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Resumé

Der bliver i denne rapport udforsket muligheden for at lave effektiv tredi-
mensionel tomografisk rekonstruktion på General Purpose Graphical Processing
Units (GPGPU). Tomografi er en teknik til at rekonstruere det indre af et objekt
ud fra målinger af absorberet energi fra projektioner taget i forskellige vinkler.
Når dette udregnes på en computer betegnes det som Computed Tomography
(CT).

Dette vil ofte lede til et underbestemt ligningssystem, der derfor er yderst føl-
somt over for støj. Arbejdet i denne rapport fokusere på implementeringen af
en familie af metoder som indeholder naturlig regularisering i form af antallet
af iterationer.

Der blev taget udgangspunkt i en open source pakke kaldet ASTRA, som in-
deholder flere implementeringer til at lave tomografisk rekonstruktion på GPG-
PU’er. Én af metoderne derfra (SIRT) kan betragtes som et specielt eksem-
pel på de metoder som rapporten fokusere på. Ved at bruge de metoder som
er beskrevet i denne rapport er det muligt at lave tomografisk rekonstruktion
væsentligt hurtigere en med den mest sammenlignelige metoder fra ASTRA.

Implementeringen blev lavet i CUDA C og C++, og indeholder wrappers som
eksponere koden til matlab.



Summary

This report investigates the possibility of making effective three dimensional
tomographic reconstructions on General Purpose Graphical Processing Units
(GPGPU). Tomography is a technique to recreate the interior of an object,
from measurements of absorbed energy from projections taken at different an-
gles. When these calculations are done on a computer it is called Computed
Tomography (CT).

This will often lead to a underdetermined system of equations which therefore
is highly influenced by noise. The work described in this report will focus on the
implementation of a family of methods which contains a natural regularisation
in terms of the number of used iterations.

As a starting point there was used an open source package called ASTRA which
contains multiple methods for doing tomographic reconstructions on GPGPU’s.
One of these methods (SIRT) can be considered as a special case of the family of
methods this report is focusing on. Using the methods described in this report it
is possible to make faster tomographic reconstructions than by using the similar
method from ASTRA.

The implementation was made in CUDA C and C++ and contains wrappers
which exposes the code to Matlab.
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Chapter 1

Introduction

3D image reconstruction is a technique for reconstructing the interior of an ob-
ject from measurements of its projections at different angles. The mathematical
theory behind this technique is called tomography, and when performed on a
computer it is referred to as computed tomography (CT)[4].

A projection is a detector image of the interaction between the object and
radiation (X-ray, electronic, or optical) that is made to propagate through it.

CT is used in a wide range of applications such as biomedical imaging [6],
geophysical prospecting [13], materials science [16], and probably the most im-
portant and well-known example; the medical CT-scanner [17].

CT image reconstruction techniques can be classified roughly into two cate-
gories; analytical reconstruction methods and algebraic iterative reconstruction
methods. The analytical methods, such as filtered back projection (FBP) in 2D
and the Feldkamp-Davis-Kress (FDK) method in 3D [8] are based on analytical
formulas and can be either exact or approximated. The algebraic methods are
based on work from the Polish mathematician Stefan Kaczmarz [11] and the
Italian mathematician Gianfranco Cimmino [5], who independently developed
iterative algorithms for solving linear systems. In 1970 Gordon, Bender and
Herman rediscovered Kaczmarz’s method applied in medical imaging [18] and
called the method the algebraic reconstruction technique (ART). Another class
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of algebraic iterative methods, of which Cimmino’s method is an example, are
called simultaneous iterative reconstructive techniques (SIRT) [1].

CT scanners of today use analytical reconstruction techniques. These techniques
are computationally relatively cheap so that they can deliver real-time updated
images, but they also require a large number of projections for a good recon-
struction. This means, that the achievable image quality is directly related to
the x-ray dose given to a patient, and in order to obtain an image of sufficiently
high quality, a relatively high x-ray dose must be used.

Algebraic iterative methods have the ability to achieve improved imaging quality
over analytical methods in terms of noise and artefact reduction and contrast
enhancement, particularly for low-dose CT [17]. The improved images from
algebraic techniques, however, come at the price of a much higher computational
cost. Motivated by an increasing focus on the potentially harmful effects of
CT-scans, and also the excess of data produced with many projections, e.g., in
particle accelerators, a recent trend in CT research has been to develop algebraic
techniques for modern computer architectures [19]. In particular, the approach
of blocking the SIRT algorithm [7], e.g., such that each projection is handled
separately (the so-called SART algorithm [2]) has proven to be advantageous.

This project is devoted to the development and implementation of fast block-
algebraic iterative reconstruction methods to perform 3D image reconstruction
using general purpose graphical processing units (GPGPUs).

We will adopt and expand an existing state-of-the-art package ASTRA for 3D
image reconstruction in CUDA. This package will be our starting point and the
key reconstruction routines of will be analyzed and benchmarked of different
platforms and phantom test problems. We combine the two iterative methods
ART and SIRT by following the approach for an efficient multi-threaded CPU
implementation described in [19]. Finally, we will describe the design choices
we have made in order to achieve our own best implementation and compare
the performance of the different methods.

1.1 Structure of the Thesis

The aim of the current thesis is to present the step-wise development of our
CUDA C block-iterative algebraic reconstruction implementation and compare
its performance to the existing package ASTRA for different problem setups.

The chapters of the thesis are organized in the following way:



1.1 Structure of the Thesis 3

• Chapter 2: In this chapter we describe two main algebraic algorithms
SIRT and ART for dealing with tomography, and their advantages and
disadvantages, concerning convergence and parallelism

• Chapter 3: We describe the details of the test problem setups and the
hardware specifications of the platforms used in this thesis.

• Chapter 4: In the next chapter we briefly describe key issues of the CUDA
programming model and memory types and texture usage. For rigorous
details on CUDA, however, we refer to the CUDA C best practices guide
[14] and CUDA C programming guide [15].

• Chapter 5: In this chapter we present some basic benchmark test of the
memory reads from textures in order to evaluate them regarding the ran-
dom access pattern and compare to the device memory.

• Chapter 6: We introduce in this chapter ASTRA and analyze the existing
fastest GPU implementation for 3D reconstruction.

• Chapter 7: This chapter discusses the first steps to make a new block-
algebraic implementation based on ASTRA’s 3D SIRT implementation.

• Chapter 8: This chapter describes the best implementation we could
achieve and presents the performance results for the different test cases.

• Chapter 9: Here we will compare the methods in terms of total computing
time.

• Chapter 10: Conslusion and future work.

To produce the test results, examples and figures a large number of scripts
and code files have been created in MATLAB, C++, and CUDA C. These have
been run using the following software: MATLAB R2013b (8.2.0.701), gcc version
4.8.1, and CUDA toolkit 5.5.



Chapter 2

Tomography

Tomographic reconstruction deals with the problem of reconstructing a density
map of a given domain Ω from a finite set of projections where a known amount
of energy is absorbed through the domain. In the continuous case the absorbed
energy is expressed in terms of a transformation called the Radon transform [8],
which maps a line L ∈ Ω into a real number, i.e. L → R.
Let d(x) denote the density at the point x ∈ Ω then we can define The Radon
Transform for any line L ∈ Ω as:

Rd(L) =

∫

x∈L

d(x)ds

The rays can be travelling in different configurations. We will focus on a con-
figuration called parallel beam where all the rays are travelling in parallel with
each other. Another method worth mentioning is called cone beam where all
the rays a emitting from a single point and is projected onto a two dimensional
plane.

In practice we will be dealing with a discrete domain Ω, which we will assume is
uniformly spaced. We will refer to the elements in the projection as pixels, and
the elements in the domain as voxels. The individual voxels will be arranged in a
sequential matter. This means that for a test case of size: sizeX×sizeY×sizeZ
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the element at location i, j, k ∈ Ω is found as:

x(i+ j · sizeX + k · sizeX · sizeY ) = x(i, j, k)

The p projections of size sizeU × sizeV will be stored in a vector b is a similar
fashion.

Instead of working directly with the Radon transform, we will be dealing with
a linearised approximation A, which we will call the projection matrix. Dif-
ferent approximation schemes will be described in section 2.5. Using such an
approximation, we can model the system as :

Ax = b, A ∈ R
m×n, x ∈ R

n, b ∈ R
m

In all real life applications the projections are measured by some physical in-
strument, and is subjected to small errors ǫ.

Ax = b + ǫ (2.1)

There are many different methods for solving this type of problem, such as
Filtered Back Projection (FBP) and Feldkamp-Davis-Kress (FDK) [8], least
squares, bfgs. But if x is larger than b, these methods become highly influ-
enced by the noise. We will instead seek to find a regularized solution.

2.1 Semiconvergence

In this section we will describe semiconvergence as a concept.

Two classic methods for solving (2.1) will be described in section 2.2 and 2.3.
They are both iterative methods, and the regularization is controlled by the
number of iterations. If the noise ǫ is not zero, they both have a special type of
convergence called semiconvergence.

Semiconvergence can be explained with a test problem with a known solution x̂.
If there is semiconvergence the approximation xk converges towards a fixed point
x̃, but at some iteration we achieve a better approximation to the true solution
x̂ than the limit point x̃. So for some, i ∈ N we will see that ‖x̂−xi‖ < ‖x̂− x̃‖.

The semiconvergence property is illustrated in figure 2.1
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0 i
0

Iterations
E

rr
or

Figure 2.1: Illustration of semiconvergence. The red dot illustrates the best
approximation, which is found at the i’th iteration.

2.2 SIRT

Simultaneous Iterative Reconstruction Techniques (SIRT) are a family of meth-
ods which are parallel in the individual equations, that is that in each iteration
all the equations in A can be used at the same time. This mean these algorithms
are parallel in the sense of a matrix vector product. These algorithms make use
of two extra matrices T ∈ R

n×n and M ∈ R
m×m, and a relaxation parameter

λ. The algorithms is shown in Algorithm 2.1.

Algorithm 2.1: SIRT

x
k
= PC

(

x
k−1

+ λTA
T
M

(

b− Ax
k−1

))

These methods contains a fair level of parallelism, but compared to other meth-
ods they require many iterations before a good approximation is achieved. This
means that even though the parallelism is well suited for the architecture of a
GPGPU, the sheer number of iteration might cause the overall reconstruction
time to be too high.

Different choices of T and M will lead to different methods, but as it is shown in
[19], they all behave very similar as long as λ is set properly. We will therefore re-
strict ourselves to use, Cimmino weights, where T = I and M = diag(1/‖ai‖22),
and ai denotes the i’th row in A.

We note that SIRT can refer to slightly different version in the literature, and
that we refer to the method used in [19].
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2.3 ART

Algebraic Reconstruction Technique (ART) is a reconstruction method which
only uses a single row ai of A in each update of the volume x. So in each
iteration we will make m updates. This means that the parallelism in this
method is restricted to the parallelism of a vector product. The algorithm is
shown in Algorithm 2.2.

Algorithm 2.2: ART

x
k,0

= x
k−1

f o r i in 1 to p

x
k,i

= PC

(

x
k,i−1

+ λ
bi−aT xk,i−1

‖ai‖
2

2

ai

)

end

x
k
= x

k,p

The ART algorithm has an asymptotic convergence if 0 < λ < 2, and is known
for having a fast convergence rate [19].

2.4 Block iterative methods

We wish to combine the two methods, ART and SIRT, in a way that keeps the
fast convergence from ART and still contains a high level of parallelism. To do
this we will divide A into p sub matrices Ai, i ∈ {1, · · · , p} such that each sub
matrix contains some of the rows from A. We will divide b into sub vectors in
the same manner, this means that A and b can be written as:

A =











A1

A2

...
Ap











, b =











b1
b2
...
bp











, Aℓ ∈ R
mℓ×n, ℓ = 1, . . . , p

We then combine the methods such that we make sequential updates, from each
block, using SIRT updates. This algorithm can be seen in Algorithm 2.3.

A special case of this method is call SART [2]. In this method the number of
blocks equals the number of projection angles. We note that if the number of
blocks is set to one, the method is equivalent to the SIRT method.



2.5 Approximations of the projection matrix 8

Algorithm 2.3: BLOCKIT

x
k,0

= x
k−1

f o r i in 1 to m

x
k,i

= PC

(

x
k,i−1

+ λTA
T
M

(

b−Ax
k,i−1

))

end

x
k
= x

k,m

2.5 Approximations of the projection matrix

We will now describe three different ways to make a linear approximations of the
Radon Transformation. The first method is described because it is a widely used
method, and because it is the one used in [19]. The two following methods is
used by ASTRA and those we will make use of in our implementations. Further
approximations can bee seen in [9].

