∂θ~ω| = |∂φ~ω| = 2s

√
ωls
πNe

. (4.4)

For a point light the value of Als is zero, while for a directional light ωls = 0.
The parameter s is used to scale the size of the photon footprint in order to
obtain smoother results at the cost of introducing blurring.

Whenever a photon intersects a surface, the surface normal plays an important
role in the computation of the new differential vectors and in the computation
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of the matrix M, that performs a change of basis from world space to filter
space. When participating media are introduced in the scene, the photons are
stored inside the medium whenever a scattering event happens, and there is no
normal surface that can be used to compute the new differential vectors, so the
definition of photon differentials for volumes needs to be expanded.

As proposed by Schjøth [Sch09], a new positional differential vector, Dwx, is
introduced:

Dx = 〈∂x
∂u
,
∂x

∂v
,
∂x

∂w
〉 = 〈Dux, Dvx, Dwx〉, (4.5)

where Dux and Dvx are the vectors presented in Chapter 2 and they are re-
flected, refracted and transferred in the same way as before. The third vector
is stored and computed only when a photon is inside a participating medium,
and it replaces the role of the surface normal.
Schjøth gives to Dwx the same direction of the photon at scattering time, and
the length is equal to the length of Dux or Dvx, whichever is the longest.

Dux

Dvx

Dwx

x
MW,F

Dux Dwx

Dvx

World Space Filter Space

Figure 4.1: The skewed ellipsoid that represents the kernel volume is trans-
formed into a unit sphere by a change of basis.

The kernel defined by Dux, Dvx, and Dwx has the shape of a skewed ellipsoid,
whose centre is x and the axes are the positional differential vectors. The volume
of the ellipsoid is

V =
π

6
|(Dux×Dvx) ·Dwx| , (4.6)

while the matrix MW,F that performs the change of basis from world space to
filter space, and transforms the skewed ellipsoid into a unit sphere, is

MW,F =
[

1
2Dux

1
2Dvx

1
2Dwx

]−1
. (4.7)

When a photon enters a participating medium, three different events can hap-
pen: the photon exits the medium, the photon is scattered or the photon is
absorbed.
If the photon is scattered, a new direction ~ω′ is sampled according to the phase
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function, and a new pair of directional differential vectors has to be computed.
What Schjøth does is to find the quaternion [ConTCc], q, that represents the
rotation from the old direction ~ω to the new direction ~ω′, and to use this quater-
nion to rotate the differential vectors Dx and D~ω to the new direction.
The quaternion, q, is given by

q =

(
1√

2(1 + ~ω · ~ω′)
(~ω × ~ω′),

√
2(1 + ~ω · ~ω′)

2

)
. (4.8)

In the method proposed in this thesis, only the directional differential vectors
D~ω are rotated and the positional differential vectors remain unchanged. The
reason behind this choice is that at every interaction with a surface, the dif-
ferential vectors are transferred onto the surface and then only the directional
vectors are modified according to the new direction taken by the photon. It
makes sense to apply the same strategy also for volumes, so after transferring
a photon differentials to a scattering location, the positional vectors will not be
rotated.

4.1.2 Sampling Techniques in Participating Media

Every time a photon is traced through a participating medium, there are several
events that require a sampling technique. For example, when and where a
scattering event is going to happen? Is the photon absorbed or scattered?
Which direction will the photon take?
In this section an answer to these questions is provided, and it will also shown
how the flux carried by a photon is affected by the sampling techniques.

4.1.2.1 Spectrum Sampling

When absorption and scattering were described in Chapter 3, the absorption
coefficient σa and the scattering coefficient σs were presented as function of
both the position and direction, but this is not accurate. There is also a third
variable that affects these coefficients, and it is the wavelength of the light.
Since the rendered scene follows the RGB color model, a value of σa and σs is
needed for each color channel: red, green, and blue. So, instead of having only
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one function to describe absorption and scattering, three functions are needed:

σa(p, ~ω) =
[
σa,R(p, ~ω) σa,G(p, ~ω) σa,B(p, ~ω)

]
, (4.9)

σs(p, ~ω) =
[
σs,R(p, ~ω) σs,G(p, ~ω) σs,B(p, ~ω)

]
, (4.10)

σt(p, ~ω) =
[
σt,R(p, ~ω) σt,G(p, ~ω) σt,B(p, ~ω)

]
. (4.11)

Having three different functions for each coefficient introduces some difficulties:
the cumulative probability density function (3.13), that describes the interac-
tion of a photon with the medium, depends on σt, but since there are three
different functions describing σt, which one of them should be used? And the
same problem applies also to the computation of the transmittance Tr.

The approach that is used in this work to eliminate this problem, is based on
Russian Roulette: every time a photon enters a medium one of the three chan-
nels (red, green, and blue) is chosen according to a probability density function,
and then only the correspondent wavelength is traced through the scene.
For example, if a uniform distribution is used, the extinction coefficient can be
written as

σt =


σt,R, if ξ < 1

3

σt,G, if 1
3 6 ξ < 2

3

σt,B , if ξ > 2
3

, (4.12)

where ξ ∈ ]0, 1] is a uniform random variable.
Since also the flux ∆Φ associated with a photon is an RGB value, then it needs to
be adjusted. The two wavelengths associated with the discarded color channels
are set to zero, while the remaining one is divided by the probability of choosing
that wavelength. For example, if for a photon the blue channel is selected, then
its flux becomes

∆Φ = (∆ΦR, ∆ΦG, ∆ΦB) → ∆Φ =

(
0, 0,

∆ΦB
pdf(λB)

)
. (4.13)

If the distribution is uniform then pdf(λ) = 1
3 .

For simplicity, from now on the participating medium is assumed to be homo-
geneous and isotropic, so that σt(p, ~ω) = σt, and analogously for σs and σa.

4.1.2.2 Scattering Events

Whenever a photon enters a medium it is important to know if it exits the
medium or if there is an interaction.
Siegel et al. [SH02] present an estimate of the distance a photon moves before
interacting with the medium based on Monte Carlo integration:

s = − ln(ξ)

σt
(4.14)
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where ξ ∈ ]0, 1] is a uniform random variable and pdf(s) = σtTr(s) = σte
−σts.

If the distance s is lower than the length of the medium, or lower than the
distance from the photon origin to the closest surface, then a scattering event
has to be sampled. As for the wavelength, also in this case Russian Roulette is
used, and the probability for a photon to be scattered is given by the scattering
albedo σs

σt
, while the probability to be absorbed is σa

σt
.

In case of absorption, the photon stops being traced and its flux is set to zero,
otherwise in case of scattering, the photon flux is updated and divided by the
scattering albedo:

∆Φ = ∆Φ′
σt
σs
, (4.15)

where ∆Φ′ is the flux associated with the photon before the scattering event.
If the photon is scattered, a new direction is chosen using importance sampling
based on the phase function.

4.1.2.3 Flux Estimate

By combining all the sampling techniques presented so far, an estimate of the
flux ∆Φ that is associated with a photon, can be done. By denoting with ∆Φ′

the flux of a photon before being scattered and with ∆Φ the flux after the
scattering event:

∆Φ =

∫ s

0

σsTr(t)

∫
4π

p(xt, ~ω
′ → ~ω)∆Φ′d~ω′dt, (4.16)

by using Monte Carlo integration on the internal integral, the estimate becomes:

∆Φ =

∫ s

0

σsTr(t)
1

M

M∑
j=1

p(xt, ~ωj
′ → ~ω)

pdf( ~ωj
′)

∆Φ′dt, (4.17)

since only one direction, ~ωp is sampled for each scattering event, then M = 1.
Monte Carlo integration can be used also on the remaining integral:

∆Φ =
1

N

N∑
i=1

σsTr(si)

pdf(si)

p(xsi , ~ωp → ~ω)

pdf( ~ωp)
∆Φ′. (4.18)
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Only one scattering event is sampled according to relation (4.14), and then
N = 1. The estimate (4.18) becomes:

∆Φ =
σsTr(s)

σtTr(s)

p(xs, ~ωp → ~ω)

pdf( ~ωp)
∆Φ′

=
σs
σt

p(xs, ~ωp → ~ω)

pdf( ~ωp)
∆Φ′.

