
Real-time Procedural Generation
of Environments

Bilal Arslan & Patrick Jørgensen

Kongens Lyngby 2014
IMM-M.Sc.-2014-1

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Matematiktorvet, building 303B,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3351
compute@compute.dtu.dk
www.compute.dtu.dk IMM-M.Sc.-2014-1

Abstract (English)

The goal of this thesis has been to create a technology allowing users to generate
levels for a specific game using paper, pen and the camera of a mobile device.
The thesis describes the design and methods for extracting and handling input,
as well as procedurally generating an environment.

A prototype, which is able to generate levels from drawing on paper, as well
as allowing the user play them, has been created. The users having tested the
prototype showed great interest, amazement and satisfaction. We have therefore
reached our goal.

ii

Abstract (Danish)

Målet med dette speciale har været at skabe en teknologi som tillader brugere
at generere baner til et specifikt spil ved brug af papir, farver og et kameraet
fra en mobil enhed. Specialet beskriver det desgin og de metoder brugt til at
udtrække og håndtere input, såvel som procedural generering af omgivelser.

En prototype, som er i stand til at genere baner ud fra tegning på papir, og
som tillader brugeren at spille dem, er blevet skabt. De brugere, som har testet
prototypen, har vist stor interesse, forbløffelse og tilfredshed. Vi har derfor nået
vores mål.

iv Abstract (Danish)

Problem Statement

In this thesis we will look at the following questions:

• How to generate an environment entirely based on a 2D sketch with curves
and how do we introduce varying heights to these roads?

• How do we ensure that the procedurally generated environment (roads,
hills, trees, buildings, . . .) is done in real-time and is customizable in
real-time also?

• How can real-time procedural generations of environments in such a way
be used in games?

The first main problem statements gives rise to the sub-questions: How do we
read from a sketch? How do we turn them into curves? How do we read heights
from a 2D sketch? How do we generate the different objects of the environment?

For the second statement, we have to ensure that our problem can be used
in real-time and thereby setting us the requirements to make optimized and
efficient algorithms. Optimally, the product should run on a mobile device with
limited performance.

The motivation behind this project comes from the third statement, which is
making this tool usable for games and is also of wide interest to a lot of other
people [JT11]. This also rises the discussion of manual level design versus pro-
cedurally generated level design. Can we make a tool that can help anyone
generate levels for a specific game, no matter the input?

vi

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in fulfilment of the require-
ments for acquiring an M.Sc. in Informatics.

The thesis deals with procedural generation of environments and how we can
turn a drawing from a piece of paper into a real-time virtual environment.

The thesis consists of different methods, analysis and discussion used to make
a product, which can be useful in games.

Lyngby, 17-July-2014

Bilal Arslan & Patrick Jørgensen

viii

Acknowledgements

We would like to thank our advisor, Michael Rose for helping us with ideas,
references and advice. Furthermore, we would like to thank him for guiding us
through problems and getting us on track regarding our project orientation.

We would like to thank the interviewers and user testers Marta La Mendola,
Johan Buhl, Peter Buchhardt, Astrid B.Z. Madsen, Mikkel Martin Pedersen,
Martin Vestergaard, Konrad Stanek and high school students for helping us
with thoughts and ideas and get us motivated on our product.

x

Contents

Abstract (English) i

Abstract (Danish) iii

Problem Statement v

Preface vii

Acknowledgements ix

1 Introduction and Background 1
1.1 Project Plan . 2
1.2 Project Orientation . 3

1.2.1 Tool for level designers . 3
1.2.2 Average people as target 4

2 State of the art 5
2.1 Level design . 5
2.2 Procedural Generation . 6
2.3 Augmented Reality . 6
2.4 Related work . 7

3 Design and Tools 9
3.1 Creative Process . 9

3.1.1 Brainstorming . 9
3.1.2 Sparring with supervisor 10
3.1.3 Interviews . 10
3.1.4 Thinking out of the box 11

3.2 Unity3D . 11

xii CONTENTS

3.3 Game . 13
3.4 Curve fitting . 13

3.4.1 Least square . 14
3.4.2 Bézier fit . 15

3.5 Binary Extraction . 17
3.5.1 Overview . 17
3.5.2 Color identification . 19
3.5.3 Thinning . 19
3.5.4 Zhang-Suen thinning . 20
3.5.5 Thinning and road widths 22
3.5.6 Nodes and Edges . 22
3.5.7 Scaling . 23
3.5.8 Thickening . 23

3.6 Depth-First Search . 24
3.6.1 Choice of algorithm . 24
3.6.2 Nodes and Edges . 24
3.6.3 Segments . 25
3.6.4 Crossings . 26

3.7 Terrain . 27
3.7.1 Mesh . 27
3.7.2 Height . 28

3.8 Bézier . 29
3.9 Road . 30

3.9.1 Road mesh . 30
3.9.2 Aspect of road . 31
3.9.3 Random height . 32
3.9.4 Road widths . 32

3.10 Rivers . 33
3.11 Tunnels . 34

3.11.1 Entrance . 34
3.11.2 Hole . 35

3.12 Bridges . 35
3.13 Crossings . 36

3.13.1 Choice of types . 37
3.13.2 Tilting . 37
3.13.3 Bridge . 37
3.13.4 Tunnel . 38
3.13.5 3 main problems . 38

4 Implementation 41
4.1 Overview . 41

4.1.1 Class Diagram . 41
4.2 Least Square . 42
4.3 Binary Extraction . 43

CONTENTS xiii

4.3.1 Color identification . 44
4.3.2 Scaling . 44
4.3.3 Thickening . 46
4.3.4 Thinning . 46
4.3.5 Zhang-Suen thinning . 46
4.3.6 Nodes and Edges . 47

4.4 Depth First Search . 47
4.4.1 Data structures . 48
4.4.2 Crossings . 48
4.4.3 Circle problem . 49

4.5 Mesh builder . 49
4.6 Terrain . 50

4.6.1 Height . 50
4.6.2 Storing heights . 51
4.6.3 Road heights . 51

4.7 Bézier . 52
4.8 Pipeline . 53
4.9 Road . 54

4.9.1 Midpoints . 54
4.9.2 Mesh . 54

4.10 Rivers and Lakes . 57
4.10.1 Rivers . 57
4.10.2 Lakes . 57

4.11 Tunnels . 60
4.11.1 Entrance . 60
4.11.2 Hole . 61

4.12 Bridges . 62
4.12.1 Identification . 63
4.12.2 Creation . 63

4.13 Crossings . 64
4.13.1 Sorting Vertices . 64

5 Test 67
5.1 Input . 67

5.1.1 Error handling . 68
5.2 Interviews . 70
5.3 User Reviews . 70

6 Analysis 73
6.1 Outcome . 73
6.2 Creative process . 74
6.3 Work process . 74

6.3.1 Unwanted results . 75
6.3.2 Evaluation of user reviews 75

xiv CONTENTS

6.4 Extensions . 76
6.4.1 Binary Extraction . 76
6.4.2 Optimizing . 76
6.4.3 Different Meshes . 77
6.4.4 Styles . 77
6.4.5 Game modes . 77
6.4.6 Graphics . 78

6.5 Credits . 78
6.5.1 Work by others . 79

7 Conclusion 81

A Interview 83
A.1 Interview questions . 83

A.1.1 After using the program 85

B Test Results 105

C Least Square Implementation 107

Chapter 1

Introduction and
Background

In this chapter, we are going to analyse the making of a tool in Unity with focus
on the different aspects of geometry generation, image analysis and run-time
problems for generation of a virtual environment for a game. Some of these
aspects include mathematical solutions while others focus more on the social
aspects such as its usage, purpose and communication.

What is procedural generation? By defining a set of rules and measures for an
environment, we are able to generate the environment mesh with textures and
lighting. It is simply modelling by code, using parameters to define the objects.

The basic idea is to have a camera snapshot of black curves on a white piece
of paper, where the curves represent roads. The snapshot is used to extract
information required to translate it to a meaningful 3D object for the user.
For our case, the black curve would translate into a road or path on a terrain.
Furthermore, the idea is to include some features for the environment to make
it look realistic and pleasing for the user, such as vegetation and architectural
buildings. The product should have a degree of customizability and flexibility.

2 Introduction and Background

1.1 Project Plan

Here is the main project plan that we followed during our research and devel-
opment.

Weeks
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Setup
Scenery

AR
Camera
Terrain
Road

Heights
Features

Tunnel
Bridge
River

Crossings
Input

Product
Player
Error

Performance
Test

Report

The plan is divided into 3 main parts, where the first one, Scenery, is the
core feature of the procedural generation in our program. The second one,
Features, encapsulates the additional elements in our scene such as tunnels,
bridges, rivers, crossings etc, which ’complete’ the scene view. The third one,
Product, is polishing and finalizing for an end product. Note that this diagram
does not take the additional amount of time spent on interviewing level designers
into account. (see 1.2)

1.2 Project Orientation 3

1.2 Project Orientation

In the process of defining our product, we had to go through many steps. Our
first idea was to make a level design tool that would allow any level designer to
scan sketches and generate fast prototypes to test ideas. This idea came to us
after having worked with level designers on DADIU1.

1.2.1 Tool for level designers

Having to make a product for level designers, we had some questions to answer:
What is a level design tool? What are its main features? What aspects of level
design are slow, and allow us to optimize the process? Do Level designers always
start their work on paper? What is a normal creative process of designing levels?
How do level designers work? (Appendix A)

In order to find out these things, we decided to make some research online. We
looked at the website World of Level Design[lev12] on level design in order to
understand if level designers sketch levels, what they sketch, and what symbols
they use. We found that level designers have their own symbol conventions.
They sketch paths and rooms, as well as simple symbols that represent events
or pick-ups at these locations.

Knowing little, and having learnt a little more about level design, we decided
to interview some professional level designers, as well as some we had already
worked with during our DADIU project. This would allow us to get some actual
insight as to how real level designers work and think, and help us identify the
bootleneck in their working process.

After having interviewed them, we got some great insight in their creative pro-
cess and how they sketch levels. However we also found out, that what we
wanted to make, was not what level designers needed. They are asked to start
making levels, once the game is well defined, and a prototype of the game is al-
ready up and running. Therefore a simple prototype of the core game mechanics
is already made, and therefore a general tool is not of interest.

1The national academy of digital interactive entertainment, www.dadiu.dk

www.dadiu.dk

4 Introduction and Background

1.2.2 Average people as target

However rethinking the target users of our project, we thought of making a tool
which would allow any user, to draw and generate levels. Everyone can draw,
not everyone can model 3D objects. So the tool will allow anyone to create
levels for a defined game.

This changed the focus of the project. Instead of having to focus on image
analysis, and how to identify simple symbols, we would focus on input handling,
and usability. This means we can restrict the work of analysing images and
focus on getting coherent and good looking output. The aim is to give the user
a feeling of "Wow, I did this". Therefore the road that is created, needs to have
exactly the same shape as the road that is drawn on paper, and it has to always
look good.

It also means, that we have to make many decisions, regarding what should be
drawn on paper, and what can be assumed and concluded from what is drawn
on paper.

Chapter 2

State of the art

In this chapter, we will talk about other related projects. We used some of them
and took inspiration from others. This lead us to discussions which resulted in
our own solutions. The chapter is divided into four parts. The first part is
about the level design aspect, where we talk about tools and engines. The
second part explains procedural generation in general and its history. The third
part discusses Augmented Reality. The fourth and the last part discusses related
and similar work.

2.1 Level design

Levels in games are generally implemented manually (i.e. building blocks, 3D
modelling etc.) by either a Game Designer or a Level Designer. They are using
tools such as UDK1, Unity, Photoshop, Sketch-up2, 3DSMax3, and some of them
are more into physical toys like Lego, Stick-men or board game pieces. But all
of the level designers have 1 thing at common; they are all using paper and pen
as their main tool (Appendix A).

1Unreal Development Kit, https://www.unrealengine.com/products/udk
2SketchUp, http://www.sketchup.com/
33D Studio Max, http://www.autodesk.com/products/3ds-max/overview

https://www.unrealengine.com/products/udk
http://www.sketchup.com/
http://www.autodesk.com/products/3ds-max/overview

6 State of the art

World of Level Design4 is a website, recommended by one of the level de-
signers. It is used to teach about level design and game environment creation.
Their focus lies in getting the most out of using the mentioned tools. Their ap-
proach lies in creating objects from scratch, but in procedural generation, some
rule-sets are defining your creation of objects.

2.2 Procedural Generation

Elite was the first game to have procedural generation of a world [How14]. Pro-
cedural generation has been of wide interest because of its power of generating
at run-time without the need of storing anything. It also encourages extendibil-
ity and eases variation in objects. An example use of procedurally generated
environment is Procedural City Generation by Shamus Young [You09], which
uses no art assets. A more general approach to procedurally generating complex
3D shapes, Paul Merell and Dinesh Manocha has written a paper on modelling
algorithms, synthesis, algebraic constrains and boolean expressions [MM10].

Figure 2.1: Elite game from 1984.

2.3 Augmented Reality

We wanted the procedural generation to happen along with Augmented Real-
ity (section 3.1). We found that something similar has already been made by
Qualcomm Vuforia5, but focusing much more on AR, rather than procedural
generation [Qua13]. We also wanted to know the posibility and extendibility

4World of Level Design, http://www.worldofleveldesign.com/
5Qualcomm Vuforia, http://www.qualcomm.com/solutions/augmented-reality

http://www.worldofleveldesign.com/
http://www.qualcomm.com/solutions/augmented-reality

2.4 Related work 7

of identifying markers [AfARA05] [Mac98] [RD12]. The last cited is the closest
to our vision. Later, we decided not to focus on identification of augmenting
markers, but more on procedural generation. For this reason, we used a Unity
integrated package from Vuforia [Qua12].

2.4 Related work

Moving closer to our subject in mind, we found a page [Dou14], which covers a
wide range of Procedural Content Generation (PCG). In it we found references
to PCG games, software, algorithms, events, articles and much more. An infinite
procedurally generated terrain by Peter Jones is done using relative random
heights with similarities to Perlin-noise [Jon13]. A 3D artist with expertise
in games programming is introducing to procedural geometry done in Unity
[Sur13]. Unity has even got a documentation in their manual, explaining the
generation of mesh procedurally in Unity [Uni14]. A real-time application of
terrain generation, done by Jacob Olsen, shows an example as early as 2004,
using erosion and height-maps [Ols04]. For hydrology along with terrain, a
paper from LIRIS, Université de Lyon, presents how terrain generation is done
using simulated water and rivers [JDG13].

On top of terrain generation, we generate roads. Example of procedural road
generations is done by SixTimesNothing6 and another example done by Mar-
tin Glaude [Gla13]. A belgian CG-artist Kim Goossens has done procedural
generation of roads, very similar to what we want to achieve, but with different
approach [Goo13]. He uses Houdini as platform, and does procedural generation
by manually changing control points.

Figure 2.2: Houdini implementation of procedural roads by Kim Goossens.

6SixTimesNothing, http://www.sixtimesnothing.com/

8 State of the art

Chapter 3

Design and Tools

In this chapter, we will focus on the different methods used to solve the particular
problems defined in the problem statement section. These methods will include
analysis of the given problem of its own. We will also discuss other alternatives
to our design choice. Once the method to solving the problem is established,
we will try and implement it in the next chapter.

3.1 Creative Process

As the objective of this project is to make an invention, we had to make use of
different techniques in order to define and test our concept.

3.1.1 Brainstorming

The initial project definition process for us was a simple brainstorming. The
subject was gaming, and how we can contribute to that world. Our goal was to
make a game, as we have a passion for the field. However the main criteria was
that we needed to create something new, not in the game concept, but in the
technical aspect.

10 Design and Tools

Our idea lead us to Augmented Reality (AR), which we believed had potential
and unexplored possibilities. We found, what we believe was a fun idea for a
game. A treasure hunt you could make in your own house, with geographical
locations (GPS) as AR markers. After doing some research in the field of AR
and GPS, we found out that it is still an imprecise technology (without stan-
dard AR markers), unless with predefined locations and a lot of image analysis
calculations. This took away the liberty and interactability that we wanted, and
we decided to make some sort of a scavenger hunt. However there are already
many AR scavenger hunt games [Cha14].

Keeping in mind AR, we thought of brainstorming on the field of level design.
Not being experts in the field, we could only come with our superficial impres-
sions of it, and state that we thought the process could be optimized. The idea
of being able to visualize and edit levels using AR arised. We thought of it being
an interesting concept to visualize levels one had created on paper. We believed
this could help level designers share their ideas with team mates, and perhaps
help them in their creative process.

3.1.2 Sparring with supervisor

In the process of defining the concept and project, we got a lot of help and
tips from our supervisor. Sparring with someone who can see the process from
outside, has proven helpful many times. It has not only ensured that the concept
would orient in the right way, but also that energy and focus was spent on the
right areas. He also came with ideas and suggestions, that helped us think out
of the box.

3.1.3 Interviews

After having a clear idea about making a level design tool and what we wanted
to do achieve, we decided to test out the concept on actual level designers. We
had a rough prototype showing the concept, and triggering the imagination and
interest of the level designers. We contacted many level designers from different
origins, and interviewed them.