General for all the methods is that each ray will define a single row ai in A, and
we will use vectors u and v to span the projection plane.

2.5.1 Line length method

The first approximation scheme we will describe is called line length. Here the
elements ai,j in A is set to be the distance each ray is travelling inside each
voxel. This is illustrated in figure 2.2.

Figure 2.2: Illustration of the line length approximation scheme. The elements
ai,j in a row ai is set to the length the ray travels through each
voxel.
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This method contains a lot of branching, in order to determine which voxels are
traversed by a ray. This is not a problem for a CPU implementation, but it is
not efficient on a GPGPU.

2.5.2 Joseph’s method

The second method was introduce by Joseph[10], and it is the one used in
ASTRA when they want to use A as Ax (forward projection). In this method
we find the dominant direction (the axis in which the ray are travelling fastest).
We then traverse the volume in this dominant direction. In each step we set the
elements ai,j in ai to be the weights used in linear interpolation between the
neighbouring voxels.

This is illustrated in figure 2.3

Figure 2.3: Illustration of the Joseph’method in 2d, imposed with two differ-
ent boundary conditions. The method trace a ray through the
volume with unit steps and then sets the elements in a row ai
of A, to the bilinear interpolation weights of the neighbouring
voxels. Left image has zero padded element surrounding the vol-
ume, which effectively increases the volume with a half voxel to
each side,expanding boundary. Right image sets all values to zeros
which have passed the center of the bordering voxels, clamping
boundary.

It is possible to impose different boundary statement on this method. In ASTRA
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they zero-pad all around the volume, which means that given a point just out
side the volume, they will interpolate between zero and the nearest points in
the volume, see figure 2.3, we call this method expanding boundary condition.
A different approach could be to set the points that have passed the center of
the boundary voxel, to zero, because it is not contained in the volume. We will
refer to this as clamping bounday condition. This second approach is cheaper
in terms of memory footprint, but it decreases the effective size of the voxels
on the boundary see figure 2.3. We will make use of both boundary conditions
later on in the report.

There is a third simple condition which could have been utilized, where points
near the boundary is interpolated to a zero element if the interpolating point is
inside the volume. But we will not utilize this method.

2.5.3 Transposed method

The final approximation is used in ASTRA when they use it translated as AT b.
They do not state explicit that they use a different version for back projection,
but in [9] they augment for the use of a voxel driven approach in the back projec-
tion. The method calculates the projection of each voxel center in the projection
plane, and then make a linear interpolation between the nearest pixels.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
1

1.5

2

2.5

3

3.5

4

4.5

5

X

Y

Figure 2.4: Illustration of the transposed method, which is an approximation
scheme for the transpose of the projection matrix, i.e. AT .

Again it is possible to impose different boundary conditions on this method.
Again ASTRA has chosen to zero pad along the boundary, so if the projection
is defining a point just outside the projection plane ASTRA will interpolate with
zero. We will again refer to this kind of boundary condition as an expanding
boundary condition. Another way would simply discard the projection because
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it is not in the projection plane, like in the Joseph’s method. We will use both
methods later in the report.

2.5.3.1 Projection of a voxel into the plane

We will now describe how a voxel is projected into the projection plane. We
will do this by finding the projection of the voxel along the v-vector direction,
and note that the projection along the u-vector is done in a similar fashion.

Assume that the projection direction (typically the direction of a ray) is given
by f = (rayX, rayY, rayZ).

For a given plane with normal direction r which intersects a point x0 we can
compute the distance from a point x to the plane plane multiplied with the
length of the normal vector as:

r(x − x0) = ‖r‖ ‖x− x0‖ cos(r, x− x0) (2.2)

We will first span a plane between f and u, and define a unit normal vector to
this plane as:

n =
u× f

‖u× f‖

And then project v into this normal direction n, which is given by

vn =
vn

‖n‖2
n

We want to find a number c such that x is projected into cv and note that this
number can be computed from equation 2.2 by introducing a vector r with same

direction as vn and the length
1

‖vn‖
. This vector can be computed as:

r =
vn

‖vn‖2
=

vn

‖n‖2
n

∥

∥

∥

vn
‖n‖2n

∥

∥

∥

2
=

vn

‖n‖2
n

‖vn‖2

‖n‖4 ‖n‖2

=
vn

‖vn‖2
n =

n

vn
=

f × u

‖f × u‖

v(f × u)

‖f × u‖

=
f × u

v(f × u)
(2.3)
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So we finally have that:

c = r(x − x0) = r · x− r · x0 = r · x− d, d = −r · x0

This means that the projection of a voxel, into the v-vector can be done in terms
of a dot product and a subtraction.



Chapter 3

General test settings and

hardware specifications

In this chapter we will describe the general test setups and the hardware plat-
forms used to test the implementations.

There will be used two general test setups, and these will be described first.

3.1 Test setup 1

The first test setup consists of a volume of N3 = 2563 voxels, p = 133 pro-
jections with m2 = 2562 pixels. This test setup calculates 133 ray directions,
using Lebedev quadrature [12]. This ensure that the directions are uniformly
distributed over the unit sphere.

We then span a projection space perpendicular to the ray direction. We choose
a basis for the projection space, as a u and a v vector which we calculate using
Rodrigues’ Rotation Formula [3].

This test setup ensures that there is used a high variety of projections, in terms
of projection angles and orientation of the projection space. This is illustrated
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in figure 3.1 where the u and v vectors are shown emitting from the ray vector.
In figure 3.2 we see we have segmented the ray directions, by their dominant
direction, and shown the u and v vectors projection into the space perpendicular
to the dominant direction.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1  

X

 

Y
u
v

Figure 3.1: Illustration of the projection spanned with Lebedev quadrature,
and the projection space which is calculated by Rodrigues’ Rota-
tion Formula.

−1 −0.5 0 0.5 1
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−1−0.500.51
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Figure 3.2: Illustration of the projections used in test setup 1, segmented into
their dominant directions. The u and v vector is then projected
into the space perpendicular to the dominant direction.

3.2 Test setup 2

The second test is done in three different sizes, namely:

• Small test consists of a volume of size 1283 and 66 projections each of size
1282
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• Medium test consists of a volume of size 2563 and 133 projections each of
size 2562.

• Large test consists of a volume of size 5123 and 300 projections each of
size 5122.

The projection angles are set from # projections, uniformly distributed numbers
t in the interval [0, π], where :

xy-plane

f =





sin(t)
− cos(t)

0



 , s =





0
0
0



 , u =





cos(t)
sin(t)
0



 , v =





0
0
1





xz-plane

f =





sin(t)
0

− cos(t)



 , s =





0
0
0



 , u =





cos(t)
0

sin(t)



 , v =





0
1
0





yz-plane

f =





0
sin(t)

− cos(t)



 , s =





0
0
0



 , u =





0
cos(t)
sin(t)



 , v =





1
0
0





This test setup gives less variation in the u − v plane for neighbor directions
compared to test setup 1.

3.3 Hardware

We use two computer platforms for testing, these can be seen in table 3.1.

We have utilized NVIDIA’s test script to measure the effective memory band-
width for different copy operations. This result is seen in table 3.2.
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Table 3.1: Hardware specifications

gpulab03 gpulab06
OS Ubuntu 10.04.4 LTS Ubuntu 10.04.4 LTS

CPU: Name: Intel Core i7 CPU 930 Intel Core i7-3820
Architecture: x86_64 x86_64
CPU op-mode(s): 32-bit, 64-bit 32-bit, 64-bit
CPU(s): 8 8
Thread(s) per core: 2 2
Core(s) per socket: 4 4
CPU socket(s): 1 1
NUMA node(s): 1 1
Vendor ID: GenuineIntel GenuineIntel
CPU family: 6 6
CPU family: 6 6
Model: 26 45
Stepping: 5 7
CPU MHz: 2801.000 3600.000
Virtualization: VT-x VT-x
L1d cache: 32K 32K
L1i cache: 32K 32K
L2 cache: 256K 256K
L3 cache: 8192K 10240K

GPU 0 Name Tesla C2050 Tesla K20c
Memory 2687 MB 4800 MB
Multiprocessors MP 14 13
CUDA Cores pr MP 32 192
CUDA cores 448 2496
GPU Clock rate: 1147 MHz (1.15 GHz) 706 MHz (0.71 GHz)
Memory Clock rate: 1500 Mhz 2600 Mhz
Memory Bus Width: 384-bit 320-bit
L2 Cache Size: 786432 bytes 1310720 bytes

GPU 1 Name GeForce GT 240 Tesla K20c
Memory 1023 MB 4800 MB
Multiprocessors 12 13
CUDA Cores pr MP 8 192
CUDA cores 96 2496
GPU Clock rate: 1340 MHz (1.34 GHz) 706 MHz (0.71 GHz)
Memory Clock rate: 1700 Mhz 2600 Mhz
Memory Bus Width: 128-bit 320-bit
L2 Cache Size: 1310720 bytes
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Table 3.2: Results from NVIDIAs test function "bandwithTest.cu".

gpulab03 gpulab06
host to device 5224.6MB/s 5527.0MB/s
device to host 4357.5MB/s 5018.2MB/s
device to device 103774.8MB/s 144043.5MB/s



Chapter 4

CUDA

Graphical Processing Unit (GPU) evolved from a large customer demand to
make high resolution of rendering in two and three dimensions. These tasks
are very computational demanding, but highly parallel. This made the GPU’s
to evolve to especially be efficient to handle embarrassingly parallel or at least
highly parallel workload efficiently. As the GPU’s grew in processing capabil-
ity it became clear that this computational power could be utilized to also do
computations as a General Purpose Graphical Processing Unit (GPGPU). This
came from a idea that all the computational powers of the computer should
be utilized, and made NVIDIA develop a vendor specific package called Com-
pute Unified Device Architecture (CUDA), which was first introduced in 2007.
CUDA is an extension to the C programming language, and makes it possible
for programmers to utilize the processing power of a NIVDIA graphic card.

All CUDA programs consists of two parts. A part that runs on the Central
Processing Unit (CPU) which is called the host and a parts that runs on the
GPU which is called the device. The host code is controlling the entire program
by invoking different parts of the device code at the appropriate places.

The device code is managed through a grid system, where the threads are
grouped into blocks which is scheduled to run on the Multiprocessors (MP).
The threads within a block can run in parallel on one multiprocessor. The MPs
are designed to execute hundreds of threads concurrently, and it divides each
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block into warps of 32 threads. The individual threads within a warp are called
lanes. The MPs contain three types of caches, namely a constant cache, a tex-
ture cache and a cache shared between the shared memory and L1 cache [20].
These memory types will be described in the following sections.

All the data that is needed for computations, must be transferred through the
CPU and then through the PCI-e port to the Dynamic Random Access Memory
(DRAM) on the graphic card, which is the main working memory on the GPU.
This memory transfer can be a bottle neck because it has a low bandwidth of
8GB/s which makes it the slowest bandwidth in the system. The transfer rates
and typical latencies within the GPU is illustrated in figure 4.1. Because of the
low bandwidth on the PCI-e port, it is beneficial to minimize the data transfer
between the host and the device.

Figure 4.1: Illustration of the memory layout on the MPs, including transfer
rates and typical latencies between the different types of memory.
These numbers correspond to gpulab03 in table 3.1.

A function which can be executed to run on the GPU is called a kernel. It is
possible to make different kernels run concurrently on the GPU using streams.
If there is created multiple streams, a kernel call or a copy operation can be set
to run on different streams. These streams will then be delegated to run on the
MP. It is possible to make synchronizations between the streams if there are
some dependences that require so.
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4.1 Memory types

On the GPU there is a set of different types of memory blocks, besides the
DRAM. We will in this section present 5 types of memory and their properties.

4.1.1 Device memory

All the data in the RAM memory, is visible to all the blocks, and data requests
are cached in a L1 cache on the MPs.

It is an advantage to use a one dimensional data layout. Special care should be
taken if the data is needed in grid-wise fashion, such as with an volume or a
projection. This follows from the way the device memory is accessed within a
thread block. The device memory is accessed in memory transactions of a fixed
size determined by the specific GPU architecture. Only segments whose first
address is a multiple of the transaction size can be read in a single transaction.
This is explained more detailed in [15, Section 5.3.2].

