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Determining the Points of Change in Time
Series of Polarimetric SAR Data

Knut Conradsen, Allan Aasbjerg Nielsen, and Henning Skriver, Member, IEEE

Abstract—We present the likelihood ratio test statistic for the
homogeneity of several complex variance–covariance matrices
that may be used in order to assess whether at least one change
has taken place in a time series of SAR data. Furthermore, we
give a factorization of this test statistic into a product of test
statistics that each tests simpler hypotheses of homogeneity up to
a certain point and that are independent if the hypothesis of total
homogeneity is true. This factorization is used in determining the
(pixelwise) time points of change in a series of six L-band EMISAR
polarimetric SAR data. The pixelwise analyses are applied on
homogeneous subareas covered with different vegetation types
using the distribution of the observed p-values.

Index Terms—Complex covariance matrix test statistic, com-
plex Wishart distribution, dual polarization, EMISAR, full po-
larization, multitemporal synthetic aperture radar (SAR) data,
omnibus test statistic, quad polarization, remote sensing change
detection.

I. INTRODUCTION

CHANGE detection is a very important method for many
applications of remotely sensed data from satellites. In

particular, synthetic aperture radar (SAR) data are useful due
to their all-weather capabilities; hence, planned acquisitions for
change detection are normally secured. A number of studies
have applied SAR data to change detection applications in
single-channel SAR images applying different methods using,
e.g., the classical ratio detection [1], [2], the Kittler–Illingworth
threshold selection criterion [3]–[6], hidden Markov chains
for thresholding [7], wavelets [8]–[11], linear features [12],
Kullback–Leibler divergence [13], multivariate gamma distri-
butions [14], neural networks [15], fusion of multisimilarity
measures [16], and Markov random fields [17], where most of
the methods are based on the classic ratio detector and improve-
ments thereof. In addition, methods for change detection using
multichannel SAR data (e.g., polarimetric) have been studied
using, e.g., polarimetric parameters [18], [19], Markov random
fields for multichannel SAR data [20], [21], a generalized
maximum likelihood test for covariance matrices [22] and the
same test statistics for classification [23], partial vectors for the
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suppression of the backscatter coefficient influence [24], the
Hotelling–Lawley trace statistic [25], and a non-Wishart change
detector [26], where a characteristic of the multichannel change
detectors is that they are used for change detection between
bitemporal acquisitions.

In change detection between two polarimetric SAR images,
tests comparing two complex variance–covariance matrices
have turned out to be very efficient. For example, this is used
in [22], where the likelihood ratio test statistic is derived, and
an approximate expression for the distribution of the statistic
under the hypothesis that no changes have occurred is found.
In radar literature, the term “variance–covariance matrix” is not
commonly used. We use the term to indicate that we here deal
with quadratic positive-definite (dispersion) matrices and not
cross-covariance matrices between different multivariate obser-
vations. In this paper, we apply the test statistics developed
to multilook SAR data in the so-called complex covariance
formulation. In this paper, we will use the usual radar term
“covariance matrix.”

When comparing several images, one may apply the simple
approach making pairwise comparisons. However, this ap-
proach makes it virtually impossible to control the rates of
false positives (postulating a change when there actually is
none) and of false negatives (missing an actual change). In
general, a better approach for comparing several distributions
is to perform a simultaneous test of the hypothesis of homo-
geneity of the said distributions, i.e., a so-called omnibus test
(e.g., see [27]). In this paper, we enable this by deriving the
likelihood ratio test statistic for the equality of several, say,
k, complex variance–covariance matrices and by finding an
approximation for the distribution of this test statistic under the
hypothesis of equality. If the conclusion of such an analysis
is that the parameters in the underlying Wishart distributions
are not constant, i.e., we have a nonstationary time series, then
the following question naturally arises: When do the changes
actually occur? In this paper, we present a factorization of the
likelihood ratio statistic into a product of test statistics that each
tests simpler hypotheses of homogeneity up to a certain point
and that are independent if the hypothesis of total homogeneity
is true. We show how this may be used in setting up a change
detector for solving the said problem.

The first results in this paper are direct generalizations of
the k = 2 case reported in [22] and further described in [28].
As mentioned above, some other studies have been reported
on change detection between two polarimetric SAR images,
but the approach presented in this paper of detecting changes
in a series of polarimetric SAR data in the covariance matrix
representation is new. The launches of a number of satellite
SAR systems during the latest ten years and more have made it
more common to use SAR data and, particularly, the time series
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of SAR data for different applications. The SAR systems in-
clude, e.g., ALOS, the Radarsat-2, the TerraSAR-X, COSMO-
SkyMed satellites, and the Sentinel-1 mission. Some of these
systems have a full-polarimetric mode, whereas others have sin-
gle and/or dual polarization. The time series of SAR data enable
a number of applications where a core method for the utilization
of the data is the detection of changes in the time series, e.g.,
the detection of a specific event for an agricultural crop (e.g.,
sowing or harvesting), the detection of a flooding event in a
monitoring system, or the detection of changes in an urban area.

Section II includes a description of the covariance represen-
tation of polarimetric SAR data and describes the data set we
have used in the demonstration of the test statistics. Section III
gives the basic results on the omnibus test statistic and on its
decomposition into a product of test statistics that test simpler
hypotheses in the general complex Wishart case. Since the real
Gamma distribution is a univariate special case, the theory
is exemplified on this distribution. In addition, a scheme for
using the test statistics in a change detection method to detect
the changes in a time series is shown. Section IV shows the
results of change detection in multitemporal polarimetric data
over five time points for the omnibus test and six time points
for the decomposition. Section V contains the conclusions.
The Appendix gives details on the new test statistics and their
distributions.

II. DATA

This section first describes the covariance representation of
multilook polarimetric SAR data, followed by a description of
the SAR data used in this paper.

A. Polarimetric SAR

A fully polarimetric SAR measures the 2 × 2 complex so-
called scattering matrix at each resolution cell on the ground.
The scattering matrix relates the incident and scattered electric
fields (see [29]). If Srt denotes the complex scattering ampli-
tude for receive and transmit polarizations (r, t ∈ {h, v} for
horizontal and vertical polarizations), then reciprocity, which
normally applies to natural targets, gives Shv = Svh (in the
backscattering direction using the backscattering alignment
convention) [29]. Assuming reciprocity, the scattering matrix
is represented by the three-component complex target vector
s = [Shh Shv Svv]

T , where superscript T denotes the matrix
transpose.

The inherent speckle in the SAR data can be reduced by
spatial averaging at the expense of spatial resolution. In this
so-called multilook case (in the following, n is the number of
looks), a more appropriate representation of the backscattered
signal is the covariance matrix in which the average properties
of a group of resolution cells can be expressed in a single matrix
formed by the outer products of the averaged target vectors. The
sample covariance matrix is defined as [29]

〈C〉full =
〈
s(i)s(i)H

〉

=

⎡
⎣〈ShhS

∗
hh〉 〈ShhS

∗
hv〉 〈ShhS

∗
vv〉

〈ShvS
∗
hh〉 〈ShvS

∗
hv〉 〈ShvS

∗
vv〉

〈SvvS
∗
hh〉 〈SvvS

∗
hv〉 〈SvvS

∗
vv〉

⎤
⎦ (1)

where 〈·〉 denotes ensemble averaging, ∗ denotes complex
conjugation, and superscript H denotes the complex conju-
gate transpose. Reciprocity results in a covariance matrix with
rank 3. n〈C〉 follows a complex Wishart distribution.

Spaceborne instruments often only transmit one polarization,
e.g., horizontal, and receive both polarizations, giving rise to
dual-polarization data, e.g., Shh and Shv. In this case, we
have components 〈ShhS

∗
hh〉, 〈ShhS

∗
hv〉, and 〈ShvS

∗
hv〉 only.

The resulting covariance matrix, i.e.,

〈C〉dual =
[
〈ShhS

∗
hh〉 〈ShhS

∗
hv〉

〈ShvS
∗
hh〉 〈ShvS

∗
hv〉

]
(2)

has rank 2. The availability of full-polarimetric data allows us
to extract dual-polarimetric subsets.