We had prepared questions (can be found in the appendix A), where we would
ask them about level design, for us to understand a lot more about how they
think and what they could need. After we had finished our interviews, and
reviewing all of them (Appendix A), we realised that visualizing levels was not
an issue, and therefore level designers would not be interested in using the

3.2 Unity3D 11

program we would develop. We also found out that the AR was just a gimmick
and that it had no real interest for the project.

3.1.4 Thinking out of the box

Having realised that level designers would not need our project, we were forced
to rethink our project. We got the idea of changing the target group. In fact one
level designer suggested, that what we wanted to develop, was a much better
game concept than tool. Therefore we found ourselves making a tool which
would allow anyone to easily make levels, by allowing users to draw on paper,
scan those in a mobile device and play with their level.

As a matter of fact, the aspect of being able to make a game your own, is
something which is appealing to a lot of people. Moreover some successful
games have arised from user created games, using level editors published by
bigger games. An example of this is League of Legends, which started off as
a custom map called Defense of the Ancients in Warcraft 3 [Ngu12]. Not
to forget one of the greatest "make your own level" games, Minecraft [Moj09],
which allows people to create universes from building blocks.

3.2 Unity3D

Our main tool for testing our procedurally generated environment is the Unity3D
game engine, but why Unity? It is free and offers an interactive environment
to visually run and test on. Unity also optimizes meshes, and generates mate-
rials and shaders. Additionally, we can separate meshes, scale and move them
at will while debugging. Unity’s scripting development environment, MonoDe-
velop, also has a powerful debugging tool, allowing run-time debugging with
breakpoints and variables inspection, by either use of the editor inspector or
MonoDevelop variables watch (Figure 3.1). See Figure 3.2 for the editor view
in Unity.

Other alternatives we could have used for our development would be developing
within the Visual Studio environment or other game engine editors such as
UDK and CryEngine1. Had we used Visual Studio, we would probably have
to use OpenGL, but then we had to operate almost directly with the CPU in
order generate the meshes most optimally. We would also have to create the
run-time environment, camera and player movement, initializing buffers and

1CryEngine, http://cryengine.com/

http://cryengine.com/

12 Design and Tools

Figure 3.1: Debugging in MonoDevelop. Debugged variables can be seen while
using breakpoint.

Figure 3.2: Editor view in Unity. Inspector window debugging can be seen on
the panel on right side while also debugging the mesh on the scene
view.

shaders. Using Unity therefore, saved time for us and allowed us to focus on
interesting problems.

UDK and CryEngine are also alternatives to Unity. Both of then can be down-
loaded with educational use, but the main reason we went with Unity was our
past experience with the tool. Therefore no time was wasted getting acquainted

3.3 Game 13

with new software. Our past project [Jø12] was also in Unity, recommended by
our previous supervisor. This also made it easy adaptable and reusable for this
project.

In scripts, we set the variables we want to debug as either SerializeFields2

or public variables. One of the powerful things with this, is that it can be edited
run-time as well. This enables further dynamic testing, without the needs to
execute the generation over and over every time.

3.3 Game

In order to test the levels we have created, we created a simple racing game,
which allows you to traverse your scene. See Figure 3.3.

We had considered many different genres in the beginning of the project. For
instance a physics action game. The idea with roads would then be path-ways
for the character to walk on, and different obstacles in the field would be in-
teractable. When we talked to level designers (Appendix A), they mentioned
assets like push boxes, shooting balls, events, puzzles etc. For that, we tested
a game where you have a third-person character control. Another idea was to
make a shooter game, where the player shoots at obstacles in the generated
environment or even make a playground area for multiplayer environment.

But the one that fit the most was the racing game. For the game, we simply
needed a car, first-person or third-person, and drive on roads with hills, fences,
bridges etc.

3.4 Curve fitting

This mathematical problem consists of fitting a curve to a set of points. We will
extract control points which define the curve as a cubic bézier.

2http://docs.unity3d.com/ScriptReference/SerializeField.html

14 Design and Tools

Figure 3.3: Car game.

3.4.1 Least square

The theory behind least square is taking the distance between the points on
the curve and a mean, which is found by taking the average of every point’s x
and y. We square the distance from each point to the mean. We use these to
determine the influence of that specific point, and compare them with the other
points. Figure 3.4 illustrates this.

The first graph shows the points of the curve and each point is defined as a 2D
vector

P = [p1, p2, ..., pn] , pi = {x, y}

The means are found as shown on the second graph, top-right. On the last two
graphs, we find the distances from each point to the mean on both, x and y
values, respectively. These are then used to find the linear line equation

y = x0 + cx = x0 +

∑
(x− x̄)(y − ȳ)∑

(x− x̄)2
· x

where x0 is the intersection with the y-axis and x̄ and ȳ denoting the means of
the points in x and y.

3.4 Curve fitting 15

y

x

p1

p2

p3
p4

p5

p6

y

x

x

y

p1

p2

p3
p4

p5

p6

y

x

x

y

p1

p2

p3
p4

p5

p6

y

x

x

y

p1

p2

p3
p4

p5

p6

p7

p7

p7

p7

Figure 3.4: Least square distance from points.

3.4.2 Bézier fit

Seeing as we do cubic bezier, we are working with polynomials of third degree.
We therefore need to calculate least square in a different way. This is done by a
linear combination of equations and matrices. Note that the following equations
are derived from Jim Herold’s article [Her12].

We use a cubic bézier function here, which means that our curves can only bend
two times. The reason is that only four control points are used and two of them
can make the curve bend. This is a design restriction which we need to take
into consideration, when generating the road paths.

We have the formal bézier equation given as

y = c1(1− t)3 + 3c2t(1− t)2 + 3c3t
2(1− t) + c4t

3 (3.1)

We can split this equation into matrix multiplication of 3 matrices so they form
the same linear combination as the bézier equation.

16 Design and Tools

T = [t3, t2, t, 1], M =


1 3 −3 0
3 −6 3 0
−3 3 0 0
1 0 0 0

 , C =


c1
c2
c3
c4


Multiplying these matrices together, we will get the same equation as 3.1. The
next step is to give each point a corresponding t value within its bézier function.
For instance, for t = 0 we have the start point p0 and for t = 0.1 we have p1
assuming we have 10 points, P = [p1, p2, ..., p10].

To find the corresponding ti’th value of the points, we have to get the normalized
path lengths by first taking the path lengths of each segment and then divide
with the sum of the lengths

ti =
|pi − pi−1|∑n
i=2 |pi − pi−1|

(3.2)

In the previous example with linear least square problem, we used the approx-
imation squared distances from the mean. For the bézier curve fit approxima-
tion, we are using a similar one, but with matrices, namely the residual sum of
squares. As previous, we take the x and y values of the points separately.

E(cy) =

n∑
i=1

(yi −B(ti))
2

where we try to find the control point’s y-value, Cy, E() is the error and B()
the bézier function. To find the maximum likelyhood estimation, we can rewrite
the equation so that we maximize the probability of distributing all the points
of the curve. To do that, we use another matrix, namely

S =


t31 t21 t1 1
t32 t22 t2 1
...
t3n t2n tn 1


and then we rewrite the error equation as

E(cy) = (Y − SMCy)T (Y − SMCy)

3.5 Binary Extraction 17

where Y is the vector with the y-values of the points. Differentiating this func-
tion and setting the left-hand side to 0 will give us the maxima,

δE

δC
= −2ST (Y − SMCy) = 0 m

STY = STSMCy m
Cy = M−1(STS)−1STY

which will finally yield us the control point. The same equation applies for the
x-component of the control point.

3.5 Binary Extraction

Since the input management is done via the camera of a given device, we need
to translate the image of each frame (or a single frame) into readable data in
our tool. This is done by using simple color distinction of pixels and performing
image analysis algorithms to make the input usable.

3.5.1 Overview

The user scenario is that he takes an image of his level drawn on paper. This
one contains black and blue curves. The black color indicates roads and the
blue water. The goal in binary extraction is to retrieve data sets containing the
points where we have identified roads and rivers.

As binary handling we have many different kinds of operations, all explained
below. However we use them in a specific order, for us to get the result we want.

On figure 3.5 we see the process from generating the binary data, to sending
nodes over to the DFS class (explained in section 3.6) for us to generate the
environment (all processes will be discussed in detail in their subsections below).

The first thing we do, which is common to both rivers and roads handling, is
extract a binary data from the image we scan. We identify two arrays, one
of which containing 0s and 1s for the road, and the other one for the rivers.
When there is a 1 in the road binary array, it means we identified a black color.
Opposite if we identify a blue color, we will put in a 1 in the binary data of the
river. Otherwise the binary data of both is filled with 0s.

18 Design and Tools

binaryDataRiver

binaryDataRoad

Generate

 nodes

binaryData

binaryData

binaryData

DFSNode genThinningZhang-SuenScale

 nodes

binaryData

binaryData

binaryData

DFSNode genThinningZhang-SuenThickening

Figure 3.5: Overview class diagram of the implementation.

3.5.1.1 Road

When working with roads, we will take the binary data which identified the
black pixels. The first process we will do is scaling the binary data. This scaling
will give us more space to work with when looking at crossings (section 3.13).

3.5.1.2 River

When working with rivers, we will take the binary data which contains the
identified blue pixels. Instead of scaling the binary data, we simply thicken it
(reason explained further down).

3.5.1.3 Common

After the thickening or scaling, we thin the binary data using the zhang-suen
thinning, which we use because of its performance. However the zhang-suen
algorithm doesn’t thin all roads to only have one neighbour, so we complete it
with a skeletonizing algorithm that we simply call thinning. This one ensures
that the all the curves have width 1. When we have done all these we send the
resulting binary array to a node generator, which will create the nodes we need
to perform our DFS. In the end we send all these to the DFS class, which will
generate the final road.

3.5 Binary Extraction 19

3.5.2 Color identification

The basic idea is that we draw black and blue curves on white paper. These are
meant to be roads and rivers respectively. See figure 3.6.

Figure 3.6: White sheet of paper with road

We read the image as a set of pixels. We assume that the background is white,
and we will presumably only get either black, blue or white pixels. This is what
we take advantage of: Converting color data into binary data.

3.5.3 Thinning

In image analysis, more specifically in Morphology, thinning is an algorithm
that takes data, and iteratively forms a skeletonization by removing unnecessary
pixels [RFW03].

Thinning uses two different filters to find and remove unnecessary pixels. These
filters are used when checking the specific pixel’s neighbours. The filters are
shown on Figure 3.8.

Figure 3.8 shows how we decide which pixel to turn into white. A 0 indicates
the occurance of a white pixel, a 1 indicates the occurance of a black (or blue

20 Design and Tools

Thinning

Figure 3.7: Thinning of road.

0 0 0
1

1 1 1

0 0
1 1 0

1

Figure 3.8: Two types of filter matrices.

when working with rivers) pixel, and a blank means that we do not check that
neighbour.

These filters are currently one-way oriented. To get the thinning algorithm to
work properly, each of these filters need to be rotated 90 degrees and used on
every pixel once again.

3.5.4 Zhang-Suen thinning

Similar to the previous thinning algorithm, this version has another way of
checking whether or not a black pixel should be turned into white. This time,
instead of using simple filter check on a pixel and its given neighbours, we check
for transitions from white to black pixels [Rez13].

First, we start by giving an order to the neighbours around the pixel we are
looking at. We call that pixel P0.

P8 P1 P2

P7 P0 P3

P6 P5 P4

Figure 3.9: Neighbours of pixel P0

Next, we define two quantities

3.5 Binary Extraction 21

• First one telling us how many pixels in the neighbours are turning from
white to black in the sequence P1,P2,...,P8. For instance, if pixel P3 is
white and P4 is black, then the number of transitions is incremented.
Thereby, the number of transition is between T ∈ [0; 8]. We will call this
quantity A.

• Second one will simply give us the number of black pixels around pixel P0.
So we have

∑8
n=0 Pn. We will call this quantity B.

And finally, we must ensure that all of the following conditions are met before
we can decide whether or not to change the pixel to white:

Step 1:

• Condition 1: B is between the values 2 and 8.
2 <= B <= 6

• Condition 2: A is black.
P0 = 1

• Condition 3: One of the following pixels is white.
P1 = 0 ∨ P3 = 0 ∨ P5 = 0

• Condition 4: One of the following pixels is white.
P3 = 0 ∨ P5 = 0 ∨ P7 = 0

Step 2:

• Condition 1: B is between the values 2 and 8.
2 <= B <= 6

• Condition 2: A is black.
P0 = 1

• Condition 3: One of the following pixels is white.
P1 = 0 ∨ P3 = 0 ∨ P7 = 0

• Condition 4: One of the following pixels is white.
P1 = 0 ∨ P5 = 0 ∨ P7 = 0

Notice that we check two steps for each pixels. When all these conditions are
met for the pixel, the checked pixel will be removed (set to a white pixel).

22 Design and Tools

3.5.5 Thinning and road widths

As we will explain in 3.9, we were interested in introducing road widths from
user input. This means that we wish to have the road widths drawn on the
paper, to be transfered into our program.

This, we found, fixed a lot of our problems, in input consideration. If we have
a fixed road width, we can risk that neighbouring roads can cover each other in
a level, but not on the paper. By allowing the user to define the road width of
every single segment, roads will not cover neighbouring roads, as they will not
on paper. See Figure 3.10.

000000000000
011111000000
011111000110
011111000110
011111000110
011111000110
000000000000

000000000000
002220000000
002220000200
002220000200
002220000200
002220000200
000000000000

000000000000
000300000000
000300000200
000300000200
000300000200
000300000200
000000000000

Figure 3.10: Thinning in steps. As seen, the number gets incremented for
each iteration of thinning.

We found a very simple way to do this. Every black pixel subjected to thinning,
will be affected at a certain iteration of the Zhang-Suen or skeletonizing algo-
rithm, and this iteration will define the road width. A road with width value
5, will be thinned 2 times (two on each side), and the resulting node (section
3.5.6), will then be able to remember this value and send this information to the
roads. Of course we will not take into account the first iterations, when defining
the road width, as those only happen because of scaling.

3.5.6 Nodes and Edges

In order to use the binary data, we needed to create relations between the black
pixels. We needed to give each black pixel a unique identifier, and a set of
neighbours it is connected to.

We decided to make each black pixel into a node, and create edges between the
black pixels that are neighbouring it. This means if a black pixel is next to
another black pixel, we will create an edge between them.

3.5 Binary Extraction 23

Regarding their identifier, and their coordinates we decided to extract that
straight from the image. Their coordinates are taken from the pixels image
position. Hence a pixel located on the 5th line and 8th row, will have coordinates
x = 5 and y = 8.

3.5.7 Scaling

After having checked some special input cases, and difficult situations to handle,
we found a solution that would help in all cases. In fact many of our problems
happen at intersections, and when these intersections are too close to each other.
The solution was therefore scaling the image we receive, so that one pixel be-
comes 4 times as big, which means one pixel becomes 16. After thinning the
whole image we get the same image as we would without scaling, however with
more steps between intersections, which simplifies implementation a lot (this
will be explained further in section 3.6 and 3.13).

Of course there is a performance drop because of this, because we have to do 4
times as many calculations. However the amount of errors dropped and we get
more credible solutions. See section 4.3

3.5.8 Thickening

When drawing blue over black, the outcome is black. Therefore when generating
binary data for both river and road, we will have holes in our river binary data
due to black being dominant over blue. We decided to implement a thickening
of the binary data, which simply turns the neighbours of a 1 to 1. See Figure
4.5.

There were many different options to explore, namely we could decide that when
identifying a black pixel, we also identify a blue pixel. Then however we would
have to check if there is blue pixels around, for else there would be rivers under
every single road. This seemed complicated, so we thought of thickening.

The advantage of thickening the rivers is that we have to do no specific checks.
Given any two points, thickening them enough, will make one connected area.
Therefore the issue at hand, is how much to thicken, so components that are
meant to be connected get connected, and those who don’t will not. The solution
we found was to take the maximum road width (which we get from thinning the
road), and use this as a thickening factor. This means, if there is a river around
the thickest road it will get connected.

24 Design and Tools

The downside of this, is the fact that componenents that shouldn’t get connected
could wind up getting connected. With very thick roads, and rivers that are
very close to each other, we could end up with having one big river, instead of
many small ones.

Once we have all the connected components we want, thinning them will give
nice rivers that will look as if we were able to scan it despite the black lines.
See Figure 3.21.

3.6 Depth-First Search

In order to go from nodes and edges to roads, we need to make logical relations
between neighbouring nodes, add those together to generate segments of roads
and rivers, and create relations between these.

3.6.1 Choice of algorithm

After having generated nodes and egdes as explained in 3.5, we decided to run
a "Depth-First Search" algorithm (DFS).

The reason we went for the DFS algorithm, is due to its very intuitive imple-
mentation in the context we need it for. It traverses a path all the way, before
looking at the next one. Therefore the DFS will only jump back, when it has
reached the last node of a path. Hence we can flush the points we have so far
to the road we are working on, jump back to the previous node(s) and start a
new road.

An alternative could be to use a Breadth-First Search. This one will expand
through all the network before jumping back. Therefore much care had to be
taken in the implementation, as to differentiating one road from another, and
which road a specific point is contained in.

3.6.2 Nodes and Edges

As explained in section 3.5 we created nodes and edges for our DFS to search
on.