This transaction size has therefore an implication on how 2D and 3D data should
be stored in a one dimensional device memory. To ensure the best alignment it
is recommended to use pitched memory, which is memory with padded elements,
in the first dimension, to meet this alignment issue. The new size of the first
dimension is called the pitch. In figure 4.2 is shown an illustration of the memory
use of 2D memory which is allocated in this fashion.

N

pitch

M

Figure 4.2: Illustration of typical the memory consumption for a domain of
size N ×M , when using pitched memory. Here the pitch is illus-
trated in elements, it is normally given in bytes.

Pitched memory can be allocated by the CUDA function cudaMallocPitch()
which takes a pointer to the data and a size_t element in which the pitch size
is returned. It can also be stored in a cudaPitchedPtr type, which contains:
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• size_t pitch, given in bytes

• void * ptr, contains a pointer to the data. To use this pointer it is neces-
sary to recast it as a pointer to the data type.

• size_t xsize, Logical width of allocation in elements

• size_t ysize, Logical height of allocation in elements

Given a 3D data set of size X,Y, Z which is contained in a array with a
pointer ptr to pitched memory of floating point precision. Then the retrieve
the (i, j, k)’th element from the pointer, one would have to do:

ptr

[

i+ (j + k ∗ Y )
pitch

sizeof(float)

]

. (4.1)

A cudaPitchedPtr can be allocated with the CUDA function cudaMalloc3D().
This takes a cudaPitchedPtr pointer and an extend element which contains the
size of the desired element.

To achieve the best performance it is important that the threads within a warp
is accessing neighbouring elements, this allows the transactions to be collected in
a minimal number of cache lines. A cache line is 128 bytes and is the minimal
size of cache memory that will be affected during a transaction. Such access
pattern where neighbouring threads is accessing neighbouring elements is called
coalesced.

4.1.2 Shared memory

Shared memory (SM) is residing in an on-chip 64KB memory block which is
divided between SM and the L1 cache. The memory is divided such that there
is 16KB for either memory type and 48KB to the other type.

The shared memory is shared between a block, and can be used to communicate
between threads within a block. Because it is fast, and visible for the threads
within the same block it makes sense to think of it as a manually managed cache
memory.

There is a small setback regarding synchronization, because all threads has to
be "ready" for it to be used. This require that there is set a synchronization
point using _syncthreads() which only affects threads within the same block.
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4.1.3 Constant memory

The constant memory is cached memory which is visible to all the blocks. It is
read only, which means that the memory has to be set from the host. Because
it is cached and shared over all blocks it is ideal to store common parameters
that is used by all blocks.

4.1.4 Texture memory

Textures was build into GPUs to make more realistic looking objects. These
objects could as an example be rendered using re-sampling where the colours is
calculated using a simple interpolation. In general the texture hardware consist
of a computational pipeline which can be modified to use a set of the following
elements:

• Scale normalized texture coordinates

• Perform boundary computations

• Convert texture coordinates to addresses with 2D or 3D locality

• Fetch 2, 4 or 8 texture elements for 1D, 2d or 3D textures and linearly
interpolate between them

This pipeline is taken from [20].

Textures were introduced to CUDA because they allows the programmer to
utilize an extra cache memory, and to use the elements in the pipeline. So
textures can be set up in several ways, which utilizes different parts of the
pipeline but they are only able to do read only operations.

There is designed a data structure called cudaArray which is optimized for 3D
spatial locality, through some unspecified space filling curve [20]. This structure
is designed to be bound to textures or surface memory.

It is possible to bind one, two or three dimensional data to a texture, and for one
and two dimensional data it is also possible to bind sequential device memory
such as pitched memory. But three dimensional data has to be transferred into
a cudaArray, before it is bound to a texture.
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4.1.5 Surface memory

Surface memory uses the same cache as the texture memory. It can be used
for both read and writhe operations, but it dos not allow for the use of the
interpolation as the texture memory do. Like the texture it can be bound to a
cudaArray, where is has to be specified that is for surfaces. This means that if
the memory reads do not follow the correct access patterns for device memory,
but has some locality in the fetches, there can be achieved a higher bandwidth
[15, Section 5.3.2].



Chapter 5

Benchmarking CUDA

memory reads and copy

operations

In this chapter, we present some benchmark tests of CUDA memory reads and
writes. These operations are crucial for the algorithms considered later in the
thesis in terms of performance. The memory access patterns required when
tracing a ray through a 3D object of voxels corresponds to a strided accesses in
sequential memory and depends very much on the ray direction. Here we study
general strided memory accessing when using textures and compare to similar
accesses in regular device memory. We will also make benchmark tests of the
required cudaMemcpy3d() CUDA function which will be used for copying data
between host and device, and between device and device.

5.1 Memory reads

We start by making tests of the texture reference. Since we will be using the
linear interpolation later on, this will be activated in all the following test.
We will test the one and two dimensional textures on gpulab03, and the three
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dimensional texture on gpulab06, described in table 3.1.

5.1.1 One dimension

First we will examine how the one dimensional textures compare to device mem-
ory and shared memory regarding the random access pattern. To test this we
will invoke a single block where each lane makes a number of memory reads,
and the reads are separated by a stride. A stride is a jump which skip a number
of elements. The memory reads will be arranged such that the reads are as coa-
lesced as possible. This is done by making the memory reads by each lane jump
with a factor blockSize ∗ (stride + 1). The memory read pattern can be seen
in figure 5.1. The test is designed such that the memory is only read through a
single time. This means that the total size of memory will increase as a function
of the stride. This will not effect the runtime because the allocation and copy
operation is separated from the timing.

 

 

threadId.x = 0
threadId.x = 1
threadId.x = 2

Figure 5.1: Illustration of the memory reads, with a stride 2 and a block size
3.

By increasing the size of the stride we will get an increasing number of cache
misses, which will illustrate the influence random access has to the overall run
time. We have run this test with different number of threads per block, and the
result for 1 and 32 threads can be seen in figure 5.2. We note that in this test
the elements are put into the shared memory and used immediately thereafter
without any synchronization within the warp.

We see that for a low stride, the linear memory and the shared memory are faster
than textures, but if the number of threads is high enough, the textures perform
better when the stride is high since there are more cache misses. Because the
shared memory is performing better for low strides, there will be some examples
where there are some randomness to the access pattern, but where the shared
memory outperforms the texture. The crucial point here is if the elements can
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Figure 5.2: Benchmark test of one dimensional memory reads using L1 cache,
shared memory and textures with and without the use of cudaAr-
ray. In the left figure we used a single thread and in the right figure
we used 32 threads. Both tests are measured in milliseconds. This
is tested on gpulab03.

be put coalesced into the shared memory, then we will expect that a shared
memory approach will outperform the texture.

5.1.2 Two dimensions

When testing the two dimensional textures we will be focusing on the directions
in which the data is traversed. And we will also test the performance compared
to the number of threads within a block.

In order to test if the performance of the texture is influenced by which direction
the data is traversed, we have set up a texture map and make data reads in the
four directions, that is row wise from top and bottom, and column wise from
left and right. The result is shown in figure 5.3, where we see that the spatial
locality preformed by the space-filling curve is performing equally well in all
four directions. We also note that the performance performance achieved by
the texture which is bound to device memory is very comparable the the one
bound to the cudaArray. This is very surprising because the spatial locality
should be achieved by the index system within the cudaArray, and there should
therefore be a difference in the number of cache misses on the device memory
for the different angles. We have made these test with strides op to a size of 5
elements which gave the same result.

Since it is common to see an influence of the number of threads within a block
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Figure 5.3: Benchmark test of the number of memory reads through a 2D
texture in the four different directions. Dir0 is increasing in the
second entry, Dir1 is increasing in the first entry, Dir2 is decreasing
in the second direction and Dir3 is decreasing in the first direction.
The left image is bound to linear memory , and in the right it is
bound to a cudaArray. This is tested on gpulab03. All the tests
is measured in milliseconds.

on the performance, as in the one dimensional case, we also test this for the
two dimensional case. The results are shown in figure 5.4. From this we see
that there is a significant influence by the number of threads within a block
and that this behaviour is the same for all four directions when bound to a
cudaArray. Again we note that the difference in performance by the texture
bound to device memory and the cudaArray is surprisingly small, but we do
note a small variation when the number of threads is around 176. For both
bounding types we note that there seems to be an influence within the number
of warps that the threats are divided into. This indicates that the number of
threads within a block should be a multiple of 16 or 32, which coincide with a
warp or a half warp. This is a very common dependence in CUDA programming,
and explains some of jumping behaviour seen in figure 5.3.

5.1.3 Three dimensions

To test the three dimensional textures we will use a kernel, which traverse the
whole data structure in either the X-axis, Y -axis or the Z-axis. This is done by
taking a direction vector f and finding the dominant direction of f , i.e. the axis
containing the largest absolute value of f . Then we normalize f with respect
to the dominant direction. We then traverse the data in a two dimensional grid
perpendicular to f in the dominant direction, where each element in the grid
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Figure 5.4: Benchmark test of the influence the number of threads within a
block has on memory reads through a 2D texture. The test is done
in the four different directions. Dir0 is increasing in the second
entry, Dir1 is increasing in the first entry, Dir2 is decreasing in the
second direction and Dir3 is decreasing in the first direction. The
left image is bound to linear memory , and in the right it is bound
to a cudaArray. All the tests is measured in milliseconds.

represent a thread. This ensures that all threads makes the same number of
memory reads. All the elements that are read outside the data is set to zero by
the texture reference, the result is shown in figure 5.5. This test is made from
test setup 1.

Figure 5.5: Bandwidth test texture reads through a 3D domain of 2562 ele-
ments, as influenced by the direction. There is used a total of 2562

threads divided into blocks of size of (16× 16). This is tested on
gpulab06

From figure 5.5 it is clear that there is a difference between the different di-
rections. The best directions has a speed up of around a factor 2.4 compared
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to the worst directions. More surprisingly we note that for rays travelling in
a direction close to the a − axis we see that a small change in the direction
leads to a noticeable change in the performance. This change is related to the
orientation of the two dimensional grid in which the rays are placed.

5.2 Copy operations

We will be using the cudaMemcpy3D function later on to copy a volume between
the host and the device, and between different data structures on the device.
We are therefore interested in measuring the performance of this function.

We will first test the performance in copying data from linear memory on the
CPU into pitched memory on the GPU. There is a max bandwidth on the PCI-e
port on 8 GB, for copy operations between the host and device, so we would
expect a transfer rate below this. We will only be testing this from host to
device and the result can be seen in figure 5.6, along with an interpolated line
which estimates the bandwidth.

From figure 5.6 we see that the estimated bandwidth is approximately 5.16 GB/s
on gpulab03 and 5.47 GB/s on gpulab06. So for both computers it is below 8GB
as expected. Furthermore, we note using NVIDIA’s sample function "bandwith-
Test.cu" that the bandwidth for pageable memory is slightly higher than what
we achieved with cudaMemcpy3D. The results from "bandwithTest.cu" can be
seen in table 3.2. Seeing this result we would also expect a slight decrease in
the performance if we tested it from device to host.

Likewise it is of interest to see the performance on copyoperations from cu-
daPitchedPtr to a cudaArray and between to cudaArrays. The latter test is
regarding cudaArray which can be bound to a surface to one that can be bound
to a texture. The results are shown in figure 5.7 and figure 5.8. We note that
both of these test is coping elements from the device to the device.

In both cases it is copy operations internally on GPU, so we would expect a
comparable result to the result for device to device seen in table 3.2. But the
achieved result show that the performance is off by a factor 12 on gpulab03
and 16 on gpulab06 which is much less than expected. Some of this difference
could properly be due to difference in the ordering of the elements since the
elements in the cudaArray is arranged in a different order than those in the
cudaPitchedPtr. This means that the data copy can not be done coalesced.