B. Multitemporal EMISAR Data Set

The SAR data used in this paper have been acquired by the
fully polarimetric Danish airborne SAR system, i.e., EMISAR,
which operates at two frequencies, i.e., C-band (5.3 GHz/
5.7-cm wavelength) and L-band (1.25 GHz/24-cm wavelength)
[30]. The nominal one-look spatial resolution is 2 m × 2 m,
the ground range swath is approximately 12 km, and typical
incidence angles range from 35◦ to 60◦. The processed data
from this system are fully calibrated by using an advanced
internal calibration system [31]. In 1998, L-band data were
acquired over a Danish agricultural test site on March 21,
April 17, May 20, June 16, July 15, and August 16.

All acquisitions have been coregistered by identifying
ground control points in the images and using an interferomet-
ric digital elevation model acquired by the EMISAR system
[18]. Before the resampling, the original one-look scattering
matrix data have been transformed to covariance matrix data,
and these data have been averaged to reduce the speckle by a
cosine-squared weighted 9 × 9 filter. The new pixel spacing in
the images is 5 m by 5 m, and the effective spatial resolution is
approximately 8 m by 8 m at midrange. After the averaging, the
equivalent number of looks is approximately 13.

Fig. 1 (rowwise) shows RGB combinations of the diagonal
elements of the full-polarimetry covariance matrix at L-band for
March, April, and May (top row, from left to right) and for June,
July, and August (bottom row, from left to right). 〈ShvS

∗
hv〉

(red) is linearly stretched between −36 and −6 dB; 〈ShhS
∗
hh〉

(green), between −30 and 0 dB; and 〈SvvS
∗
vv〉 (blue), between

−24 and 0 dB. The darker areas in the March and April images
are bare surfaces corresponding to spring crops, and the very
bright areas in all images are forest areas, which are primarily
coniferous forest. The development of the crops during the
growing season is clearly seen in the series of images from
March to August.

The changes we are looking for are changes in the average
properties of the pixels/fields, i.e., the speckle patterns are not
correlated. The images used are acquired with about a one-
month interval, and the areas used are vegetated areas, forests,
and agricultural fields. The speckle patterns of such areas are
very likely uncorrelated after one month. We are dealing with
incoherent change detection, where it seems realistic to assume
that the measurements on the same pixel taken a month apart in
scenes with natural vegetation are temporally independent.
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Fig. 1. RGB images of diagonal elements of the L-band data. (Top row, from left to right) March, April, and May. (Bottom row, from left to right) June, July, and
August.

III. THEORY

In this section, we first discuss the challenges of the multiple
testing problem. We then give the test statistic for the equality
of several complex-Wishart-distributed matrices and the asso-
ciated probability measure. Following this, the test statistic is
factorized into independent test statistics for partial hypotheses.
These two results are used in setting up the pixelwise change
detector, and this is finally used in defining the fieldwise change
detector.

A. The Multiple Testing Problem

In our setting, we consider pixels from a series of images
taken at time points t1 < · · · < tk, with distributions charac-
terized by often multivariate parameters μ1, . . . , μk. We are
concerned with detecting changes in those parameters, i.e., in
assessing situations such as

μ1 = · · · = μi−1 �= μi = · · · = μ�−1 �= μ� = · · · = μk (3)

which states that we have only changed after time point i− 1
and again after time point �− 1. A simple approach would be
sequentially testing hypotheses μj = μj−1 against μj �= μj−1.
However, this may give tests with a large false negative rate.
For example, small gradual changes may not be detected,
even when there is a clear trend throughout the time series.
Therefore, we suggest to apply an omnibus test of hypothesis
H0 : μ1 = μ2 = · · · = μk against all alternatives (see [27]).
If this test is accepted, we conclude that no changes have
occurred in the time interval [t1, tk]. If we reject the hypothesis,
we may determine the occurrence of changes by suitable post
hoc analysis using the results in Section III-C.

To clarify some concepts, let us briefly summarize some
definitions in the hypothesis testing theory. In general, if we
test a statistical hypothesis H0, i.e., the item studied has no
effect (here, corresponding to no change over time), against the

alternative H1, i.e., the item has an effect (here, corresponding
to change over time), we may commit two different types of
errors

• Type-I error: Rejecting a true hypothesis (false positive,
false alarm). The significance level α of the test or the
false positive rate is the probability of committing a type-I
error, or, if we have a composite hypothesis, the maximum
of the possible probabilities.

• Type-II error: Accepting a false hypothesis (false nega-
tive). The type-II error rate, miss rate or the false negative
rate β is the probability of committing a type-II error. The
power of the test is 1− β.

If a decision procedure is based on multiple (say, n) indepen-
dent tests, each with significance level αc, then the combined
significance level α = αFWER, i.e., the so-called familywise
error rate (FWER), is determined as α = αFWER = 1− [1−
αc]

n. This error rate increases with n. Forαc = 0.05 and n = 5,
10, and 15, we obtain the values 0.2262, 0.4013, and 0.5367,
respectively, thus giving rather substantial false positive rates.
If the individual tests are not independent, we can still state that
α = αFWER ≤ nαc. This is used in the so-called Bonferroni
correction, where we put the per-comparison significance level
α = αFWER/n in order to control the familywise error (e.g.,
see [32]).

Example: We shall briefly outline some of the problems
of multiple comparisons by a very simple example. We con-
sider independent random variables X1, . . . , Xk with means
μ1, . . . , μk and (known) standard deviation σ. Furthermore, we
consider two different types of changes corresponding to two
simple mean value structures as follows: 1) a signal that is
linearly increasing with time (a constant increase of 2σ from
one time period to the next); or 2) a piecewise constant signal
with a jump/step at a given time point (a constant value until
time point tj , where it jumps sσ and is again constant from
then on), cf. Fig. 2.
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Fig. 2. Two mean value situations 1 and 2 considered in the text. The blue line
corresponds to a steady increase, and the red corresponds to a discontinuous
jump.

In situation 1, it is difficult to detect the changes by com-
paring successive observations. If we are using a standard sta-
tistical test using test statistic Um = (Xm −Xm−j+1)/(

√
2σ)

and a significance level of 5%, the false negative rate is as
high as 70.70% for j = 2. However, if we consider comparisons
between measurements corresponding to j = 3, 4, and 5, the
false negative rates will decrease to 19.26%, 1.12%, and 0.01%,
respectively, but at the cost of an increased FWER (cf. the
earlier discussion).

If we try to compensate for this increased FWER by using
the Bonferroni correction for ten comparisons, i.e., using α =
0.5%, giving αFWER ≤ 5%, the false negative rates will be
91.82%, 49.15%, 7.56%, and 0.22% for j = 2, 3, 4, and 5,
respectively, i.e., considerably higher than above. Thus, it may
be difficult to control the FWER, while avoiding an unnecessar-
ily large false negative rate.

If we instead use the omnibus test in the case with true
means μ, μ+ 2σ, μ+ 4σ, μ+ 6σ, and μ+ 8σ (situation 1), the
(likelihood ratio) test statistic is Σ(Xi −X)2/σ2, which is non-
centrally chi-squared distributed with k − 1 degrees of freedom
and noncentrality parameter Σ(μi − μ)2/σ2. If we use a signif-
icance level of 5%, the false negative rate becomes 0.02%. If the
same overall change in the means instantaneously happens after
time period 3 (situation 2), the true means are μ, μ, μ, μ+ 8σ,
and μ+ 8σ (corresponding to situation 2), and the false neg-
ative rate becomes 0.00%. This example enhances the advan-
tages of the omnibus test with respect to limiting the error rates.

