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Perception-based Personalization of Hearing Aids
using Gaussian Processes and Active Learning

Jens Brehm Bagger Nielsen, Jakob Nielsen, Jan Larsen, Senior member, IEEE

Abstract—Personalization of multi-parameter hearing aids
involves an initial fitting followed by a manual knowledge-
based trial-and-error fine-tuning from ambiguous verbal user
feedback. The result is an often sub-optimal HA setting whereby
the full potential of modern hearing aids is not utilized. This
article proposes an interactive hearing-aid personalization system
that obtains an optimal individual setting of the hearing aids
from direct perceptual user feedback. Results obtained with
ten hearing-impaired subjects show that ten to twenty pairwise
user assessments between different settings—equivalent to 5-10
min.—is sufficient for personalization of up to four hearing-aid
parameters. A setting obtained by the system was significantly
preferred by the subject over the initial fitting, and the obtained
setting could be reproduced with reasonable precision. The
system may have potential for clinical usage to assist both the
hearing-care professional and the user.

Index Terms—Hearing Aids, Personalization, Individualiza-
tion, Gaussian Process (GP), Active Learning, Pairwise Com-
parisons.

I. INTRODUCTION

THE complexity of digital signal processing algorithms in
hearing-aids (HAs) has increased in the past two decades

due to continuous refinement of existing HA algorithms and
the addition of new ones. Consequently, the number of asso-
ciated algorithm parameters has increased and will continue
to do so in the future. Algorithm parameters control how the
incoming sound is processed by the multitude of algorithms
and thereby how the sound is presented to the user. In prac-
tice, the multi-parameter adjustment—traditionally referred to
as fitting—is done in fitting software supplied by the HA
company: A restricted set of meta parameters is available,
that controls the entire set of algorithm parameters. The rules
defining the mapping from meta parameters in the fitting
software to algorithm parameters are covered by a so-called
fitting rationale or prescription. Every HA company has their
own fitting rationales for their specific HAs. Typically, generic
rationales, such as NAL [1] or DSL [2], are available in
the software as an option as well. The overall objective of
any fitting rationale is to compensate for the user’s reduced
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ability to hear and comprehend speech. A hearing deficit is
typically quantified by measuring the reduction in pure-tone
hearing threshold level (HTL) in one-octave frequency bands
from 500 Hz to 4 kHz relative to normal hearing (NH) [3,
Chapter 10]. A user’s audiogram refers to the pure-tone HTL
difference between the user and NH. The HTL differences are
specified in dB of hearing level (dB HL) [3, Chapter 10]. A
10 dB HL at 500 Hz indicates that the sound pressure level
(SPL) at 500 Hz needs to be 10 dB louder compared to the
HTL of a normal hearing subject for the user to detect the
pure tone. Hence, an audiogram could directly be converted
to HA gains in one-octave frequency band. However, due to
loudness recruitment [4, Chapter 4-III] and reduced dynamic
range [5, Chapter 1] among other factors, it is inappropriate
to set gains directly matching the audiogram [5, Chapter 10].
Instead, the audiogram is used as target gains for the fitting,
implying that the actual HA gain will not compensate fully for
the reduced sensitivity. A rationale converts the target gains
(or audiogram) into band-dependent and input-level-dependent
(non-linear) HA gains.

HA fitting is carried out by a hearing-care professional
(HCP) who measures the audiogram e.g. at, 500 Hz, 1 kHz,
2 kHz, and 4 kHz, which thus results in four target gains for
the fitting. The target gains—one set of meta-parameters—are
used to set algorithm parameters like compression ratio, gain
of the linear region, and knee-points of the multi-band dynamic
processor embedded in modern digital hearing aids. The goal
of the fitting is to ensure audibility and optimal speech
intelligibility without compromising the user’s preferences.

Besides the measured target gains, there are typically ad-
ditional meta-parameters that the HCP can or must adjust
related to e.g. noise reduction, multi-channel beamforming,
further tailoring of the dynamic compressor etc. [5, Chapter
12]. The HCP will consult the hearing-impaired (HI) client
about HA use, rehabilitation, and preferences when adjusting
meta-parameters; but they can only be adjusted manually
based on the user’s often ambiguous descriptions about the
perceived sound. The HI client typically finds it difficult
to explain his preferences towards sound, hence, it is very
challenging to determine the best setting. Furthermore, manual
fine tuning is time consuming and thus expensive to perform.
In summary, this result in an imminent risk of not exploiting
the full potential of modern digital HAs. This provides a great
potential for new fine-tuning methods or paradigms which aim
at optimal settings for individual users in robust and time-
efficient manners.

In this paper, a machine-learning based interactive HA
personalization system (IHAPS) is proposed. IHAPS optimizes
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multiple parameters based directly on the user’s perception
of the sound and not based on a derived verbal ambiguous
description. By the active user process of listening to and
comparing HA settings, IHAPS enables the user to recognize
his preference towards the sound. Active engagement also
leads to greater psychological ownership, and thereby to better
outcome of the entire hearing impairment therapy [6], [7].

