
M.Sc. Thesis
Master of Science in Engineering

Regime-Based Asset Allocation
Do Profitable Strategies Exist?

Peter Nystrup

Kongens Lyngby
July 2014



Technical University of Denmark
Department of Applied Mathematics and Computer Science
Matematiktorvet, Building 303B
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk



Short Contents

Short Contents i

Abstract iii

Resumé v

Preface vii

Acknowledgements ix

Acronyms xi

Contents xiii

1 Introduction 1

2 Index Data 11

3 Markov-Switching Mixtures 27

4 Strategic Asset Allocation 61

5 Regime-Based Asset Allocation 71

6 Summary and Conclusion 83

References 87

A R-code 93

B Parameter Estimates 103

C Additional Figures and Tables 107



ii



Abstract

Regime shifts present a big challenge to traditional strategic asset allocation,
demanding a more adaptive approach. In the presence of time-varying invest-
ment opportunities, portfolio weights should be adjusted as new information
arrives. Regime-switching models can match the tendency of financial markets
to change their behavior abruptly and the phenomenon that the new behavior
often persists for several periods after a change. They are well suited to capture
the stylized behavior of many financial series including skewness, leptokurtosis,
volatility persistence, and time-varying correlations.
This thesis builds on this empirical evidence to develop a quantitative framework
for regime-based asset allocation. It investigates whether regime-based investing
can effectively respond to changes in financial regimes at the portfolio level
in an effort to provide better long-term results when compared to more static
approaches. The thesis extends previous work by considering both discrete-time
and continuous-time models, models with different numbers of states, different
univariate and multivariate state-dependent distributions, and different sojourn
time distributions. Out-of-sample success depends on developing a way to model
the non-linear and non-stationary behavior of asset returns.
Dynamic asset allocation strategies are shown to add value over strategies based
on rebalancing to static weights with rebalancing in itself adding value compared
to buy-and-hold strategies in an asset universe consisting of a global stock index,
a global government bond index, and a commodity index. The tested strate-
gies based on an adaptively estimated two-state Gaussian hidden Markov model
outperform a rebalancing strategy out of sample after accounting for transac-
tion costs, assuming no knowledge of future returns, and with a realistic delay
between the identification of a regime change and the portfolio adjustment.
Keywords: Regime switching; Markov-switching mixtures; Non-linear Time
Series Modeling; Daily Returns; Adaptivity; Leptokurtic distributions; Volatility
clustering; Dynamic asset allocation.
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Resumé

Regimeskift udgør en stor udfordring for traditionel strategisk aktivallokering,
da de sætter krav til en mere adaptiv tilgang. Ved tilstedeværelsen af tidsvari-
erende investeringsmuligheder bør porteføljevægte opdateres, efterhånden som
ny information kommer til. Regimeskiftsmodeller kan matche finansielle marked-
ers tendens til pludseligt at skifte opførsel og det fænomen, at den nye opførsel
ofte varer ved længe efter et skift. De er velegnede til at fange den stiliserede
opførsel, der er kendetegnende for mange finansielle serier, herunder skævhed,
leptokurtosis, volatilitetsklumpning og tidsvarierende korrelationer.
Formålet med denne afhandling er at udvikle en kvantitativ ramme for regime-
baseret aktivallokering. Det undersøges, hvorvidt regimebaseret investering kan
reagere på effektiv vis på ændringer i finansielle regimer på porteføljeniveau med
det formål at skabe bedre langsigtede resultater sammenlignet med mere statiske
tilgange. Afhandlingen udvider tidligere studier ved at inkludere modeller i både
diskret og kontinuert tid, modeller med forskellige antal regimer, forskellige uni-
variate og multivariate regimebetingede fordelinger og forskellige opholdstids-
fordelinger. Out-of-sample succes afhænger af udviklingen af en model, der
beskriver finansielle afkasts ikke-lineære og ikke-stationære opførsel.
Det bliver vist, at dynamiske aktivallokeringsstrategier tilfører værdi sammen-
lignet med strategier baseret på rebalancering til statiske vægte. Rebalancering i
sig selv tilfører værdi sammenlignet med køb-og-hold strategier i et aktivunivers,
der består af et globalt aktieindeks, et globalt statsobligationsindeks og et rå-
vareindeks. De testede strategier, baseret på en adaptivt estimeret gaussisk
skjult Markov model med to regimer, outperformer en rebalanceringsstrategi
out-of-sample efter handelsomkostninger, uden kendskab til fremtidige afkast
og med en realistisk forsinkelse mellem identifikationen af et regimeskift og im-
plementeringen af portføljetilpasningen.
Nøgleord: Regimeskift; Markov-skiftende miksturer; Ikke-lineær tidsrække-
modellering; Daglige afkst; Adaptivitet; Leptokurtiske fordelinger; Volatilitets-
klumpning; Dynamisk aktivallokering.



vi



Preface

This thesis was prepared at the Department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark (DTU) in partial fulfill-
ment of the requirements for acquiring the M.Sc. degree in engineering with
honors.
The thesis deals with different aspects of mathematical modeling of the stylized
behavior of financial returns using regime-switching models with the aim of
developing a quantitative framework for regime-based asset allocation. The
developed strategies are tested out of sample under realistic assumptions to
ensure that the conclusions have practical relevance.
The process that led to this thesis began in the spring of 2013 when I attended
a class on hidden Markov models at DTU. In the summer of 2013, I began a
special course on regime modeling of financial data with Henrik Madsen at DTU.
Erik Lindström later joined the special course that led to the preparation of an
article (Nystrup et al. 2014). I got the idea for the thesis when I read the article
on Markov-switching asset allocation by Bulla et al. (2011). In continuation of
the work on the article there was an initial focus on the estimation of continuous-
time models, but the strategies ended up being based on adaptively estimated
discrete-time hidden Markov models.

Copenhagen, July 2014

Peter Nystrup
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CHAPTER 1
Introduction

The behavior of financial markets changes abruptly. While some changes may
be transitory, the changed behavior often persists for many periods. The mean,
volatility, and correlation patterns in stock returns, for example, changed dra-
matically at the start of, and continued through the global financial crisis (GFC)
of 2007–2008. Similar regime changes, some of which can be recurring (recessions
versus expansions) and some of which can be permanent (structural breaks), are
prevalent across a wide range of financial markets and in the behavior of many
macro variables (Ang and Timmermann 2011).
The observed regimes in financial markets are closely related to the phases of
the business cycle (see e.g. Campbell 1998, Cochrane 2005). In the long run,
the gross domestic product (GDP) tends to follow a trend path (growth). In
the short to medium term, the GDP fluctuates around the long-term trend.
The recurring pattern of recession and expansion is called the business cycle,
although the length and severity of the cycles are irregular. The duration of
a full cycle can be anything from one year to ten or twelve years (Burns and
Mitchell 1946).
Regime changes present a big challenge to traditional strategic asset allocation
(SAA), demanding a more adaptive approach. Moreover, the time-varying be-
havior of risk premiums, volatilities, and correlations have important implica-
tions for risk management. Understanding the correlations and their evolution
through time is a prerequisite to evaluate the undiversifiable risk associated with
the financial cycle.
This thesis examines whether regime-based asset allocation can effectively re-
spond to financial regimes in an effort to provide better long-term results when
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compared to static approaches. The first chapter introduces the concept of
dynamic asset allocation (DAA), the importance of the time horizon, the use
of Markov-switching mixture models to capture the time-varying behavior of
financial returns, and their applicability to regime-based asset allocation.

1.1 Dynamic Asset Allocation
Asset allocation is the decision of how to divide a portfolio among the different
major asset classes. It is the most important determinant of portfolio perfor-
mance (see e.g. Brinson et al. 1986, Ibbotson and Kaplan 2000). Although
asset class behavior can vary significantly over shifting economic scenarios—no
single asset class dominates under all economic conditions—traditional SAA ap-
proaches make no effort to adapt to such shifts. Traditional approaches instead
seek to develop static “all-weather” portfolios that optimize efficiency across a
range of economic scenarios (Sheikh and Sun 2012). If economic conditions are
persistent and strongly linked to asset class performance, then a DAA strategy
should add value over static weights. The purpose of a dynamic strategy is
to take advantage of positive economic regimes, as well as withstand adverse
economic regimes and reduce potential drawdowns.
Regime-based investing is distinct from tactical asset allocation (TAA). While
the latter is shorter term, higher frequency (i.e., weekly or monthly), and driven
primarily by valuation considerations, regime-based investing targets a longer
time horizon (i.e., a year or more) and is driven by changing economic fun-
damentals. A regime-based approach has the flexibility to adapt to changing
economic conditions within a benchmark-based investment policy which can in-
volve more than one rebalancing within a year. It straddles a middle ground
between strategic and tactical (Sheikh and Sun 2012).
Strategic asset allocation is long-term in nature and based on long-term views of
asset class performance although it is not unusual to update the forecasts every
year and, hence, rebalance annually (Dahlquist and Harvey 2001). Strategic
investors, such as pension plans, that invest with a long time horizon typically
face constraints on the size of possible deviations from their benchmark alloca-
tion. Although the possible tilts might be small, strategic investors can still
benefit from reacting to significant regime shifts (see e.g. Kritzman et al. 2012).
DAA is more restricted than SAA in terms of the size of the investment oppor-
tunity set as it is difficult to invest dynamically in direct real estate, forestry,
private equity etc. Investments in illiquid asset classes require a long time hori-
zon. This is worth mentioning given that unlisted asset classes have gradually
become a larger part of professional investors’ portfolios in recent years (Ed-
wards and Manjrekar 2014).
The goal of DAA is not to predict the next regime shift or future market move-
ments. The intention is to identify as fast as possible with as high credibility as
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possible when a regime shift has occurred and then benefit from the persistence
in equilibrium returns and volatilities. As a market participant, it is difficult to
see through the daily noise and short-term volatility, therefore a mathematical
model that captures the underlying structures in the market data can be useful.

A dynamic strategy can be profitable even if markets are efficient. A capital
market is said to be efficient if prices in the market fully reflect available in-
formation. When this condition is satisfied, market participants cannot earn a
riskless profit on the basis of available information, i.e. there are no arbitrage
opportunities (Fama 1970). The term “fully reflect” implies the existence of an
equilibrium model which might be stated either in terms of equilibrium prices
or equilibrium expected returns. Trends can be present in efficient markets if
the equilibrium expected return changes over time.

The existence of a business cycle where the expected rate of return on capital
changes over time is one example. The business cycle could result from any set
of factors, but as long as the business cycle is not a deterministic phenomenon,
asset prices need not follow a random walk with a constant or deterministic trend
(Levich 2001). In some periods, no significant events will take place to cause
prices to change, thus returns will essentially reflect noise. In other periods,
several important events will influence returns. A focus on identifying rather
than predicting regime changes is indeed consistent with a belief in efficient
markets.

1.2 Time Horizon

It is a common belief that time diversification reduces risk and therefore long-
term investors should have a higher proportion of risky assets in their portfolio
than short-term investors (see e.g. Siegel 2007, Guidolin and Timmermann 2007).
With a regime-based approach it does not matter whether the horizon is one,
two, or ten years because the aim is to rebalance whenever a regime shift has
occurred. The horizon, however, is assumed to be long enough that it makes
sense to defray the cost of rebalancing. The portfolio is optimized conditional on
being in the current regime and asset returns are assumed to follow a random
walk within each regime. The proportion of risky asset will depend on the
current regime and the level of risk aversion, but not the time horizon.

Oftentimes the frequency of the analyzed data is chosen to reflect the length
of the investment horizon, meaning monthly or annual data for long-term in-
vestment decisions. Bulla et al. (2011) were among the first to consider regime-
switching asset allocation based on daily returns. By using daily rather than
monthly data the impact of wrong regime forecasts reduces from an entire month
to a single trading day and the delay in identifying and addressing regime shifts
is shorter. With the shorter response time it is feasible to wait until the same
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regime has been decoded for a number of days before changing the allocation in
order to minimize the costs of trading on spurious signals.
Bulla et al. (2011) further argued that the use of daily data increases the amount
of data available for markets with a short history, but for many financial indices
monthly data is available with a much longer history than daily data. The
optimal length of the data period is debatable, but it should span at least the
time needed for a financial cycle to unfold. It would, presumably, be favorable if
the period included more than one cycle. On the other hand, the longer the data
horizon the more questionable it is whether stationarity of the data-generating
process can be assumed.
The use of daily data presents some challenges. Daily returns contain a lot of
noise and extreme observations that are evened out on a monthly basis. For ex-
ample, if returns are conditionally normal, conditional on a variance parameter
which is itself random, then the Central Limit Theorem applies to the result-
ing heavy-tailed unconditional distribution as it has a finite variance and finite
higher order moments. Consequently, long-horizon returns will tend to be closer
to the normal distribution than short-horizon returns (Campbell et al. 1997). It
complicates the modeling significantly and is likely part of the reason why it is
more popular to consider monthly data. In addition, the use of daily data makes
the link to macroeconomic data more difficult. In spite of the complications, the
arguments for considering daily rather than monthly data are compelling.

1.3 Stylized Facts and Markov-Switching Mixtures
The normal distribution is a poor fit to most financial returns. Mixtures of
normal distributions provide a better fit as they are able to reproduce both the
skewness and leptokurtosis often observed (see e.g. Cont 2001). An extension to
a Markov switching mixture model, also referred to as a hidden Markov model
(HMM), is often used to capture both the distributional and temporal properties
of financial returns. The class of Markov-switching models was introduced to
financial econometrics by Hamilton (1989, 1990). In an HMM, the distribution
that generates an observation depends on the state of an underlying and unob-
served Markov chain. Although the states are identified through a statistical
filtering procedure, they can often be interpreted in terms of economic cycles
(see e.g. Ahlgren and Dahl 2010).
Rydén et al. (1998) showed the ability of an HMM to reproduce most of the
stylized facts of daily return series introduced by Granger and Ding (1995a,b)
using daily returns of the S&P 500 stock index from 1928 to 1991. The one
stylized fact that they could not reproduce was the persistence of the squared
daily returns (i.e., volatility).
According to Bulla and Bulla (2006), the lack of flexibility of an HMM to model
this temporal higher order dependence can be explained by the implicit assump-
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tion of geometrically distributed sojourn times in the hidden states. Silvestrov
and Stenberg (2004), among others, argued that the memoryless property of the
geometric distribution is inadequate from an empirical perspective, although it
is consistent with the no-arbitrage principle.
Bulla and Bulla (2006) considered hidden semi-Markov models (HSMMs) in
which the sojourn time distribution is modeled explicitly for each hidden state
so that the Markov property is transferred to the imbedded first-order Markov
chain. They showed that HSMMs with negative binomial sojourn time distribu-
tions reproduced most of the stylized facts comparably well, and often better,
than the HMM for eighteen series of daily stock market sector returns from
1987 to 2005. Specifically, they found HSMMs to reproduce the long-memory
property of squared daily returns much better than the HMM. They did not,
however, consider the complicated problem of selecting the most appropriate
sojourn time distributions and they only considered models with two hidden
states.
Bulla (2011) later showed that HMMs with t-distributed components reproduce
most of the stylized facts as well or better than the Gaussian HMM, while at
the same time increasing the persistence of the visited states and the robustness
to outliers. Bulla (2011) also found that models with three states provided a
better fit than models with two states to daily returns of the S&P 500 index
from 1928 to 2007.
The fact that increasing the number of states leads to a much better fit to the
empirical moments and the persistence of squared daily returns was confirmed
in Nystrup et al. (2014). The quadratic increase in the number of parameters
with the number of states is a major limitation of discrete-time HMMs and
HSMMs. In Nystrup et al. (2014) it was shown how a continuous-time formula-
tion leads to a linear rather than quadratic growth in the number of parameters.
A continuous-time hidden Markov model (CTHMM) with four states was found
to provide a better fit to daily returns of the S&P 500 index than the discrete-
time models with three states with a similar number of parameters. There was
no indication that the memoryless property of the sojourn time distribution was
inconsistent with the long-memory property of the squared daily returns.
Kritzman and Li (2010) used a different approach based on discriminant analysis
to show that financial turbulence has been highly persistent and risk-adjusted
returns have been substantially lower during turbulent periods, irrespective of
the source of turbulence. Their study included monthly returns from 1980 to
2009 of six asset-class indices including US and non-US stocks and bonds, com-
modities, and listed real estate. Following Chow et al. (1999), they defined
financial market turbulence as a condition in which asset prices behave in an
uncharacteristic fashion given their historical pattern of behavior. Turbulent pe-
riods were not necessarily characterized only by low or negative returns. They
applied the squared Mahalanobis distance (Mahalanobis 1936) to identify tur-
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bulent periods as being returns outside the 75-percent quantile of a multivariate
normal distribution. The Mahalanobis distance takes into account the correla-
tion convergence that is part of turbulent periods.
The same measure could be used for a cluster analysis rather than just discrim-
inating between turbulent or nonturbulent periods. The Mahalanobis distance
does, however, not take the serial correlation (autocorrelation) into account.
Given the observed persistence, it should be beneficial to consider the serial cor-
relation in the classification. An HMM takes the autocorrelation into account
and with a multivariate conditional distribution it is possible to include the cor-
relation between the assets in the classification. A Markov-switching mixture
model that captures the stylized behavior of financial returns should be useful
as foundation for a regime-based asset allocation strategy.

1.4 Regime-Switching Asset Allocation
Ang and Bekaert (2002) were among the first to consider the impact of regime
shifts on asset allocation. They modeled monthly equity returns from Germany,
the UK, and the US from the period 1970 to 1997 as a multivariate regime-
switching process with two states. The costs of ignoring regime switching were
small for all-equity portfolios, but much higher when a risk-free asset could be
held. Their main finding was that international diversification was still valu-
able in the presence of regime changes despite the increasing correlations and
volatilities in bear markets.
In a subsequent study, Ang and Bekaert (2004) extended the analysis by in-
cluding further equity indices from around the world. Their sample included
monthly returns from 1975 through 2000. A regime-switching strategy was
found to dominate static strategies out of sample for global equity portfolios.
They also considered market timing based on a regime-switching model in which
the transition probabilities depended on a short-term interest rate.1 With an as-
set universe consisting of a stock index, cash, and a ten-year constant-maturity
bond, the main hedge for volatility was found to be the risk-free asset and not
the bond investment.
Bauer et al. (2004) studied monthly returns from 1976 to 2002 of a six-asset
portfolio consisting of equities, bonds, commodities, and real estate using the
multivariate outlier approach of Chow et al. (1999). They observed changing
correlations and volatilities among the assets and demonstrated, under the as-
sumption of perfect foresight with regard to the prevailing regime, a significant
information gain by using a regime-switching strategy instead of the standard