B. Test for Equality of Several Complex Covariance Matrices

As stated in Section II-A, the sample covariance matrix of
multilook fully polarimetric SAR data when multiplied by the
number of looks will follow a complex Wishart distribution. In
order to test for possible changes between several, say, k, time
points, we must therefore investigate whether we may assume
that several sample covariance matrices have the same expected
value, say, Σ, or whether we must assume that the expected
values are different, say, equal to, say, Σi, i = 1, . . . , k, where
at least two Σi differ. In a general setting, we therefore consider
independent random variables Xi, i = 1, . . . , k, that follow
complex Wishart distributions

Xi ∼ WC(p, n,Σi), i = 1, . . . , k (4)

where E{Xi/n} = Σi. To test the null hypothesis

H0 : Σ1 = Σ2 = · · · = Σk (5)

against all alternatives we use the following test statistic (see the
Appendix for the derivation, the work in [33] for the real case,
and the work in [22] for the case with two complex matrices)

Q = kpnk
∏k

i=1 |Xi|n
|X |nk

=

{
kpk

∏k
i=1 |Xi|
|X|k

}n

. (6)

Here, | · | denotes the determinant, the independentXi=n〈C〉i
follow the complex Wishart distribution, i.e.,Xi∼WC(p,n,Σi),
and X =

∑k
i=1 Xi ∼ WC(p, nk,Σ), where n is the number

of looks. In addition, under H0, Σ̂ = X/(kn). Q ∈ [0, 1], with
Q = 1 for equality. For the logarithm of the test statistic, we get

lnQ = n

{
pk ln k +

k∑
i=1

ln |Xi| − k ln |X |
}
. (7)

If

f =(k − 1)p2 (8)

ρ =1− (2p2 − 1)

6(k − 1)p

(
k

n
− 1

nk

)
(9)

ω2 =
p2(p2 − 1)

24ρ2

(
k

n2
− 1

(nk)2

)
− p2(k − 1)

4

(
1− 1

ρ

)2

(10)

then the probability of finding a smaller value of −2ρ lnQ is

P{−2ρ lnQ ≤ z} � P
{
χ2(f) ≤ z

}
+ ω2

[
P
{
χ2(f + 4) ≤ z

}
− P

{
χ2(f) ≤ z

}]
(11)

where z = −2ρ ln q, and q is a particular realization (an ob-
served value) of the stochastic variable Q. Instead of q, we may
write qobs; q and qobs are used interchangeably in the following.
See also the Appendix.

For full-polarimetry data, p = 3, and for dual polarimetry,
p = 2; for single-band (HH, HV, or VV) data, p = 1. In the
latter case, Xi and X are Gamma-distributed scalar random
variables Xi and X , respectively, and Q becomes

Q =

{
kk
∏k

i=1 Xi

Xk

}n

. (12)

For two time points, i.e., k = 2, this is equivalent to the classical
ratio detector [1], [2].

C. Test for Equality of First j < k Complex
Covariance Matrices

If the aforementioned test shows that we cannot reject the
hypothesis of equality, no change has occurred over the time
span covered by the data. If we, on the other hand, can reject the
hypothesis, change has occurred at some time point. In order to
establish at which time a change has occurred, we shall use the
fact that the likelihood ratio test statistic may be decomposed
into a product of test statistics that test simpler hypotheses and
that are independent if H0 is true. To test whether the first
j, 1 < j < k, complex covariance matrices Σi (p by p) are
equal, i.e., given that

Σ1 = Σ2 = · · · = Σj−1 (13)
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then likelihood ratio test statistic Rj for testing the hypothesis

H0,j : Σj = Σj−1 against H1,j : Σj �= Σj−1 (14)

is

Rj =
jjpn

(j − 1)(j−1)pn

|X1 + · · ·+Xj−1|(j−1)n|Xj |n
|X1 + · · ·+Xj |jn

=

{
jjp

(j − 1)(j−1)p

|X1 + · · ·+Xj−1|(j−1)|Xj |
|X1 + · · ·+Xj |j

}n

(15)

or

lnRj = n

{
p(j ln j − (j − 1) ln(j − 1))

+ (j − 1) ln

∣∣∣∣∣
j−1∑
i=1

Xi

∣∣∣∣∣+ ln |Xj | − j ln

∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣
}
. (16)

Furthermore, we have

Q =

k∏
j=2

Rj (17)

and if H0 is true, then the random variables R2, . . . , Rk are
independent.
Finally, letting

f = p2 (18)

ρj =1− 2p2 − 1

6pn

(
1 +

1

j(j − 1)

)
(19)

ω2j = − p2

4

(
1− 1

ρj

)2

+
1

24n2
p2(p2 − 1)

(
1 +

2j − 1

j2(j − 1)2

)
1

ρ2j
(20)

we get

P{−2ρj lnRj ≤ z} � P
{
χ2(f) ≤ z

}
+ ω2j

[
P
{
χ2(f + 4) ≤ z

}
− P

{
χ2(f) ≤ z

}]
(21)

where z = −2ρj ln rj , and rj is a particular realization (an
observed value) of the stochastic variable Rj . Instead of rj ,
we may write rj,obs; rj and rj,obs are used interchangeably in
the following. See the Appendix that also gives the resulting
formulas for the Gamma-distributed scalar case.

D. Pixelwise Change Detection

We start by looking at the Gamma-distributed case (cf. the
Appendix). This will allow a more intuitive presentation, e.g.,
by plotting the power of the SAR signal as a function of time.
Furthermore, the notation becomes somewhat simpler. We have
time points t1, . . . , tk corresponding to parameters β1, . . . , βk,
respectively, and we introduce the global hypotheses

H
(�)
0 : β� = β�+1 = · · · = βk, � = 1, . . . , k − 1 (22)

i.e., the last k − �+ 1 of all the parameters are equal. Further-
more, we consider the marginal hypotheses

H
(�)
0,j : β�+j−1 = β�+j−2(= β�+j−3 = · · · = β�),

j = 2, . . . , k − �+ 1 (23)

i.e., the first j of the parameters in the global hypotheses H(�)
0

are equal.

TABLE I
(HYPOTHETICAL) DATA CONSIDERED FOR

THE GAMMA DISTRIBUTION EXAMPLE

The omnibus test statistic for testing H
(�)
0 against all alterna-

tives based on X�, X�+1, . . . , Xk is

Q(�)=

{
(k−�+1)k−�+1 X� . . .Xk

(X�+· · ·+Xk)k−�+1

}n

. (24)

Let us assume that H(�)
0,j−1 is true, i.e., the first j − 1 parameters

are equal or β� = β�+1 = · · · = β�+j−2. Then, the test statistic

for testing H
(�)
0,j against the alternative β�+j−1 �= β�+j−2, i.e.,

for testing that the jth parameter is equal to the j − 1 preceding
parameters, becomes

R
(�)
j =

{
jj

(j − 1)j−1

(X� + · · ·+X�+j−2)
j−1 X�+j−1

(X� + · · ·+X�+j−1)j

}n

,

j = 2, . . . , k − �+ 1 (25)

Q(�) =R
(�)
2 · · ·R(�)

k−�+1 (26)

with independence if H(�)
0 is true.

In broad terms, the algorithm becomes
1) Set � = 1.
2) Test H(�)

0 against all alternatives.
If accepted, conclude that there are no changes in the
interval [t�, tk]. Go to 5.
If rejected, conclude that there is at least one change in
the interval [t�, tk], and go to 3.

3) Test marginal hypothesesH(�)
0,j , and let the first significant

hypothesis be H(�)
0,r+1.

Conclude that we have a change in [t�+r−1, t�+r].
4) Set � = �+ r, and go to 2.
5) Finish.

The algorithm is illustrated in the next example.
Example: We now consider (hypothetical) 〈ShhS

∗
hh〉 values

(corresponding to 13-look EMISAR data) from eight time
points. The observations are given in Table I. It is assumed that
they represent independent realizations of Gamma-distributed
random variables Xi ∼ G(13, βi), i = 1, . . . , 8.