In IHAPS, it is assumed that a user’s perception is encoded
by an unobserved internal response function (IRF). Hence,
when a user compares two stimuli, the magnitudes of the IRF
for the two stimuli determine which of the two stimuli the user
prefers or judges to be the best. The IRF cannot be measured
directly, and is assumed to be stochastic due to multiple
uncontrollable factors. Furthermore, a user’s judgments are
not fully consistent. Consequently, a user’s IRF can only be
estimated given a set of user assessments of particular stimuli.
A particular HA setting, xi, determines the acoustical stimulus.
Hence, the IRF is a function, f(x), of the d HA parameters,
x = [x1, ..., xd]

>. Note, that IHAPS can be used both for
optimization of meta parameters and of algorithm parameters
directly. In the remainder of this article, no distinction between
algorithm parameters and meta-parameters will be made. In-
stead, HA parameters will be considered, which can cover both
meta- and algorithm parameters. In IHAPS, the IRF is modeled
by a non-parametric Bayesian regression method, viz. a Gaus-
sian process (GP) [8], which defines a distribution over flexible
nonlinear functions, f(x). Users assess settings in a pairwise-
comparison paradigm, whereby users do not need to memorize
previous ratings, thus resulting in a reduced cognitive load.
However, to minimize the number of assessments required to
estimate the user’s IRF, the user does not only choose which
of two particular HA settings that is preferred (forced choice),
but also assesses the degree of which the setting is preferred
over the alternative [9]. For a given set of such degree-of-
preference assessments (observations), the distribution of a
user’s IRF is updated [9] and the setting associated with
the largest value of the estimated (mean) IRF is suggested
as the optimal setting for the user. Hence, from a modeling
perspective, the task is to perform global multi-parameter
optimization of the user’s unobserved IRF with respect to
the d HA parameters, x. In IHAPS, global optimization is
performed with minimal number of assessments by use of a
sequential design in which active learning is used to suggest
the next two settings to be compared. In summary, IHAPS
sequentially loops the following three steps: (1) active learning
to determine the optimal next settings to be compared given
the current estimate of the user’s IRF; (2) user’s assessment of
the degree-of-preference between the two compared settings;
and (3) update of the user’s estimated IRF given all past
assessments—including the most recent one. When converged
or stopped, the suggested optimal setting is given by the setting
that maximizes the estimated IRF.

For demonstrating solely the potential of IHAPS, two sim-
ilar studies are conducted in which HA personalization is
performed in the case of two and four parameters, respectively.
Preliminary results from the four-parameter study have briefly
been described in [10]. Both studies considered a music
scenario, because music evokes a user’s immediate opinion of
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Fig. 1. A conceptual overview of the interactive system. At step (1) a new
optimal setting is determined based on the current (probabilistic) estimate of
the subject’s IRF. Next, at step (2) the optimal setting is compared to the
setting which maximizes the current estimate of the subject’s IRF, and the
subject assesses the degree of preference between the two settings using a
GUI (see Fig. 5). Finally at step (3), the estimate of the subject’s IRF is
updated based on the recent assessment.

the quality of the HA-produced sound. Other scenarios, such
as a speech scenario, could have been considered as done in
[11], but to evaluate IHAPS without several external effects
influencing the analysis, the music scenario was considered
most suitable. For a real-life application of IHAPS, a multitude
of scenarios are relevant including several different stimuli to
mimic each scenario. However, these mixed conditions are
irrelevant for demonstrating the potential of IHAPS.

Several directions have been pursued for personalization of
HAs using for instance a modified simplex procedure [12] or
genetic algorithms [13], [14]. However, these initial attempts
require unreasonably many assessments to converge, and scale
badly with the number of tunable parameters. Almost a decade
ago, a probabilistic Bayesian approach was proposed [15],
which reads similar to the approach proposed in the present
paper. However, two fundamental aspects of the approach in
[15] are different: Firstly, it assumes that the user’s IRF has
a known parameterized functional form, which is difficult
to qualify in practice. Secondly, assessments are provided
in a pairwise forced-choice paradigm using classical choice
models [16], [17]. Using an artificial example, Jensen et al [9]
show that a forced-choice paradigm requires more assessments
than the degree-of-preference paradigm. The non-parametric
GP approach using the forced choice paradigm [18] has been
considered for instance in [19].

II. PERSONALIZATION SYSTEM

IHAPS is based on an interactive loop visualized in Fig. 1.
The loop essentially contains three parts: (A) Modeling, (B)
active learning, and (C) user-interaction.

A. Modeling of the User’s Internal Response Function with
Gaussian Processes

Modeling of the user’s IRF is performed in a Bayesian
non-parametric framework based on GPs, see e.g. [8]. In the
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Fig. 2. Examples of sampled functions from a Gaussian process with different
setting of the smoothness parameter λ, see Eq. 2. For a more thorough
treatment of GP smoothness, see [8, Sec. 2.3 & 2.6, Chap. 5]

following, the different steps of the non-standard GP frame-
work used in IHAPS to perform regression based on degree-
of-preference assessments are described. The GP framework
is based on previous work [9].

1) Gaussian Process Priors: A Gaussian process (GP) is a
Bayesian non-parametric regression technique, which defines
a prior over functions, f : Rd → R,x 7→ f(x), captured in
the notation

f(x) ∼ GP (0, k(x,x′)θC ) , (1)

where k(·, ·)θC is the covariance function1 with parameters
θC . Generally speaking, the covariance function defines the
smoothness of the functions. A commonly used covariance
function is the isotropic squared exponential (SE) given by

kSE(x,x′) = σf exp

(
− 1

2λ
(x− x′)>(x− x′)

)
. (2)

A GP is defined as a collection of random variables, any
finite number of which have a joint Gaussian distribution [8,
Definition 2.1], such that a finite collection of function values,
f = [f(x1), ..., f(xn)]>, for a corresponding set of inputs,
X = {xi ∈ Rd|i = 1, ..., n}, has a distribution given by

p(f |X ,θC) = N (f |0,K) , (3)

where each entry in the n×n covariance matrix K is given by
[K]i,j = k(xi,xj)θC andN (z|µ,Σ) denotes the multi-variate
normal probability density function2. Functions sampled from
a GP prior with different settings of the smoothness param-
eter, λ, are depicted in Fig. 2. By specifying the likelihood,
p(Y|f ,θL), of some set of observations, Y , given the finite
collection of function values, f , the posterior distribution over
the function values f is given by Bayes formula:

p(f |Y,X ,θ) =
p(Y|f ,θL)p(f |X ,θC)

p(Y|X ,θ)
(4)

=
p(Y|f ,θL)p(f |X ,θC)∫
p(Y|f ,θL)p(f |X ,θC)df

, (5)

where the hyper parameters, θ = {θL,θC}, contain both
likelihood and covariance parameters.