(4.19)

Since Russian Roulette is used to select a scattering event (4.15), the flux ∆Φ′

has to be divided by the scattering albedo:

∆Φ =
σs
σt

p(xs, ~ωp → ~ω)

pdf( ~ωp)
∆Φ′

σt
σs

=
p(xs, ~ωp → ~ω)

pdf( ~ωp)
∆Φ′.

(4.20)

An additional simplification could be made if the phase function was isotropic,
i.e. the photons are scattered equally in all directions. The only possible
isotropic phase function is p(x, ~ω′ → ~ω) = 1

4π and pdf(~ω′) = 1
4π . Under this

condition, equation (4.20) can be written as:

∆Φ = ∆Φ′. (4.21)

In the end, whenever a photon enters a participating medium and all the sam-
pling techniques described above are used, the only modifications to the flux
are done by the spectrum sampling and by importance sampling of the phase
function (unless it is an isotropic function).

4.2 Ray Tracing Pass

The goal of the Ray Tracing Pass is to trace rays from the eye and to use
these rays to estimate the incoming radiance L(p, ~ω), according to the radiative
transfer equation (3.10).
The RTE estimate proposed by Schjøth and presented in Chapter 3 is:

L(p, ~ω) ≈ Tr(p,ps)L(ps, ~ω)

+

N∑
i=1

1

h3
i

Tr(p,pi)p(pi, ~ωi
′ → ~ω)∆Φi(pi, ~ωi

′)

∫
∆ti

K

(
yi(t)

hi

)
dt,

(4.22)

where ∆ti is the the length of the segment that represents the overlap of the
eye ray with the kernel of the photon i-th, and yi(t) is the distance from the i-th
photon to a point on the segment.



36 Method

Since the kernel function is not the only function that depends on the variable t,
but also the value of the transmittance changes along the segment, this estimate
is not completely accurate.
By starting from the RTE, a more precise estimate can be computed:

L(p, ~ω) = Tr(p,ps)L(ps, ~ω)

+

∫ d

0

Tr(p,pt)σs(pt)

∫
4π

p(p, ~ω′ → ~ω)
d2Φ(pt, ~ω

′)

σs(pt)dV d~ω′
d~ω′dt

≈ Tr(p,ps)L(ps, ~ω)

+

∫ d

0

Tr(p,pt)σs(pt)

N∑
i=1

p(p, ~ω′i → ~ω)
∆Φi
σs(pt)

1

h3
i

K

(
||xi − pt||

hi

)
dt

≈ Tr(p,ps)L(ps, ~ω)

+

N∑
i=1

p(p, ~ω′i → ~ω)∆Φi

∫ d

0

e−σtt
1

h3
i

K

(
||xi − pt||

hi

)
dt,

(4.23)

where N is the number of photons which the kernel overlaps the eye ray, xi is
the position of the i-th photon and hi its bandwidth, d is the distance travelled
by the eye ray through the participating medium, and K(y) is a three dimen-
sional normalized and isotropic kernel.
In this thesis the kernel function that is used is the three-dimensional Epanech-
nikov kernel:

K(y) =

{
5
2 (1− y2) 1

4
3π

if |y| < 1,

0 otherwise.
(4.24)

Since the kernel function is zero if |y| > 1, equation (4.23) can be rewritten as

L(p, ~ω) ≈ Tr(p,ps)L(ps, ~ω)

+

N∑
i=1

p(p, ~ω′i → ~ω)
∆Φi
Vi

5

2

∫ t2,i

t1,i

e−σtt

(
1−

(
||xi − pt||

hi

)2
)
dt,

(4.25)

where Vi = 4
3πh

3
i is the volume of the i-th photon kernel, and t1,i and t2,i are

respectively the distances from the ray origin to the points where the ray enters
and exits the photon kernel, as in Figure 4.2.
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xi

t1,i

t2,i

hi ω{ {
Figure 4.2: The eye ray intersects the photon kernel centred at xi, at distances

t1,i and t2,i from the eye origin. The red segment is the part of
the ray that receives a contribution from the photon xi.

The integral in (4.25) can be solved1 and the estimate becomes

L(p, ~ω) ≈ Tr(p,ps)L(ps, ~ω)

+

N∑
i=1

p(p, ~ω′i → ~ω)
∆Φi
Vi

5

2

1

h2
iσ

2
t

·
[
(t2,i − t1,i)

(
e−σtt2,i + e−σtt1,i

)
− 2

σt

(
e−σtt1,i − e−σtt2,i

)]
.

(4.26)

The estimate (4.26) is accurate under the assumption that the kernel is isotropic,
i.e. the volume of the kernel is a sphere and the bandwidth hi does not change
with the direction ~ω. Since the shape of a photon differential footprint is a
skewed ellipsoid and not a sphere, equation (4.25) needs to be adjusted.
For an anisotropic kernel, the bandwidth is not constant and can be written
as a function hi(~ωi,t), with ~ωi,t representing the normalized direction from the
kernel centre xi to a point pt:

~ωi,t =
pt − xi
||pt − xi||

. (4.27)

Since the matrix MW,F (4.7) describes a linear transformation, and since in
filter space the photon differential footprint is a unit sphere, an expression for
hi(~ωi,t) can be derived as

||hi(~ωi,t)MW,Fi · ~ωi,t|| = 1 ⇒ hi(~ωi,t) =
1

||MW,Fi · ~ωi,t||
. (4.28)

1The proof is provided in Appendix A.
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xi
t1,i

t2,i

hi(ω) ω{ {
Figure 4.3: The eye ray intersects the anisotropic photon kernel centred at xi,

at distances t1,i and t2,i from the eye origin. The red segment is
the part of the ray that receives a contribution from the photon
xi.

By using the anisotropic kernel described by a photon differential footprint, the
estimate (4.23) of the RTE becomes:

L(p, ~ω) ≈ Tr(p,ps)L(ps, ~ω)

+

N∑
i=1

p(p, ~ω′i → ~ω)
∆Φi
Vell,i

5

2

∫ t2,i

t1,i

e−σtt

(
1−

(
||xi − pt||
hi(~ωi,t)

)2
)
dt

≈ Tr(p,ps)L(ps, ~ω)

+

N∑
i=1

p(p, ~ω′i → ~ω)
∆Φi
Vell,i

5

2

∫ t2,i

t1,i

e−σtt
(
1− ||MW,Fi(xi − pt)||2

)
dt,

(4.29)

where Vell,i is the volume of the skewed ellipsoid centred at xi, as described by
the equation (4.6).
Similarly to equation (4.26), an exact solution to the integral in (4.29) can be
found:

L(p, ~ω) ≈ Tr(p,ps)L(ps, ~ω)

+

N∑
i=1

p(p, ~ω′i → ~ω)
∆Φi
Vell,i

5

2

||MW,Fi · ~ω||
2

σ2
t

·
[
(t2,i − t1,i)

(
e−σtt2,i + e−σtt1,i

)
− 2

σt

(
e−σtt1,i − e−σtt2,i

)]
.

(4.30)

Equation (4.30) gives a solution to the RTE that is based on photon differentials.
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The combination of the photon pass and the ray tracing pass allows to get
an accurate representation of a participating medium. Some of the details re-
garding the implementation on the GPU will be presented in the next chapter.
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Chapter 5

Implementation

As already said in the previous chapters, the goal of this thesis was to imple-
ment an efficient algorithm for rendering participating media based on photon
differentials that could run on the GPU.
The NVIDIA R© OptiXTM ray tracing engine [PBD+10] is a programmable ray
tracing framework, that can be used to increase the speed of ray tracing appli-
cations on NVIDIA R© GPUs using the NVIDIA R© CUDA R© GPU computing
architecture. OptiX is a very powerful tool that can be used not only for Com-
puter Graphics rendering, but also for other applications where ray tracing is
useful to simulate physical phenomena, e.g. optical and acoustic design, radia-
tion and electromagnetic research, collision analysis.
All the heavy computation in the implementation is handled by the GPU, while
the CPU is used to initialize the OptiX programs, to load the scene geometry,
and to create several buffers used as input and output by the GPU programs.