Because the copy operation between the cudaPitchedPtr and the cudaArray
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Figure 5.6: Bandwidth test of cudaMemcpy3D, transferring form linear mem-
ory on the host to a cudaPitchedPtr on the device. We are trans-
ferring a volume with sizes N3. In the image on the left we see
time as a function of N , and in the right figure we see the time as
a function of the requested size in GB (not the pitched size). This
copy operation is copying from host to device.

is so poor, it is of interest see if there is a better performance when copying
between cudaArray’s where one can be bound to a surface and the other to
a texture. This is because it is possible to write to surface memory. If the
internally arrangement in the two cudaArray’s is similar, it should be possible
to achieve a bandwidth similar to the one seen in table 3.2 for device to device.
But the performance we have estimated in figure 5.8 is similar to the one in
5.7 and therefore off with the same factors. We conclude that if it is the copy
bandwidth which is limiting the code it would not give a speed-up by storing
the elements in a surface instead of a cudaPitchedPtr. We finally note that if the
problem with coalesced copy was the explanation for the low bandwidth between
a cudaPitchedPtr it indicates that the arrangement within the two cudaArray
types also differs.
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Figure 5.7: Bandwidth test of cudaMemcpy3D, transferring form linear mem-
ory on the device to a cudaArray on the device. We are transfer-
ring a volume with sizes N3. In the image on the left we see time
as a function of N , and in the right figure we see the time as a
function of the requested size in GB (not the pitched size). This
copy operation is copying from device to device.
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Figure 5.8: Bandwidth test of cudaMemcpy3D, transferring between a cud-
aArray which can be bound to a texture to a cudaArray which
can be bound to a surface. We are transferring a volume with
sizes N3. In the image on the left we see time as a function of
N , and in the right figure we see the time as a function of the
requested size in GB (not the pitched size). This copy operation
is copying from device to device.



Chapter 6

ASTRA and analysis of the

3D SIRT implementation

All Scale Tomographic Reconstruction Antwerp (ASTRA) is an existing soft-
ware package for tomographic reconstruction which includes functions written in
CUDA C. The package is exposed to Matlab through a set of wrapper functions
written in mex / C++, and contains implementations of different algorithms
for doing tomography in two and three dimensions. We will be focusing on the
SIRT implementation, which will be used as a starting point for our implemen-
tation of the algorithms described in section 2.4. The package is implemented
at Vision Lab which is a is a research lab of the Department of Physics of the
University of Antwerp. We will be looking at ASTRA v 1.3 and not the 1.4 ver-
sion because the release of this version was after the start of the MSc project.
All tests in this chapter is done on the gpulab06 computer described in table
3.1.

6.1 General setup

For all the implementations there is a common setup. First the volume and
the projections are set from Matlab. Once it is set, Matlab uses a handle that
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represents the geometries and the data stored on the GPU. This means that the
data is not visible in Matlab, before it is specifically called back.

Once the volume and the projection geometry is set, they can be used by one
of the implemented algorithms. This separates the algorithm, volume and pro-
jections, and makes everything very versatile.

It is possible to define the projections in different ways, and we will here be
focusing on the parallel projections. If the projection angles are to be chosen
freely, they need to be set as a matrix, where each row defines a single projection
angle. Such a row must contain

(rayX, rayY, rayZ, dX, dY, dZ, uX, uY, uZ, vX, vY, vZ) (6.1)

where ray is the direction, d is the center of the detector, and u and v are
vectors, which define the projection plane. It is also necessary to define the
number of pixels the projections contain in the u’th and v’th directions.

ASTRA stores the projections in a cudaPitchedPtr where the elements is stored
sequentially in memory and ordered as (u, angle, v). The volume is also stored
as a cudaPitchedPtr where the elements are ordered as (x, y, z). In both cases
we refer to the storage format found in equation 4.1.

6.2 SIRT

One of the algorithms implemented for three dimensional tomographic recon-
struction is SIRT, however, by examining their code it is clear that they are
referring to a slightly a different algorithm than the one we presented in Algo-
rithm 2.1.

Instead what they are doing is shown in Algorithm 6.4, where PCup
is setting

every value below a tolerance and PCdown
is setting every value above a tolerance

to the tolerance value. These operators are both optional. They use fixed weight

matrices, which is set to T = diag
(

1

‖aj‖2

)

and M = diag
(

1

‖ai‖2

)

, where aj is

the j’th row in A and ai is the i’th column in A.

A big difference between this approach and the one described in Algorithm 2.1
is that the step size λ is omitted, corresponding to λ = 1. This could have a
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Algorithm 6.4: ASTRA SIRT

x
k
= PCup

(

PCdown

(

x
k−1

+ TA
T
M

(

b−Ax
k−1

)))

large impact on the performance, and the number of iterations needed to make
a reliable reconstruction as shown in [19].

It is possible to set a flag that will alter the algorithms to use super sampling, but
in order to make tests, which are as compatible as possible with the algorithm
shown in Algorithm 2.1 we have chosen not to use these. Furthermore, we have
disabled PCdown

, and set the tolerance in PCup
to zero.

In ASTRA they do not pre compute the projection matrix A and store it, instead
they calculate the elements when they are needed. Besides saving memory, this
is also opening up for a design choice. The first possibility is to track a single
ray through the volume and make the updates as it traverse the volume, which
is called a ray driven approach. The second approach is to go through each
voxels in the volume, and then make the update according to the rays which
enters the voxel. This is called a voxel driven approach.

The people behind ASTRA has in [9] advocated for the use of different ap-
proximations for the operation FP (x) = Ax called the forward projection and
BP (b) = AT b called the back projection. This is done to make it possible to
utilize a ray driven approach for the forward projections and a voxel driven
approach for the backward projection, which they have concluded is beneficial.
Their implementions will be described in section 6.2.1 and 6.2.2.

6.2.1 Implementation of the forward projection

In order to to analyse the complexity of their implementation and the used
memory footprint wee will a system with a volume of size N3 and p projections
of size m2. The forward projection is in ASTRA implemented as a ray driven
approach. They have implemented the Joseph’s method described in section
2.5.2, with the expanding boundary condition. We note that the calculation
done within the forward projection function call is actually equivalent to b−Ax.
The volume is copied into a cudaArray of size (N + 2)3 with zeroes padded all
around the volume. This has the effect that points just outside the volume
is interpolated between the boundary point and a point with the value zero.
The cudaArray is then bound to a 3D texture with linear interpolation. The
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allocated memory footprint in the forward projection is:

Allocated floating points in FP = (N + 2)3 (6.2)

The information about the projections angles, shown in equation 6.1, is put into
constant memory of 1024 · 12 elements. This is beneficial since it saves space in
the L1 cache and utilizes the constant memory cache and can be done since it
will be used by all threads without modifications. But it has the drawback that
there is a maximal number of projection angles of 1024 angles. This limit could
have been removed by a loop, but this is not included in their implementation.

For each projection angle, we find a dominant direction which is the axis con-
taining the largest numerical value of ray in equation 6.1. If consecutive angles
have the same dominant direction they are grouped into blocks of up to four
angles. The rays are then divided into a two dimensional grid of thread blocks,
each of size 32× 4. The first dimension describes the location in a given projec-
tion, and the second dimension describe the angle in the block of angles. This
has the disadvantage that if the consequtive rays do not have the same dominant
direction then three quarters of the threads will be treminated without doing
any work. But these threads will be contained within the same warp.

For each block of up to four angles a CUDA stream is created and the dominant
direction is found. The volume is then divided into slices in the dominant
direction and each slice is appended to the stream. This allows the different
angles to be computed concurrently, and ensures that there is no race conditions,
since all writes to the same ray is done sequentially.

Inside the CUDA kernel, each thread handles one ray. Since the dominant
direction is known, it is possible to re-parametrize the ray in the form:

f̃ =





f̃max

f̃dir1
f̃dir2



 =





1
ay
az



 t+





0
by
bz



 . (6.3)

The entire volume is then traversed one step at the time in the dominant direc-
tion. This means that there are N texture lookups for each ray, giving pm2N
texture lookups in each iteration. The coordinate updates means that there are
used O(pm2N) flops (floating point operations) in each iteration.

We note that the implementation requires a copy operation from a cudaPitchedPtr
into a cudaArray of the form described in figure 5.7. which is a slow operation
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(that can only copy 8.36 GB/s on gpulab03 and 8.72 GB/s on gpulab06). How-
ever this will not have any noticeable impact on the overall performance because
it is only needed once per iteration.

6.2.2 Backward projection

The back projection is in ASTRA implemented as a voxel driven approach.
They have implemented the transposed method described in section 2.5.3, with
expanding boundary condition. All the projections are copied into a cudaArray
of size p(m + 2)2 with zeroes padded around each projection. So in the back
projection there is allocated:

Allocated floating points in BP = p(m+ 2)2 (6.4)

The cudaArray is then bound to a 3D texture with linear interpolation, and
the clamping border condition. ASTRA’s approach to back projection is to
project the location of each voxel onto the plane spanned by u and v, and then
interpolate between neighbouring points. They also make this lookup if the
projected points are outside the limits of the projection. This has the effect
that a voxel which is projected onto a point in the boundary of the projection is
interpolated between the boundary pixel and a pixel with the value zero. Points
further out will be set to zero by the textures clamp border condition. This
means that there are pN3 texture lookups and interpolations.

In the ASTRA implementation, the reconstruction volume is separated into x-y
slices in the z direction. Each thread block is defined as two-dimensional. The
first dimension sets how many threads work on a slice at the same time, and
the second dimension sets how many slices are taken into account by a given
thread block.

Finally they make several consecutive kernel launches, where each updates the
whole volume, but only with 64 projection angles at a time.

6.3 Complexity analysis of SIRT implementation

The main loop of ASTRA’s implementation of SIRT follows the steps of Algo-
rithm 6.4. It is shown in Listing 6.1.

The complexity of the different steps in terms of Flops and memory operations
Mobs can be summarized as follow:
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• Copy all projections [line 269] : Flops 0 - Mops pm2.

• Forward projection [line 277] : Flops O(pNm2) - Mops O(pm2) - Texture
Flops O(pNm2) - Texture Mops O(pNm2) - Memcpy3D (N + 2)3

• Apply weights in M [line 280] : Flops pm2 - Mops pm2

• Clear tempData volume [line 282] : Flops 0 - Mops N3

• Backward projection [line 298] : Flops O(pN3) - Mops O(N3) - Texture
Flops O(pN3) - Texture Mops O(pN3) - Memcpy3D p(n+ 2)3

• Apply weights in T and add x [line 313] : Flops O(N3) - Mops O(N3)

• Apply weights in T and add x [line 316] : Flops 0 - Mops O(N3)

In total we can see that there is used in the order of O(pm2N + pN3) flops,
O(pm2N + pN3) texture flops, O(pm2N + pN3) texture memory operations,
O(pm2N + pN3) device memory operations, and p(m + 2)2 + pm2n memory
operations from device memory to a cudaArray, of the type described in figure
5.7.

We note that the weight T has the same size as the volume, which is copied to a
temporary dataset giving a memory footprint of 3N3. The weights M likewise
has the same size as all the projections, and is also copied into a temporary
projection, which gives the footprint 3pm2. This means that the total memory
footprint is determined as the largest of the footprint used in the forward and
the backward projections, so from equation 6.2 and 6.4 we can see that the
memory footprint is:

Total memory footprint in FP = (N + 2)3 + 3N3 + 3pm2 (6.5)

and
Total memory footprint in BP = p(m+ 2)2 + 3N3 + 3pm2. (6.6)
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Listing 6.1: ASTRAs SIRT implimentaion. There are lines which is removed
on compile time with a "#if 0" command. These lines are omit-
ted here. The code i found in astra-1.3/cuda/3d/sirt3d.cu

266 // iteration

267 for ( unsigned int i t e r = 0 ; i t e r < i t e r a t i o n s && ! shouldAbort ;
→֒ ++i t e r ) {

268 // copy sinogram to projection data

269 dup l i catePro j ec t i onData (D_projData , D_sinoData , dims ) ;
270
271 // do FP, subtracting projection from sinogram

272 if ( useVolumeMask) {
273 dupl icateVolumeData (D_tmpData, D_volumeData , dims ) ;
274 processVol3D <opMul>(D_tmpData, D_maskData , dims ) ;
275 cal lFP (D_tmpData, D_projData , −1.0 f ) ;
276 } else {
277 cal lFP (D_volumeData , D_projData , −1.0 f ) ;
278 }
279
280 processSino3D <opMul>(D_projData , D_lineWeight , dims ) ;
281
282 zeroVolumeData (D_tmpData, dims ) ;

298 cal lBP (D_tmpData, D_projData) ;

313 processVol3D <opAddMul>(D_volumeData , D_tmpData, D_pixelWeight ,
→֒ dims ) ;

314
315 if ( useMinConstraint )
316 processVol3D <opClampMin>(D_volumeData , fMinConstraint , dims ) ;
317 if ( useMaxConstraint )
318 processVol3D <opClampMax>(D_volumeData , fMaxConstraint , dims ) ;
319 }

6.4 Angle dependency of the forward projection

The forward projections are traversing a three dimensional texture where it
makes linear interpolation between neighbouring voxels. It is therefore interest-
ing to evaluate the impact the ray direction has to the performance.