By direct computation, we get that −2 lnQ = 54.2510,
and comparing this to quantiles in a χ2(7)-distribution ((k −
1)p2 = 7 for k = 8 and p = 1) shows that P{Q(1)<q(1)} � 0,
i.e., this value is significant at all reasonable levels. Therefore,
we conclude that we have (at least) one change in the time
period considered, i.e., i = 1, . . . , 8. We want to determine
the time point for the first change. Therefore, we successively
compute the quantities R(1)

j and P{R(1)
j < r

(1)
j }, j = 2, . . . , 8,

where the upper index (1) indicates that we are looking at the
first global hypothesis presented in Table II, column 2.

In the decomposition of the likelihood ratio test statistic Q,
we see thatR(1)

5 is the first significant component corresponding
to the rejection of the hypothesis β5 = β4. Thus, the conclusion
is that, so far, we may assume that β1 = β2 = β3 = β4, and we
must investigate whether there are changes in period i=5, . . . , 8,
i.e., test global hypothesis H(5)

0 :β5= · · ·=β8. Based on obser-
vationsX5, . . . , X8, we compute the likelihood ratio test statistic
for H(5)

0 and find that P{Q(5) < q(5)} � 0. We conclude that
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TABLE II
p-VALUES OF THE DIFFERENT TEST STATISTICS FOR THE GAMMA-DISTRIBUTED RANDOM VARIABLES. THE CHANGE INDEXES ARE HIGHLIGHTED

IN YELLOW, AND THE p-VALUES FOR THE ASSOCIATED GLOBAL TESTS, IN GREEN. WE NEED TO CALCULATE THE HIGHLIGHTED

NUMBERS ONLY, THE OTHER NUMBERS ARE SHOWN FOR ILLUSTRATIVE PURPOSES

Fig. 3. (Hypothetical) observations and the change indexes for the Gamma
distribution example.

there is at least one change in the period considered and decom-
pose the likelihood ratio statistic. We see that R(5)

2 is the first
significant component corresponding to the rejection of the hy-
pothesis β6=β5. We thus have a change between time points 5
and 6. Then, we must investigate whether there is a change
between the last three time points, i.e., we consider global hy-
pothesis H(6)

0 : β6 = β7 = β8. We find that P{Q(6) < q(6)} =
0.7696, i.e., we assume that we have no changes in this period.

Thus, the conclusion is that we observe significant changes
between

• β4 and β5;
• β5 and β6.

Therefore, we conclude that we have the following distinct
populations

• β1 = β2 = β3 = β4.
• β5.
• β6 = β7 = β8.

Remarks: If we introduce the term change index for the
relevant quantities P{R(�)

j < r
(�)
j }, we have that large values

of one minus the change index correspond to changes. From a
statistical point of view, a threshold of 0.95 seems natural. In the
Gamma case, we may plot the observations and the quantities
one minus the change index in the same coordinate system. This
is done in Fig. 3, which illustrates the outcome of the change de-
tection algorithm. �

The above description of the change detection algorithm may
be immediately generalized to the complex Wishart distribution
by simply replacing parameter β with Σ and by using (6) and
(15) in setting up the global and marginal test statistics based
on the last k − �+ 1 observations. A detailed description of the
algorithm is given in Fig. 4.

E. Fieldwise Change Detection

Before defining the change index for a field, let us initially state
some facts from statistical testing theory. The p-value of a statis-
tical test is the probability of getting a test statistic that is at least
as extreme as the test statistic observed, assuming that the null
hypothesis is actually true (and that the assumptions of the anal-
ysis are met). If the p-value is smaller than the prescribed signif-
icance level α (e.g., α = 0.05), we reject the hypothesis since
the discrepancy between the data and the hypothesis is too large.

Furthermore, if the sampling distribution is continuous, the
distribution of the p-values will be uniform over the interval
[0, 1] if the null hypothesis is true. This implies, of course, that
if the same experiment is replicated many times, if the hypothe-
sis is true, and if we test on a significance level of 5%, then 5%
of the p-values will fall in the interval [0, 0.05], and the remain-
ing p-values will be larger than 0.05. If the null hypothesis is not
true, then the fraction of p-values falling in the interval [0, 0.05]
will be, in general, much larger than 5%. How large it is
depends on the power of the test.

The change index for a field may now be defined by first con-
sidering the empirical distributions of the different p-values ob-
tained (i.e., the P{Q < q} = 1−P{−2ρ lnQ ≤ −2ρ ln q} and

P{R(�)
j <r

(�)
j }=1−P{−2ρ lnR

(�)
j ≤ −2ρ ln r

(�)
j } values) for

each pixel observed over the time span considered and then
by applying the one-pixel definition on suitable measures of
location for those distributions, such as the mean or the median.

IV. RESULTS

In this section, the data set described in Section II-B is used
to illustrate different aspects of the test statistics, and in that
process, we utilize different parts of the time series to provide
illustrative examples. We first show the strength of the omnibus
test statistic Q when applied to three different areas covering
a forest, a rye field, and a grass field using data over five time
points from March to July only. We then proceed to show the
power of the factorization of Q into Rj , this time using data
from six time points from March to August.
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Fig. 4. Flowchart for the change detection method. μ is a generic name for the unknown parameters considered. In the leftmost part, we are investigating whether
there are changes in the interval [t�, tk] using Q-test statistic (6). If the answer is no, the analysis is finished. If the answer is yes, i.e., we have at least one change
in [t�, tk], we go to the column in the middle. Based on observations at t�, . . . , t�+s, we (for s = 1, . . . , k − 1) successively investigate whether there are changes

between time points t�+s−1 and t�+s. This is done by testing hypothesis H�
0,j+1 : μ�+j = μ�+j−1 corresponding to H0,j from (14) using test statistic R

(�)
j

corresponding to Rj from (15). If we do not identify any changes before time point tk−1, we conclude that the change in the interval [t�, tk ] falls in the interval
[tk−1, tk]. If the first change we identify occurs in [t�+r−1, t�+r ], we conclude that there are no changes in the interval [t�, t�+r−1] and that there is a change in
[t�+r−1, t�+r]. We then update � to �+ r and start again in the leftmost column.

A. Change Indexes for Three Different Cases: Forest, Rye,
and Grass

Fig. 5 shows −2ρ ln qobs for full polarimetry (left image)
and P{Q ≥ qobs} (right image). Here, ρ = 0.91282, and ω2 =

0.023577. The left-hand image shows low values for the forest
areas, indicating that no changes have occurred during the five
time points, which is a reasonable result for the coniferous
forest areas.

In order to provide explanations of the results for the test
statistics, the following analysis will be based on results from
areas such as fields with a given crop, where we have in situ
information on ground usage. In this section, we show the
results for three cases with different change patterns over time,
i.e., a forest area with no changes, a rye field where changes

Fig. 5. (a) −2ρ ln qobs for full polarimetry (linearly stretched between 0 and
300). (b) P{Q ≥ qobs}. Both are based on data from March to July. In both
images, low values (dark tones) correspond to no change.
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Fig. 6. Backscatter coefficients for (a) forest, (b) rye, and (c) grass. In the leg-
end, vv denotes 〈SvvS∗

vv〉, hh denotes 〈ShhS
∗
hh〉, and xp denotes 〈ShhS

∗
vv〉.

may be detected by both the omnibus test and the pairwise tests,
and a grass area where changes may be detected only by the
omnibus test and not the pairwise tests.

Backscatter coefficients for these areas are shown in Fig. 6,
and the polarimetric entropy and alpha angle parameters from
the Cloude–Pottier eigenanalysis decomposition [34] are shown
in Fig. 7. The forest area has very constant backscatter through
all the images. The entropy for the forest area is very close
to 1 for all acquisitions, and the alpha angle is approximately
50◦, which indicates, as expected, that the backscatter from the
forest is dominated by volume scattering. It is clearly seen in
these results that no changes occur for the forest area through
all the acquisitions.