In order to reach the final goal, the implementation was divided into three
steps:

• 1st step: the first step was to lay the foundations for progressive pho-
ton mapping and photon differentials for surfaces. The photon differential
splatting technique presented by Frisvad et al. [FSES14] was used as ref-
erence. In order to be able to propagate photon differentials, an interface
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supporting both the basic operations between the differential vectors (sum,
multiplication by a scalar, dot product, and so on), and the operations de-
scribed in [Ige99] (transfer, reflection, and refraction) was implemented.

• 2nd step: the second step was to introduce participating media and
volume rendering by using photon differentials. Two different approaches
have been tried: in the first attempt, the radiance estimate was based
on a ray-marching technique and the data were stored in a kd-tree, but
it revealed to be inefficient; the second try was based on the radiance
estimate proposed by Schjøth [Sch09] and it was used a more efficient way
of storing photons on the GPU.

• 3rd step: the last goal was to research, and if possible to improve the
existing algorithms that make use of photon differentials to render par-
ticipating media. One improvement of the method proposed by Schjøth
[Sch09] has already been made by implementing the algorithm on the
GPU, another improvement is the new radiance estimate, equation (4.30),
presented in Chapter 4. Unfortunately the time available for the project
was not enough to do further research, in Chapter 7 some possible exten-
sions and improvements will be presented.

In the next sections, a description of how the different steps have been imple-
mented is given.

5.1 Photon Differential Splatting for Surfaces

The first step of the project was to implement an algorithm that could render
surface caustics by using photon differentials. The technique based on photon
differential splatting proposed by Frisvad et al. [FSES14] has been used as ref-
erence.
In classical photon mapping, the photons are first stored in a kd-tree, and then,
during the ray tracing pass, for each eye path vertex the neighbouring photons
are gathered. Instead, in photon differential splatting the ray tracing pass is
done first and the eye path vertices are stored in a kd-tree, and then, during the
photon pass, each photon distributes its contribution to the eye path vertices
covered by the elliptic photon footprint. The final result is the same, but this
second approach does not need to store photons and their differentials in a map,
and this allows to progressively trace photons without rebuilding a photon map
at each pass.

Three different OptiX/CUDA kernels have been implemented in this step: the
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first kernel takes care of the ray tracing pass, the second kernel traces photon
differentials and splats them, the last kernel combines the results of the previous
passes.
The code behind the implementation of photon differential splatting can be
divided in five different parts, as illustrated in Figure 5.1:

GPUCPU CPU GPU GPU

Setup Ray Tracing
Pass

Eye-Map
Creation

Photon 
Pass

Final 
Rendering

Progressive
Update

Figure 5.1: CPU and GPU stages of the "Photon Differential Splatting for
Surfaces" implementation.

1. Setup (CPU): the first part consists only in the initialization of the Op-
tiX programs, of the input and output buffer used to pass data between
CPU and GPU, and of the scene.
As already said, three different Ray Generation Programs (CUDA kernels)
are defined: the first one is used for the ray tracing pass, the second one
for the photon pass, and the third one to compute the final color in each
pixel. Three different type or rays are supported: rtpass rays, ppass rays,
and shadow rays. A Miss Program and an Exception Program are also
defined, and they handles the rays that do not hit any object, and the
exceptions.
The size of the ray tracing program and the image resolution are defined
by the variables WIDTH and HEIGHT, while the size of the photon pass
is defined by PHOTON_WIDTH and PHOTON_HEIGHT. In order to
increase the accuracy of the ray tracing pass, it is also possible to set the
number of eye rays traced through each pixel by controlling the variable
pixel_subdivision (it is set to 1 by default).
Buffers are used to store results and to exchange data between the CPU
and the GPU, the most important of them are: the Output Buffer is used
to visualize the final rendered result, the Rtpass-Output Buffer is used to
store the eye vertices and their information after the ray tracing pass, the
Eye-Map Buffer is used as input for the photon pass and contains the kd-
tree with the eye vertices, the Pixel Buffer is used to store the contribution
coming from direct illumination and from caustic for each pixel, and the
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Image-Random-Seeds Buffer and the Photon-Random-Seeds Buffer con-
tain random numbers that are used to sample points and directions in the
two passes of the photon differential splatting algorithm.
The scene includes a light source, and some objects, e.g. .obj models and
objects defined inside OptiX. The lights that are supported are: point
light, area light, directional light, and spot light ; while the materials and
the shaders for the objects are: diffuse, mirror, and transparent.

2. Ray Tracing Pass (GPU): the first Ray Generation Program that is
executed on the GPU is the one corresponding to the Ray Tracing Pass.
For each pixel, a number of rtpass rays are traced: the origin of each ray is
the eye position, and the direction is defined by a normalized vector that
goes from the eye to a point inside the pixel.
If the ray closest intersection, hit point, is on a diffuse surface, then the
direct contribution from the light source is computed, and a shadow ray
is traced towards the light to check for visibility. The position of the hit
point, the normal to the surface, the value of the BSDF, and the index of
the pixel to which the ray is associated with are stored into the Rtpass-
Output Buffer, while the value of the direct illumination is stored into the
Pixel Buffer.
If the hit point is on a specular surface, then a new direction is chosen
according to the BSDF associated with the surface material, and a new
ray is traced in that direction starting from hit point.
If a ray does not hit any object, the Miss Program is called and a color,
that could be a default value or a value sampled from an environment
map, is stored into the Pixel Buffer.

3. Eye Map Creation (CPU): after the Ray Tracing Pass, the CPU uses
the data stored inside the Rtpass-Output Buffer to create a kd-tree con-
taining the eye path vertices. The information regarding the kd-tree are
stored into the Eye-Map Buffer and provided as input to the Photon Pass.

4. Photon Pass (GPU): For each photon p, a position and a direction are
sampled according to the type of light source. The photon differentials
are computed as described in Section 4.1.1, and each photon carries an
amount of flux:

∆Φp =
Φls
Ne

, (5.1)

where Φls is the flux of the light source, andNe = PHOTON_WIDTH×
PHOTON_HEIGHT . Each photon is represented by a ppass ray.
If a photon hits a specular surface, the photon differentials are first trans-
ferred onto the surface, and then a new direction for the photon is sampled:
if the surface is associated with a mirror shader, then the photon direction
and the photon differentials are reflected, otherwise, if the surface has a
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L = Light source
S = Specular surface
D = Diffuse surface
E = Eye
M = Ray Miss
     = Eye Path Vertex
      = Rtpass Ray
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E

Figure 5.2: Example of Ray Tracing Pass. The red dots represent the points
that are stored into the Rtpass-Output Buffer. The shadow rays
are traced to check if the light source is visible.

transparent shader, Russian Roulette is used to choose if the photon and
its differential vectors should be reflected or refracted.
If a photon hits a diffuse surface after being reflected or refracted, then
the photon is first transferred and then splatted. The kd-tree is used to
find all the eye path vertices that are inside the elliptical photon footprint:
a range-restricted nearest-neighbour search is performed, and the range of
the search is the major radius of the photon footprint

rmax =
1

2
max (||Duxp||, ||Dvxp||) . (5.2)

Equation (2.8) can be rewritten to compute the contribution of a single
photon:

Lr(pi, ~ωo) ≈ f(pi, ~ωo, ~ωi,p)
∆Φp
Ap

K (||Mp(pi − xp)||) , (5.3)

where pi is the position of the i-th eye vertex that receives a contribution
from the photon xp. The result of (5.3) is evaluated for each eye vertex,
and the results are stored into the Pixel Buffer in the position correspond-
ing to the pixel index stored with each eye vertex.
The kernel function K(y) that is used is the Silvermann’s second-order
kernel:

K(y) =

{
3
π (1− y2)2 for y < 1

0 otherwise
. (5.4)
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Figure 5.3: Example of Photon Pass. A photon and its differential vectors are
traced through the scene. When a diffuse surface is hit, all the eye
vertices inside the photon footprint are found.