1The interest rate had a statistically significant influence on the transition probabilities as the
probability of switching to the high-volatility regime and the probability of staying in the high-
volatility regime both increased when the interest rate rose.
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mean–variance optimization strategy. After accounting for transaction costs,
however, a substantial part of the positive excess return disappeared.
Ammann and Verhofen (2006) estimated a multivariate regime-switching model,
similar to that of Ang and Bekaert (2002), for the four-factor model of Carhart
(1997) using monthly data for the four equity risk factors from 1927 to 2004.
They found two clearly separable regimes with different mean returns, volatili-
ties, and correlations. One of their key findings was that value stocks provided
high returns in the high-variance state, whereas momentum stocks and the mar-
ket portfolio performed better in the low-variance state.
Guidolin and Timmermann (2007) estimated a four-state Markov-switching au-
toregressive model to monthly returns on stocks, bonds, and T-bills from 1954
to 1991. The optimal asset allocation varied significantly across the regimes.
Stock allocations were found to be monotonically increasing as the investment
horizon got longer in only one of the four regimes. In the other regimes, a
downward sloping allocation to stocks was observed. They confirmed the eco-
nomic importance of accounting for the presence of regimes in asset returns in
out-of-sample forecasting experiments.
Bulla et al. (2011) fitted two-state hidden Markov models to daily returns of
stock indices from Germany, Japan, and the US using data from 1985 (1976
for some of the indices) to 2006. A strategy of switching to cash in the high-
variance regime led to a significant variance reduction when tested out of sample.
In addition, all strategies outperformed their respective index in terms of annual
return after accounting for transaction costs.
Kritzman et al. (2012) applied a two-state HMM to forecast regimes in market
turbulence (as defined by Chow et al. 1999), inflation, and economic growth. A
DAA strategy based on the forecasted regimes was shown to reduce downside
risk and improve the ratio of return to Value-at-Risk (VaR) relative to a static
strategy out of sample when applied to stocks, bonds, and cash. They considered
monthly returns from 1973 to 2009 in the out-of-sample analysis. Rather than
making an assumption about transaction costs, the authors reported the break-
even transaction cost that would offset the advantage of the dynamic strategy.
Zakamulin (2014) tested two DAA strategies based on unexpected volatility;
unexpected volatility being the difference between the forecasted volatility (one
month ahead) using a GARCH(1,1) model and the realized volatility. The
author referred to previous studies that had focused on implied volatility using
the CBOE Market Volatility Index (VIX). The data included daily and monthly
returns of the S&P 500 and the Dow Jones Industrial Average index from 1950
through 2012. Unexpected volatility was shown to be negatively related to
expected future returns and positively related to expected future volatility. In
the first strategy, the weight of stocks relative to cash was changed gradually
on a monthly basis based on the level of unexpected volatility, whereas the
second strategy was either all in stocks or all in cash depending on whether the
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unexpected volatility was below or above its historical average. Both strategies
were found to outperform static strategies out of sample.
It is important to consider transaction costs when comparing the performance
of dynamic and static strategies. Frequent rebalancing can offset the potential
excess return of a dynamic strategy as described by Bauer et al. (2004). Ang
and Bekaert (2002, 2004), Guidolin and Timmermann (2007), and Zakamulin
(2014) did not account for transaction costs. Reporting the break-even trans-
action, as done by Kritzman et al. (2012), is the most meaningful approach as
the transaction costs faced by private investors are likely to exceed those of pro-
fessionals who can implement dynamic strategies in a cost-efficient way using
financial derivatives like futures or swaps.
Another issue neglected in many studies is out-of-sample testing. Testing a
model on the same data that it was fitted to does not reveal its actual potential.
As noted by Bauer et al. (2004), the out-of-sample potential is likely to be lower
(than the in-sample performance), as investors do not have perfect foresight. It
is not unusual that non-linear techniques provide a good in-sample fit, yet get
outperformed by a random walk when used for out-of-sample forecasting. Dacco
and Satchell (1999) showed that it only takes a small estimation error to lose
any advantage from knowing the correct model specification. Thus, a good in-
sample fit but no outperformance over a random walk in terms of mean squared
error out of sample does not necessarily imply that a model is overfitting. Dacco
and Satchell (1999) argued that the performance should instead be evaluated
by methods appropriate for the particular problem, in this case economic profit
or excess return. An example is Ammann and Verhofen (2006), who found a
regime-switching strategy to be profitable out of sample although the forecasting
ability of the underlying model was weak compared to a random walk.
A poor out-of-sample performance can also be an indication that the data-
generating process is non-stationary. Rydén et al. (1998) found that the pa-
rameters of the estimated HMMs varied considerably through the 63-year data
period they studied. This can be addressed by applying an adaptive estimation
technique that allows the parameters of the model to be gradually changing
through the sample period by assigning more weight to the most recent observa-
tions. This is increasingly important the longer the data period is. Adaptivity
is often used within other areas for automatic regulation (see e.g. Krstic et al.
1995) and modeling and forecasting (see e.g. Pinson and Madsen 2012), but it
has not received the same attention within empirical finance.
Of the referenced studies, Kritzman et al. (2012) were the only ones that did
not identify regimes in asset prices, but instead forecasted regimes in important
drivers of asset returns and then reallocated assets accordingly. If financial
markets are efficient, the outlook for the economy should be reflected in asset
prices to the extent that it can be predicted. The use of macroeconomic data in
this connection is troublesome due to the delay in availability, the low frequency
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of the data, and the fact that the data is often revised subsequently. The
arguments for modeling financial returns directly are strong as the financial
markets should be the first to react to changes to the economic outlook with
market data being available real time. Interestingly, only Bulla et al. (2011)
considered daily rather than monthly returns.
The majority of the studies included a risk-free asset. The holding of a risk-
free asset, of course, yields a volatility reduction, but it raises the question
of what return to expect on a risk-free asset. A lower return on cash would
dilute the performance of the dynamic switching strategies. Furthermore, if
stocks and other risky assets underperform in turbulent periods, then it is worth
considering a negative exposure to these assets in the most turbulent regimes.
The referenced studies, with the exception of Ang and Bekaert (2002, 2004)
and Ammann and Verhofen (2006), considered long-only strategies. In practice,
there can be restrictions on short positions that prevent the implementation of
other strategies, but it is interesting to establish the potential if not only to
know the cost of a long-only investment policy.
The list of studies referenced is not exhaustive, yet it includes various interest-
ing approaches to regime-switching asset allocation. Surprisingly, none of the
studies considered model selection in depth. Guidolin (2011) found in his re-
view of the literature on applications of Markov-switching models in empirical
finance that roughly half the studies selected a Markov-switching model based
on economic motivations rather than statistical reasoning. In addition, half the
studies did not consider it a possibility that the number of states could exceed
two and there was an overweight of studies based on Gaussian mixtures in which
the underlying Markov chain was assumed to be time-homogeneous. A study
is missing that combines the economic intuition and application with a statis-
tical analysis of the model class, the number of states, the type of marginal
distributions as well as the need for time-heterogeneity/adaptivity.

1.5 Thesis Statement
The purpose of this thesis is to compare the performance of a regime-based asset
allocation strategy under realistic assumptions to a strategy based on rebalanc-
ing to static weights. It will be examined whether the volatility reduction found
in previous studies on dynamic asset allocation can be achieved when there is no
risk-free asset, but rather the possibility for diversification by holding a portfolio
of assets which may include short positions.
As asset allocation is the most important determinant of portfolio performance
it is clearly relevant whether a dynamic strategy can outperform a static strat-
egy by taking advantage of favorable economic regimes and reducing potential
drawdowns. The relevance is supported by the large amount of articles written
on the subject. A recent survey by Mercer (Edwards and Manjrekar 2014) found
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that professional investors are increasingly looking to incorporate some element
of dynamic decision-making within portfolios, both for return enhancement and
as a risk management tool.
The asset classes considered are limited to stocks, bonds, and commodities to
keep it simple, yet complex enough for diversification possibilities to arise. The
data includes a global equity index, a global government bond index, and a
commodity index. Daily closing prices covering the 20-year period from 1994 to
2013 are considered. The data prior to 2009 will be used for in-sample analysis
and estimation, while the five years from 2009 to 2013 will be used for out-of-
sample testing. The 15-year in-sample data period is special in that it includes
the build-up and burst of two major financial bubbles: the dot-com bubble
around year 2000 and the US housing bubble that triggered the global financial
crisis in 2007.
Everything is measured in USD as seen from a US investor’s point of view. The
stock index is global but denominated in USD, the government bond index is
hedged to USD, and the commodity index is traded in USD. In this way there
will be no need to consider currency risk.
The analysis will include the following steps:

1. Analysis of the distributional and temporal properties of the index data.

2. Estimation and selection of an appropriate time series model.

3. Evaluation of the performance of an optimized SAA portfolio for different
levels of risk aversion with and without rebalancing in and out of sample.

4. Implementation and evaluation of the performance of different dynamic
strategies in and out of sample.

The statistical software R (R Core Team 2013) will be used for all data analysis,
modeling, and simulation. The approach that will be used is through data
analysis to determine the necessary properties of a time series model that is
able to describe the observed characteristics of the index data. Model selection
will include model class, the number of states, the character of the marginal
distributions, and the need for time-heterogeneity. The SAA portfolios will be
optimized based on scenarios generated using a regime-switching model.



CHAPTER 2
Index Data

The featured indices are selected with the aim of keeping it simple and replicable,
yet complex enough for diversification possibilities to arise. The indices include
a global equity index (MSCI ACWI), a global government bond index (JPM
GBI) with weight on developed countries, and a commodity index (S&P GSCI)
with low correlation to the other two indices. The developed strategies can
easily be implemented as similar indices are investable through exchange-traded
funds (ETFs).
The 20-year data period goes back almost to the start of the JPM GBI hedged
to USD in mid-1993. The total return version of the MSCI ACWI only goes
back to 1999, but the data prior to 1999 can easily be reconstructed based on
the price index that goes back to 1988. The S&P GSCI started trading in 1991,
but reconstructed daily data is available back to 1970.
The optimal length of the data period is debatable. Other global government
bond indices have been researched, but none were found to have daily data
hedged to USD that goes back further. A 20-year sample is deemed reasonable
with 15 years for in-sample estimation and 5 years for out-of-sample testing.
It is questionable whether data that goes back much further than 20 years is
representative of today’s market.
It is emphasized that the purpose is not to accentuate these particular indices.
It is possible to include many other indices and to over or underweight different
regions or sectors compared to the featured indices. The indices are presented
in the next three sections, the distribution of the index data is analyzed in
section 2.4, and the temporal properties are considered in section 2.5. An in-
sample adjustment of the data is discussed in section 2.6.
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2.1 The MSCI ACWI
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Figure 2.1: The development in the MSCI
ACWI in-sample and out-of-sample.

The Morgan Stanley Capital Inter-
national All Country World Index2
captures large and mid cap represen-
tation across 23 Developed Market
(DM) and 21 Emerging Market (EM)
countries.3 The difference compared
to the more well-known MSCI World
Index is the weight on EM countries.
The development in the net total re-
turn index, denominated in USD, is
depicted in figure 2.1. The data prior
to 1999, where the total return index
began, has been reconstructed based
on the price index4 by adding the av-
erage daily net dividend return over

the period from 1999 to 2013 of 0.007% to the price returns.
With 2,434 constituents, the free float-adjusted market capitalization weighted
index covers approximately 85% of all global investable equities. The weights
across regions and sectors are shown in figure 2.2 as of the end of 2013. Although
it is a world index, North America makes up almost half the index. The financial
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North America 52.3%
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(a) Regional weights
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(b) Sector weights

Figure 2.2: The weight of the different regions and sectors in the MSCI ACWI at the
end of 2013.

2Bloomberg ticker: NDUEACWF Index.
3DM countries include: Australia, Austria, Belgium, Canada, Denmark, Finland, France, Ger-

many, Hong Kong, Ireland, Israel, Italy, Japan, Netherlands, New Zealand, Norway, Portugal,
Singapore, Spain, Sweden, Switzerland, UK, and US. EM countries include: Brazil, Chile, China,
Colombia, Czech Republic, Egypt, Greece, Hungary, India, Indonesia, Korea, Malaysia, Mexico,
Peru, Philippines, Poland, Russia, South Africa, Taiwan, Thailand, and Turkey.

4Bloomberg ticker: MXWD Index.
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Table 2.3
In-sample summary statistics for the daily MSCI ACWI log-returns.

Mean SD Skewness Kurtosis ACF(1) Annual SR
0.00018 0.0095 -0.40 13 0.15 0.29

sector is by far the largest of the ten sectors in the index. It should be noted
that the weights are constantly changing.
The first four central moments are shown in table 2.3 together with the first-
order autocorrelation and the annual Sharpe ratio (SR). The SR is the excess
return per unit risk, i.e. the excess return divided by the standard deviation
(SD). The excess return is the mean return minus the risk-free rate, but the
risk-free rate can be neglected, since it is the same for all three indices as they
are all denominated in USD. The daily log-returns are left-skewed and highly
leptokurtic. The annual SR of 0.29 would have been a lot higher had the in-
sample data period been one year shorter or longer.

2.2 The JPM GBI
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Figure 2.4: The development in the JPM
GBI in-sample and out-of-sample.

The global J.P. Morgan Government
Bond Index5 measures performance
and quantifies risk across 13 devel-
oped fixed income bond markets.6
The index measures the total return
in each market hedged to USD. It
includes only traded issues available
to international investors, with liquid-
ity guidelines ensuring that there is
no price bias related to infrequently
traded issues. The constituents are
selected from all government bonds,
excluding floating rate notes, perpet-
uals, bonds targeted at the domestic
market for tax purposes, and bonds
with less than one year to maturity.
The weights across countries and maturities are shown in figure 2.5 as of year
end 2013. Only countries with a weight above 5% are shown. The U.S. and
Japan are by far the heaviest constituents. Danish government bonds receive a
tiny weight of 0.56% in the index. The index had a remaining maturity of 8.7

5Bloomberg ticker: JHDCGBIG Index.
6The 13 countries included have remained unchanged over time and are Australia, Belgium,

Canada, Denmark, France, Germany, Italy, Japan, Netherlands, Spain, Sweden, UK, and US.
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Figure 2.5: The weight of the different countries and maturities in the JPM GBI at
the end of 2013. Only countries with a weight above 5% are shown.

years and a modified duration of 6.8 at the end of 2013 resulting from a fairly
even weight distribution across maturities.
Compared to the MSCI ACWI the daily log-returns of the JPM GBI are less
left-skewed, less leptokurtic, exhibit similar first-order autocorrelation, and have
a significantly higher Sharpe ratio due to the much lower standard deviation and
higher mean return.
The 20-year data period has been characterized by falling interest rates and low
inflation leading to a strong performance for bonds. It is unlikely that the bullish
environment for bonds will continue forever, at some point interest rates and
inflation are likely to start to increasing.7 When that happens, an investment
in commodities can provide some protection against the impact of inflation on
real returns.

Table 2.6
In-sample summary statistics for the daily JPM GBI log-returns.

Mean SD Skewness Kurtosis ACF(1) Annual SR
0.00026 0.0018 -0.26 4.7 0.16 2.2

7The returns of the JPM GBI exhibit positive autocorrelation at short horizons, but negative
autocorrelation at long horizons (the annual first-order autocorrelation is -0.37). The same mean
reversion can be found in the rate of inflation (see e.g. Lee and Wu 2001).
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2.3 The S&P GSCI
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Figure 2.7: The development in the S&P
GSCI in-sample and out-of-sample.

The Standard & Poor’s Goldman
Sachs Commodity Index8 quoted in
USD is one of the leading measures
of general commodity price move-
ments and inflation in the world econ-
omy. The total return index has been
tradeable since 1991. It contains as
many commodities as possible, with
rules excluding certain commodities
to maintain liquidity and investabil-
ity in the underlying futures markets.
The roll schedule is limited to the
most liquid nearby contract months.
The total return of the index is signif-
icantly different than the return from
buying physical commodities.

..
Energy 70%

.

Agriculture 15%

.

Industrial Metals 7%

.

Livestock 5%

.

Precious Metals 3%

Figure 2.8: The weight of the different sec-
tors in the S&P GSCI in 2013.

At the end of 2013 the index in-
cluded futures on 24 physical com-
modities. The index is world pro-
duction weighted, meaning that the
weight assigned to each commodity is
in proportion to the amount of that
commodity flowing through the econ-
omy. As commodity prices are af-
fected by and have an effect on both
inflation and real economic growth,
commodity exposure is a way of
hedging negative shocks to economic
growth that might result from higher
commodity prices (oil in particular).
Commodities have traditionally been an important component of the basket of
goods and services used to measure inflation. Inflation being the annual percent-
age change in the US Consumer Price Index (CPI) for all urban consumers.9
Food and energy comprise 25% of the US CPI and they account for an even
larger share, about 75%, of its volatility. Since it is unexpected changes in
inflation, more than absolute levels, which affect stock and bond prices, this
volatility is a major concern for investors (Perrucci and Benaben 2012).

8Bloomberg ticker: SPGSCITR Index.
9Bloomberg ticker: CPI YOY Index.
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Table 2.9
Correlation matrix based on annual returns from 1994 to 2013.

MSCI ACWI JPM GBI S&P GSCI Gold ∆Inflation
MSCI ACWI 1
JPM GBI -0.31 1
S&P GSCI 0.30 -0.08 1
Gold 0.00 -0.07 0.20 1
∆Inflation 0.46 -0.19 0.69 0.24 1

The S&P GSCI has a much higher exposure to energy than the other major
commodity indices such as the Dow Jones-UBS Commodity Index. The higher
exposure to energy makes the S&P GSCI a better protection against unexpected
inflation. Unexpected inflation is notoriously difficult to measure as it requires
knowledge of people’s average inflation expectations. Erb and Harvey (2006)
argued that under the assumption that changes in the rate of inflation are un-
predictable, a good proxy for unexpected inflation is the actual change in the
rate of inflation. There are certainly some changes that are predictable, but the
assumption is very convenient.
Table 2.9 shows the correlations between the three indices, the S&P Gold In-
dex10, and the annual changes in the rate of inflation. The S&P GSCI has pro-
vided some protection against unexpected inflation with a correlation of 0.69 on
an annual basis.
A discussion on commodity investing and inflation is not complete without an
explicit mention of gold. The empirical evidence in support of gold as an inflation
hedge is not very strong with the correlation between the returns of the S&P
Gold Index and the changes in inflation being only 0.24. Gold is generally
perceived as a defensive asset and there could be diversification benefits from
investing in gold as it is almost uncorrelated with both stocks and bonds.
Physical commodities may broadly follow inflationary trends and there appears
to be a stronger correlation between commodities and inflation than between tra-
ditional asset classes, but commodities are far from perfect or even particularly
efficient hedging vehicles for inflation. A far more enticing benefit of commodity
investment, even on a passive buy-and-hold basis, is the fact that commodities
historically have displayed a low or even negative correlation with traditional
investments including stocks and bonds (Perrucci and Benaben 2012).
The in-sample mean return of the S&P GSCI is similar to the mean return of
the MSCI ACWI, but the standard deviation is higher which leads to an annual
Sharpe ratio of 0.20 compared to 0.29 for the MSCI ACWI. In terms of skewness
and kurtosis, the S&P GSCI is closer to the JPM GBI than the MSCI ACWI.
Finally, the S&P GSCI is less autocorrelated than the other two indices.

10Bloomberg ticker: SPGCGCTR Index.
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Table 2.10
In-sample summary statistics for the daily S&P GSCI log-returns.

Mean SD Skewness Kurtosis ACF(1) Annual SR
0.00017 0.014 -0.23 6.1 -0.026 0.20

The Commodity Risk Premium
Understanding the size and nature of the commodity risk premium is, as for any
other asset class, a necessary precursor to an informed decision about whether
to include commodities in a strategic asset allocation. There is, however, strong
disagreement about the size of the commodity risk premium, if it at all exists.
The low correlation with stocks and bonds implies that commodities have a low
beta (i.e., a low correlation with the market portfolio). Hence, based on the
Capital Asset Pricing Model (CAPM) the risk premium is expected to be small.
Futures on commodities, however, are not financial claims like stocks and bonds
to which the CAPM applies.
Futures on commodities are bets in which risk is transferred from one party
to another, but not necessarily increased. This is different from other types of
betting, such as betting on sports results, that increase the amount of risk in
the world. An investor would expect to be compensated for the transfer of risk
undertaken. The insurance premium is the roll return which is the difference in
price of the most nearby futures and the most recent futures. The expected roll
return is also the expected real return as the price of commodities is expected
to follow the general inflation (Hannam and Lejonvarn 2009).
This discussion of the commodity risk premium is not meant to be exhaustive,
the purpose is simply to highlight the issue. Based on the data, the character-
istics of the S&P GSCI are fairly similar to those of the MSCI ACWI with a
slightly lower Sharpe ratio. This indicates that investors have been compensated
historically, but past performance is no guarantee of future results.

2.4 Distributional Properties
The in-sample development of the three indices is shown in figure 2.11 together
with the pre-tax yield to maturity on generic ten-year on-the-run US government
bonds11. The MSCI ACWI did well until the outbreak of the GFC at the end
of 2007. The index went to about 250 before the burst of the dot-com bubble
in 2000. From 2003 until the end of 2007 the index went up from about 125 to
350, but a large part of the gains were lost in 2008 and the index finished below
200 at the end of 2008.

11Bloomberg ticker: USGG10YR Index.
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Figure 2.11: The development of the three indices in-sample together with the yield
on ten-year US government bonds.

The only points in time where the JPM GBI did not perform well were the first
year and the beginning of 1996, where the interest rate increased significantly,
and then the index traded horizontally in the end of 1998 and the beginning
of 1999 while the interest rate was going up. Overall, the bond index has been
moving upward steadily to about 260. The combination of a strong performance
and a low volatility naturally leads to the exceptionally high SR of 1.3 that is
unlikely to be sustainable in the long run.

The S&P GSCI generally trended in the same direction as the MSCI ACWI,
but in some periods the index moved in the opposite direction. For example,
in 1998 and 2006, the commodity index incurred large drawdowns while the
stock index trended up, or at least did not lose ground. The commodity index
experienced large setbacks in both 2001 and 2008 at the same time as the stock
index, though the turning points of the two indices are not the exact same. The
index was above 500 and much above the stock index before the free fall in 2008
to 175 which was below the stock index.

Commodities have done well in times where there are large interest rate increases
in the beginning of the data period, in 1996, and again in 1999, where the
bond index underperformed. An investment in commodities appears to be an
attractive supplement to investments in bonds.
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Table 2.12
In-sample summary statistics and the Jarque–Bera test statistic for the three indices.

MSCI ACWI JPM GBI S&P GSCI
Mean 0.00018 0.00026 0.00017
SD 0.0095 0.0018 0.014
Skewness -0.40 -0.26 -0.23
Kurtosis 13 4.7 6.1
ACF(1) 0.15 0.16 -0.026
Annual SR 0.29 2.2 0.20
JB-stat 16482 483 1548

Log-Returns
The index series are not stationary as the mean values are growing and there
are strong local trends. A transformation is needed to obtain stationarity. A
log-transformation narrows the gap between the indices and a difference gets
rid of the growing mean values. This leads to the log-return calculated as
rt = log (Pt) − log (Pt−1), where Pt is the closing price of the index on day
t and log is the natural logarithm. For returns less than 10%, the log-return
is a good approximation to the discrete return, as it is the first order Taylor
approximation.12

Table 2.12 shows the in-sample summary statistics for the daily log-returns of
the three indices together with the first-order autocorrelations and the annual
Sharpe ratios. The distributions are left skew and leptokurtic, as already noted.
The critical value for the Jarque–Bera test statistic at a 99.9% confidence level
is 14.13 Thus, the Jarque–Bera test strongly rejects the normal distribution for
all three indices.
The excess kurtosis relative to the normal distribution is evident from the plot
of the kernel density functions in figure 2.13. There is too much mass centered
right around the mean and in the tails compared to the normal distribution.
The heavy left tail implies that using a normal distribution to model returns
underestimates the frequency and magnitude of downside events.
There are 56 observations that deviate more than three standard deviations from
the mean for the MSCI ACWI compared to an expectation of 10 if the returns
were normally distributed. Out of these, 21 are in the right tail compared to
35 in the left tail. There are 13 observations that are more than five standard

12rt = log Pt
Pt−1

= log (1 +Rt) = log (1) +Rt −
R2

t
2!