2) Likelihood Function: In previous work [9], modeling
of continuous bounded responses is performed with a likeli-
hood function based on a re-parameterized beta distribution

1In the literature, several expressions are used for the covariance function,
such as kernel function or simply kernel.

2In this paper, z ∼ N (µ,Σ) and p(z) = N (z|µ,Σ) are equivalent.
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Fig. 3. Visualization of the Beta likelihood p(yk|fk,θL) function for three
different settings of the dispersion parameter ν and two different settings of
the slope parameter σ.

specifically applicable in cases where observations are pair-
wise degree-of-preference assessments. Thus, the framework
is specifically applicable for the present work.

Progressing as in [9], consider a set of pairwise observa-
tions, Y = {yk ∈ (0, 1)|k = 1, ...,m}, of the degree of pref-
erence between any two distinct inputs, uk, vk ∈ {1, ..., n},
implying that xuk

,xvk ∈ X . An increasing preference for the
first option, uk, is reflected by yk → 0, whereas an increasing
preference for the second option, vk, is reflected by yk → 1.
No preference is indicated by yk = 0.5. A suitable likelihood
function, p(yk|fk), is now constructed given the function
values for the two input instances, fk = [f(xuk

), f(xvk)]>,
by re-parameterizing the beta distribution, Beta ( · |α, β), as

p(yk|fk,θL) = Beta (yk|νζ(fk, σ), ν(1− ζ(fk, σ))) , (6)

where θL = {ν, σ} is the set of likelihood parameters. ν is a
dispersion parameter around the mean, ζ(fk, σ). The mean is
defined by

ζ(fk, σ) = Φ

(
f(xvk)− f(xuk

)√
2σ

)
, (7)

where Φ(·) is the standard normal cumulative density
function—with zero mean and unit variance—and σ is a slope
parameter. The likelihood function is visualized in Fig. 3.

By assuming that observations are independent given the
latent function values f , the likelihood is written as

p(Y|f ,θL) =

m∏
k=1

p(yk|fk,θL), (8)

which is plugged into Eq. (4) together with the GP prior from
Eq. (3) to completely specify the Bayesian model.

3) Posterior Inference and Model Training: The Gaussian
process model described above is analytically intractable due
to the integral in Eq. (5). Therefore, approximate inference is
performed based on the Laplace approximation following [9].

The idea of the Laplace approximation [8, Section 3.4] is
to approximate the intractable posterior, p(f |Y,X ,θ), from
Eq. (4) with a Gaussian q(f |Y,X ,θ) of the form

p(f |Y,X ,θ) ≈ q(f |Y,X ,θ) = N
(
f |f̂ ,A−1

)
, (9)
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where f̂ is the posterior maximum (mode) and A is the Hessian
of the negative log posterior at the mode. The mode is found
by maximizing the unnormalized log-posterior given by

ψ (f |Y,X ,θ) = log p (Y|f ,θL)− 1

2
f>K−1f

− 1

2
log |K| − n

2
log 2π,

(10)

with a Newton method. The Newton step is given by

fnew =
(
K−1 + W

)−1
[Wf +∇ log p(Y|f ,θL)] , (11)

where [W]i,j = −
∑m
k=1∇∇i,j log p (yk|fk,θL) defining

∇∇i,j ≡ ∂2

∂f(xi)∂f(xj)
. Note, that unlike traditional classifi-

cation and regression problems, W is not diagonal due to the
pairwise structure. For derivatives and further details, see [20].

When Eq. (11) has converged, the approximation is simply

p(f |Y,X ,θ) ≈ q(f |Y,X ,θ) = N
(
f |f̂ ,

(
W + K−1

)−1)
(12)

Traditionally, training of GPs are performed by optimizing the
marginal likelihood, p(Y|X ,θ), from Eq.( 4) with respect to
the hyper parameters, θ. This is referred to as ML-II optimiza-
tion [8, Chapter 5.2]. In the present paper, a slightly different
scheme is used, in which the optimization is regularized by
hyper priors, p(θ), over the parameters in what is a maximum-
a-posterior-like (MAP-II) scheme following [8, Chapter 5.2].
More precisely, the parameters θMAP-II in the trained GP are
given by

θMAP-II = arg max
θ

log q(θ|Y,X ) (13)

≈ arg max
θ

log p(θ|Y,X ) = arg max
θ

p(θ|Y,X ),

where the intractable log posterior over the parameters,
log p(θ|Y,X ), is approximated by log q(θ|Y,X ), which is—
up to a normalization constant—given by

log q(θ|Y,X ) ∝ log q(Y|X ,θ) + log p(θ). (14)

In Eq. (14), q(Y|X ,θ) is the Laplace approximation to the
(intractable) marginal likelihood, p(Y|X ,θ), from Eq. (4),
resulting in

logq(θ|Y,X ) ∝ log p(Y|f̂ ,θL)− 1

2
f̂>K−1f̂

− 1

2
log |I + KW|+ log p(θ).

(15)

Hence, training of the GP model consists of the following two
steps which are looped until convergence3:

1: With fixed hyper parameters, θMAP-II, repeat Eq. (11)
to find the mode of the Laplace approximation and use
Eq. (12) to approximate the posterior.

2: Given the approximate posterior from Eq. (12), opti-
mize the right hand side of Eq. (15) with respect to
θ using a BFGS gradient method to obtain the hyper
parameters θMAP-II.

The specific choices of kernel, k(·, ·)θC , and hyper priors, p(θ)
are specific to each experiment, and are therefore explained as
part of Sec. III and Sec. IV.

3The similarity with the Expectation-Maximization algorithm is that step 1
can be recognized as the E-Step, and step 2 as the M-step.