3.6 Depth-First Search 25

The nodes are information holders. They indicate a position, id, roadwidth
(purpose explained in section 3.9.4), neighbouring nodes and edges.

The edges are used to connect one node to another. The edge knows which two
nodes it connects.

Our DFS traverses every edge in the graph, and once an edge is used, it is
deleted. The idea is going through every edge once, hence every node will get
visited. The nodes however can be traversed several times, as we have crossings
and circles, where you need to go through a node again.

3.6.3 Segments

In order to decide where we start our DFS search, we choose the node which
has only one neighbour. In fact we found that one neighbour indicates an end
of a segment. So when we wish to start our search, we prefer to have it start in
these points, as we know it will not return.

After finding nodes that are on the same segment, we have some restrictions
about these segments. The first regulation is about the minimum amount of
points accepted to form a segment. Least square only works with a minimum of
4 points, and therefore one restriction could be to have a minimum of 4 points
in a segment. However we see 3 alternative cases:

• 1 point: We decided to throw away segments of size 1. We justify it as in
the implementation of roads 3.9 we need an orientation vector, and such
one cannot be found with only one point

• 2 points: We have now a start and end of a segment, and therefore we
need not least square to make calculations, as little has to be done to make
it work for a road

• 3 points: Like before we have a start, end but this time we add a middle
point.

Alternatively one can argue on whether there should be a limit as to how many
points there can be in a segment. In fact we found that cubic bézier can only
make two swings at a time, and therefore a restriction is needed. We had some
considerations. One was to count the swings in the DFS implementation. This
would be optimized as a minimum amount of passes would be needed, however
the implementation was too complicated for the optimization granted.

26 Design and Tools

Road segments

Figure 3.11: Road segmentation.

We decided to have a maximum amount of points per segment, and when that
value was exceeded we would flush, and create a new segment, of the same road.
Furthermore we found out that counting the amount of points in a segment,
and passing that to the road, so it would not make too many vertices, gave a
clear and optimized result everytime.

Knowing the segments, and knowing which roads they were segments of, we had
to find a solution regarding how to make them connected. To do this we have
a lot of data structures that keep track of this which is explained in detail in
section 4.4. There were a few options.

• Sending the two last vertices of the previous segment to the next

• Building the mesh dynamically as we traverse the road

• Adding vertex points to a list, and building it all together in the end

We chose the latter one, due to conveniance in the road implementation which
will be discussed in section 4.9.

3.6.4 Crossings

Having thinning in our program, it was quite easy to identify crossings: a node
with more than two neighbours is contained in a crossing. We therefore had

3.7 Terrain 27

to make a new type of search: which nodes are contained in a crossing. We
decided to make a separate DFS. The reason was two-fold. First of all we are
interested in exploring the depth of the crossing before continuing, and second
of all it cohered with the implementation of the road DFS.

Figure 3.12: Crossing identification. When we reach the red point, we check
the neighbours (blue points).

We therefore had to add a depth (decreasing for every step) to the DFS so it did
not run through the whole data structure, but stops when a certain depth was
reached. In this way we end up with a set of nodes that constitute the crossing.
As we use the DFS, nodes from the same side of the crossing, will be one after
the other.
An option could have been to use a Breadth First Search, however we would
have had more work in matching nodes of the same side should we need them to
create segments (discussed in section 3.13). However for depth implementation
we would have had less issues.

3.7 Terrain

The terrain is the ground from what all our environment objects is built. It can
represent anything from sand to grass or even water. The terrain is in its most
simple form a planar quad with 4 vertices and a face (2 faces for triangulation).

3.7.1 Mesh

The terrain has a number of vertices and faces, starting out laying flat in a
2D plain, but can also have its third dimension representing the height and
creation of hills (explained in section 3.7.2). The more vertices and faces the

28 Design and Tools

mesh consists of, the better resolution it will have when creating a huge scene
with a big environment.

The creation is done by using a triangle-strip going through each vertex.

0 2 4 6 8

97531

Figure 3.13: Triangle strip from vertex 0 to 9.

3.7.2 Height

The terrain in our environment is the most simple but yet can turn into a
complicated procedural mesh. The reason being its varying heights across the
environments. For that, an algorithm called Perlin-noise [Jø12] is used to create
random, but structured curves along the surface of the terrain. To make the
terrain not look so smooth and unnatural, an additional algorithm called tur-
bulence is used to give the surface of the smoothed terrain a disturbing surface.
This can for instance be used to resemble rocky hills. (explained in [Jø12])

However, whenever there is a Road 3.9 or River 3.10, we want the terrain heights
to act in a different way.

3.7.2.1 Road heights

We have two situations for the road to behave

1. The road follows the same height function as the terrain.

2. The road has its own height function independant from the terrain.

In situation 1, we do not have to worry much about many cases as the road
follows the terrain. The only worry is that the road is more smoothly layed

3.8 Bézier 29

on the ground than the terrain ground. So, a way to visualize this in the most
meaningful way, we generate the terrain as having noise and turbulence whereas
the road only makes use of noise.

By doing this, we ensure that we have smooth hilled roads, that you can drive
on. To also smooth the edges outside of the road, we check, stepwise, a distance
further away from the road width.

In situation 2, it is not as trivial. In this case, we have to think about further
4 cases in which the road can be. These can be seen on figure 3.14.

Terrain
 height

Terrain
 height

 Road
 height

C4

C3

C2

C1

Tunnel
threshold

 Bridge
threshold

Figure 3.14: The four terrain height cases

When the road height is below a certain threshold, a bridge is created under-
neath. Above a certain threshold, tunnels are created and we create a "hole"
through the terrain. In other cases, we either raise or lower the terrain height
to fit the road height.

3.8 Bézier

A bézier curve is a parametric curve which consist of a set of control points.
The curve uses these control points to align its smooth curvature by any specific
weights on them. There are linear, quadratic and cubic bézier curves and the
most generalized bézier formula, namely

B(t) =

n∑
i=0

(
n

1

)
(1− t)n−itiPi

30 Design and Tools

= (1− t)nP0 +

(
n

1

)
(1− t)n−1tP1 + ...

...+

(
n

n− 1

)
(1− t)tn−1Pn−1 + tnPn, t ∈ [0, 1]

For our project, as we work with 3D environment, we chose to use the cubic
bézier curve, which in this case would result in the formula

B(t) = (1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3, t ∈ [0, 1]

Figure 3.15: Example of a cubic bézier curve.

3.9 Road

Our program’s main feature is generating nice looking roads. It’s important
they are coherent to the input, and smooth. At this stage we have already read
and translated the paper input, and the question is what to do with this data.

3.9.1 Road mesh

We decided to implement the road as a simple triangle strip (Figure 3.13). It
seemed as the simplest and best solution, as it is exactly what we had done
on our bachelor thesis [Jø12]. The idea is taking the orientation of one control
point to the next, and use its hat vector (the one which is perpendicular) to
give width to the road.

3.9 Road 31

3.9.2 Aspect of road

We had few considerations as to what information to give the road and whether
we should use Bézier 3.8 or raw data from the binary.

Figure 3.16: Raw vs smooth roads.

The problem with using the raw data, as shown above, is the fact that roads
will be very edgy, and more liable to data errors. On the other hand, we would
not have problems with partitioning roads into segments and making them fit
(see Figure 3.11).

In fact one of the big challenges with using Bézier, and Least Square approx-
imation, is the fact that we need to restrict the amount of data given to the
curve fitting, as it cannot create roads with more than two turns, and we need
to partition roads into a set of segments. One challenge is therefore to make
them connect and fit, and optimally make the transition between one segment
and another invisible.

The first step is not having gaps in between them. Without gaps the road looks
like one, and not like a set of smaller meshes. The next step is making the first
two vertices of the next segment, fit with the two last vertices of the previous
segment.

The solution we chose was to do two things:

• Transform the first control point of the next segment, to the same as the
last control point as the previous segment

• Make a vector interpolation for the first few bezier steps between the last
vector of the previous segment, and the current calculated vector

32 Design and Tools

3.9.3 Random height

We decided that random height would remove a lot of uniformity, and make
environments generated a lot more interesting, and fun to play with.

To start with, we needed to decide on reality of road heights. In fact one could
have tilting roads when the road is turning to one side or the other. However we
decided that the effort we had to put into it, compared to the benefit it would
give the levels, was too little. After looking at real-life roads, most of them do
not tilt according to turn, unless it being a race track. Also it would add a lot
of complications for us in setting the height of the terrain. In fact we would
need to interpolate the height of the terrain according to the tilting angle of the
road.

Figure 3.17: Error with some terrain vertices being over road height.

This simplified the implementation for us, as it would mean each vertex pair
would have the same y-value, and all we would have to worry about is the height
transition between one pair of road vertices and the next. However using the
noise function, we ensure that the next value is close to the previous, and that
"an understandable" road-height system appears.

3.9.4 Road widths

As we do thinning on the binary data extracted from the scan of the paper, we
lose the road widths, the user could have given his roads. However as explained
in section 3.5 we can get a good estimation of the road width at one specific
point. With those raw values, just as explained previously about the aspect

3.10 Rivers 33

Figure 3.18: Road following the terrain height.

of roads, we decided to make interpolations between these values, in order to
minimize mistakes. To start with, we decided to give each segment a road width,
as each segment would not cover too much distance. This road width would be
found from taking the average of the raw values.

The way we decided to use these road widths, is by interpolating between the
previous road width and this road width in the first half of the segment, and
interpolating between this road width and the next road width in the second
half of the segment. This way we have a lot of smoothing between road widths,
and small inconsistencies will get corrected.

3.10 Rivers

We decided to introduce rivers to the program as to allow the user to make
levels more interesting.

We decided to make rivers in a very similar way to roads. In fact the system
of reading black pixels and translating it to spline coordinates, is re-used for
rivers. This time however we will not create a mesh for the river, but affect the
terrain. We have set a 0 level, where there is water, and the rivers will appear
when the terrain is lowered to under 0. The challenge therefore lies in making
sure we smooth a transition from normal terrain height to under the 0 height
level (as opposed to what’s explained in section 3.7).

34 Design and Tools

3.11 Tunnels

Tunnels is a way to encapsulate areas in the terrain, where there is a hill or
mountain above or it could be a hole dug into the underground. In any way,
tunnels are created to bypass certain areas in the terrain. Because of that, it is
highly dependant on the formation of the road.

A tunnel is an arc above the road, created by the 2D vector trigonometry, i.e.

~v =

[
c · cos(θ)
c · sin(θ)

]
where c is the radius of the tunnel. As we go from angles 0o to 90o, in 15o steps,
we would have the half tunnel looking like the following illustration

Figure 3.19: Half tunnel. To have a full tunnel, we turn 180 degrees.

3.11.1 Entrance

The tunnels themselves do not make much sense without an entrance. The
entrance will, not only emphasize the tunnel, but also connect it with the sur-
roundings.

3.12 Bridges 35

3.11.2 Hole

When identifying case 4 as explained in Figure 3.14, we wish to create tunnels.
However leaving the terrain unaffected will create the problem as shown on
Figure 3.20.

There were many considerations regarding the design of the tunnel going through
a surface (hill). One consideration was to make a depth mask shader on a mesh
on the entrance of the tunnel so that would ignore the rendering of the surface
mesh and only render the relevant meshes. The problem here was the small gap
between the tunnel entrance and the vertices covering the terrain.

So we decided to make the terrain be lowered instead, and make a new mesh,
representing to be the cap of the hill. We will take the same set of vertices,
from the tunnel entrance to tunnel exit, and take the terrain height from the
hill normally, and connect the edge vertices to the tunnel entrance.

Figure 3.20: Terrain covering the tunnel entrance

3.12 Bridges

Having created rivers and gaps in the terrain, we decided to introduce bridges.
The implementation of these is also based on the implementation of roads. They
have to be under the road, and seem as an extension of these, however with a
height, and an arch.

One possibility for our design, would be to make different kinds of bridges. The
choice of the bridge would depend on the width and height of the road: a long
bridge would not have the same type as a short bridge. However we did not
estimate this as a crucial task, rather as a nice to have.

36 Design and Tools

Figure 3.21: Road with bridge and river.

3.13 Crossings

Crossings rise an interesting problem in the program. In fact in real life, two
crossings rarely look the same. This means we have some degree of freedom
regarding their aspect.

Figure 3.22: Crossing.

3.13 Crossings 37

3.13.1 Choice of types

There are many ways of making crossings. The option we chose, is to make an
extension of the road in question, and merge this one with all the other roads
3.22. This means the real challenge lies in making the transition between roads
and crossings invisible. To do this we could simply pass two vertices per road,
to the crossing and build from there.

Another option could be to decide on a dominant road and side road. This
means that one road would try to join another road, but you cannot tell on the
first road that there is a crossing. To do this, one should simply lower the height
of the side road, in order for there to be a dominant one.

Building on this idea, we could have a standard crossing mesh, which could cover
over the area where roads meet. This would be the simplest solution, however
would not look convincing to the user.

Another consideration in that regard was that two dominant roads could not
cross at all. To do this we could make a bridge where there was supposed to be
a crossing so one road would go over another instead of crossing it.

3.13.2 Tilting

Regarding crossings, we had to consider what to do with its tilting. We decided
to have no tilting on the crossing, no matter the tilting of the intersecting roads.

If we were to tilt it, it would work well for some roads meeting the crossing,
but not all. Therefore it would affect the actual playing of the level. Another
option would be to connect all roads end vertices together without adjusting
their height. This would create twisted crossings, and a car would easily get
stuck.

3.13.3 Bridge

As it is, the user can decide to make roads meet over a river or lake (even
though it is very unrealistic). Therefore we had to take this into consideration,
and make a bridge mesh where there is a crossing. Seeing as crossings group
roads together, we assumed a cylinder shape was good. This one automatically

38 Design and Tools

groups other bridges together, and does not need more work than necessary in
order to make it look good.

3.13.4 Tunnel

We have more control over tunnels. In fact tunnels appear only where the
difference in height between a road and the terrain is too big. However this is
not user-defined, it happens randomly. In fact there is very few examples of
tunnel crossings in real life, and we do not believe it adds much quality to the
program. Therefore we lower the terrain around crossings, in order to make sure
tunnel crossings do not happen.
However we also have the possibility to make these tunnel crossings. The idea
is to make a crossing on the top of each tunnel that would fill the gap at the
top. Then it’s a matter of matching the right side of one tunnel to the left side
of its neighbour.

3.13.5 3 main problems

We identified some problems with crossings that are close to each other, illus-
trated in the figure 3.23 below.

Figure 3.23: Crossing Issues.

In the figure we imagine roads meeting in crossings. In the different cases there
is more or less distance between each crossing.

In case 1, we see the number 1 trapped in between two others, who have two
neighbours, and therefore are crossings. In this case we want to make one big
crossing, which covers the whole area.

3.13 Crossings 39

In case 2, we have one more 1 between the crossings than in case 1. It is still
not enough to make a segment between the two crossings, and making one big
crossing would seem odd.

In case 3, we have one more 1 between the crossings than in case 2. We have
now enough to make a tiny segment of one road step between the two crossings
to connect them.

We realised that those solutions were not optimal, and that we needed more
steps between them to get better results. Therefore we thought of making the
scaling, which would turn one 1 to four 1s, and therefore give us more points to
work with, and get a work around those problems everytime.

40 Design and Tools

Chapter 4

Implementation

In this chapter, we will explain how we implemented our design. We will focus
on the structure of object oriented design, the platform we used to develop our
product and more practicalities used in order to achieve our goals.

The chapters are structured so that there is a link between the design and
implementation chapters.

4.1 Overview

We have chosen to implement our solution in Unity. Unity has many libraries,
built-in shaders, defaults materials and utilities to run a basic game environ-
ment. Furthermore, it is much more flexible in its sense of generation and
manipulation of meshes at run-time.

4.1.1 Class Diagram

We decided to make object orienting programming. The reason is the straight
analogy between a class and an object in our program. For example, the road

42 Implementation

class will do everything related to the road meshes, where the tunnel class
will do everything related to the tunnel meshes. The most important classes
are marked with red. See figure 4.1. As you can see, many of our classes

BridgeTunnel

0..*

1

uses

Crossing

1
has Player

0..*
has ObjectGame

1

0..*
has

1

0..*
has

EdgeNode

1

*

1
1sends to1

1sends to
1

1sends to

MeshBuilder

Terrain

RoadLeastSquare
BestFit()

DFS
RoadExtractor
ZhangSuen()
Thinning()

MonoBehavior

Figure 4.1: Overview class diagram of the implementation.

inherit from MonoBehavior, which is the main abstract class that defines how
the Unity3D engine runs. The class RoadExtractor is the class responsible for
taking a snapshot from the camera (see 4.3 for details) and uses the algorithms
to thin the road with. LeastSquare is the curve fitting class and Road is the
class responsible in creation of the road from the control points it gets from
LeastSquare.

4.2 Least Square

The implementation of the least square algorithm requires matrix algebra setup.
For that, we could either use a predefined matrix library or make our own
multiplication and inverse functions. We chose the latter because it was not

4.3 Binary Extraction 43

hard to implement and we wanted to make sure that we did it right and had
complete control.