+
R3

t
3!

+O
(
R4

t

)
≈ Rt for discrete returns

Rt close to zero.
13The Jarque–Bera test statistic is defined as JB = T

(
Skewness2

6
+

(Kurtosis−3)2

24

)
, where T is

the number of observations. If the observations are normally distributed, then the JB test statistic
is asymptotically chi-squared distributed with two degrees of freedom.
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Figure 2.13: Kernel estimates of the densities of the standardized daily log-returns
together with the density function for the standard normal distribution.

deviations from the mean—five in the right tail and eight in the left tail—and
they are all from the last four months of 2008. The phenomenon, that large
drawdowns occur more often than equally large upward movements, is known
as gain/loss asymmetry (Cont 2001).

Given the large number of observations (Tin-sample = 3782), it takes only a few
outliers to reject the normal distribution with a high degree of confidence. It is a
general characteristic of financial returns that there are too many extreme values
compared to the normal distribution, which results in the very large kurtoses
observed.

It is important to distinguish between outliers and extreme observations in this
connection; extreme observations deviate considerably from the group mean, but
may still represent meaningful conditions, and thus should not be disregarded.
Extreme observations should be included in the model estimation in order for
the scenarios to be as realistic as possible. After all, the scenarios should reflect
the possibility of such extreme events, since they are seen to occur.
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Figure 2.14: The log-returns and their standard deviation estimated using a rolling
window of 252 trading days.

2.5 Temporal Properties

The log-returns shown in figure 2.14 are seen to be mean stationary, since they
fluctuate around a constant mean level close to zero for all three indices. The
log-returns are seen to be much more volatile in some periods than others. This
effect, that large price movements tend to be followed by large price movements
and vice versa, is referred to as volatility clustering.

The volatility of the commodity index appears to have been increasing through
the in-sample period. This is not the case for the JPM GBI and only true to a
limited degree for the MSCI ACWI.
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Figure 2.15: The empirical autocorrelation functions for the log-returns and the squared
log-returns of the three indices.

The autocorrelation functions (ACFs) for the log-returns and the squared log-
returns are shown in figure 2.15. The dashed lines make up approximate 95%
confidence intervals under the null hypothesis of independency.14 The first-order
autocorrelation is significant for both the MSCI ACWI and the JPM GBI.
The ACFs for the squared log-returns show significant autocorrelation that per-
sists all the way up to lag 60 for the MSCI ACWI and even further for the S&P

14The autocorrelation function for a white noise process is asymptotically normally distributed
with mean value zero and variance 1/T at all other lags than zero, when T is the number of
observations. An approximate 95% confidence interval for the null hypothesis of independency is
therefore ±2/

√
T (Madsen 2008).
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Figure 2.16: The autocorrelation functions for the squared outlier-corrected log-returns
of the three indices.

GSCI. The autocorrelation of the squared log-returns of the JPM GBI is only
barely significant for lags below 20. The long memory of the squared log-returns
is closely related to the volatility clustering noted in relation to figure 2.14.
Figure 2.16 shows the ACFs for the squared outlier-corrected log-returns. Fol-
lowing the approach by Granger and Ding (1995a), values outside the interval
r̄t ± 4σ̂ are set equal to the nearest boundary. Restraining the impact of out-
liers reduces the amount of noise in the empirical ACFs significantly. There is
a weekly variation in the squared log-returns of the MSCI ACWI and the S&P
GSCI that could suggest the need for an inhomogeneous model. The size of the
weekly variations is negligible compared to the amount of noise, though.
The correlations between the indices are far from constant. This appears from
figure 2.17 where the one-year rolling correlations are depicted together with
the yield on ten-year US government bonds. The correlation between the MSCI
ACWI and the JPM GBI went from 0.5 in 1997 to -0.4 during 1998. Then it
went back up to 0.25 in 2000, before it went to a low of almost -0.7 in 2003.
From 2004 to 2007 the correlation was close to zero before it fell to -0.6 in 2008.
The correlation between the MSCI ACWI and the S&P GSCI has been close
to zero throughout most of the period, but since 2005 it has been increasing
steadily to a high of 0.5 at the end of 2008. The correlation between the JPM
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Figure 2.17: One-year rolling correlations between the indices together with the yield
on ten-year US government bonds.

GBI and the S&P GSCI has also remained close to zero throughout most of the
in-sample period, but from 2007 it started decreasing to a low of -0.3 at the end
of 2008. The observation that an investment in commodities seemed to provide
protection when the bond index was suffering in figure 2.11 on page 18 is not
evident from the one-year correlations.

Figure 2.18 shows the cumulative proportion of variance explained by the first
two principal components. Principal component analysis (PCA) uses an or-
thogonal transformation to convert a set of observations of possibly correlated
variables into a set of values of uncorrelated variables called principal compo-
nents. The first principal component has as high a variance as possible, meaning
that it accounts for as much of the variability in the dataset as possible. The
succeeding components, in turn, have the highest variance possible under the
constraint that each one has to be orthogonal to (uncorrelated with) the pre-
ceding components. Higher correlations mean greater redundancy and greater
redundancy results in more variation extracted in fewer components.

The solid lines are estimated using a rolling window of 252 trading days. The
dashed orange and purple lines show the cumulative proportion of variance
that can be explained by one and two principal components, respectively, when
looking at the whole in-sample period. The log-returns were standardized prior
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to the analysis.
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Figure 2.18: The cumulative proportion of
variance explained by the first two principal
components for the three indices.

The proportion of variance explained
by the first component varies from
0.35 at the lowest to above 0.6 at the
highest. The spikes for component
one in 1996–1997, in 2003, and again
from the middle of 2007 are coincid-
ing with the times where the corre-
lation between the MSCI ACWI and
the JPM GBI is significantly strength-
ened. During the GFC, the correla-
tion between the MSCI ACWI and
the S&P GSCI also increased signif-
icantly, which is why the first compo-
nent accounted for a larger proportion
of the variance at the expense of com-
ponent two. Besides the GFC, the sec-
ond principal component explains an almost constant proportion of the variance
of about 0.35.
The correlations are stronger at the times of high market volatility and stress.
Thus, diversification may not materialize precisely when an investor needs it the
most. The fact that the correlation between the MSCI ACWI and the JPM GBI
gets increasingly negative is not a problem, but the increase in the correlation
between the MSCI ACWI and the S&P GSCI, in particular during the GFC, is
unfavorable. The impact would be more significant if it was two different stock
indices, then the correlations would increase even more around year 2000 and
2008. Although the correlations increased during the GFC, there are definitely
diversification benefits between asset classes.

2.6 In-Sample Adjustment
The bond index has clearly outperformed both the stock and commodity index
in-sample following the significant decline in the term structure of interest rates
with corresponding high returns for long-maturity bonds. For other time periods,
stocks and commodities are likely to show a more attractive risk/return profile
compared to bonds. Had the in-sample period ended in 2007 rather than 2008,
then the Sharpe ratios would have been 0.67 and 0.46 for the MSCI ACWI and
the S&P GSCI, respectively.
The end of a major financial crisis, where the level of stress in the markets is at
its highest, is a critical time at which to be estimating Sharpe ratios. The SR
of 0.29 for the MSCI ACWI is not an unrealistic long-term level. If the SR is
set too low, then it will not be profitable to change allocation, and if the SR is
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set too high, then it will appear profitable to change allocation very often, as
the excess return will quickly cover the transaction costs.
The assumption that will be made when calibrating time series models to the in-
sample data to use for scenario generation and asset allocation is that the annual
SR of the JPM GBI equals that of the MSCI ACWI. This in attempt to make
a neutral assumption although there is no such thing as a neutral assumption
in this context. Leverage aversion could be one reason why stocks and bonds
should not be expected to yield the same risk-adjusted return in the long run
(Asness et al. 2012, Frazzini and Pedersen 2014).
Then there is the dispute about the commodity risk premium. The point of
departure will be to use the returns as they are, meaning that commodities will
have a lower SR than stocks and bonds in-sample. Hence, it is only the in-sample
returns of the JPM GBI that will be adjusted. This is done by subtracting
0.022% from the daily log-returns. In this way, the MSCI ACWI and the JPM
GBI will both have an in-sample annual SR of 0.29. It should be emphasized
that the data used for out-of-sample testing will remain untransformed.



CHAPTER 3
Markov-Switching

Mixtures

The normal distribution is a poor fit to most financial returns. Mixtures of
normal distributions provide a much better fit as they are able to reproduce
both the skewness and leptokurtosis often observed. An extension to Markov
switching mixture models, also referred to as hidden Markov models (HMMs),
is frequently applied to capture both the distributional and temporal properties
of financial returns.
In an HMM, the distribution that generates an observation depends on the state
of an unobserved Markov chain. The transition probabilities of the Markov chain
are assumed to be constant implying that the sojourn times are geometrically
distributed. The memoryless property of the geometric distribution is not always
appropriate. An alternative is the hidden semi-Markov model (HSMM) in which
the sojourn time distribution is modeled explicitly for each hidden state.
If the observations are not equidistantly sampled then a continuous-time hidden
Markov model (CTHMM) that factors in the sampling times of the observations
can be applied. The advantages of a continuous-time formulation include the
flexibility to increase the number of states or incorporate inhomogeneity without
a dramatic increase in the number of parameters.
The theory of HMMs in discrete time and their estimation is outlined in sec-
tion 3.1. The HSMM is introduced in section 3.2 and the CTHMM in section 3.3.
The models are fitted to the in-sample returns of the MSCI ACWI in section 3.4
and gradient-based methods are considered in section 3.5.
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3.1 Hidden Markov Models in Discrete Time
In hidden Markov models, the probability distribution that generates an obser-
vation depends on the state of an underlying and unobserved Markov process.
HMMs are a particular kind of dependent mixture and are therefore also re-
ferred to as Markov-switching mixture models. General references to the sub-
ject include Cappé et al. (2005), Frühwirth-Schnatter (2006), and Zucchini and
MacDonald (2009).
A sequence of discrete random variables {St : t ∈ N} is said to be a first-order
Markov chain if, for all t ∈ N, it satisfies the Markov property:

Pr (St+1|St, . . . , S1) = Pr (St+1|St) . (3.1)

The conditional probabilities Pr (Su+t = j|Su = i) = γij (t) are called transition
probabilities. The Markov chain is said to be homogeneous if the transition
probabilities are independent of u, otherwise inhomogeneous.
A Markov chain with transition probability matrix Γ (t) = {γij (t)} has sta-
tionary distribution π if πΓ = π and π1′ = 1. The Markov chain is termed
stationary if δ = π where δ is the initial distribution, i.e. δi = Pr (S1 = i).
If the Markov chain {St} has m states, then the bivariate stochastic process
{(St, Xt)} is called an m-state HMM. With X(t) and S(t) representing the
values from time 1 to time t, the simplest model of this kind can be summarized
by

Pr
(
St|S(t−1)

)
= Pr (St|St−1) , t = 2, 3, . . . , (3.2a)

Pr
(
Xt|X(t−1),S(t)

)
= Pr (Xt|St) , t ∈ N. (3.2b)

When the current state St is known, the distribution of Xt depends only on
St. This causes the autocorrelation of {Xt} to be strongly dependent on the
persistence of {St}.
An HMM is a state-space model with finite state space where (3.2a) is the state
equation and (3.2b) is the observation equation. A specific observation can
usually arise from more than one state as the support of the conditional distri-
butions overlaps. The unobserved state process {St} is therefore not directly
observable through the observation process {Xt}, but can only be estimated.
As an example, consider the two-state model with Gaussian conditional distri-
butions:

Xt = µSt + εSt , εSt ∼ N
(
0, σ2

St

)
,

where

µSt =

{
µ1, if St = 1,

µ2, if St = 2,
σ2
St

=

{
σ2
1 , if St = 1,

σ2
2 , if St = 2,

and Γ =

[
1− γ12 γ12
γ21 1− γ21

]
.
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For this model, the first four central moments are

E [Xt| θ] = π1µ1 + (1− π1)µ2,

Var [Xt| θ] = π1σ
2
1 + (1− π1)σ

2
2 + π1 (1− π1) (µ1 − µ2)

2
,

Skewness [Xt| θ] = π1 (1− π1) (µ1 − µ2)
(1− 2π1) (µ1 − µ2)

2
+ 3

(
σ2
1 − σ2

2

)
σ3

,

Kurtosis [Xt| θ] =
π1 (1− π1)

σ4

[
3
(
σ2
1 − σ2

2

)2
+ (µ1 − µ2)

4
(1− 6π1 (1− π1))

+ 6 (2π1 − 1)
(
σ2
2 − σ2

1

)
(µ1 − µ2)

2
]
+ 3.

θ denotes the model parameters and σ2 = Var [Xt| θ] is the unconditional vari-
ance (Timmermann 2000, Frühwirth-Schnatter 2006).
The unconditional mean is simply the weighted average of the means. A dif-
ference in the means across the states enters both the variance, skewness, and
kurtosis. In fact, skewness only arises if there is a difference in the mean values.
The unconditional variance is not just the weighted average of the variances;
a difference in means also imparts an effect because the switch to a new state
contributes to volatility (Ang and Timmermann 2011). Intuitively, the possibil-
ity of changing to a new state with a different mean value introduces an extra
source of risk. This is similar to a mixed-effects model where the total variance
arises from two sources of variability, namely within-group heterogeneity and
between-group heterogeneity (see e.g. Madsen and Thyregod 2011).
The value of the autocorrelation function at lag k is

ρXt (k| θ) =
π1 (1− π1) (µ1 − µ2)

2

σ2
λk

and the autocorrelation function for the squared process is

ρX2
t
(k| θ) =

π1 (1− π1)
(
µ2
1 − µ2

2 + σ2
1 − σ2

2

)2
E [X4

t | θ]− E [X2
t | θ]

2 λk.

λ = γ11−γ21 is the second largest eigenvalue of Γ (Frühwirth-Schnatter 2006).15
It is evident from these expressions, as noted by Rydén et al. (1998), that HMMs
can only reproduce an exponentially decaying autocorrelation structure.
The ACF of the first-order process becomes zero if the mean values are equal,
whereas persistence in the squared process can be induced either by a difference
in the means, as for a mixed-effects model, or by a difference in the variances
across the states. In both cases, the persistence increases with the combined
persistence of the states as measured by λ (Ang and Timmermann 2011).

15The other eigenvalue of Γ is λ = 1.
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The sojourn times are implicitly assumed to be geometrically distributed:

Pr (’staying t time steps in state i’) = γt−1
ii (1− γii) (3.3)

with the expected duration of state i being

E [ri] =
1

1− γii
. (3.4)

The geometric distribution is memoryless, implying that the time until the next
transition out of the current state is independent of the time spent in the state.
The parameters of an HMM are usually estimated using the Maximum Like-
lihood (ML) method. There are essentially three problems in the context of
HMMs:

1. Evaluating the likelihood of the observations x(T ) given the parameters.

2. Estimating the model parameters θ that maximize the likelihood of the
observed data.

3. Inferring the most likely sequence of states s(T ).

The first question is addressed by a dynamic programming technique, the for-
ward–backward algorithm, the second task is carried out using the Baum–Welch
algorithm, and the third problem can be solved efficiently using the Viterbi al-
gorithm. The algorithms are outlined in the next three subsections.

The Forward–Backward Algorithm
Under the assumption that successive observations are independent, the likeli-
hood of the observations x(T ) given the parameters θ is

LT = Pr
(
X(T ) = x(T )

∣∣∣ θ) = δD (x1)ΓD (x2) · · ·ΓD (xT )1
′, (3.5)

where D (x) is a diagonal matrix with the state-dependent conditional densities
di (x) = Pr (Xt = x|St = i), i ∈ {1, 2, . . . ,m}, as entries. The conditional dis-
tribution of Xt may be either discrete or continuous, univariate or multivariate.
The forward–backward algorithm is used to compute the likelihood and is also
employed in the Baum–Welch algorithm. The ith element of the vector αt is
the forward probability

αt (i) = Pr
(
X(t) = x(t), St = i

∣∣∣ θ) (3.6)

and the ith element of βt is the backward probability

βt (i) = Pr (Xt+1 = xt+1, . . . , XT = xT |St = i, θ) (3.7)
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for t = 1, 2, . . . , T and i ∈ {1, 2, . . . ,m}.
The forward and the backward probabilities can be computed recursively as

αt+1 = αtΓD (xt+1) (3.8)
β′
t = ΓD (xt+1)β

′
t+1 (3.9)

with initial values α1 = δD (x1) and βT = 1.
It follows that

αt (i)βt (i) = Pr
(
X(T ) = x(T ), St = i

∣∣∣ θ) . (3.10)

Thus, the likelihood of the observed data x(T ) can be evaluated as the sum over
all m states:

Pr
(
X(T ) = x(T )

∣∣∣ θ) =
m∑
i=1

αt (i)βt (i) = αtβ
′
t. (3.11)

The likelihood is independent of the time point t at which the forward–backward
variables are evaluated since

αtβ
′
t = αt+1β

′
t+1.

The forward and backward probabilities should be scaled to avoid numerical
underflow, as described in Zucchini and MacDonald (2009). The complexity
of the forward–backward recursions is O

(
m2T

)
which is feasible in contrast to

the straightforward evaluation of (3.5) which has complexity O
(
mT
)
(Dittmer

2008).

The Baum–Welch Algorithm
The two most popular approaches to maximizing the likelihood are direct nu-
merical maximization and the Baum–Welch algorithm, a special case of the
expectation–maximization (EM) algorithm (Baum et al. 1970, Dempster et al.
1977). The Baum–Welch algorithm is often preferred due to its larger robust-
ness to initial values. The likelihood is guaranteed to increase (or remain the
same) for each iteration when using the EM algorithm, but convergence toward
the maximum might be slow. Another advantage of using the EM algorithm is
that there is no need to transform the parameters.16

16See Cappé et al. (2005) for a discussion of the relative merits of the EM algorithm and direct
maximization of the likelihood of an HMM by gradient-based methods.
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The Baum–Welch algorithm maximizes the logarithm of the complete-data like-
lihood (CDLL), i.e. the log-likelihood of the observations x(T ) and the missing
data s(T ), which can be written as

log
(
Pr
(
x(T ), s(T )

))
= log

(
δs1

T∏
t=2

γst−1,st

T∏
t=1

dst (xt)

)

= log δs1 +
T∑

t=2

log γst−1,st +
T∑

t=1

log dst (xt) .
(3.12)

By introducing the binary random variables

vi (t) = 1 if and only if st = 1

and
wij (t) = 1 if and only if st−1 = i and st = j,

the CDLL can be written as

log
(
Pr
(
x(T ), s(T )

))
=

m∑
i=1

vi (1) log δi

+
m∑
i=1

m∑
j=1

(
T∑

t=2

wij (t)

)
log γij

+
m∑
i=1

T∑
t=1

vi (t) log di (xt) .

(3.13)

The idea of the EM algorithm is to replace the quantities vi (t) and wij (t)
by their conditional expectations given the observations x(T ) and the current
parameter estimates. This is the E-step:

v̂i (t) = Pr
(
St = i|x(T )

)
= αt (i)βt (i) /LT (3.14)

and

ŵij (t) = Pr
(
St−1 = i, St = j|x(T )

)
= αt−1 (i) γijdj (xt)βt (j) /LT . (3.15)

Having replaced vi (t) and wij (t) by their conditional expectations v̂i (t) and
ŵij (t) the CDLL (3.13) is maximized with respect to three sets of parameters:
the initial distribution δ, the transition probability matrix Γ, and the parameters
of the state-dependent distributions (e.g., µ1, . . . , µm and σ2

1 , . . . , σ
2
m in the case

of Gaussian distributions). This is the M-step.
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These two steps are repeated until some convergence criterion has been satis-
fied, e.g. until the resulting change in θ or the log-likelihood is less than some
threshold. The resulting value of θ is then a stationary point of the likelihood of
the observed data. The stationary point is not necessarily the global maximum,
but can also be a local maximum or a saddle point.

The M-step splits into three independent maximizations since the first term in
(3.13) depends only on the initial distribution, the second term depends only on
the transition probabilities, and the third term depends only on the parameters
of the state-dependent distributions.

The solution is to set
δi =

v̂i (1)∑m
i=1 v̂i (1)

= v̂i (1) (3.16)

and
γij =

fij (T )∑m
j=1 fij (T )

, (3.17)

where fij (T ) =
∑T

t=2 ŵij (t) is the total number of transitions from state i to
state j.

It does not seem reasonable to try to estimate the initial distribution δ based
on just one observation at time t = 1. Another possibility is to maximize the
likelihood conditioned on starting in a particular state. Maximizing the condi-
tional likelihood over the m possible starting states is equivalent to maximizing
the unconditional likelihood since δ has to be one of the m unit vectors at a
maximum of the likelihood.

If the Markov chain is assumed to be stationary, then δ is completely determined
by the transition probability matrix Γ as δ = δΓ and δ1′ = 1 and the question
of estimating δ falls away. Then the sum of the first two terms in (3.13) has to
be maximized with respect to Γ which generally requires a numerical solution
(Bulla and Berzel 2008, Zucchini and MacDonald 2009).

