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ABSTRACT
Canonical correlation analysis (CCA) is an established multi-

variate statistical method for finding similarities between lin-

ear combinations of (normally two) sets of multivariate ob-

servations. In this contribution we replace (linear) correlation

as the measure of association between the linear combina-

tions with the information theoretical measure mutual infor-

mation (MI). We term this type of analysis canonical informa-

tion analysis (CIA). MI allows for the actual joint distribution

of the variables involved and not just second order statistics.

While CCA is ideal for Gaussian data, CIA facilitates analy-

sis of variables with different genesis and therefore different

statistical distributions and different modalities. As a proof

of concept we give a toy example. We also give an exam-

ple with one (weather radar based) variable in the one set and

eight spectral bands of optical satellite data in the other set.

1. INTRODUCTION

In 1936 Hotelling [1] introduced canonical correlation analy-

sis (CCA). In CCA we find linear combinations U = aTX
and V = bTY of k variables in X and � variables in Y . The

projections a and b are found such that U and V have maxi-

mum correlation and their variances equal one. Correlation is

a linear measure of association between variables, and CCA is

based on second order statistics only. CCA is therefore ideal

for multivariate Gaussian data.

In this paper we replace correlation as the measure of as-

sociation with the information theoretical measure mutual in-

formation (MI). In this type of analysis which we term canon-

ical information analysis (CIA) we find a and b such that the

MI between U and V is maximized, [2]. MI is an entropy

based measure which allows for the actual joint distribution

of U and V . It is therefore more suited for non-Gaussian data

and for data with different statistical distributions and differ-

ent modalities.

The idea of maximizing MI between two sets of variables

is mentioned in [3]. However, the authors merely propose so-

lutions to this problem based on independent component ana-

lysis in the individual spaces of the variables and they do not

provide a truly canonical approach. In [4] and [5] the prob-

lem of maximizing MI of linear combinations of variables is

solved in a manner which makes its application to small sam-

ple problems feasible. Our implementation is applicable to

large sample problems including image data also.

Section 2 describes marginal and joint entropy as well as

relative entropy (also known as the Kullback-Leibler diver-

gence) and mutual information. Section 3 gives a toy example

and a weather data example. Section 4 concludes the paper.

Parts of the abstract, the introduction, Section 2 and Sub-

section 3.1 are identical to sections in [6].

2. BASIC INFORMATION THEORY

In 1948 Shannon [7] published his now classical work on in-

formation theory. Below, we describe the information theoret-

ical concepts entropy, relative entropy and mutual information

for discrete stochastic variables, see also [8, 9, 10, 11].

2.1. Entropy

Consider a discrete stochastic variable X with probability

density function (pdf) p(X = xi), i = 1, . . . , n, i.e, the

probability of observing a particular realization xi of stochas-

tic variable X , where n is the number of possible outcomes

or the number of bins. Let us look for a measure of informa-

tion content (or surprise if you like) h(X = xi) in obtaining

that particular realization. If xi is a very probable value, i.e.,

p(X = xi) is high, we receive little information by observing

xi. If on the other hand xi is a very improbable value, i.e.,

p(X = xi) is low, we receive much information by observing

xi. The measure of information content should be a mono-

tonically decreasing function of p. This can be obtained by

choosing for example h ∝ 1/p.

If we observe independent realizations xi and xj , i.e., the

two-dimensional pdf p(X = xi, X = xj) equals the product

of the one-dimensional marginal pdfs p(X = xi)p(X = xj),
we would like the joint information content to equal the sum

of the marginal information contents, i.e., h(X = xi, X =
xj) = h(X = xi) + h(X = xj). This can be obtained by

transformation by means of the logarithm.

Thus the desired characteristics of the measure of infor-

mation or surprise can be obtained if we define h(X = xi)
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as

h(X = xi) = ln
1

p(X = xi)
= − ln p(X = xi).

The expectation H(X) of the information measure, i.e., the

average amount of information obtained by observing the

stochastic variable X , is termed the entropy

H(X) = −
n∑

i=1

p(X = xi) ln p(X = xi).