To name them all, we have

• MatrixInverse
• MatrixTranspose
• MatrixDeterminant
• MatrixMultiplication
• GetMinor

MatrixInverse, MatrixTranspose, MatrixDeterminant and
MatrixMultiplication are self explanatory. GetMinor, is a method to get the
submatrix from a matrix. A submatrix is obtained by deleting a number of rows
or columns in any given matrix.

In the implementation, we define two-dimensional array and instantiate the ma-
trices defined in the design section. We create the normalized path lengths by
taking the Pythagorean distance between each points and dividing each addi-
tional length with the number of points (as noted in 3.2)

Next we setup the matrix from all the lengths and the matrices composed by
the x- and y-values, respectively. After this, it is a matter of multiplying all the
matrices together, which result in our control points’ respective x- and y-values.

The overall implementation of the least square algorithm is very similar to the
formulas defined in the design section 3.4. The implementation can be furtherly
checked on Appendix C, which is also very similar to the implementation from
Jim Herold [Her12].

4.3 Binary Extraction

In Unity3D, the first thing we need to know is how to access a camera de-
vice’s pixels. Then we need to edit and manipulate them through scripting (see
Scripting API [API14b]).

We see that WebcamTexture along with WebcamDevice has a way of getting color
pixels from the camera with a defined size. We chose to work with 160x120
because we believe it is sufficient. We could, in principle, work with larger
resolution. It would affect performance and enhance precision of reading from
the paper. We chose this resolution because we saw it suitable for real-time

44 Implementation

generation.

The color pixels we get can be thought of as a matrix with each cell consisting
of a vector of size 4 containing RBGA colors.

Figure 4.2: Color pixels. Each color consists of RGBA values.

4.3.1 Color identification

Most of the pixels that we take from the camera snapshot, will naturally be white
with black lines, indicating the road. We assume that the camera is pointed right
at the paper, with no background colors on the edges. If we decided to take the
edges into consideration and focus on user experience, we would rather run into
a detailed image analysis of the snapshot. As we had limited time, we decided
to keep it simple.

From the readings of the pixels, we simply take their RGBA color values, and
define them as black, if they exceed a certain threshold. In this way, we can
easily get the values we want to manipulate with and omit the other color values.
We set all the black color pixels to 1 and other ones to 0. Here is an example
of such a reading (Figure 4.3a).

4.3.2 Scaling

The way we do scaling is by taking one spot and transforming it into a many.
When scaling with a factor f , the size of the set will be scaled with a factor f2.
So in the example of a factor of 4, we get a binary data with a size which is 16
times as big.

When creating the scaled binary, we take the values from the small binary and
insert them in the bigger binary as shown on Figure 4.4. We can setup the

4.3 Binary Extraction 45

(a) Thick road (b) Thin road

Figure 4.3: Thick and thin road.

Figure 4.4: The result after scaling with a factor of 2

following relations for the index of the old values (x, y) and new values (x′, y′)
where s is the scale.

x′ ∈ [x;x+ s− 1] y′ ∈ [y; y + s− 1]

We then have to do every combination of (x′, y′) in order to get all values in the
scaled binary data.

46 Implementation

4.3.3 Thickening

When we do thickening, we do not want the size of the binary array to grow any
bigger. We just want the neighbours of any 1s in the binary data to become 1s.

Figure 4.5: The result after one iteration of thickening

We start off by creating a copy of the reference binary array. We will only make
changes is only in the copy binary, and at the end of each iteration we use the
copy becomes the reference array. We traverse every field in the reference array
and check if the value is 1. If it is, we will change its neighbours 1.

4.3.4 Thinning

As mentioned earlier, we want to go from a thick road to a thin road . To thin,
we simply define the filters (Figure 3.8) as mentioned in section 3.5, and apply
them. Additionally, we want the road to keep its width the way the snapshot is
taken, so we don’t omit this information. Instead of setting the thinned black
pixel to 1, we increment it for each time the filter is detected. That means if we
have the first case on Figure 3.8, the below number will be set to 2, indicating
that the road width here is 2. We continue the thinning in both directions so
we get the full picture (Figure 4.3b).

4.3.5 Zhang-Suen thinning

The way we decided to implement this algorithm, was to have an input and
output array. Thereby any changes made to one array would not affect calcula-
tions. At the end of each iteration of the algorithm, all the values of the output
array are copied to the input array, and we start over with the new values, until
no further changes are detected.

4.4 Depth First Search 47

Much like how the thinning algorithm is implemented, a difference here is that
we take the neighbour pixels in an ordered sequence and check their transition
from white to black. The conditions mentioned in section 3.5.4 will decide
whether or not the pixel we are looking at will be white or black.

When running the zhang-suen algorithm, we use the iteration number to decide
the width of curves we are thinning. So whenever we are changing a value, we
give it the iteration number, as value. In this way 0 values in the array indicate
a white pixel, where values over 0 indicate black pixel. An illustration of this is
made on Figure 3.10.

4.3.6 Nodes and Edges

At the end of all binary manipulation operations, we create nodes and edges
as instances of a class. We run through every position in the input array, and
check for values that are greater than 0. We then create new nodes, and give
them information like: id (place in the array), x and y positions, road width
and scale. This information is stored for each node, and will be used later in
the DFS implementation 4.4 in order to pass correct information to the roads.
The road width is the value in the binary array.

In order not to have duplicates of nodes, we store them in a list, and we made
an id check, to make sure a node would not be created twice. This way we can
identify whether we should create a new node. If it already exists, we create an
edge between it and its neighbours.

4.4 Depth First Search

During the DFS we go through every extracted node (no matter if it’s a road
or river), and send their stored coordinates to a list. However, in order to have
smooth, and nice looking cohering roads, we need to handle a lot more.

The DFS is where all the complications occur, as it is here we handle the input
data we get from the user, and need to analyse and understand the intention of
this one.

48 Implementation

4.4.1 Data structures

One of the hard parts of the implementation of the DFS, is keeping track of all
the segment specific information. We identified the following:

• All Points: A list of list of points. One entry is a list of points, which
constitutes the points of one segment, which are going to be sent to the
curve fitting

• All Road Widths: A list of all road widths. One entry is a road width
for a segment, which is found by taking the average of every road width
contained in every node of that segment

• Same Segments: A list telling a segment if it’s a continuation of the last
segment

• Intersecting Before: A list telling a segment if it comes from a crossing

• Intersecting After: A list telling a segment if it is ending in a crossing

In order to have accurate information in the data structures, we made a method
which updates all these in one time. This method was called in the following
cases:

• At the end of a DFS call, which indicates the end of a segment

• When there is more than the maximum amount of points in a
segment. The segment continues, but the method is called anyways

• When meeting a crossing (a node with more than 2 neighbours), which
indicates the end of a segment

4.4.2 Crossings

Because of the thinning of the user input, identifying crossings was very simple.
As explained in section 3.6 crossings are simply nodes that have more than two
neighbours.

However complications arise, when making crossings fit with the roads they
connect. In fact a crossing needs to keep track of which roads it is merging, and
a road needs to know which crossing it is meeting.

4.5 Mesh builder 49

4.4.3 Circle problem

One issue which was complicated to fix, was handling a circle as input, without
the occurrence of crossings. As explained in section 3.6, we start in end vertices,
meaning vertices with one neighbours. However in a circle there is no such thing.
Therefore we were forced to start the search in a random node, and handle the
fact that the search would end where it started.

The way we handled it, was by remembering the start node. If this node is met
later in the same segment, it will mean we have a circle. We then add this node
again to the same segment, so it appears as the start and the end node. And
all we need to do after, is check what the first and last node is, when we create
the road.

4.5 Mesh builder

Before we talk about how the implementation of the terrain is done, we need a
way to create meshes in Unity in the most simple, elegant and intuitive way.

The MeshBuilder is an abstract class, which takes a set of vertices, UVs, normals
and triangles and turns them into a mesh in Unity [Sur13].

These set of vertices, normals etc, must be given in a specific order in order
for the mesh to understand their connection to each other. Triangles are also
created by giving an order of vertex number, so the program can understand
which vertices it needs to create a face from. The final class, Mesh [API14a],
will then have all these vertices and indices for triangulation and create the
corresponding mesh.

Unity uses 2-3 components to define a mesh in the environment:

• Mesh Filter: used to create the core mesh consisting of the vertices,
faces and normals.

• Mesh Renderer: used to render the given Mesh Filter so the viewer can
see the mesh.

• Mesh Collider: (optional) used to give a collider to the mesh, to create
interaction in the game.

50 Implementation

That means when we create the final mesh from the MeshBuilder, we create a
Mesh Filter to create the mesh on a GameObject, show the mesh by adding
the Mesh Renderer component and finally add a Mesh Collider to make it
interact-able with the environment.

4.6 Terrain

The terrain is the most simple procedural mesh in our scene and its implemen-
tation is as simple. We define a resolution for the terrain, depending on how
detailed we want the hills, smoothing etc., to be. And then, it is a matter of
creating a triangle-strip with vertices, UVs and normals defined on Figure 3.13.

4.6.1 Height

We have two different data structures for separately taking care of the terrain
height at a given position and the road height.

For our terrain, we use noise and turbulence functions (Listing 4.1) that gives
us the nice and smooth terrain, and yet edgy on the surfacing, indicating cliffs
and rock surfaces.

Listing 4.1: Noise and Turbulence functions creating the pseudo-random
heights on terrain.

Noise (x , y)
{

// . . . I n i t i a l i z e f r e q s . . . //

f o r (i n t i = 0 ; i < N ; i++)
h += Mathf . Sin (Vector2 . Dot (new Vector2 (x , y) , freqs [i])) ;

r e turn (1 . 0 f / N) ∗ h ;
}

Turbulence (x , y)
{

f o r (i n t i = 0 ; i < 15 ; i++)
sum += 1.0 f /(Mathf . Pow (2 . 0 f , i)) ∗
Noise (Mathf . Pow (2 . 0 f , i) ∗ x , Mathf . Pow (2 . 0 f , i)∗y) ;

r e turn sum ;
}

4.6 Terrain 51

4.6.2 Storing heights

We use a special data structure for storing and getting the information of the
following heights:

• Terrain heights

• Road heights

• Environment distinction

The first two are storing the heights of the terrain and road, respectively, mean-
ing their float y-values. The environment distinction data structure is used as an
overall image of what is positioned where in our environment. Values between
-3 and -2, indicate a river, and values between -1 and 0 indicate a road.

These data structures have the same size as the amount of vertices in the terrain.
So each vertex will have information about its height.

4.6.3 Road heights

The heights are mapped per vertex for the terrain and are applied to the vertices’
y position. However the road has a different number of vertices and a resolution
far different from the terrain. This brings us the issue that the road vertices
needs to be mapped correctly to the terrain vertices, in order for the terrain
heights to fit and smooth out underneath and the sides of the road. This is
illustrated by Figure 4.6.

We first find the floor and ceiling values of the x position and then the z position
we wish to check. Then by using all combinations of these, we get the four blue
points shown on Figure 4.6.

The way we find the points to check is by taking the perpendicular vector ~̂v to
the direction vector ~v. This ons is found by finding the vector from one mid
point to the next (a midpoint is a point of the bézier curve). We then apply
~̂v to the midpoint many times. The result of this can be seen on Figure 4.7.
For each of these new points, we check the terrain for rivers and set its height
appropriate to the road height. When going far enough out to the side, we
smooth the terrain. That means we interpolate the height values between the
road height and the terrain height.

52 Implementation

Figure 4.6: Vertex mapping. When the red vertex is checked, the vertex is
mapped to 4 of the vertices on the terrain.

Check Point

Check step

Figure 4.7: Checked points and the road bézier steps.

So taking Figure 4.7 as reference, the points in between the road width will all
have the road heights. Whenever we move outside of the road width, we take
the interpolated value between the road height and terrain height. The furthest
point will then have the same value as the terrain height. By doing this, we
ensure that the edges out from the road are smoothed.

4.7 Bézier

As the cubic bézier function is created by the step value t ∈ [0, 1], we define
a value which determines the precision of the curve. The number of steps is

4.8 Pipeline 53

iterated over and the corresponding x, y and z positions of the bézier curve is
found, using equation 3.1. As the cubic bézier only affects the curves in the
xz-plane, we do not set the y value. However this one is set by the random
height function, further explained in section 4.6.3.

4.8 Pipeline

Almost all of our procedural objects are depending on the user defined path. In
fact the road, tunnels and bridges all depend on the shape that is defined in the
input.

The biggest challenge in creating all our path dependant objects, was creating
the correct pipeline between these ones.

 vertices

5. Crossing
Generation

of mesh

4. Bridge
Generation

of mesh

4. Road
Generation

of mesh

4. Tunnel
Generation

of mesh

3. Road
Lerping y-coordinates
to merge to crossing

2. Crossing
Calculation of

crossing height

y-coordinates

y-coordinates

1. Road
Generation of
control points

Figure 4.8: Pipeline of calling of mesh generation

As seen Figure 4.8 we have the following 5 steps:

1. We start off by generating all midpoints of the roads. After this, we have
the initial (x,y,z) values of the midpoints. The reason we start by doing
this, is because we have randomized heights for the roads, and transition
to the crossings. The roads then send their first and last y-coordinates to
the crossings

2. The crossings receive all these y-coordinates, and calculates the average
of these, in order to find its own y-coordinate. Once this is found it sends
it back to the roads

3. The roads then calculate a transition, so the heights match with the height
of the crossing

54 Implementation

4. With all midpoints having the right coordinates, we create the meshes. In
this step we do all terrain checks to find out if we are to create bridges,
tunnels or just simply roads. When all meshes have been generated, the
start and end vertices of the roads are sent to the crossings, so it can build
itself.

5. The crossing uses the vertices of the roads to generate itself, and thereby
makes it look connected.

4.9 Road

As explained in section 3.9, we construct the road as a single triangle strip.
However as seen just before we do the road generation in more passes.

4.9.1 Midpoints

The first step is receiving the midpoints from the curve fitting, and use them
to create the shape of the road. This step is fairly simple, we advance little by
little on the curve defined by the spline coordinates. As explained in section 3.6
the amount of steps we use for the road has been passed by the DFS class, and
depend on the total amount of points used to calculate the midpoints. However
those only give (x,z) coodinates, and we still need the y-coordinate. The y-
coordinate is pseudo-randomly (as explained in section 4.6.3) generated so that
it fits with the (x,z) coordinates around it.

In the end we store all the points in a list to use later. This list is added to a list
of lists. This one is used to store all the segments so we can create the actual
road meshes later.

4.9.2 Mesh

Now that we have all midpoints stored in the list of lists, we will focus on
generating the road meshes of all segments, and making them fit together to
seem as one.

4.9 Road 55

4.9.2.1 Road mesh

The way we create the road mesh (Figure 4.9), is by making the orienting
vector from one midpoint to the next, however only in the (x,z) plane. This
one is normalized, and multiplied by a road width. We then take its hat vectors
(the perpendicular vectors), and apply them to the first midpoint. The two new
points, are our vertex points and get stored in a list of all vertices.

Figure 4.9: Illustration of the way we create a road mesh

The calculation of the texture coordinate is partitioned into two: the x and y
coordinate. The x coordinate is either 0 or 1. It is 0 on the left vertex and 1
on the right vertex. The y coordinate uses the distance between two control
points, divides it by a constant (to make it look fluid) and increments this value
gradually.

4.9.2.2 Transitions

In unlucky cases we can have a big difference between the last orienting vector of
one segment, and the first orienting vector of the nextg. Therefore we remember
the last orienting vector, and pass it to the next road segment. This one will lerp
between the previous orienting vector, and the calculated one in the first three
steps. The influence of the previous orienting vector gets smaller and smaller,
so you don’t notice the transition.

56 Implementation

This method works as we take a varying amount of steps for the bézier calcu-
lation, so the distance between one point and the next is always close to being
the same.

4.9.2.3 Road widths

Having calculated the road widths for each segments, we are now interested in
using the correct one. We decided to once again use a lerping function which
would transition between the road width of the previous segment, this segment’s
road width, and the next segment’s road width.

Given segments 1, 2 and 3, coming after each other respectively. The first half
of segment 2, is used to transition between the road width of segment 1 and 2.
The second half is used to transition between the road width of segment 2 and
3. Therefore you get the calculated road width of a segment only in the middle,
and the rest is the transition between the different segments. Illustration of this
can be seen on Figure 4.10.

r1

r2

r3

s1

s2

s3

ri = Road width
si = Segment

Figure 4.10: The three segments with their road widths interpolated.

4.9.2.4 Road Types

In order to make sure the terrain doesn’t cross with the roads we need to lower
or raise the terrain to fit the height of the road (as explained in section 4.6).
The goal is to control the terrain height and the road, in the areas where there
is road, and change the type of the road, where the difference is too big.

The way we do it is by checking case of each check point. Then we check
whether the point is higher or lower than the terrain. All those cases are stored,

4.10 Rivers and Lakes 57

and used to determine whether we should lower, raise or create meshes, like
explained below:

• If all the points on the line is Case 1, we have a bridge

• If all the points on the line is Case 4, we have a tunnel

• If only one of the points on the line is Case 2, we raise the terrain heights

• If only one of the points on the line is Case 3, we lower the terrain heights

Once we have the main case, we know whether we need to create a new tunnel
or bridge mesh. Otherwise we will lower raise the terrain. To identify whether
we continue our segment with tunnel, bridge or road, we store the previous
case number. If this case number, matches the case number of before, then
we continue doing what we did before. For instance, if we were constructing a
tunnel before, we will continue doing so.