The maximization of the third term in (3.13) may be easy or difficult depending
on the nature of the state-dependent distributions. In some cases numerical
maximization will be necessary, but in the case of conditional univariate nor-
mal distributions the maximizing values of the state-dependent parameters are
simply

µ̂i =

∑T
t=1 v̂i (t)xt∑T
t=1 v̂i (t)

,

σ̂2
i =

∑T
t=1 v̂i (t) (xt − µ̂i)

2∑T
t=1 v̂i (t)

.
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For conditional multivariate normal distributions the M-step reads

µ̂i =

∑T
t=1 v̂i (t)xt∑T
t=1 v̂i (t)

,

Σ̂i =

∑T
t=1 v̂i (t) (xt − µ̂i) (xt − µ̂i)

′∑T
t=1 v̂i (t)

.

In the case of conditional t-distributions17 the maximizing values of the state-
dependent parameters at iteration k + 1 are

µ
(k+1)
i =

∑T
t=1 v̂i (t)u

(k)
it xt∑T

t=1 v̂i (t)u
(k)
it

,

σ2(k+1)

i =

∑T
t=1 v̂i (t)u

(k)
it

(
xt − µ

(k+1)
i

)2
∑T

t=1 v̂i (t)
,

where
u
(k)
it = σ2(k)

i

ν
(k)
i + 1

σ2(k)

i ν
(k)
i +

(
xt − µ

(k)
i

)2 .
The estimator ν(k+1)

i is the unique solution to the equation

1− ψ

(
1

2
ν
(k)
i

)
+ log

(
1

2
ν
(k)
i

)
+ ψ

(
ν
(k)
i + 1

2

)
− log

(
ν
(k)
i + 1

2

)

+
1∑T

t=1 v̂i (t)

[
T∑

t=1

v̂i (t)
(
logu(k)it − u

(k)
it

)]
= 0,

where ψ (z) = {∂Γ (z) /∂z} /Γ (z) is the Digamma function. The solution can
be determined without relevant complications, e.g. using a bisection algorithm
or quasi-Newton methods, because the function on the left-hand side is mono-
tonically increasing in ν(k)i (Bulla 2011).
In order to increase the speed of convergence a hybrid algorithm can be applied
that starts with the EM algorithm and switches to a Newton-type algorithm
when a certain stopping criterion is fulfilled as outlined by Bulla and Berzel
(2008). The resulting algorithm combines the large circle of convergence from
the EM algorithm with the superlinear convergence of the Newton-type algo-
rithm in the neighborhood of the maximum.

17The univariate Student t-distribution, X ∼ tν
(
µ, σ2

)
with µ ∈ R, σ > 0, and ν > 0, is

defined for x ∈ R. The density is dtν (x) =
Γ((ν+1)/2)

Γ(ν/2)
√

νπσ2

(
1 +

(x−µ)2

νσ2

)−(ν+1)/2
.
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The likelihood function of an HMM is in general a complicated function of the
parameters with several local maxima. Depending on the initial values, it can
easily happen that the algorithm identifies a local rather than the global max-
imum. A sensible strategy is therefore to try a range of (randomly generated)
initial values for the maximization.
In the case of continuous state-dependent distributions the likelihood can be un-
bounded in the vicinity of certain parameter combinations. For example, if the
conditional distribution is Gaussian, then the likelihood can be arbitrarily large
if the mean is equal to one of the observations and the conditional variance tends
to zero (Frühwirth-Schnatter 2006). Podgórski and Wallin (2013) showed how
this can be handled in an elegant way by leaving out the observation that makes
the largest contribution to the likelihood at each step of the maximization.18

Alternatively, the likelihood function can be maximized using a Bayesian ap-
proach based on Markov chain Monte Carlo (MCMC) sampling; by including
prior information on the ratio between the conditional variances the likelihood
becomes bounded (Frühwirth-Schnatter 2006). Rydén (2008) compared the EM
and MCMC approaches and found that MCMC can be advantageous for inter-
val estimation and inferential problems, whereas EM is a simpler and faster way
of obtaining point estimates.
The uncertainties of the parameter estimates can also be obtained through boot-
strapping as outlined by Zucchini and MacDonald (2009) or from the inverse of
the Hessian of the log-likelihood function at the optimum (see e.g. Madsen and
Thyregod 2011). Lystig and Hughes (2002) described an algorithm for exact
computation of the score vector and the observed information matrix in HMMs
that can be performed in a single pass through the data. The algorithm was
derived from the forward–backward algorithm. If some of the parameters are
on or near the boundary of their parameter space, which is often the case in
HMMs, the use of the Hessian to compute standard errors is unreliable. More-
over, the conditions for asymptotic normality of the ML estimator are often
violated, thus making approximate confidence intervals based on the computed
standard errors unreliable.

Decoding
Decoding is the process of determining the states of the Markov chain that
are most likely (under the fitted model) to have given rise to the observation
sequence. This can be done either locally by determining the most likely state
at each time t or globally by determining the most likely sequence of states.

18Seo and Kim (2012) proposed a similar strategy for avoiding spurious roots where one or more
components are overfitting a small random localized pattern in the data rather than any underlying
group structure.
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Local decoding is the maximization of the conditional distribution of St for each
t = 1, 2, . . . , T given the observations x(T ) and model parameters θ:

argmax
i=1,...,m

Pr
(
St = i|X(T ) = x(T ), θ

)
(3.18)

where the smoothing probabilities can be computed using

Pr
(
St = i

∣∣∣X(T ) = x(T ), θ
)
=
αt (i)βt (i)

LT
. (3.19)

Local decoding can lead to impossible state sequences as it does not take the
transition probabilities into account.
Global decoding is the maximization of the conditional probability19

argmax
s(T )

Pr
(
S(T ) = s(T )

∣∣∣X(T ) = x(T ), θ
)
. (3.20)

Maximizing (3.20) over all possible state sequences by brute force involves mT

function evaluations. The Viterbi algorithm (Viterbi 1967) can be used to com-
pute the most likely sequence of states in an efficient manner. This is done by
defining the highest probability along a single path for the first t observations
ending in state i at time t:

ξti = argmax
s(t−1)

Pr
(
S(t−1) = s(t−1), St = i,X(T ) = x(T )

∣∣∣ θ) . (3.21)

The probabilities ξtj can be computed recursively for t = 2, 3, . . . , T and i ∈
{1, 2, . . . ,m} using

ξtj =

(
argmax
i=1,...,m

ξt−1,iγij

)
dj (xt) (3.22)

with the initial condition ξ1i = Pr (S1 = i,X1 = x1) = δidi (x1).
The dynamic programming technique is the same as in the forward–backward
algorithm, the only difference is the substitution of the sum with a maximization.
The complexity remains O

(
m2T

)
(Dittmer 2008).

3.2 Hidden Semi-Markov Models
If the assumption of geometrically distributed sojourn times is unsuitable, then
hidden semi-Markov models can be applied. HMMs and HSMMs differ only

19This is equivalent to maximizing the joint probability Pr
(
X(T ) = x(T ),S(T ) = s(T )

∣∣∣ θ).
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in the way that the state process is defined. In HSMMs, the sojourn time
distribution is modeled explicitly for each state i:

ri (u) = Pr (St+u+1 ̸= i, St+u−v = i, v = 0, . . . , u− 2|St+1 = i, St ̸= i) (3.23)

and the transition probabilities are defined as

γij = Pr (St+1 = j|St+1 ̸= i, St = i) (3.24)

for each j ̸= i with γii = 0 and
∑

j γij = 1.
The conditional independence assumption for the observation process is similar
to a simple HMM, but the semi-Markov chain associated with HSMMs does
not have the Markov property at each time t. This property is transferred to
the imbedded first-order Markov chain, that is the sequence of visited states
(Bulla and Bulla 2006). In other words, the future states are only conditionally
independent of the past states when the process changes state.
The HMM with geometrically distributed sojourn times is just a special case of
the HSMM and the EM algorithm as outlined in the previous section can easily
be extended to cover other sojourn time distributions (see Bulla and Bulla 2006).
The CDLL of an HSMM includes the sojourn times u1, u2, . . . , uN and the se-
quence of visited states s̃1, s̃2, . . . , s̃N , where N is the number of visited states, in
addition to the observations x1, x2, . . . , xT and the hidden states s1, s2, . . . , sT :

log
(
Pr
(
x(T ), s(T )

))
= log

(
δs̃1ds̃1 (u1)

N∏
n=2

γs̃n−1,s̃nrs̃n (un)
T∏

t=1

dst (xt)

)

= log δs̃1 +
N∑

n=1

log ds̃n (un) +
N∑

n=2

log γs̃n−1,s̃n (3.25)

+
T∑

t=1

log dst (xt) .

The four terms in (3.25) can be maximized independently as the first term
depends only on the initial distribution, the second term depends only on the
parameters of the sojourn time distributions, the third term depends only on the
transition probabilities, and the fourth term depends only on the parameters of
the state-dependent distributions.
HSMMs provide a considerable flexibility compared to HMMs without compli-
cating the estimation significantly, though the maximization of the term that
depends on the parameters of the sojourn time distributions in (3.25) typically
requires a numerical solution. The selection of the most appropriate sojourn
time distribution can, however, be a complicated problem (Bulla et al. 2010).
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3.3 Hidden Markov Models in Continuous Time
In continuous-time Markov chains, transitions may occur at all times rather
than at discrete and equidistant time points. There is no smallest time step and
the quantities of interest are the transition probabilities

pij (∆t) = Pr (S (t+∆t) = j|S (t) = i) (3.26)

as ∆t→ 0. Clearly, pij (0) = 0 for different states i and j, and it can be shown
that under certain regularity conditions

lim
t→0

P (t) = I. (3.27)

Assuming that pij (∆t) is differentiable at 0, the transition rates are defined as

p′ij (0) = lim
∆t→0

pij (∆t)− pij (0)

∆t

= lim
∆t→0

Pr (S (t+∆t) = j|S (t) = i)

∆t

= qij

(3.28)

with the additional definition qii = qi = −
∑

j ̸=i qij . The transition intensity
matrix Q = {qij} has non-negative off-diagonal elements qij , non-positive diag-
onal entries qi, and all rows sum to zero.
The stationary distribution π, if it exists, is found by solving the system of
equations {

πQ = 0
π1′ = 1.

(3.29)

If it has a strictly positive solution (all elements in π are strictly positive), then
the stationary distribution exists and is independent of the initial distribution.
The matrix of transition probabilities P (t) = {pij (t)} can be found as the
solution to Kolmogorov’s differential equation

dP (t)

dt = P (t)Q (3.30)

with the initial condition P (0) = I. The solution being

P (t) = eQtP (0) = eQt. (3.31)

It follows that the transition intensity matrix Q is the matrix-logarithm of the
one-step transition probability matrix

Q = logP (1) . (3.32)
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When the process enters state i, it remains there according to an exponential
distribution with parameter −qi > 0 before it instantly jumps to another state
j ̸= i with probability −qij/qi. A continuous-time Markov chain is fully charac-
terized by its initial distribution δ and the transition intensity matrix Q.
The exponential distribution is memoryless just like its discrete analogue, the
geometric distribution. By mapping multiple latent states to the same output
distribution, it is possible to allow for non-exponentially distributed sojourn
times. The distribution of sojourn times will then be a mixture of exponential
distributions, which is a phase-type distribution, and the Markov property will
be transferred to the imbedded Markov chain as for the HSMM. Phase-type
distributions can be used to approximate any positive-valued distribution with
arbitrary precision.
It is often reasonable to assume that in a short time interval∆t, the only possible
transitions are to the neighboring states:

pij = o (∆t) , |i− j| ≥ 2,

pii (∆t) = 1− qi∆t+ o (∆t) ,

pi,i−1 (∆t) = wiqi∆t+ o (∆t) ,

pi,i+1 (∆t) = (1− wi) qi∆t+ o (∆t) ,

i ∈ {1, 2, . . . ,m} ,


(3.33)

where lim∆t→0
o(∆t)
∆t = 0. The notation includes transitions from state 1 to

m and reverse with the definition that state 0 = state m and state (m+ 1) =
state 1.
The Markov chain {S (t)} is then a birth-and-death process in the sense that it
can change its state index by at most one in each step. Although the process
cannot go straight from state i to state i + 2 there is no limit to how fast the
transition can occur. The matrix of transition intensities has the structure

Q =


−q1 (1− w1) q1 0 · · · 0 w1q1
w2q2 −q2 (1− w2) q2 · · · 0 0
...

...
... . . . ...

...
(1− wm) qm 0 0 · · · wmqm qm

 . (3.34)

The number of parameters increases linearly with the number of states. Thus,
a continuous-time Markov chain yields a parameter reduction over its discrete-
time analogue if the number of states exceeds three. The higher the number
of states, the larger the reduction. In addition, it is possible to incorporate
inhomogeneity without a dramatic increase in the number of parameters using
splines, harmonic functions, or similar.20

20See Iversen et al. (2013) for an example of the use of splines to reduce the number of parameters
in an inhomogeneous Markov model.
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Another advantage of a continuous-time formulation is the flexibility to use
data with any sampling interval as the data is not assumed to be equidistantly
sampled. In a discrete-time model, the trading days are aggregated meaning that
weekends and bank holidays are ignored so that Friday is followed by Monday
in a normal week. A continuous-time model is able to recognize the longer
time span between Friday and Monday, which could lead to a different behavior
(see e.g. Rogalski 1984, Asai and McAleer 2007). The time span should not
necessarily be three days, the point is that the sampling times are modeled.
A Markov process {S (t)} observed at equidistant time points t1 = ς, . . . , tT =
ςT defines a discrete Markov chain Y1 = S (ς) , . . . , YT = S (ςT ) with transition
matrix Γ = eQς . It is not every discrete Markov chain that belongs to a contin-
uous Markov process. In other words, not every discrete Markov chain can be
imbedded into a continuous-time Markov process. This is called the imbedding
problem (Dittmer 2008).

A Continuous-Time Version of the Baum–Welch Algorithm
The CDLL of a CTHMM, i.e. the log-likelihood of the observations x1, . . . , xT
and the unobserved states s1, . . . , sT at the discrete time points t1, . . . , tT , is

log
(
Pr
(
x(T ), s(T )

))
= log

(
δs1

T∏
i=2

psi−1,si (ti − ti−1)

T∏
i=1

dsi (xi)

)

= log δs1 +
T∑

i=2

log psi−1,si (ti − ti−1) (3.35)

+

T∑
i=1

log dsi (xi) .

The probability of the transitions can be written as the probability of a sojourn
of a specific length multiplied by the probability of an instant transition to
another state as it was done for the HSMM. With fij (τ) denoting the total
number of transitions from state i to j and Ri (τ) the total duration spent in
state i the CDLL can be written as

log
(
Pr
(
x(T ), s(T )

))
= log δs1 +

m∑
i=1

∑
j ̸=i

fij (τ) log qij

+

m∑
i=1

qiRi (τ) +

T∑
i=1

log dsi (xi) .
(3.36)

In this way the CDLL is expressed in terms of the parameters. The first and
the last term can be dealt with in the same way as for the discrete-time models,
but the middle terms require more attention.
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The maximum likelihood estimator of the transition rates is

q̂ij =
fij (τ)

Ri (τ)
(3.37)

where the diagonal entries follow from the generator constraint q̂i = −
∑

j ̸=i q̂ij .
The problem is that neither f nor R are available and it is not trivial to evaluate
their expectations.
Hobolth and Jensen (2011) considered the problem of estimating the summary
statistics needed in the EM algorithm. The expected time spent in state i
conditional on starting in state A at time t1 = 0 and ending in state B at time
tT = τ is

E [Ri (τ)|S (0) = A,S (τ) = B] =
1

pAB (τ)

ˆ τ

0

pAi (t) piB (τ − t)dt. (3.38)

The expected number of transitions between state i and j conditional on starting
in state A at time t1 = 0 and ending in state B at time tT = τ is

E [fij (τ)|S (0) = A,S (τ) = B] =
qij

pAB (τ)

ˆ τ

0

pAi (t) pjB (τ − t)dt. (3.39)

The joint expectation integral can be evaluated using eigenvalue decomposi-
tion under the assumption that Q has no repeated eigenvalues. If Q is di-
agonalizable with real eigenvalues λ1, λ2, . . . , λm, then Q = UΛU−1 where
Λ = diag (λ1, λ2, . . . , λm) is a diagonal matrix with the eigenvalues on the di-
agonal and the columns of U are the eigenvectors. The transition probability
matrix P (t) = eQt = UeΛtU−1 and the integral can be evaluated as
ˆ τ

0

pAα (t) pβB (τ − t) dt =
ˆ τ

0

(UeΛtU−1)Ai(UeΛ(τ−t)U−1)jBdt

=

m∑
i=1

UAiU−1
iα

m∑
j=1

UβjU−1
jB

ˆ τ

0

etλi+(τ−t)λjdt.

The last integral is easy to evaluate in the case of real eigenvalues.
Let Ψ(0, τ) be either of the complete-data sufficient statistics Ri (τ) or fij (τ).
Ψ(0, τ) is then an additive statistic, that is

Ψ(0, τ) =

T∑
l=2

E [Ψ (tl−1, tl) |Sl−1 = sl−1, Sl = sl ] .

It follows from the Markov property that

E
[
Ψ(0, τ)

∣∣∣s(T )
]
=

T∑
l=2

E [Ψ (tl−1, tl) |Sl−1 = sl−1, Sl = sl ] . (3.40)
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In the E-step, the expectation that is needed is

E
[
Ψ(0, τ)

∣∣∣x(T )
]
=

T∑
l=2

m∑
i=1

m∑
j=1

E [Ψ (tl−1, tl) |Sl−1 = i, Sl = j ]

· Pr
(
Sl−1 = i, Sl = j

∣∣∣x(T )
)
,

(3.41)

where the conditional probabilities

Pr
(
Sl−1 = i, Sl = j

∣∣∣x(T )
)
=
αtl−1

(i) pij (tl − tl−1) dj (xl)βtl (j)

LT
(3.42)

are outputs from the forward–backward algorithm.
Each step of the forward–backward recursions (3.8) and (3.9) requires the calcu-
lation of the transition probability matrix P (t) = eQt. This can be done in an
efficient manner using the eigenvalue decomposition of Q. The relatively small
size of the state space in financial applications does not prohibit numerical es-
timation of the matrix exponential. It is, however, still desirable to avoid this
computationally intensive calculation whenever possible.
The scaling by 1/pAB (τ) in (3.38) and (3.39) cancels with the transition proba-
bility in (3.42). The evaluation of the expectations of the summary statistics f
and R does therefore not require further evaluations of the matrix exponential.
The really time-consuming task is the sum over all possible sequences of states
in (3.41).
Lange and Minin (2013) reported good results using the R package SQUAREM due
to Varadhan (2012) to accelerate the convergence of the EM algorithm. They
found that the accelerated EM algorithm outperformed other optimization ap-
proaches including direct maximization of the observed data likelihood by nu-
merical methods as implemented in the R package msm due to Jackson (2011)
and the EM algorithm of Bureau et al. (2000) that uses numerical maximiza-
tion to update the parameter estimates in the M-step. Alternatively, a hybrid
algorithm that switches to a Newton-type algorithm in the neighborhood of the
maximum can be applied to increase the speed of convergence as outlined in
section 3.1. As to the present application, there is no need to consider means of
reducing the time to convergence.

3.4 Model Estimation and Selection
The focus will be on modeling the stock returns as stocks are typically the largest
risk contributor in a portfolio. Another reason to focus on the stock index is
that stock markets generally lead the economy. Thus, a stock index will often
bottom (and head higher) before the economy begins to pick up, and top out
before the economy begins to slow down.
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The focus will be on univariate models, but a multivariate model will be tested in
chapter 5. The models that will be estimated are both discrete and continuous-
time HMMs with conditional normal distributions following the approach by
Rydén et al. (1998) and Nystrup et al. (2014), respectively; discrete-time HMMs
with conditional normal distributions and a t-distribution in the state with the
highest volatility following the approach by Bulla (2011); discrete-time HMMs
with conditional t-distributions in all the states; and discrete-time HSMMs
with negative binomial distributed sojourn times and conditional normal or t-
distributions following the approach by Bulla and Bulla (2006).
The estimated models will be compared in terms of how they fit the empirical
moments and the autocorrelation function of the squared log-returns. Finally,
the likelihood of the models will be compared to the number of parameters using
model selection criteria.
The discrete-time models are estimated using the R package hsmm due to Bulla
et al. (2010) that implements the EM algorithm for various sojourn time distribu-
tions including the geometric and the negative binomial distribution. The only
exception is the HMM with conditional normal distributions and a t-component
in the state with the highest variance. The hsmm package cannot handle dif-
ferent conditional distributions across the states so those models are estimated
using the implementation of the Baum–Welch algorithm that can be found in
appendix A.1 on page 93.
The CTHMM is estimated using the implementation of the continuous-time
version of the Baum–Welch algorithm that can be found in appendix A.2 on
page 96. This algorithm definitely seemed superior to the msm package due to
Jackson (2011) that is based on direct numerical maximization of the likelihood
function. The Baum–Welch algorithm was much more robust towards initial
values without a notable decrease in the speed of convergence.