In the limit where p tends to zero and ln p tends to minus in-

finity, −p ln p tends to zero. H(X) = −E{ln p(X)} is non-

negative. A discrete variable which takes on one value only

has zero entropy; a uniform discrete variable has maximum

entropy (equal to lnn). For the joint entropy of two discrete

stochastic variables X and Y we get

H(X,Y ) =

−
∑
i,j

p(X = xi, Y = yj) ln p(X = xi, Y = yj).

Probability density functions, information content and en-

tropy may be defined for continuous variables also (and so

may relative entropy and mutual information mentioned be-

low). In this case the entropy

H(X) = −
∫

p(x) ln(p(x))dx (1)

is termed differential entropy. Since p(x) here may be greater

than 1, H(X) in the continuous case may be negative (or in-

finite).

2.2. Empirical Entropy

Empirical entropy Ĥ(X) is an estimator of H(X) in (1). The

estimator is defined as

Ĥ(X) = − 1

N

N∑
i=1

ln p(X = xi)

i.e., the average of − ln p defined over a finite sample {xi}Ni=1

of X , where N is the number of samples. This estimator is

not based on any binning of the data.

2.3. Relative Entropy

The relative entropy also known as the Kullback-Leibler di-

vergence [12] between two pdfs p(X = xi) and q(X = xi)
defined on the same set of outcomes (or bins) is

DKL(p, q) =
∑
i

p(X = xi) ln
p(X = xi)

q(X = xi)
. (2)

This is the expectation of the logarithmic difference between

p and q. Typically p represents the “true” distribution of data

or a precisely calculated theoretical distribution and q typi-

cally represents a model or an approximation of p. The rela-

tive entropy is a measure of the proximity of q and p, and it

satisfies the so-called Gibbs’ inequality DKL ≥ 0 with equal-

ity for p(X = xi) = q(X = xi) only. The relative entropy is

not symmetric in p and q (and therefore it is not a metric).

2.4. Mutual Information

The extent to which two discrete stochastic variables X and

Y are not independent, which is a measure of their mu-

tual information content, may be expressed as the relative

entropy or the Kullback-Leibler divergence between the two-

dimensional pdf p(X = xi, Y = yj) and the product of the

one-dimensional marginal pdfs p(X = xi)p(Y = yj), i.e.,

DKL(p(X,Y ), p(X)p(Y )) =∑
i,j

p(X = xi, Y = yj) ln
p(X = xi, Y = yj)

p(X = xi)p(Y = yj)
.

This sum defines the mutual information I(X,Y ) =
DKL(p(X,Y ), p(X)p(Y )) of the stochastic variables X and

Y . Mutual information equals the sum of the two marginal

entropies minus the joint entropy

I(X,Y ) = H(X) +H(Y )−H(X,Y ). (3)

Unlike the general Kullback-Leibler divergence in (2) this

measure is symmetric. Mutual information is always nonneg-

ative, it is zero for independent stochastic variables only.

Obviously we need to estimate marginal as well as joint

pdfs to obtain the mutual information estimate in (3). We em-

ploy kernel density estimation, which uses N data samples to

estimate these pdfs. Mutual information is subsequently esti-

mated using the same N data points. This is possible in prac-

tice only due to a very fast estimation of pdfs, see [2]. Note,

that this is in contrast to [13] where the sample is divided into

smaller portions in order to lessen the computational burden.

3. CASE STUDIES

We first give a toy example as a proof of concept. This is fol-

lowed by an example with (one variate) weather radar data as

one set and eight spectral bands from the SEVIRI instrument

onboard the Meteosat satellite MSG-2 as the other set.

3.1. Toy Example

In a simple, illustrative example consider x and x2. On the in-

terval [0,1] the correlation between the two is
√
15/16, close

to one. On the interval [–1,1] the correlation is zero, but of

course the two are still functionally associated. Let us hide

the parabola in noise: consider a variable x1 sampled equidis-

tantly on the interval [0,1]. Let another variable x2 be random

Gaussian noise with mean zero and standard deviation one.
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Let y1 be x2
1 with random Gaussian noise with mean zero and

standard deviation one tenth added. Let y2 be random Gaus-

sian noise with mean zero and standard deviation one. For all

variables we have 1000 samples. Let the first set of variables

consist of x1 and x2, and the second set consist of y1 and y2.