4) Predictions: The overall goal of almost any machine
learning algorithm once trained, is to make prediction for
future inputs. In a regression setting, predictions consist of
predicting the function values, f∗ = [f(x∗1), ..., f(x∗o)]

>, at
new input locations, X∗ = {x∗l ∈ Rd|l = 1, ..., o}. In a
Bayesian framework, the variables are considered stochastic.
Therefore in a Bayesian framework, predictions are formulated
in terms of the predictive distribution, p(f∗|Y,X∗), from which
different statistics about the variables can be accessed, such
as the mean value, µ∗, and (co)variance, Σ∗.

Given the GP, the joint prior distribution between the
predictive and training function values is given by[

f

f∗

]
∼ N

([
0

0

]
,

[
K

K>∗

K∗

K∗∗

])
, (16)

where [K∗∗]l,r = k(x∗l ,x
∗
r) and [K∗]i,l = k(xi,x

∗
l ). Given

Eq. (16), the conditional distribution of f∗|f is Gaussian, hence

p(f∗|Y,X ,X∗,θ) =

∫
p(f∗|f ,X ,X∗,θ)q(f |Y,X ,θ)df (17)

= N (f∗|µ∗,Σ∗) (18)

which is an integral over the product of two Gaussian distri-
bution, which is again Gaussian. The solution is found in for
instance [18, Eq. (17)-(18)] and is given as

µ∗ = K>∗K−1f̂ (19)

Σ∗ = K∗∗ −K>∗
(
K + W−1)−1 K∗

= K∗∗ −K>∗ (I + WK)
−1

WK∗ (20)

where the last expression is not given in [18], but is numer-
ically more stable, because it avoids inverting W. Eq. (19)
is used as the estimator of the user’s IRF. In addition, the
covariance from Eq. (20) is utilized to formulate an active
learning criterion used to select the next input x̂∗ actively, to
constitute the next (k + 1) comparison.

Prediction of preference relations, y∗, can be done but is
not of particular interest in the present paper, see further [20].

B. Sequential Design for Optimization

Sequential design (or active learning) is used to reduce
the required number of training examples by sequentially
including new informative training examples with respect to
some criterion4. Traditionally, active learning is used when
labeling of data is expensive and is done sequentially.

As for most machine learning algorithms, typically, sequen-
tial designs aim at maximizing the generalization performance
of a model often formulated in terms of a specific criterion. A
Bayesian criterion is the expected reduction in posterior Shan-
non entropy after inclusion of a new training example [21]. In
this work, the generalization performance is not of particular
importance. Instead, the aim is to find a maximum—ideally
the global one—of the unknown IRF modeled by the GP. For
this, a novel bivariate version of the expected improvement [22]
is used. Expected improvement (EI) is derived by defining

4Some active learning methods, such as query-by-committee, do not have
an explicit criterion, but this is beyond the scope of the present article to
discuss.
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Fig. 4. Illustration of the difference between the univariate and bivariate
EI. The current maximum (indicated by circles) is at l = 1, which is
also a possible query. Top: EI for the standard version (Univariate), a bi-
variate version neglecting covariance (⊥Bivariate) and a full bivariate version
incorporating covariance (Bivariate). Middle: mean and variance for query
points, x∗l . Bottom: covariance between query x∗l and maximum x1 used in
the (full) bivariate EI. Note that the full bivariate EI is zero at the current
maximum; hence, avoids querying this point again.

improvement, I , as the difference in function values between
the current maximum f̂ ≡ f(x̂max) (typically only among the
training cases X ) and a query point f∗l ≡ f(x∗l )

I ≡ f∗l − f̂ . (21)

Now, EI is the expectation of the (positive) improvement
(which is normally distributed in the present model)

EI ≡ Ep(I){max(I, 0)} =

∫ ∞
0

Ip(I)dI

=

∫ ∞
0

IN
(
I|µI , σ2

I

)
dI

= σIN
(
µI
σI

∣∣∣∣ 0, 1)+ µIΦ

(
µI
σI

)
(22)

In standard EI, f̂ is not considered stochastic, hence the
distribution p(I) is just a univariate normal with mean µI =
[µ∗]l − f̂ and variance σ2

I = [Σ∗]l,l [22]. In this article, the
joint distribution between the query and maximum is taken
into consideration. In this case, p(I) is the difference between
two dependent normal distributed random variables, and is thus
given by

p(I) = N
(
I|µI , σ2

I

)
, where

µI = [µ∗]l − [µ∗]max = [µ∗]l − f̂
σ2
I = [Σ∗]l,l + [Σ∗]max,max − 2 · [Σ∗]l,max. (23)

The difference between the univariate and bivariate EI, i.e.,
whether to including the covariance between the query and
the maximum (last term in Eq. (23)), is illustrated in a small
example in Fig. 4. In this example, the current maximum point

Fig. 5. The pairwise graphical user interface (GUI) used for the experiments.
A slider is used to capture the degree-of-preference for either setting ’1’ or ’2’.
The user can listen to setting ’1’ or ’2’ by pressing the corresponding button.
A gray button indicates that the corresponding setting is selected and thus
active in the HAs. When the user is satisfied with the position of the slider,
the button in the lower-right corner ’Nste’ is pushed to confirm the current
assessment. Next IHAPS computes the next comparison with two new settings
corresponding to ’1’ and ’2’ until a prescribed number of iterations is reached.

corresponds to l = 1 and has larger mean value than all other
query points (l 6= 1), but smaller variance. This is a typical
scenario in GP modeling. In this scenario, neglecting the
covariance has the undesirable effect of querying the already
observed maximum point, causing the active learning to “get
stuck”. The (full covariance) bivariate EI avoids this, but has
the same properties when maximum and query points are
independent. For GP models, predictions are typically very
dependent when inputs are close to each other. Hence, the bi-
variate version is not as local as the standard univariate EI. In
the following, EI refers to the full bivariate version.