4.10 Rivers and Lakes

4.10.1 Rivers

The implementation of the river is very similar to the implementation of the
road. In fact we do exactly the same, except for creating a mesh. As explained
in section 3.10, the rivers only appear as we lower the terrain under the zero-
level, thereby revealing water.

For the river we do the same calculations as for the roads regarding the mid-
points, the widths, the transitions and the lowering of the terrain. Only that
the values in the lowering of terrain are set to different values than the road, in
order for the terrain to be able to differentiate the two.

4.10.2 Lakes

4.10.2.1 Identification

The way we identify lakes, is by checking (in the DFS class) how many points
we send to the least square compared to the maximum amount of points we

58 Implementation

Figure 4.11: Image of lake in game

can send. If it is less than 1/5 then we do not call the curve fitting algorithm.
Instead we take the point (P on figure 4.12) that is in the middle of the list of
points, and set all control points to this point. The river class will recognize
that all control points are the same and that it should make a lake.

4.10.2.2 Lake Bottom

The lake uses the river width (w on figure 4.12) to identify how big the lake
should be. This one is generated in the same way as it is for the road (section
4.9). The way the lake affects the terrain is similar to the way the river does,
as it lowers the terrain to under the 0-level. However the approach is different.
The goal is not to skip any terrain vertices.

As shown on figure 4.12, we make our lakes by taking circles of gradually bigger
ray (r on figure 4.12) to set the terrain height. We do not take every point on
the circle to check with, however we take small enough steps, to make sure we
do not skip any terrain vertices inside the circles. Therefore the ray, gets bigger
by half the distance between two terrain vertices (m on figure 4.12).

When traversing the circles to check points it is very important not to take too
big steps. As r is incrementing by m/2, it is sufficient of taking the steps on
the circle of length 1. The circles are made by a combination of cosine and
sine. Therefore we increment the angle, and need to do that with care, as the

4.10 Rivers and Lakes 59

Figure 4.12: Image of the way we make lakes

bigger the ray, the smaller the angle should be, in order to take steps of the
same length. By setting up the relation that we wish to take steps of length 1,
it means we will need to take as many steps as the size of the perimeter of the
circle in question. Hence we take 2πr steps. Now looking at angles, we have the
angle φ ∈ [0; 2π]. However we wish to partition that in 2πr steps. Therefore
one angle step will be of size 2π

2πr = 1
r .

Figure 4.13 shows all the points we check for a lake. The white points are the
ones to se the bottom of the lake, the red points are for smoothing the terrain.

4.10.2.3 Transition

For smoothing the transition down to the lakes, we do the same but with double
the width. Just like with the smoothing of river and road, we reduce the smooth
factor the further away we get from the actual lake. Assuming d is the distance
from the lake to the point we are checking, the smoothing factor will be d/w,
where w is the width of the river.

60 Implementation

Figure 4.13: All the points we check when making lakes

4.11 Tunnels

For each of the midpoints from which the tunnel is created, we create a new set
of vertices in the upward direction. This direction is run through as a half-circle
by use of the trigonometric functions. More specifically, we take the cosine and
sine of the iteration number divided by the density until we have a half circle:

~v =

(
cos

(
π
i

d

)
, h sin

(
π
i

d

)
, cos

(
π
i

d

))
, i ∈ [0; d]

where h is the tunnel height and d is the density of the tunnel.

In the MeshBuilder, we connect the vertices by the density of the curvature
of the tunnel, which we define. The higher the density, the more vertices and
faces.

4.11.1 Entrance

When we identify the start or the end of a tunnel (see Section 4.9.2.4), we
know we have to create an entrance. The tunnel sends all its midpoints to the
entrance class. The shape of the entrance is like a box wrapping around the
tunnel (Figure 4.16). The vertices are created by making a rectangle, and these

4.11 Tunnels 61

ones are mapped to the tunnel vertices. The side vertices then connect to their
neighbours in order to create faces. Likewise with the top vertices (example can
be seen on Figure 3.20).

4.11.2 Hole

For the hole, as mentioned in the design section, we set the terrain vertices at
the tunnel positions to the same as road height, but we store these positions
in a list. The list contains the mapped vertices, we got when checking for road
height. This means that we also will receive duplicates of vertices, because
the density of the road is different (much greater in our case) than the terrain
density.

The way we deal with all these duplicates is using the C# Library System.Linq.
It is able to remove duplicates in a list. Additionally, it has a sorting function,
which is useful when we want to run a triangulation over vertices. So when we
want to use triangle-strip, we sort them by their z-values first, then by their
x-values.

This list is used to decide on the creation of a tunnel cap. The tricky part here
is to connect them to the ground where the road is beside the tunnel entrance,
so the hole of the tunnel is created. This is done by taking a distance out from
the midpoint, in between the entrance wall and the tunnel wall (Figure 4.14).

Figure 4.14: Tunnel entrance hole. The vertices opens the hole, whereas the
entrance gap is hidden by the entrance (Figure 3.20)

The tunnel cap is then covered by the entrance. The mesh vertices of the tunnel
cap are connected separately, by taking each vertex with their defined positions.
As we have them sorted by their z-values and then by their x-values, we can run
upward from a triangle-strip and connect them. See illustration on Figure 4.15

62 Implementation

1

2 3

4 5 6

7 8 9 10

x

z

Figure 4.15: Creation of tunnel cap. As they are sorted, the vertices are cre-
ated by their orders given in the picture.

The final look of the tunnel cap can be seen on Figure 4.16.

Figure 4.16: Tunnel cap.

4.12 Bridges

We can partition the implementation of bridges in two parts: identifying bridges
and creating the actual bridges.

4.12 Bridges 63

4.12.1 Identification

Whenever we set the values in the Environments distinction array (section 4.6)
when working with roads, we do some checks first. We check whether the value
inside the array is smaller than the one we wish to insert, but more importantly
we check whether there is a river or not. If the Environments distinction array
indicates that there is a river, the road will not set the height, but make a bridge
instead.

4.12.2 Creation

In order to create itself, the bridge needs dynamic information from the road,
as every bridge is specific to the road it will raise. We will separate the creation
in several parts: the top and the bottom.

4.12.2.1 The top

The top is very trivial, as it is simply a wider road. So the road sends the control
point, the orienting vector and the road width. The bridge then multiplies the
roadwidth to find its own and creates its top like a road.

4.12.2.2 The bottom

Having defined its top, we need to make the vertices under them to make a side
and bottom. We therefore made a curve that would define the height of the
bottom vertices, as shown on the black line of figure 4.17.

The line is used in a symetric way. This means we traverse the curve from left
to right first, then from right to left, then from left to right, and so on. This is
done both top vertices.

With all vertices in place, now we make the faces as shown on figure 4.17, all
vertices of the same side (top, side, bottom) are connected together.

64 Implementation

Figure 4.17: The bottom height curve

4.13 Crossings

The crossings meshes are not complicated to construct. However in order to
make them fit and look good together with the road it gets a lot harder.

4.13.1 Sorting Vertices

As explained in 3.13 we are using the road vertices meeting the crossing, as
vertices for the crossing. Therefore these last ones are coming as pairs.

The first thing we do is sort the vertices according to an orienting vector. This
orienting vector is found by making the orienting vector from the second last
point to the last points found in the DFS (opposite from the first to the second
when starting in the crossing). We divide the x and y values by themselves so
as to get one of 8 possible orienting vectors (figure 4.18).

Having the vectors, we sort the vertices according to which orienting vector the
road had. This way we assure the right vertex of one road will connect to the
left vertex of the road on the right, and so on.

4.13 Crossings 65

1

1

1

1 1 1

1

11

Figure 4.18: The possible crossing orienting vectors

66 Implementation

Chapter 5

Test

In this chapter, we are going to present our way of testing our implementation
of the procedurally generated environment. We are going to look into some test
cases first, where we later mention how we handled errors when testing and
also, what our strategy for solving them was. This chapter will also include
the interviews we have done during our analysis of our design. Finally, we will
include user tests.

5.1 Input

Our main test cases for our program come from the camera input, which is
dependant on the resolution of the camera. But we decide to scale the images
down to 160x120 pixels, no matter the resolution (see 4.3 for explanation).

For practical reasons, every time we needed to test a particular road drawing, we
had to use our device camera to capture the same image over and over again.
This became redundant in the end, which lead us to make a read and write
methods of pixels we get from the camera. We store these pixel data into a file,
which can be reused all the time. We use System.IO from C# library to achieve
this.

68 Test

The great part of this is that we are able to test exactly the same input several
times, in order to find out whether we have fixed the problem or not.

We have many different test cases in order to justify the requirements of our
project. Starting simple, we have a straight line. We test whether our program
is able to read the straight line, so first step was to see if we could convert them
to pixel data set of 160x120 pixels. We output the files as shown on Figure 5.1.
An example of a capture and a comparison of that to the virtual environment

Figure 5.1: Test cases.

is shown on Figure 5.2. We view the environment in x-z plane to match the
picture.

5.1.1 Error handling

First of all, we check whether our drawing matches with what is read by looking
at these files. Of course, we do not always get as clean images as in Figure 5.1.

5.1 Input 69

Figure 5.2: Compare the "Environment" test.

The reason is because of the lighting in the room, camera focus or other factors
distorting the image.

When we approve our image with the output, we check whether our thinning
algorithms have worked as we expected them to (as we check the input by their
distribution of numbers, see Section 3.6). Finally, when the binary extraction
works along with the thinning algorithms, we start generating our environment
from this dataset.

We have to get the expected visualization from the given input. Things that
can go wrong here are

• Deformed mesh faces (wrong indices or combination of triangulation)

• Missing vertices

• Orientation of the faces (including back-faces)

• Overlapping faces

• Wrong vertex normal vectors

• Incorrectly mapped texture coordinates

On top of these visually incorrect output, there are the programming errors
such as NullpointException, IndexOutOfRange, MissingComponent etc. The
way we solve these issues is by iteratively fix the errors as they appear until the
result looks satisfactory. An example of one error we had to fix was the road
overlapping the terrain vertices at certain points as shown on Figure 3.17.

70 Test

Here, we needed to find out what was causing only some of the vertices to be
above the road, while it worked well on other places. By careful debugging,
trying out different cases, we tried to pinpoint the problem. The reason turned
out to be a rounding problem when mapping road vertices to terrain vertices.
The issue was fixed by checking both flooring and ceiling of vertices and then
set their corresponding road heights.

5.2 Interviews

The interviews were conducted by meeting up with the users personally. In the
interview session, as we were two persons interviewing, one of us was responsible
for asking and interacting with the interviewer, while the other one was taking
notes and supplementing with questions. The interview questions with their
answers and summaries can be seen on Appendix A.

The results were very diverse, but most of them agreed upon some common
subjects of level design. We have collected and extracted the most important
information from their summaries, which we marked with a yellow marker in
the appendix. We tried to give each of their ideas of features for our prod-
uct into a title and mark them. Then we counted how many of the interviewed
people said the same and the most occurrences of ideas can be seen on Table 5.2.

Ideas Marta Johan Martin Peter Ole Mikkel Total
Play the level x x x x x x 6
Obstacles x x x x x x 6
Paths and Patterns x x x x x x 6
Start and End Point x x x x x 5
Assets x x x x x 5
Make puzzles x x x x 4
Real-time x x x x 4
Model Landscape x x x x 4
Tweakable Character x x x x 4
Heightmaps x x x x 4

5.3 User Reviews

Apart from the preproduction interviews, we have also postproduction user
tests. This gave us an indication of how well the program is working, and if

5.3 User Reviews 71

there is an interest in the concept.

We asked Konrad Stanek, with whom we had made our previous bachelor prod-
uct for [Jø12], to test the concept. We asked him to give us his thoughts and
opinions about the product.

"We had a pleasure to collaborate with Patrick and Bilal in 2012-
2013, when they developed the first version of pseudo-random scenes
generator for simulated car driving. We are currently using the plat-
form for a range of cognitive experiments, where participants are
asked to take various voluntary decisions related to driving a car,
while the EEG and fMRI signals are acquired from their brains.

The new version of the scene generator, presented in this thesis,
seems to be an ambitious and interesting extension of the origi-
nal platform, offering much faster and easier interfacing with range
of graphical or numerical software packages, and even hand-written
drafts. Furthermore, we observe improved graphics and realism of
the generated scenes. As such, the platform may have a wide poten-
tial application primarily in gaming industry, but also in research
areas involving cognitive/behavioral tasks performed in virtual envi-
ronments (where number of pseudo-random scenes needs to be gen-
erated automatically).

Of course, for the latter application, the generator needs to accept
certain input constraints, such as road width/length, visibility, car/a-
vatar dynamics, etc., just as it was achieved at the initial version."

- Konrad Stanek

We also asked Marta La Mendola, one of the level designers we had interviewed,
in the early stages of the project.

"I think it’s very simple and fun to use. It creates something really
fast to test and play around with. It could be used for a driving
game where you can create your own maps and challenge friends. It
would be nice to have obstacles and really simple enemies. Maybe
depending on the colour it can be an enemy."

- Marta La Mendola

72 Test

We also presented our work to a few high school students. We told them about
the concept, and showed them how it worked. They were amazed by the idea,
and the fact that it could generate environments from just paper. They said it
was great idea, as everyone can draw, and therefore easily make levels. They
also asked us if we were going publish it on the android or app store.

Chapter 6

Analysis

In this chapter, we are going to discuss the results from the implementation
and test chapters. We are also going to discuss what parts were successful and
unsuccessful.

6.1 Outcome

We are satisfied with the idea we have come up with. It is a new and innovative
idea, and we believe it could entertain a lot of people if developed correctly. Our
contribution however remains a prototype, so a lot of work is needed for it to
have a commercial value.

The tunnels and the caps above them are not working as well we would like.
We have not found a solution to integrating tunnels perfectly, and having them
go through terrain in a realistic looking situation.

The structure of the code would be something we would change. If we were
to start over, we would probably change a few things, in class dependencies,
and data structures. For example we have a lot of segment specific information
we are storing in different lists. Instead we would make a struct with all this

74 Analysis

information, in order to make it a lot more extendable and easy to handle.

6.2 Creative process

We believe the creative process was executed correctly. Brainstorming is a pow-
erful tool to get ideas, the interviews gave us great feedback, and the meetings
with our supervisor kept us on track and made us focus on the right tasks.

If we were to redo the project, we would probably separate the project period to
idea development then implementation more than we did. We would probably
start earlier with the interviews, as the outcome enhanced the quality of the
concept a lot, and really boosted production and inspiration. It taught us the
importance of interviewing, and interacting with experts.

6.3 Work process

In a small team of two people, planning and separating work is not as important
as in bigger teams, however we found it very useful, and is definitely something
which is not negligible. As explained before, most of our effort in the beginning
of the project period, was put on the concept development. And as we moved
along, and the concept gradually got more concrete, more and more time would
be spent on implementing.

We had an agreement to meet as often as possible to work together. The fact
that one person is working is motivating the other to work as well, and in this
way it had a motivating factor on whoever would be falling in productivity. In
the beginning of the project period, we would work together in pair program-
ming. This allowed both of us to get acquainted with all the code and structure
as it was created, and for both parties to contribute and affect the outcome. As
we moved along, as tasks would become more specific and separable, we would
separate the tasks, and thereby double the production speed. Of course some
time would have to be spent filling the other person in on progress and structure
changes, which we did very well. Thereby making us experts in different areas of
the program, without losing the total overiew. Also it would mean both parties
could be productive at different times and locations, and working from home
became a possibility.

One flaw we had was the accept that things take time, and has risks of not
finishing in deadlines. Instead we should have been better at giving each other

6.3 Work process 75

deadlines, as we work well under them. We also learned that drawing things,
and writing initial algorithms on paper is a very powerful tool. It is a solid way
to explain ideas, and to fully understand them yourself, so this method would
have been used a lot more had we known it from the start.

6.3.1 Unwanted results

Unfortunately, the result from the tunnel cap explained in section 4.11.2 did not
make the terrain smoother, neither connected in an admissible way. First of all,
the vertices did not smooth out from the cap to the rest of the surroundings.
Secondly, if we had a very small tunnel with very few segments, the hill made
little sense as we had a mini triangle-strip and would be better off without.
Thirdly, we did not know how to connect the side vertices with the rest of the
terrain in a sensible way.

If we had more time to re-analyse and design our implementation, we would have
found a way to make two meshes intersect and make a hole, where the tunnel
vertices are. For the smoothing, we could have made the mesh connectivity
dependant on other vertices, so their heights are created in the same way as the
height of the terrain.

6.3.2 Evaluation of user reviews

We have had a few users review our product, as mentioned in the test section
5.3.

Konrad reviews our product as having potential, primarily in the game industry.
This is positive, as our aim was to make a game. Additionally, he does not
exclude the possiblity of it being useful elsewhere, like in research facilities
needing automatic generation of virtual environment. This opens another door
of possibilities for our product to become commercially valuable.

Marta sees the intuitiveness and playfulness in our product. However, she re-
stricts the program to be used for racing games. She sees possibilities in im-
proving the generation by adding obstacles and enemies, which we believe would
make the levels created more fun, and bring out the playfulness of a user creating
his own levels.