For the grass and rye areas, on the other hand, the backscatter
coefficients and the entropy and alpha angle parameters change
through the time series. For the rye field, the entropy and
alpha angle values show for the first four acquisitions that
the backscattering mechanism is the medium entropy surface
scattering type [34], which indicates rough surface scattering

Fig. 7. (a) Entropy and (b) alpha angle for grass, rye, and forest. Entropy has
no unit, and the alpha angle is in degrees.

with canopy penetration effects. Rye is a relatively sparse
crop, which corresponds to the results that the backscatter
is dominated by surface scattering affected by the vegetation
layer. Between April and May, we see an increased influence
of the vegetation layer by the increase in the HH backscatter
[cf. Fig. 6(b)]. For the July acquisition, the vegetation layer
has become very dense that we now see volume scattering,
i.e., increased cross-polarized backscatter [cf. Fig. 6(b)], and
increased entropy [cf. Fig. 7(a)]. Finally, for the August acqui-
sition, the crop is now dried out; thus, less volume scattering
occurs, hence we have decreasing cross-polarized backscatter
and smaller entropy.

The scattering mechanism for the grass area changes from
surface scattering affected by the vegetation layer in March
and April with the entropy and alpha angle values similar to
the rye field (cf. Fig. 7), over volume scattering in May with
some contribution of double-bounce scattering with an alpha
angle of about 60◦ [cf. Fig. 7(b)], to full volume scattering in
June and July with the entropy close to 1 [cf. Fig. 7(a)]. These
changes correspond to the growth and conditions of the grass. In
March, April, and May, the radar wave can penetrate the not-so-
dense grass vegetation, and in May, the vegetation is, however,
sufficiently dense to result in volume scattering from the vege-
tation. At the same time the vegetation is still very sparse such
that some double-bounce scattering can occur, and in the June
and July acquisitions, the vegetation is very dense such that
volume scattering occurs. In August, the grass is cut; hence,
the entropy and the alpha angle now show surface scattering
behavior (cf. Fig. 7), and the VV backscatter and the cross-
polarized backscatter increases and decreases, respectively
[cf. Fig. 6(c)].
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TABLE III
AVERAGE PROBABILITIES OF OBTAINING MORE EXTREME VALUES OF THE TEST STATISTIC FOR THE FOREST, RYE, AND GRASS AREAS FOR

PAIRWISE COMPARISONS AND FOR THE OMNIBUS TEST, WITH THE DATA FROM MARCH TO JULY.
VALUES BELOW 0.05 INDICATE STATISTICALLY SIGNIFICANT CHANGES

TABLE IV
p-VALUES OF THE DIFFERENT TEST STATISTICS FOR THE FOREST AREA. THE PATH LEADING TO THE CHANGE INDEXES IS INDICATED

TABLE V
p-VALUES OF THE DIFFERENT TEST STATISTICS FOR THE RYE AREA. THE PATH LEADING TO THE CHANGE INDEXES IS INDICATED

Table III shows the average probabilities of the test sta-
tistics for the forest, rye, and grass areas using the first five
acquisitions. The values shown are the average values over all
pixels for each area of the observed significance levels αobs

(i.e., the probabilities P{Q < qobs} of getting the values of the
test statistic that are more extreme than the observed values
under the null hypothesis). Table III shows both the results
of performing consecutive pairwise comparisons between the
acquisitions (corresponding to the test statistic in [22]) and
the results of using the omnibus test statistic presented in this
paper [cf. (11)].

It is clear that no change can be detected for the forest area
in the pairwise comparisons and in the omnibus test. For the
rye area, the omnibus test clearly detects change in the time
series. From the pairwise comparisons, it is seen that changes
can be detected at a 5% significance level between the April and
May acquisitions and between the June and July acquisitions,
corresponding to the observed changes in the polarimetric
parameters described above.

The omnibus test for the grass area clearly shows that the
parameters over the five acquisitions have not been constant,
i.e., changes have occurred during this period. The pairwise
comparisons, however, show no changes at a 5% significance
level. Although the polarimetric analysis above describes some
relatively significant changes during the five acquisitions, the
pairwise comparisons do not pick up these changes. This result
shows the power of the omnibus test, where the changes be-

tween the consecutive images are too small to be detected, but
the overall change during all the acquisitions is significant.

B. Points of Change for Three Different Cases: Forest, Rye,
and Grass

In Table IV, we have shown the p-values for the forest area
and the corresponding path leading to the change index for
the forest area computed by looking at the averages described
earlier. In Tables V and VI, we have shown the equivalent
results for a rye field and a grass field, respectively.

In Tables IV–VI, the first number in each column corre-
sponds to tests for the relevant pairwise comparisons, see (6),
where k = 2 in the pairwise case.

For the forest results in Table IV, it is seen in the P{Q < q}
value in the first column that no change has occurred for all
acquisitions (with a significance level of 0.05). This is also seen
from the individualP{R(Mar)

j <r
(Mar)
j } values in the first column.

For the rye results in Table V, the P{Q < q} value for the
first column shows that a change has occurred, and according
to the P{R(Mar)

j < r
(Mar)
j } values in the first column, this

change has occurred between April and May. Now, moving to
the third column in Table V, the P{Q < q} value here shows
that a change has occurred between May and August. The
P{R(May)

j < r
(May)
j } values in the third column show that the

change has occurred between June and July. Finally, moving to
the fifth column, it is seen that a change has occurred between
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TABLE VI
p-VALUES OF THE DIFFERENT TEST STATISTICS FOR THE GRASS AREA. THE PATH LEADING TO THE CHANGE INDEXES IS INDICATED

July and August. We thus conclude that we have the following
distinct populations for rye

1) March = April.
2) May = June.
3) July.
4) August.

Using the same methodology for grass in Table VI, we find
that changes have occurred between April and May and be-
tween July and August. In this case, the distinct populations are

1) March = April.
2) May = June = July.
3) August.

These populations are consistent with the analysis of the po-
larimetric parameters described in Section IV-A. The forest ar-
eas clearly show no change for all six acquisitions. The rye field
has four distinct populations, i.e., March–April, May–June,
July, and August, as shown above. For March and April, surface
scattering is dominating, and in May and June, an increased
contribution from volume scattering is seen. In July, more
volume scattering is seen, and finally, in August, less volume
scattering is seen, which is due to the crop drying out. For
the grass field, three distinct populations are identified, i.e.,
March–April, May–June–July, and August. From the backscat-
ter coefficients in Fig. 6(c) and the entropy and the alpha
angle in Fig. 7, groupings of the parameters according to these
populations are clearly seen, and it also corresponds to the
analysis of the scattering mechanisms given in Section IV-A.

C. Distribution of the p-Values for Forest and Grass

The question naturally arises whether the chosen mean val-
ues are proper descriptors of the underlying distributions.

In Fig. 8, the histograms (presented rowwise) behind the six
p-values that constitute the change index for forest are shown.
For the forested area, no changes are seen, and the means of
the p-values (p̄) for the omnibus test P{Q<q} (p̄ = 0.3494)

and for the marginal tests P{R(�)
j < r

(�)
j } (p̄ = 0.3925, 0.5469,

0.4121, 0.4229, and 0.4116) are fairly representative for the
histograms. We only have minor deviations between the his-
tograms and the theoretical uniform distribution that we would
get, assuming that no changes have occurred. The reason for
these minor deviations is probably twofold: First, there may
very well be changes in small patches, and second, some of
the assumptions behind the sampling theory (independence of
observations and distributional properties) may not be fulfilled.

The grass field shows a slightly more complicated scenario.
The first three histograms in Fig. 9 show the distribution of

Fig. 8. Histograms of the p-values for testing the hypotheses Mar = Apr =
May = Jun = Jul = Aug, i.e., no changes in the entire period, and for test-
ing Apr = Mar, May = Apr(= Mar), Jun = May(= Apr = Mar), Jul = Jun
(= May = Apr = Mar), and Aug = Jul(= Jun = May = Apr = Mar) for
the forest area. These histograms present the distribution of the pixelwise
change indexes for the forest area. The averages are found in Table IV.