We wish to evaluate the performance for each direction independently. But
if we used ASTRA unmodified, we would have a overhead of launching three
quarters of the rays which would not be doing any work. We have therefore
altered the limit of the angles per block such that each block only contains a
single direction.
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The setup is comparable with the one in figure 5.5 in the sense that the number
of texture lookups is the same. The volume these are made on are sligtly larger,
that is (256+2)3 compared to 2563. The result is shown in figure 6.1 and we see
a general decrease in the performance compared to what is seen in figure 5.5.

Figure 6.1: Illustration of the time consumption for the forward projection,
with thread blocks of size 32 × 1. Measured for different angles,
and orientations of the projection plane, and are based on test
setup 1. Note that these timings are without the copy operation
from a cudaPitchedPtr to a cudaArray. The placement of a dot
indicates the direction angle, and the the color indicates the time
spent on this projection angle. To the left: the projection angles
are aranged on circles. To the right: they are placed as Lebedev
directions.

Some of the difference we have detected could be contributed the size of the
thread blocks. Which in this case is lower than that used in figure 6.1, where
there was used a blocks of size of 16 × 16. In practice there will often be used
more than a single angle at a time, which means that the used block size would
be larger. To make a more comparable test we have therefore also tested their
forward projection where there are used the same number of threads, as we did
in figure 5.5, where the rays are divided into blocks of size 256× 1. The result
is seen in figure 6.2.

In this test we see a clear speed up in the best angles, where the result is
comparable to figure 5.5. But we also see a decrese in the angles which is not
preforming as well compared to figure 6.1.
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Figure 6.2: Illustration of the time consumption for the forward projection,
with thread blocks of size 256× 1. Measured for different angles,
and orientations of the projection plane, and are based on test
setup 1. Note that these timings are without the copy operation
from a cudaPitchedPtr to a cudaArray. The placement of a dot
indicates the direction angle, and the the color indicates the time
spent on this projection angle. To the left: the projection angles
are aranged on circles. To the right: they are placed as Lebedev
directions.

Table 6.1: Total runtime for ASTRA’s SIRT implementation in a the test setup
described in section 3.2. The measurements is made in Matlab.
To hide the latency of the invoketion, each invoketion is 20 times.
There is tested for 20 of such invoketions and the mean and standart
deviation is shown here.

Small test Large test
mean std mean std

X,Y-plane 0.2734 sec 8.3009 · 10−5 sec 4.3161 sec 4.8833 · 10−4 sec
X,Z-plane 0.4041 sec 0.0089 sec 6.8034 sec 0.0327 sec
Y,Z-plane 0.8819 sec 0.0061 sec 18.1012 sec 0.0326 sec



Chapter 7

New implementations based

on ASTRA

In this chapter we will start by making a SIRT implementation as described in
section 2.2, with Cimmino weights. All tests in this chapter are done on the
gpulab06 computer described in table 3.1.

We will then use this as a starting point for a simple SART implementation.
This implementation will later be used to make general design choices, for the
rest of our implementations.

The idea behind the implementations described in this chapter is to use the
setup provided by ASTRA. But we want it to be completely separated from
ASTRA, such that the ASTRA library is left unchanged. This is achieved by
linking against ASTRA. For simplicity these implementations will derive from
classes within ASTRA.

7.1 New SIRT implementation based on ASTRA

The first step was to alter the SIRT implementation such that it is on the form
described in section 2.2. It is therefore necessary to alter the weights such that
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it uses the Cimmino weights.

This means that since T = I we could eliminate D_pixelWeight, and thereby
save N3 numbers of floating point precision in the memory footprint. But since
this specific implementation is derived from a class in ASTRA where this pointer
is allocated, it will still be allocated in memory. This approach means that the
function processVol3D〈opAddMul〉 seen in listing 6.1 line 280 must be substituted
with with a function processVol3D_opAddMul that does not multiply with the
weights, but instead makes multiplications with the step length λ. This function
use the same number of Flops, but the new one makes pm2 fewer memory
operations.

It is sufficient to alter the implementation seen in 6.1, to use the new weights
and the new function processVol3D_opAddMul in order to make a SIRT im-
plementation of the form seen in 2.2. But we note that since we don’t use a
volume mask, the branching in line 272 can be eliminated. We can also reduce
the clamping operations since we only use Pup, which is clamping up to zero.
The finished version is seen in listing 7.1.

Listing 7.1: New SIRT implimentaion, as described in 2.1.

1333 for ( unsigned int i t e r = 0 ; i t e r < i t e r a t i o n s && ! shouldAbort ;
→֒ ++i t e r )

1334 {
1335 dup l i catePro j ec t i onData (D_projData , D_sinoData , dims ) ;
1336 cal lFP (D_volumeData , D_projData , −1.0 f ) ;
1337 processSino3D <opMul>(D_projData , D_lineWeight , dims ) ;
1338 zeroVolumeData (D_tmpData, dims ) ;
1339 cal lBP (D_tmpData, D_projData) ;
1340 processVol3D_opAddMul (D_volumeData , D_tmpData, lambda , dims ) ;
1341 processVol3D <opClampMin>(D_volumeData , 0 . 0 f , dims ) ;
1342 }

The SIRT implementation was tested on the second test setup, described in
section 3.2. In table 7.1 is shown the average runtime for 20 iterations. These
time measurements are made within the C++ implementation, so there is not
the same overhead in terms of invoking the function, as there was for the test
of ASTRA’s implementation seen in table 6.1.

From this result we note a small decrease in the runtime compared to result
from ASTRA. This comes from the saving in memory operations in the new
function processVol3D_opAddMul.

In this implementation we have also measured the time consumption used for
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Table 7.1: Total runtime for the new SIRT implementation which is based on
ASTRA. The test setup described in section 3.2 as test setup 2. It
is tested 20 times and the mean and standard deviation is shown
here.

Medium test Large test
mean std mean std

X,Y-plane 0.2704 sec 7.10 · 10−5 sec 4.1603 sec 4.850 · 10−4 sec
X,Z-plane 0.3588 sec 0.003496 sec 6.7418 sec 0.05357 sec
Y,Z-plane 0.8742 sec 0.006308 sec 17.410 sec 0.08713 sec

each function, and it was clear that the main consumption was used in the
forward and backward projections. The time consumption for the projections
in a single iteration is shown in table 7.2.

Table 7.2: Measurement of the time consumption, for the forward and back
projection, in the new SIRT implementation. These functions both
reside in the ASTRA framework.

Medium test Large test
X,Y-place Forward projection 0.08581 sec 1.327 sec

Back projection 0.1624 sec 2.768 sec
X,Z-place Forward projection sec 0.1793 sec 3.558 sec

Back projection 0.1750 sec 3.122 sec
Y,Z-place Forward projection 0.2469 sec 5.677 sec

Back projection 0.6307 sec 11.457 sec

From table 7.2 it is clear that both projections are very influenced by the pro-
jection angles. Specifically the results for the back projections are surprising
because the volume is traversed in the same manner independently of the domi-
nant direction. Therefore the results for the back projection should be the same
for all angles.

7.2 SART implementation based on ASTRA

Before we proceed with a general block iterative method, we note that there will
be an issue with the data structure used for the projections. When the number
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of blocks is high, compared to the number of projections, the ordering (u, a, v)
used by ASTRA will not be beneficial because a single projection angel is not
stored continuously in the memory. It will therefore be more beneficial to use a
structure where the data is stored as (u, v, a). To illustrate the impact of this
ordering we have implemented a block iterative method where the number of
blocks is equal to the number of projection angles, which means that we in this
section will make a SART implementation as described in section 2.4.

We have made the implementations such that it takes a copy of a single slice
from the projection and a slice from the weights. We then work on such slices,
for each angle, as it is done in the SIRT implementation. The implementation
is seen in Listing 7.2, and we note that two function calls for the projections
have changed names. But they are actually referring to the same projections as
is used in SIRT. The difference is that it is now only possible to use ASTRA’s
parallel projections, where in the SIRT method it was also possible to set it up
such that it uses the cone projection. Since we no longer make a copy of all
projections, but only copy a single angle out of the projection and the weights,
we see that the memory footprint is a little smaller that those in equation 6.5
and 6.6. In this implementation the memory footprint is:

Total memory footprint in FP = (N + 2)3 + 3N3 + 2pm2 + 2m2

and

Total memory footprint in BP = (m+ 2)2 + 3N3 + 2pm2 + 2m2

because the D_pixelWeight is still allocated.

Listing 7.2: SART implementation based on ASTRA functions.

1177 for ( unsigned int i t e r = 0 ; i t e r < i t e r a t i o n s && ! shouldAbort ;
→֒ ++i t e r )

1178 {
1179 for ( unsigned int ang l e s = 0 ; ang l e s < dims . iPro jAng l es ;

→֒ ++angl es )
1180 {
1181 // copy sinogram to projection data

1182 dup l i c a t eP ro j e c t i onDataS l i c e (D_pd, D_sinoData , dims , ang l e s ) ;
1183 dup l i c a t eP ro j e c t i onDataS l i c e (D_lw, D_lineWeight , dims ,

→֒ ang l e s ) ;
1184 Par3DFP(D_volumeData , D_pd, DIMS, &par3DProjs [ ang l e s ] , −1) ;
1185 processSino3D <opMul>(D_pd, D_lw, DIMS) ;
1186 zeroVolumeData (D_tmpData, DIMS) ;
1187 Par3DBP(D_tmpData, D_pd, DIMS, &par3DProjs [ ang l e s ] ) ;
1188 processVol3D_opAddMul (D_volumeData , D_tmpData, lambda , dims ) ;
1189 processVol3D <opClampMin>(D_volumeData , 0 , dims ) ;
1190 }
1191 }
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The method is again tested on the tests described in section 3.2, and the result
is shown in table 7.3.

Table 7.3: Total runtime for the new SART implementation which is based on
ASTRA. The test setup described in section 3.2 as test setup 2. It
is tested 20 times and the mean and standard deviation is shown
here.

Medium test Large test
mean std mean std

X,Y-plane 5.7798 sec 0.0221 sec 60.50 sec 0.0264 sec
X,Z-plane 5.9772 sec 0.0216 sec 63.54 sec 0.0213 sec
Y,Z-plane 6.0424 sec 0.0016 sec 66.36 sec 0.0384 sec

We see that the total runtime has increased by a factor of 20. This is contributed
by a number of things. Beside the issue with the data structure, the individual
functions is only used once in the SIRT but they are now called once for each
angle in each iteration. The tuning of these are therefore much more important
in a SART method, and in any block iterative method with a high number of
blocks. These functions are therefore now a real contributor to the runtime.
In table 7.4 we have shown the total time consumption for all the functions in
the test used in the X,Y -plane. Because the rest of the functions are stable
with respect to the projection angle, we only show the forward and backward
projection in the other to test cases.

From these results we see wast majority of the time is spent in the forward
projection, and that this is also the function with most angle dependence. This
function is not designed to only be working on a single angle at a time, and
it now makes a copy operation, from a cudaPitchedPtr to a cudaArray, of size
N3 for each angle. This copy operation was found in figure 5.7 to be slow (8.72
GB/s). This bandwidth implies that there for our small test case with 133 angles
and a volume of size 2563 is used approximately p ·N3/(10243 · 8.72) = 0.95sec
per iteration in copy operations.
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Table 7.4: Measurement of the time consumption, for the forward and back
projection, in the new SART implementation. These functions both
reside in the ASTRA framework.

Small test Large test
X,Y-place duplicate data 0.0486 sec 0.24 sec

Forward projection 2.9492 sec 41.82 sec
opMulSin 0.1679 sec 0.76 sec
zeroVolume 0.1954 sec 1.55 sec
backProjection 0.6740 sec 5.74 sec
volumeOpAddMul 0.9045 sec 5.96 sec
opClapMin 0.8918 sec 4.59 sec

X,Z-place Forward projection 3.1133 sec 44.85 sec
Back projection 0.6876 sec 5.73 sec

Y,Z-place Forward projection 3.2108 sec 47.44 sec
Back projection 0.6370 sec 6.03 sec



Chapter 8

New implementations based

on new ordering, new

boundary conditions, and

shared memory

In this chapter we will present a number of implementations where the data
structure in the projections is changed from a (u, a, v) ordering to a (u, v, a)
ordering. We will also make fundamental changes in the boundary condition of
Joseph’s method, in both the forward and backward projection. We will now
use the clamping boundary condition described in 2.5.2 and 2.5.3. All tests in
this chapter is done on the gpulab06 computer described in table 3.1.