The range-restricted search might return eye path vertices that are not
inside the elliptical photon footprint, but since for these vertices ||Mp(pi−
xp)|| > 1, the contribution that they receive is null.
Differently from the previous steps that are executed only once, the Photon
Pass is executed at every frame. This means that new photons are traced
and new splattings are done to improve the accuracy of the result. The
final result is computed in the next step.

5. Final Rendering (GPU): For each pixel, the Pixel Buffer stores the
contribution coming from direct illumination (Ray Tracing Pass) and the
contribution coming from the photons (Photon Pass). Since the Photon
Pass is executed at every frame, the photon contribution from one frame
needs to be combined with the contribution from the previous frames. The
sum of direct illumination and photon contribution is then stored into the
Output Buffer.
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Algorithm 1 Progressive update of the photon contribution.
a← 1
b← 0
if frame_number > 1 then

a← 1/frame_number
b← (frame_number − 1) ∗ a

end if
photon_contribution← b ∗ old_contribution+ a ∗ new_contribution
old_contribution← photon_contribution
output_buffer ← direct_illumination+ photon_contribution

Two different results are shown in Figure 5.4 and Figure 5.5. The result in
Figure 5.4 shows the cardioid caustic generated by a golden ring illuminated by
a directional light. The caustic edges are very sharp, and photon differentials
help to remove noise and bias.

Figure 5.4: Cardioid caustic on a golden ring.

The result in Figure 5.5 shows a Cornell Box illuminated by a point light. In
the scene are present a diffuse block, and a sphere made of glass that projects
a caustic on the floor of the Cornell Box.
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Figure 5.5: Glass sphere and diffuse block inside a Cornell Box.

5.2 Volume Rendering of Participating Media Us-
ing Photon Differentials

The second task of the project was to extend photon differentials from surfaces
to volumes. Two different methods have been tried: the first one is based on
the idea of eye-map that has been presented in the previous section; the second
one is based on photon map, this means that the Photon Pass precedes the Ray
Tracing Pass. The second approach revealed to be more efficient on the GPU.

Regardless of the method chosen, the first thing to do was to define an interface
to know whether or not a ray is travelling through a participating medium. In
order to do this, a new material, fog material, has been implemented; and each
ray is associated with an index indicating the medium in which the ray is trav-
elling.
In Figure 5.6 is shown an example: the ray starts outside the medium and the
index representative of air is associated with it; then the ray hits an object with
the fog material and, since the ray is entering the object, the index is changed
to fog ; the second time the ray hits the object with the fog material, the index
is changed to air, as the ray is exiting the medium.
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air fog air

Fog Material

hit point 1 hit point 2

Figure 5.6: When a ray hits an object with the fog material, the medium
index associated with the ray changes depending on wheter the
ray enters or leaves the object.

5.2.1 Volume Rendering based on Eye Map

The first attempt to implement volume rendering was inspired by the method de-
scribed in Section 5.1 and by Volumetric Photon Mapping: during the Ray Trac-
ing pass, eye vertices are sampled along the rays travelling through a medium
by using a ray marching technique, and then they are used to create a kd-tree;
during the Photon Pass, every time a photon is scattered, all the eye vertices
inside the photon footprint are retrieved from the kd-tree and used to estimate
the RTE.
As a ray marching technique is used, this method is very similar to Volumetric
Photon Mapping; the main differences are that the bandwidth of the radiance
estimate is defined by the photon differential footprint, and the photons are not
stored into a photon map but they are traced progressively without building a
photon map every frame.
The implementation of this method was thought as a first step towards a more
efficient implementation of volume rendering based on the beam radiance esti-
mate, but the passage from points to beams were not trivial with this algorithm.
For this reason the method was dropped and a new one, based on a more effec-
tive use of the resources offered by OptiX, has been implemented. Nevertheless,
it is useful to give a brief description of this first method implementation.

The code follows the same structure of Section 5.1:

1. Setup (CPU): the only difference in the Setup step is the addition of
two buffers and a variable. The RtPass-Output Volume Buffer is used to
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store the eye path vertices that are inside a participating medium, and the
data contained into it are used to create a kd-tree that will be passed as
input to the Photon Pass. The kd-tree is stored into the Eye-Map Volume
Buffer.
The variable number_of_samples defines how many points should be sam-
pled and stored into the RtPass-Output Volume Buffer for each ray.

2. Ray Tracing Pass (GPU): if a ray does not travel through a medium,
the Ray Tracing Pass is the same as described in Section 5.1.
Whenever a ray hits an object with the fog material, the medium index
of the ray is changed from air to fog or from fog to air based on whether
the ray is entering or leaving the participating medium. If the ray is
entering the medium, a new ray is simply traced from the intersection
point between the incoming ray and the object with the fog material, and
the new direction is the same as the one of the incoming ray.
If the ray is exiting the medium or hits a surface while it is still inside the
medium, eye path vertices are sampled along the ray. A random offset,
computed as in equation (4.14)

s = − ln(ξ)

σt
,

is checked against the distance, d, between the ray origin and the hit point.

{
{ {{

d1

d2

s1
s2

Figure 5.7: The value of the offset s is used to define the starting point of the
sampling process. The red points represent the eye path vertices
that are stored into the eye map.

If the value of s is lower than the distance d, then d is divided into num-
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ber_of_samples intervals of length

∆d =
d− s

number_of_samples
,

and all the points pi

pi = O + (s+ i ·∆d)~ω, for i = 0, ..., number_of_samples− 1

where O is the origin of the ray and ~ω its direction, are stored into the
RtPass-Output Volume Buffer along with the index of the pixel associated
with the ray.
Otherwise if the value of s is greater than d, then the length ∆d of the
intervals is:

∆d =
d

number_of_samples+ 1
,

and the points pi that are stored are

pi = O + (i ·∆d)~ω, for i = 1, ..., number_of_samples.

An example of ray marching is shown in Figure 5.7.
The reason why the random offset s is used is to reduce part of the bias,
that a fixed number of samples introduces.
After the eye path vertices have been stored, if the ray was exiting the
medium, then a new ray is traced starting from the hit point and with a
direction equals to the previous direction of the ray; otherwise if the ray
hit an object, the material of the object defines the behaviour of the ray,
as described in Section 5.1.

3. Eye Map Creation (CPU): after the Ray Tracing Pass, the CPU takes
care of creating two kd-trees based on the content of the Rtpass-Output
Buffer, and of the Rtpass-Output Volume Buffer. The first kd-tree, stored
into the Eye-Map Buffer, contains the eye path vertices that are located
on surfaces, while the second one, stored into the Eye-Map Volume Buffer,
contains the eye path vertices that are inside a volume.

4. Photon Pass (GPU): The photon and its differential vectors are initial-
ized as in Section 5.1.
If a photon hits a surface without entering a participating medium, then
the same steps of section 5.1 are followed.
Every time a photon p enters a medium, one of its color channel is sam-
pled, as described in Section 4.1.2.1, and the index representative of the
medium is changed from air to fog.
When a photon is inside a medium and it hits an object or it is exiting
the medium, an offset s is sampled as in (4.14) and it is compared with
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the distance d between the photon origin and the hit point.
If s is greater than d, then the photon hits the object and the hit material
defines what happen to the photon as in Section 5.1.
If s is lower than d, there is a scattering event and Russian Roulette is used
to choose between absorption and scattering: if the result is absorption,
the photon is removed from the tracing process; otherwise if the result is
scattering, the photon differential vectors are transferred to the scattering
position, the photon is splatted, and then traced towards the direction
defined by the scattering event.

}  lnξ1 -        σt}
  lnξ2 -        σt

L = Light source
     = Eye Path Vertex 
         inside the photon 
         footprint
     = Eye Path Vertex 
         returned by the 
         range search but 
         outside the photon 
         footprint
      = Absorption

     

L

Figure 5.8: A photon is scattered inside a medium, and a range-restricted
nearest-neighbour search is performed to find all the eye vertices
inside the photon footprint. When the photon is absorbed, it is
removed from the Photon Pass.