Fig. 9. Histograms of the p-values for testing hypotheses Mar = Apr =
May = Jun = Jul = Aug, i.e., no changes in the entire period, and for test-
ing Apr = Mar, May = Apr(= Mar), Jun = May, Jul = Jun(= May), and
Aug = Jul for the grass area. These histograms present the distribution of the
pixelwise change indexes for the grass area. The averages are found in Table VI.
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Fig. 10. Zoom on the grass field reported on in Table VI. The p-value corresponding to each subimage has the same relative position as in Table VI. Moreover, the
path leading to the change indexes is indicated both in this figure and in Table VI. Rows 1–5: −2ρj ln rj,obs for full-polarimetry data stretched linearly between 0
and 100. The first column is for March, April, May, June, July, and August. The second column is for April, May, June, July, and August. The third column is for
May, June, July, and August. The fourth column is for June, July, and August. The fifth column is for July and August. The last row corresponds to −2ρ ln qobs
(the first column is stretched between 0 and 500; second column, between 0 and 400; third column, between 0 and 300; fourth column, between 0 and 200; and
the last column, between 0 and 100). Dark areas correspond to no change.

the p-values for testing the hypotheses, i.e., total homogeneity
(rejected, p̄ = 0.0000), Apr = Mar (accepted, p̄ = 0.2808), and
May = Apr(= Mar) (rejected, p̄ = 0.0112). Having a change
between May and April, we perform an omnibus test on
the remaining months, i.e., we test May = Jun = Jul = Aug.
Here, p̄ = 0.0000 (histogram not shown), and we reject and
test Jun = May (accept, p̄ = 0.1244), Jul = Jun(= May) (ac-
cept, p̄ = 0.3879), and Aug = Jul(= Jun = May) (reject, p̄ =
0.0000). For the three p-values that are smaller than 0.05, it is
seen in the histograms that almost all values (actually between
97.8% and 100%) lie in the interval [0, 0.05]; thus, a small mean
p-value is consistent with all pixels in the area showing changes.
For the values above 0.05, it follows that a substantial fraction
of the observed p-values is larger than 0.05, i.e., the majority
of the corresponding pixels show no changes. However, e.g., in
the case of June = May (second row, second column), we have

an overrepresentation of low p-values when comparing with the
uniform distribution. This might be due to changes in smaller
patches, which are possibly a sign of local delays of the changes
we saw between May and April.

Thus, in both cases, there is a good agreement between the
conclusion based on the averages and what the distribution of
the p-values indicates for the area considered.

D. Imaging the Decomposed Test Statistics

To give a visual impression of the results, Figs. 10 and 11
show zoom images of the grass field considered in Table VI.
Fig. 10 shows images of the values of the different decom-
posed test statistics for the grass field. The first five rows
show −2ρj ln rj,obs for full-polarimetry data linearly stretched
between 0 and 100. The first column is for March, April, May,
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Fig. 11. Zoom on the grass field reported on in Table VI. The p-value corresponding to each subimage has the same relative position as in Table VI. Moreover,
the path leading to the change indexes is indicated both in this figure and in Table VI. The p-values, i.e., the no-change probabilities, are linearly stretched between
0 and 1. Dark areas correspond to change.

June, July, and August; the second column is for April, May,
June, July, and August; the third column is for May, June, July,
and August; the fourth column is for June, July, and August; and
the fifth column is for July and August. Row six shows the cor-
responding −2ρ ln qobs. The first images in all columns corre-
spond to −2ρ ln qobs for the pairwise differences, i.e., the image
in the first row, first column is −2ρ ln qobs in a k = 2 analysis
for the pair March and April; the image in the second row, first
column is −2ρ ln qobs in a k = 2 analysis for the pair April and
May; the image in the third row, second column is −2ρ ln qobs
in a k = 2 analysis for the pair May and June; the image in the
fourth row, third column is −2ρ ln qobs in a k = 2 analysis for
the pair June and July; and the image in the fifth row, fourth
column is −2ρ ln qobs in a k = 2 analysis for the pair July and
August. Remember that, if a change is detected at some point,
the prerequisite for tests of later changes is no longer valid.

Fig. 11 shows images of the p-values, i.e., the no-change
probabilities corresponding to the test statistics in Fig. 10, for
the grass field. The values in the grass field in the center of
the zoom images clearly show the same trend indicated for the

average values in Table VI. The arrows in both figures show the
same change patterns, as shown in Table VI and discussed in
Section IV-A.

V. CONCLUSION

A test statistic for the equality of several covariance matrices
following the complex Wishart distribution with an associated
p-value has been presented. The test statistics are a direct
generalization of previously defined test statistics for pairwise
comparison [22]. Using data from the airborne EMISAR sys-
tem at L-band, it is clearly shown how this test statistic is able
to detect changes in a series of images, where the pairwise
comparison fails to detect the changes. After having detected
that at least one change has occurred in a series of polarimet-
ric SAR data, we have shown how one may decompose the
likelihood ratio test statistic and thus obtain a procedure for
determining the time points of change. Using data from the
airborne Danish EMISAR system at L-band clearly shows that
this procedure is able to identify the time points of change.
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The procedure may be extended to cope with other modes of
SAR operations, such as the block-diagonal case, including
azimuthally symmetric and diagonal-only data (see [22] for the
situation with two time points).

APPENDIX

This Appendix deals with the details of the likelihood ra-
tio test statistics for comparing k Gamma and k complex
Wishart distributions. Section A describes the Gamma case.
The likelihood ratio test statistic is presented in Theorem 1, and
Theorem 2 gives the expected value of Qh that is used in
providing the approximation formula in Theorem 3 using Box’s
method, [22], [35]. The lemma is a well known result on the in-
dependence of the sum and ratio of certain Gamma-distributed
random variables. This result is used in the proof of the (other)
main result, i.e., the decomposition of the likelihood ratio test
into the product of independent (under H0) random variables
Rj . Rj provide tests for when a change actually occurs. Their
distributions may be written as a function of independent
Beta-distributed random variables, and consequently, the dis-
tribution of Q may be written as a product of such variables
(Theorem 5), see [22] and [35]. In Theorem 6, it is shown how
we may use the F -distribution in testing instead of Rj . This
enables two-sided testing. The initial theorems are well known,
and the later theorems are not (readily) available in literature.

Section B addresses the same general problem as Section A
but considers complex-Wishart-distributed random variables.
Theorems 8–10 give the main results on the likelihood ratio test
statistic, its expected values, and the large sample distribution.
The second main result is the decomposition of Q into indepen-
dent components Rj presented in Theorems 13 and 14, and the
approximative distribution given in Theorem 15. We may apply
the same philosophy with respect to mapping change patterns,
as was done in Section A. The results in the corollary in
Section B are similar to the result in the corollary in Section A
and may be used in finding other approximations to the
distribution of Q.

A. Comparing k Gamma-Distributed Random Variables

Theorem 1: We consider the independent Gamma-distributed
random variables

Xi ∼ G(n, βi), i = 1, . . . , k (27)

where n is a shape parameter, and βi is a scale parameter;
E{Xi} = nβi. We want to test the hypothesis H0 against the
alternative H1, where

H0 : β1 = · · · = βk H1 : ∃i, j : βi �= βj . (28)

Then, the likelihood ratio test statistic for testing H0 against the
alternative H1 is

Q =

{
kk
∏k

i=1 Xi

Xk

}n

. (29)

Proof: Obtained by direct calculations. Q.E.D.
Remarks: In a one-sided analysis of variance (ANOVA, e.g.,

see [36]) with the same number of observations f + 1 in each

group, the unbiased estimators s2i of the within-group variances
σ2
i follow chi-squared distributions with f degrees of free-

dom, i.e.,

s2i ∼ σ2
i χ

2(f)/f, i = 1, . . . , k (30)

i.e.,

fs2i ∼ σ2
i χ

2(f) = G

(
f

2
, 2σ2

i

)
. (31)

It now follows that the likelihood ratio test given above is
equivalent to what is denoted as Bartlett’s test for homogeneity
of variances in an ANOVA situation. �

There is no simple closed form for the distribution of Q in
Theorem 1, but we may find large sample approximations to
the distribution. First, we state the following.