The reordering of the elements in the projections is done because we wish to
focus on a single projection angle at the time. The ordering (u, a, v) used by
ASTRA braces the projection angles together such that a single angle is not
stored sequentially in memory. We will therefore instead use a (u, v, a) ordering,
because this will keep a complete projection angle stored sequentially in memory.

These alterations means that it is necessary to rewrite most of the functions
described up until now. The functions that could have been reused, are so
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simple that we chose to rewrite them as well. The functions described in the
rest of the project will not be linked against ASTRA.

We will now describe the new implementation of the forward and the and back
projection, the rest of the utility functions will not be described in detail.

8.1 New forward projection using textures

In this section we will describe a new implementation of a forward projection,
which uses the data ordering (u, v, a). This version will be inspired by the
ASTRA implementation and will like the version in ASTRA also make use of
a three dimensional texture reference. But it will use the clamping boundary
condition described in 2.5.2 instead of the extending boundary condition. This
has the benefit that the memory is better aligned in the copy operation, and
that the forward projection uses less memory, since the memory allocation is
only:

Allocated mem in FP = N3 (8.1)

This boundary condition is implemented by transferring a volume of size N3

into a cudaArray using cudaMemcpy3D, and then utilizing the cudaAddress-
ModeBorder boundary condition. This setting sets all texture calls that are
outside the boundary to zero.

Like in ASTRA we will start by finding a dominant direction and then traverse
the entire volume in this direction. This means that each ray will make N
texture interpolations, also if the ray is outside the volume. We will not divide
the volume into large slices, in the dominant direction. This has the drawback
that we lose a little precision compared to ASTRA, because they calculate a new
starting point for each slice. We on the other hand only calculate the starting
point for a ray once, and then make N updates to this value, all with 32 bit
floating point precision.

Because we only look at a single projection angle at the time, it will be suitable
to use a grid system for the threads which span the projection plane. We have
chosen to let the u direction span the first dimension in the thread blocks, and
let the v direction span the second direction. We have tested three different grid
configurations with the test setup described in section 3.1. This is the same test
as we used for testing the forward projection in ASTRA, i.e. in figure 6.1 and
6.2.

We first test the forward projection implementation with a thread block of size
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16 × 16 threads. In this configuration, each warp will fill two rows of a thread
block. The runtime as a function of the projection angle is seen in figure 8.1.
From this test we note that we achieve a generally faster result, than what was

Figure 8.1: Illustration of the time consumption for the new forward projec-
tion, with thread blocks of size 16 × 16. Measured for different
angles, and orientations of the projection plane, and are based on
test setup 1. Note that these timings are without the copy oper-
ation from a cudaPitchedPtr to a cudaArray. The placement of a
dot indicates the direction angle, and the the color indicates the
time spent on this projection angle. To the left: the projection
angles are arranged on circles. To the right: they are placed as
Lebedev directions. This test is done on gpulab06.

achieved in ASTRAS 32×1 thread configuration, which is close to their standard
configuration. This is also a more uniform result than what was achieved with
ASTRA’s 256 × 1 thread configuration, which contains the same number of
threads in a block. But to make a more fair comparison, we should also test the
new implementation with the same thread blocks as we used to test ASTRA.
These test is shown in figure 8.2 and 8.3.

From figure 8.2 we see the most uniform result, with respect to the projection
angles and the direction of u and v, and achieve in general good performance
compared to all earlier tests.

From figure 8.3 we see the most irregular result with respect to the chosen
projection angles. There are still angles which preforms well, but they are not
completely uniform with respect to a dominant direction.

The results shown in figure 8.1 and 8.2 both seems uniform with respect to the
dominant direction. We will now combine the results from the circular tests, and
show their matched performance in figure 8.4. This will help us determine the
block size, and chose whether the block size should be the same for all dominant
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Figure 8.2: Illustration of the time consumption for the new forward projec-
tion, with thread blocks of size 32 × 1. Measured for different
angles, and orientations of the projection plane, and are based on
test setup 1. Note that these timings are without the copy oper-
ation from a cudaPitchedPtr to a cudaArray. The placement of a
dot indicates the direction angle, and the the color indicates the
time spent on this projection angle. To the left: the projection
angles are arranged on circles. To the right: they are placed as
Lebedev directions. This test is done on gpulab06.

Figure 8.3: Illustration of the time consumption for the new forward projec-
tion, with thread blocks of size 256 × 1. Measured for different
angles, and orientations of the projection plane, and are based on
test setup 1. Note that these timings are without the copy oper-
ation from a cudaPitchedPtr to a cudaArray. The placement of a
dot indicates the direction angle, and the the color indicates the
time spent on this projection angle. To the left: the projection
angles are arranged on circles. To the right: they are placed as
Lebedev directions. This test is done on gpulab06.

directions.
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Figure 8.4: The matched timings from the circular test in test 2 for different
sizes of thread blocks. This indicates which size is most efficient
for different dominant directions. This test is done on gpulab06.

From figure 8.4 we conclude that we should chose a block size of 32×1 when the
dominant direction is the x-axis, and 16 × 16 when the z-axis is the dominant
direction. The choice for the y-axis is not conclusive, and we therefore chose the
block size 32× 1 because it is generally slightly more regular.

8.2 New back projection using textures

This section will give a short description of the changes we have made in order
to make a new back projection. This back projection will work on a single
projection, and assumes that the data in the projection is ordered as (u, v, a).

This function is also texture based, but because we only work on a single pro-
jection angle at the time we have used a two dimensional texture, instead of the
three dimensional used in ASTRA. We have also changed the boundary condi-
tion in the back projection. This is changed to the clamping boundary condition,
described in section 2.5.3. Like in the new forward projection, we have made
this change by altering the texture boundary condition, which now is set to cu-
daAddressModeBorder. This sets all texture calls outside the boundary to zero.
Since we only need a single projection angle, and uses the clamping boundary
condition, we will in the back projection now only allocate :

Allocated mem in BP = m2 (8.2)
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We use the same thread blocks and traverse the volume in the same way that
ASTRA do, except that we only look at a single projection angle. We have not
utilized the constant memory for the common parameters, but instead put these
8 numbers in device memory. We then access the parameters through the L1
cache. This should not have any impact on the performance, because all the
texture lookups are done in the texture cache, which leaves the L1 cache almost
unused.

8.3 New SART implementation

In this section, we will combine the new forward projection and backward pro-
jection implementations into a fully functional SART algorithm.

The weights D_pixelWeight that ASTRA allocated, is not present in this im-
plementation. So with the memory savings in the forward and back projection
the memory we now have a memory footprint at :

memory fotprint in second independent SART implementaion:

in forward projection = 4N3 + 2pm2 +m2

in back projection = 3N3 + 2pm2 + 2m2 (8.3)

The implementation is seen in listing 8.1, and is very similar to the previous
implementation which was based on ASTRA.

In line 56 and 59 are shown the two projections, and we note that this imple-
mentation of the forward projection also subtract the measured projection, i.e.
b − Ax instead of just Ax. In line 57 we apply the weights from M and in line
60 we apply the step length λ and add the result to the existing volume. Line
61 is rounding all values bellow zero to zero, i.e. Pup.

Line 60 and 61 both uses O(pN3) memory operations and Flops per iteration,
which is increased by a factor p compared to SIRT.

The number of Flops in the forward projection is unchanged because we traverse
the volume in the same manner as in SIRT, but we note that we now make pN3

copy operations, from a cudaPitchedPtr to a cudaArray, per iteration. So this
has also increased by a factor p compared to SIRT, of the slow type of memory
transfer shown in figure 5.7.



8.3 New SART implementation 54

Listing 8.1: First SART implementation, which is independent from ASTRA

48 for ( unsigned int i t e r = 0 ; i t e r < i t e r a t i o n s ; ++i t e r )
49 {
50 for ( unsigned int ang l e s = 0 ; ang l e s < dims . iPro jAng l es ;

→֒ ++angl es )
51 {
52 processVol3DsetValue (D_tmpData, 0 . 0 f , dims ) ;
53 s i ze_t tmp

→֒ =pi t chPro j e c t i o n s /sizeof ( float ) ∗ ang l e s ∗dims . iProjV ;
54 ASTRA_CUDA_ASSERT(cudaMemcpy2D( d_sino , p i t ch s ,

→֒ &d_pro j ect i ons [ tmp ] , p i t chPro j e c t i o n s ,
→֒ dims . iProjU∗sizeof ( float ) , dims . iProjV ,
→֒ cudaMemcpyDeviceToDevice ) ) ;

55 lw = &d_weights [ p i tchWeights / sizeof ( float ) ∗

→֒ ang l e s ∗dims . iProjV ] ;
56 Par3DFP_singleAngle (D_volumeData , d_sino , p i tchs , dims ,

→֒ par3DProjs [ ang l e s ] ,−1) ;
57 sinogram2dOpMul<<< ( dims . iProjU+31) /32 ,32 >>>(d_sino , lw ,

→֒ pi tchs , dims . iProjU , dims . iProjV ) ; // ny

58 cudaDeviceSynchronize ( ) ;
59 Par3DBP_singleAngle (D_tmpData, d_sino , p i tchs , dims ,

→֒ par3DProjs [ ang l e s ] ) ;
60 processVol3D_opAddMulV2(D_volumeData , D_tmpData, lambda ,

→֒ dims ) ; // ny

61 processVol3DopClampZero (D_volumeData , dims ) ;
62 }
63 }

The implementation is tested on test setup 2 described in section 3.2, and the
average runtime is shown in table 8.1. We see that we have saved about 2/3 of
the runtime for the medium problem and about 1/2 of the runtime for the large
problem compared to the version which uses ASTRA’s functions. We also note
that this version seems more uniform with respect to the projection angles.

Table 8.1: Total runtime for the new SART implementation which is not based
on ASTRA. The test setup described in section 3.2 as test setup 2.
It is tested 20 times and the mean and standart deviation is shown
here.

Small Medium Large

mean std mean std mean std

X,Y-plane 0.1979 sec 0.0011 sec 1.91 sec 0.004 sec 30.12 sec 0.05 sec

X,Z-plane 0.1970 sec 0.0004 sec 1.92 sec 0.003 sec 31.00 sec 0.05 sec

Y,Z-plane 0.1998 sec 0.0028 sec 1.96 sec 0.005 sec 33.92 sec 0.08 sec

We have measured the time consumption used for each function, and it was
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clear that we now use the main time consumption in the forward projections.
The time consumption for the projections in a single iteration is shown in table
8.2.

Table 8.2: Measurment of the time consumption in a single iteration of the
first independent SART implementation.

Small Medium Large

X,Y-place Forward projection 0.1246 sec 1.206 sec 18.526 sec

sinogram2dOpMul 0.0060 sec 0.0223 sec 0.096 sec

Par3DBP_singleAngle 0.0329 sec 0.1863 sec 2.478 sec

Vol3D_opAddMulV2 0.0164 sec 0.2838 sec 5.243 sec

Vol3DopClampZero 0.0091 sec 0.1316 sec 2.308 sec

Vol3DsetValue 0.0052 sec 0.0886 sec 1.538 sec

copy time 0.0010 sec 0.0026 sec 0.009 sec

X,Z-place Forward projection 0.1250 sec 1.2195 sec 19.515 sec

Back projection 0.0330 sec 0.1887 sec 2.497 sec

Y,Z-place Forward projection 0.1261 sec 1.2396 sec 22.130 sec

Back projection 0.0330 sec 0.1878 sec 2.502 sec

The back projection is no longer a big time consumer and the other functions,
apart from the forward projection, take relatively more time. We therefore
focus on optimizing these utility functions by merging them into the back pro-
jection function, which already traverses the entire volume and can easily do
the updates.

As a positive side effect we can eliminate the temporary volume D_tmpData
and thereby reduce the memory footprints in Equation 8.3 by N3.