A range-restricted nearest-neighbour search inside the Eye-Map Volume
Buffer is performed in order to look for all the eye path vertices that are
inside the photon footprint, as shown in Figure 5.8. The photon footprint
is an ellipsoid and it is described by the three positional differential vectors
Dux, Dvx, and Dwx, as described in Section 4.1.1.
As the length of the differential vector Dwx is the longest, the range of
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the kd-tree search is:
rmax =

1

2
||Dwxp||. (5.5)

The radiance contribution given by a photon p, at position xp, to the i-th
path vertex, at position pi, is similar to the estimate (3.17) and can be
written as

L(pi, ~ω) = Tr(pO,pi)p(pi, ~ωp
′ → ~ω)

∆Φp
Vell,p

K
(
||MW,Fp(pi − xp)||

)
∆di,

(5.6)

where pO is the origin of the ray which the i-th path vertex belongs to,
∆di is the length of the interval used to sample the i-th path vertex, Vell,p
is the volume of the photon footprint, and K(y) is the Epanechnikov three
dimensional kernel function1:

K(y) =

{
5
2 (1− y2) if |y| < 1,

0 otherwise.
(5.7)

5. Final Rendering (GPU): the final rendering step progressively com-
bines the direct illumination coming from the Ray Tracing Pass and the
photon contribution coming from the Photon Pass, as described in Section
5.1.

This approach has several downsides, but, as already said, it was thought only
as a starting point on which to build a more accurate algorithm.
The biggest issue is due to the use of ray marching: as explained in Chapter 3,
the number of points sampled on a ray introduces a trade-off problem between
noise and performance. Since the eye vertices are stored into a kd-tree, and the
Ray Tracing Pass is executed only once, if only few points are sampled with
ray marching then the result will be very noisy, and even if a very high number
of photons are traced, the noise will not be completely removed. On the other
hand, if too many eye vertices are stored into the volume eye-map, the creation
of the kd-tree and the Photon Pass will require more time to be performed,
and the radiance estimate will still be inaccurate for the reasons explained in
Chapter 3.
In Figure 5.9 it is shown a result obtained with this method: the scene contains a
Cornell Box and a glass ball, and both are placed inside a participating medium;
ten eye vertices are sampled for each ray by using ray marching, and it is possible
to see how with only few vertices per ray most of the photons are missed (in
particular inside the volume caustic and close to the point light).
One possible way to remove part of the noise would be to run a Ray Tracing Pass

1This version of the Epanechnikov kernel function is not normalized, as the estimate (5.6)
is already divided by the volume of the footprint.
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Figure 5.9: Cornell Box and a glass sphere inside a participating medium,
with ten eye path vertices sampled for each ray. Ray marching
introduces noise that is very visible inside the volume caustic and
close to the point light.

at each frame, in this way the eye path vertices used in the radiance estimate
will be different at every pass. Unfortunately the construction of the kd-tree
containing the volume eye-map is expensive, and if executed every frame it will
considerably reduce the performance.
The best solution would be to remove ray marching and to introduce an estimate
based on the full path of the eye ray and not only on some sampled points, e.g.
the beam radiance estimate or the method proposed by Schjøth. In order to
do this, the eye ray should be stored into the volume eye-map during the Ray
Tracing Pass, and whenever a photon is splatted, all the beams passing through
the photon footprint should be retrieved from the kd-tree. Unfortunately the
computational cost of building a kd-tree at each frame would not be removed,
and switching from a kd-tree containing points to one that contains lines would
not be straightforward.
As the use of an eye-map turned out to be inefficient for rendering volumes, this
method has been discarded and a new one, based on photon maps, has been
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implemented.

5.2.2 Volume Rendering based on Photon Map

The method just described was based on the same structure of the Photon Dif-
ferential Splatting for surfaces: during the Ray Tracing Pass all the eye path
vertices were found and stored into a buffer, then the kd-tree was built on the
CPU, and a progressive Photon Pass was performed. The amount of eye vertices
stored into the kd-tree introduced a trade-off between noise and performance
that could not be easily removed by using an eye-map.
The new approach described in this section is based on photon map, i.e. the
Photon Pass is executed first and a photon map is created, and then during
the Ray Tracing Pass all the photons with footprint overlapping the eye ray are
found and their contribution is computed by using the estimate (3.19) proposed
by Schjøth [Sch09].

The choice of using a kd-tree as data structure works well if the range search is
performed to search points, but if lines representing eye rays need to be found,
then a kd-tree is not the best choice. Moreover, the kd-tree has to be built on
the CPU after that the Photon Pass has been completed, and if the amount of
data to be stored is large, then it might be too expensive to create a photon
map at every frame. For these reasons, a new way of storing the photon map,
based on a better exploit of OptiX, is used.
The idea is to store the photons as geometry during the Photon Pass, and to
gather all the photons with footprint overlapping the eye ray by simply inter-
secting the ray with the photon geometry.
The implementation of the method can be divided into three main parts, as
illustrated in Figure 5.10:

1. Setup (CPU): in this approach only two Ray Generation programs are
used, one for tracing photons, and one for tracing eye rays. A new type of
ray called splatting ray is introduced compared to the previous implemen-
tations, and it is used to intersect all the photons that are placed along a
rtpass ray.
The Output Buffer, the Photon-Random-Seeds Buffer, and the Image-
Random-Seeds Buffer are still used in this implementation. The Photon
Geometry Buffer is a new buffer, and it contains information regarding
the geometry of each photon, i.e. the position and the maximum radius of
the footprint, the shape of the footprint (disk, ellipsoid, or sphere), and a
directional component (the normal surface if the photon is on a surface, or
the direction of the photon at scattering time if the photon is inside a vol-
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Figure 5.10: CPU and GPU stages of the "Volume Rendering based on Photon
Map" implementation.

ume). The Photon Data Buffer is the second new buffer introduced in this
implementation, and it is connected with the Photon Geometry Buffer; it
contains information useful to compute the radiance contribution of each
photon: the carried flux ∆Φ, the differential vectors Dux, Dvx, Dwx, the
matrix MW,F, and the size of the photon footprint.
The sizes of the Photon Geometry Buffer and of the Photon Data Buffer
are equal to the size of the Photon Pass Ray Generation program, PHO-
TON_WIDTH × PHOTON_HEIGHT, in this way each photon is asso-
ciated to a position within the buffers.
Each element of the Photon Geometry Buffer is associated with a Bound-
ing Box, an Intersection Program, and an Any Hit Program that are called
every time the photon is intersected by a splatting ray.
The information stored inside the buffers are used to create an OptiX
Geometry Group representing the photon map, and an acceleration struc-
ture is used to improve the performance: a TRBVH (Treelet Reordering
Bounding Volume Hierarchy) builder is used to build the photon map, and
a BVH (Bounding Volume Hierarchy) is used to traverse it2. The use of
a TRBVH builder allows to have a very fast build of the Geometry Group
so that the photon map can be updated and rebuilt after every Photon
Pass without any performance issue. While the use of a BVH to traverse
the photon map allows to quickly find the photons intersected by a ray.
The Geometry Group storing the photon map is separated from the Geom-
etry Group containing the scene, and it is affected only by splatting rays,
this means that the other ray types do not intersect the photon geometry.

2More information regarding the mode of operation of OptiX can be found in the OptiX
Documentation [CorTC].
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2. Photon Pass (GPU): each time a photon p is initialized during the
Photon Pass, the information stored in the corresponding positions of the
Photon Geometry Buffer and Photon Data Buffer are all reset to a default
value. The flux, the values of the photon differentials, the position on the
light source and the starting direction are computed as in Section 5.1.
If a photon enters a participating medium, Spectrum Sampling is used to
choose one of the color channel carried by the photon.
Whenever a photon is inside a medium and intersects an object, an offset
s is computed as in equation (4.14) and compared with the distance d
between the photon origin and the hit point. If s is lower than d, then a
scattering event has to be sampled by using Russian Roulette, otherwise
the path of the photon continues unaltered.