Exploring the Estimated Models
This subsection will focus on the normal HMMs, but the estimated models all
have the same structure. The estimated parameters for the fitted two, three, and
four-state HMMs with conditional normal distributions are shown in table 3.1.
Approximate standard errors of the estimates based on the observed information
are reported in parentheses.21 The stationary distributions are derived from the
estimated transition probability matrices. Parameter estimates for all the fitted
models can be found in appendix B on page 103.
The two-state model has a low-variance state with a positive mean return and
a high-variance state with a negative mean return implying that turbulence is
associated with lower returns, on average. The two states are mostly identified

21See section 3.1 for comments on the use of the Hessian to compute standard errors.
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Table 3.1
Parameter estimates for the fitted m-state HMMs with conditional normal distributions.
m Γ µ× 104 σ2 × 104 δ π

2
0.987 0.013

(0.003)
0.029 0.971
(0.008)

6.8
(1.2)
−10.0
(4.6)

0.32
(0.01)
2.26
(0.14)

1

0

0.69

0.31

3

0.988 0.012 0
(0.004)

0.012 0.981 0.006
(0.004) (0.002)

0 0.043 0.957
(0.016)

8.8
(1.3)
−1.0
(2.5)
−32.5
(16.3)

0.24
(0.01)
0.88
(0.04)
6.05
(0.65)

1

0

0

0.48

0.45

0.07

4

0.983 0.017 0 0
(0.004)

0 0.651 0.331 0.018
(0.042) (0.012)

0.033 0.240 0.727 0
(0.010) (0.036)

0 0 0.053 0.947
(0.014)

8.9
(1.2)
−69.1
(7.7)
50.7
(6.9)
−27.9
(16.8)

0.47
(0.01)
0.71
(0.05)
0.74
(0.05)
2.48
(0.67)

1

0

0

0

0.49

0.19

0.25

0.07

by the variance as the difference in the mean values is of a similar magnitude as
the variances. Nevertheless, the difference in the mean values is a prerequisite
for the model’s ability to reproduce the observed first-order autocorrelation and
skewness. The two states are both very persistent.
The main difference compared to the two-state models with conditional t-distri-
butions is the longer tails of the t-distribution that lead to a lower variance
and a higher persistence in the high-variance state. Consequently, the station-
ary probabilities of the two states are more even in the case of conditional
t-distributions.
When adding a third state to the model, an interesting structure emerges where
the two outer states only communicate through the middle state. The proba-
bilities of switching between state one and three are fixed to zero in order to
save two parameters as they were effectively zero anyway. The third state has
a high variance, a low mean return, and is less persistent than the two other
states. The third state is sometimes referred to as an outlier state due to its
low unconditional probability and high variance (Rydén et al. 1998, Bulla et al.
2011).
The four-state model has two states that are less persistent with a similar vari-
ance. Six of the estimated transition probabilities were effectively zero. The
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Figure 3.2: Density histograms of the MSCI ACWI log-returns together with density
functions for the state-dependent normal distributions scaled by the stationary distribu-
tion of the underlying Markov chain and the resulting unconditional distribution for the
estimated two, three, and four-state models.

high-variance state again has a low unconditional probability. The simple struc-
ture of the transition probability matrix offsets the advantage of a continuous-
time formulation when the Markov chain is assumed to be homogeneous and
the observations equidistantly sampled.

The conditional densities scaled by the stationary probabilities are shown in fig-
ure 3.2 together with the resulting unconditional density and a density histogram
of the log-returns of the MSCI ACWI. The unconditional densities appear to be
a reasonable fit to the empirical distribution for all three models although the
two-state model does not fully capture the kurtosis of the empirical distribution.

Looking at the conditional densities for the three and four-state models it is
evident that the high-variance state, which is the density lying very close to the
first axis due to its low unconditional probability, captures the tails on both sides
of the distribution. It illustrates that turbulent periods are not characterized
only by low or negative returns in agreement with the definition by Chow et al.
(1999).
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Table 3.3
The first four moments of the MSCI ACWI daily log-returns and the fitted models.

Model Mean SD Skewness Kurtosis
rt 0.00018 0.0095 -0.40 13
HMMN (2) 0.00017 0.0097 -0.21 5.9
HMMNt (2) 0.00026 0.0095 -0.03 17
HMMt (2) 0.00028 0.0095 -0.18 15
HSMMN (2) 0.00013 0.0096 -0.31 6.6
HSMMt (2) 0.00027 0.0095 -0.20 12
HMMN (3) 0.00011 0.0097 -0.48 10
HMMNt (3) 0.00015 0.0097 -0.46 19
HMMt (3) 0.00018 0.0098 -0.44 18
HSMMN (3) 0.00015 0.0096 -0.52 10
HSMMt (3) 0.00021 0.0096 -0.55 15
HMMN (4) 0.00014 0.0096 -0.42 10
HMMNt (4) 0.00016 0.0096 -0.39 15
HSMMN (4) 0.00017 0.0094 -0.50 10
CTHMMN (4) 0.00021 0.0095 -0.39 10

Matching the Moments
Table 3.3 shows the first four empirical moments of the in-sample log-returns
of the MSCI ACWI together with the moments of the fitted models based on
250,000 Monte Carlo simulations. The moments and the autocorrelation func-
tions could have been computed numerically, but it would mainly affect the
mean values; the simulated mean value is relatively far from the empirical mean
value for some of the models as a result of the large standard deviation. This is
not the case for the theoretical values.
The two-state models with conditional normal distributions capture some of
the observed skewness, but only half of the observed kurtosis. The two-state
models with one or more t-components are able to reproduce the large kurtosis,
but not the skewness. In fact, the two-state HMM with one t-component does
not capture the observed skewness at all.
A much better fit to the empirical moments is obtained by increasing the number
of states from two to three as concluded by Nystrup et al. (2014). The HMMs are
the best at capturing the skewness. The HMMs with one or more t-components
overestimate the kurtosis, but the three-state models are all able to reproduce
the large kurtosis. For the HMM and the HSMM with conditional t-distributions
the number of degrees of freedom in the middle state is above 100, meaning that
the conditional distribution is effectively normal.
Increasing the number of states from three to four improves the fit to the em-
pirical moments although the improvement is less significant compared to going
from two to three states. It was not possible to estimate models with condi-
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tional t-distributions in all four states as the number of degrees of freedom went
towards infinity for some of the states. The four-state models provide more or
less an equally good fit to the moments.

Reproducing the Long Memory

The empirical autocorrelation function for the squared log-returns and the squared
outlier-corrected log-returns of the MSCI ACWI and the fitted models are shown
in figure 3.4. Of the two-state models, the two models with conditional normal
distributions do the best job at reproducing the shape of the ACF. The fluc-
tuations at lag one to ten for the two-state HSMM with conditional normal
distributions is a result of the short expected sojourns of this model.

The models with one or more t-components are very persistent, but at too low of
a level. As pointed out by Bulla (2011), the increased persistence is most likely
a result of the excess kurtosis of the t-distributed component(s) that allows for
less frequent state changes. Looking at the outlier-corrected squared log-returns
in the right-hand column, the models with conditional normal distributions are
still better at capturing the decay.

Increasing the number of states to three leads to a better fit to the empirical
autocorrelation function of the squared log-returns. The differences between the
models are smaller, but the two models with conditional normal distributions
are still the best fit. Looking at the outlier-corrected squared log-returns, the
three-state models all provide a similar fit.

A further increase in the number of states does not lead to a better fit. The
HMM with one t-component is the worst fit when looking at the squared log-
returns, while the differences in performance are small when reducing the impact
of outliers.

Model Selection

A generalized likelihood ratio test (GLRT) cannot be applied to choose between
models with different types of conditional distributions as they are not hier-
archically nested. Models with the same type of conditional distribution and
different numbers of states are hierarchically nested, but the asymptotic distri-
bution of the likelihood ratio statistic is not the usual χ2 as there is a continuum
of models with m+ 1 states that are equivalent to a model with m states. The
GLRT can be bootstrapped, but it is very time consuming (Rydén 2008).

Instead, penalized likelihood criteria can be used to select the model that is
estimated to be closest to the “true” model, as suggested by Zucchini and Mac-
Donald (2009). The disadvantage is that model selection criteria provide no
information about the confidence in the selected model relative to others.
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Figure 3.4: The empirical autocorrelation function for the squared log-returns (left
column) and the squared outlier-corrected log-returns (right column) of the MSCI ACWI
and the fitted models.
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Table 3.5
Model selection based on the Akaike and the Bayesian information criterion.

Model No. of parameters Log-lik AIC BIC
HMMN (2) 7 12949 -25884 -25840
HMMNt (2) 8 13032 -26049 -25999
HMMt (2) 9 13037 -26056 -26000
HSMMN (2) 9 12991 -25964 -25908
HSMMt (2) 11 13048 -26075 -26006
HMMN (3) 12 13135 -26246 -26172
HMMNt (3) 13 13140 -26253 -26172
HMMt (3) 15 13143 -26256 -26162
HSMMN (3) 15 13140 -26251 -26157
HSMMt (3) 18 13148 -26260 -26147
HMMN (4) 17 13174 -26315 -26209
HMMNt (4) 18 13178 -26320 -26208
HSMMN (4) 21 13198 -26353 -26222
CTHMMN (4) 17 13170 -26307 -26201

Table 3.5 shows the number of parameters, the log-likelihood, and the value of
the Akaike22 and the Bayesian23 information criterion for the estimated mod-
els. The four-state models are preferred by the two information criteria. Most
emphasis is put on the BIC as various simulation studies have shown that the
AIC tends to select models with too many states as it puts less weight on the
number of parameters (Bacci et al. 2012). Rydén (2008) remarked that BIC is
based on approximating the distribution of the ML estimator by a normal and
may be unreliable for data of small or moderate size, though.
Looking at the two-state models, the models with conditional t-distributions are
preferred by a large margin. The differences between the three and four-state
models are a lot smaller. The increase in the number of parameters with the
number of states for the discrete-time models is not quadratic as the estimated
transition probability matrices have a simple structure where it is not all transi-
tions that are possible. As a consequence, the four-state CTHMM has the same
number of parameters as the four-state HMM and provides a similar fit.
The four-state HSMM with conditional normal distributions is preferred by the
BIC although the model is not a better fit to the empirical moments nor the
long memory of the squared process than the three-state HMM with conditional
normal distributions that has 12 instead of 21 parameters. As argued by Dacco
and Satchell (1999), the performance of the models should be evaluated by

22The Akaike information criterion is defined as AIC = −2 logL+2p, where p is the number of
parameters.

23The Bayesian information criterion is defined as BIC = −2 logL + p logT , where T is the
number of observations.
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methods appropriate for the intended application rather than in-sample fit to
the data. The topic of model selection will, therefore, be revisited in chapter 5.

Parameter Stationarity
Following the approach by Bulla et al. (2011) the parameters of the two-state
HMM with conditional normal distributions are estimated using a rolling win-
dow of 2000 trading days corresponding to about eight years. The result is
shown in figure 3.6 where the dashed lines are the in-sample ML estimates. It
is evident that the parameters are far from constant throughout the in-sample
period. The size of the variations seems consistent with the approximate stan-
dard errors reported in table 3.1 on page 44. For all parameters, the movements
at the end of 2008 stand out.
Figure 3.7 shows the parameters of a two-state HMM with a conditional t-
distribution in the high-variance state estimated using a rolling window of 2000
trading days. The parameters are still far from constant, but the variations are
smaller especially towards the end of 2008. It is only the degrees of freedom of
the t-distribution that change dramatically at the end of 2008. The degrees of
freedom vary between 8 and 14 throughout most of the in-sample period before
dropping below the ML estimate of 4.5 in 2008.
The length of the rolling window affects the parameter estimates. Bulla et al.
(2011) chose 2000 days based on the average length of an economic cycle. If the
window length is reduced to 1000 days, then the degrees of freedom of the t-
distribution exceed 100 throughout most of the in-sample period, meaning that
the distribution in the high-variance state is effectively normal. It might suggest
that the t-distribution is simply a compensation for inadequacies of the model.
The shorter the rolling window, the larger the variations in the parameters, but
the models change character if the window is too short. The parameters of the
two-state HMM with conditional normal distributions, when estimated using
a rolling window of 1000 trading days, are shown in figure 3.8. Compared to
figure 3.6, the impact of the GFC on the variance parameters is seen to die out
before the end of the sample period due to the shorter window.
To summarize, it is evident that the parameters cannot be assumed to be sta-
tionary. This will be particularly important in the out-of-sample testing. As a
consequence of the non-constant transition probabilities, the sojourn time distri-
bution becomes a mixture of geometric distributions that does not possess the
memoryless property. Accounting for the non-constant transition probabilities
is, therefore, likely to offset the advantage of an HSMM.

3.5 Gradient-Based Methods
As pointed out by Cappé et al. (2005) it is possible to evaluate derivatives
of the likelihood function with respect to the parameters for any model that
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Figure 3.6: The parameters of a two-state Gaussian HMM estimated using a rolling
window of 2000 trading days. The dashed lines are the in-sample ML estimates.
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Figure 3.7: The parameters of a two-state HMM with a conditional t-distribution in the
high-variance state estimated using a rolling window of 2000 trading days. The dashed
lines are the in-sample ML estimates.
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Figure 3.8: The parameters of a two-state Gaussian HMM estimated using a rolling
window of 1000 trading days. The dashed lines are the in-sample ML estimates.
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the EM algorithm can be applied to. This is obvious because the maximizing
quantities in the M-step are derived based on the derivatives of the likelihood
function. As a consequence, instead of resorting to a specific algorithm such as
the EM algorithm, the likelihood can maximized using gradient-based optimiza-
tion methods.
As already argued, the EM algorithm is preferred to direct numerical maximiza-
tion of the likelihood function due to its larger robustness to initial values. The
reason for exploring gradient-based methods is the flexibility to make the es-
timator recursive and subsequently adaptive. Using the EM algorithm, every
observation is assumed to be of equal importance no matter how long the sample
period is. This approach works well when the sample period is short and the
underlying process is not time-sensitive. The time-varying behavior of the pa-
rameters uncovered in the previous section calls for an adaptive approach that
assigns more weight to the most recent observations while keeping in mind the
past patterns at a reduced confidence.

Recursive Estimation
The estimation of the parameters through a maximization of the conditional
log-likelihood function can be done recursively using the estimator

θ̂t = argmax
θ

t∑
n=1

logPr
(
Xn

∣∣∣X(n−1), θ
)
= argmax

θ
ℓt (θ) . (3.43)

A second order Taylor expansion of ℓt (θ) around θ̂t−1 gives

ℓt (θ) = ℓt

(
θ̂t−1

)
+∇θℓt

(
θ̂t−1

)(
θ − θ̂t−1

)
+

1

2

(
θ − θ̂t−1

)′
∇θθℓt

(
θ̂t−1

)(
θ − θ̂t−1

)
+Rt.

(3.44)

This expression is maximized with respect to θ assuming that Rt ≃ 0:

∇θℓt (θ) = ∇θℓt

(
θ̂t−1

)
+∇θθℓt

(
θ̂t−1

)(
θ − θ̂t−1

)
= 0. (3.45)

The solution is defined as the estimator

θ̂t = θ̂t−1 −
[
∇θθℓt

(
θ̂t−1

)]−1

∇θℓt

(
θ̂t−1

)
. (3.46)

It is typically assumed that near an optimum, the score function is approxi-
mately equal to the score function of the latest observation

∇θℓt

(
θ̂t−1

)
= ∇θ

(
ℓt−1

(
θ̂t−1

)
+ logPr

(
Xt

∣∣∣X(t−1), θ̂t−1

))
≈ ∇θ logPr

(
Xt

∣∣∣X(t−1), θ̂t−1

)
.

(3.47)
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The Hessian can be replaced by

∇θθℓt

(
θ̂t−1

)
=

t∑
n=1

∇θθℓn

(
θ̂n−1

)
≃ t · E

[
∇θθℓt

(
θ̂t−1

)]
= −t · It

(
θ̂t−1

)
,

(3.48)

where It (θ) is the Fisher information, leading to the Fisher scoring algorithm

θ̂t ≈ θ̂t−1 +
1

t

[
It

(
θ̂t−1

)]−1

∇θ logPr
(
Xt

∣∣∣X(t−1), θ̂t−1

)
. (3.49)

The approximation of the score function with the score function of the latest
observation is not accurate in this particular case. The algorithm of Lystig and
Hughes (2002), therefore, has to be run for each iteration, which increases the
computational complexity significantly.
The Fisher information can be updated using the Fisher information identity
E [∇θθℓt] = E [∇θℓt∇θℓ

′
t]:

It

(
θ̂
)
= −1

t

t∑
n=1

∇θℓn

(
θ̂
)
∇θℓn

(
θ̂
)′

= − t− 1

t

1

t− 1

{
t−1∑
n=1

∇θℓn

(
θ̂
)
∇θℓn

(
θ̂
)′

+ ∇θ logPr
(
Xt

∣∣∣X(t−1), θ̂
)
∇θ logPr

(
Xt

∣∣∣X(t−1), θ̂
)′}

= It−1

(
θ̂
)
+

1

t

[
∇θ logPr

(
Xt

∣∣∣X(t−1), θ̂
)

·∇θ logPr
(
Xt

∣∣∣X(t−1), θ̂
)′

− It−1

(
θ̂
)]
.

(3.50)

This is simply calculating a mean recursively. The Fisher information can be
updated using the matrix inversion lemma, since the estimator only makes use
of the inverse of the Fisher information.24 The diagonal elements of the inverse
of the Fisher information provide uncertainties of the parameter estimates as a
by-product of the algorithm.25

24The matrix inversion lemma is (A+BCD)−1 = A−1 −A−1B
(
C−1 +DA−1B

)−1
DA−1,

where A is an n-by-n matrix, B is n-by-k, C is k-by-k, and D is k-by-n.
25See section 3.1 for comments on the use of the Hessian to compute standard errors.
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The Fisher scoring algorithm is a variant of the Newton-Raphson method. The
algorithm can be very sensitive to the initial conditions, especially if the Fisher
information is poorly estimated. The problem is that the algorithm takes very
large steps initially, when t is small due to the 1

t term in (3.49). There are dif-
ferent ways to make sure that the initial steps are small enough. One possibility
is to replace 1

t by a
A+t , where 0 < a < 1 and/or A is some number, typically

corresponding to 10% of the size of the total data set. Another possibility is
to begin the recursion at some t > 2. Furthermore, it is necessary to apply a
transformation to all constrained parameters for the estimator to converge.
Figure 3.9 shows the parameters of the two-state HMM with conditional nor-
mal distributions estimated using the recursive estimator. The estimation was
started at t = 500 in order to avoid very large initial steps. The ML estimate
based on the first 1000 observations was used as initial value with the Fisher
information being initialized as one fifth of the observed information matrix.
The burn-in period is very long as a result of the high persistence of the states.
The dynamics of the model are very different when based upon less than 1000
observations as evidenced by the low values of γ11 and γ22 in the beginning. The
impact of the GFC on the estimated parameters is illustrated in that the recur-
sive estimates of the variance parameters do not converge to the ML estimate
until the GFC.

Adaptive Estimation
The recursive estimator (3.43) can be made adaptive by introducing a weighting:

θ̂t = argmax
θ

t∑
n=1

wn logPr
(
Xn

∣∣∣X(n−1), θ
)
= argmax

θ
ℓ̃t (θ) . (3.51)

A popular choice is to use exponential weights wn = λt−n, where the forgetting
factor 0 < λ < 1 (see e.g. Madsen 2008).

ℓ̃t (θ) can be Taylor expanded around θ̂t−1 similarly to (3.44). Maximizing the
second order Taylor expansion with respect to θ under the assumption that
Rt ≃ 0 and defining the solution as the estimator θ̂t leads to

θ̂t = θ̂t−1 −
[
∇θθ ℓ̃t

(
θ̂t−1

)]−1

∇θ ℓ̃t

(
θ̂t−1

)
. (3.52)

It is typically assumed that near an optimum, the score function is approxi-
mately equal to the score function of the latest observation

∇θℓt

(
θ̂t−1

)
= ∇θ

(
ℓt−1

(
θ̂t−1

)
+ logPr

(
Xt

∣∣∣X(t−1), θ̂t−1

))
≈ ∇θ logPr

(
Xt

∣∣∣X(t−1), θ̂t−1

)
.

(3.53)
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Figure 3.9: The parameters of a two-state Gaussian HMM estimated recursively. The
dashed lines are the in-sample ML estimates.
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The typical assumption, that near an optimum the score function is approxi-
mately equal to the score function of the latest observation

∇θ ℓ̃t

(
θ̂t−1

)
= ∇θ

(
λ∇θ ℓ̃t−1

(
θ̂t−1

)
+ λ0 logPr

(
Xt

∣∣∣X(t−1), θ̂t−1

))
≈ logPr

(
Xt

∣∣∣X(t−1), θ̂t−1

)
,

(3.54)

is not accurate in this case. In order to compute the weighted score function,
the algorithm of Lystig and Hughes (2002) has to be run for each iteration and
the contribution of each observation has to be weighted.
The Hessian can be approximated by

∇θθ ℓ̃t

(
θ̂t−1

)
= ∇θθ

t∑
n=1

λt−n logPr
(
Xn

∣∣∣X(n−1), θ̂t−1

)
=

t∑
n=1

λt−n∇θθ logPr
(
Xn

∣∣∣X(n−1), θ̂t−1

)
≈

t∑
n=1

λt−n
(
−It

(
θ̂t−1

))
.