The new SART implementation, where the step length and the rounding oper-
ation have been merged into the back projection is shown in Listing 8.2.
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Listing 8.2: First SART implementation, which is independent from ASTRA

396 for ( unsigned int i t e r = 0 ; i t e r < i t e r a t i o n s ; ++i t e r )
397 {
398 for ( unsigned int ang l e s = 0 ; ang l e s < dims . iPro jAng l es ;

→֒ ++angl es )
399 {
400 s i ze_t tmp

→֒ =pi t chPro j e c t i o n s /sizeof ( float ) ∗ ang l e s ∗dims . iProjV ;
401 ASTRA_CUDA_ASSERT(cudaMemcpy2D( d_sino , p i t ch s ,

→֒ &d_pro j ect i ons [ tmp ] , p i t chPro j e c t i o n s ,
→֒ dims . iProjU∗sizeof ( float ) , dims . iProjV ,
→֒ cudaMemcpyDeviceToDevice ) ) ;

402 lw =
→֒ &d_weights [ p i tchWeights/sizeof ( float ) ∗ ang l e s ∗dims . iProjV ] ;

403 Par3DFP_singleAngle ( D_volumeData , d_sino , p i tchs ,
→֒ dims , par3DProjs [ ang l e s ] ,−1) ;

404 sinogram2dOpMul<<< ( dims . iProjU+31) /32 ,32 >>>(d_sino , lw ,
→֒ pi tchs , dims . iProjU , dims . iProjV ) ; // ny

405 cudaDeviceSynchronize ( ) ;
406 Par3DBP_singleAngleV2opClampZero (D_volumeData , d_sino ,

→֒ pi tchs , dims , par3DProjs [ ang l e s ] , lambda) ;
407 }
408 }

This second independent SART implementation is also tested for test case 2.
And the total runtime per iteration is shown in Table 8.3.

Table 8.3: Total runtime for the second SART implementation which is not
based on ASTRA. The test setup described in section 3.2 as test
setup 2. It is tested 20 times and the mean and standart deviation
is shown here.

Small Medium Large

mean std mean std mean std

X,Y-plane 0.1659 sec 0.0002 sec 1.411 sec 0.002 sec 21.10 sec 0.002 sec

X,Z-plane 0.1657 sec 0.0002 sec 1.425 sec 0.001 sec 22.13 sec 0.004 sec

Y,Z-plane 0.1658 sec 0.0002 sec 1.439 sec 0.001 sec 24.75 sec 0.012 sec

From this result we see a general improvement of a factor 1/3 compared to the
previous version with separate utility functions. This is empathized in table 8.4
where we have shown the time spend for each function in a single iteration.

We note that all the time spend in the back projection is almost unchanged.

The forward projection is the main time consumer. This high consumption can
be contributed to the slow copy operation from a cudaPitchedPtr to a cudaArray
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Table 8.4: Measurment of the time consumption in a single iteration of the
second independent SART implementation.

Small Medium Large

X,Y-place Forward projection 0.1260 sec 1.2032 sec 18.527 sec

sinogram2dOpMul 0.0060 sec 0.0223 sec 0.097 sec

Par3DBP_singleAngle 0.0332 sec 0.1860 sec 2.482 sec

copy time 0.0012 sec 0.0030 sec 0.010 sec

X,Z-place Forward projection 0.1260 sec 1.2167 sec 19.536 sec

Back projection 0.0331 sec 0.1875 sec 2.500 sec

Y,Z-place Forward projection 0.1257 sec 1.2298 sec 22.146 sec

Back projection 0.0331 sec 0.1872 sec 2.506 sec

seen in figure 5.7, (which has a bandwidth of 8.72 GB/s).

small = 66 ∗ (1283) ∗ 4/(10243 ∗ 8.72) = 0.0591sec

medium = 133 ∗ (2563) ∗ 4/(10243 ∗ 8.72) = 0.9533sec

large = 300 ∗ (5123) ∗ 4/(10243 ∗ 8.72) = 17.2018sec

Since we can not bind a three dimensional texture to sequential device memory,
and these timing stands for the vast majority of the total time consumption we
conclude that a texture approach is inefficient for a block iterative method, with
a high number of blocks.

8.3.1 Forward projection without textures

We will now present an implementation of a forward projection which dos not
use the textures. This function will make the same kind of interpolation as
the previous one, but it will make it without the use of textures. Because
the volume is not copied into a cudaArray, and that we are still not using the
D_tmpData, this version saves 2N3 floating points in the forward projections
memory footprint, compared to equation 8.3.

For each ray, we find the intersection with the volume, and then traverse the
inner part of the volume in the same way as it was done in the previous methods.

We will still let the thread blocks span the projection plane, and use thread
blocks of the size (16× 16). The first dimension of the thread block represents
the u-vector in the projection plane. We note that this method induces a high
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rate of cache misses. In fact the only ray directions which can induce coalesced
data reads, is when the rays dominant direction is in the Y - or Z axis. In order
to have coalesced data reads, u-vectors projection into a slice in the dominant
direction, has to be close to parallel to the x-axis. All other combinations will
induce cache misses for almost all memory reads.

We have inserted this method into the SART implementation, and shown the
time per iteration in table 8.5, and the time used by the forward projection in
table 8.6.

Table 8.5: Total runtime for the SART implementation which uses the forward
projection that is not texture based. The test setup described in
section 3.2 as test setup 2. It is tested 20 times and the mean and
standart deviation is shown here.

Small Medium Large

mean std mean std mean std

X,Y-plane 0.1056 sec 0.0012 sec 1.4146 sec 0.0042 sec 25.5038 sec 0.0364 sec

X,Z-plane 0.1056 sec 0.0011 sec 1.4813 sec 0.0040 sec 39.5126 sec 0.0606 sec

Y,Z-plane 0.0957 sec 0.0012 sec 1.2758 sec 0.0033 sec 27.7527 sec 0.0177 sec

When we compare the results seen in table 8.5 and 8.6 with the earlier result
in table 8.3 and 8.4, we see a better performance in the small test case. This
is because we no longer make the memory transfer needed to bind the memory
to a texture, and because the volume is so small that there will be much more
memory reads that do not result in cache misses. But as the volume increases,
there are more and more cache misses, which give rise to the bad scaling prop-
erties seen in table 8.6. The positive results for the small test problem indicates
that this basic idea is the right approach.

Table 8.6: Measurment of the forward projection, in a single iteration, of the
SART implementation.

Small Medium Large

X,Y-place Forward projection 0.0759 sec 1.2191 sec 23.014 sec

X,Z-place Forward projection 0.0758 sec 1.2846 sec 36.912 sec

Y,Z-place Forward projection 0.0660 sec 1.0776 sec 25.207 sec
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8.3.2 Forward projection utilizing shared memory

We will now present a forward projection which utilizes the shared memory.
The idea is to split the volume, into cubes that can fit in the shared memory,
and then find the rays that intersects the cube.

This is done by inserting the inner part of the previous method, into an existing
frame work. That is, we have taken the part of the code where we find the
intersection for a ray in a cube, and make the interpolation within the cube,
into a framework that partition the volume into smaller cubes of size 163. It
then make use of a grid of threads, each of 16× 16 threads, and let these blocks
span the space perpendicular to the dominant direction. It then traverse the
volume, by moving the blocks along the dominant direction.

We have tested this forward projection on test setup 1, and the result is shown
in figure 8.5. From this result we see that the time spend in each projection
angle has increased compared to the result seen in figure 8.1 and 8.2. The new
result is also more irregular with respect to projection angle and orientation of
the projection space. But we note that the results in figure 8.1 and 8.2 was
without the slow copy operation from a cudaPitchedPtr to a cudaArray. This
means that this new result is better when it comes to a SART implementation.

Figure 8.5: Illustration of the time consumption for the forward projection
that utilizes the shared memory, with thread blocks of size 16×16.
Measured for different angles, and orientations of the projection
plane, and are based on test setup 1. Note that these timings are
without the copy operation from a cudaPitchedPtr to a cudaArray.
The placement of a dot indicates the direction angle, and the the
color indicates the time spent on this projection angle. To the left:
the projection angles are aranged on circles. To the right: they
are placed as Lebedev directions. This test is done on gpulab06.

We have used this forward projection together with a back projection, from
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the same framework, and combined them into a SART implementation. This
implementation is also tested on test setup 1, and the result is shown in table 8.7.
Where we see an improvement compared to all previous SART implementations.

Table 8.7: Total runtime for the SART implementation which uses the forward
projection that is not texture based and utilizes the shared memory.
The test setup described in section 3.2 as test setup 2. It is tested
20 times and the mean and standart deviation is shown here.

Small Medium Large

mean std mean std mean std

X,Y-plane 0.0604 sec 0.0000 sec 0.8629 sec 0.0000 sec 14.219 sec 0.0009 sec

X,Z-plane 0.0658 sec 0.0000 sec 0.9493 sec 0.0001 sec 15.600 sec 0.0016 sec

Y,Z-plane 0.0698 sec 0.0000 sec 1.0174 sec 0.0001 sec 16.793 sec 0.0011 sec

We have also measured the time consumption of the forward projection, in a
single iteration. This is shown in table 8.8. This also shows an improvement in
the forward projection compared to all the earlier versions.

Table 8.8: Test of the forward projection utelizing shared memory. These
timings is taken from a single SART iteration.

Small Medium Large

X,Y-projection 0.0472 sec 0.7144 sec 11.782 sec

X,Z-projection 0.0526 sec 0.7985 sec 13.128 sec

Y,Z-projection 0.0567 sec 0.8651 sec 14.275 sec

This makes us conclude that for a block iterative method, with a high number
of blocks it is more efficient to use a method which utilize the shared memory,
than one that utilises the texture cache.

8.4 Implementation of a General Block-Iterative

method

We will in this section describe the necessary steps in order to alter the SART
implementation into a general Block Iterative Method.

Because the optimal forward projection was build into another framework than
the rest of the functions, the forward projection used in this section will be the
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texture based version. But we note that it would be interesting to see the result
using the forward projection based on shared memory.

In order to make a method which can divide the angles into an arbitrary number
of blocks nrBlocks, in the interval [1, p], we first note that the size of the blocks
has a large impact on the step size λ as shown in [19]. We therefore has to
divide the projection angles into blocks of similar size. This is not possible
in general, but we can find blocks that at most differs in size with a single
projection angle. This is done by calculating the size of the largest block c as
c = ⌈p/nrBlocks⌉. We then calculate the number blocks which should have this
size, as anglesPrBlockUntilID = p+nrBlocks−nrBlocks · c. This guaranties
that the rest of the blocks has the size c− 1.

We will need to modify the forward projection such that it can work on an
arbitrary number of angles, while only make the copy into the cudaArray once.
And we also alter the back projection such that it takes the step length λ.

We split the loop over the angles into two blocks, one which works on block
sizes c and a part that works on c− 1.

The implementation is shown in Appendix A.

We have tested how the time consumption per iteration scales with the number
of blocks, and the result is shown in figure 8.6. From this we see a linear
dependence, which we manly contribute to the linear scaling of the number of
copy operations there is needed, from a cudaPitchedPtr into a cudaArray.

We have also tested the implementation, as a SIRT implementation, i.e. where
the number of blocks is equal to one. The result is shown in table 8.9, where we
note that we achieve a more uniform result with respect to the projection angles
than ASTRA, and the version using ASTRA’s functions. We now also achieve
average time consumptions in all cases that are as low as the best angles using
ASTRA’s functions.

We have also tested the general Block Iterative Method as a SART method,
on test case 2, i.e. where the number of blocks equals the number of projec-
tions. The result are shown in table 8.10 and the consumption for the individual
functions is shown in table 8.11.

These results indicates a slight increase in time consumption compared the the
SART method which used the same forward projection, seen in table 8.3. Com-
paring the individual functions in table 8.11 with table 8.4 we see that this
difference comes from the use clamping operation in
processVol3DopClampZero.
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Figure 8.6: Illustration of the dependency of the block size in time consump-
tion.

Table 8.9: Total runtime for the general Block Iterative method, used as a
SIRT method. The test setup described in section 3.2 as test setup
2. It is tested 20 times and the mean and standart deviation is
shown here.

Small Medium Large

mean std mean std mean std

X,Y-plane 0.0523 sec 0.0001 sec 0.3001 sec 0.0017 sec 4.1105 sec 0.0006 sec

X,Z-plane 0.0471 sec 0.0001 sec 0.3136 sec 0.0001 sec 5.1388 sec 0.0061 sec

Y,Z-plane 0.0472 sec 0.0001 sec 0.3283 sec 0.0014 sec 7.8214 sec 0.0090 sec

Table 8.10: Total runtime for the general Block Iterative method, used as
a SART method. The test setup described in section 3.2 as test
setup 2. It is tested 20 times and the mean and standart deviation
is shown here.