D

L = Light source
D = Diffuse surface
     = Scattering
      = Absorption
      = Surface normal

     

L

n

n

Figure 5.11: Example of photon geometry creation using ellipsoids and disks.
The photons are stored as ellipsoids whenever an absorption is
sampled, or as disk (the yellow shape) whenever a diffuse surface
is hit.

In case of scattering, the photon differential vectors are transferred to the
scattering position, a new direction is sampled, the directional differential
vectors are rotated towards the new direction, as described in Chapter 4,
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and the photon is traced towards the new direction.
In case of absorption, the photon differential vectors are transferred to
the scattering position, and then the photon is stored into the photon
map: the scattering position xp, the length of the positional differential
vector Dwxp, the direction of the photon ~ωp before the absorption, and a
flag representing the shape of the photon footprint (a sphere if an isotropic
kernel is used, or an ellipsoid if an anisotropic kernel is used) are stored into
the Photon Geometry Buffer, while the value of the positional differential
vectors, the matrix of change of basis from world space to filter space, the
flux carried by the photon, and the volume of the photon footprint are
stored into the Photon Data Buffer.
Since only one element of the Photon Geometry Buffer is available for each
photon, the fact of using the absorption to define which event should be
saved into the photon map helps to reduce the bias that will be introduced
by storing always the same scattering event, e.g. always the first one or
always the second one.
If the photon hits a surface, then the material of the surface defines the
behaviour of the photon. If the material is specular, the photon is reflected
or refracted and its photon differential vectors are updated accordingly,
otherwise if the material is diffuse, the photon is stored into the photon
map: the hit point xp, the length of the longest positional differential
vector, the normal ~n of the surface at position xp, and a flag representing
the disk shape are stored into the Photon Geometry Buffer, while the
value of the positional differential vectors, the matrix of change of basis
from world space to filter space, the flux carried by the photon, and the
area of the photon footprint are stored into the Photon Data Buffer. The
reason why a disk is used to define the shape of a photon footprint on a
surface instead of an ellipse is that it is easier to intersect a ray with a
disk than with an ellipse, and anyway all the points that are inside the
disk but outside the ellipse will give a null contribution to the radiance
estimate 5.3. In Figure 5.11 an example of this process is shown.
When the Photon Pass is completed, the Geometry Group containing the
photon map is mark as dirty, in this way the acceleration structure is
rebuilt and updated before the next Ray Generation Program is launched.

3. Ray Tracing Pass (GPU): the mode of operation of the Ray Tracing
Pass is quite simple. Whenever a rtpass ray enters a medium, a new rt-
pass ray is traced in the same direction of the incoming ray, and the index
representing the medium is changed from air to fog.
If a ray hits a surface or is exiting a medium, then a splatting ray is traced
from the origin of the rtpass ray to the hit point (a tmax value is used to
set the length of the splatting ray). The splatting ray intersects all the
photons, with footprint overlapping the rtpass ray, that are located inside
the volume of the medium or onto the hit surface. This process is shown
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in Figure 5.12.

rtpass_ray2

rtpass_ray1 

splatting_ray2

splatting_ray1 

Figure 5.12: When a rtpass ray hits a surface or it is exiting a medium, a
splatting ray is traced to find all the photons that are placed
along the ray path. The rtpass rays do not intersect the photons,
while the splatting rays do not intersect the scene geometry. The
intersection points are shown as black dots.

When a splatting ray intersects the Bounding Box of a photon, the Inter-
section Program of the photon is called and it is associated with an unique
index that is used to access the Photon Geometry Buffer, and the Photon
Data Buffer.
If the shape of the photon is a disk, then the information stored into the
Photon Geometry Buffer are used to define the centre, the radius, and the
normal vector of the disk, and a simple ray-disk intersection is performed.
If the shape of the photon is a sphere, then the photon position and the
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maximum radius of the photon footprint are used to define the centre and
the radius of the sphere, and a ray-sphere intersection is computed.
If the shape is an ellipsoid, the matrix MW,F is used to pass from world
space to filter space, in this way the ellipsoid becomes a unit sphere and
a ray-sphere intersection can be performed; the result of the ray-sphere
intersection is then multiplied by the inverse matrix MF,W in order to
obtain the intersection points in world space.
If the Intersection Program finds an intersection, then the Any Hit Pro-
gram associated with the splatting ray is called, and the index of the
intersected photon, and the intersection points are passed as parameter.
The goal of the Any Hit Program is to compute the radiance contribution
given by the intersected photon to the eye ray.
If the intersected photon is a disk, then the estimate (5.3) is computed.
If the intersected photon is a sphere or an ellipsoid, then the contribution
given by the photon p to the i-th splatting ray, is computed as proposed
by Schjøth [Sch09]:

L(pi, ~ωi) ≈
1

h3
p

Tr(pi,pp)p(pp, ~ωp
′ → ~ωi)∆Φpwp, (5.8)

where pi and ~ωi are the origin and the direction of the splatting ray,
pp is the point on the splatting ray with the shortest distance from the
photon position xp, wp is the integrated kernel weight described in equa-
tion (3.20). The kernel function that is used is the normalized three-
dimensional Epanechnikov kernel (4.24), and the value of wp depends on
the shape of the photon footprint. If the photon footprint is a sphere, the
kernel function is isotropic and the estimate (5.8) becomes

L(pi, ~ωi) ≈ Tr(pi,pp)p(pp, ~ωp
′ → ~ωi)

∆Φp
Vp

10

3h2
p

√
(h2
p − ||pp − xp||2)3,

(5.9)

where Vp is the volume of the photon footprint. If the shape of the foot-
print is an ellipsoid, the estimate is

L(pi, ~ωi) ≈ Tr(pi,pp)p(pp, ~ωp
′ → ~ωi)

∆Φp
Vp

· 10

3||MW,F · ~ωi||
(
1− ||MW,F · (pp − xp)||2

) 3
2 .

(5.10)

As the Any Hit Program is executed for all the photons intersected by the
splatting ray, the exact contribution of equation (3.19) is computed.
After that the splatting ray has been traced, the Ray Tracing Pass resumed
from where it was interrupted, and the material of the object that was hit
by the rtpass ray defines if a new rtpass ray should be traced or if direct
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illumination should be computed.
The Ray Tracing Pass takes also care of progressively updating the final
color of each pixel by combining the direct illumination and the radiance
computed with splatting rays.

This approach provides a more accurate result than the one described in the
previous section. The use of a Geometry Group allows to build a photon map
very quickly and to gather photons by simply tracing a ray. Since the Photon
Pass and the Ray Tracing Pass are executed at every frame, the result is pro-
gressively refined.

The next part of the thesis work was done based on this implementation of
volume rendering.

5.3 Research and Improvement

The final part of the thesis work has been dedicated to research and improve the
existing algorithms that make use of photon differentials for rendering volumes.
As already said, one improvement consists in the GPU implementation of the
method presented by Schjøth [Sch09], and unfortunately the amount of time
that was left for this part of the project has been sufficient only to compute
and implement a more accurate estimate of the RTE than the one presented by
Schjøth.

The implementation of the new radiance estimate follows the same step of Sec-
tion 5.2.2, the only difference is that equation (5.9) and equation (5.10) are
replaced by the estimates that were presented in Chapter 4.
If the photon footprint is a sphere, the radiance is computed as in equation
(4.26), and the contribution given by a single photon p to the i-th scattering ray
becomes

L(pi, ~ωi) ≈ p(pp, ~ω
′
p → ~ωi)

∆Φp
Vp

5

2

1

h2
pσ

2
t

·
[
(t2,p − t1,p)

(
e−σtt2,p + e−σtt1,p

)
− 2

σt

(
e−σtt1,p − e−σtt2,p

)]
.

(5.11)

where pi and ~ωi are the origin and the direction of the scattering ray, pp is the
point on the splatting ray with the shortest distance from the photon position
xp, ∆Φp is the flux carried by the photon p, Vp and hp are the volume and the
radius of the spherical photon footprint, t1,p and t2,p are the distances from the
origin of the scattering ray to the first and second intersections with the photon
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footprint.
If the shape of the photon footprint is an ellipsoid, the radiance estimate is the
one presented in equation (4.30), and the photon contribution becomes

L(pi, ~ωi) ≈ p(pp, ~ω
′
p → ~ωi)

∆Φp
Vell,p

5

2

||MW,Fp · ~ωi||
2

σ2
t

·
[
(t2,p − t1,p)

(
e−σtt2,p + e−σtt1,p

)
− 2

σt

(
e−σtt1,p − e−σtt2,p

)]
.