In this case the leading canonical correlation is 0.9166 and

(after sphering the input) the leading eigenvector for the first

set is [1.0000 0.0064] and for the second set [1.0000 0.0143].
So in this case canonical correlation analysis makes sense:

we get a high canonical correlation and eigenvectors that iso-

late the signal in x1 and y1. Maximal mutual information is

0.7867 and the leading eigenvectors are [1.0000 0.0075] and

[1.0000 − 0.0043] respectively.

Let us now redo the analysis with x1 sampled equidis-

tantly on the interval [–1,1]. In this case the leading canonical

correlation is 0.0532 and the leading eigenvector for the first

set is [0.0391 0.9992] and for the second set [−0.8955 0.4450].
In this case canonical correlation analysis makes no sense:

we get a very low canonical correlation and eigenvectors that

do not isolate the signal in x1 and y1. Here maximal mu-

tual information is 0.5856 and the leading eigenvectors are

[1.0000 − 0.0082] and [1.0000 − 0.0086] respectively.

For the latter case (x1 sampled equidistantly on the inter-

val [–1,1]), three-dimensional contours of the estimated joint

pdfs and scatter plots of the leading canonical variates are

shown in Figure 1 top (correlation based) and bottom (mu-

tual information based). The top figure reveals no structure

whereas in the bottom figure we clearly recognize the noisy

parabola originally in variables x1 and y1.

3.2. Weather Data

This data set consists of satellite and radar imagery from 20

August 2007, where extreme downpour intensities (53 mil-

limeters in 10 minutes) were recorded in some regions of

Denmark (inside the red rectangle).

The ultimate goal of this analysis (which is not dealt with

in this paper) is to give a short term prediction (in the order

of 30-60 minutes, the longer the better) of the extreme rain by

means of the weather satellite data.

The satellite imagery is a set of k = 8 infrared bands from

the Spinning Enhanced Visible and Infrared Imager (SEVIRI)

onboard the Meteosat Second Generation (MSG-2) weather

satellite. The spectral region of the infrared bands are from

approximately 3.9μm to 13.4μm, and these bands monitor

cloud top reflectance and emission properties. The radar data

are recorded three minutes before the satellite image using the

Danish Meteorological Institute (DMI) weather radars. These

data consist of a single (� = 1) image of radar reflectance.

The two image sources are gridded as images of 400 × 500
pixels with a ground sampling distance of 2 km × 2 km prior

to analysis to establish pixel-to-pixel correspondence. The

analysis includes the N = 7, 577 observations in the radar

imagery exhibiting reflectance from precipitation.
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Fig. 1. 3D contours of estimated joint pdfs and scatter plots

for leading canonical variates, correlation based (top) and mu-

tual information based (bottom).

These data have also been treated in [2, 14]. In [14] an

elaborate geometric and temporal alignment was needed to

ameliorate the CCA solution. This is not needed when using

the method suggested here.

Figure 2 shows the (first) canonical variate for the weather

satellite data for both correlation and mutual information

based solutions. The marked rectangular area is known from

radar imagery to exhibit extreme rain at this particular point

in time. The display range of the intensity values is within ±
three standard deviations of the mean. The dashed white line

marks the extent of the radar coverage. The bottom figure

shows less noisy structures and a better discrimination be-

tween extreme rain areas and the remainder of the scene than

the top figure.
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Fig. 2. Correlation (top) and mutual information based (bot-

tom) based (first) canonical variates for the weather satellite

data.

4. CONCLUSIONS

In the toy example the correlation based solution makes no

sense on the interval [–1,1], whereas the mutual information

based solution finds the noisy parabola in the variables analy-

sed.

In the weather data case we see that the mutual informa-

tion based canonical analysis offers less noise and a better dis-

crimination between areas with extreme precipitation and the

remainder of the area covered by the weather radar. The CIA

solution provides a representation of the satellite data which

carry the information most similar to that the weather radar

data. This can be useful for, e.g., visualization purposes for

meteorologists, or for providing pseudo-radar coverage out-

side the range of the radar. Also, it is hoped that a very short

term prediction (in the order of 30-60 minutes) from the satel-

lite data of very heavy rain can be obtained.

Other examples (not shown here) give a similarly better

performance for the mutual information based analysis.
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