Small Medium Large

mean std mean std mean std

X,Y-plane 0.1854 sec 0.0064 sec 1.5941 sec 0.0051 sec 24.1411 sec 0.0911 sec

X,Z-plane 0.1781 sec 0.0002 sec 1.5956 sec 0.0051 sec 24.8753 sec 0.0725 sec

Y,Z-plane 0.1789 sec 0.0003 sec 1.6259 sec 0.0048 sec 27.7972 sec 0.1031 sec
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Table 8.11: Measurment of the time consumption of the individual functions
in the general Block Iterative method used as a SART method.

Small Medium Large

X,Y-place Forward projection 0.1308 sec 1.2563 sec 19.380 sec

sinogram2dOpMul 0.0060 sec 0.0223 sec 0.096 sec

Par3DBP_singleAngle 0.0335 sec 0.1866 sec 2.477 sec

processVol3DopClampZero 0.0095 sec 0.1324 sec 2.273 sec

copy time 0.0011 sec 0.0026 sec 0.009 sec

X,Z-place Forward projection 0.1299 sec 1.2610 sec 20.218 sec

Back projection 0.0331 sec 0.1877 sec 2.496 sec

Y,Z-place Forward projection 0.1300 sec 1.2753 sec 22.819 sec

Back projection 0.0333 sec 0.1874 sec 2.503 sec



Chapter 9

Final results and

comparison

We will in this chapter make some evaluations on fastest reconstructions we
could achieve. The fastest method was the SART implementation based on the
forward projection that utilizes the shared memory. All tests in this chapter is
done on the gpulab06 computer described in table 3.1.

We will first compare the total reconstruction time, for the best possible result,
on a system corupted with Gaussian noise e, which is scaled such that the

relative noise level is fixed at
‖e‖2
‖b‖2

= 0.05.

This is done for the SART method where the optimal step length λ is found as
described in [19]. For a comparison we have also tested ASTRA, and both the
results are seen in figure 9.1. Because we want the total reconstruction time, we
will include the time spent on invoking the GPU, and the transfer both ways,
between the host and device. From this result we see that we can reach the
best reconstruction in 3.8 sec, with the SART method. While it takes ASTRA’s
SIRT method 192.93 sec.

The SIRT method is known to have a slow convergence rate. It would therefore
be more fair to test how fast it reaches a given tolerance. In figure 9.2 we have
shown the convergence of ASTRAs SIRT implementation and of the SART
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1 iter, 295 angles (0.7+1.6 secs) 3 iters, 295 angles (2.2+1.6 secs)

ASTRAs SIRT. 353 iters, 295 angles (192.93 secs) Exact phantom

Blocked version (gpulab06) [noise=0.05, λ = 0.25]

Figure 9.1: Result from a test system with N = 256, p = 295 and m = 256.
The projection is corupted with scaled gausian noise, s.t. relative
error is 0.05.

method for comparison. And it is clear that the SART method converges much
faster, and that it is close to the least squares solution, when the SIRT method
reaches the optimal reconstruction. We have also shown the first reconstruction
of ASTRAs SIRT method which has an relative error bellow 0.2. We have first
made the convergence test, to find the necessary number of iterations. Then
the SIRT implementation is tested, and a total reconstruction takes 87.78 sec.
Which is still far from the result obtained by the SART implementation.

We have made an similar test of general Block-Iterative implementation, where
it is tuned as a SIRT method, i.e. the number of blocks is set to 1. The step
length is in this test not fine tuned, but for λ = 0.009 we have achieved the same
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Figure 9.2: ASTRAs SIRT. Result from a test system with N = 256, p = 295
and m = 256. The projection is corrupted with scaled Gaussian

noise, s.t. relative error is 0.05. Left: relative error
‖e‖2
‖b‖2

as a func-

tion of the number of iterations. Note that, although it is hidden
by the y-axis, the best SART reconstruction is not achieved in the
first iteration but rather converges within the first 3 iterations.
Right: The first reconstruction with a relative error bellow 0.2.

relative error at 80 iterations, which took 57.83 second. The obtained result and
the convergence is shown if figure 9.3.

To ensure the correctness the SART method it is also tested on a system, which
is not corrupted with noise. This system is similar in size to the one in figure
9.1. In this case it should converge to the exact solution, and from the result
seen in figure 9.4, we visually validate the result.
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Figure 9.3: Block-Iterative. Result from a test system with N = 256, p = 295
and m = 256. The projection is corrupted with scaled gausian

noise, s.t. relative error is 0.05. Left: relative error
‖e‖2
‖b‖2

as a

function of the number of iterations. Right: The first reconstruc-
tion with a relative error bellow 0.2.
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1 iter, 133 angles (0.8+0.7 secs) 20 iters, 133 angles (15.5+0.7 secs)

1 iter, 295 angles (1.7+1.6 secs) 20 iters, 295 angles (33.5+1.6 secs)

Blocked version (gpulab06) [noise=0.0, λ = 0.8(133)|1.4(295)]

Figure 9.4: Result from a test system with N = 256, p = 295 and m = 256.
This system is not corrupted with error.



Chapter 10

Conclusion and future work

During this Thesis we have shown that it is possible to implement efficient
Block-Iterative methods on General Purpose Graphical Processing Units, using
CUDA C, for tomographic reconstruction.

We have started with an existing state of the art package ASTRA, for 3D im-
age reconstruction using CUDA C. From this starting point we have developed
methods which is faster and has a more stable runtime for each iteration. These
methods has also reduced the total memory footprint considerably.

The ASTRA package utilizes textures in their methods. We have shown that
for Block-Iterative methods with a high number of blocks it is more efficient to
use methods that utilizes the shared memory.

The methods we have implemented are all based on a parallel beams projections.
It would be natural to extend the work with a cone beam setup.

Further more it would be of interest to implement methods that utilizes multiple
GPU’s.



Appendix A

Implementation of a general

Block-Iterative method

Listing A.1: First SART implementation, which is independent from ASTRA

453 for ( unsigned int i t e r = 0 ; i t e r < i t e r a t i o n s ; ++i t e r ) {
454 ASTRA_CUDA_ASSERT( cudaMallocPitch ( &d_sino , &pi tchs ,

→֒ dims . iProjU ∗sizeof ( float ) , dims . iProjV ∗ anglesPrBlock ) ) ;
455 int numBlocksDone = 0 ;
456 unsigned int ang l e s = 0 ;
457 for ( unsigned int i = 0 ; i < anglesPrBlockUnti l ID ; ++i ,

→֒ ang l e s += anglesPrBlock )
458 {
459 numBlocksDone++;
460 s i ze_t tmp

→֒ =pi t chPro j e c t i o n s /sizeof ( float ) ∗ ang l e s ∗dims . iProjV ;
461 ASTRA_CUDA_ASSERT(cudaMemcpy2D( d_sino , p i t ch s ,

→֒ &d_pro j ect i ons [ tmp ] , p i t chPro j e c t i o n s ,
→֒ dims . iProjU∗sizeof ( float ) , dims . iProjV ∗ anglesPrBlock
→֒ , cudaMemcpyDeviceToDevice ) ) ;

462 lw = &d_weights [ p i tchWeights/sizeof ( float ) ∗

→֒ ang l e s ∗dims . iProjV ] ;
463 Par3DFP_multiAngle(D_volumeData , d_sino , p i tchs , dims ,

→֒ &par3DProjs [ ang l e s ] ,−1 , anglesPrBlock ) ;
464 sinogram2dOpMul<<< ( dims . iProjU+31) /32 ,32 >>>(d_sino , lw ,

→֒ pi tchs , dims . iProjU , dims . iProjV∗ anglesPrBlock ) ;
465 cudaDeviceSynchronize ( ) ;
466 for ( int ang =0; ang < anglesPrBlock ; ++ang )
467 Par3DBP_singleAngleV2 ( D_volumeData ,

→֒ &d_sino [ p i t ch s /sizeof ( float ) ∗dims . iProjV ∗ang ] ,
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→֒ pi tchs , dims , par3DProjs [ ang l e s+ang ] , lambda) ;
468
469 processVol3DopClampZero (D_volumeData , dims ) ;
470 }
471 cudaFree ( d_sino ) ;
472 if ( ! ( numBlocks == numBlocksDone) )
473 {
474 ASTRA_CUDA_ASSERT( cudaMallocPitch ( &d_sino , &pi tchs ,

→֒ dims . iProjU ∗sizeof ( float ) ,
→֒ dims . iProjV ∗( anglesPrBlock−1) ) ) ;

475 for ( unsigned int i = 0 ; i < ( numBlocks − numBlocksDone ) ;
→֒ ++i , ang l e s += anglesPrBlock−1)

476 {
477 s i ze_t tmp

→֒ =pi t chPro j e c t i o n s /sizeof ( float ) ∗ ang l e s ∗dims . iProjV ;
478 ASTRA_CUDA_ASSERT(cudaMemcpy2D( d_sino , p i t ch s ,

→֒ &d_pro j ect i ons [ tmp ] , p i t chPro j e c t i o n s ,
→֒ dims . iProjU∗sizeof ( float ) ,
→֒ dims . iProjV ∗( anglesPrBlock−1) ,
→֒ cudaMemcpyDeviceToDevice ) ) ;

479 lw = &d_weights [ p i tchWeights/sizeof ( float ) ∗

→֒ ang l e s ∗dims . iProjV ] ;
480 cudaDeviceSynchronize ( ) ;
481 Par3DFP_multiAngle(D_volumeData , d_sino , p i tchs , dims ,

→֒ &par3DProjs [ ang l e s ] ,−1 , anglesPrBlock−1) ;
482 sinogram2dOpMul<<< ( dims . iProjU+31) /32 ,32 >>>(d_sino , lw ,

→֒ pi tchs , dims . iProjU , dims . iProjV ∗( anglesPrBlock−1) ) ;
483 for ( int ang =0; ang < anglesPrBlock−1 ; ++ang )
484 Par3DBP_singleAngleV2 ( D_volumeData,&d_sino [

→֒ p i t ch s /sizeof ( float ) ∗ dims . iProjV ∗ang ] , p i tchs ,
→֒ dims , par3DProjs [ ang l e s+ang ] , lambda ) ;

485
486 processVol3DopClampZero (D_volumeData , dims ) ;
487 }
488 cudaFree ( d_sino ) ;
489 }
490 }



Nomenclature

λ A relaxation parameter that controls the impact of each up-
date

A Projection matrix, described in Chapter 2

Ai Sub matrix consisting of a set of rows from the projection
matrix A

ai Is the i’th row in the projection matrix A

b Vectorized version of the projections.

bi Sub vector consisting of a set of the elements in b, correspond-
ing to the sub matrix Ai

x Vectorized version of the discrete domain, described in Chap-
ter 2

ART Algebraic Reconstruction Technique

ASTRA All Scale Tomographic Reconstruction Antwerp, is an exist-
ing software package for Tomographic Reconstruction, using
CUDA C.

back projection The operation BP (b) = AT b

cache lines A cache line is 128 bytes and is the minimal size of cache
memory that will be affected during a transaction.

coalesced A data read patteren neighbouring threads is accessing neigh-
bouring elements
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CPU Central Processing Unit

CUDA Compute Unified Device Architecture

device CUDA C code running on the GPU

DRAM Dynamic Random Aces Memory is the working memory block,
and there is a separate block for the CPU and GPU

forward projection The operation FP (x) = Ax.

GPGPU General Purpos Graphical Processing Unit

GPU Graphical Processing Unit

host C/C++ code that is running on the CPU

kernel A function that can run on the GPU

L1 L1 cache memory

MPs Multiprocessors

PCIe The connection between the CPU and the GPU, which has a
low bandwidth of 8GB/s

ray driven A projection which focus on a fixed ray and make updates
accordingly to the voxel it comes in contact with.

Shared memory Manuel managed memory, which resides on the MPs and the
memory block is divided with the L1 cache.

SIRT Simultaneous Iterative Reconstruction techniques

voxel driven A projection which focus on a fixed voxel and make updates
accordingly to the rays it comes in contact with.

wrapper A piece of software that allows a program to be used by other
programming languages.
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