A user’s optimal setting is essentially unknown. Therefore,
it is not possible to measure how close an optimal setting
suggested by IHAPS is to the true optimal setting. However,
the average EI over possible queries, x∗l , is in IHAPS used as a
prediction of convergence (convergence measure). Intuitively,
when the average EI is zero or close to zero, no further
improvement is to be expected from another setting. Thereby,
no other setting is under the predictive distribution expected
to be preferred over the current optimal setting, x̂max.

C. Graphical User Interface

The graphical user interface (GUI) by which the users
interact with IHAPS during experiments is depicted in Fig. 5.
An important property of the GUI is that users shall generally
find it intuitive and easy to use. Therefore, the placements of
buttons and sliders are arranged to indicate the pairwise nature
of the assessments. The slider is designed as a mirrored volume
control to indicate that the preference is increasing towards the
end points of the slider.

III. STUDY 1: TWO-DIMENSIONAL OPTIMIZATION

In the first study the subjectively best target gains of the HA
fitting for the four basic frequency bands—500 Hz, 1 kHz, 2
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(a) Contribution of x1

(b) Contribution of x2

Fig. 6. Two meta-parameters, x1 and x2, are used to modify the target
gains in the four basic frequency bands of the HA fitting, as shown in (a)
and (b), respectively. Note, that a particular subjects resulting target gains
(in dB) for the four frequency bands is the sum of the measured audiogram
(binaural) and the added gains specified by the selection of x1 ∈ {−20; 20}
and x2 ∈ {−20; 20}. The grey shaded areas show the added gain limits when
varying the meta-parameters in their intervals.

kHz, and 4 kHz—were learned indirectly by modifying the
target gains5 with two meta-parameters x1, x2 ∈ {−20; 20}.
The meta-parameters were learned while the subject listened to
a 32 sec. looping music clip6. The parametrization is visualized
in Fig. 6. For a specific parametrization, x1 and x2, the
resulting target gains (in dB) for the four frequency bands
are computed as the sum of the two sets of added gains in
Fig. 6 (a) and (b) and the measured audiogram7. Together x1
and x2 define how the audiogram is shaped for the particular
piece of music, and IHAPS was used to obtain optimal shapes
for the individual subject as quickly as possible.

A. Algorithm Details

Although the described framework from Sec. II is highly
generic, there are still a few properties left to define. The
modeling part was set up by defining the covariance function
and hyper-prior distributions:

k(x,x′) = σf exp

(
−1

2
(x− x′)>P−1(x− x′)

)
, (24)

with P = diag([λ1, ..., λd]
>), (25)

σf ∼ p([θC ]d+1) = δ(σf = 4), (26)
λi ∼ p([θC ]i) = half-St(λi; 6, 10), (27)
σ ∼ p([θL]1) = half-St(σ; 6, 10), (28)

ν − 2 ∼ p([θL]2) = half-St(ν − 2; 6, 10), (29)

5In the WIDEX® fitting software the target gains are set in what is called a
SENSOGRAM, see http://www.widex.pro/en/fitting-systems/compass/in-situ-
tools/sensogram/.

6Teitur, ”Sleeping with the Lights on”, Poetry & Aeroplanes, 2003. Start
at sec. 6. End at sec. 38.

7The audiogram is measured binaurally, hence the left and right ears are
fitted individually.

where half-St(z; ξ, s) ∝
(

1 + 1
ξ

(
z
s

)2)−(ξ+1)/2

is the half Stu-
dent’s t-distribution [23], [24], [25] with ξ degrees of freedom
and scale s. The above kernel and hyper-prior distribution
are common choices, see e.g. [8], [23]. The hyper parameters
were learned by optimizing Eq. (15) using a gradient ascend
method with initial values σf = 4, λi = 5, σ = exp(1), ν =
2 + exp(1). The parameters of the hyper-prior distributions
and the initialization of the hyper parameters were not tuned
to perfection, but were set from a few initial experiments with
normal-hearing subjects. It turns out that the framework is not
overly sensitive to this tuning.

For the active learning part, the EI from Eq. (22) was not
directly maximized. Instead, the EI was calculated for all
possible x∗l in a grid and collected in EI such that [EI]l
contained the EI for x∗l . The evaluation of the EI for the entire
grid was computationally feasible, since d = 2 is small. A
uniform grid from −20 to 20 with a step size of 1 was used
for both x1 and x2, hence X∗ = {[−20 : 1 : 20]2}. Now, the
index l̂ of the setting x̂∗l ∈ X∗ to add to the next comparison
was determined by once drawing a vector ` of length o = 412

of binary variables with exactly one nonzero component from
a multinomial distribution given by

`|EI ∼ Mult
(

1∑o
l′=1[EI]l′

·EI

)
. (30)

The index l̂ was thus given by the index of the nonzero
component of `. Compared to maximization of the EI, a
little randomness8 was introduced. Recall, that the bivariate
EI compared to the univariate EI avoids querying the current
maximum over and over again for the entire test. The extra
randomness imposed by the multinomial sampling avoids
querying settings too close to the current maximum too often
towards the end of each test.

B. Procedure

Every iteration consisted of a comparison between the
actively sampled new setting, x̂∗l , and the current best setting,
x̂max, among the training set, X . To remove a possible bias
effect, the two settings were randomly assigned to option 1 and
2. A single test consisted of 30 iterations/comparisons which
were the desired maximal number of iterations to achieve an
optimal setting. Two tests, Test 1 and Test 2, were conducted
to show the reproducibility of the found optima. Prior to the
two tests, the subjects rated 10 comparisons between randomly
chosen settings. This training session was used only to give the
subjects an opportunity to learn how to use the setup and how
the sound in the HAs varied. Following the two tests, a signif-
icance test was conducted to investigate if the optimal setting
of IHAPS was significantly preferred by the subject over a
baseline setting. The significance test used twenty repeated
forced-choices between the optimal setting and the baseline
setting. In each repetition they were assigned randomly to the
two options presented to the subject. Significance was tested
with an exact two-tailed binomial test. The optimal setting was

8Typically, finding the best trade-off between exploitation (utilize the
model) and exploration (reduce uncertainty) is the main challenge in active
learning.
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taken from Test 2 unless this test did not converge. In that case
the optimal setting was taken from Test 1. A natural baseline
setting is the setting with target gains equal to the subject’s
audiogram (i.e., x1 = 0, x2 = 0), since this is the standard
setting of the HAs without additional personalization. Settings
were automatically uploaded to the HAs using proprietary
WIDEX® software.