(5.12)

where Vell,p is the volume of the photon footprint, MW,Fp is the matrix of
change of basis from world space to filter space, and 1

||MW,Fp·~ωi|| is the radius
of the ellipsoid along the direction ~ωi.



Chapter 6

Results

In this chapter the results obtained with the methods implemented during this
project are shown.
First some simple results are presented in order to show how absorption and
scattering affect the propagation of light inside a medium. Then it will be
made a comparison between the use of anisotropic kernel functions and the use
of isotropic functions, in order to prove the efficacy of photon differentials for
rendering volumes. Finally some test scenes are used to compare the results
obtained by using the radiance estimate presented in Chapter 4 and the results
obtained with the estimate proposed by Schjøth [Sch09].

All the test scenes include an isotropic and homogeneous participating medium,
since there was no time to implement the code for heterogeneous media. The
versions of OptiX and CUDA used in this project are the OptiX SDK 3.7.0
and CUDA v6.5, while the processor used to run the code is an Intel R© CoreTM

i7-4700MQ 2.40GHz 16GB, and the GPU is a GeForce GT 740M.

6.1 Absorption and Scattering

In Chapter 3 it was discussed how participating media affect the propagation of
light. It was explained how absorption reduces the energy of the photons trav-
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elling through a medium, and how the scattering of light could both decrease
(out-scattering) or increase (in-scattering) the amount of radiance.
Some test scenes have been rendered in order to show these two different phe-
nomena. The test scenes contain a directional light, a neutral background, and
a 3D model used as participating medium. The 3D model that have been used
are .OBJ files and they are an elephant model, and the Stanford dragon. All
the scenes were rendered for ten seconds at a frame rate of 15 fps. The imple-
mentation used is the one described in Section 5.3.

If a participating medium primarily absorbs light, the medium will have a dark
appearance.

Figure 6.1: Participating medium with the shape of the elephant model. The
light is mainly absorbed by the medium and the volume looks
dark.

In Figure 6.1 and in Figure 6.2 two examples of absorption in participating
media are shown. In the first scene the 3D model of the elephant is used to rep-
resents the medium, while in the second one it is used the Stanford dragon. It is
very visible the exponential relationship between the amount of light absorbed
and the thickness of the medium: close to the edges of the Stanford dragon and
in the ears and trunk of the elephant there is less absorption, while by moving
towards the centre of the medium the absorption increases very quickly.
If the dominant effect in a medium is scattering, then the medium will still
absorb light but it will have a brighter appearance.
In Figure 6.3 and in Figure 6.4 two examples of light scattering in participating
media are shown. In Figure 6.3 the medium has been rendered with a smaller
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Figure 6.2: Participating medium with the shape of the Stanford dragon. The
light is mainly absorbed by the medium and the volume looks dark.

Figure 6.3: Participating medium with the shape of the elephant model. The
light is mainly scattered and the medium looks more brighter than
the background.

value of the extinction coefficient σt than the medium in Figure 6.4. It is visible
how light scattering increases the radiance of the light. In the elephant picture
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Figure 6.4: Participating medium with the shape of the Stanford dragon. The
light is mainly scattered and the medium looks more brighter than
the background.

part of the light passes through the medium and the background it is visible;
on the other hand the extinction coefficient used in the Stanford dragon result
is large and the light coming from the background can not pass through the
medium, but part of the light coming from the source light is scattered towards
the camera and the dragon assumes a white appearance.
In Figure 6.5 and 6.6 two participating media with a balanced amount of scat-
tering and absorption are shown. The results are brighter than the ones in
Figure 6.1 and 6.2 but darker than the results in Figure 6.3 and 6.4.
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Figure 6.5: Participating medium with the shape of the elephant model. Ab-
sorption and scattering are balanced.

Figure 6.6: Participating medium with the shape of the Stanford dragon. Ab-
sorption and scattering are balanced.
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6.2 Isotropic Kernel vs Anisotropic Kernel

In this section it will be shown how the use of anisotropic kernel and photon
differentials drastically improves the quality of the results.
Volumetric Photon Mapping [JC98] and the beam radiance estimate [JZJ08]
make use of isotropic kernel functions, even though they are not using photon
differentials to compute the bandwidth of each photon.
In the implementation provided in this project, an isotropic kernel function can
be used by storing the photons as spheres instead of ellipsoids.
The results presented in this section were obtained by using the isotropic esti-
mate (4.26) and the anisotropic estimate (4.30).

Figure 6.7: Cornell Box and glass ball inside a medium rendered with an
isotropic kernel function.

The test scene used in Figure 6.7 and in Figure 6.8 contains a Cornell Box,
a glass ball, and a point light and the whole scene is surrounded by a participat-
ing medium. Both the results were obtained by using approximately 5 million
photons. The light coming from the point light is scattered inside the Cornell
Box, and the light refracted by the glass ball generates a volume caustic, and a
surface caustic on the floor of the box. The result in Figure 6.7 is obtained by
using an isotropic kernel: the volume caustic is visible but the bias introduced
by the density estimation blurs the edges of the caustic. An anisotropic ker-
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Figure 6.8: Cornell Box and glass ball inside a medium rendered with an
anisotropic kernel function.

nel was used in Figure 6.8, and it can be seen how photon differentials reduce
bias and noise, and the edges of the volume caustic are sharp and clearly visible.

Another interesting test scene is the one presented in Figure 6.9 and 6.10: a glass
ball illuminated by a point light generates a volume caustic inside the medium;
in this case 10 million photons have been used. The isotropic kernel, Figure
6.9, introduces blurring of the illumination features and it does not completely
remove the noise (visible in the lower part of the volume caustic). On the other
hand, in Figure 6.10 anisotropic filtering provides a very clear and detailed vol-
ume caustic.

In conclusion, photon differentials and anisotropic kernel functions provide a
very efficient way to reduce bias and noise not only for surfaces, as shown in
Chapter 2, but also for volumes.



70 Results

Figure 6.9: Glass ball and point light in a black environment rendered with
an isotropic kernel function.

Figure 6.10: Glass ball and point light in a black environment rendered with
an anisotropic kernel function.
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6.3 Analysis of the Radiance Estimate

The last comparison that will be made is between the estimate (3.19) of the
RTE presented by Schjøth and the one developed in this thesis.
Three different test scenes have been used. The first scene consists of a glass
ball inside a participating medium in a black environment, and a point light;
for this scene approximately 10 million photons have been used. The second
scene includes a Cornell Box, a point light, and the glass ball, the number
of photons for this scene is around 5 million. The third and last scene consists
of a diffuse plane, the glass ball, and a spot light, for a total of 3 million photons.

In the first test scene, the light coming from the point light is scattered around
the scene, and the light that passes through the glass ball produces a volume
caustic. In Figure 6.11 the result obtained by using equation (3.19) is shown,
while in Figure 6.12 the estimate (4.30) is used. In Figure 6.13 and in Figure
6.14 two details of the results are shown. It is possible to notice how with al-
most the same number of photons the result in Figure 6.12 is less noisy and
more bright than the one in Figure 6.11.

In the second test scene, the light coming from the point light source is refracted
by the glass ball and produces a volume caustic, and a surface caustic. In Figure
6.15 and in Figure 6.16 the two different results are shown. In the details of
Figure 6.17 and Figure 6.18 it is visible how the problems of the first test scene
are present also in this case. The rendered image obtained with the estimate
proposed by Schjøth is darker and more noisy than the one produced with the
new radiance estimate.

In the third scene, a spot light produces a cone of light that illuminates the glass
ball, which generates a volume caustic and a surface caustic on the diffuse plane.
The glass ball blocks part of the light and produces a cone of shadow. Once
again the result obtained with the radiance estimate presented in this thesis,
Figure 6.20 and Figure 6.22, is brighter; in particular the difference is visible in
the area of the cone of light close to the upper part of the sphere, and in the
lower part of the volume caustic.