Lastly, testing on high school students, gives us the possibility to see if the
concept is of any interest. They have an outside point of view, as they have

76 Analysis

not been included in the development process. The fact that they ask us if we
are going to sell it, as well as suggesting us to publish it, shows that they see
potential in the concept.

To sum up, all these user reviews give us positive signs that our product can be
used in digital research and entertainment.

6.4 Extensions

If we are to continue working on this project, these are the things we would like
work on:

6.4.1 Binary Extraction

Image analysis is not our field of strength, nor was it our focus in this project.
However there is a lot of work to be done, and a huge quality improvement if
we were to work on this some more.

Calibrating: We could do some calibrating of white and black, so as to be
better at recognizing them, and reducing a lot of errors and misgeneration from
the lack of light.

Easily recognizable shapes: is also something that could be interesting for
the user to have as option. Things like squares, circles and crosses would give
the user a new dimension to the levels created. Those could be obstacles as well
as events, mops or pick-ups. Alongside this we would make an infastructure
that would allow the user to decide what each shape represents.

Vegetation areas: We would have liked to introduce green as a color code on
the paper, indicating vegetation areas.

6.4.2 Optimizing

Algorithms: We have always worked with care, when making our algorithms,
therefore all of them are performant. However we are convinced a lot of smart
rules can be made in order to save calculation, and we believe it could fasten
the generation, especially when it comes to thinning and scaling.

6.4 Extensions 77

Intelligent roads: We could have the program try to understand the curves
drawn, and draw conclusions from it. Roads that are close to each other with
many sharp turns, could mean they are climbing mountains, whereas straight
roads would mean highway.

6.4.3 Different Meshes

Bridges: as mentioned in section 3.12 we would have liked to make different
types of bridges for the different purposes.

Roads: with very little effort, we could have many different kinds of roads. We
could add side walks, lights, fences and other objects.

Vegetation: Several kinds of vegetation could be implemented and added to
the program. Namely grass, trees, bushes...

6.4.4 Styles

Something which would make our program a lot more fun to work and play
around with, would be the possibility to change the styles, thereby enhancing
diversity.

City: With this style one could imagine normal highway roads, with obstacles
being buildings, and vegetation being normal trees.

Western: In this style we could have path like roads, worn out buildings as
obstacles, as well as fences, cacti, dead trees, and a desert terrain.

6.4.5 Game modes

In accordance to the different styles of meshes, we could have different game
modes.

Racing: This is our main game mode, where the player can drive around in his
terrain. We could add checkpoints and pickups around the tracks to pick-up,
for the player to win.

78 Analysis

Third person: A game mode where the player has a lot more mobility and
freedom to move around on the terrain in the way he pleases. In this mode
there could be mops around on the terrain for the player to find and eliminate.

Multiplayer: Allowing a user to play with friends on environments they have
generated would be of big interest. One could make an arena like game, where
the players fight in the environment created, or a racing game, etc...

6.4.6 Graphics

Unity provides a lot of graphical improvements, that can be applied after the
environment has been generated. This means that the performance of the gen-
eration would not be affected.

Shaders: We are already using shaders for water. However we can improve the
shaders of the car, and the procedurally generated objects. This would make
the scene look better, and be more performant.

Shadows: The scene will look at lot more realistic, if we cast hard and soft
shadows on the terrain.

Lighting: We could focus on making lights on the scene. It could be car lights
or light from lampposts beside the road or inside the tunnel.

Fog: We can introduce fog and other environment details such as halo from the
sun or particles in the air.

6.5 Credits

The content of this report and the product developed during this project has
been done in collaboration of the authors. While some subjects and work were
divided and the focus lied in different aspects of this project, either of the authors
have touched upon all the parts.

6.5 Credits 79

6.5.1 Work by others

This project includes work from others as well as our previous work in our
Bachelor Project [Jø12]. The fact that we built upon our Bachelor Project
made us reach further in our development and focus on other important parts
of this project. Here are the things we cannot take credit for:

• Car. The car model, movement, camera etc, belonging to the car driving
experience, is from Unity Tutorials. It was taken to make it easier for us
to create a playable environment.

• MeshBuilder. Developed by Jayelinda [Sur13]. The MeshBuilder is an
easy tool to make indices and triangles for building the meshes.

• Water shader. To resemble water in Unity, we had used Unity Pro’s
water shader and prefab. Alternatively, we could have made our own
water shader.

80 Analysis

Chapter 7

Conclusion

We have created and developed a new approach to level design. We give a
solution that allows non-technical people to easily and rapidly make their own
levels and feel ownership over these creations: simply by drawing lines and
curves on a piece of paper.

To directly connect and conclude the main problem statements:

• We can generate an environment from a 2D sketch with a lot of input
variations. We take into consideration input reading errors, and gener-
ate different forms of pseudo-random heights to terrain, roads and other
objects.

• We can generate the environment in real-time and are able to implicitly
customize different parameters (such as road widths) to give more control
to the user.

• The program can generate levels for a racing game, and with some changes
it could be adapted to other game types. We have also tested our concept
on users, who see it as a potential entertaining product.

We have experienced the process of going from a simple idea, to getting a well-
defined product. In the process we had to redefine the vision, interview people
from the target group, and change the idea to match the new input.

82 Conclusion

Although the program itself can be worked on a lot more, we have still managed
to make a solid prototype which illustrates the concept, and allows users to draw
shapes, and recognize them in the roads and rivers created. We also made sure
the interaction of these made sense with the introduction of bridges.

With further development of this program, and a nice set of rules, we believe it
could be a fun mobile app, that could be enjoyed by many, thanks to its intuitive
approach and to its coherent output.

Appendix A

Interview

We interviewed 7 different people which fit our target group as level designers
(one of them was a Game Designer). The names and their occupation of the
people we interviewed are

• Marta La Mendola, Student/Intern IO Interactive

• Johan Buhl, Student (Game Designer)

• Peter Buchhardt, Level Designer at Playdead

• Astrid B.Z. Madsen, Level Designer at MovieStarPlanet

• Mikkel Martin Pedersen, Level Designer at PressPlay

• Martin Vestergaard, Student

A.1 Interview questions

Our project’s target group is level designers. When level designers work, they
usually make rough sketches of levels. Our idea is to allow level designers to
visualize levels through our program.

84 Interview

Template

• Question

– What we want from the question

• Did you find the idea of the project interesting?

– Getting initial ideas from level designer

• What are your impressions after watching the video?

– What does the level designer see as initial opportunity for the tool

• Do you use any tools for level design?

– What features of a level design tool is interesting for the level designer

• How do you draw your initial level on paper?

– Learning what to identify in our program

• What’s a normal creative process of level design like

– Where in the level design process is it interesting to have a tool like
the one we want to make

– Understand how level designers find their ideas (how they work)

• How do you tweak a level?

– Understanding the requirements for us to being able to make a tool
which allows level designers to tweak levels.

• Once the creative process is done, what are the next steps for you?

– On paper, imagination, other...

• What do you see as the bottleneck in level design?

– Is there a feature our program can do to hasten this process.

• Do you ever have a problem making others understand the vision you have
for a level?

– Can this tool be helpful to create a unified vision in a group?

• What is a level editor for you?

A.1 Interview questions 85

– To see if we fulfill the requirements and if we missed an important
point

• What do you expect from a level editor?

– To see if we have all the features in place needed to make it useful

– To enhance the quality of the product focusing on the most essential
parts

A.1.1 After using the program

• How did the program meet your expectations?

• What features would you have liked there?

• Can you see this being useful for level design?

• Could you imagine yourself making levels using a similar tool?

• Would it be an advantage for you to being able to put objects your own
objects in this visualization tool?

Marta - Summary

● Did you find the idea of the project interesting?
● What are your impressions after watching the video?

She liked the video and the idea of the project. She liked the aspect of being able to test ideas
that you get on the fly, by generating levels fast. She thinks it’s nice to have a tool that lets you
play around with a level, and make the team understand what your vision early in the process.

● Do you use any tools for level design?

She mostly used paper and pen. For big projects, she uses software like UDK. It is similar to
using the Unity engine but more oriented for level designers (not technical people). It is a very
complex tool, which takes time to get into. Only placeholders for the different interactive
elements in the levels is built. It allows visual programming for things like AI. Photoshop can be
an alternative to paper and pen.

● How do you draw your initial level on paper?

She said it depended on what type of game you are making. Then as an example, she
mentioned that if it was a platformer, you could start marking start and end points and sketch a
path between them. Then you can place different objects and make a puzzle out of them.
She also mentioned that it depended on what type of level designers you were. She mentioned
two kinds of level designers: Art oriented (herself) and programming oriented. Some level
designers do not know how to draw. It is important for a drawing, to make everything
understandable, not only to yourself, but also to others. She mentioned that it would be nice to
make puzzles, and have different events, and obstacles that can be placed.

● What’s a normal creative process of level design like

She mentioned that the creative process of creating a level depends a lot on the type of games
you are making. She said that there were wide possibilities.

❏ It’s important to know your limits: The game designer defines the mechanics, thereby
defining the limits of a level.

❏ Sketching ideas: Use many tools to generate levels fast and test them.
❏ See what works: Take the things that work, and extend those ideas.

But the creative process is all the way through a game development process, and not only in the
beginning. It is only the core mechanics, and the fundamental puzzles in the beginning.
A lot happens on paper. Not only drawing of levels, but also strategies and much more.

● Once the creative process is done, what are the next steps for you?

She said it takes a lot of time to build a level and something to test on, because it takes a lot of
time to setup. She meant that it did not matter whether the level look good or bad. She
mentioned that on UDK, it takes time to build levels which takes time from testing the player
experience of a level.

● What do you see as the bottleneck in level design?

She had different experiences depending on the times and conditions she had to build levels. In
DADIU they all worked at the same time. In studios, they plan the process so the level designer
comes later in the process. She groups everything together that comes from the programmers
and artists. She said that level designers connected everyone in the project and nobody had to
wait for her. She works on a level until she is satisfied with it. At the beginning of her time in
DADIU, she had a hard time getting started, because the concept was unclear. It would have
been nice to have something that would unify the game and level designer. After a session that
had the aim to establish the story of the game, they got a unified vision of the game. It would be
nice to have a tool that could do this for mechanics or gameplay. She mentioned that randomly
generated buildings or squares, start and end points, a timer, being able to test, and obstacles
would all be nice features to have.

● Do you ever have a problem making others understand the vision you have for a level?
She thinks it’s hard to make others understand your ideas, as people think very differently. It is
much more useful to draw ideas on paper, as it gives a concrete reference. She mentioned that
a visualization tool allows everyone to understand better, as there is less to interpret.

● What is a level editor for you?

A visual tool that helps creating levels by defining the area the player interacts with the
environment or the elements of the game. Additionally, it would include different assets, static
props and dynamic elements. She mentioned that it could also be used as a visual tool as it
helps you create the environment, both from inside and outside.

● What do you expect from a level editor?

She mentioned different level editors to relate with, such as Hammer (Valve) and UDK. She said
it should be able to build an environment with paths, ladders, and a lot of other stuff. She also
mentioned that it would be nice to have visual programming with easy scripting included.

Hammer (Level editor) Left for dead 2 levels.
Building the environment.
Building the paths. Ladders. Visual programming, script easily. Create a lot of stuff.

After using the program
She said it would be nice to being able to test on both the smartphone and on the computer.
Therefore exporting to unity would be nice. She also wants to be able to draw a line straight from
the phone instead of on paper first. If you want to draw something quick, go straight on the
phone. She also wants to be able to put numbers and signs around, mapping events on the
program to get the idea of a level. And this should be done both offline, and during runtime of the
program.

● How did the program meet your expectations?

Close to expectations and excited. Interested in testing.

● What features would you have liked there?

❏ Play the level,
❏ Adding events (mapping markers and stuff)
❏ Different colors of roads (Color code)
❏ Different types of markers
❏ Timer
❏ Obstacles
❏ River
❏ Tunnels

● Can you see this being useful for level design?
● Could you imagine yourself making levels using a similar tool?
● Would it be an advantage for you to being able to put objects your own objects in this

visualization tool?

She would like to being able to make simple shapes (cubes, spheres, etc.) and perhaps bridges,
and the possibility to make own objects.

Johan Summary

● Synes du at ideen bag projektet lyder interessant?

Han forstod ikke helt hvad konceptet gik ud på. Spørgsmålet er hvad for en type spil det er man
vil lave.

● Hvad synes du efter at have set videoen?

Toolet skal laves til en specifik genre, den kan ikke fungerer på alle spil.
I konteksten af en level editor for racer/platform. Start med en genre, og så udvid til flere.
Han vil gerne have muligheden for at definere standard ting: loop, start, slut, forhindringer.
Symboler der kan identificeres af programmet til at indsætte objekter.

● Har du nogensinde brugt nogen tools til level design?

Unity.
Hjemmelavet tool til hans egen spil. Bruger heightmaps til at placere voxels i forskellig højde.
Han forklarer at AR er et game element frem for noget man ville bruge som tool. Der er noget
eksplorativt ved at bruge AR. Han er meget interesseret i at alt sker i real­time, så assets dukker
op.
Han er ikke glad for AR generelt. Det er irriterende at holde kameraet i fokus. Det skal virke hver
gang.

● Hvordan tegner du et udkast til et level på papir?

­­­

● Hvordan foregår en normal kreativ process af level design

Processen er anderledes alt efter hvilket spil man laver.
Punish Panda som eksempel. Han går efter en spiller følelse, idet spillet lægger op til gåder. Han
vil gerne fremprovokere Aha følelsen.
Han tænker på hvad det er for nogle ting man har at gøre godt med, og laver en skitse ud fra det.
Idé: det er sjovt at pandaer falder ned på en rundsav. Han tegner det, og viser at man starter
med en simpel idé, og laver udfordringer efter.
Bilspil som eksempel: Han tager en almindelig bane, som han synes er lidt kedelig og tilføjer
nogle smutveje. Han tegner en bane, med store sving, slalom sving, grene, skarpe sving. Så
kommer udfordringer, jump pads.
Han nævner at det er vigtigt at definere hvad spillet er, hvad for nogle mechanics man har at gøre
godt med. I et tidligt stadie er det ok med placeholders, det er ikke vigtigt at have specifikke
objekter, så længe man ved hvad de enkelte er. På papir bruger man tegnsystemet til ens egen

forståelse, og dem man arbejder tæt sammen med. Men det også vigtigt at få alle til at forstå
levels’ne, men det er først længere inde i projektet.

● Hvad er skridtet efter den kreative process?
­­

● Hvad synes du er den del af level design som trækker level design processen ud?

At bygge levels er dét som tager tid, men han gider ikke (han er game designer). Men det sjove
er at teste. Dog ved man ikke om noget fungerer før man har testet det på en endelig version (Fx
flere levels i Punish Panda blev slettet fordi de ikke var sjove).

● Har du nogensinde problemer med at få andre til at forstår den vision du har af et level?

● Hvad er en level editor for dig?
Den skal kunne lave baner, have adgang til et bilbiotek af assets som er nødvændige til et level.
Der skal nok frihed til at det ikke begrænser designerens kreativitet.
Man skal finde den rette grænse mellem at have adgang til det hele, og adgang til lidt.

● Hvad forventer du af en level editor?

After using the program

● Hvad synes om programmet?

Han synes at AR­delen var lidt besværligt at arbejde med og at der skal være en grund til at
bruge det. Men han udelukkede ikke at den slet ikke kunne bruges til nogen andre typer af spil.
Han synes at det var en smart lille gimmick, men ikke et værktøj. Han synes virkeligt godt om at
man kunne tegne en road ud fra et tegning.

● Hvad for nogle features kunne du godt have tænkt dig der var?

Han nævner, at VR (nævner Oculus Rift) kunne være en mulighed for at have som en god
feature til test og se banen fremfor AR. Han mener at VR er vejen frem.

● Kan du se brugbarheden af programmet til level design?

Han mente at generering af veje fra et stykke papir er et godt tool til hurtig at se og vise levelet til
andre.

● Kunne du forestille dig at lave levels ved brug af et lignende tool?

Han nævnte generelt om at generering af level ud fra en tegning. Han så tablet­delen mere som
et teste­redskab fremfor en ‘level creator’.

● Ville de være en fordel at kunne lægge dine egne objekter i dette visuelle tool?

Ja og han mente at hvis man kunne køre det i realtid samtidig med at man havde nogle brikker at
flytte med, ville det give en mulighed for at designe levels.

Martin Summary

For finding inspiration he uses Google maps to find interesting looking road paths and patterns.
He uses this to draw initial paths, and works from there. Afterwards he builds on it, tweaks it,
finds mysterious routes and many different patterns. He uses the drawings for himself, and
contain many symbols and patterns, and only he can understand.
He uses a game specific level editor, and uses many different patterns and structures in it.

● Did you find the idea of the project interesting?

He finds it an interesting project with potential. As a level designer it is hard to show your ideas to
others. He likes to draw, and would find it very interesting to have a visualizing tool, many good
ideas can be visualized.
Many things are complicated, to do separately.
He sees many possibilities in the project.

● What are your impressions after watching the video?