(3.55)

This leads to the recursive, adaptive estimator

θ̂t ≈ θ̂t−1 +
1− λ

1− λt

[
It

(
θ̂t−1

)]−1

∇θ ℓ̃t

(
θ̂t−1

)
, (3.56)

where the Fisher information can be updated recursively using (3.50).26 The
fraction 1−λ

1−λt can be replaced by 1
min(t,t0) , where t0 is a constant, in order to

improve the clarity. The two fractions share the property that they decrease
towards a constant when t increases. A forgetting factor of λ = 0.998, for
example, corresponds to an effective window length of t0 = 1

1−0.998 = 500.
Figure 3.10 shows the parameters of the two-state HMMwith conditional normal
distributions estimated using the adaptive estimator (3.56) with an effective
window length of t0 = 500. The dashed lines show the in-sample ML estimates.
The initialization is similar to the recursive estimation. The adaptivity is most
evident through the estimated variance parameters as the impact of the GFC
is seen to die out through the out-of-sample period compared to the recursive
estimates in figure 3.9 on page 57. λ = 0.998 is the lowest value of the forgetting
factor that leads to reasonable estimates.
Using exponential forgetting the effective window length can be reduced com-
pared to using fixed-length forgetting thereby allowing a faster adjustment to

26∑t
n=1 λ

t−n = 1−λt

1−λ
.
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Figure 3.10: The parameters of the two-state HMM with conditional normal distribu-
tions estimated adaptively using a forgetting factor of λ = 0.998. The dashed lines are
the in-sample ML estimates.



60 3 Markov-Switching Mixtures

changes and a better reproduction of the current parameter values. Exponen-
tial forgetting is more meaningful as an observation is not just excluded from
the estimation from one day to the next. In principle, all past observations
are included in the estimation, but some are assigned an infinitesimally small
weight.



CHAPTER 4
Strategic Asset

Allocation

Strategic asset allocation is long-term in nature and based on long-term views
of asset class performance. Dahlquist and Harvey (2001) distinguished between
conditional and unconditional allocation based on how information is used to
determine weight changes—unconditional implying no knowledge of the current
regime. This chapter considers SAA in an unconditional framework to clearly
distinguish it from the regime-based asset allocation that is the topic of chap-
ter 5.

Based on theoretical arguments, Merton (1973) showed that the optimal allo-
cation is affected by the possibility of uncertain changes in future investment
opportunities—such as regime changes—even if the current regime cannot be
identified. A risk averse investor will, to some degree, want to hedge against
changes to the investment opportunity set. A better description of the behav-
ior of financial markets, e.g. using a regime-switching model, will therefore be
valuable, also for SAA.

With an empirical approach based on returns for eight asset classes including US
and non-US stocks and bonds, high-yield bonds, EM equities, commodities, and
cash equivalents, Chow et al. (1999) found that portfolios optimized based on
the full-sample covariance matrix could be significantly suboptimal in periods
of financial stress. Kritzman and Li (2010) later showed, as an extension of
the work of Chow et al. (1999), that by considering the conditional behavior
of assets it is possible to construct portfolios that are conditioned to better
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withstand turbulent events and, at the same time, perform relatively well in all
market conditions.
The performance of the optimized portfolios serve as a benchmark for the per-
formance of the dynamic strategies that will be tested in the next chapter. The
portfolios are optimized based on scenarios. The scenario generation is dis-
cussed in section 4.1 and the portfolios are optimized in section 4.2. Finally,
the performance of the portfolios in sample and out of sample is examined in
section 4.3.

4.1 Scenario Generation
A general way to describe risk is by using scenarios. A scenario being a re-
alization of the future value of all parameters that influence the portfolio. A
collection of scenarios should capture the range of variations that is likely to
occur in these parameters including the impact of the shocks that are likely to
come. These representations of uncertainty are the cornerstone of risk manage-
ment. The purpose of generating scenarios is not to forecast what will happen.
There are three overall approaches to generating scenarios that should be men-
tioned. The first is to generate scenarios by sampling historical data through
bootstrapping. The second approach is to generate scenarios through random
sampling and then accept each scenario if its statistical moments match those
of the observed data (see e.g. Høyland and Wallace 2001). The third approach,
which is the approach that will be emphasized in this chapter, is to develop a the-
oretical model with parameters calibrated to historical data and then simulate
the model to generate scenarios. Simple bootstrapping and moment matching
are well suited to capture the empirical moments including the mean, covariance,
skewness, and kurtosis, but they are unable to reproduce the autocorrelation.
Autocorrelation can reduce risk estimates from a time series by inappropriately
smoothing the volatility.
The frequency of the analyzed data has important implications for the measured
risk throughout an investment horizon. Risk is typically measured as the prob-
ability of a given loss or the amount that can be lost with a given probability at
the end of the investment horizon. Kritzman and Rich (2002) argued that the
exposure to loss throughout an investment horizon, not only at its conclusion,
is important to investors, as it is substantially greater than investors normally
assume. Scenarios based on daily rather than monthly data lead to more reli-
able estimates of the within-horizon exposure to loss, as lower-frequency data
smoothens the estimated risk as discussed in section 1.2.
It is a common belief that time diversification reduces risk and as a consequence
long-term investors should have a higher proportion of risky assets in their
portfolio than short-term investors (see e.g. Siegel 2007). It depends crucially on
how the market behaves. Under a random walk, short and long-term investors
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should have the same exposure to risk as there is no risk-reduction by staying
in the market for an extended period of time, whereas mean reversion generates
a higher proportion of risky assets for long-term investors. The probability of
losses in the long run is never zero, regardless of the market behavior, thus it
must also depend on the level of risk aversion. As noted by Kritzman and Rich
(2002), the within-horizon probability of loss rises as the investment horizon
expands even if the end-of-horizon probability of loss diminishes with time.

The time horizon has a significant impact on the optimal allocation in a condi-
tional framework as shown by Guidolin and Timmermann (2007). In an uncon-
ditional framework, the time horizon is less important, as the initial distribution
is assumed to be the stationary distribution. The scenarios generated in this
chapter will have a one-year horizon. The one-year horizon reflects that the
long-term views of asset class performance that SAA is based upon are typically
updated once a year as noted by Dahlquist and Harvey (2001).

Regime-switching models are well suited to capture the time-varying behavior
of risk premiums, variances, and correlation patterns. A multivariate model is
chosen to secure a proper representation of the correlation patterns in financial
returns. As noted by Sheikh and Qiao (2010), the correlations between asset
classes tend to strengthen during periods of high market volatility and stress
meaning that diversification might not materialize when it is needed the most.
Inappropriately assuming linearity of correlations can lead to a significant un-
derestimation of joint negative returns during a market downturn.

The parameter estimates for the fitted three-state multivariate Gaussian HMM
are shown in table 4.1 together with approximate standard errors based on boot-
strapping. The multivariate models were estimated using the R package RHmm
due to Taramasco and Bauer (2013) that offers a faster but less comprehensive
implementation of the EM algorithm. The number of states is selected based
on the results in chapter 3. Based on model selection criteria it would be op-
timal with five states to capture the correlation patterns, but there is a strong
preference for a less comprehensive model.

With three states the number of parameters is 35. The structure of the model is
similar to the univariate three-state models estimated in chapter 3; there are two
almost equally probable states and one recession state with a low unconditional
probability. The correlation between stocks and bonds is significantly positive in
the bull state and significantly negative in the two other states. The commodity
index has a low correlation with both the stock and the bond index in the bull
and bear state, but the size of the correlations increases significantly in the
recession state. Three states seem to give a reasonable representation of the
time-varying behavior of the mean values, variances, and correlations. It will
remain a possibility for future work to examine the impact of the number of
regimes on the SAA performance.
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Table 4.1
Parameter estimates for the fitted three-state multivariate Gaussian HMM.

Γ µ× 104 σ2 × 104

0.984 0.015 0.001
(0.004) (0.001)

0.016 0.969 0.015
(0.004) (0.005)
0.008 0.143 0.850
(0.014) (0.039)

7.6 −0.4 7.0
(1.3) (0.4) (2.6)
−2.5 1.2 3.8
(2.5) (0.5) (3.5)
−20.5 −0.4 −75.4
(21.8) (2.7) (24.0)

0.26 0.03 1.20
(0.01) (0.00) (0.07)
0.93 0.03 1.90
(0.05) (0.00) (0.09)
7.60 0.11 8.91
(0.93) (0.01) (1.13)

δ π ρACWI, GBI ρACWI, GSCI ρGBI, GSCI
1

0

0

0.49

0.46

0.05

0.31
(0.03)
−0.37
(0.03)
−0.42
(0.09)

0.03
(0.02)
0.07
(0.03)
0.43
(0.09)

−0.01
(0.02)
−0.06
(0.03)
−0.19
(0.08)

Figure 4.2 shows ten of the 10,000 simulated scenarios (gray) together with the
5%, 25%, 50%, 75%, and 95%-quantile (black), and the maximum drawdown
(MDD) scenario (red) for each of the indices. The MDD is the largest relative
decline from a historical peak in the index value. It provides a measure of the
within-horizon exposure to loss. It is not necessarily the same scenario that
contains the MDD for all three indices.

With a multivariate model of the conditional behavior of the three indices it is
not necessary to generate scenarios as the unconditional distribution is known.
The optimal asset allocation could be inferred directly from the unconditional
distribution. The reason for exploring scenario generation is the ease at which
it can be implemented and generalized to more complex settings where the
unconditional distribution is unknown.

4.2 The Mean–CVaR Model
In an asset allocation framework that incorporates non-normality, the variance
is ineffective as the primary quantifier of portfolio risk because it equally pe-
nalizes desirable upside and undesirable downside movements. Non-normality
can impact asset allocation as the downside risk associated with different asset
classes is very different (see e.g. Sheikh and Qiao 2010).

The Mean–CVaR model is an alternative to the widely used mean–variance
optimization introduced by Markowitz (1952). The Conditional Value-at-Risk
at level 1 − α (CVaR(1−α)) is defined as the average loss in the 100 (1− α)%
worst scenarios. The literature on CVaR has its roots in the calculation of
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Figure 4.2: Ten of the 10,000 simulated scenarios (gray) together with the 5%, 25%,
50%, 75%, and 95%-quantile (black), and the maximum drawdown scenario (red).

expected shortfall in insurance where losses are the focus and, therefore, by
definition positive. The α-quantile of the loss distribution is called the Value-
at-Risk (VaR(1−α)). The CVaR, unlike the VaR, is a coherent risk measure
(Artzner et al. 1999).

The objective of the Mean–CVaR model is to maximize the expected return
(ER) and at the same time minimize the CVaR of the portfolio. The objective
function is a weighted combination of risk and return. Each value of the weight
λ in the interval [0; 1] yields a portfolio that has the maximum ER for a given
level of CVaR or, equivalently, the minimum CVaR for a given level of ER. The
weight λ is a utility parameter measuring the risk aversion. The value λ = 1
yields the portfolio that has the lowest possible CVaR and λ = 0 yields the
portfolio that has the highest possible ER. In practice, it is advisable to use
λ = 0.001 (or some small number greater than zero) to still have some control
of the CVaR when maximizing the ER and similarly λ = 0.999 instead of λ = 1
when minimizing the risk.

Model 4.1 outlines the optimization. Here ri is the average return of asset i, rli
is the return of asset i in scenario l, xi is the weight of asset i in the optimal
portfolio, V aR is the Value-at-Risk, pl is the probability of scenario l, and yl+ =
max

[
0,−

∑
i r

l
ixi − V aR

]
is the maximum of zero and the loss exceeding the
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Model 4.1: Mean–CVaR efficient portfolios

Maximize (1− λ)ER− λ · CV aR (4.1)
subject to ER =

∑
i

rixi, (4.2)

CV aR = V aR+

∑
l p

lyl+
(1− α)

, (4.3)

yl+ +
∑
i

rlixi + V aR ≥ 0, ∀l, (4.4)

yl+ ≥ 0, ∀l, (4.5)∑
i

xi = 1, (4.6)

xi ≥ 0, ∀i, (4.7)
ER, CV aR, V aR ∈ R. (4.8)

VaR. The CVaR is formulated as the VaR plus the average of the losses exceeding
the VaR in (4.3) in order to make the problem linear. An implementation of the
Mean–CVaR model using the R package lpSolve (Berkelaar and others 2014)
can be found in appendix A.3 on page 101.
Bertsimas et al. (2004) showed that mean–CVaR optimization might be prefer-
able to the standard mean–variance optimization, even if the distribution of
the asset returns is in fact normal or elliptical, because in this case it leads to
an efficient and stable computation of the same optimal weights and does not
require the often problematic estimation of large covariance matrices necessary
under the mean–variance approach.
The efficient frontier and the allocations along it based on the 10,000 scenarios
generated in section 4.1 are shown in figure 4.3. The portfolios on the efficient
frontier are efficient in the sense that they have the highest possible ER for their
level of risk. The steeper the slope of the frontier the better the ratio of ER to
CVaR.
A portfolio consisting only of the S&P GSCI has the maximum CVaR5% of 41%
with a one-year horizon. The allocation to the MSCI ACWI is then gradually
increased until it reaches about 58% and the portfolio has a CVaR5% of 29%.
From that point the allocation to the JPM GBI increases while the allocation
to the two other indices decreases. The inclusion of the JPM GBI increases
the steepness of the frontier as the JPM GBI had a better in-sample ratio of
ER to CVaR even after the adjustment to equal Sharpe ratios described in
section 2.6. The minimum CVaR5% of 4% is not obtained by holding a portfolio
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Figure 4.3: The efficient frontier and the allocations along it based on 10,000 scenarios
with a one-year horizon.

consisting only of the JPM GBI as an 8% allocation to the MSCI ACWI and a
2% allocation to the S&P GSCI is beneficial for diversification purposes.

4.3 Results
In Sample
Table 4.4 shows the in-sample realized return (RR), standard deviation, max-
imum drawdown, and Sharpe ratio starting from three portfolios on or near
the efficient frontier. The three portfolios realized almost identical annualized
SRs in sample. Using the SR to summarize the performance is ambivalent after
commenting on the variance being ineffective as a risk measure for non-elliptical
distributions. The RR should, therefore, also be compared to the MDD, al-
though the MDD cannot be annualized in the same way. It is expected that the
MDD for the 15-year in-sample period exceeds the one-year CVaR5% as losses
can accumulate over time but the difference is substantial.

Table 4.4
The performance of a buy-and-hold strategy over the 15-year in-sample period starting
from three different portfolios.

wACWI wGBI wGSCI ER CVaR5% RR SD MDD SR
0.25 0.6 0.15 0.031 0.10 0.025 0.08 0.37 0.33
0.5 0.25 0.25 0.047 0.21 0.037 0.11 0.48 0.32
0.45 0 0.55 0.062 0.30 0.044 0.15 0.58 0.30
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Figure 4.5: Frequency histograms of the portfolio returns based on the 10,000 scenarios.
The dashed green line is the ER and the dashed red line is the CVaR5% with opposite
sign.

Frequency histograms of the portfolio returns for the three portfolios are shown
in figure 4.5. The dashed green line shows the ER and the dashed red line is the
CVaR5% with opposite sign. The realized MDD exceeds the worst-case one-year
scenario for the two portfolios that include the JPM GBI.

Rebalancing
The results presented thus far ignore the possibility of rebalancing. Almost
immediately upon implementation, however, the portfolio weights become sub-
optimal as changes in asset prices cause the portfolio to drift away from the
optimal targets. The development in the relative weights starting from w =
(0.5, 0.25, 0.25) is depicted in figure 4.6a. The divergence from the initial weights
is significant.

Rebalancing is the most basic and fundamental long-run investment strategy,
and is naturally counter-cyclical. Rebalancing to constant weights is an example
of a strategy that leans against the wind. It ensures that the risk level is kept
constant when the current regime is assumed to be unknown. Crockett (2000)
suggested that it may be helpful to think of risk as increasing during upswings, as
financial imbalances build up, and materializing in recessions. If risk increases in
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Figure 4.6: The development in the portfolio weights in-sample with and without
rebalancing.

upswings and materializes in recessions it stands to reason that defenses should
be built up in upswings so as to be relied upon when the rough times arrive. By
leaning against the wind, it could reduce the amplitude of the financial cycle.

In an idealized world without transaction costs investors would rebalance con-
tinually to the optimal weights. In the presence of transaction costs investors
must trade off the cost of sub-optimality with the cost of restoring the opti-
mal weights. Most investors employ heuristics that rebalance the portfolio as
a function of the passage of time or the size of the misallocation (see e.g. Sun
et al. 2006, Kritzman et al. 2009). Only the effect of periodic rebalancing on
the optimal asset allocation will be considered here.

The development in the relative weights when starting from w = (0.5, 0.25, 0.25)
and rebalancing annually is shown in figure 4.6b. The divergence from the
optimal weights within a calendar year can be significant. The result of monthly
rebalancing is shown in table 4.7 after accounting for transactions costs of 0.1%.
Similar results for annual rebalancing are shown in table 4.8.

Rebalancing is seen to improve the RR and, at the same time, reduce the MDD.
The impact on the realized SD is smaller, but the overall improvement of the

Table 4.7
The performance of the three portfolios over the 15-year in-sample period after subtract-
ing 0.1% transaction costs when rebalancing monthly.

wACWI wGBI wGSCI ER CVaR5% RR SD MDD SR
0.25 0.6 0.15 0.031 0.10 0.028 0.05 0.24 0.53
0.5 0.25 0.25 0.047 0.21 0.042 0.10 0.42 0.43
0.45 0 0.55 0.062 0.30 0.051 0.15 0.56 0.35
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Table 4.8
The performance of the three portfolios over the 15-year in-sample period after subtract-
ing 0.1% transaction costs when rebalancing annually.

wACWI wGBI wGSCI ER CVaR5% RR SD MDD SR
0.25 0.6 0.15 0.031 0.10 0.033 0.05 0.22 0.63
0.5 0.25 0.25 0.047 0.21 0.048 0.10 0.40 0.50
0.45 0 0.55 0.062 0.30 0.056 0.15 0.57 0.37

Table 4.9
The performance of the three portfolios over the five-year out-of-sample period after
subtracting 0.1% transaction costs when rebalancing annually.

wACWI wGBI wGSCI ER CVaR5% RR SD MDD SR
0.25 0.6 0.15 0.031 0.10 0.063 0.06 0.10 0.99
0.5 0.25 0.25 0.047 0.21 0.094 0.13 0.19 0.75
0.45 0 0.55 0.062 0.30 0.090 0.18 0.25 0.49

SR is significant. The improvement is most significant for the portfolio that
has a 60% weight on the JPM GBI and this portfolio now outperforms the two
other portfolios in terms of SR. Monthly rebalancing does not appear to reduce
the risk beyond what annual rebalancing does, but the higher transaction costs
lead to a lower RR and, consequently, a lower SR. Based on these results annual
rebalancing is preferred to monthly rebalancing. This would be the case even if
transaction costs were only 0.01%.
The importance of allowing for rebalancing is evident from the significantly im-
proved SR. Given the improvement in performance that can be achieved by
rebalancing, a regime-based strategy would be expected to outperform a buy-
and-hold strategy as rebalancing is a natural part of a dynamic strategy. The
regime-based strategies should be compared to an SAA strategy with rebal-
ancing in order to distinguish the contribution from being regime-based from
rebalancing.

Out of Sample
Table 4.9 shows the out-of-sample performance for the three portfolios when
rebalancing annually. The five-year out-of-sample period has been favorable for
a strategy based on static weights, as it does not include any major setbacks.
The RR by far exceeds the ER and, at the same time, the MDD is below
the one-year CVaR5%. The out-of-sample SR exceeds the in-sample SR for all
three portfolios by a good margin. Obviously, the in-sample SRs would have
been higher for two of the portfolios without the adjustment of the JPM GBI
discussed in section 2.6.



CHAPTER 5
Regime-Based Asset

Allocation

If economic conditions are persistent and strongly linked to asset class perfor-
mance, then a DAA strategy should add value over static weights. The purpose
of a dynamic strategy is to take advantage of favorable economic regimes, as
well as withstand adverse economic regimes and reduce potential drawdowns. A
regime-based approach has the flexibility to adapt to changing economic condi-
tions within a benchmark-based investment policy. It straddles a middle ground
between strategic and tactical asset allocation (Sheikh and Sun 2012).

Previous studies have established a volatility reduction by dynamically shifting
into cash in the most turbulent periods, with no adverse and sometimes even
a positive effect on the realized return. All in all leading to significantly im-
proved Sharpe ratios. Not all studies considered out-of-sample testing and the
importance of transaction costs. This chapter examines whether the volatility
reduction found in previous studies on dynamic asset allocation can be achieved
when there is no risk-free asset, but possibilities for diversification by holding a
portfolio of assets which may include short positions.

The asset classes considered are stocks, bonds, and commodities to keep it sim-
ple, yet complex enough for diversification possibilities to arise. The focus on
modeling stock returns continues as portfolio risk is typically dominated by
stock market risk. The implementation builds on the analysis in chapter 3 that
showed a need for an adaptive approach. The performance of the regime-based
strategies is compared to the rebalancing strategies considered in chapter 4.
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5.1 Decoding the Hidden States

As discussed in section 3.1, there are two different ways of inferring the most
likely sequence of hidden states; it can be done locally by determining the most
likely state at each time t or globally by determining the most likely sequence
of states using the Viterbi algorithm (Viterbi 1967). Intuitively, there is a
preference for global decoding as local decoding can lead to impossible state
sequences since it does not take the transition probabilities into account, but at
the same time local decoding reduces the probability of misclassification.
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Figure 5.1: The proportion of misclassifi-
cations at each position.

Figure 5.1 shows the proportion of
misclassifications at each position
based on 50,000 simulated series of
252 observations from a three-state
Gaussian HMM with parameters es-
timated from the MSCI ACWI log-
returns. Local decoding gives the low-
est number of misclassifications, but
both techniques perform reasonably
well for the larger part of the obser-
vations with average errors of 5.9%
and 5.2%, respectively. The probabil-
ity of misclassification increases with
the number of states as Bulla et al.
(2011) reported average errors of 3.5%

and 3.2%, respectively, based on a similar study of a two-state Gaussian HMM.