Theorem 2: We consider the likelihood ratio test statistic Q
from Theorem 1. Then, we have (h = 1, 2, 3, . . .)

E{Qh} = kknh
(
Γ (n(h+ 1))

Γ(n)

)k
Γ(kn)

Γ (kn(h+ 1))
. (32)

Proof: Obtained by direct calculations. Q.E.D.
In most cases, it will be sufficient to approximate the distribu-

tion of −2 lnQ with a χ2(f)-distribution (underH0). However,
we may use Box’s approximation, e.g., see [22] and [35], to
obtain the large sample distribution of − lnQ. We have the
following.

Theorem 3: Let the situation be as in Theorem 1. Then, we
define

f = k − 1 (33)

ρ =1− k + 1

6kn
(34)

ω2 = − 1

4
(k − 1)

(
1− 1

ρ

)2

(35)

and have

P{−2ρ lnQ ≤ z} � P
{
χ2(f) ≤ z

}
+ ω2

[
P
{
χ2(f + 4) ≤ z

}
− P

{
χ2(f) ≤ z

}]
. (36)

Proof: Follows by straightforward calculations from
Box’s theorem by letting:

ξ� = 0 ηj = 0 a = k b = 1 x� = n yj = nk. (37)

Q.E.D.
We now want to write the likelihood ratio test statistic Q as a

product of stochastically independent random variables (if H0

is true). We start by introducing the following.
Lemma: Let X and Y be independent and Gamma-

distributed G(n, β) and G(m,β), respectively. Then

S = X + Y U =
X

X + Y
(38)

are independent random variables, S follows a G(n+m,β)-
distribution, and U follows a Beta-distribution, i.e., Be(n,m).

Proof: Straightforward.
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We now return to the Gamma-distributed random variables
given in (27). We then have the following.

Theorem 4: Let β1 = · · · = βj−1. Then, the likelihood ratio
test statistic for testing the hypothesis

H0,j : βj = β1 against H1,j : βj �= β1 (39)

is

Rj =
jjn

(j − 1)(j−1)n

(X1 + · · ·+Xj−1)
(j−1)nXn

j

(X1 + · · ·+Xj)jn

=
jjn

(j − 1)(j−1)n
U

(j−1)n
j (1−Uj)

n, j=2, . . . , k (40)

where Uj = Sj−1/Sj for Sj = X1 + · · ·+Xj . If all β are
equal, then R2, . . . , Rk will be independent random variables.

Proof: The result on Rj being the likelihood ratio test
statistic immediately follows from Theorem 1. According to
Theorem 2,Sj andUj are independent. Therefore,Uj andSj+1=
Sj +Xj+1 will be independent; consequently, Uj and Uj+1 =
Sj/Sj+1 will be independent, and the theorem follows. Q.E.D.

Theorem 5: Let β1 = · · · = βk. Then, we have

Q = R2 . . . Rk = kkn
k∏

j=2

U
(j−1)n
j (1− Uj)

n (41)

where the Uj are independent and Beta distributed

Uj ∼ Be ((j − 1)n, n) . (42)

Proof: Follows by direct computation and from
Theorem 2. Q.E.D.

Theorem 6: The critical region for testing H0,j against H1,j

is of the following form:

Rj ≤ c ⇔ Xj

Sj−1
≤ c1 or

Xj

Sj−1
≥ c2 (43)

where c1 and c2 may be determined by realizing that

(j − 1)
Xj

Sj−1
∼ F (2n, 2(j − 1)n) (44)

if H0,j is true, and where F stands for Fisher’s F -distribution.
Proof: Straightforward.

B. Comparing k Complex-Wishart-Distributed
Random Variables

We start by stating three basic theorems (7–9) on the likeli-
hood ratio test statistic and its distribution.

Theorem 7: We consider the following independent random
variables:

Xi ∼ WC(p, n,Σi), i = 1, . . . , k. (45)

We wish to test the hypothesis

H0 : Σ1 = · · · = Σk against H1 : ∃i, j : Σi �= Σj . (46)

Then, the likelihood ratio test statistic is

Q = kpnk
∏k

i=1 |Xi|n
|X |nk

=

{
kpk

∏k
i=1 |Xi|
|X|k

}n

. (47)

where X = X1 + · · ·+Xk.
Proof: Obtained by direct calculations. Q.E.D.

Theorem 8: For the criterion Q, we have

E{Qh} = kpknh
∏p

j=1 Γ(nk − j + 1)∏p
j=1 Γ (nk(1 + h)− j + 1)

×
{∏p

j=1 Γ (n(1 + h)− j + 1)∏p
j=1 Γ(n− j + 1)

}k

. (48)

Using the multivariate Gamma function of the complex kind
(e.g., see [37]), i.e.,

Γp(n) = πp(p−1)/2

p∏
j=1

Γ(n− j + 1) (49)

we get

E{Qh} = kpknh
Γp(nk)

Γp (nk(1 + h))

{
Γp (n(1 + h))

Γp(n)

}k

. (50)

Proof: We consider independent p-dimensional random
variables

Yij ∼ NC(μi,Σi), i=1, . . . , k; j=1, . . . , n+1. (51)

For i = 1, . . . , k, we introduce

Xi =

n+1∑
j=1

(Yij − avej(Yij)) (Yij − avej(Yij))
H (52)

(superscript H denotes the complex conjugate transpose, and
avej means the average over index j) and have the maximum
likelihood estimators

Σ̂i =
1

n+ 1
Xi (53)

with

Xi ∼ WC(p, n,Σi). (54)

Setting X = X1 + · · ·+Xk, the test statistic for testing the
equality of the Σi becomes

Λ5 =

⎧⎪⎨
⎪⎩kpk

∏k
i=1

∣∣∣ 1
n+1Xi

∣∣∣∣∣∣ 1
n+1X

∣∣∣k
⎫⎪⎬
⎪⎭

n+1

=

{
kpk

∏k
i=1 |Xi|
|X|k

}n+1

(55)

(e.g., see [38]). Comparing this with the likelihood ratio test
criterion Q in Theorem 4, we see that

Q = Λ
n

n+1

5 . (56)
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E{Qh} = kpknh
Γp(nk)

Γp(n)k
Γp (n(1 + h))k

Γp (nk(1 + h))

= kpknh
Γp(nk)

Γp(n)k

{∏p
j=1 Γ (n(1 + h)− j + 1)

}
· · ·

{∏p
j=1 Γ (n(1 + h)− j + 1)

}
∏p

j=1 Γ (nk(1 + h)− j + 1)
(63)

Again, following the work in [38], we have:

E{Λt
5} = kpk(n+1)t

p∏
j=1

Γ(nk + 1− j)

Γ (nk + tj + (n+ 1)kt)

×
k∏

j=1

Γ (n+ 1− j + (n+ 1)t)

Γ(n+ 1− j)

= kpk(n+1)t Γp(nk)

Γp (nk + (n+ 1)kt)

×
{
Γp (n+ (n+ 1)t)

Γp(n)

}k

. (57)

Therefore

E{Qh} =E
{
Λ
h n

n+1

5

}

= kpknh
Γp(nk)

Γp(nk + nkh)

{
Γp(n+ nh)

Γp(n)

}k

. (58)

and the theorem follows. Q.E.D.
Theorem 9: For Q as in Theorems 4 and 5, we define

f =(k − 1)p2 (59)

ρ =1− (2p2 − 1)

6(k − 1)p

(
k

n
− 1

nk

)
(60)

ω2 =
p2(p2 − 1)

24ρ2

(
k

n2
− 1

(nk)2

)
− p2(k − 1)

4

(
1− 1

ρ

)2

(61)

and have

P{−2ρ lnQ ≤ z} � P
{
χ2(f) ≤ z

}
+ ω2

[
P
{
χ2(f + 4) ≤ z

}
− P

{
χ2(f) ≤ z

}]
. (62)

Proof: We rearrange the terms in Q and obtain (63),
shown at the top of the page. Letting

a = kp, b = p (64)

x� =n, � = 1, . . . , kp (65)

yj =nk, j = 1, . . . , p (66)

K =
Γp(nk)

Γp(n)k
(67)

we have {∏p
j=1 y

yj

j

}
{∏kp

�=1 x
x�

�

} =
(nk)pnk

nnkp
= knkp. (68)

We define

ηj = −j + 1, j = 1, . . . , p (69)

and we let the ξ� be k versions of those numbers, i.e.,

ξ� = − �+ 1, � = 1, . . . , p (70)
...