WIDEX® PASSION440 HAs equipped with RIC 1-
Receivers were used in all tests with all subjects. CRET-S
soft earmolds (without vent) were constructed individually
to each subject to obtain a closed fitting. The HAs were
fitted initially using the measured audiogram, with an omni-
directional beamformer, noise reduction and speech enhance-
ment turned off and slow-acting less-aggressive feedback
cancellation (FBC) particular suitable for music9.

To avoid placebo effects in the final significance test,
subjects were not informed that the aim of the experiments was
to optimize the setting of the HAs based on their feedback.
Instead, they were informed that they, in a sequence of
pairwise comparisons between different settings in the HAs,
should judge which settings they preferred and how much.
It was emphasized that the judgments should only reflect
their subjective opinion. Likewise, subjects were not primed
to focus or pay attention to specific things in the music.

C. Results

TABLE I
OPTIMAL PARAMETER SETTINGS (x1, x2) FOR TEST 1 AND TEST AND

CORRESPONDING SIGNIFICANCE LEVELS.

Subject Age Test 1 Test 2 p0 <

#1 55 NC (−20,−20) 0.001
#2 58 (−20,−16) (−16,−12) 0.001
#3 57 (−16,−16) (−14,−16) 0.001
#4 71 (−20,−12) (−16,−8) 0.001
#5 66 (−18,−14)∗ (−18,−2)∗ 0.001
#6 77 NC NC NC
#7 45 NC NC NC
#8 45 (0,−14) (−4,−12) 0.001
#9 35 (0,−18) (−8,−10)∗ 0.001

#10 53 (−18,−14) (−20,−6) 0.001
NC: Not converged, average EI is clearly non-zero.
∗: Average EI not completely zero.

The best settings found in the two consecutive tests and
the results of the significance tests are shown in Table I. NCs
indicate tests that did not converge according to the average
EI convergence measure. Asterisk symbols denote tests in
which the convergence measure did not completely reach zero
(see Fig. 7a). The optimal settings (from converged tests)
transformed to actual target-gains shapings are shown in 7b.

Fig. 8 and Fig. 9 show the IRF predictions and the EI after
30 and 16 iterations, respectively, for subject 4 from Test 1
and Test 2. Additional details are found in [26].

D. Discussion

During the tests, some interesting observations were made.
Firstly, subject 6 clearly was not able to consistently distin-
guish between different settings, which is also reflected in
the convergence measure (see Fig. 7a). Secondly, subject 7
expressed that he was in conflict with himself during the exper-
iments. Sometimes he preferred a more richer but resounding
sound, while other times he preferred a more flat and neutral
sound. Unfortunately, he was unable to make up his mind
and switched several times between the two types of listening
strategies. Consequently, IHAPS found him to be inconsistent
and did not converge. Thirdly, due to a numerical issue, the
active criterion was not working properly in the last part of
the second test with subject 9. Therefore, this test did not
completely convergence to zero. This is somewhat misleading,
because effectively, the last part of the examples presented
to subject 9 in the second test was chosen randomly due to
the numerical issue. Indirectly, IHAPS thus refrained from
optimization and performed generalization instead. Without
the numerical issue, the second test with subject 9 probably
would have converged completely based on her behavior from
the first test (see Fig. 7a).

Generally, IHAPS was able to obtain a personalized setting
of the two meta-HA parameters for eight of the ten hearing-
impaired subjects. Obviously, if a user does not have a con-
sistent preference or is unable to distinguish any settings from
each other, IHAPS cannot and shall not obtain an optimal set-
ting. Ideally, IHAPS should be able to identify when it has not

9This FBC setting is obtained in the WIDEX® software with the ”Super-
Gain Music” setting of the FBC
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Fig. 7. Solid lines correspond to Test 1 and dotted lines correspond to Test
2. (a) The convergence measure for each subject calculated as

∑o
l′=1[EI]l′

plotted as a function of iterations and means across subjects that converged
(see Tab. I). (b) Added target-gains shapings given the optimal parameters for
the tests that converged (see Table. I).
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Fig. 8. Reproducibility: Predictions of the IRF (left figures) and the EI (right
figures) for subject 4 after the 30’th (final) iteration from (a): test 1 and from:
(b) test 2. Crosses indicate observations, dotted lines indicate comparisons
and circles show the suggested next comparison (although the test stops at
this point).
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Fig. 9. Convergence: Predictions of the IRF (left figures) and the EI (right
figures) for subject 4 after the 16’th iteration from (a): test 1 and from: (b)
test 2. Crosses indicate observations, dotted lines indicate comparisons and
circles show the suggested next comparison.,

obtained an optimal setting for the user, i.e., that a session does
not converge. Since, each user’s true optimum is unknown,
only well-founded speculations can be made. Nevertheless, for
all tests that converged according to the average EI, IHAPS
suggested a setting that the subject preferred significantly over
the prescribed setting. Furthermore, the session of subject 7
did not converge and he did not prefer the suggested setting
over the baseline. The comments given after the test by subject
7 explain why the system was unable to obtain an optimal
setting for subject 7, as the system cannot deal with subjects

that change their opinion during a test. It is speculated that if
subject 7 had indicated that two (or even a couple) of settings
were equally good, the test would have been successful. This
might have been achieved with more thorough instructions
about what the test was actually about. For instance, subject 7
could have been instructed to intentionally stick with only one
objective at the time, instead of switching between them during
a single test. However, this would have biased the results.
Nevertheless, it is desirable that IHAPS by the average EI
seems to indicate if a test successfully obtains a (near) optimal
setting, even though the average EI appears to be somewhat
conservative (indicated by asterixes in Fig. 7a).