In conclusion, the main difference between the two methods is the brightness
of the scattered light. The estimate (3.19) presented by Schjøth integrates the
kernel function along the segment representing the overlap of a photon with the
eye ray, but it does not consider that also the transmittance is a function of
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the position and then it should be integrated together with the kernel function.
What Schjøth does is to use the value of the transmittance calculated at the
middle point of the segment as approximation of the integral. Since the trans-
mittance function is exponential and not linear, if the length of the segment is
long enough the value calculated at the starting point of the segment and the
one computed at the ending point might be very different from the one com-
puted at the middle point.
For this reason, the estimate used by Schjøth loses a small part of the radiance
by approximating the value of the transmittance along the overlapped segment.
The radiance estimate presented in this thesis does not have this problem, as it
computes the exact contribution of the transmittance and of the kernel function.
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Figure 6.11: Glass ball in black environment, Schjøth estimate.

Figure 6.12: Glass ball in black environment, new developed estimate.
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Figure 6.13: Glass ball in black environment, Schjøth estimate. (Detail)

Figure 6.14: Glass ball in black environment, new developed estimate.
(Detail)
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Figure 6.15: Cornell Box and glass ball inside a medium, Schjøth estimate.

Figure 6.16: Cornell Box and glass ball inside a medium, new developed esti-
mate.
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Figure 6.17: Cornell Box and glass ball inside a medium, Schjøth estimate.
(Detail)

Figure 6.18: Cornell Box and glass ball inside a medium, new developed esti-
mate. (Detail)
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Figure 6.19: Glass ball and diffuse plane illuminated by a spot light, Schjøth
estimate.

Figure 6.20: Glass ball and diffuse plane illuminated by a spot light, new
developed estimate.
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Figure 6.21: Glass ball and diffuse plane illuminated by a spot light, Schjøth
estimate. (Detail)

Figure 6.22: Glass ball and diffuse plane illuminated by a spot light, new
developed estimate. (Detail)



Chapter 7

Conclusions and Future
Work

In this thesis it has been presented a description of how the light is affected
by participating media and how photon differentials can be used for render-
ing volumes. The focus was on investigating and improving already existing
algorithms that make use of photon differentials. The implemented algorithm
has been developed by using the NVIDIA R© OptiXTM ray tracing engine, and
it supports a new estimate of the radiative transfer equation based on photon
differentials.

In Chapter 2 it was introduced a global illumination algorithm based on Photon
Mapping. It was shown how density estimation could be used to compute the
light transport equation at the cost of introducing a trade-off between noise and
bias. If few photons were used in the estimate then the results presented noise,
on the other hand if too many photons were used then the illumination features
resulted to be blurry. It was also shown how photon differentials and anisotropic
filtering could be used to improve this trade-off and to reduce both noise and
bias with no need of storing more photons.

In the first section of Chapter 3 it was presented the behaviour of the light when
it is not travelling in a vacuum. The presence of a participating medium affects
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the path of the light in different ways. Light might be emitted or absorbed
by the particles that are inside the medium, a portion of the light might also
be scattered in different directions, and all these phenomena can be described
by the radiative transfer equation RTE. Some of the algorithm that have been
developed over the years were presented in the second section of the chapter:
Volumetric Photon Mapping, the beam radiance estimate, photon differentials,
and photon beams.

In Chapter 4 it was described how to derive a more accurate estimate of the RTE
than the one presented by Schjøth [Sch09]. In the first section it was described
how to extend photon differentials from surfaces to volumes, and the sampling
techniques for tracing photons that are used in this thesis were described. In the
second section the focus was on the Ray Tracing pass, and the steps to compute
the new radiance estimate were presented.

In Chapter 5 the three steps that have been followed in order to reach the final
GPU implementation were described. The first step consisted in implement-
ing a GPU version of photon mapping based on photon differential splatting.
The implementation was inspired by the technique presented by Frisvad et al.
[FSES14]. The second step was to implement a GPU algorithm for volume
rendering by using photon differentials, and two different approaches have been
tried: the first approach was the natural extension of the algorithm implemented
during the first step, but it turned out to be inaccurate and inefficient; the sec-
ond approach made a better use of the tools provided by OptiX and it uses the
radiance estimate proposed by Schjøth [Sch09]. The last step was to research
improvement for the algorithm, and the radiance estimate that was computed
in Chapter 4 has been implemented into the code.

In Chapter 6 the results were shown. In the first section it was shown how
absorption and scattering affect the propagation of the light and the appearence
of the medium. In the second section the advantages of using anisotropic kernel
functions instead of using isotropic kernel functions were shown.
Finally a comparison between the results obtained with the radiance estimate
presented in this thesis and the results obtained with the estimate presented by
Schjøth [Sch09] has been made.

When this project was started it was known that five months would have not
been enough to both implementing an algorithm for rendering volumes and re-
searching new techniques to improve the existing algorithms. The work that has
been presented represents a solid GPU algorithm that could be used as starting
point from which it is possible to continue the research.
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A possible extension for this thesis project might be the implementation of het-
erogeneous media, which has not been implemented due to lack of time. Another
topic that might be interesting to look into is how to improve the scattering of
photon differentials inside a participating medium, because the method used in
this project is based on some heuristics presented by Schjøth [Sch09] and maybe
a more accurate technique could be found.
One last suggestion for a future work is to implement progressive photon beams
and to find improvements.

To sum up, this project represented a great opportunity to learn and understand
volume rendering. It was not easy to reach the final results and it was also
necessary to change the way of approaching the problems more than once, but
it was worth it. A GPU algorithm for rendering volumes has been implemented
and some improvements to the radiance estimate by using photon differentials
have been found.
Hopefully the work presented in this thesis will provide inspiration for future
research.
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Appendix A

In this section it will be shown that

L(p, ~ω) ≈ Tr(p,ps)L(ps, ~ω)

+
N∑
i=1

p(p, ~ω′i → ~ω)
∆Φi
Vi

5

2

∫ t2,i

t1,i

e−σtt

(
1−

(
||xi − pt||

hi

)2
)
dt,

(A.1)

admits a solution.

{x

t1

t2

h ω{ pt
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Proof. By calling pt = O + t~ω, where O is the origin of the eye ray:

||x− pt||2 =

(
t2 + t1

2
− t
)2

+ h2 −
(
t2 − t1

2

)2

. (A.2)

By considering only the integral of equation (A.1) and equation (A.2):

S =

∫ t2

t1

e−σtt

(
1−

(
||x− pt||

h

)2
)
dt =

1

h2

∫ t2

t1

e−σtt
(
−t2 + t(t1 + t2)− t1t2

)
dt

=
1

h2

[
−
∫ t2

t1
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∫ t2

t1

e−σttt(t2 + t1)dt−
∫ t2

t1

e−σttt1t2dt

]
=

1

h2
[−A+B − C] ;

(A.3)

by integrating by parts A:

A =

∫ t2

t1

e−σttt2dt = − e−σtt

σt
t2
∣∣∣∣t2
t1

+

∫ t2

t1

e−σtt

σt
2tdt

= − e−σtt

σt
t2
∣∣∣∣t2
t1

− e−σtt

σ2
t

2t

∣∣∣∣t2
t1

+

∫ t2

t1

e−σtt

σ2
t

2dt

= − e−σtt

σt
t2
∣∣∣∣t2
t1

− e−σtt

σ2
t

2t

∣∣∣∣t2
t1

− e−σtt

σ3
t

2

∣∣∣∣t2
t1

= −e
−σtt2

σt
t22 +

e−σtt1

σt
t21 −

e−σtt2

σ2
t

2t2 +
e−σtt1

σ2
t

2t1 −
e−σtt2

σ3
t

2 +
e−σtt1

σ3
t

2.

(A.4)

By integrating by parts B:

B =
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By integrating C:

C =
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By substituting equation (A.4), (A.5) and (A.6) into (A.3):
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(A.7)

By replacing equation (A.7) into (A.1):
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