The proportion of misclassifications increases strongly at the beginning and at
the end of the series to more than 10%. This is problematic as the last position
plays a central role for the state prediction at time T + 1 in an out-of-sample
setting. The difference between local and global decoding is almost 2%-points
at position 252.

An important feature in relation to the intended application is that global de-
coding reduces the number of transitions compared to smoothing. Table 5.2
shows the inferred number of in-sample transitions for the estimated models
based on global and local decoding, respectively. Looking at the two-state mod-
els, it appears that conditional t-distributions lead to a significant reduction
in the number of transitions, whereas the semi-Markov models yield too many
transitions. The differences in the number of transitions are smaller between
the three-state models. The number of transitions increases dramatically when
going from three to four states for all the univariate models. The multivariate
normal HMM leads to a large number of transitions compared to the univariate
two and three-state models, but the increase when expanding the model to four
states is smaller.
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Table 5.2
The inferred number of transitions during the 15-year in-sample period ending in 2008
using global and local decoding, respectively.

Model Global Decoding Local Decoding
HMMN (2) 33 61
HMMNt (2) 19 31
HMMt (2) 17 25
HSMMN (2) 221 559
HSMMt (2) 67 315
MHMMN (2) 53 85
HMMN (3) 33 55
HMMNt (3) 35 53
HMMt (3) 31 41
HSMMN (3) 35 55
HSMMt (3) 34 51
MHMMN (3) 64 90
HMMN (4) 361 525
HMMNt (4) 359 535
HSMMN (4) 581 719
MHMMN (4) 69 85
CTHMMN (4) 344 528

There is no doubt that the Viterbi path is preferred over the smoothed path
in a setting with perfect foresight with regard to the future returns as it leads
to significantly fewer transitions. Based on the inferred number of transitions
the four-state models and the multivariate models are ruled out as possible
candidates for a successful strategy.
Figure 5.3 shows the decoded states in sample using the Viterbi algorithm for
six of the models. Similar plots for all the estimated models can be found in
figures C.1 and C.2 on page 108. There is a noticeable difference between the
decoded states of the two-state models in the first row. The longer tails of
the t-distribution increase the persistence of the bear state and lead to fewer
transitions. The decoded states of the HMM with conditional t-distributions in
both states are very similar to those shown for the HMM with one conditional
t-distribution. The decoded states of the HSMMs do not look that different
because there is a number of sojourns that are too short-lived to be visible.
The decoded states of the three-state models in the second row of figure 5.3 are
more alike. The decoded states of the three-state HSMMs are similar to those
shown for the HMMs. The multivariate models in the last row are seen to lead
to more frequent state changes as a consequence of the lower persistence of the
bear and recession state in these models.
It will be worth testing a two-state normal HMM and a two-state model with a
conditional t-distribution in the high-variance state, as there is a considerable
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Figure 5.3: The MSCI ACWI and the decoded states using the Viterbi algorithm. Cyan
is the bull state, yellow is the bear state, and red is the recession state.
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difference between the decoded states of these two models. Since the decoded
states of the three-state models are very similar, it will only be the three-state
normal HMM that will be tested. Based on the results of the decoding, it is not
worth testing the HSMMs, the four-state models, and the multivariate models.

The work of Bulla et al. (2011) relied on the Viterbi algorithm for decoding
both in and out of sample. They applied a median filter in their out-of-sample
test to reduce the number of unnecessary state shifts. That is, the predicted
state at time t+ 1 was given by the median of the last six one-day-ahead state
predictions. The filtering procedure reduced the number of state changes by
50–65%. A future study should consider alternative filtering procedures such as
total variation regularization (Rudin et al. 1992), a generalization of the median
filter.

In an in-sample setting with perfect foresight the Viterbi path is the obvious
choice as it is the most likely sequence of states with fewer transitions than the
smoothed path. This is, however, not the case in an out-of-sample setting based
on one-step predictions. The arguments for using the Viterbi algorithm rely on
the knowledge of future returns. Out of sample, where only past returns are
known, it makes more sense to consider the smoothing probabilities in order to
obtain the best possible prediction (cf. figure 5.1 on page 72). This facilitates
a filtering procedure based on the confidence in the predicted state rather than
the number of times the state has been predicted with no minimum delay in
responding to regime changes.

The confidence threshold in the probability filter plays the same role as the
time lag in the median filter; a higher threshold value reduces the number of
transitions at the same time as increasing the risk of delaying the reaction to
regime changes. Figure 5.4 shows the predicted states of the MSCI ACWI based
on the adaptively estimated two-state normal HMM analyzed in section 3.5.
The dashed lines indicate the 92%-threshold used. If the state of day t + 1 is
predicted to be different from the predicted state for day t and the confidence
in the prediction exceeds the threshold, then the state is predicted to change,
otherwise the state remains the same.

The predicted states are fairly similar to the Viterbi path shown in figure 5.3.
With fewer short-lived sojourns and five less transitions the predicted states
are almost more similar to the Viterbi path for the two-state model that has a
conditional t-distribution in the high-variance state. The result is very sensitive
to the selected threshold value as a lower threshold would increase the number of
unnecessary transitions, whereas a higher threshold value would make it difficult
to identity any regime changes.
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Figure 5.4: The MSCI ACWI and the predicted states based on an adaptively estimated
two-state normal HMM and a probability filter with a 92%-threshold. Cyan is the bull
state and yellow is the bear state.
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Table 5.5
The performance of DAA strategies over the 15-year in-sample period after subtracting
0.1% transaction costs with no short positions allowed.

Model wBull wBear wRecession RR SD MDD SR
HMMN (2) (1, 0, 0) (0, 1, 0) 0.127 0.08 0.15 1.67
HMMNt (2) (1, 0, 0) (0, 1, 0) 0.114 0.06 0.09 1.75
HMMN (3) (1, 0, 0) (0, 0, 1) (0, 1, 0) 0.138 0.16 0.46 0.87

Table 5.6
The annualized in-sample performance of the three indices.

Index RR SD MDD SR
MSCI ACWI 0.045 0.15 0.54 0.30
JPM GBI 0.009 0.03 0.12 0.29
S&P GSCI 0.044 0.22 0.68 0.20

5.2 In-Sample Testing
The in-sample testing will assume perfect foresight with regard to the future
returns and be based on the Viterbi path. This assumption is unrealistic for
practical purposes, nevertheless the performance of the strategies should be eval-
uated in this setting to facilitate a comparison to previous studies. A strategy
that is not profitable under perfect foresight is not worth testing out of sample.
The performance under perfect foresight provides an upper boundary for the
potential of a strategy subject to the considered time period.
Table 5.5 shows the in-sample performance of a dynamic strategy with no short
positions allowed based on three different models with transaction costs fixed at
0.1% per one-way trade. The three strategies clearly outperform the strategies
based on rebalancing to static weights reported in table 4.8 on page 70. They
also outperform the three indices as summarized in table 5.6.27 The three-
state strategy realizes a lower SR than the two-state strategies due to the risk
associated with holding the S&P GSCI in the bear state.
The optimal allocation in each state was found by partitioning the in-sample
returns based on the Viterbi path. For each state 5,000 one-year scenarios
were bootstrapped from the returns belonging to that particular state. Simple
bootstrapping is applicable as the returns are assumed to be independent within
each state. Applying the Mean–CVaR model described in section 4.2 to the
generated scenarios with a risk aversion parameter λ = 0.15, corresponding
to the least risky of the three portfolios highlighted in chapter 4, led to state-

27The reported in-sample performance is based on geometric average returns, whereas the num-
bers reported in chapter 2 were based on arithmetic averages of the log-returns.



78 5 Regime-Based Asset Allocation

Table 5.7
The in-sample performance of DAA strategies after subtracting 0.1% transaction costs
when a short position in the stock index is allowed.

Model wBull wBear wRecession RR SD MDD SR
HMMN (2) (1, 0, 0) (−1, 0, 0) 0.197 0.15 0.24 1.30
HMMNt (2) (1, 0, 0) (−1, 0, 0) 0.182 0.15 0.24 1.20
HMMN (3) (1, 0, 0) (−0.32, 0, 0.68) (−1, 0, 0) 0.193 0.16 0.36 1.24

Table 5.8
The in-sample performance of DAA strategies after subtracting 0.1% transaction costs
when the deviations from the benchmark allocation are constrained.

Model wBull wBear wRecession RR SD MDD SR
HMMN (2) (0.6, 0.15, 0.25) (0.4, 0.35, 0.25) 0.069 0.09 0.35 0.77
HMMNt (2) (0.6, 0.15, 0.25) (0.4, 0.35, 0.25) 0.061 0.09 0.37 0.70
HMMN (3) (0.6, 0.15, 0.25) (0.4, 0.25, 0.35) (0.4, 0.35, 0.25) 0.065 0.10 0.37 0.68
Rebalancing (0.5, 0.25, 0.25) (0.5, 0.25, 0.25) (0.5, 0.25, 0.25) 0.048 0.10 0.40 0.50

dependent allocations that only include one of the indices at a time with the
exception of the three-state strategy, when a short position can be held.
Table 5.7 shows the in-sample results when a short position in the MSCI ACWI
is allowed. A short position does not release any capital for other positions
as it should be thought of as implemented using an inverse ETF. With a risk
aversion parameter of 0.15, the optimal allocation in the bear/recession state
is a short position in the MSCI ACWI rather than a long position in the JPM
GBI, despite the strong in-sample performance of the JPM GBI. It is possible
to achieve a higher SR by holding the JPM GBI, but a short position in the
MSCI ACWI leads to a significant excess return. The three strategies realize
similar SRs, but the three-state strategy has a higher MDD than the two-state
strategies.
As noted by Kritzman et al. (2012), strategic investors that invest with a long
time horizon typically face constraints on the size of possible deviations from
their benchmark allocation. It is therefore relevant to establish the potential of a
dynamic strategy when the possible allocations are less concentrated. Table 5.8
reports the results when the possible deviations from the benchmark allocation
w = (0.5, 0.25, 0.25) are limited to ±0.1. Kritzman et al. (2012) would refer to
this as a regime-dependent rather than regime-based strategy as opposed to the
stocks–bonds and the long–short strategy.
The dynamic tilts lead to a higher realized return and a slightly lower SD and
MDD compared to rebalancing to the benchmark allocation. The dynamic strat-
egy based on the two-state Gaussian HMM has a higher SR than the rebalancing
strategy as long as transaction costs are below 1.53% per one-way transaction
(rebalancing also becomes more expensive).
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Table 5.10
The performance of the DAA strategies over the five-year out-of-sample period after
subtracting 0.1% transaction costs with a one-day delay in the portfolio adjustment.

Model wBull wBear RR SD MDD SR
HMMN (2) (1, 0, 0) (0, 1, 0) 0.116 0.12 0.14 0.99
HMMN (2) (1, 0, 0) (−1, 0, 0) 0.082 0.18 0.35 0.47
HMMN (2) (0.6, 0.15, 0.25) (0.4, 0.35, 0.25) 0.098 0.13 0.17 0.78
Rebalancing (0.5, 0.25, 0.25) (0.5, 0.25, 0.25) 0.094 0.13 0.19 0.75

Table 5.11
The annualized out-of-sample performance of the three indices.

Index RR SD MDD SR
MSCI ACWI 0.15 0.17 0.26 0.85
JPM GBI 0.03 0.03 0.04 1.12
S&P GSCI 0.04 0.22 0.28 0.17

To summarize, the in-sample testing has shown that the strategies based on
the two-state models outperform the three-state strategies. As discussed in sec-
tion 5.1, an approach based on two rather than three states should reduce the
probability of misclassification, as it is easier to distinguish between two than
three states. It cannot be ruled out that other more profitable three-state strate-
gies exist, but it will remain a possibility for future research to examine more
advanced strategies. The out-of-sample testing will employ an adaptive estima-
tion approach, which should offset the advantage of a conditional t-distribution,
as discussed in section 3.5. The out-of-sample testing will, therefore, focus on
the two-state Gaussian HMM.

5.3 Out-of-Sample Testing
Figure 5.9 shows the predicted states out of sample based on the adaptively
estimated two-state Gaussian HMM when applying a probability filter with a
92%-threshold. The effective window length used in the estimation was 500
trading days. The result of the decoding looks very robust as the identified
regimes do not appear to be very sensitive to the chosen threshold. It might
have been optimal with a slightly lower value out of sample as the threshold
influences how fast the regime changes are detected.
Table 5.10 reports the out-of-sample performance of the three different strategies
based on the decoded states of the adaptively estimated two-state Gaussian
HMM. Switching between the MSCI ACWI and the JPM GBI led to a higher
return and SR than rebalancing to static weights (see table 4.9 on page 70). It
also led to a higher SR and lower drawdown than the MSCI ACWI as shown in
table 5.11. Switching between a long and a short position in the MSCI ACWI
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Figure 5.9: The MSCI ACWI and the predicted states based on the adaptively esti-
mated two-state Gaussian HMM and a probability filter with a 92%-threshold. Cyan is
the bull state and yellow is the bear state.



5.3 Out-of-Sample Testing 81

Table 5.12
The performance of the DAA strategies over the five-year out-of-sample period after
subtracting 0.1% transaction costs with no delay in the portfolio adjustment.

Model wBull wBear RR SD MDD SR
HMMN (2) (1, 0, 0) (0, 1, 0) 0.138 0.11 0.13 1.21
HMMN (2) (1, 0, 0) (−1, 0, 0) 0.130 0.18 0.35 0.74
HMMN (2) (0.6, 0.15, 0.25) (0.4, 0.35, 0.25) 0.103 0.12 0.17 0.83

Table 5.13
The performance of the DAA strategies over the five-year out-of-sample period after
subtracting 0.1% transaction costs with a two-day delay in the portfolio adjustment.

Model wBull wBear RR SD MDD SR
HMMN (2) (1, 0, 0) (0, 1, 0) 0.129 0.12 0.15 1.10
HMMN (2) (1, 0, 0) (−1, 0, 0) 0.104 0.17 0.34 0.59
HMMN (2) (0.6, 0.15, 0.25) (0.4, 0.35, 0.25) 0.101 0.13 0.17 0.80

has not been the best strategy in the five-year out-of-sample period, as there
have been no major setbacks. The long–short strategy realized a lower return
than the two most risky rebalancing strategies and at the same time a larger
MDD.
The strategy with constrained deviations from the benchmark allocation real-
ized a higher return with a slightly lower SD and MDD than the benchmark
allocation in a period that did not favor a dynamic strategy. The dynamic
strategy realized a higher SR and a lower MDD compared to the rebalancing
strategy as long as the transaction costs did not exceed 0.6% per one-way trade.
The reported results are based on a one-day delay between the prediction of a
state change and the portfolio adjustment. That is, if the predicted state of
day t + 1 based on the closing price at day t is different from the state that
the allocation at day t is based on and the confidence in the prediction is above
the 92%-threshold, then the allocation is changed at the closing of day t+ 1. If
the reallocation could be implemented at the closing of day t, i.e. with no delay,
then the RR would have been a lot higher, as shown in table 5.12, with the SD
and MDD remaining largely unchanged.
It would also increase the RR if the reallocations were implemented with a two
rather than one-day delay as shown in table 5.13. The relatively large differences
in the RR depending on the implementation delay might be a coincidence, but
they can also be a result of the significantly positive first-order autocorrelation
that both the MSCI ACWI and the JPM GBI exhibit and the significantly neg-
ative second-order autocorrelation of the MSCI ACWI. A one-day delay causes
the portfolio to miss out on the positive lag-one momentum, at the same time
as being hurt by the day-two correction, which is avoided with a two-day delay.
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Table 5.14
The performance of the DAA strategies over the five-year out-of-sample period after
subtracting 0.1% transaction costs and with a one-day delay in the portfolio adjustment
when the model is estimated using a rolling window of 1000 trading days.

Model wBull wBear RR SD MDD SR
HMMN (2) (1, 0, 0) (0, 1, 0) 0.104 0.12 0.17 0.87
HMMN (2) (1, 0, 0) (−1, 0, 0) 0.057 0.18 0.48 0.33
HMMN (2) (0.6, 0.15, 0.25) (0.4, 0.35, 0.25) 0.098 0.13 0.17 0.77

The same strategies would have realized lower returns and higher MDDs if
based on a two-state Gaussian HMM estimated using a rolling window of 1000
days. The results, when using a rolling window for the estimation, are shown in
table 5.14 based on a one-day delay in the implementation. The performance
of the strategy with dynamic tilts is almost the same. The rolling window
estimation would have led to 13 allocation changes instead of 7 due to some
very short-lived sojourns. Hence, more intelligent adaptivity does add value in
particular in terms of reducing the tail-risk.



CHAPTER 6
Summary and

Conclusion

The thesis’ point of departure was that different economic regimes require dif-
ferent asset allocations. In the presence of time-varying investment opportuni-
ties, portfolio weights should be adjusted as new information arrives. Regime-
switching models are well suited to capture the sudden changes of behavior and
the phenomenon that the new dynamics of asset prices persist for several periods
after a change. The asset classes considered were stocks, bonds, and commodi-
ties. Unlike the majority of previous studies on regime-switching strategies,
there was no risk-free asset.

The data analysis confirmed well-known stylized facts of financial returns includ-
ing skewness, leptokurtosis, volatility persistence, and time-varying correlations.
The stylized behavior was most distinct for the stock index, while the sudden
changes in the behavior of the government bond index seemed to be following in-
terest rate changes. There was a focus on modeling the stock returns as portfolio
risk is typically dominated by stock market risk.

The estimated models turned out to have a simple structure as only certain
transitions were seen to occur. This offset the advantage of a continuous-time
formulation in relation to the intended use. Even so, the implementation of a
continuous-time version of the Baum–Welch algorithm was an important con-
tribution of the project that will be useful for future work on continuous-time
hidden Markov models. Three states seemed to be sufficient to reproduce the
stylized facts with the most exceptional observations being allocated in a sepa-
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rate state. A fourth state did not seem to improve the fit significantly compared
to the added complexity and two states were not enough to adequately capture
the stylized behavior. Although a conditional t-distribution in the high-variance
state improved the ability of a two-state model to reproduce the excess kurtosis,
it did not lead to a satisfactory fit to the long memory of the squared returns.
The estimation identified a call for an adaptive approach as the parameters
of the estimated models were far from constant throughout the sample period.
Time-varying parameters are likely part of the reason why many studies that
employ Markov-switching models to financial returns obtain significantly better
results in sample compared to out of sample. An adaptive estimation method
based on exponential forgetting compensated for the need for a third state or a
conditional t-distribution in the high-variance state to capture the most excep-
tional observations. Allowing for non-constant transition probabilities implies
that the sojourn time distribution can take any shape.
A three-state multivariate Gaussian hidden Markov model was estimated and
used to generate scenarios useful for a strategic asset allocation decision. Three
efficient portfolios with different levels of risk and expected return were found
based on mean–CVaR optimization. Rebalancing was shown to improve the re-
turn and at the same time reduce the risk—both the variance and the maximum
drawdown—compared to buy-and-hold strategies in sample with an annual fre-
quency being optimal. The three portfolios realized significantly higher returns
and Sharpe ratios out of sample compared to in sample.
Dynamic asset allocation strategies were shown to add value over strategies
based on rebalancing to static weights. The considered two-state models were
found to outperform a three-state model in sample as foundation for dynamic
asset allocation strategies. One strategy was based on switching between the
stock and the bond index, another strategy was either long or short the stock
index, and a third strategy included dynamic tilts of the benchmark allocation to
stocks and bonds based on the prevailing regime while keeping a fixed allocation
to commodities.
The outperformance in sample was very large, among other things, due to the
major setbacks at the end of the period that favored a dynamic strategy. In an
out-of-sample period that did not favor a dynamic strategy, the tested strategies
based on an adaptively estimated two-state Gaussian hidden Markov model
still outperformed a rebalancing strategy after accounting for transaction costs,
assuming no knowledge of future returns, and with a realistic delay between the
identification of a regime change and the portfolio adjustment.

6.1 Discussion
The thesis extends the work of Bulla et al. (2011) and addresses most of their sug-
gestions for future research. The consideration of a continuous-time approach;
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the model selection and testing of models with more than two states, different
univariate and multivariate state-dependent distributions, and non-geometrical
sojourn time distributions; the adaptive estimation method; and the asset al-
location decision between three asset classes allowing for short positions in the
stock index are new to the majority of the literature on applications of Markov-
switching models in empirical finance as reviewed by Guidolin (2011).
Previous studies on regime-based asset allocation have primarily found that it
is possible to obtain the same or a slightly higher return and at the same time
reduce the portfolio risk by switching to a risk-free asset in the most turbulent
periods. Holding a risk-free asset obviously yields a risk reduction, but leverage
would be needed to significantly increase the return. This is consistent with
the finding that safer assets offer higher risk-adjusted returns than riskier assets
because of leverage aversion (Asness et al. 2012, Frazzini and Pedersen 2014).
This study has shown that it is possible to obtain a significant excess return
with the same risk in terms of portfolio variance but a lower drawdown risk
by taking advantage of the time-varying investment opportunities rather than
rebalancing to static weights. The documented in-sample improvements of the
Sharpe ratio exceed those of Bulla et al. (2011) by a good margin while the
out-of-sample improvements are of a similar magnitude.
The need for an adaptive estimation approach to capture the time-varying behav-
ior of the model parameters is consistent with previous studies that have found
hidden semi-Markov models with non-geometric sojourn time distributions to
be better at reproducing some of the stylized facts (Bulla and Bulla 2006) and
that conditional t-distributions increased the persistence of the visited states
and improved the ability to reproduce the excess kurtosis (Bulla 2011).