The reproducibility is actually better than what can be
concluded from inspection of the suggested optimal settings
only, indicated by studying the close resemblance between the
predicted IRF of the two tests (shown for subject 4 in Fig. 8a
and Fig. 8b). Furthermore, by comparing Fig. 9 and Fig. 8
it is observed that the IRF for subject 4 was already quite
well captured halfway through both tests. Generally, this was
common to all successful tests and illustrates that the average
EI is somewhat conservative for predicting of convergence.

IV. STUDY 2: FOUR-DIMENSIONAL OPTIMIZATION

The setup for the second study was similar to the first
study described in Sec. III. However, instead of modifying
the four target gains by two meta parameters, all four target
gains were in both hearing aids defined directly ranging from
0 to 80 dB HTL (hearing threshold level) in 5 dB HTL steps,
hence x = [x1, ..., x4]> with xi ∈ {0, 5, 10, ..., 80}. Note,
that this setup did not account for any differences between
a subject’s two ears, but all subjects had a similar hearing
loss on both ears. The main purpose of this study was to
compare the performance of IHAPS in a four-dimensional
scenario with that of the two-dimensional scenario in terms
of reproducibility and convergence.

A. Algorithm details

The model was defined similar to the model used in Sec. III,
except that the scale of the half Student’s t-distribution for the
length-scale parameters, λi, was changed since the range of
each dimension xi was different. The model was defined as

k(x,x′) = σf exp

(
−1

2
(x− x′)>P−1(x− x′)

)
, (31)

with P = diag([λ1, ..., λd]
>), (32)

σf ∼ p([θC ]d+1) = δ(σf = 4), (33)
λi ∼ p([θC ]i) = half-St(λi; 6, 100), (34)
σ ∼ p([θL]1) = half-St(σ; 6, 10), (35)

ν − 2 ∼ p([θL]2) = half-St(ν − 2; 6, 10). (36)

Again, the hyper parameters were learned by optimizing
Eq. (15) using a gradient ascent method with initial values
σf = 4, λi = 30, σ = exp(1), ν = 2 + exp(1).

For the active learning part, evaluating the EI for all pos-
sible input values was computational intractable in this four-
dimensional scenario. Instead, the setting, x̂∗, to constitute
the next comparison was found directly by maximizing the EI
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with respect to the input, x∗l , with a BFGS gradient ascent
method [27]. Five uniformly-random starts of the initial value
of x∗l were used for the gradient ascent method. With only
five random starts, the global maximum of the EI is generally
not discovered. This creates a similar effect as in Sec. III,
although it was achieved differently. Likewise, the average of
the EI could not be computed in a reasonable four-dimensional
grid. Instead, the average EI along the path of the gradient
ascend method was used as an estimate of the true average.
A single estimate can be very different from the true average.
If for instance the initialization of the gradient ascent method
is close to the maximum, the estimate is much larger than
the true average. To remove some of this variance, a 4-block
running average was used to smooth the convergence.

B. Procedure

The procedure was identical to the two-dimensional study
described in Sec. III-B, except that the baseline setting was
directly the measured audiogram.

Due to practical circumstances not all ten subjects from
the first study were able to participate in the second study.
Therefore, four new test subjects participated. Only subject
6 was deliberately not considered for the second study, since
she was clearly unable to distinguish between different settings
in the first study. It was considered not to include subject 7
either, due to the results in the first study. However, apparently
subject 7 did not have difficulties distinguishing settings, but
was only in doubt of what he preferred. Hence as such, subject
7 constitutes an interesting case.

C. Results

The found best settings in the two consecutive tests and the
significance-test results are shown in Fig 10a. The convergence
is shown in Fig. 10b. Generally, nine of ten subjects obtained a
setting that was significantly preferred over the baseline setting
given by the user’s audiogram. Subject 7 neither preferred
the obtained setting nor the baseline setting significantly. The
setting resulting from Test 1 - instead of Test 2 - was used
for the significance tests for subject 11 and 13. The reason is
that the two obtained settings were found to be very different
from each other. Furthermore, the two subjects reported, on
their own initiative, that the settings presented to them in the
second test were in general noticeably worse than the settings
from the first test —even at the end of the session, where at
least one of the settings should have been good.

From Fig. 10b, two runs—test 1 with subject 7 and test 2
with subject 11—are seen not to have converged by the 30th
iteration. Overall, the estimation of average EI is more noisy,
which makes it more unclear if particular test converged.

In Fig. 11, the long-term power spectra of the SPL at the
eardrum generated by the (left) HA are shown for the three
different settings (Test 1, Test 2, Audiogram) for five subjects
(see sub-figure caption). The measurements were made on a
KEMAR through a GRAS IEC711 coupler.
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Fig. 10. (a) Optimal target-gains settings found in Test 1 (4) and Test 2 (5)
together with the measured audiogram (♦). Filled markers indicate the settings
used in the significance tests (�). The bottom left plot shows the mean (×)
and standard deviation (+) of the found parameter difference between test 2
and test 1. (b) Estimated convergence measure for each subject and the mean
convergence over subjects using only the tests that converged (i.e., excluding
Test 1 with subject 7 and Test 2 with subject 11).