After reading the mail he was a very confused. After having watched the video and reread the
mail, it made more sense.
It is very applicable for games in the genre of racing games. His biggest worry however, is the
restriction of being on a tablet, and touch interface.
One should find the right balance between “control and features”, meaning the amount of
features available, and how much freedom the level designers have.

● Do you use any tools for level design?

He uses primarily paper and whiteboard as a means of working. Playing the level is crucial, in
order to judge the quality of a level, and enhance the prototype. Using Lego is clever due to its
physical delimitations, allowing everything to have a more or less accurate scale.
He does not use computer tools (he has only 1 year of experience as a level designer).

● How do you draw your initial level on paper?

He draws many different routes and tries to find things that are unique for every level. He finds
that core idea for a level, and works from there. He places the start and end of a level very early
in the process, as his first step.

● What’s a normal creative process of level design like

He is very chaotic in his way of working. It goes very back and forth. He tries to find new
concepts. It is very unorganised in the start, and becomes more and more concrete as you go
along.
The beginning can be very overwhelming, and to relate to mechanics can be chaotic.

● How do you tweak a level?

You start with the game concept before doing level design. He keeps focus on: what do I want to
teach the player?
(On the game he is working on) He wants to teach him to hurry up. Show that you get more
points for killing penguins, introduce challenges.
The role of the theoretical level designer: combine challenges and mechanics.
In the former game he worked on blueprint layout of the hotel.
He used gameglobe, a 3D level design tool. It allowed him to model landscape, it had different
mechanics, and to visualize 3D rooms.

● Once the creative process is done, what are the next steps for you?

Testing is a great part of the creative process, and after. You have to play it yourself (and make
others play), and consider: does it feel right? This is the main reason for the level to take such a
long time to make. The feeling of a level and the requirements are essential. He inspires himself
of a typical user of the game, and builds a level from there, then come the requirements. You run
through a level with the eyes, and make new rapid prototypes and revisit. You do many drawings.
A tool could: collect and show data, for example how long a route takes, how many turns there
are, etc...

● What do you see as the bottleneck in level design?

Translating a level to the game. The process is very iterative, and when you run into a problem,
you fix it straight away. The goal is to have the levels in the final engine as fast as possible.

● Do you ever have a problem making others understand the vision you have for a level?

It can be very hard to explain a vision. It is hard to illustrate what you are striving for. Usually you
get bad critics from the things that are irrelevant for the process. There is a definite need for
illustrating levels.

Transfer an interesting concept to a well designed level. It isn’t always the esthetic level, which
winds up being the level that works the best. Sometimes you need to destroy the nice structure
of a level in order to make it work. One should be able to kill his darlings.
The translating process, is simple if you make it iteratively. You start in what’s esthetically nice,
and continue on to integrate it more and more, into the context of the game. The iterative
process takes time.

When he works, he goes much forward and back, works on a level until he gets
bored/uninspired, then jumps on to a different level, until the creativity fades and so on...

● What is a level editor for you?
● What do you expect from a level editor?

User friendliness, less control. Thankful for the help of programmers. The disadvantage of
working with made by programmers, is that you depend on them to do something when you
need a feature. Getting a prototype in Unity allows you not to lose so much as you can extend it.
It has to be easy to use, easy to test again and again, easy to make changes, reset, save load,
responsive, stable, have good visibility, and usability. Being able to manipulate the elements of
the game in a fast and satisfying way. Level designers are not unity pros, and should work with it
in an easy way. Most importantly, to have everything in one place.

After testing the tool

He thinks it would be a shame to make a one size fits all level design tool. It works well being
specific to one genre. And a level editor is different for each game. For route and path based
games, the tool is nice. For terrain generation as well.
Perhaps one could think greater than just level design. In an adventure game a character could
jump over cliffs. Maybe one can save a ghost run. Have a character play the level automatically,
controlled by AR. He would really like a PC version of the tool as well. Perhaps on the early
stages of level design, it can be interesting to use AR.
It is crucial to keep the user friendliness, and he would really like the possibility to export a level to
Unity.

The need for randomly generated heights depends on the project. However in cases it is
relevant, it can be interesting to have something that isn’t flat that makes sense, for auto
generation perhaps.
The tool could be used for both 2D and 3D games, it could cover a lot of other games as well.
The curves are nice, and very interesting to have. However the tiles are simple. The esthetics of
the curved road are important. But one should remember that features are more important than
esthetics.
He also asked for textures, and being able to set the scene in a different context than just a racer
game.
It would be nice to draw a path with your fingers, to select a path, or direct an autoplayer.

The program exceeds the expectations set from the video. There are a lot of features, and they
are easy to use. Getting straight to editor mode after generating is good. and shows good
usability.
He sees a lot of potential.
Placeholders are fine to work with, but to show what you want to do, he would like the possibility
to put in his own objects, fx icebergs.

Ole Summary

Background: Ole has been working in IO­interactive as a level designers for 5 years. He has won
a genre award by creating a board game called “Police Precinct”, inspired by Grand Theft Auto
and other murdering/shooting games.

During the interview, he asked some questions for what the tool should be doing as he didn’t get
the full overview of what we wanted to achieve. After explaining, he saw positively at its usage,
both in small indie games and big game productions. He would not restrict it to small companies.

He uses a lot of other tools like Photoshop, Sketch­up before the physical product. Rendering
time and the functional part can take up many minutes. He also uses 3d studio max to get
something up and running fast. He works with gameplay and level design simultaneously, also
simulating some Artificial Intelligence behaviours along so he can test out the levels quick.

We asked what our tool could help level designers with. He mentioned that our tool could help
speed up this process of rendering, executing the parsing and testing of a level. Specs of
character is also something he concentrated on, like its speed, visual, the space and its freedom
to run around. He mentioned that the space around the character is important as it gives different
feelings depending on the environments and environment change. He would like to have basic
physic behaviors in the system as well. He talks about the different elements of a level, like a
testing dimensions, have different cylinders and objects around the world you can bump into and
have other objects such as crates, boxes ­ where you can hide behind and think how you can
use it in the gameplay. He talks about those things giving the flow of a level and to think of the
whole levels architecture. He mentions something about meeting enemies in the level also,
which gives the player the right impressions.

He gives the example of a shooting game. Then we need room for big battles, maybe some tools
like a grenade and placement of other props. Something he mentions, which he thinks our tool
would be nice to have, is the ability to sketch something, which translates into enemies, pickups
or other objects. Maybe checkpoints for a racer game and then you could measure the time
between checkpoints. He mentions that the tool doesn’t necessarily need an interactive
environment, but the essential part lies in the visuals.

He moves on by mentioning that game and level design is close to each other and when he
works on something, he thinks of having the encounters as in the Wario Ware game, which has
quick and specific reactions depending on the situation. He could make a basic level in 3d studio
max and import the tool and render it but it takes time. He also mentions having something that
breaks the line of sight of the player and control the player behavior in that way. He wants to think
where to place the different objects around the scene to give the player different tactics
depending on the encounter. For instance, if you are against a big boss, then maybe you have a
rocket launcher placed somewhere around the level and it is to find out how and where to place

the rocket launcher in order to make the level enjoyable. He mentions other enemies again and
that a red box is enough to visualize that its an enemy.

When he starts to sketch something on a paper, he starts thinking in 3D but draws them in 2D.
He mentions having visual cues in a level, leading the player somewhere in a big environment
and the idea is to give the player the right directions for where to head towards. Then he user
tests how the player navigates. He likes to have visual navigations and when things should
appear and direct the player.

He mentions that import and export of a working level would be good. He uses sketchup to drag
in objects around and he thinks our tool could be a competitor against it. He works in front of the
computer most of the time and sketchup is fine as a tool. He mentions phone and tablet also
being a good options as it is very reachable. He works with board games and he says it is like
being an author. He thinks of ideas and wants to quickly test them and he thinks that if our tool
quickly could scan them, there is a great potential.

We asked him what other tools he uses. He mentioned that big companies have their own tools,
for instance IO­interactive. Commercially, he thought of Unity and Unreal Engine. It was a state
of the 3D physics world where he could build the world. Importing prefabs build in 3d studio max
was also good. Others he could think of was Hammer and Gamemaker.

He continues and mentions the importance of line of sight again, especially in a shooting game.
He talks about gating and cutting the world into different sections. Ports also to limit the field of
view and also technically less rendering areas to have efficient level renderings.

We asked him how he starts his creative process. He says that he thinks of the story of context
first, for instance, a character arriving at beograd metro, and he needs to go from a to b and try
to get the idea behind the story. Then he tries to think of the different game elements, weapons
and other features. Then he starts paper prototyping and also googling a lot of pictures of
beograd metro, try to find ideas, erase many and find new features also. He thinks how to begin
an encounter and try to build a prototype from that, get something fast on 3D and tries to get
some coding in as soon as possible. He works in an environment with many level designers
working simultaneously. After, they try to polish and iterate levels through. Tweak in between and
try to find good ideas from other colleagues.

We asked when they test the levels. He answers all the way through and he tries to simulate it
as a board game with simple rules and test it as soon as possible. We asked what they do after
their creative process. He answers that its mostly about bugfixes, finding test persons to test the
levels and basically test it all the way through.

We asked if he had any problems telling others in his team what the vision of a level was. He
said that there was a compromise and it was hard to match other peoples visions. But it was not
that hard to make others understand your own vision. He says that even though you understand

the game, there are times where misunderstandings happen and the design does not
necessarily go in the direction you want it to go. Many things go wrong and it is good to talk about
them he says. He says it is good to both talk about the problems and show them the problems
visually.

We asked if he uses some standardized symbols for his drawings. He mentions that it is good to
have clear symbols and illustrations that express the things you want. In skyrim for instance, you
have the helm symbol. In that way, people will have the idea of which direction you are going
towards. He makes a sketch of a level, dungeon and dragons like, try to get the concept art. Try
to make a gamification of a location. He gives a prison as an example, which gives some
restrictions and try to find challenges out from that. Something he thought was hard was to keep
things from changing, because of the iteration process from start to end of the production.

He thought usability meant a lot for our tool and to get fast 3D models generated. To navigate
around the environment and maybe use it as a playable level for a school class to test out for
instance a racetrack. We asked him whether or not an import/export function would be important
and he said that it depended on where we wanted to present the level. But he also said that it
would be very complex to make a unified export to all kinds of platforms and that we should
consider a standard format for specific platforms before considering it. He talks about resources,
how many vertices etc, and that an export would not be optimal in such cases for a specific
game and that it is all dependant on the game. He sees our tool as a prototype of a prototype and
it will most likely get replaced in the end. But he thinks that it is good for rapid prototyping and we
just trash the prototype after using it. He says that we need something we believe is working and
therefore we support many files but trash most of them. Fast testing and paper is good for that.

We asked him what a level editor was. He said something about manipulation of 3D. A gameplay
editor or a world editor. He optimally wanted it to be the place where you play and get the game
experience out from it. He focused much on gameplay of a level. In its ground form, it is an
abstraction of a world, for instance, mario done as a 2D array. It is the in­between layer which
makes it easy to visualize and to interpret the level for other people and to find the right spots. He
mentions 3 things that affect a level: Environment, story and its playfulness (how interesting the
level is). A level editor should be capable of many things. He mentions Gameglobe, where the
editor is the game itself.

Before many tools, he used to play around with tiled papers, number codes and play with
papers, blocks etc. He says tiles are fine, but asks if it is possible for a racing game. He says it
depends on the market and our target group. It also depends on the platform. Tiling is like
pixelation he mentions. As last, he mentions snap­to­grid would be good for the level tool.

After the presentation, he mentions that he would like some triggers, and he sees the product as
a demo tool. He says the most important feature is the road generation from a given curve.

Peter Summary

Primarily car racing games, terrain editor, but hasn’t really understood if it’s meant as a
prototype, or final level. An idea could be to use it as a content creator for people. Developers
would usually not use it. Fast drawings make sense. However he has a worry about colliders in
unity with mesh collider of terrain.

Use tools?
Yes, in different phases of the development. To start with, it’s like a playground, where everything
is allowed. The idea is to make up something great. To start with, you get information and
requirements of the world (the player has a game…), then you change some things, and come
in a phase where you play around with different things, in order to find out what works, and what
doesn’t. After having settled some levels, he builds them in Unity, and does initial tests. He builds
puzzles in small rooms, tests himself and gets colleagues to test. Then judges the levels after
getting comments, finding what’s cool, uses it and scraps what’s not.
When drawing by hand, he draws stickmen, basic illustrations, boxes, pressure plates,
elevators, doors. He sits on a couch, and usually finds 12 ideas in an hour, and discards many
ideas in the process. Then he looks at those 12 ideas, judges them, then build those who have
potential. Then he gets into Unity, and tries to build something as quickly as possible. After he
makes some considerations about sizes relations, the weight of different things, what you have
to do in the level. At this stage they test with their main character, and he interacts with the world.
They have some rules and conditions for him. In this case he connects to everything: he can
push, crawl, shoot etc. Then he puts the good idea in one box, the bad ideas in another, and the
ideas that need work in a third. After they use these levels to iterate on.
Everyone works differently. Some draw their levels on paper in detail, other sketch it, others don’t
at all. However everyone take notes on blocks of paper in case their is something.

When drawing
He uses symbols, but draws only for his own understanding. Therefore it is very messy and no
real symbol as to what is what. For example he would draw an elevator as an arrow and a dotted
platform. He draws it nicely in photoshop or paint if he were to present it to others. A level is like
notes taken by a journalist, only he understands it completely.

Creative process:
First he gets information from the instructor as to how the scene is set. For example in a forest
where the character is getting chased. However he will ask questions, in order to get a deeper
understanding of what is meant, and perhaps get keywords, that he can work from. Perhaps like
what you want the player to feel, should he hurry up, be paranoid, relieved? Setting the scene is
very important, for example if the level is in the woods, or in a lab. Some things are specific to
each scene and need to be considered.
Sometimes they iterate over a mechanic: make up something about gravity. Then it’s about
finding limitations and opportunities. They use the physics in the Unity engine, so they get a lot of

things for free. Also it is very intuitive, people live with gravity, so there’s a lot of things that do not
need explaining (things sink or float in water, things fall…). Or if they try to find something out of
wind. What can you do from there? They would try all kinds of things, and scrap the bad.

In the early process of Limbo, he wasn’t a part of it. They drew the boy on a napkin, and tried to
create a universe from there. To start with in a process, they know some things and try other
things out. If you make wrong decisions you go back to the basics and start over.
On their new game, they use a 3D engine for a 2D game. So they considered the challenges
and opportunities. So they experiment with things, for example with the camera. There’s quite a
big degree of freedom, and it can be hard to be a level designer, as your job description is to
make something fun, and immersive, but the design aspect of gaming, gets very well defined the
more you work with it.
(Context of our tool) An easy way of generating terrain, and easy way to get the character into
the environment and test. It has to be easy to export and to use in unity. It has to be a fast tool,
and easy to use. (He mentions building boxes with weight and elevators) A feature could be to
get things out on paper again afterwards. Maybe to pitch a game idea. Think backwards perhaps.

After the creative proces
After drawing levels, he works on Unity. He starts by making a floor, and a killer object, which kills
the boy when he touches it. Then looks at what has to be in the level, and the mechanics that
work. If you press on the button, you half the gravity. He makes scripts (prototype), tweaks and
puts it together so it works. Then he puts the character in, and plays with him. He tries to build all
kinds of things, and find out what is fun (Experience from limbo: There needs to be ropes and
ladders in a 2D world). By now he will start to discard the 12 ideas, and keep on building trying to
find something good. He sorts them in an order, in order to optimize work, however you have to
remember to enjoy the level while working with it. He constructs the ideas very fast, in order to
confirm or discard them. Usually about two ideas make it this far, and get shown to the
colleagues. Limbo: They worked without deadlocks, so a level could be tweaked any day.

How do you tweak a level?
He doesn’t do it the same way as a friend in ubisoft. They build the final level from the beginning,
and tweak everything about it later: how do the AI move/behave, where should you aim etc… In
Playdead they build levels, put them in boxes and iterate over them. They work on mechanics,
pulling things, where are things compared to the others, pressure plates, gravity and see what
works. They don’t think so much about how the pressure plate gets activated.
They test the levels a lot internally, but also externally. You get corrupted when working too much
on the game, and automatically assumes too much. Therefore it is important to get it tested
externally with new eyes, and people who think differently. It is not important to get them to
comment, as it is clear in the way they play if they are struggling or not, and what they are trying
to do. For example if the player cannot find a lever, maybe they should make it red etc…
In order to get a feature they make very simple solutions (not pretty) that work, and can prove the
idea at hand.

Requirements about the levels. Project manager wishes all levels have a specific length,
however every level differ from the player who plays it.

What takes up most time?
To iterate over a level. It is quite easy and fast to find ideas, but to get something worthy of being
played, and to find what is uncool, is what you use a lot of time on. It is not easy to find out what
to cut.

Talking about tools
A visual programming tool the animator used, allowed him to make a really good feature the
programmers can program.

About our tool
Maybe we should focus on a specific genre, and make it right for that one. Create a fictional
company which would have great use of the tool.