6.2 Future Work
Adaptive methods are a relatively undiscovered topic within empirical finance
despite the strong evidence of non-stationary data-generating processes. The
work done in this thesis has focused on capturing the time-varying behavior of
the model parameters by assigning more weight to the most recent observations
which is an extension of the fixed-length forgetting Bulla et al. (2011) applied in
their study. A better description of the time-varying behavior of the parameters
is an open route for future research that can be pursued in various ways. One
would be to allow different forgetting factors for each parameter or consider more
advanced state-dependent or time-dependent forgetting. Another way would be
to formulate a model for the parameter changes.
The hierarchical regime-switching model studied by Ang and Bekaert (2004),
where the parameters of the regime-switching process depended on an exoge-
nous variable (a short-term interest rate) is an interesting extension of the fre-
quently used Markov-switching models with seemingly great potential for future
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work. Testing other possible predictors such as credit spreads or implied volatil-
ity is another possibility for future work. It is worth establishing whether an
approach based on modeling regimes in assets returns outperforms approaches
based on forecasting regimes in drivers of asset returns. It would also be rele-
vant to do further research on whether an approach based on regime-switching
models outperforms more simple approaches based on, for instance, the Maha-
lanobis distance, implied volatility, or simple moving average rules as suggested
by Zakamulin (2014).
Inclusion of other major asset classes will remain a possibility for future work.
This study already extends previous studies that only considered stocks and
cash by including both a bond and a commodity index. Stocks, bonds, and
commodities are likely to be three of the main common risk factors across a
higher number of asset classes (see e.g. Ilmanen 2001, Bender et al. 2010). Rather
than examining a large number of asset classes it would be useful to have a model
describing the behavior of a smaller number of common risk factors.
A final suggestion for future work is to consider more smooth switching proce-
dures for the portfolio adjustment for instance based on the confidence in the
predicted state similar to the idea behind the Black–Litterman model (Black
and Litterman 1992). Rather than doing a separate optimization of the model,
the forgetting factor, the probability threshold, and the state-dependent alloca-
tions it could all be combined into one large optimization problem, although the
magnitude of the problem is likely to make it very difficult to solve.
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APPENDIX A
R-code

A.1 Discrete-time Baum–Welch Algorithm

EMNt = function(x, mu, sigma, Gamma, delta, nu, maxiter = 500,
tol = 1e-8, print = FALSE){

n = length(x)
m = length(mu)
mu.next = mu
sigma.next = sigma
Gamma.next = Gamma
delta.next = delta
nu.next = nu
u = numeric(n)
llk.prev = 0

for (iter in 1:maxiter){
lallprobs = matrix(NA, n, m)
for (i in 1:n){

for (j in 1:m){
if (j < m)
lallprobs[i, j] = dnorm(x[i], mean = mu.next[j],

sd = sigma.next[j], log = T)
else
lallprobs[i, j] = dtmod(x[i], mu.next[j], sigma.next[j],

nu.next, log = T)
}
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}
fb = lalphabeta(x, mu.next, sigma.next, Gamma.next,

delta.next, nu.next)
la = fb$la
lb = fb$lb
c = max(la[, n])
llk = c + log(sum(exp(la[, n] - c)))
for (j in 1:m){
for (k in 1:m)
Gamma.next[j, k] = Gamma[j, k]*sum(exp(la[j, 1:(n-1)] +

lallprobs[2:n, k] + lb[k, 2:n] - llk))
if (j < m){
mu.next[j] = exp(la[j, ] + lb[j, ] - llk)%*%x/
sum(exp(la[j, ] + lb[j, ] - llk))

sigma.next[j] = sqrt((exp(la[j, ] + lb[j, ] - llk)*
(x - mu.next[j]))%*%(x - mu.next[j])/
sum(exp(la[j, ] + lb[j, ] - llk)))

}
else{
u = (nu.next + 1)/(nu.next + (x - mu.next[j])*

(x - mu.next[j])/sigma.next[j]^2)
w = (exp(la[j, ] + lb[j, ] - llk)*u)%*%x
z = exp(la[j, ] + lb[j, ] - llk)%*%u
mu.next[j] = w/z
w = (exp(la[j, ] + lb[j, ] - llk)*u*(x - mu.next[j]))%*%
(x - mu.next[j])

sigma.next[j] = sqrt(w/z)
w = exp(la[j, ] + lb[j, ] - llk)%*%(log(u) - u)
z = sum(exp(la[j, ] + lb[j, ] - llk))
estimator = function(nu, frac){
-digamma(exp(nu)/2)+log(exp(nu)/2) + 1 + frac +
digamma((exp(nu) + 1)/2) - log((exp(nu) + 1)/2)

}
nu.next = exp(uniroot(estimator, frac = w/z, lower =

log(0.01), upper = log(500))$root)
}

}
Gamma.next = Gamma.next/apply(Gamma.next, 1, sum)
delta.next = exp(la[, 1] + lb[, 1] - llk)
delta.next = delta.next/sum(delta.next)
crit = llk - llk.prev
if(crit < tol){
np = (m + 2)*m
AIC = -2*(llk - np)
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BIC = -2*llk + np*log(n)
return(list(mu = mu, sigma = sigma, Gamma = Gamma,

delta = delta, nu = nu, iterations = iter,
mllk = llk, AIC = AIC, BIC = BIC))

}
mu = mu.next
sigma = sigma.next
Gamma = Gamma.next
delta = delta.next
nu = nu.next
llk.prev = llk
if(print == T)

print(paste('Iteration', iter, 'LogLik', round(llk, 4)))
}

print(paste('No convergence after', maxiter, 'iterations'))
return(list(mu = mu, sigma = sigma, Gamma = Gamma,

delta = delta, nu = nu, iterations = iter, mllk = llk))
}

lalphabeta = function(x, mu, sigma, Gamma, delta, nu){
n = length(x)
m = length(mu)
lalpha = lbeta = matrix(NA, m, n)
P = rep(NA, m)
for (j in 1:m){
if (j < m)

P[j] = dnorm(x[1], mean = mu[j], sd = sigma[j])
else

P[j] = dtmod(x[1], mu[j], sigma[j], nu)
}
foo = delta*P
sumfoo = sum(foo)
lscale = log(sumfoo)
foo = foo/sumfoo
lalpha[, 1] = log(foo) + lscale
for (i in 2:n){
for (j in 1:m){

if (j < m)
P[j] = dnorm(x[i], mean = mu[j], sd = sigma[j])

else
P[j] = dtmod(x[i], mu[j], sigma[j], nu)

}
foo = foo%*%Gamma*P
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sumfoo = sum(foo)
lscale = lscale + log(sumfoo)
foo = foo/sumfoo
lalpha[, i] = log(foo) + lscale

}
lbeta[, n] = rep(0, m)
foo = rep(1/m, m)
lscale = log(m)
for (i in (n - 1):1){
for (j in 1:m){
if (j < m)
P[j] = dnorm(x[i + 1], mean = mu[j], sd = sigma[j])

else
P[j] = dtmod(x[i+1], mu[j], sigma[j], nu)

}
foo = Gamma%*%(P*foo)
lbeta[, i] = log(foo) + lscale
sumfoo = sum(foo)
foo = foo/sumfoo
lscale = lscale + log(sumfoo)

}
list(la = lalpha, lb = lbeta)

}

dtmod = function(x, mu = 0, sigma = 1, nu = 30, log = FALSE){
den1 = try(sigma*beta(1/2, nu/2))
num1 = try(nu^(-1/2))
den2 = try(nu*sigma^2)
num2 = try((x - mu)^2)
dtmod = try(num1/den1*(1 + num2/den2)^(-1*(nu + 1)/2))
if (log == TRUE)
dtmod = log(dtmod)

return (dtmod)
}

A.2 Continuous-time Baum–Welch Algorithm

CTEM = function(x, t, mu, sigma, Q, delta, m,
maxiter = 100, tol = 1e-8){

n = length(x)
mu.next = mu
sigma.next = sigma
Q.next = Q
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delta.next = delta
llk.prev = 0

for (iter in 1:maxiter){
fb = lalphabeta(x, t, mu.next, sigma.next, Q.next,

delta.next, m)
la = fb$la
lb = fb$lb
c = max(la[, n])
llk = c + log(sum(exp(la[, n] - c)))
R = numeric(m)
N = matrix(0, m, m)
tmp = eigen(Q.next)
U = tmp$vectors
Uinv = solve(U)
lambda = tmp$values
maxtau = max(diff(t))
TiS = array(NA, c(maxtau, m, m, m))
Trans = array(NA, c(maxtau, m, m, m, m))
for (tau in 1:maxtau){

for (a in 1:m){
for (b in 1:m){
TiS[tau, a, b, ] = TimeInStates(a, b, tau, U, Uinv,

lambda)
Trans[tau, a, b, , ] = Transitions(a, b, tau, U, Uinv,

lambda, Q.next)
}

}
}
for (l in 2:n){

tau = t[l] - t[l - 1]
for (a in 1:m){
for (b in 1:m){
Pab = dnorm(x[l], mean = mu.next[b], sd = sigma.next[b])*

exp(la[a, l - 1] + lb[b, l] - llk)
R = R + TiS[tau, a, b, ]*Pab
N = N + Trans[tau, a, b, , ]*Pab

}
}

}
Q.next = N/R
diag(Q.next) = -apply(Q.next, 1, sum)
for (j in 1:m){

mu.next[j] = exp(la[j, ] + lb[j, ] - llk)%*%x/
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sum(exp(la[j, ] + lb[j, ] - llk))
sigma.next[j] = sqrt((exp(la[j, ] + lb[j, ] - llk)*

(x - mu.next[j]))%*%(x - mu.next[j])/
sum(exp(la[j, ] + lb[j, ] - llk)))

}
delta.next = exp(la[, 1] + lb[, 1] - llk)
delta.next = delta.next/sum(delta.next)
crit = llk - llk.prev
if(crit < tol){
np = 5*m - 1
AIC = -2*(llk - np)
BIC = -2*llk + np*log(n)
return(list(mu = mu, sigma = sigma, Q = Q, delta = delta,

iterations = iter, mllk = llk, AIC = AIC, BIC = BIC))
}
mu = mu.next
sigma = sigma.next
Q = Q.next
delta = delta.next
llk.prev = llk
print(paste('Iteration', iter, 'LogLik', round(llk, 4)))

}
print(paste('No convergence after', maxiter, 'iterations'))
return(list(mu = mu, sigma = sigma, Q = Q, delta = delta,

iterations = iter, mllk = llk))
}

lalphabeta = function(x, t, mu, sigma, Q, delta, m){
n = length(x)
lalpha = lbeta = matrix(NA, m, n)
P = rep(NA, m)
for (j in 1:m)
P[j] = dnorm(x[1], mean = mu[j], sd = sigma[j])

foo = delta * P
sumfoo = sum(foo)
lscale = log(sumfoo)
foo = foo/sumfoo
lalpha[, 1] = log(foo)+lscale
tmp = eigen(Q)
U = tmp$vectors
Uinv = solve(U)
lambda = tmp$values
for (i in 2:n){
for (j in 1:m)
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P[j] = dnorm(x[i], mean = mu[j], sd = sigma[j])
tau = t[i] - t[i - 1]
Gamma = U%*%diag(exp(tau*lambda))%*%Uinv
foo = foo%*%Gamma*P
sumfoo = sum(foo)
lscale = lscale+log(sumfoo)
foo = foo/sumfoo
lalpha[, i] = log(foo)+lscale

}
lbeta[, n] = rep(0, m)
foo = rep(1/m, m)
lscale = log(m)
for (i in (n - 1):1){
for (j in 1:m)

P[j] = dnorm(x[i + 1], mean = mu[j], sd = sigma[j])
tau = t[i + 1] - t[i]
Gamma = U%*%diag(exp(tau*lambda))%*%Uinv
foo = Gamma%*%(P*foo)
lbeta[, i] = log(foo)+lscale
sumfoo = sum(foo)
foo = foo/sumfoo
lscale = lscale+log(sumfoo)

}
list(la = lalpha, lb = lbeta)

}

TimeInStates = function(a, b, tau, U, Uinv, lambda,
epsilon = 1e-7){

m = nrow(U)
J = matrix(0, m, m)
for (i in 1:m){
for (j in 1:m){

if (abs(lambda[i] - lambda[j]) <= epsilon)
J[i, j] = tau*exp(tau*lambda[i])

else
J[i, j] = (exp(tau*lambda[i]) - exp(tau*lambda[j]))/
(lambda[i] - lambda[j])

}
}
Times = numeric(m)
for (k in 1:m){
second_layer = 0
for (i in 1:m){

third_layer = 0
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for (j in 1:m)
third_layer = third_layer + U[k, j]*Uinv[j, b]*J[i,j]

second_layer = second_layer + U[a, i]*Uinv[i, k]*third_layer
}
Times[k] = second_layer

}
return(Times)

}

Transitions = function(a, b, tau, U, Uinv, lambda, Q,
epsilon = 1e-7){

m = nrow(Q)
J = matrix(0, m, m)
for (i in 1:m){
for (j in 1:m){
if (abs(lambda[i] - lambda[j]) <= epsilon)
J[i, j] = tau*exp(tau*lambda[i])

else
J[i, j] = (exp(tau*lambda[i]) - exp(tau*lambda[j]))/
(lambda[i] - lambda[j])

}
}
Transitions = matrix(0, m, m)
for (k in 1:m){
for (l in 1:m){
second_layer = 0
if (k != l){
for (i in 1:m){
third_layer = 0
for (j in 1:m)
third_layer = third_layer + U[l, j]*Uinv[j, b]*
J[i, j]*Q[k, l]

second_layer = second_layer + U[a, i]*Uinv[i, k]*
third_layer

}
Transitions[k, l] = second_layer

}
}

}
return(Transitions)

}
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A.3 Mean–CVaR optimization

MeanCVaR = function(scenarios, lambda = 0.5, alpha = 0.05,
print = FALSE){

require('lpSolve')
nassets = ncol(scenarios)
nscenarios = nrow(scenarios)
nlambda = length(lambda)
allocation = matrix(NA, nlambda, nassets)

ER = CVaR = numeric(nlambda)
rhat = as.vector(apply(scenarios, 2, mean))
A = rbind(c(rep(1, nassets), numeric(nscenarios + 1)),

cbind(scenarios, 1, diag(nscenarios)))
b = c(1, numeric(nscenarios))

for (i in 1:nlambda){
c = c((1 - lambda[i])*rhat, -lambda[i],

-rep(lambda[i]/(alpha*nscenarios), nscenarios))
sol = lp('max', c, A, c('=', rep('>=', nscenarios)), b)
allocation[i, ] = sol$solution[1:nassets]
ER[i] = allocation[i, ]%*%rhat
CVaR[i] = ((1 - lambda[i])*ER[i] - sol$objval)/lambda[i]
if(print)

print(i)
}

list(lambda = lambda, CVaR = CVaR, ER = ER, Allocation = allocation)
}
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APPENDIX B
Parameter Estimates

Table B.1
Parameter estimates for m-state HMMs with conditional normal distributions fitted to
the daily in-sample log-returns of the MSCI ACWI.

m Γ µ× 104 σ × 102 δ π

2 0.987 0.013
0.029 0.971

6.8
−10.0

0.56
1.50

1
0

0.69
0.31

3
0.988 0.012 0
0.012 0.981 0.006
0 0.043 0.957

8.8
−1.0
−32.5

0.48
0.94
2.46

1
0
0

0.48
0.45
0.07

4
0.983 0.017 0 0
0 0.651 0.331 0.018

0.033 0.240 0.727 0
0 0 0.053 0.947

8.9
−69.1
50.7
−27.9

0.47
0.71
0.74
2.48

1
0
0
0

0.49
0.19
0.25
0.07
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Table B.2
Parameter estimates form-state HMMs with conditional normal and t-distributions fitted
to the daily in-sample log-returns of the MSCI ACWI.
m Γ µ× 104 σ × 102 ν δ π

2 0.990 0.010
0.012 0.988

8.0
−4.8

0.52
0.98 4.5

1
0

0.56
0.44

3
0.988 0.012 0
0.012 0.981 0.007
0 0.039 0.961

8.7
−0.8
−29.3

0.48
0.93
1.97 6.3

1
0
0

0.48
0.45
0.07

4
0.983 0.017 0 0
0 0.651 0.331 0.018

0.033 0.241 0.726 0
0 0 0.046 0.954

9.0
−68.3
50.6
−24.0

0.47
0.70
0.73
2.00 6.6

1
0
0
0

0.49
0.19
0.25
0.07

Table B.3
Parameter estimates for m-state HMMs with conditional t-distributions fitted to the
daily in-sample log-returns of the MSCI ACWI.
m Γ µ× 104 σ × 102 ν δ π

2 0.992 0.008
0.010 0.990

8.4
−4.8

0.49
0.98

14.0
4.5

1
0

0.56
0.44

3
0.991 0.009 0
0.009 0.984 0.006
0 0.038 0.962

8.9
−0.8
−29.9

0.46
0.92
1.98

15.5
119.8
6.4

1
0
0

0.48
0.44
0.08
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Table B.4
Parameter estimates for m-state HSMMs with conditional normal distributions fitted to
the daily in-sample log-returns of the MSCI ACWI. p and r are the parameters of the
negative binomial sojourn time distribution.
m Γ 1− p r × 10 µ× 104 σ × 102 δ

2 0 1
1 0

0.995
0.964

0.37
0.81

6.7
−12.1

0.55
1.60

1
0

3
0 1 0

0.817 0 0.183
0 1 0

0.997
0.941
0.972

1.21
14.59
5.59

8.6
−1.3
−32.8

0.49
0.95
2.47

1
0
0

4
0 1 0 0
0 0 0.934 0.066

0.630 0.370 0 0
0 0 1 0

0.995
0.350
0.577
0.974

0.64
39.74
16.71
4.07

8.9
−68.1
59.7
−28.3

0.48
0.72
0.74
2.47

1
0
0
0

Table B.5
Parameter estimates for m-state HSMMs with conditional t-distributions fitted to the
daily in-sample log-returns of the MSCI ACWI. p and r are the parameters of the negative
binomial sojourn time distribution and ν is the degrees of freedom for the conditional
t-distributions.
m Γ 1− p r × 10 µ× 104 σ × 102 ν δ

2 0 1
1 0

0.996
0.985

0.31
0.75

8.0
−6.7

0.50
1.08

21.7
5.1

1
0

3
0 1 0

0.79 0 0.21
0 1 0

0.997
0.940
0.974

1.25
16.93
5.98

8.9
−1.0
−29.7

0.46
0.94
1.99

17.5
1382.0
6.4

1
0
0

Table B.6
Parameter estimates for a four-state CTHMM with conditional normal distributions
fitted to the daily in-sample log-returns of the MSCI ACWI.

Q µ× 104 σ × 102 δ π
−0.016 0.016 0 0

0 −0.492 0.474 0.018
0.030 0.353 −0.383 0
0 0 0.053 −0.053

8.8
−67.5
49.7
−27.8

0.47
0.71
0.74
2.47

1
0
0
0

0.48
0.20
0.25
0.07
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Table B.7
Parameter estimates for m-state HMMs with conditional multivariate normal distribu-
tions fitted to the daily in-sample log-returns of the three indices.
m Γ µ× 104 σ × 102

2 0.981 0.019
0.045 0.955

7.2 −0.2 6.0
−11.6 1.7 −9.0

0.57 0.17 1.16
1.53 0.21 1.82

δ π ρACWI, GBI ρACWI, GSCI ρGBI, GSCI
1
0

0.71
0.29

0.16
−0.45

0.03
0.26

−0.01
−0.12

m Γ µ× 104 σ × 102

3
0.984 0.015 0.001
0.016 0.969 0.015
0.008 0.143 0.850

7.6 −0.4 7.0
−2.5 1.2 3.8
−20.5 −0.4 −75.4

0.51 0.17 1.10
0.96 0.17 1.38
2.76 0.33 2.98

δ π ρACWI, GBI ρACWI, GSCI ρGBI, GSCI
1
0
0

0.49
0.46
0.05

0.31
−0.37
−0.42

0.03
0.07
0.43

−0.01
−0.06
−0.19

m Γ µ× 104 σ × 102

4
0.988 0.004 0.009 0
0.003 0.988 0.008 0.001
0.007 0.005 0.973 0.015
0 0.008 0.135 0.857

9.2 −0.3 3.6
5.1 −0.3 7.5
−4.3 1.4 5.0
−17.2 −1.1 −82.3

0.52 0.14 1.46
0.54 0.20 0.84
1.04 0.18 1.31
2.84 0.34 3.10

δ π ρACWI, GBI ρACWI, GSCI ρGBI, GSCI
0
1
0
0

0.29
0.27
0.39
0.04

0.02
0.39
−0.39
−0.42

0.04
−0.00
0.10
0.44

0.02
−0.03
−0.09
−0.19
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Figure C.1: The MSCI ACWI and the decoded states of the two-state models using
the Viterbi algorithm. Cyan is the bull state and yellow is the bear state.
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Figure C.2: The MSCI ACWI and the decoded states of the three-state models using
the Viterbi algorithm. Cyan is the bull state, yellow is the bear state, and red is the
recession state.
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