D. Discussion

Generally, it is satisfying that the only subject (subject
7), that did not have a significant preference for the setting
obtained with IHAPS, actually obtained two settings which are
almost identical to the baseline—both as regards the param-
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(c) Subject 7
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(d) Subject 12
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Fig. 11. Power spectra of the SPL at the eardrum generated by the (left) HA
with the obtained optimal setting from Test 1 (4) and Test 2 (5) together with
the audiogram (♦) for (a) subject 2, (b) subject 4, (c) subject 7, (d) subject 12,
and (e) subject 13. The HTL of each subject at the four basis frequencies—
500 Hz, 1 kHz, 2 kHz and 4 kHz—are indicated by black dots (if above
25 dB SPL). The A-weighted SPL at the location of the KEMAR/subject
was measured to be 69.4 dB SPL. The peaks around 300 Hz are due to a
Helmholtz resonance caused by a little leakage in the earplug of the KEMAR.

eters (see Fig. 10) and the output (see Fig. 11c). Remember,
that this is the subject that could not decide what type of
sound he preferred in the first study (Sec. III). Before the
experiment, this subject actually remembered that he was not
able to decide between two types of HA sound in the first
experiment, and ensured that he would not behave similarly
in the second experiment. This bias is a plausible explanation
of why this subject suddenly was able to obtain a similar HA
sound in the two tests.

The reproducibility of the found settings is not perfect.
However, the processing in HAs for very different target-gains
is not necessarily very different; it depends entirely on the
fitting rationale. This is the case for the two settings obtained
for subject 2 and 3. To realize this, compare the actual HA
output in Fig. 11a with the difference in the obtained settings
for subject 2 in Fig. 10a. The settings at 1 kHz suggests a
gain difference of nearly 30 dB between Test 1 and Test 2.
The difference, however, results in less than 5 dB (long-term)
SPL difference at 1 kHz. Similarly, at 2 kHz the difference
in the obtained setting is around 35 dB, but results in around
7-9 dB difference in the output at 2 kHz. Other effects also
occur between the two settings due to the presence of dynamic
compression in the HAs, but the long-term power spectra
show that the HA outputs for the two target gains obtained
for subject 2 were not too different after all. Nevertheless,
at least the HA-output difference of 7-9 dB around 2 kHz
must have been perceptually distinguishable. The reason why
IHAPS apparently failed to obtain a similar parameter setting
at 2 kHz in the two tests for subject 2, may be because
a parameter change at 2 kHz given the other parameters
results only in subtle changes of the HA output around the
hearing threshold level (HTL) of subject 2 as seen in Fig. 11a.
This demonstrate that internal dependencies among parameters
in the HAs obviously need to be included in the analysis
of the reproducibility. Some subjects apparently had an IRF
with large regions with nearly identical responses as a results
of their HTL in combination with the HA processing for
different parameter settings. This was actually observed in
the two dimensional case for several subjects including the
example shown in Fig. 8. Furthermore, one might speculate
that the HTL and the HA processing might have imposed
multiple optima of the IRF with equal responses, such that
the corresponding settings would have equally been preferred.
With all the above in mind, it is fair to conclude that the
reproducibility is acceptable overall, with subjects 4, 11 and
13 being the exceptions.

An interesting effect is observed from the bottom left figure
of Fig. 10. The mean and standard deviation of the difference
in the obtained optimal settings between test 1 and test 2 show
a linear increasing tendency as a function of frequency. Three
possible explanations (and likely a combination) are: First,
after the first test the majority of subjects explained that they
primarily preferred a full-bodied and soft sound as opposed
to a thin and metallic sound. This indicates that at least in
the beginning - i.e., a large part of test 1 - subjects tended
to focus on the low-mid frequency regions, but might have
been less aware of the subtle details at higher frequencies.
Apparently, subjects were not aware of these details until later
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and possibly not until the second test. This suggests a training
effect. Secondly, several subjects appeared to get tired and
thus distracted during the second test, whereby they might not
have noticed the subtle details at higher frequencies. From the
results, the latter seems to be the case for subject 11 and 13.
A third and indeed possible explanation is that the majority
of the subjects had high-frequency sloping hearing losses. As
a consequence, the SPL at higher-frequency was below the
HTL for the majority of the settings. As a result, IHAPS
might have learned that the high-frequency parameters had no
influence on the IRF. IHAPS should eventually be able to learn
that actually a limited range of these parameters (the settings
above the HTL) imposes a perceptual differences. However,
this requires that the active learning criterion queries settings
within this limited range. This is not its main priority in the
beginning with no assessments indicating that these parameters
are important. The effect may explain the output difference
around 2 kHz for subject 2 (see Fig. 11a). Obviously, this
emphasizes the importance of restricting the parameter range
of the HA devices to a reasonable range, where settings are
perceptually different.

V. CONCLUSION AND FUTURE DIRECTIONS

An interactive hearing-aid personalization system (IHAPS)
based on a flexible non-parametric Gaussian process model
and on an efficient sequential design is proposed. For ten HI
subjects it was demonstrated that the system obtained a suc-
cessful individual setting of a set of HAs controlled by either
two or four parameters within ten to twenty user assessment—
equivalent to a 5-10 min. session length. The subjects sig-
nificantly preferred their individual setting provided that they
could distinguish between the different settings. An obvious
pitfall occurs if no perceptual difference exists for a large range
of settings. Furthermore, listener fatigue and training effects
appeared to noticeably influence the consistency of subjects
and should be investigated more systematically.

In time, IHAPS may potentially be applicable in clinics to
help both the hearing-care professional and the client to fine-
tune hearing aids more efficiently and precisely to the client’s
preferences. To get there, the reproducibility of an individual
setting should be further studied. Furthermore, the stimulus
(music) was kept constant during the experiments; hence, the
obtained settings may not generalize to other similar stimuli
(music pieces). In a more realistic scenario, the stimulus used
in each assessments could be randomly chosen from a library
of music, speech and other sound types. Thereby, additional
uncertainty is introduced, but an individual setting obtained
with IHAPS in this manner has a better chance to generalize
to for instance the music context in general.
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