Mikkel Summary

Mikkels first thoughts about the project was that we should think more broad than just a
generation of a road. He says that our challenge lies in how fast we can generate things. He
mentions it looks like a terrain editor he used before in another game, but it was more detailed
levels with heightmaps. He says if you move from 2D to 3D, you acknowledge some things. He
mentions that it can be hard sometimes relating to the space you are in when you draw and you
sometimes figure out that your sketch does not work, in the process of translating from 2D to
3D. He says that you adjust the levels fast and iterative. He works a lot in the creativity process.
When he saw the video, he thought it was magic, very simple to make it happen. You draw and
you get a world quick and it is very entertaining. He was not sure if it was only meant for a racing
game or something else also.

He saw the potential in the idea that you can visualize something which you could not see
before. It was an inspirational tool for him, rather than a working tool. He says that the designer
cannot always get the same view from others. He tries to find ground ideas for a level and our
tool could help him do that. He says that the tool needs to set some premises. He mentions
randomness in the inspirations, for instance tunnels, bridges and other stuff could be used in our
tool. Also he says we can maybe have tweakable definitions. He would like fancy graphics,
lighting, fog and other effects.

He mentions his own project with Max and the Magic Marker. He says he could not see himself
use a tool like this for that purpose. He mentions that if we make a game like Tomb Raider, then
we would want to have walls to climb up on, some hills, and how high the character can jump.
He says that the tool should help making a ground plan and get variation and randomness in the
gameplay. He says that we should be specific in what we want to use the tool for. He rounds off
with these arguments with: “Can you hop on the tool and get a gaming experience?”.

Afterwards, we ask him about how he draws. He says that he draws fast and try to build it as
quick as possible. He says that in the moment where it is in full 3D, something else happens. A
lot of proportions change in the space and you are in a different game world.

We ask him how he starts his creative process. He starts off with an example from a shooter
game. Then he asks himself the questions, what are we going to do in this level, what is the
purpose. Is it to shoot a person, steal a car and take off afterwards? He would start to plot things
in the paper, making dots and symbols on persons to kill, something that is escaping etc. He
tries to find ideas on how to get in somewhere, what is an interesting way to get in, try to get
some ground ideas and see the essence in the things he does. He starts by defining some basic
things. He would try to structure around some ground rules. He mentions his Max game again,
where the goal was to make every level have a unique mechanic so when people talked about
the game, they would be able to specify the level by its unique thing. He tries to set some

boundaries, see what kind of experience the player needs to have (sneaking, shooting, driving
etc), make some traps and increase difficulty.

We asked him how he tests. He would first of all play the level a lot himself. Then he would try to
test it out with colleagues. Already there, he would catch a lot of bugs. Lastly, we would test it
with others outside from the building. He says they test until they reach a quality which is
satisfying.

We asked him about the creative process. He mentions that there are many phases for a level
designers. First the design of the whole world and gameplay, and try to fit the world that creates
the gameplay. He says that there lies a lot of work to get all these settled. For instance, if there is
rush hour in a level, then there would be a lot of configuration work to do. Then there are things
like finding errors, and fixing errors, which can take a lot of time. He mentions that the fun part is
only ⅓ of the process.

We asked him what the bottleneck of the level design process was. He says that if it is
time­wise, it is to make the mock of the world, with simple boxes and then make the gameplay
good. Setting up the puzzles is easy but the moment where graphics enter the scene, there are
lots of other configurations and many things change because of the new graphics elements. He
says that it is not easy to read other peoples thoughts. So the process goes from being a simple
level to a very detailed world.

We ask him what a level editor is. He says Unity is a direct level editor tool. But he also says that
he worked with other level designers using sketchup to make more complex models, but there
are many things not possible in that tool. Sketchup is easy and precise. He says that historically,
there are two types of level designers. One which focuses on gameplay and the other for the
architecture and form of the level.

104 Interview

Appendix B

Test Results

We had many different test cases to test our environment. Some of the cases
are already mentioned in the Test section. Here we will show their resulting
environments.

Figure B.1: Compare the "Logo" test.

106 Test Results

Figure B.2: Compare the "Swirl" test.

Figure B.3: Compare the "Star" test.

Appendix C
Least Square

Implementation

The implementation is done in C#.

Listing C.1: LeastSquare.cs
pub l i c Vector2 [] BestFit (List<Vector2> points)
{

Matrix M = new Matrix (4 , 4) ;
M [0 , 0] = −1; M [0 , 1] = 3 ; M [0 , 2] = −3; M [0 , 3] = 1 ;
M [1 , 0] = 3 ; M [1 , 1] = −6; M [1 , 2] = 3 ; M [1 , 3] = 0 ;
M [2 , 0] = −3; M [2 , 1] = 3 ; M [2 , 2] = 0 ; M [2 , 3] = 0 ;
M [3 , 0] = 1 ; M [3 , 1] = 0 ; M [3 , 2] = 0 ; M [3 , 3] = 0 ;

Matrix Minv = new Matrix (4 , 4) ;

i f ((i n t) MatrixDeterminant (M) == 0)
{

Minv = MatrixInverseSPD (M) ;
}
e l s e
{

Minv = MatrixInverse (M) ;
}

f l o a t [] normalizedPathLengths = NormalizedPathLengths (points) ;

Matrix U = new Matrix (points . Count , 4) ;

f o r (i n t i = 0 ; i < normalizedPathLengths . Length ; i++)
{

108 Least Square Implementation

U [i , 0] = Mathf . Pow (normalizedPathLengths [i] , 3) ;
U [i , 1] = Mathf . Pow (normalizedPathLengths [i] , 2) ;
U [i , 2] = Mathf . Pow (normalizedPathLengths [i] , 1) ;
U [i , 3] = Mathf . Pow (normalizedPathLengths [i] , 0) ;

}

Matrix UT = MatrixTranspose (U) ;

Matrix X = new Matrix (points . Count , 4) ;
f o r (i n t i = 0 ; i < points . Count ; i++)
{

X [i , 0] = points [i] . x ;
}
Matrix Y = new Matrix (points . Count , 4) ;
f o r (i n t i = 0 ; i < points . Count ; i++)
{

Y [i , 0] = points [i] . y ;
}

Matrix A = MatrixMultiplication (UT , U) ;
Matrix B = Matrix . Identity (4) ;

i f ((i n t) MatrixDeterminant (A) == 0)
{

B = MatrixInverseSPD (A) ;
}
e l s e
{

B = MatrixInverse (A) ;
}

Matrix C = MatrixMultiplication (Minv , B) ;
Matrix D = MatrixMultiplication (C , UT) ;
Matrix E = MatrixMultiplication (D , X) ;
Matrix F = MatrixMultiplication (D , Y) ;

Vector2 [] finalPoints = new Vector2 [4] ;
f o r (i n t i = 0 ; i < 4 ; i++)
{

f l o a t x = E [i , 0] ;
f l o a t y = F [i , 0] ;

finalPoints [i] = new Vector2 (x , y) ;
}

re turn finalPoints ;
}

Bibliography

[AfARA05] Abstraction and Implementation Strategies for Augmented Real-
ity Authoring. Vuforia smart terrain, 2005.

[API14a] Unity3D Scripting API. Mesh. http://docs.unity3d.com/
ScriptReference/Mesh.html, 2014.

[API14b] Unity3D Scripting API. Webcamtexture. http://docs.unity3d.
com/ScriptReference/WebCamTexture.html, 2014.

[Cha14] Goose Chase. Goose chase. https://www.goosechase.com/, 2014.

[Dou14] Andrew Doull. Procedural content generation wiki. http://pcg.
wikidot.com/, 2014.

[Gla13] Martin Glaude. Procedural mesh generation [simcity roads]. https:
//www.youtube.com/watch?v=dDqCPMpX1vI, 2013.

[Goo13] Kim Goossens. Procedural road creation. https://cmivfx.com/
store/213-houdini+procedural+road+creation, 2013.

[Her12] Jim Herold. Least squares bezier fit. http://jimherold.com/
2012/04/20/least-squares-bezier-fit/, 2012.

[How14] HowToGeek. Which video game was the first to feature pro-
cedural generation. http://www.howtogeek.com/trivia/
which-video-game-was-the-first-to-feature-procedural-generation/,
2014.

[JDG13] Éric Guérin Adrien Peytavie Bedřich Beneš Jean-David Génevaux,
Éric Galin. Terrain generation using procedural models based on

http://docs.unity3d.com/ScriptReference/Mesh.html
http://docs.unity3d.com/ScriptReference/Mesh.html
http://docs.unity3d.com/ScriptReference/WebCamTexture.html
http://docs.unity3d.com/ScriptReference/WebCamTexture.html
https://www.goosechase.com/
http://pcg.wikidot.com/
http://pcg.wikidot.com/
https://www.youtube.com/watch?v=dDqCPMpX1vI
https://www.youtube.com/watch?v=dDqCPMpX1vI
https://cmivfx.com/store/213-houdini+procedural+road+creation
https://cmivfx.com/store/213-houdini+procedural+road+creation
http://jimherold.com/2012/04/20/least-squares-bezier-fit/
http://jimherold.com/2012/04/20/least-squares-bezier-fit/
http://www.howtogeek.com/trivia/which-video-game-was-the-first-to-feature-procedural-generation/
http://www.howtogeek.com/trivia/which-video-game-was-the-first-to-feature-procedural-generation/

110 BIBLIOGRAPHY

hydrology. Technical report, Université de Lyon, Laboratoire LIRIS,
France, Purdue University, USA, 2013.

[Jon13] Peter Jones. Infinite procedurally generated 3d terrain in unity.
https://www.youtube.com/watch?v=lUi_k1Qqkh0, 2013.

[JT11] Rafael Bidarra Julian Togelius, Jim Whitehead. Guest edito-
rial: Procedural content generation in games. http://graphics.
tudelft.nl/~rafa/myPapers/bidarra.TCIAIG.2011c.pdf, 2011.

[Jø12] Bilal Arslan & Patrick Jørgensen. Car Simulation for Neurofeedback
Research. Technical report, Technical University of Denmark, DTU
Informatics, 2012.

[lev12] World of Level Design. Technical report, 2012.

[Mac98] Wendy E. Mackay. Augmented reality: Linking real and virtual
worlds a new paradigm for interacting with computers, 1998.

[MM10] Paul Merell and Dinesh Manocha. Model synthesis: A general
procedural modeling algorithm. http://graphics.stanford.edu/
~pmerrell/tvcg.pdf, 2010.

[Moj09] Mojang. Minecraft. https://minecraft.net/, 2009.

[Ngu12] Thierry Nguyen. Clash of the dotas. https://http://www.1up.
com/features/clash-dotas-league-legends-heroes, 2012.

[Ols04] Jacob Olsen. Realtime procedural terrain generation, 2004.

[Qua12] Qualcomm. Image targets in unity tutorial. https://www.
youtube.com/watch?v=WrEnREOT1F0, 2012.

[Qua13] Qualcomm. Vuforia smart terrain. http://www.youtube.com/
watch?v=UOfN1plW_Hw, 2013.

[RD12] Jose Luiz de Souza Filho Rodrigo Silva Marcelo B. Vieira
Bruno Dembogurski Renan Dembogurski, Dhiego O. Sad. Inter-
active virtual terrain generation using augmented reality markers,
2012.

[Rez13] Nayef Reza. Zhang-suen thinning algorithm.
http://nayefreza.wordpress.com/2013/05/11/
zhang-suen-thinning-algorithm-java-implementation/,
2013.

[RFW03] A. Walker R. Fisher, S. Perkins and E. Wolfart. Thinning. http:
//homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm, 2003.

https://www.youtube.com/watch?v=lUi_k1Qqkh0
http://graphics.tudelft.nl/~rafa/myPapers/bidarra.TCIAIG.2011c.pdf
http://graphics.tudelft.nl/~rafa/myPapers/bidarra.TCIAIG.2011c.pdf
http://graphics.stanford.edu/~pmerrell/tvcg.pdf
http://graphics.stanford.edu/~pmerrell/tvcg.pdf
https://minecraft.net/
https://http://www.1up.com/features/clash-dotas-league-legends-heroes
https://http://www.1up.com/features/clash-dotas-league-legends-heroes
https://www.youtube.com/watch?v=WrEnREOT1F0
https://www.youtube.com/watch?v=WrEnREOT1F0
http://www.youtube.com/watch?v=UOfN1plW_Hw
http://www.youtube.com/watch?v=UOfN1plW_Hw
http://nayefreza.wordpress.com/2013/05/11/zhang-suen-thinning-algorithm-java-implementation/
http://nayefreza.wordpress.com/2013/05/11/zhang-suen-thinning-algorithm-java-implementation/
http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm

BIBLIOGRAPHY 111

[RS10] Klaas Jan de Kraker Rafael Bidarra Ruben Smelik, Tim Tutenel.
Integrating procedural generation and manual editing of vir-
tual worlds. https://blog.itu.dk/mpgg-e2010/files/2010/10/
a5-smelik.pdf, 2010.

[Sur13] Jayelinda Suridge. Modelling by numbers. http://jayelinda.
com/modelling-by-numbers-part-1a/, 2013.

[Uni14] Unity. Generating mesh geometry procedurally. http://docs.
unity3d.com/Manual/GeneratingMeshGeometryProcedurally.
html, 2014.

[You09] Shamus Young. Procedural city. http://www.shamusyoung.com/
twentysidedtale/?p=2940/, 2009.

https://blog.itu.dk/mpgg-e2010/files/2010/10/a5-smelik.pdf
https://blog.itu.dk/mpgg-e2010/files/2010/10/a5-smelik.pdf
http://jayelinda.com/modelling-by-numbers-part-1a/
http://jayelinda.com/modelling-by-numbers-part-1a/
http://docs.unity3d.com/Manual/GeneratingMeshGeometryProcedurally.html
http://docs.unity3d.com/Manual/GeneratingMeshGeometryProcedurally.html
http://docs.unity3d.com/Manual/GeneratingMeshGeometryProcedurally.html
http://www.shamusyoung.com/twentysidedtale/?p=2940/
http://www.shamusyoung.com/twentysidedtale/?p=2940/

	Abstract (English)
	Abstract (Danish)
	Problem Statement
	Preface
	Acknowledgements
	Contents
	1 Introduction and Background
	1.1 Project Plan
	1.2 Project Orientation
	1.2.1 Tool for level designers
	1.2.2 Average people as target

	2 State of the art
	2.1 Level design
	2.2 Procedural Generation
	2.3 Augmented Reality
	2.4 Related work

	3 Design and Tools
	3.1 Creative Process
	3.1.1 Brainstorming
	3.1.2 Sparring with supervisor
	3.1.3 Interviews
	3.1.4 Thinking out of the box

	3.2 Unity3D
	3.3 Game
	3.4 Curve fitting
	3.4.1 Least square
	3.4.2 Bézier fit

	3.5 Binary Extraction
	3.5.1 Overview
	3.5.2 Color identification
	3.5.3 Thinning
	3.5.4 Zhang-Suen thinning
	3.5.5 Thinning and road widths
	3.5.6 Nodes and Edges
	3.5.7 Scaling
	3.5.8 Thickening

	3.6 Depth-First Search
	3.6.1 Choice of algorithm
	3.6.2 Nodes and Edges
	3.6.3 Segments
	3.6.4 Crossings

	3.7 Terrain
	3.7.1 Mesh
	3.7.2 Height

	3.8 Bézier
	3.9 Road
	3.9.1 Road mesh
	3.9.2 Aspect of road
	3.9.3 Random height
	3.9.4 Road widths

	3.10 Rivers
	3.11 Tunnels
	3.11.1 Entrance
	3.11.2 Hole

	3.12 Bridges
	3.13 Crossings
	3.13.1 Choice of types
	3.13.2 Tilting
	3.13.3 Bridge
	3.13.4 Tunnel
	3.13.5 3 main problems

	4 Implementation
	4.1 Overview
	4.1.1 Class Diagram

	4.2 Least Square
	4.3 Binary Extraction
	4.3.1 Color identification
	4.3.2 Scaling
	4.3.3 Thickening
	4.3.4 Thinning
	4.3.5 Zhang-Suen thinning
	4.3.6 Nodes and Edges

	4.4 Depth First Search
	4.4.1 Data structures
	4.4.2 Crossings
	4.4.3 Circle problem

	4.5 Mesh builder
	4.6 Terrain
	4.6.1 Height
	4.6.2 Storing heights
	4.6.3 Road heights

	4.7 Bézier
	4.8 Pipeline
	4.9 Road
	4.9.1 Midpoints
	4.9.2 Mesh

	4.10 Rivers and Lakes
	4.10.1 Rivers
	4.10.2 Lakes

	4.11 Tunnels
	4.11.1 Entrance
	4.11.2 Hole

	4.12 Bridges
	4.12.1 Identification
	4.12.2 Creation

	4.13 Crossings
	4.13.1 Sorting Vertices

	5 Test
	5.1 Input
	5.1.1 Error handling

	5.2 Interviews
	5.3 User Reviews

	6 Analysis
	6.1 Outcome
	6.2 Creative process
	6.3 Work process
	6.3.1 Unwanted results
	6.3.2 Evaluation of user reviews

	6.4 Extensions
	6.4.1 Binary Extraction
	6.4.2 Optimizing
	6.4.3 Different Meshes
	6.4.4 Styles
	6.4.5 Game modes
	6.4.6 Graphics

	6.5 Credits
	6.5.1 Work by others

	7 Conclusion
	A Interview
	A.1 Interview questions
	A.1.1 After using the program

	B Test Results
	C Least Square Implementation