ξ� = − �+(k−1)p+1, �=(k−1)p+1, . . . , kp. (71)

It is now obvious that we may use the result of Box [35], e.g., in
the form given in [22], in approximating the distribution of Q.
We have

f = −2

⎧⎨
⎩
∑
�

ξ� −
∑
j

ηj −
1

2
(a− b)

⎫⎬
⎭

= −2

⎧⎨
⎩k

p∑
�=1

(−�+ 1)−
p∑

j=1

(−j + 1)− 1

2
(kp− p)

⎫⎬
⎭

= −2

{
−1

2
(k − 1)p(p− 1)− 1

2
(k − 1)p

}

=(k − 1)p2. (72)

Furthermore, for β� = (1 − ρ)n and εj = (1 − ρ)nh, we have

ω1 =
1

2

{
p∑

�=1

k

nρ
B2 ((1− ρ)n− �+ 1)

−
p∑

j=1

1

ρnk
B2 ((1− ρ)nk − j + 1)

}

=
1

2ρ

{
k

p∑
�=1

1

n
B2 ((1− ρ)n− �+ 1)

−
p∑

j=1

1

nk
B2 ((1− ρ)nk − j + 1)

}
. (73)

Now, for s = n or s = nk, we have (straightforward
calculations)

1

s
B2 ((1 − ρ)s− j + 1) = (1− ρ)2s

− 2(1− ρ)B1(j) +
1

s
B2(j). (74)
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The sums of the Bernoulli polynomials are
p∑

j=1

B1(j) =
1

2
p2

p∑
j=1

B2(j) =
1

6
p(2p2 − 1)

p∑
j=1

B3(j) =
1

4
p2(p2 − 1). (75)

Therefore

2ρω1 = k

{
p(1− ρ)2n− 2(1− ρ)

1

2
p2 +

1

6n
p(2p2 − 1)

}

−
{
p(1− ρ)2nk − 2(1− ρ)

1

2
p2 +

1

6nk
p(2p2 − 1)

}

= −(k − 1)(1− ρ)p2 +
1

6
p(2p2 − 1)

(
k

n
− 1

nk

)
.

(76)

If we put ω1 = 0, we obtain

(k − 1)(1− ρ)p2 =
1

6
p(2p2 − 1)

(
k

n
− 1

nk

)
(77)

or

(1− ρ) =
1

6(k − 1)p
(2p2 − 1)

(
k

n
− 1

nk

)
. (78)

For this value of ρ, we want to determine ω2. We have

− 6ρ2ω2 = k

p∑
�=1

1

n2
B3 ((1− ρ)n− �+ 1)

−
p∑

j=1

1

(nk)2
B3 ((1 − ρ)nk − j + 1) . (79)

Since

1

s2
B3 ((1− ρ)s− j + 1) = s(1 − ρ)3

− 3(1− ρ)2B1(j) +
1

s
(1− ρ)3B2(j)−

1

s2
B3(j) (80)

we get

−6ρ2ω2=
3

2
(k−1)p2(1−ρ)2− 1

4
p2(p2−1)

(
k

n2
− 1

(nk)2

)
(81)

or

ω2=−(k−1)
p2

4

(
1− 1

ρ

)2

+
1

24ρ2
p2(p2−1)

(
k

n2
− 1

(nk)2

)
(82)

and the theorem follows. Q.E.D.

Coelho et al. [38] give other approximations to the distribu-
tion of expressions such as Q.

In order to decompose the likelihood ratio criterion into
independent components showing where possible changes may
take place, we need some auxiliary results on the distributions
of complex matrices.

Lemma: Let the independent random variables X1 and X2

be complex Wishart distributed

Xi ∼ WC(p, ni,Σ), i = 1, 2. (83)

Let

C = (X1 +X2)
−1/2 (84)

be a matrix so that

C(X1 +X2)C
H = I. (85)

Then

X1 +X2 (86)

and

CX2C
H = (X1 +X2)

−1/2X2

{
(X1 +X2)

−1/2
}H

(87)

are independent.
Proof: First, we consider random variables U i, i = 1, 2

that are Wishart distributed with Σ = I . In this case, the joint
density is

f(u1,u2) = K exp (−trace(u1 + u2)) |u1|n1−p|u2|n2−p.
(88)

In this case, the theorem follows directly from the work in [39].
The general case now follows by considering the transformation

Xi = Σ1/2U i(Σ
1/2)H . (89)

We then obtain

I =C(X1 +X2)C
H (90)

=CΣ1/2(U1 +U2)(CΣ1/2)H (91)

CX2C
H =CΣ1/2U2(CΣ1/2)H . (92)

Thus, the previous results apply to U1,U2, and the theorem
follows. Q.E.D.

Returning to the likelihood ratio statistic Q, we can now
prove the following.

Theorem 10: Given that

Σ1 = Σ2 = · · · = Σj−1 (93)

then the likelihood ratio test statistic Rj for testing the
hypothesis

H0 : Σj = Σj−1 against H1 : Σj �= Σj−1 (94)

is

Rj =
jjpn

(j − 1)(j−1)pn

|X1 + · · ·+Xj−1|(j−1)n|Xj |n
|X1 + · · ·+Xj |jn

. (95)
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Furthermore

Q =

k∏
j=2

Rj . (96)

Proof: Straightforward. Q.E.D.
Theorem 11: If the hypothesis

H0 : Σ1 = · · · = Σk (97)

is true andn≥p, then the quantitiesR2, . . . , Rk are independent.
Proof: We find Cj so that

Cj(X1 + · · ·+Xj)C
H
j = I (98)

and put

Ej = Cj(X1 + · · ·+Xj−1)C
H
j (99)

getting

I −Ej = CjXjC
H
j . (100)

From the aforementioned lemma, it follows that Ej is indepen-
dent of X1 + · · ·+Xj and is therefore also independent of
X1 + · · ·+Xj +Xj+1. This implies that

Ej and Cj+1(X1 + · · ·+Xj)C
H
j+1 = Ej+1 (101)

are independent. Arguing along those lines gives the theorem.
Q.E.D.

Corollary: The quantities Rj and Q may be written as

Rj =
jjpn

(j − 1)(j−1)pn
|Ej |(j−1)n|I −Ej |n (102)

Q = kkpn
k∏

j=2

|Ej |(j−1)n|I −Ej |n. (103)

Proof: Straightforward. Q.E.D.
We conclude this section by stating a theorem on the dis-

tribution of the components Rj in the decomposition of the
likelihood ratio criterion.

Theorem 12: Let the situation be as in Theorem 10. Letting

f = p2 (104)

ρj =1− 2p2 − 1

6pn

(
1 +

1

j(j − 1)

)
(105)

ω2j = − p2

4

(
1− 1

ρj

)2

+
1

24n2
p2(p2 − 1)

×
(
1 +

2j − 1

j2(j − 1)2

)
1

ρ2j
(106)

then

P{−2ρj lnRj ≤ z} � P
{
χ2(f) ≤ z

}
+ ω2j

[
P
{
χ2(f + 4) ≤ z

}
− P

{
χ2(f) ≤ z

}]
. (107)

Proof: Follows from the two-sample test for the equality
of complex Wishart matrices. Q.E.D.

Coelho et al. [38] give other approximations to the distribu-
tion of the expression such as Rj .
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